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Abstract

This work is concerned with designing and building an online activity classifier and
tracking device on an embedded system to monitor parakeets. This involves the de-
sign choices in localization, feature selection, classifying algorithm and optimization
of required features and algorithm parameters. In order to reduce the number of in-
puts to a machine learning algorithm, Forward Selection was applied, which reduced
the number of features from 20 to 7. The resulting feature sets were then applied to
six learning algorithms; k-Nearest Neighbours, Naive Bayes, Neural Network, Linear
Discriminant Analysis, Decision Tree, and Support Vector Machine. In order to eval-
uate the machine learning algorithm, data from a parakeet was used for training and
testing using a 70% to 30% ratio, creating a generic classifier which could accurately
recognise the activity of a parakeet. The models were evaluated and compared ac-
cording to three main metrics, namely performance, battery usage, and ease of
implementation, as well as other metrics such as variance in performance, usability
and training effort.

It was found that the combination of the decision tree classifier with seven time-
domain features from the accelerometer’s 3D vector magnitude comprised the best
compromise between the evaluated metrics. The decision tree parameters were
tuned such that its performance could be maintained while minimizing the tree size.
A window size of two seconds and a 50% window overlap was used to yield an ex-
cellent compromise between computation and performance. The accuracy of clas-
sification varied between 87 and 90%.

Next, satellite-, ground-based- and radar tracking methods were compared in
terms of energy consumption and accuracy. A localization system has been pro-
posed based on the received signal strength of Bluetooth Low Energy beacons.
These beacons were detectable from a 40-meter distance.

Finally, this tracking device and online activity classifier have been implemented
on the AKMW-iB001M beacon, and the performance will be tested in the future on
wild parakeets in Málaga, Spain.
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Chapter 1

Introduction

Animal behaviours and activities are essential to better understand the species and
their environment [1], [2]. For example, social scientists are turning to animal be-
haviour as a framework in which to interpret human society and its problems [3].
Many problems in human society are often related to the interaction of environment
and behaviour or genetics and behaviour. Another example is that of Sir Charles
Sherrington [4]. He developed a model for the structure and function of the nervous
system based on close behavioural observation of animals. Other research showed
that animal behaviour could tell about the animals’ health [5] and their social in-
teractions [1]. Activity recognition might also be implemented to protect animals
from poachers [6]. Finally, the behaviour and activities of animals often provide
early warning signs of environmental degradation. Changes in sexual and other be-
haviour occur much sooner at lower levels of environmental disruption than changes
in reproductive outcomes and population size [7].

Therefore, many scientists collect data on these behaviours and activities on
ways varying from making notes with pen and paper to using collars with sensors.
One of the oldest techniques is to observe the animal by human observers over a
long time [8]–[11]. An issue with this technique is the human-dependency, which re-
quires an observer to be present at all times to monitor the animals’ activity. Human
observation is not only tricky but also impractical, especially when such an animal
moves to locations restricted to humans or travels with high speed. Another issue
is that the animal might behave differently in the presence of a human (which pri-
marily is the case for wild animals). Another observation technique is to observe via
cameras. This eliminates the problem of a human observer needing to be present
at all times and causes no influence on the behaviour and activity of the animal.
The animal can be filmed, and later its behaviour and activities can be classified.
However, with cameras, one is bounded to a fixed area and can therefore only be
used on animals in captivity or restricted to a space. Finally, collars can be used
to collect information on the behaviours and activities of animals. With this, a small
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2 CHAPTER 1. INTRODUCTION

device is secured onto the animal with various sensors attached to it. These sen-
sors gather various kind of data (e.g. movement, location, temperature) about the
animal. The animal always carries the collar along, providing more information than
human observations and cameras.

Sensors in the collar gather a large amount of data. To interpret this sensor data
into animal behaviours and activities, one uses machine learning. Machine learning
looks for patterns in the data symbolizing certain activities (e.g. walking, standing,
flying, swimming). This classification is often performed offline, after retrieval of
the sensor data. Retrieval of the data is done either via removing the sensor or
transmitting the raw data wireless for offline analysis. Wireless transmission is costly
in terms of energy. Therefore, processing sensor data on an embedded system can
be cheaper in terms of energy demand instead of sending the raw data over a radio.
Many applications would benefit from live updates regarding an animals activity, for
instance, to notice environmental disasters, such as forest fires.

Animal Activity Recognition (AAR) is achieved by processing sensor data on a
device on the animal. Subsequently, the activities periodically transmit the animals’
behaviours and activities. Therefore, the embedded device needs to compute and
classify the gathered data continuously. These devices are limited in terms of stor-
age, power and computational resources. This poses the challenge to design a
sophisticated learning algorithm on a non-intrusive and low-energy system.

Another way to get insight into the behaviour of animals is location tracking. Lo-
cation tracking supports tackling the many environmental challenges we currently
face, including problems posed by invasive species [12], [13], the spread of zoonotic
diseases [14] and declines in wildlife populations due to anthropogenic climate and
land-use changes [15].

To track an animals location, one has to account for the required power as well
as the needed localization infrastructure. Almost every tracking technique consists
of connecting to a reference point to determine its location. The farther away from
this reference point, the more energy it costs to connect, but also one can measure
on a broader range. To measure the same area with low power reference points
requires more reference points. Tracking is accomplished through four main tech-
niques: human tracking, satellite tracking, local tracking and radar tracking. Human
tracking works by marking the animal and when seen again writing down the mark-
ing and location. This method results in a very sparse dataset. Satellite tracking can
accurately track locations to 5 m precise. However, connecting to a satellite requires
much power. Local tracking requires less power than satellite tracking, but more
tracking points need to be included. Finally, radar tracking has all the tracking points
already in place, but it can not track single targets. The challenge is to balance the
tracking infrastructure and energy consumption.
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1.1 Target animals

Worldwide, there are about 350 species of parrots and parakeets (order: Psittaci-
formes). In total, 54 of these species have been introduced to areas outside their
native ranges, and 38 species have become established in the non-native range
[16]. Humans exhibit ambivalent feelings toward parrots and parakeets. Many of
these birds are strikingly beautiful and highly prized as companion animals, while
others are banned because of potential agricultural damage or competition with na-
tive species. Many parrot species are afforded special protection because they are
endangered in their native habitats. Often these species are considered crop pests
and persecuted by farmers [17].

The monk parakeet (Myiopsitta monachus) and rose-ringed parakeet (Psittacula
krameri) are undoubtedly the worlds most successfully introduced parrot species.
Each species now enjoys a broad non-native range where conflicts with human
activity include crop damage [18], competition with native species [12], [13], and
property damage [19]. Each species exemplifies invasiveness through its capacity
to adapt to new conditions and to exploit opportunities created by human activity.
Biologists and resource managers are challenged to develop and implement effec-
tive strategies that not only protect resources from these invasive species but also
account for public opinions, which often favour the charismatic avian invaders.

Eliminating small populations of these birds is the primary strategy to deal with
their immense growing population. The main problem with dealing with these para-
keets is the lack of information on the birds. While there have been previous studies
into the monk parakeet and rose-ringed parakeet, they are either outdated [20]–[22],
or only look at global patterns [12], [23] or are observatory studies [8]–[11] leaving
space for human error.

Currently, the University of Málaga is trapping monk parakeets and tying neck-
collars around the birds (see Figure 1.1). By marking these birds, they get certain
primitive information. However, observatory studies do not supply enough informa-
tion. To get a better understanding of the monk parakeets’ location, behaviour and
activities need to be analysed.

To track the location and online classify activities, a data logger is used. A data
logger is a small embedded device with multiple sensors (e.g. movement-, pressure-
, heat- and location-sensors). This logger gives detailed information on the bird
and can be used as an insight into the life of the birds. Loggers are also able to
measure at locations restricted to humans, due to natural obstacles. Finally, they
can measure for long periods, sketching a better image of the activity of the bird.
Since no parakeet specific logger is yet available, we will focus on designing such a
logger.
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Figure 1.1: A parakeet with a neck-collar

The main body of this thesis deals with the different design aspects of such an
AAR system. This includes the choice of hardware, infrastructure and the activity
recognition. Finally, a prototype of the system is built and evaluated.

1.2 Research question

Within this study, we answer the following research question:
What level of online activity recognition performance can be achieved for birds while
tracking locations in urban environments?
Sub questions include:

• How can a bird activity recognition system be implemented on a small, light-
weight and low-power embedded device?

• What are the trade-offs between accuracy and functionality against weight and
energy?

• How to minimize the required localization infrastructure?

1.3 Report organization

The remainder of this report is organized as follows. Chapter 2 gives a state-of-
the-art wildlife tag. Within Chapter 3, we will sketch the hardware requirements and
explain our choice of hardware. Next Chapter 4 shows the used methods. Chapter
5 shows the results of the implemented tag. Finally, within Chapter 6, these results
will be discussed, and a conclusion is drawn. Also, recommendations for further
development and research are given in this final chapter.



Chapter 2

State Of The Art

This chapter discusses the state-of-the-art of data loggers and the used techniques
of those loggers. We divide the state-of-the-art section in location tracking, data
preprocessing and behaviour classification.

2.1 Techniques

2.1.1 Location Tracking

Within this part, we classify tracking systems (see figure 2.1) in the way they derive
location data: 1) satellite tracking, 2) local tracking, 3) radar tracking. All techniques
and specifications are further elaborated by Bridge et al. [24].

First, we look at satellite tracking, which is suitable for real-time tracking, but very
costly in terms of power and money. One can do animal tracking through the Global
Positioning System (GPS) [25]–[27] or through the Doppler Shift Calculations (DSC)
[28], [29]. While GPS is very accurate (accuracy at 5m vs 100m-50km compared to
DSC), it also uses much power and therefore needs a bigger battery. The smallest
GPS tags at present are in the 20 to 150-gram range, which limits their application
to larger animals (> 200g). Another difference when comparing GPS to DSC is
the number of fixes per day. DSC is only able to do this once a day, while GPS
can get multiple fixes throughout the day. Therefore, DSC is unfit for tracking small
movement but great for migratory movement.

When choosing for GPS, there is a difference among a cold start, warm start and
a hot start [30]. At a cold start, the GPS does not know where on earth it is located
and has no clear idea where the satellites are. Therefore, the GPS locates a satellite
to connect to so it can get a general impression of its location. When connected to a
satellite, it will request the almanac, which contains the approximate information on
all the other satellites locations. In total, the time to get a fix from the start-up is about
15 minutes. Next, we have a warm start; with this, the GPS already has the correct

5
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Type of start Requirements Time To Fix
Cold - 15 minutes

Warm
Correct almanac
Within 100 km of previous known location

45 seconds

Hot
Location known within last 2 hours
Ephemeris data of 5 or more satellites

22 seconds

Table 2.1: Different types of GPS start-ups

almanac data and a previous location within 100 km of the current location. Then
it asks the ephemeris data from the satellite which contains that satellite’s detailed
orbital information. The time to get the first fix with a warm start is only 45 seconds.
Finally, there is a hot start. With this, a position was determined within the previous
2 hours, and the GPS has the ephemeris data of at least five satellites. Now time to
a first fix takes about 22 seconds. Table 2.1 gives an overview of these three types.

Using local tracking gives some options which require less power than GPS.
Here we can use tower identification, Bluetooth and Wi-Fi identification, radio teleme-
try, acoustic telemetry, magneto-inductive tracking, dead-reckoning and solar ge-
olocating. Tower identification (or radio-tracking) [31] is the most straightforward
tracking system since one only needs to identify with which tower the tag is con-
nected. However, this is not always doable due to coverage issues and support
of mobile companies. Detailed movement can not be tracked this way since these
towers cover a large area. On the other hand, it works well in urban areas, which
are always covered. Another option is the use of Bluetooth [32], [33] or Wi-Fi [34].
By measuring the received signal strength of different beacons, one can determine
where a device is located. Bluetooth is a better option for bird tracking since it re-
quires less power than Wi-Fi. How detailed a location can be tracked depends on
the amount of Bluetooth tags spread out through the area. Therefore, the main issue
is that it can only be used in a predetermined area. However, the technique excels
in individual movement tracking.

All currently mentioned techniques use various methods to determine the exact
location. First of all, merely node/tower identification can be performed. This is the
easiest method and gives a range of the radius of the node, without adding an an-
gular measurement. This method is power inexpensive since the tag only needs to
listen if a node is nearby to know where it is. On the other hand, it gives a grainy
resolution of the animals’ path. Next, Time of Flight (ToF) [35] can be used to deter-
mine the exact distance from the node. It is computed through a known velocity of
the signal, given that the node’s and tags clock are synchronous. This computation
results in a known position circle. When a third node is added, one can pinpoint
to the exact position, by overlapping the position circles. The disadvantage of ToF
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is that it is very susceptible to multipath fading. Also, the tag needs to send out a
signal and then download each position circle, making it power expensive. A simi-
lar technique called Time Difference of Arrival (TDoA) [35] is mainly used in GPS.
The tag measures the difference in time of arrival between two or more signals. By
using this data, the tag can calculate its position relative to the signal sources. The
location of the signal sources needs to be known in order for this to work. One of
the major disadvantages in this technique is jitter, a small variation in the frequency
of the output signal. While the tag does not need to send out any signal, these com-
putations itself can be power expensive. Another technique is to use the Received
Signal Strength (RSS)/fingerprinting [36]. This technique knows each RSS on any
location. By comparing the RSS to the known ’map’, one can determine its location.
This technique is mainly used indoors since each location needs to be measured be-
forehand. It is also possible without such a ’map’ by computing the distance through
the RSS and loss. Like ToF, this makes it susceptible to multi-path fading and adds
extra computations. Finally, Angle of Arrival (AoA) [35] can be used to calculate the
angle of incidence of an incoming signal with respect to a reference. This method is
mainly used in DSC. It calculates position in one of two ways. In the first method,
the AoA and ToF information is combined, resulting in the position of the tag in polar
coordinates. The main advantage is that only one node is necessary to determine
the location, but has the same disadvantages as ToF. The other way two or more
AoA stations are set up at known distances from each other, the AoA of an incoming
signal is calculated at each station, and the position of the tag is calculated through
triangulation. The advantage here is the lack of time components, using angles only
leaving space for jitter and a-synchronization. The disadvantage is that the AoA
stations must have a fixed reference for the calculated angles to have any meaning,
limiting the measurable area.

To continue on local tracking, we have radio telemetry [37], which uses Very
High Frequency (VHF) or Ultra High Frequency (UHF) antennas and transmitters.
The simplest VHF transmitters emit pulses of energy at a particular radio-wave fre-
quency. Multiple tags can be tracked in the same area by using different frequencies
and pulse patterns. Generally, a limited number of receivers are used in a given
project, and a receiver must be within a few kilometres of a transmitter, depend-
ing on the equipment and the environment, to detect it. Therefore, these systems
are not capable of tracking migratory animals over long distances unless someone
expends the tremendous effort to follow an animal with a mobile antenna. In sit-
uations where radio telemetry is not practical or appropriate (due to, for instance,
the saltwater) one can use acoustic transmitters and receivers to track wildlife [38]–
[40]. Again these systems can only track a limited number of receivers within one
kilometre and are mainly used below water. When looking at underground tracking
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Figure 2.1: Tracking system classification

systems, there is only one active tracking system, called magneto-inductive tracking
[41]. Localization of mobile devices underground is exceptionally challenging, with
radio propagation severely attenuated by soil and moisture. Therefore, magnetic
fields are placed above grounds which penetrate the ground, and these strengths
are recorded and sent when the animal is above ground. A more passive tracking
option is dead-reckoning [42]. Dead-reckoning uses a known start position and de-
rives the new positions through the use of the animals’ speed, heading and change
in height with respect to the previous positions. This system does not require a lot
of battery power and can, therefore, work over a long time. Due to a variable (wind)
speed or drift the errors in position are very high [43]. A solution for this could be
to make an independent fix through GPS at regular intervals. However, this would
bring back the weight problem. Finally, we have a solar geolocator [44], which tracks
its latitude through the length of the day and longitude through the time of solar
noon. This is again a cheap and small system, which does not require a lot of bat-
tery power. However, the accuracy can range from 50km to 200km, and it can only
locate a bird once per day, making it inadequate for tracking local movement.

The final option is radar tracking [45]. Radar tracking has some distinct advan-
tage. For instance, the radar hardware and infrastructure are already in place and
is maintained. Furthermore, many software packages exist for accessing and visu-
alizing both real-time and archived radar data. Next, it can even track the smallest
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animals like insects. Finally, no additional tags need to be present on the animal
itself. However, radar tracking also has its limitations. They are more suited to track
masses than individuals, and the radar is bound to a particular area. Also, no other
information can be derived than an animals location. Furthermore, the current in-
frastructure is mainly focussed on aerial species, while there are certainly options
for maritime species.

2.1.2 Data preprocessing

Current sensing technology has enabled to monitor animal behaviour and activities
with the help of accelerometers [25], [26], [38], [46]–[49], cameras [38], [50], mi-
crophones [38]–[40], thermal sensors [48], barometers [51] and EEGs [46] among
others.

With all this sensor information, one can identify different behaviours. This identi-
fication is accomplished by manually comparing their behaviour with the data, which
is feasible for a limited dataset and behaviours; as done by Bouten et al. [25] and
Sheppard et al. [49]. However, with large sets of data, it is easier to do this through
machine learning. We will elaborate on this in the next section.

When tracking an animals location and behaviour, much data is generated. To
deal with this, either a large memory is needed, some data processing needs to be
applied, or frequent transmissions need to take place. A good option would be to
include a large memory if no form of transmission is used, making the total tag power
efficient. However, if no recapturing of the animal for data recollection is necessary,
forms of data processing or data compression need to be used.

The simplest data processing technique is to take the mean of values over a pe-
riod (windowing) and not send all raw values. A much-used technique is to calculate
the 3D-vector and its features over a small time window (1-2 seconds). These time
and frequency-domain features are typically used in activity recognition [24], [25],
[41], [48], [49], [52]. Another idea is to cut down on the sampling frequency. For in-
stance, Nathan et al. [53] sample their accelerometers for durations of 16.2 seconds
at 10-minute intervals. This sampling technique gives a grainy resolution, but a high
resolution is not always necessary. Finally, one can already compute the necessary
data for the research locally. Again Nathan et al. calculate ’roost arrival time’, ’daily
travelled distance’, ’maximal displacement’ and ’flight straightness’ locally and only
stores and transmits these values.

To make algorithms less complicated, one can perform feature reduction. Avail-
able techniques are dimensionality reduction or feature selection (also see figure
2.2). Dimensionality reduction uses a statistical procedure to reduce features which
might be redundant [54]. It orthogonally transforms the set of features into princi-
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Figure 2.2: Overview of feature reduction techniques

pal components, which are sets of linearly uncorrelated values with a covariance
of 0. Then these components are ranked by their variance. Dimensionality reduc-
tion can be useful when working with many features from the same domain to filter
out duplicate features. Feature selection can be done through relief [55], genetic
algorithms [56] or forward selection [57], all different methods which choose fea-
tures which contribute the most towards classification accuracy. Relief estimates
the quality and relevance of features by their ability to classify and discriminate be-
tween similar classes. Relief is excellent to predetermine the used features. Next,
genetic algorithms choose a random amount of features and see which features
score the highest in terms of classification performance. The higher features are
retained for the next generation until an optimum is found. The main problem might
be that one can reach a local optimum. Finally, forward selection selects features
one by one and evaluates their performance according to a classifier. Again the
highest performing features are added to the selection. However, here the problem
might be that discarded features cannot be re-selected, thus again only reaching a
local optimum. Bisby [58] compares these techniques on accuracy and execution
time. She shows that forward selection results in the lowest execution time while still
retaining accurate accuracy.

Another idea to deal with large datasets is to compress the raw data. The stan-
dard technique is gzip (LZ77), which is a dictionary coder. It works well but is
also more battery expensive than Lempel-Ziv-Oberhumer (LZO) and Lempel-Ziv-
Welch (LZW) [59]. LZO and LZW are specially developed for energy-constrained
devices and are also dictionary coders. However, due to the complexity of these
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algorithms, we will not further investigate those.

2.1.3 Classification Algorithms

In section 2.1.2, we looked at different sensors, feature selection and data compres-
sion. The next step is to classify the animals’ activity through a machine learning
algorithm. First, we will discuss all relevant algorithms, including the AAR that use
these algorithms. Then we show relevant research comparing or evaluating these al-
gorithms. The most used algorithms are k-Nearest Neighbours (k-NN), Naive Bayes
(NB), Decision Tree (DT), Neural Network (NN), Support Vector Machine (SVM) and
Linear Discriminant Analysis (LDA).

k-NN searches the training data points to find k data points closest to an incoming
data point in order to predict it. These k training examples are called the k ”nearest
neighbours” of the incoming data point. k-NN is easy to implement for multi-class
problems, requires no training step and uses instance-based learning. The con-
straints of the algorithm are that it is a slow algorithm (especially as datasets grow),
does not perform well on imbalanced data and is very sensitive to outliers. Bidder
et al. [60] tests k-NN in AAR for badgers, camels, cormorants, dingos, kangaroos,
wombats and humans. While they reach high accuracy for kangaroos and humans
(91% and 95% respectively), the average accuracy lays at 78%. The two aerial
species, cormorant and wombat, reach an accuracy of 77% and 76% respectively,
showing worse results than the average performance.

NB builds a simplistic probability model which assumes that features are inde-
pendent and evaluates them independently. It also works well in multi-class prob-
lems; it is easy to understand and can work on any size dataset. The cons are the
assumption of independence class features (which is never the case in real life),
and the algorithm suffers from Zero Frequency [61]. Browning et al. [62] use NB to
determine whether the location of diving behaviour can be predicted from GPS data
across three seabird species. NB predicted only non-dives well (85-95% accuracy),
but did poorly on predicting dives with only 40% accuracy. The author claims this
due to the unbalanced data set.

DT builds a tree structure with nodes. At each node, the values of the features
are compared in order to choose which branch to take. At the final branch, a class
is selected. It is a ”white box” in the sense that the acquired knowledge can be
expressed in a readable form. Next, the number of hyper-parameters to be tuned is
almost null. Drawbacks include the high probability of overfitting, and the tree can
become complicated when there are many labels. AAR has been done on sheeps
[63], [64] and cows [65]–[67] with DT. Each research reaches accuracies around
90%, also performing well with real-time classification.
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NN replicates a network containing layers, in which several nodes are connected
with each neuron on the preceding and succeeding layer. Each connection has a
defined weight on which the feature is multiplied with, leading to a final classification
result. The algorithm outperforms almost every other machine learning algorithm
and is widely used in the offline machine learning. However, NN requires more
training data than other machine learning algorithms, acts as a black box and is
computationally expensive. While we can find many types of research comparing
NN to other algorithms [53], [68], [69], no implemented versions are presented up to
now.

SVM aims to maximise the margin between training patterns and the decision
boundary and drawing hyperplanes between classes. SVM focusses on data points
which are from different classes but are close together, in comparison to other algo-
rithms which focus on all data points. The algorithm is useful in the higher dimen-
sion, when classes are separable and when the number of features is higher than
the training examples. However, it is difficult to find the appropriate hyperparameters
and kernel function and does not perform well in case of overlapped classes. Goa
et al. [70] build a web-based tagging and AAR system. They train an SVM through
data from humans, dogs and badgers all with an accuracy of over 90%. Lee et al.
[71] show an implemented version of an SVM to measure aggression of pigs, with
an accuracy of 95,2%.

LDA expresses one dependent feature as a linear combination of other indepen-
dent features, forming a set of continuous independent features which define class
labels, aiming to distinguish between independent and dependent features. The al-
gorithm works well if the class conditional densities of clusters are approximately
normal, also when there are more features than training examples. LDA fails to find
the lower-dimensional space if the dimensions are much higher than the number
of samples in the data matrix. Next, it also suffers from to discriminate between
non-linearly separable classes. Also, Viazzi et al. look into pig aggression, classi-
fying with an LDA with 89% accuracy. This version is no implemented version as
presented by Lee et al..

Kamminga et al. [69] compare seven different machine learning algorithms for
their behaviour classification. They look at memory usage, Central Processing Unit
(CPU) execution time, accuracy and F-scores. It shows that the NB algorithm is
the cheapest to use in terms of resource usage, closely followed by DT, NN and
Deep Neural Networks. Bisby [58] shows the same results but also includes an
implemented version of the DT algorithm.

Nathan et al. [53] also compare the Random Forest algorithm to the previously
mentioned algorithms. However, they do not look at resource usage, which is ex-
cepted to be higher than DT, since it is the outcome of multiple DTs.



Chapter 3

Hardware selection

Within this chapter, we will sketch the requirements for a wildlife tag and explain
what hardware fulfils these requirements.

3.1 Requirements

When measuring on animals, ethical rules apply to protect the animal. The foremost
rule is the maximum weight that may be added to the animal. For birds, this is 5%
of the total weight. Since parakeets weigh around 150 gram, our tag can weigh 7,5
gram at maximum.

To get an overview of the daily activities of the parakeet, we want to log its lo-
cation and real-time classify its activities. The importance of these parameters are
explained in chapter 1. Next, to get a better overview of these activities, we want
to see if specific patterns emerge. With a month worth of data, we believe to have
enough data to get a better insight into the behaviour of the parakeet.

Finally, the parakeet is returning to its nest each night, but to capture them is
quite tricky. To decrease the chance of data loss, we want to download the data
from a distance, instead of trying to recapture the bird for tag retrieval.

For the tag to be used on rose-ringed and monk parakeets the following require-
ments apply:

• The tag must weigh 7,5g at maximum.

• The tag should operate for at least one month.

• Data should be downloadable from a distance (no tag retrieval).

• The tag should be able to log its location.

• The tag should be able to real-time classify the activity from the animal.

13
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3.2 Transmission

The gathered raw accelerometer data needs to be recovered from the device. There
are two main options with each having its implementations again. The options are
satellite systems and ground-based receivers.

The first option is the use of satellite systems. These systems can update
real-time and send their data over a satellite link. This option gives an up-to-date
overview of each tracked individual. However, as can be imagined, these systems
have high costs and power requirements. An existing application which uses a satel-
lite system is the ICARUS initiative [72]. The ICARUS initiative is a tag connected to
a module on the International Space Station (ISS), mainly focussed on bio-logging.
The main difference between conventional satellite systems is that the ISS is closer
to the earth and thus needs less power to communicate.

The other option is the use of ground-based receivers. These are less power
expensive than satellite systems but do allow downloading the data real-time. The
only issue might be coverage since not all networks are available at every place,
especially in maritime areas. The most common transmitter is the Global System
for Mobile Communications (GSM) transmitter since the GSM network is available
worldwide. Next, we have radio telemetry as described in section 2.1.1. Radio
telemetry can only be used when the transmitter is in the neighbourhood and can
not handle a large number of data transmissions. Finally, there are other long-range
transmission protocols like Amber Wireless, Ingenu, LoRa, NWave, Platanus and
Sigfox as described by Baharudin and Yan [73]. These ground-based receivers fit
well into our wanted application since they are power efficient and do not require tag
retrieval.

To circumvent transmission altogether, one can also do tag retrieval. With this
technique, tags only store the gathered information. After some time the animal must
be recaptured so the tag can be recovered and data can be downloaded. Overall
this is an alternative method for wireless monitoring. This technique is suited for
homebound animals or when using a recovery beacon. This is not very well suited
for parakeets since it is hard to catch them.

3.3 Power supply

The whole tag needs to be powered. The ideal situation would be to add a big
battery so the tag can be powered throughout the whole year with a high sampling
frequency. However, this is not possible for every animal due to weight and size
restrictions. Therefore we present different charging mechanisms to power the de-
vice. The most straightforward solutions are to either lower the sampling frequency
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Figure 3.1: Characteristics of various energy sources available in the ambient and
harvested power. [75, Table 2]

or shorten the time when measuring or use power-efficient algorithms. Next, Mitche-
son et al. [74] classify charging methods into electromagnetic radiation (RF), thermal
gradients, light and motion. All techniques can be found in Figure 3.1.

Ambient RF is the most underdeveloped technique and still struggles with de-
livering significant power levels. Thermoelectric generation works well but is much
dependent on the direct change in temperature. Solar power has the highest power
levels and is mainly used in bio-logging [25], [72], [76]. The two constraints for solar
power are light availability, especially for animals living in darker parts of the world,
and the price of solar cells. Finally, there is motion-based energy harvesting, which
is less efficient than solar energy harvesting but is less dependent on external fac-
tors. All these techniques increase the lifetime of the tag, but also the complexity.

Two techniques are generally used for power, one being solar power and the
other only using a battery. Other techniques can also be used depending on the bird.
For instance, RF can be placed underneath the nest if one is tracking a homebound
bird (such as the parakeet). Thermoelectric generation can be used by placing one
element on the bird and the other element exposed to the wind/environment. How-
ever these last two techniques have problems delivering significant power levels.

3.4 Placement

With all hardware in place, the next question will be to look at the placement and
attachment of the device. Different attachment methods used in bio-logging are:

• Neck collar
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• Harness

• Epoxy glue

• Glue

• Suction cup

• Dorsal fin clamp

• Rubber cement

• Attached to antlers

Not every one of these methods is suited for every species in bio-logging.
Some attachment methods are meant to release within a specific time, while

others need to stay in place until they can be retrieved. Concerning the first method,
it is also essential that the device is biodegradable or has a beacon so it can be
retrieved.

Placement is also crucial in influencing the behaviour of an animal. Such a tag is
extra weight for an animal making it less aerodynamic and having a higher energy
expenditure. Next, some places are not fit for a tag due to characteristic behaviour
of a species, like diving or digging.

Placement is a significant issue with birds since it can influence its behaviour
and foraging. Vandenabeele et al. [77] claim that for plunge-diving birds, the tag
can be best placed on the lower back while for strictly flying birds, the middle back
is the right spot. Other places like the head, tail or belly give too much drag or
do not stay put when diving. What is not taken into account is the effect on the
measurements when placing these devices. For instance, Rattenborg et al. [46]
use electroencephalography (EEG), which can be best placed on the head of a bird.
Also, an accelerometer records more detailed movement when placed closer to the
head than the lower back, making it possible to identify different kinds of behaviour
precisely.

3.5 Hardware versus weight

Volatile animals are hard to track due to their migrating process. Therefore, a lot of
solutions exist in location tracking (see Section 2.1.1); however, weight restrictions
make not all techniques suitable for each animal (see Figure 3.2). To clarify, dead-
reckoning and solar geolocating belong to the geologgers category. Since our tag
can maximally weigh 7,5g, only radar tracking, geologging or tracking with ground-
based receivers is possible. Other techniques are possible but decrease the battery
life quickly; hence, it is not viable.
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Figure 3.2: The frequency distribution of bird body masses (in grams) in relation to
possible tracking technologies. Minimum bird sizes for each technology
are represented according to the 5%-body-weight rule. [24, Figure 1]

3.6 Hardware selection

We used the AKMW-iB001M beacon from AnkhMaway (see Figure 3.3) since it ful-
filled all requirements. The tag weighs 6g, falling in the 0-7,5g range. Through the
3-axis accelerometer, we can measure the displacement of the bird and use it to
classify behaviour. The working time of the tag is 4.63 months based on a broad-
casting rate of one second. Since we broadcast less but have more substantial
computations, we suspect this will suffice for at least one month. Finally, it broad-
casts with Bluetooth Low Energy (BLE) 4.0, which can be used to track location (as
described in Section 2.1.1) and transmits its gathered data (as described in Section
3.2) from a distance. Moreover, the tracking will be discussed in Section 3.7. The full
specifications of the tag can be found in Appendix A.1. No comparison was made
with other tags.

The tag works well. It has a Bluetooth range of 50m, and the energy consumption
of the accelerometer is very sparse. While it is difficult to use for attachment, it is
light-weight. Finally, the tag is not perfect for development since no schematics are
available.

While we used the AKMW-iB001M beacon for the development of our tag, we
also used a logger to gather accelerometer data on parakeets simultaneously. This
logger was the Axy-Trek sensor [78], which contained a GPS, 3-axis accelerom-
eter, temperature sensor, pressure sensor and height sensor. The logger is able
to measure for 5-6 hours after which the battery dies. Such a small battery life is
sufficient for gathering data in a controlled environment. The sole purpose of this
logger was to gather accelerometer data from parakeets; therefore, it does not suf-
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Figure 3.3: The AKMW-iB001M beacon open and closed respectively.

fice all requirements. For both tags, no schematics are available since both were
commercially bought.

The Axy-Trek sensor was a perfect tag to do quick measurements. It had an easy
to handle user interface and did not have any problematic initialization parts. Also,
settings could be changed through the user interface, and rings were available for
attachment. However, as stated before the battery life was poor (5-6 hours) and data
could only be downloaded from the tag after capturing the bird, making it unsuited
for wild parakeets.

For location tracking, we use standard MiniBeacons. It runs on two AA batteries
and is easy to replace. Moreover, the precise working of location tracking can be
found in the next section.

3.7 Location Tracking

We track location via Bluetooth identification (again, as described in Section 2.1.1).
Bluetooth beacons (as described in Section 3.6) send out an advertisement signal.
This signal broadcasts that they are there. The tag will pick up this signal and add
it to its log. Since the tag only needs to listen and does not need to broadcast, the
operation is power-efficient. The Minibeacons have a theoretical range of maximum
70 m. Often, this range is smaller due to natural obstacles and reflection. Therefore,
the practical range is about 50m, covering about one hectare of land. The idea is to
put up a grid of beacons with 100 m in between each beacon. An overview of such
a grid is visible in Figure 3.4, for 24 hectares of land.

If a more substantial area has to be covered, the nodes can be placed further
away from each other, with the risk of not always being able to track the bird. This
placement results in a grainier resolution but covers a larger area.
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Figure 3.4: Grid of beacons to determine location
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Chapter 4

Methods

The state-of-the-art in section 2 gives a clear overview of all available techniques.
Next, we look at which of these are suitable for parakeet activity recognition and
describe our used methods. We start with how we obtained the training data, next
selected the features and show the developed algorithm. Finally, we show our how
we tested our tracking part.

4.1 Data Collection

In total, we did three measurements on three different bird species. We tested on
an owl, a falcon and a parakeet. During each measurement, data collection was
done with the Axy-Trek logger, as explained in section 3.6. For our measurements,
only the accelerometer was activated since the other sensors were not available on
the development tag, the AKMW-iB001M. The accelerometer was sampled at 100
Hz, with a G fullscale of 8g and an 8-bit resolution, resulting in a timestamp and
accelerometer values for the x-,y- and z-axis.

4.1.1 Owl

The first measurement took place in ”Wonderwereld”, a small zoo in Ter Apel (Nether-
lands), with the permission from the park’s owner. The logger was placed on the
back of the owl (see Figure 4.1A). One manually controlled camera was used to fol-
low the bird. The measurement with the owl was done in the open air, with the help
of one of the zookeepers. In this way, the owl would perform actions on command,
resulting in an equal distribution of activities. Measurements were done for 30 min-
utes after which the owl refused to follow commands. Therefore, the experiment was
seized. Within this time, no sufficient data to train a machine-learning algorithm was
gathered. We will give a small overview of the measured activities in Table 4.1.

21
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Activity Owl Falcon

Standing 664 91
Flying 50 15
Picking 12 72
Soaring 1 0
Eating 53 0
Unknown 107 345

Table 4.1: Data entries per activity of the owl and falcon

4.1.2 Falcon

Since our target animal was not available in this first measurement, we also mea-
sured on a falcon. ”Falcons have a similar wing frequency as parakeets”, according
to the bird expert B. Toxopeus. Therefore, we expect that the activities of a falcon
produce the same data as those of a parakeet. Also, we used the data from the
falcon to compare it to the owl so that we could use the data gathered from the owl
within our algorithm training.

This measurement also took place in ”Wonderwereld”, directly after the mea-
surement with the owl. The logger was placed on the back of the falcon (see figure
4.1C). Also, one manually controlled camera was used to follow the falcon around.
A dead-spot was present in the corner above the camera. The falcon was placed
in a small cage of ∼ 20m2, with a height of 3m, limiting the time of flights. Only
10 minutes of data were gathered since the available zookeeper had to go, and no
experiments were allowed without their supervision. The gathered data is in Table
4.1.

4.1.3 Parakeet

The owl data and the falcon data were nothing alike, and thus, both datasets were
excluded in the research. Therefore, a third measurement needed to take place.
This time a rose-ringed parakeet was available (see figure 4.1B). The measure-
ments took place at the ”World of Birds foundation”, a bird welfare foundation in
Erica (Netherlands), with permission from the foundation’s owner. The bird was able
to move around freely within a cage of ∼ 70m2, with a height of 3m. Within the cage,
multiple branches were placed to land onto, simulating a natural habitat for the bird.
One measurement was done for 3 hours straight, gathering enough data to train
a machine-learning algorithm. Two cameras where used, one manually controlled
following the bird and the other in the corner for a wide-angle shot.
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Figure 4.1: F.l.t.r. The tagged owl, the tagged parakeet, the tagged falcon

In total, around 941500 raw data points were collected. Statistics on these data
entries can be found in figure 4.2. This shows all gathered activities in a 3D-scatter
graph. Clear distinctions between standing, flying and shaking are visible, while the
rest of the activities are tightly grouped. A logarithmic scale was used to show this
grouping better. The activities that were observed during the day are listed in Table
4.2. These are labelled activities, which took place over 2 second windows.

4.2 Data Labelling

In order to use supervised learning methods, each data point must contain an ad-
ditional label field indicating the class to which it belongs according to the ground-
truth. Therefore, the ground-truth is deduced by video footage of the parakeet, which
is synchronised with the sensor data. The labelling of the data was done through
a Matlab GUI developed by Jacob Kamminga, allowing the annotation of the data
according to video footage [52]. This labelling was done manually, and an example
of the GUI can be seen in figure 4.3. While this GUI was initially used for labelling
data sets of goats [69], it worked well for labelling bird activities with minimum mod-
ifications to the code.

We annotated the data according to the behaviours listed in Table 4.2. At all
times, we labelled the activity and did not include transitions within our labels. There-
fore, some labelled data includes a transition phase to another activity. If this transi-
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Figure 4.2: Statistics of the parakeet data set on a logarithmic scale
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Figure 4.3: An example of the matlab GUI
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Activity Description

Standing The animal is standing still, occasionally adapting its posture.
Flying The animal is flying and is not in contact with the ground.

Picking
The animal picks with its beck. This is done either to see if it can remove
the tag or to put its feathers straight.

Shaking The animal is shaking its entire body in a very rapid motion.
Jumping The animal jumps up or down from one place to another.
Climbing The animal moves across or up/down a branch or fence.

Walking
The animal walks across the ground without using its wings.
The pace is almost always the same.

Scratching The animal scratches its head/body with its claw.
Eating The animal eats some seads.

Unknown
Any other activity which could not be placed properly
underneath the mentioned activities above.

Table 4.2: Observed activities during the day

tion was unclear, it would be labelled unknown.

4.3 Data Processing & Feature Selection

The dataset of the parakeet was segmented according to the labelling file. The
segments were split into 70% training data and 30% test data. Data were segmented
with a two-second window size and a 100 Hz sample rate. We overlap consecutive
windows to alleviate the effects of edge conditions, which occur when windows are
segmented sequentially. Therefore, segments are generated with an overlap size of
50%.

Table 4.3 shows the number of data points for each class for both the training and
testing data. Noticeable is the lack of entries for jumping, shaking, scratching and
eating. These four activities did not take place for longer than 2 seconds or did not
occur so often. Therefore, we will reduce the classification activities to six classes;
standing, flying, picking, climbing, walking and other (which include jumping, shak-
ing, scratching, eating and unknown).

Another noticeable observation is the difference in entries for standing versus the
other activities. To calculate the balance of our dataset, we use Shannon entropy
[79] to ’rate’ our dataset, where 0 is an unbalanced data set and 1 a balanced data
set. Equation 4.1 is used, where n is the number of instances, k the number of
classes with size Ci. This results in a balance score of 0.529, meaning the set is
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Activity Training set Testing set

Standing 4256 1767
Flying 96 50
Picking 760 325
Shaking 4 1
Jumping 0 0
Climbing 354 181
Walking 111 32
Scratching 9 1
Eating 28 2
Unknown 177 123

Table 4.3: Data entries per activity of the parakeet

slightly balanced.

Balance =
H

log k
=

−
∑k

i=1
Ci

n
log Ci

n

log k
(4.1)

Finally, we calculate the time domain and frequency domain features for each
window. Table 4.4 gives an overview of which features are calculated and adds
a small description per feature. These features are used to train our algorithms.
However, since we do not want to use all features on our embedded platform due to
energy constraints, we do three tests. The first test includes all features, the second
only frequency-domain features and the final test only time-domain features. We test
this for NN, DT and SVM since they are the three most commonly used algorithms.
Finally, we compare F1-scores and accuracy versus the required power.

We also apply forward selection (as described in section 2.1.2) to see if we can
reduce our feature set. Forward selection selects the following features:

• Mean

• Standard Deviation

• 25 percentile

• Skewness

• Principal frequency

• Frequency Entropy

• Magnitude of the fourth FFT component
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Feature Description
Maximum Maximum value
Minimum Minimum value
Mean Average value
Standard deviation Amount of variation
Median Middle value
25 percentile Value below which 25% of the observations are found
75 percentile Value below which 75% of the observations are found
Mean low pass filtered signal Mean value of DC components
Mean rectified high pass filtered signal Mean value of rectified AC components
Skewness of the signal The degree of asymmetry of the signal distribution
Kurtosis The degree of ’tailedness’ of the signal distribution
Principal frequency Frequency component with the greatest magnitude
Spectral energy The sum of squared discrete FFT component magnitudes
Frequency entropy Measure of the distribution of frequency components
Frequency magnitudes Magnitude of the first six components of FFT analysis

Table 4.4: All calculated features for each window

These might be the best features, but still, a combination of time-domain and
frequency-domain features are used. Therefore, we repeat the same process only
with time-domain features (which are also less battery expensive operations). This
time the following features are selected:

• Minimum

• Standard Deviation

• Median

• 25 Percentile

• 75 Percentile

• Skewness

• Kurtosis

4.4 Algorithm Training

After preparing the data, we trained the algorithm. To do this, we used Rapidminer
(version 9.3.001), a software tool for data preparation, machine learning, deep learn-
ing, text mining, and predictive analytics. Rapidminer uses a drag-and-drop system
to compare different algorithms with each other easily. In Figure 4.4 an example of
such a pipeline is visible.
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Figure 4.4: Example of a process in Rapidminer

We compare the algorithms mentioned in Section 2.1.3. The basic parameters
are used in Rapidminer, and each algorithm uses the same features as explained
in Section 4.3. Therefore, results will not be optimal for each algorithm. The six
algorithms will be tested on the same data set of the parakeet. The best performing
one will be optimized and then implemented on the wildlife tag.

4.5 Tracking

To determine the range of the Minibeacons, we put three Minibeacons in an open
square and measured the RSS. The measurements were done on the O& O-square
on the University of Twente (see Figure 4.5). This is a square where many people
and thus signals pass-by, simulating an urban environment. Three Minibeacons
were placed at one end of the square and measurements were done at 1, 11, 21,
31, 41 and 51 m distance. Each measurement was done twice, resulting in six
measurements per position.

We measure the RSS values over 9 seconds at a rate of 10 Hz. An example is
given in Figure 4.6. The RSS values are given in dB, and an average is calculated.
If the values go below -100 dB the device is not shown.
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Figure 4.5: O& O-square on the University of Twente grounds
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Figure 4.6: RSS measurement example
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Chapter 5

Results

Within this section, we show the performance of the behaviour classification and our
final implementation.

5.1 Behaviour Classification

We compare the use of different features sets as described in Section 4.3, all with
the parakeet dataset. The results are visible in Figure 5.1. As accuracy only gives a
prediction on the correctly predicted observations, we also want to include our False
Positive (FP) and False Negative (FN). Therefore, we include an average F1-score.
Equation 5.1 is used to calculate the F1-score.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = (
Precision−1 +Recall−1

2
)−1

(5.1)

We see a clear difference in the F1 scores when only time-domain features are
used; however, the accuracy stays around the same. Another thing to note is that the
NN performs better overall except when the time-domain features are used. While
it is clear that the best performance is given by using all the features, we choose to
use only time-domain features since they are computationally inexpensive. In the
following experiments, we use the forward selection feature set described in Section
4.3.

Figure 5.2 shows the average accuracy and F1-score of our trained algorithms.
We notice for other activities almost no correct predictions are made in this class.
This has multiple reasons. First of all, not much data is available for this class (see
table 4.3). Next, all data points are spread out and thus non-consistent when training
the algorithm. Finally, many of these other activities resemble one of the other five

33
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Figure 5.1: Performance of DT, NN and SVM with different feature sets

activities. For instance, the activity shaking looks like flying and eating like picking.
Therefore, we also included the F1-score without the other activities. For further
graphs, all F1-scores are calculated without the other category.

The top three performers are NB, NN and DT. k-NN, LDA and SVM had difficul-
ties in distinguishing walking from picking and climbing.

5.2 Tracking

As described in Section 4.5, we measure the RSS to determine the range of the
MiniBeacons. Figure 5.3 shows the results of this experiment. During the experi-
ments it was sunny and about We did not receive any beacon at the 51-meter dis-
tance; therefore, it is not included in the graph. On 41 meter, we received only one
beacon. The RSS of the other two beacons has been set to -110 dB to better depict
the situation.

The range, therefore, is a maximum of 40 meters.

5.3 Implementation

For the final implementation in the AKMW-iB001M beacon, we use the decision tree,
since this is easy to implement, performed well and does not cost much energy. An-
other option would have been the NB algorithm since it performed equally to the DT.
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Figure 5.2: The performance of the different machine learning algorithms

Figure 5.3: RSS measured on different locations
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Parameter Description Value
Splitting criterion The criterion which decides which attributes will be selected for splitting. Information gain

Maximal depth
The depth of a tree varies depending upon the size and characteristics of the ExampleSet.
This parameter is used to restrict the depth of the decision tree.

9

Apply pruning Branches are replaced by leaves according to the confidence parameter after generation of the model. True
Confidence This parameter specifies the confidence level used for the pessimistic error calculation of pruning. 0.4

Apply prepruning

This parameter specifies if more stopping criteria than the maximal
depth should be used during generation of the decision tree model.
If true, the parameters minimal gain, minimal leaf size, minimal size for split and number
of prepruning alternatives are used as stopping criteria.

True

Minimal gain
The gain of a node is calculated before splitting it.
The node is split if its gain is greater than the minimal gain.
A higher value of minimal gain results in fewer splits and thus a smaller tree.

0.1

Minimal leaf size
The size of a leaf is the number of Examples in its subset.
The tree is generated in such a way that every leaf has at least the minimal
leaf size number of Examples.

2

Minimal size for split
The size of a node is the number of Examples in its subset.
Only those nodes are split whose size is greater than or equal to the minimal size for split parameter.

4

Number of prepruning alternatives
When split is prevented by prepruning at a certain node this parameter will adjust
the number of alternative nodes tested for splitting.

10

Table 5.1: Decision Tree parameters

However, the DT was implemented via nested conditional statements for decisions.
Again 2 second windows were used since historically this proved most effective. No
other values were tested. A visual implementation of the DT can be found in Ap-
pendix A.2. We tuned the parameters for the best settings with a grid search [80].
We used the accuracy of the algorithm versus tree size as our performance metric
when tuning the parameters. A short description of each parameter and the final
value can be found in Table 5.1.

As mentioned in Section 4.1, we also recorded data from a falcon and an owl.
We added this to the training data to see if our results increased. The result can be
found in figure 5.4.

Noticeable is the drop in precision and recall when the owl data is included.
The falcon data increases our performance slightly and can be beneficial for our
algorithm. However, all results with falcon data are within the error margin and thus
not significant. We also look at similar activities and how well our classifier could
recognize the activities. For the activities of the owl, we could predict the activities
’flying’ and ’standing’ with an average precision and recall of 97% and an overall
accuracy of 80%. Other activities from the owl, like ’soaring’ and ’eating’, were only
predicted with an average precision and recall of 4%. These activities are performed
differently by owl and parakeet; therefore, the low precision and recall make sense.
Activities of the falcon had a high precision from 98%. However, recall dropped to
75% and only a total accuracy of 60% was reached. We suspect this low accuracy
comes from the use of a small data set.

This algorithm is implemented on the AKMW-iB001M beacon. Every 5 seconds,
we classify two seconds of data. The classification is stored together with a se-
quence number.

For tracking, we implemented the tower identification method. This method was
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Figure 5.4: Performance of the decision tree with data from other birds included

Figure 5.5: The 26 bytes which are stored

quick to implement and does not have complex computations. Every 5 seconds a
scan is done for all different BLE devices in the neighbourhood. If the name of the tag
starts with ’Minibeacon’, the RSS value, the last byte of the address and a sequence
number are stored. By linking the sequence numbers from the DT classifier and the
tracker, we can determine where each activity took place. An example of a stored
operation can be seen in Figure 5.5.

A high-level overview of the code can be found in Figure 5.6.
The current code takes up 90 kB flash memory and 14 kB Random Access

Memory (RAM). Leaving 160 kB flash memory open for storage. Around 6000
store operations can be done before the memory is full. If every 5 seconds a scan
is done, about 8 hours of measurements can be done before the memory is full. We
expect this is enough to measure the daily activities of a bird. At the end of the day,
the data will be offloaded, and the memory is cleared.

We also can calculate the time complexity of our DT. Let N = number of training
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Figure 5.6: High-level overview of the code
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examples, k = number of features, and d = depth of the DT. The time complexity of
our DT is in O(Nkd). Meaning it is between being in O(N ∗ 7 ∗ logN) and O(N2 ∗ 7).
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Chapter 6

Conclusions and discussion

This chapter consists of conclusions about the results presented in Chapter 5 and
gives some recommendations for future research.

6.1 Conclusions

Within this thesis, we showed the development of an AAR system for parakeets
including location tracking. We implemented an AAR system for parakeets on an
embedded device with a decision tree classifier. We have shown that with simple
statistical time-domain features, it can compete with more sophisticated algorithms
such as NN and SVM in terms of performance. While frequency-domain features
performed better on F1-scores, each algorithm showed no significant differences in
accuracy. To answer our main research question ”How can a bird activity recognition
system be implemented on a small, light-weight and low-power embedded device?”,
we first answer each subquestion.

What are the trade-offs between accuracy and functionality against weight and
energy? Sophisticated localisation techniques deliver better results but do require
too much energy to be applicable. We used a low energy Bluetooth protocol to de-
termine the location on a smaller scale. This protocol was well suited for parakeets
since they are non-migratory birds. Again, this works less than solutions with GSM,
but the energy constraint weighs more substantial than the accuracy. Another exam-
ple of the energy constraints is that of the activity classifier. NN reached the highest
accuracy but was not implemented since DT is more energy-efficient than NN. The
main reason to design the tag power-efficient is the limiting hardware possibilities.
As discussed before, the weight restriction resulted in a tag without a large battery.
To let the tag operate at least one month, every operation needed to be low-power.
Also, not much memory could be included, again limiting the tag. We minimized
the loss in accuracy, but we can conclude that the weight and energy, weigh more

41
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substantial on the design of the tag than the accuracy and functionality.

When looking at the necessary localization infrastructure, again the trade-off be-
tween energy and functionality comes up. We chose to include more localization
points to decrease the needed energy. The beacons only had a reach of 40 me-
ter, which is significantly smaller than the theoretical 70 meters. The schematic that
has been introduced (see figure 3.4) works well for small areas and minimizes the
needed infrastructure. If one needs to measure on a broader scale, we suggest leav-
ing more space in between the beacons. This gives a grainy resolution but keeps
the same amount of required infrastructure. Another option is to put the beacons on
locations which are known to be visited by the birds.

Looking at online activity recognition, we get a high accuracy for our decision
tree. We reach an average accuracy of 87,35% for our parakeet dataset. An F1-
score of 54,9 is obtained, which can be increased by filtering out other activities.
Online activity recognition is possible for birds, but there are a lot of similar activities
(except for flying and standing). These activities sometimes overlap (e.g. climbing
and picking) and are hard to distinguish. Similar behaviour of the algorithm can also
be seen when testing on the owl and falcon dataset. Flying and standing are distinct
activities, while the other activities often overlap (see Figure 4.2). Overall we can
accurately determine which activity is performed, but there is room for improvement
for the other activities.

In the end, we can conclude that a bird activity recognition system can be imple-
mented on a small, light-weight and low-power embedded device. The main issue
with this implementation is the weight restriction of 5%, limiting the tracking and clas-
sifying techniques. However, with the use of low-power methods like BLE and DT,
no massive battery is needed, while maintaining excellent performance.

6.2 Discussion

First of all, no final tests have been performed on birds with the designed tag. While it
has the same algorithm running as the previous, we can not be sure the performance
will match this tag. The designed tag will be tested and evaluated in the future on
wild parakeets in Málaga, Spain. We look forward to seeing the results.

Though the proposed tag meets all set requirements, there are several ways to
improve the system. A common thing within machine learning is that there is never
enough data. Therefore, we recommend gathering more data from parakeets (on
top of ours) to improve the algorithm. If a large dataset is collected, it is possible to
make a balanced dataset. This would remove any biases caused by imbalance. A
larger dataset would also be beneficial for less frequently occurring activities. These
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are now hard to classify due to the low number of samples and are merged into
other activities.

Next, the mentioned localization techniques like AoA and TDoA increase the
accuracy of tracking. In our proposed system the RSS is stored, indicating the
distance to the beacon. However, with AoA, the angle can be determined and give
a precise location of the tag.

Finally, the ICARUS project (as mentioned in Chapter 2 is a promising project to
use GPS while remaining energy efficient. Unfortunately, our tag was not suited for
this project. We highly recommend seeing if a tag can be designed in combination
with this project.

One thing we would like to do differently within our research next time is the
different use of tags. While the second tag (Axy-Trek) saved us much time, it had
a different accelerometer than the AKMW-iB001M. This caused a difference in the
accelerometer values used within the AAR algorithm. We minimized the effects by
using the same frequency and scale, but the difference can occur through distinct
hardware. Therefore, in future research, we suggest gathering data with the same
accelerometer as will be used in the final product.
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Feature iBeacon & Eddystone / Other Protocol User Defined
Chipset nRF51822 256 KB 16kB
Bluetooth BLE 4.0
Bluetooth Range 50 meters in open air
Operating Voltage 1.8v - 3.6v
Working current 3.6µA standby average, 21µA normal average
Side Pins for debugging VCC, GND, SWDCLK, SWDIO
Working time 4.63 months based on broadcasting rate 1 second
Certifications FCC/CE/MFI/RoHS
Sensor Acceleration sensor
Buzzer Yes
Size 40.3mm x 23.9mm x 2.6mm
Weight 6g
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