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ABSTRACT 

 

Roadside assistance is an emergency service provided to assist people with vehicle breakdown 

incidents on the breakdown location. Rental cars are usually provided as replacement vehicles for 

vehicles that cannot be repaired on the spot. Predicting the demand of replacement cars for 

breakdown cases are essential for the rental car company providing this service. In this research, we 

aim to investigate to what extent the demand of replacement cars can be predicted. Domain 

analysis based on literature study and interview with domain experts were conducted to generate a 

list of potential predictors. Using real world data of replacement car orders in the Netherlands and 

external data such as weather and calendar data, we compared several machine learning and 

classical time series models to predict daily demand of replacement cars. Various aggregation levels 

for spatial level and product type were investigated. The result shows that the best performing 

model is an XGBoost model trained on a shuffled training and test set, with a 9.49% mean average 

percentage error. Moreover, we found that prediction performance gradually decreases as the 

prediction level goes deeper. In addition, we proposed to address the outlier demand by identifying 

outliers, predicting them separately, and classify a future observation. Empirical comparison of three 

different approaches was also carried out to produce prediction interval as a means to estimate 

uncertainty. 
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1 INTRODUCTION 

1.1 MOTIVATION 

A vehicle breakdown is a mechanical defect of a motor vehicle in such a way that the failure 

prevents the vehicle from running or where continuing being operated is not safe. This incident can 

arise in various occasions, such as during travelling for holiday or work, even when the vehicle is not 

in use. There are numerous reasons for a vehicle breakdown, from a dead battery, fuel, ignition, to 

other mechanical problems. In a case of breakdown, driver and passengers’ convenience and safety 

can be at risk. In this situation, roadside assistance has come in handy, providing breakdown service 

that oftentimes cannot be done by the driver or passengers of the vehicle themselves and is in need 

of an expert skill to deal with the failure.  

Every year, there are more than 1 million breakdown incidents recorded in the Netherlands (ANWB, 

2019). However, not all vehicle faults can be repaired by the road patrols on the spot. In such cases, 

roadside assistance providers provided transport assistance to tow away the vehicles to a garage for 

reparation and bring the passengers to a destination. In addition, replacement vehicles (i.e. rental 

cars) can be provided for the customers while the cars are being repaired. 

The whole processes form a complex workflow involving several parties, starting from receiving the 

incident report from a driver to possibly picking up and returning a rental car. It becomes a challenge 

for roadside assistance providers to ensure customer satisfaction along the line, starting from the 

emergency call service, roadside assistance, transport, and rental car services. Roadside assistance 

providers need to deal with not only resources and capacity planning for the roadside assistance 

process, but also for the replacement vehicles. Providers of the replacement vehicles need to 

optimize the number of available rental cars so that customers’ needs are fulfilled as fast as possible 

even during the peak season, while not leaving a lot of cars idle. 

On top of that, among the processes along the line, car rental logistics is a complex problem which is 

difficult to deal with. A lot of effort has gone into studying the optimization of rental cars capacity 

and fleet management (Fink & Reiners, 2006; Yang et al., 2008; Gupta & Pathak, 2014; Oliviera et al., 

2017a; Roy et al., 2014).  

Demand forecast is identified as the basis of car rental logistics planning and decision making (Fink & 

Reiners, 2006; Pachon et al., 2006; Roy et al., 2014; Oliviera et al., 2017a). It acts as a key enabler for 

an improved customer experience by reducing out-of-stocks situations and reducing costs due to 

better planning of inventory, among other advantages (Böse et al., 2017). However, issues of 

uncertainty of demand in car rental industry and the difficulties in forecasting it have been brought 

to light. Oliviera et al. (2017a) reviewed literature related to fleet and revenue management in car 

rental industry. They addressed uncertainty issues in fleet management and demand uncertainty is 

the most recognized among all. Yang et al. (2008) highlighted that the car rental industry has a 

different characteristics compared to other industries, which are the certain customers´ behavior 

characters, such as the high rate of no-show, returning cars remotely, and the uncertainty of rental 

duration contribute to a big part in demand forecast difficulties in the industry. Therefore, there is a 

need of more accurate demand prediction models for car rental industry considering the unique 

characteristics it has compared to the demand in other industries such as airline and hotel 

industries.  
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Despite some similarities of characteristics with the conventional car rental companies, rental car 

companies that provide replacement cars as their core business process also have a distinct 

characteristic and cannot be treated completely the same as the conventional rental car companies. 

The demand for rental vehicles in the context of vehicles breakdown is not only affected by 

customer behavior such as travelling pattern and busy commuting hours, but also by the factors that 

might affect the severity of car breakdown or the capability to quickly repair a car, which in result 

might end up with the need of replacement vehicles, i.e. the rental vehicles. To the best of our 

knowledge, little to no literature have covered the prediction of demand for such industry. 

Lots of existing literature with car rental logistics as the use case consider the demand forecasting 

problems as a traditional time series forecasting problem (Pachon et al., 2006; Hong et al., 2007). 

They consider historical data and attributes of the time series, such as trend and seasonality for the 

forecast. In another literature, an intervention from analyst is expected to adjust the forecast in the 

existence of special events (Geraghty & Johnson, 1997).   

Besides the traditional time series forecasting technique, time series forecasting can also be 

analyzed as a machine learning problem, specifically the supervised learning problem. Time series 

problem can be restructured into a supervised learning problem, thus allowing us to extract more 

valuable features from a timestamp and include external data as the factors that will affect demand 

prediction result. Therefore, factors like special events, holidays, and weather can be incorporated 

into the demand forecasting model and the linear and non-linear relationship of these features can 

be examined by using machine learning techniques. Research on machine learning-based demand 

forecasting dates back to the early 2000s and machine learning techniques have been shown to be 

valuable in getting a more accurate demand forecast.  

However, despite the accuracy a machine learning technique can produce, there is a limitation in a 

predictability of demand given the nature of it. One would expect to find uncertainty in a demand 

forecast as there are typically discrepancies between forecasts and actual values (Ericsson, 2001) 

due to the uncertainty in input values (McKay, 1995), which can include a lot of factors, from human 

behavior to environment related factors. Therefore, there is a need in providing a measure of 

uncertainty for the decision makers to base their predictions on. One way to communicate 

uncertainty is by using forecast intervals as they generalize point forecasts to represent and 

incorporate uncertainty (Hansen, 2006). However, in machine learning forecasting, the capability to 

specify uncertainty or intervals are rarely included in the research agenda in the field (Makridakis et 

al., 2018).  

Therefore, in this study we want to address the applicability of machine learning forecasting in the 

specific domain of replacement cars, which has not been a focus of any previous works. We first 

investigate the predictability of the demand of rental cars as a means of replacement vehicle in the 

case of unrepairable breakdown by utilizing available machine learning techniques to build a 

prediction model. In addition, we aim to produce a measure of forecast uncertainty through 

intervals as an essential part of demand forecast in practice. We compare several approaches to 

create the intervals and reflect on the strengths and weaknesses of each interval with regards to the 

quality and the applicability in the practice.      

1.2 CASE DESCRIPTION 

ANWB (The Royal Dutch Touring Club) is an organization for traffic and tourism in the Netherlands 

with roadside assistance as the main line-of-business. ANWB divide its customers into two market 

segments, namely the Business-to-business (B2B) and business-to-consumer (B2C) market. B2C 
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market consists of customers with direct membership subscription to ANWB, while B2B market 

consists of customers that are entitled to ANWB services through their contracts to another 

company that has a partnership with ANWB. Depending on the contracts, customers are provided 

with different kind of services, for example different types of replacement cars for when a 

breakdown cannot be solved on the spot or different duration for which the cars are rented to the 

customers. 

To provide replacement vehicles for its customers, ANWB partner up with Logicx, its daughter 

company handling towing and replacement vehicles. Logicx´s fleet for the Netherlands is distributed 

in 85 locations owned by Logicx and its partners. In the event of unsolved breakdown problems, 

ANWB send a request for replacement cars to Logicx which then assign an available car from the 

pick-up location closest to the breakdown location or the most convenient location for the 

customer.  

Each pick-up location has different maximum capacity of cars that it can keep in the location, from 2 

up two 120 cars per location. To keep up with the demand, Logicx monitor the demand of 

replacement cars and the number of cars that are away and returned regularly. In case of shortage 

of cars in a certain location, Logicx can either transport cars from the other pick-up locations or 

outsource cars to another car rental company, Hertz, that will take about half a day lead time.  

Moreover, the rented cars can be returned in any Logicx and partner locations and it can be different 

from the pick-up location. To deal with this, Logicx take care of the repositioning of the cars from 

one location to another location. Logicx plan and monitor this activity weekly and daily. The goal is 

to have an optimum number of cars in each location to avoid extra outsourcing or daily 

transportation cost, while keeping a low number of idle cars.      

In addition to operational efficiency, ANWB want to ensure high level customer satisfaction with 

regards to the replacement vehicle service. One way to deal with this is by supporting Logicx with a 

demand forecast that can help them plan the distribution of cars such that customers can always 

pick up rental cars from the closest location to the breakdown incidents without long waiting time.         

1.3 RESEARCH QUESTIONS 

Given the above-mentioned problem, the objective of this study is to predict the demand of 

replacement cars using machine learning techniques to enhance car rental logistics planning. The 

following research question was formulated in order to achieve this objective: 

To what extent can we predict the demand of replacement cars in the Netherlands? 

To answer the main research question, the following sub questions were defined: 

SQ1. What features can be used to predict the demand of replacement cars? 

To predict the demand, we need to define the input features that can be used as the predictors. To 

answer SQ1, we carried out literature review and domain analysis through interview and discussions 

with domain expert within the company to list the candidate features. Then, feature engineering 

was done to extract valuable features from the available data. Finally, the features used for 

prediction were selected based on feature importance using a feature selection technique.  
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SQ2. Which machine learning model is best suited to predict the demand of replacement cars? 

We first conducted a literature review to get an overview of techniques that have been used for the 

problem. Then, to answer SQ2, a set of available techniques with the most suitable characteristics 

for the problem were selected. After that, these techniques were applied to build the predictive 

models and the models were evaluated based on their error performances. We then chose the best 

performing model and reflect on its strengths and weaknesses in regard to the case. 

SQ3. What aggregation level works best for the demand prediction? 

To answer SQ3, we built the demand prediction model in several levels of granularity, both for the 

product type and the spatial aggregation level. We then compared the performance of the 

prediction model from different aggregation levels.   

SQ4. How can we estimate uncertainty of the prediction result? 

To answer SQ4, we conducted literature review on the techniques that can be used to provide 

intervals for machine learning-based predictive model. Then, we selected a suitable measurement, 

compared several approaches and chose one that is most suitable to the case to provide upper and 

lower bounds in addition to the prediction results.  

After answering each sub-question, we concluded the answer to the main research question by 

presenting the best performance of the replacement car demand prediction in the Netherlands that 

can be achieved using the analyzed features and the machine learning models considered.  

1.4 RESEARCH METHODOLOGY 

In this research, we used the widely adopted framework for data mining and analysis in industry, 

namely the CRISP-DM (Cross-Industry Standard Process for Data Mining). This standard process 

model supports best practices and is industry-, tool-, and application-neutral (Shearer, 2000). Figure 

1 presents the six phases in the life cycle of a data mining project defined in the CRISP-DM 

framework.  

 

Figure 1 Phases of the CRIS-DM methodology (Chapman et al., 2000) 
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According to the CRISP-DM, the arrows between the phases show the most important and frequent 

dependencies between phases. The next process to perform depends on the outcome of the 

previous one. This concept supports the fact that many data science projects demand an iterative 

process, allowing one to go back and forth testing different schemes such as to include new features 

for the model. Therefore, referring to the six phases of the CRISP-DM, we set out an outline of the 

tasks to be carried out in this study as shown in Figure 2. 

 

Figure 2 Research outline 

The following is the description of the tasks in each phase of CRISP-DM. A more detailed explanation 

of the methods employed to conduct each step is provided in Chapter 3.  

1. Business Understanding 

The initial phase focuses on identifying the scope and objectives of the project. The research 

starts with a literature review of previous works and related topics to investigate the state of 

the art of the current research and understand the context of the problem. Then, we 

determine the project objectives according to the problem. We conduct initial assessment of 

tools and techniques and create the project plan. Domain analysis via interview with domain 

experts are also carried out to understand the business and gain the knowledge about the 

input factors that are important to the problem. 

 

2. Data Understanding 

This phase starts with initial data collection. After that, data exploration and descriptive 

analytics are conducted to find out the quality of the data, discover first insights, and 

investigate hypotheses from business understanding phase. 

 

3. Data Preparation 

In this phase, we created the dataset for the modeling phase. It covers the data pre-

processing steps, including cleaning and transformation of the data. We process the initial 

raw data so that it is ready to be fed to the model.  
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4. Modeling 

At this stage in the project, various modeling techniques are selected after conducting 

literature review and elimination by aspects to find several techniques suitable for the 

project. Then, we build and validate each model using the dataset created in the previous 

phase, including selecting the hyperparameters and the features for the model. We test the 

model and then produce prediction interval for the model. 

 

5. Evaluation 

The evaluation phase covers the evaluation of several models resulted in the modeling 

phase by comparing their performances. In this study, in addition to the error of the model, 

we evaluate the uncertainty of the model represented by the prediction intervals. Then, we 

relate it to the practice to determine if the business issue has been addressed sufficiently 

and if the project objectives have been achieved. We review the processes, determine a list 

of alternative next steps and draw the conclusions of the study. 

 

6. Deployment 

For the deployment stage, we produce a documentation of the model in the form of Jupyter 

Notebook document, final report and final presentation. 

1.5 THESIS STRUCTURE 

The remainder of this thesis will be structured as follows. 

Chapter 2 Background and Related Works provides a theoretical background of the research topics. 

Theories and literature are discussed, including theories related to time series forecasting, machine 

learning techniques. Related works are covered as well.   

Chapter 3 Methods describes the research methods chosen for the study, as well as the models, 

metrics, and tools used in more details.  

Chapter 4 Dataset Creation presents the domain analysis to define the predictors, the process of 

data collection, exploration, and creation of datasets for the demand prediction model. It covers the 

results for Business Understanding, Data Understanding, and Data Preparation phases of CRISP-DM. 

Chapter 5 Demand Prediction Models provides the results of each model and gives a further analysis 

of the results, including the comparison of prediction intervals. It covers the results for Modelling 

and Evaluation phases of CRISP-DM. 

Chapter 6 Putting the Model into Practice extends Evaluation phase of CRISP-DM by examining the 

results in relation to the current practice. Recommendations for the Deployment phase are also 

covered in this chapter.    

Chapter 7 Discussion and Future Work discusses the general findings emerged from the study, 

reviews the limitations of the study and provides recommendations for future research. It is part of 

CRISP-DM Evaluation phase. 

Chapter 8 Conclusions and Contributions summarizes the answers to the research questions and the 

contribution of the study to theory and practice. 
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2 BACKGROUND & RELATED WORKS 

This chapter consists of background theories used in this study and discussions of previous works 

related to the study. It starts with an introduction to the domain application, including background 

about roadside assistance and vehicle breakdown (Section 2.1) and car rental logistics (Section 2.2). 

Then, Section 2.3 discusses previous research related to car rental demand forecasting to find out the 

current state of the art in the domain and the candidate features for the prediction model (SQ1). The 

next two sections serve as an initial exploration and assessment to answer SQ2. Section 2.4 describes 

the definition of time series forecasting and the comparison of two groups of forecasting techniques. 

Section 2.5 reviews techniques that have been used in machine learning-based demand forecasting. 

Finally, Section 2.6 explains about the uncertainty in forecasting and the variety of approaches used 

in previous works (SQ4). 

2.1 ROADSIDE ASSISTANCE & VEHICLE BREAKDOWN 

Roadside assistance or breakdown assistance are emergency services provided to assist people who 

experience vehicle breakdown. A vehicle breakdown is a condition where a motor vehicle suffers 

from a mechanical failure that prevents it from running or where it is difficult or not safe to continue 

driving, thus leaving the driver and passengers stranded. On the other hand, vehicles that stall as a 

result of non-mechanical defect, such as accident, theft, or external fire is not in the definition of a 

vehicle breakdown.   

Roadside assistance mainly consists of services that can be categorized into the following categories 

[6][25][30][66]: 

1. Breakdown service 

Breakdown service is the assistance given by auto mechanic(s) patrolling over an area (from 

here on will be referred to as road patrol) to repair the defective vehicle on the spot to help 

the motorists resume their journeys. 

2. Transport service 

If the cars cannot be repaired on the spot, roadside assistance providers assist the 

transportation of the vehicle and its occupants to the nearest automobile repair 

shop/garage. In the matter of the cars being totally immobile, a tow service will be provided. 

Passengers can ride the towing vehicle or choose to use other modes of transportation such 

as public transportation to their destination. 

3. Replacement vehicle 

Rental cars are provided as replacement in cases where vehicles with breakdown cannot be 

repaired on the spot. The cars are rented for a certain period while the broken cars are being 

repaired in garage or alike. 

Roadside assistance is normally provided as a subscription-based service (i.e. to access the service, a 

customer has to pay a recurring price at regular intervals). This service can be offered by automobile 

membership associations, roadside assistance specialized companies, car manufacturers, or as a part 

of car or travel insurance. 

A lot of research and development in the industry have been focused on offering breakdown 

diagnostics, prognostics, as well as predictive and preventive maintenance on vehicles (das Chagas 

Moura et al., 2011; Prytz, 2014). Das Chagas Moura et al. (2011) studied the prediction of failure and 

reliability of car engines using machine learning technique on time-to-failure and miles-to-failure 
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data. They treated the time and miles-to-failure as a time series process as both are ordered in time, 

thus handling it as time series data. Prytz (2014) investigated machine learning methods to predict 

upcoming failures of vehicles by making use of either streamed on-board data or historic and 

aggregated data from off-board sources. Deviations analyzed from the telematics data were 

associated with the repair history, which resulted in a knowledge base to predict failures on other 

vehicles with the same deviations. These models aim to make vehicle manufacturers or other 

affected parties aware of a condition leading to a breakdown in advance and alert drivers of the 

condition, thus improving the driver safety and reducing vehicle downtime and the cost of 

maintenance. However, issues related to the optimization of resources of the road patrols, towing 

company, or vehicle rental company in case of breakdown are rarely addressed. 

Despite the limited scientific works on the issue, particularly for the roadside assistance context, 

over the last few years, roadside assistance providers have reported the use of predictive analytics 

for breakdown prediction. One developed a predictive technology using machine-learning algorithm 

that uses historical data, weather and humidity indicators, and real-time traffic and GPS information 

is claimed to predict the location, time, and type of breakdown with a high accuracy (Jackson, 2018). 

This is aimed to cut down the waiting times for the road patrol and rescue trucks by placing them 

within a certain area. Another approach to address similar issue is by developing analytics solution 

to anticipate where and when roadside incidents will most likely occur based on certain weather and 

road conditions (Allstate Roadside Services, 2019). A further analysis incorporating geographical data 

was also reported. One company developed an analytics tool to predict dispatch volume more 

accurately, especially for extreme weather conditions in winter (O’Donnell, 2014). It utilized weather 

historical data and data of millions of roadside events and took a more granular look at weather 

events, including distinguishing profile of events in different geographies. These solutions indicate a 

significant need of such systems for the industry but at the same time demonstrate the contrasting 

state of the art between academic and industrial research for the specific problem. 

2.2 CAR RENTAL LOGISTICS 

Car rental companies in most cases manage a large number of locations to provide rental service for 

their customers. Therefore, they are faced with logistics management problem in their operation 

process. Car rental companies need to avoid opportunity loss as a result of shortage or out-of-stocks 

situation and maintain good customer service quality. Operating a large fleet will be able to prevent 

shortages but it comes with large holding costs and vehicle depreciation for the company, as not all 

the cars will be utilized the whole time because of the varying demand of rental cars. 

Figure 3 illustrates the life cycle of the rental cars. The whole life cycle covers the procurement of 

new cars, distribution of cars to locations, repositioning of cars between locations, renting out and 

retrieval of rented cars, and the disposal of old cars (Fink & Reiners, 2006). Along this whole cycle, 

the logistics operation mainly concerns with the deployment of rental cars through fleeting, 

defleeting, and car transfers between locations. These logistics processes aim to optimize the 

utilization of the whole fleet while still providing high service level to the customer, for instance by 

delivering flexibility and responsiveness in the rental car process and reducing the waiting times. 
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Figure 3 Life cycle of rental cars (Fink & Reiners, 2006)  

 

Roy et al. (2014) defined three strategies for rental cars repositioning between locations, which are 

no repositioning of either vehicles or customers, repositioning of customers, and repositioning of 

vehicles.  The first configuration serves the customers at certain locations using the cars available at 

the location without any repositioning. The second strategy proposed to reposition some of the 

customers to other locations to minimize waiting time, while the last one repositions cars to a 

location where the cars stay for the remainder of the planning period. The latter allows each rental 

car location to have access to a larger fleet. However, it comes to an expense for the rental car 

company, which is the extra cost and resources required for the transportation of cars. Furthermore, 

it is not always possible to be done in the case of short-term demand changes and the decision is 

constrained by the capacity of each location.  

The current practice in the industry addressed the entire fleet planning problem in three phases 

(Pachon et al., 2006): 

1. Pool segmentation 

Pool segmentation deals with clustering all car rental locations into pools based on distances 

and variability of aggregated pool demand.  

2. Strategic fleet planning 

Fleet planning at the strategic level determines the total fleet size for each pool in the long-

term horizon. In this phase, decisions about acquisitions and dismissal of cars from and to 

manufactures as well as car repositioning between pools are made.  

3. Tactical fleet planning 

At the tactical level, the daily operation at each pool is executed. This phase involves 

determining the optimal number of cars for every location within a pool and the 

repositioning of cars between the locations in a pool. 

Based on the above-mentioned phases, we can classify the scope of our research into the tactical 

fleet planning phase. As we predict the demand of replacement cars in the Netherlands for a short 

term operational period (i.e. daily prediction), we expect to provide a high level insight of the 

variation of demand per day, thus providing an insight of whether adjustment is required for the 

number of cars available for every locations in the Netherlands.       

2.3 CAR RENTAL DEMAND FORECASTING 

As the demand varies, car rental businesses may face several challenges, such as income loss and 

reduced customer satisfaction from unfulfilled demand because of shortage of rental cars, extra cost 

for outsourcing from third party or transporting cars one at a time to match sudden demand 

changes, low utilization of cars in case of high inventory level (Fink & Reiners, 2006; Oliveira, 2017a). 

 



  

17 
 

An effective way to deal with the difficulty of car rental logistics problem is to forecast the demand 

and return of rental cars in the near future (Xu & Lim, 2007). Car rental demand forecast can be used 

as the basis for planning decision to deal with these problems, such as the decision to reposition the 

cars from one location to another location that may get more demand according to the forecasted 

values. It has been addressed as an important issue in the car rental industry for long. 

According to the period of forecast and its application, the demand forecast can be categorized in 

the following way (Hyndman & Athanasopoulos, 2018):  

1. Short-term forecasts 

Short term forecast is required in operation and management, such as for scheduling, 

production, and transportation problems.  

2. Medium-term forecasts 

Medium-term forecast is useful for determining future resource requirements.  

3. Long-term forecasts 

Long-term forecast is used for design and strategic/high level planning. 

Detailed demand forecasts can act as a reasonable basis for a short-term planning horizon while 

medium-term or long-term forecasts in most cases depend on aggregate demand (Fink & Reiners, 

2006). Pachon et al. (2006) presented how demand level is important for all levels of fleet planning 

problems. They included variance of aggregated demand in a pool as one of the variables needed to 

solve a pool segmentation problem. In the level of strategic planning, a car rental company should 

consider how cars will be redistributed among pools in a responsive way taking into account the 

fluctuations of the demand load of the pool. Similarly, the decision to reposition cars between 

locations is driven by the demand level at each operating location.   

Car rental demand forecasting has been studied in different levels of aggregation, in its relation to 

other influencing factors such as pricing and supply level, and in different combinations of external 

factors. Geraghty & Johnson (1997) classified demand forecast into 2 primary levels of aggregation, 

namely length-of-rent and on-rent levels. The length-of-rent forecast forecasts the demand for each 

potential length of rent for each arrival day in the planning horizon, while the on-rent aggregation 

forecasts the number of cars in use (i.e. the number of cars picked up and already in use) on a 

specific day. However, the proposed demand forecasts still require an intervention from analysts to 

defines special events and override the system-generated factors in the existence of special events. 

In addition to forecasting the rental car demand, Xu and Lim (2007) developed a model that takes 

into account the supply of the rental car as well. They forecasted the net flow for rental cars, i.e. the 

difference between supply and demand, by making use the trend of the net flow from historical data 

and predicting the change in the next period using neural network. 

Fink and Reiners (2006) modeled a linear regression function to determine detailed short-term 

rental demand forecasts over the planning horizon. They identified four main factors that affect the 

regression function, which are the location, the period of forecast within a week, the lead time 

between the current period and the period to be forecasted, and the car group. Thus, the function 

will establish an estimate of the rental car demand per car group at a location in some period. The 

authors were aware of some influencing factors that can be considered in the model such as 

seasonality, local events, and weather conditions. However, they are not included in the proposed 

model due to limited data accessibility.  

Lei et al. (2017) studied the rental cars demand prediction, taking into account the increasing trend 

of car sharing practice using rental cars. With the intention of making the prediction a useful input to 
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determine new rental car stations to accommodate car sharing practice, they focused on analyzing 

the demand based on spatial travel patterns by dividing it to several functional regions (e.g. 

business, entertainment, resident, etc.). They included rental and geographical information such as 

rental behavior features (i.e. whether the rental is meant for business or individual use, travel 

distance, time, frequency, and historical data of departure and arrival), destination feature (i.e. 

number of arrival at each category of region), density of point of interests, and a number of 

extracted statistical features. 

Another study of forecasting for demand and allocation of resource was carried out by Verma et al. 

(2006). Even though their case study was not for the car rental industry, it shows quite a similarity 

and potential to be implemented in the industry. They introduced a novel approach where they 

predicted the demand of resource (i.e. service clouds tenant) using various techniques. They 

classified demand on whether it would increase or not using various classification techniques (i.e. 

logistic regression, multilayer perceptron, support vector machine, and reduced error pruning 

tree/REPTree), predicted short-term demand using trend seasonality model and exponential moving 

average, and predicted long-term demand using ARX/ARMAX. Then, they followed it up with 

dynamic resource allocation using heuristic rules based on the predicted demand, for example 

defining the actions to do when the demand is predicted to increase. 

Thus far, we have seen several different approaches to forecasting car rental demand. Table 1 gives 

an overview of the variety of prediction output and aggregation type for car rental demand 

forecasting from previous works. 

Table 1 Comparison of Rental Car Demand Prediction Approaches 

Author Target variable Aggregation type 

Geraghty & Johnson 
(1997) 

Number of cars in use per day Period (daily) 

Number of cars requested per certain 
length-of-rent per day 

Length-of-rent, 
period (daily) 

Xu & Lim (2007) Demand of rental car per day Period (daily) 

Difference between returned car and 
rented car per day 

Period (daily) 

Fink & Reiners 
(2006) 

Demand of rental car per car group per 
location per period 

Car group, location, period 

Lei et al. (2017) Demand of rental car per pre-determined 
functional group 

Location 

Verma et al. (2006) Demand will increase vs  
not-increase 

Class of demand 
(increased or not) 

 

Depending on the goal of the forecast and how the forecasted values will be utilized in the system, 

these studies have defined various potential variables as the outcome of the prediction related to 

rental car demand and the aggregation levels to consider. Overall, looking at the objectives and 

aggregation levels, the car rental demand prediction explored in these literatures concerned for 

short to medium-term forecast. Geraghty and Johnson (1997) and Xu and Lim (2007) considered the 

daily demand in particular. In this project, daily demand will also be the main focus given the 

objective of the research which is to enhance the car rental logistics planning to achieve operational 

efficiency and maintain customer satisfaction. 

Fink and Reiners (2006) mentioned the car (product) group as an important factor to aggregate the 

demand prediction per car group. Similarly, Oliveira et al. (2017a) developed a framework to give a 
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clear overview of how to deal with fleet and revenue management in car rental industry and 

presented how demand is the general input to the process, with a difference in aggregation level 

needed for each fleet management process, and showed that demand for a specific product is the 

most relevant uncertain factor related to the fleet and revenue management problems. Therefore, 

the prediction of demand per car group may need to be investigated in the case of different types of 

product exist in the business. 

Both Fink and Reiners (2006) and Lei et al. (2017) proposed demand prediction per location levels. 

However, this location or spatial aggregation level may vary according to the requirement, such as 

per rental car location or per group of locations. In this study, we aim to investigate the feasibility of 

the replacement cars demand prediction in the context of breakdown incidents starting from the 

high-level location aggregation, namely per country/the Netherlands. 

2.4 TIME SERIES FORECASTING 

Forecasting is about predicting or estimating the future, given all the available information, including 

historical data and knowledge of any future occasions that could impact the forecasts (Hyndman & 

Athanasopoulos, 2018). Time series is a series of values collected at successive times, often at the 

same intervals, making it a sequence of discrete data. Most quantitative forecasting problems deal 

with this kind of data. Time series forecasting is thus defined as the use of a model to predict future 

values based on previously observed time series. 

Time series forecasting methods can be divided into univariate and multivariate (Ampazis, 2015). 

Univariate time series forecasting concerns only with one variable that changes over time, that is the 

variable to be forecasted. Multivariate time series on the other hand, considers multiple time series 

simultaneously, i.e. more than one time-dependent variables where each variable depends on its 

past values and possible dependency on other variables. 

With regards to the variables used in the forecast model, Hyndman & Athanasopoulos (2018) 

defined three types of forecast model: simple, explanatory, and mixed model. First, the simple 

model is similar to what is defined as univariate time series, i.e. it uses only information from the 

variable to be forecasted. This type of model extrapolates trend and seasonal patterns but does not 

aim to find out the factors that affect the patterns. The explanatory model uses predictor variables 

to help explain what contributes to the variation in the forecasted values, for instance temperature, 

marketing initiatives, and time of the day.  The mixed model combines the explanatory predictors 

with the past observations of the variable (i.e. the lags) to be forecasted as the other predictors.  

There are two families of techniques that are commonly used in time series forecasting. They are the 

classical time series forecasting techniques and machine learning techniques.  

1. Classical Forecasting 

Classical forecasting has been widely used and generally serve as the benchmark methods 

for the development of a more complex and advanced forecasting techniques nowadays. It 

has the advantage of its simplicity and interpretability. Most of classical forecasting 

techniques such as the Moving Average and Holt-Winters Exponential Smoothing work 

without regressors. Some other techniques like SARIMAX have been developed to handle 

additional regressors as well. However, these techniques still require the data to satisfy a 

certain time-dependent structures.   
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2. Machine Learning Forecasting 

Machine learning techniques are favourable for their characteristics as universal 

approximators (Carbonneau et al., 2007). In general, machine learning problems can be 

categorized as follows (Bishop, 2006): 

• Supervised learning 

In supervised learning, the training data consists of input vectors along with their 

corresponding target values where we aim to either assign a discrete category to 

each input vectors, also known as classification, or estimate a continues target value 

for the inputs, known as regression.  

• Unsupervised learning 

Training data in unsupervised learning problems does not have any corresponding 

target values. The tasks in this category include discovering groups of similar 

samples, determining distribution within an input space, and projecting data from 

high-dimensional space into a lower dimension. 

• Reinforcement learning 

Reinforcement learning concerns with maximizing rewards by finding suitable 

actions in a given situation through a process of trial and error. Unlike supervised 

learning, the learning algorithm is not proved samples of optimal outputs.  

 

Forecasting problems can be defined as supervised learning regression problems, where the 

outcome is the estimated values of the variable we want to forecast. Techniques from this 

class have the ability to learn arbitrary function and the ability to control the learning 

process itself, making it useful in forecasting problems, including one with the presence of 

noise (Carbonneau et al., 2007). Machine learning forecasting allows more degrees of 

freedom for the model as it can handle complex interdependencies and non-linear 

relationships in the data. Furthermore, machine learning forecasting has the capability to 

handle a large number of variables as predictors which is often required in forecasting from 

multivariate time series data. 

Table 2 summarizes the comparison of several aspects between classical and machine learning 

forecasting techniques (Carbonneau et al., 2007; Hyndman & Athanasopoulos, 2018; Makridakis et 

al., 2018; Kharfan & Chan, 2018). 

Table 2 Comparison of Classical and Machine Learning Forecasting Techniques 

  Classical Forecasting Machine Learning Forecasting 

Linearity Linear model Non-linear and complex 
relationships can be modeled 

Time series type Modeling requires the series to be 
stationary 

Any time series can be analyzed 

Data preprocessing A lot of manipulation of time series may 
be required 

Less preprocessing 

Number of predictors Single (historical data) or a few 
predictors 

Unlimited predictors 

Data requirements Requires less amount of data Requires larger amount of data 

Interpretability Provides insight and information 
through its parameter 

May be difficult to interpret 
(black box) 

Overfitting No overfitting Overfitting is possible 
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Based on the comparison, despite the difficulty to interpret and the possibility of overfitting, 

machine learning showed the potential to explore more relationships from more predictors. As there 

are a lot of external data that may be useful to predict the demand, machine learning forecasting is 

expected to be able to exploit the relationships of the features better than classical forecasting. 

Therefore, in this study, we decided to focus in utilizing machine learning techniques to build the 

demand forecasting model. 

2.5 MACHINE LEARNING-BASED DEMAND FORECASTING  

A large amount of data is available in various sources. Instead of using only the historical data of the 

demand of rental cars, there is a possibility of combining it with external data such as weather data, 

both historical and forecast, and calendar data. This data can provide further insight about what 

factors affect the demand in addition to the pattern of the historical demand. In addition to its 

power to provide a good prediction, machine learning based demand forecasting has the capability 

to model the relationships from this data, thus providing a good insight into the influencing factors 

of the demand.  

Demand forecasting using machine learning techniques has been implemented in a large variety of 

industry, including healthcare (Whitt & Zhang, 2019), retail (Mupparaju et al., 2018; Aburto & 

Weber, 2007), e-commerce (Tugay & Ögüdücü, 2017; Ampazis, 2015), manufacturing (Carbonneau 

et al., 2007; Shahrabi et al., 2009, Zhou et al., 2015), tourism (Cankurt & Subasi, 2015; Chen & Wang, 

2007), power (Qiu et al., 2015), and water distribution system (Herrera et al., 2010; Antunes et al., 

2018). Some of these studies use only the historical demand as input variables, while some others 

consider a number of explanatory variables such as special events, calendar/holiday, weather, past 

demand observations (lags), date/time attributes, and time series components. Other than some 

variables that are available or extractable from every time series in general, some researches have 

also used context-specific variables, such as product quality for DVD rental demand (Ampazis, 2015) 

and product price relative to the micro-market price for supermarket products (Aburto & Weber, 

2007). 

Majority of researches related to machine learning-based demand forecasting either empirically 

tested the performance of various machine learning algorithms to find the best suited model to a 

certain case, compare machine learning techniques with classical forecasting techniques, or prove 

the effectiveness of their proposed model. We review these researches below and summarize them 

after to provide an overview of the techniques that are available, the data used in each domain 

application, and the findings about the model performance in general.  

Herrera et al. (2010) compared several models to predict water demand in urban area. The results 

show that Support Vector Regression (SVR) is the most accurate model for the problem, closely 

followed by Multivariate Adaptive Regression Splines (MARS) and Projection Pursuit Regression 

(PPR) from Friedman and Stueltze (1981), and Random Forests. They concluded that predicting at 

hourly level with a medium size demand area, which is a city, was the suitable and sufficient to make 

management decisions.   

Unlike Herrera et al. (2020) that built the prediction models for general period, Ampazis (2015) 

studied horizon-specific demand forecasting for the customer end of a multi-level supply chain. 

Ampazis (2015) approached the problem as a multivariate problem, combining the historical time 

series data with another explanatory variable, namely the product quality. They evaluated the 

effectiveness of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on an online 
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DVD rental dataset for the peak Christmas season and showed that these machine learning 

techniques have the ability to lower the uncertainty of supply chain demand forecast. 

Whitt & Zhang (2019) studied the forecast of daily arrival of patients in hospital emergency 

department as a multivariate problem as well, using exogenous variables such as calendar and 

weather variables. In this study, several models including linear regression, seasonal autoregressive 

integrated moving average with exogenous variables (SARIMAX), and the multilayer perceptron 

(MLP) were examined. They found that the highly structured time-series model (SARIMAX) performs 

better than the extremely flexible neural network model for a relatively small dataset, while 

regression comes second. 

Carbonneau et al. (2007) studied machine learning based forecasting for distorted demand at the 

upper end of a supply chain. This distortion is a result of increasing order fluctuations as one moves 

upstream along the supply chain, also known as the bullwhip effect. They compared the machine 

learning techniques such as Neural Network (NN), Recurrent Neural Network (RNN) and SVM with 

the more traditional forecasting techniques, such as exponential smoothing, moving average, linear 

regression and Theta model for single time series. Exponential smoothing turns out as the best 

performing technique among the traditional ones and none of the ML technique outperforms it. 

However, with the increase on dimension of the training samples, the supervised learning model 

SVM is found to be superior.  

Both Carbonneau et al. (2007) and Whitt & Zhang (2019) showed that the classical time series 

models outperform machine learning models for small datasets. However, Makridakis et al. (2018) 

showed a contrary result.  Makridakis et al. (2018) evaluated statistical and machine learning 

techniques on forecasting using large amount of monthly time series data. They found that in their 

case, the statistical methods such as ARIMA and Holt Winter outperform the machine learning ones. 

They suggested that this may be an indication that the ML techniques are confused when attempting 

to optimize specific or heterogeneous patterns in the data, among other possible reasons. They then 

suggested several practical approaches to improve the forecast performance. One possibility is to 

cluster data into various categories, such as micro/macro and demographic, or into types of series, 

such as seasonal/non-seasonal, with trend/without trend, high/low level of randomness, and 

develop different models for different category. 

Carbonneau et al. (2008) studied the distorted demand forecasting further by using the change in 

demand for each of the past number of periods and that for the current period as the input variables 

and predicted the total change over the next couple of periods. Contrary to Carbonneau et al. 

(2007), they found that with the addition of input variables the more advanced machine learning 

techniques (RNN and SVM) outperform the more traditional techniques (naïve, trend, moving 

average) but are not significantly better than the linear regression. Cankurt and Subasi (2015) also 

showed how addition of variables improve the performance of machine learning models. They 

developed multivariate forecasting model for tourism demand using MLP and SVR and showed that 

the inclusion of additional variables, such as date dimensions and statistics introducing the seasonal, 

cyclic, and trend components, significantly improve the accuracy. 

Antunes et al. (2018) compared ARIMA and NN techniques in forecasting water demand focusing on 

the short-term demand. Various features are used for the prediction, including the past demand, 

day of the week, weather data such as temperature and rain, and seasonal events. The machine 

learning technique was shown to be reliable provided the data contains no significant anomalies. 
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Carbonneau et al. (2008), Cankurt and Subasi (2015), and Antunes et al. (2018) all showed that 

machine learning techniques perform better for a multivariate problem where explanatory variables 

are used in addition to the univariate time series. Besides for a larger dataset and additional 

explanatory features, some other research found machine learning techniques to result in better 

performance than the time series model when they are used to forecast long term-demand 

(Shahrabi et al., 2009), and when a specific algorithm is used to tune the parameters of the machine 

learning model (Chen & Wang, 2007). 

Shahrabi et al. (2009) employed two machine learning techniques, namely ANN and SVM to forecast 

long-term demand for a car component supplier and compare them with the classic statistical 

methods (i.e. moving average and exponential smoothing). They found that ANN outperforms the 

others but moving average still shows a decent result considering. Chen and Wang (2007) conducted 

demand forecasts in tourism domain where they applied SVR technique and compared it with 

backpropagation NN and the autoregressive integrated moving average (ARIMA). They proposed the 

use of Genetic Algorithm to find optimal parameters of the SVR model and showed that SVR 

outperformed the other two models. 

Mupparaju et al. (2018) compared moving average, factorization machines, gradient boosting, and 

several neural network models with different customization to predict demand of products in retail 

company. Their study showed that factorization machine, a model that is said to handle high-sparse 

data well, outperforms the others at the cost of significantly higher runtime. 

Recently, related works have also seen an increasing trend in the development of novel hybrid and 

ensemble methods, i.e. the methods that combine multiple learning algorithm to obtain a better 

predictive performance. Aburto and Weber (2007) developed a hybrid intelligent system combining 

ARIMA models and neural networks for demand forecasting in a retail industry, specifically a 

supermarket. In their hybrid model, Aburto and Weber (2007) modeled the original time series using 

SARIMAX and the forecast error as another time series using NN. The study showed that NN 

outperformed ARIMA and the hybrid model performed better than both of them independently. Qiu 

et al. (2014) presented a novel approach using ensemble deep learning method consisting of deep 

belief network (DBN) and SVR in predicting load demand in power industry, while Zhang (2003) 

proposed a hybrid of ARIMA and ANN. Similarly, both studies showed that their proposed hybrid 

methods outperform each comprising method individually. 

Zhou et al. (2015) proposed a two-step dynamic inventory forecasting for large manufacturing. In 

the first step, they applied ensemble of six machine learning techniques to forecast the demand, 

namely Linear Regression, NN, Regression Tree, Gradient Boosting Regression Tree, SVM, and 

Gaussian Process. After that they consider the characteristics of inventory, such as long-term trend, 

seasonality, and events factors to get contemporary sales. The final forecasting result is the average 

from the result of these two steps. They stated that this approach succeeded in acquiring better 

prediction accuracy and has better interpretability to the analysis results. 

Tugay and Ögüdücü (2017) conducted demand prediction on an e-commerce web site on which the 

same products are sold by different sellers at different price. They compared regression techniques 

with stacked generalization (stacking ensemble learning) to predict the demand and showed that 

machine learning methods perform almost as good as the other method.  
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Table 3 Summary of Machine Learning Forecasting Literature 

Author Industry Models Features Findings 

Whitt & 
Zhang (2019) 

Healthcare 
(hospital ED) 

Linear Regression, 
SARIMAX, MLP 

Historical data, calendar, 
weather 

SARIMAX outperforms others 
on small dataset 

Mupparaju et 
al. (2018) 

Retail Moving Average, 
Factorization Machine, 
Gradient Boosting, NN 

Historical data Factorization machine 
outperforms others in 
handling high-sparse data 

Carbonneau 
et al. (2007) 

Manufacturing NN, RNN, SVM, Exponential 
Smoothing, Moving 
Average, Linear Regression, 
Theta 

Historical data Exponential smoothing 
outperforms others, but SVM 
performs best for larger 
dataset 

Carbonneau 
et al. (2008) 

Manufacturing RNN, SVM, Naive, Trend, 
Moving Average, Linear 
Regression 

Historical data RNN & SVM outperform 
others but are not significantly 
better than linear regression 

Shahrabi et 
al. (2009) 

Manufacturing 
(car 
component) 

ANN, SVM, Moving 
Average, Exponential 
Smoothing 

Historical data ANN outperforms others but 
MA still performs well 

Tugay & 
Ögüdücü 
(2017) 

E-commerce Linear Regression, DT, RF, 
Gradient Boosting, Stacked 
Generalization 

Historical data Stacked generalization 
performs as good as single 
classifiers 

Zhang (2003)   ARIMA, NN, Hybrid ARIMA-
NN 

Historical data Hybrid model outperforms 
each individually 

Ampazis 
(2015) 

E-commerce 
(online DVD 
rental) 

ANN, SVM Historical data, product 
quality 

Multivariate ML models lower 
the uncertainty barrier of 
demand forecast 

Aburto & 
Weber 
(2007) 

Retail 
(supermarket) 

SARIMAX, NN, Hybrid 
SARIMAX-NN 

Lags (pas sales), special 
days (payment day, 
holiday, summer), price 
relative to micro-market 

Hybrid model outperforms 
each individually 

Qiu et al. 
(2014) 

Power Ensemble of DBN and SVR, 
SVR, DBN, feedforward NN, 
ensemble feedforward NN 

Lags (demand of last 24 
hours) 

Ensemble of DBN and SVR 
outperforms others 

Cankurt & 
Subasi (2015) 

Tourism MLP, SVR Date attributes, time 
series components 
(seasonal, cyclic, trend) 

Auxiliary variables improve the 
accuracy 

Chen & Wang 
(2007) 

Tourism GA-SVR, NN, ARIMA Historical data SVR outperforms others 

Herrera et al. 
(2010) 

Water 
distribution 
system 

ANN, SVR, MARS, PPR, RF Historical data, weather 
(temperature, wind 
velocity, rain, 
atmospheric pressure), 
day of the week 

SVR outperforms others 

Antunes et 
al. (2018) 

Water 
distribution 
system 

RF, SVR, KNN, NN, ARIMA Lags (demand previous 2 
weeks), weekday, 
weekend, weather 
(temperature, rain), 
seasonal events 

Machine learning models 
outperform ARIMA 

Zhou et al. 
(2015) 

Manufacturing Ensemble of Linear 
Regression, NN, Regression 
Tree, Gradient Boosting, 
SVM, Gaussian Process 

Historical data (1st step), 
long-term trend, 
seasonality, events (2nd 
step) 

Two step model provides 
better accuracy and 
interpretability 

Makridakis et 
al. (2018) 

  Naive, Random Walk, 
Exponential Smoothing, 
Theta, ARIMA, MLP, 
Bayesian NN, Generalized 
Regression NN, KNN, CART, 
SVR, Gaussian Process, 
RNN, LSTM 

  Traditional statistical 
techniques outperform ML 
techniques 
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Table 3 summarizes the works related to machine learning demand forecasting. A large variety of 

methods have been used for demand forecasting. Instead of limiting to only supervised machine 

learning techniques, most of these researches have also included classical time series techniques in 

their studies. Interestingly, some of the researches showed that machine learning can outperform 

classical forecasting techniques (Carbonneau et al., 2007; Carbonneau et al., 2008; Antunes et al., 

2018; Shahrabi et al., 2009; Chen and Wang, 2007; Mupparaju et al., 2018), while some other found 

classical forecasting techniques to outperform machine learning forecasting, particularly in 

univariate time series forecasting problem (Carbonneau et al., 2007) and in the case where small 

dataset is used (Carbonneau et al., 2007; Whitt & Zhang, 2019).  

The fact that a simpler method like ARIMA can outperform machine learning techniques can also be 

explained by the utilization of criterion such as AIC and other optimization processes in ARIMA 

(Makridakis et al., 2018). They enable effective automatic model selection and parameterization 

while avoiding or minimizing overfitting, which is often an issue in machine learning techniques. 

However, despite their result, Makridakis et al., (2018) acknowledged that the findings may be 

different and that machine learning techniques can offer significant advantage over statistical 

methods in the case of nonlinear components being present or if other factors dominate the data.  

Furthermore, the results of these previous works are case-specific which makes the performance of 

the techniques depend on the characteristics of the data used, such as the size of the dataset, the 

presence of significant anomalies in the dataset, and the sparsity of the dataset. Despite the 

tendency of specificity of machine learning-based demand forecasting performance, Petropoulos et 

al. (2014) sought to define how types of data influence forecasting accuracy. Based on their 

investigation involving 14 forecasting methods and their combinations, and seven different time 

series features, the following are the conclusion of their study: 

• For fast-moving data, cycle and randomness have the biggest (negative) impact, followed by 

forecasting horizon. 

• For intermittent data, interval between demand has bigger (negative) effect than 

the coefficient of variation  

• Regardless of the type of data, increasing the length of the data has a small positive effect 

on the accuracy of the forecast. 

Taking everything into account, there is no exact answer on which forecasting techniques (i.e. 

classical or machine learning) will result in a better performance accuracy. Classical time series 

techniques are still valuable for demand forecasting despite the availability of many advanced 

techniques. Therefore, in this study, we will compare machine learning models to classical time 

series models as our benchmark.  

2.6 UNCERTAINTY IN FORECASTING 

Uncertainty is one of the important aspects of forecast quality (Murphy, 1993). Murphy (1993) 

defined uncertainty in forecast as the variability of observations as described by distribution of 

observations. However, among several concerns related to machine learning forecasting and its way 

forward, Makridakis et al. (2018) named the capability to specify uncertainty or intervals as one 

aspect that is rarely included in the research agenda in the field. In classification, uncertainty can be 

captured by the probability. However, it is different in the case of regression.  
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Brando et al. (2018) proposed several categories of uncertainty, as follows: 

1. Epistemic uncertainty, if the noise applies to the model parameters. 

2. Aleatoric uncertainty, if the noise occurs directly in the output given the input. 

a. Homoscedastic uncertainty, when the noise is constant for all outputs (i.e. 

measurement errors). 

b. Heteroscedastic uncertainty, when the noise of outputs depends explicitly on the 

specific input (input-dependent). 

Brando et al. (2018) compared the performance of different combination of predictors and 

uncertainty treatments. They found that heteroscedastic solutions outperform the others. They 

concluded that taking the variability of the output into account improves the performance of the 

model. 

One way to demonstrate uncertainty of the forecast output is to show it in the form of prediction 

intervals as they generalize point forecasts to represent and incorporate uncertainty (Hansen, 2006). 

Prediction interval differs from confidence interval (Heskes, 1997). Confidence interval guarantees 

with a certain confidence that the mean response lies within the interval by taking into account the 

standard error of the fit. Prediction interval exhibits with a certain confidence that the new response 

is between the interval by considering the standard error of the prediction. Thus, confidence interval 

shows the uncertainty of the model parameters for the whole population (i.e. epistemic uncertainty 

in Brando et al. (2018)) while prediction interval represents the uncertainty of the estimated 

values/observations (i.e. aleatoric uncertainty in Brando et al. (2018)). 

Makridakis et al. (2018) stated that a lot of researches propose simulating the intervals by 

generating multiple future sample paths iteratively, but this method would only derive the forecast 

distribution empirically and not analytically, raising many doubts about its quality. In the following 

part, we discuss a number of techniques used for generating prediction intervals in previous works. 

One technique to measure uncertainty communicated through prediction interval is the quantile 

regression. Quantile regression estimates the value of the forecasted variable at two percentiles 

points separated as far as the desired interval. For example, to produce a 90% prediction interval, 

one can predict the value at 5th and 95th percentiles. Quantile regression-based forecasting method 

has been implemented for probabilistic or uncertainty in forecasting. Some examples are Mayr et al. 

(2012), Taieb et al. (2016), and Ziel (2018). Taieb et al. (2016) demonstrated forecasting of electricity 

consumption for a disaggregated level (i.e. per household). Due to the higher uncertainty expected 

for a lower level forecast, they proposed the use of probabilistic forecasting method using a non-

parametric approach, which is the quantile regression. Unlike parametric approach that uses an 

estimation of distribution parameter from the data, a non-parametric approach avoids distributional 

assumptions by estimating the predictive distribution with assumptions on the shape of the 

distribution, such as smoothness. Mayr et al. (2012) previously demonstrated the use of quantile 

boosting to generate prediction intervals. This method directly models the borders of the prediction 

intervals by additive quantile regression, estimated by boosting. The results showed that the 

quantile regression approach performs better on disaggregated electricity demand, while the 

traditional approach assuming normality performs better on the aggregated data. 

Using statistical models, one can either create prediction interval in frequentist or Bayesian setting. 

Van Hinsbergen et al. (2009) demonstrated short-term prediction of travel time by combining neural 

networks using Bayesian inference theory. With Gaussian assumptions for the output distribution 

and the weights, the proposed method allows accurate estimation of confidence intervals for the 
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predictions, in fact 97.4% of the actual data fall within the resulted 95% confidence intervals. Gopi et 

al. (2013) proposed a Bayesian support vector regression to predict traffic speed and providing a 

measure of uncertainty through error bars, which cannot be provided using the standard SVR. They 

evaluated the efficiency of BSVR by comparing sensitivity and specificity of prediction errors with 

variations of MAPE thresholds. Some other studies also proposed probabilistic forecasting with the 

parametric approach using various techniques to estimate the distribution parameter, such as by 

estimating conditional mean and conditional variance (Wijaya et al., 2015) or using generalized logit-

normal distributions (Pinson, 2012). 

2.7 CHAPTER SUMMARY 

This chapter discussed the theory and previous works related to the study, including background 

knowledge about the domain. We have discussed the related works for car rental demand 

forecasting as well, which introduce us to some factors that have been used or said to be important 

for car rental demand prediction. Next, we found that both classical time series and machine 

learning techniques have their own strength and weaknesses. While machine learning techniques 

are preferable for this project due to their advantages, previous works have shown that classical 

time series method can outperform machine learning depending on the case it is applied for, thus it 

is important to include them in the analysis. Therefore, in this study, we will apply machine learning 

techniques as well as classical time series as a benchmark for the performances of the machine 

learning models. Lastly, we have seen several possible approaches to generate forecast intervals 

either with or without distributional assumption. However, the performance of each approach 

varied from one case to the other and they cannot be easily compared as different measures are 

used. On that account, in this study we experiment with several approaches with different 

characteristics and empirically tested their performances to find the most suitable one for our case.  
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3 METHODS 

Following the research outline in Section 1.4 and our findings in Chapter 2, in this chapter we break 

down the research methods to be used in each research phase, including the methods, approaches, 

models, measures, and tools for business understanding, data understanding, data preparation, and 

modelling phases. For modelling phase, we first describe the general steps taken to build each model 

as well as our proposed approach, and define several models to analyze (Section 3.3). Then, the 

following chapters explain in more detail the methods used for model selection (Section 3.4) and 

model evaluation (Section 3.5). After that, we describe several approaches that we use to build 

prediction interval and the measures to be used to compare each approach (Section 3.6). Finally, 

Section 3.7 explains the choice of tools we use for the development of the artifact.      

3.1 BUSINESS AND DATA UNDERSTANDING 

The first two phases conducted in the study are business and data understanding phases. In these 

phases, we study the background of the problem and determine business objectives for which the 

solution will be developed. After that, we assess the situation to define the requirements, 

assumptions, and constraints of the prediction model. This assessment is done iteratively with 

exploratory data analysis as we collect and explore the data to gain more understanding. 

In addition to determining the extent of the case and project, these phases include information 

gathering for the candidate features for the demand prediction model through domain analysis. 

Domain analysis is an important step to develop prediction instruments that have sufficient 

predictive power (van der Spoel et al., 2016). We carried out domain analysis to identify the initial 

features with the following methods: 

1. Literature Review 

Even though there are no literature that specifically predict or discuss the factors that affect 

the demand of replacement cars, studies related to the demand of rental cars can provide 

relevant information for our specific problem context. Therefore, a comprehensive review of 

previous works related to the car rental demand forecasting is performed to obtain a list of 

potential variables to use as predictors in our model. 

2. Interview 

Interview is a commonly used means of capturing domain intelligence. Information 

gathering through interview can capture the domain knowledge that is not available in the 

scientific literature or one that may be case-specific. In general, there are three types of 

interview based on the degree to which questions are pre-defined and the flexibility to 

proceed with questions emerging from the dialogue, namely unstructured, semi-structured, 

and structured (DiCicco-Bloom & Crabtree, 2006). In this study, we conducted multiple 

unstructured and semi-structured interviews with the domain experts within the company. 

Unstructured interviews allow us to collect background data when little to no information is 

known about the topic, while semi-structured interviews let us pre-define questions in 

advance and adapt the questions as the conversation goes. A semi-structured interview is 

conducted with a road patrol that has years of experience in handling breakdown incidents, 

while more open unstructured interviews are carried out with the stakeholder of the project 

and a data scientist of a related project. 

In the development of the prediction model, quantitative methods (i.e. statistical and machine 

learning techniques) are then used to test whether the features proposed in the domain analysis 
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indeed affect the outcome of the prediction (van der Spoel et al., 2016). Specifically, we carry out 

this part of the research using exploratory analysis of the data and feature selection, which will be 

explained in a later section. For the data exploration, we visualize the data using Tableau, a 

sophisticated data visualization software specialized in business intelligence. We choose to work in 

Tableau mainly for its ease of use and its ability to extract data from various data sources. We look 

into the patterns of variables over time and collect basic facts from the data. In addition, we 

describe the statistics and distribution of the data, the correlation between variables, as well as the 

quality of the data. 

3.2 DATA PREPARATION 

3.2.1 Data Restructuring 

Raw business data are oftentimes not available in the format that is ready for time series analysis. 

Thus, they require restructuring in such a way that would fulfill the objective of the analysis.  

Time interval 

Before training the model, we prepared a dataset in time series format to provide a demand 

estimation per time point. The demand prediction model can take any level of time intervals, 

whether it is hourly, daily, weekly, and so on, depending on the available data and the planning 

horizon. In this study, we restructured historical records of rental car orders into time series with 

constant intervals. We aggregated these records to get the number of orders per day, as required for 

the planning activity.  

Spatial level 

Additionally, to investigate the degree of predictability of the replacement cars demand, the 

prediction models were developed with several granularities with regards to spatial aggregation. The 

order records were specified and grouped by the locations where the breakdown incidents happen 

or where the rental cars being requested. The following are the different levels of detail that are 

taken into account in this study. 

1. High-level: the Netherlands 

The high-level model is a demand prediction model for the whole Netherlands at one point 

of time. This is an essential level to investigate the feasibility of the demand of replacement 

cars prediction in the first place. 

2. Mid-level: provinces and ANWB work area 

We expect the prediction accuracy for the low level to be of lower standard than the high 

level. Therefore, it is in our interest to study the demand at an intermediate level as well to 

thoroughly inspect the effect of more granularity. In this level, we considered two different 

spatial aggregation levels. First, records of orders were aggregated per province. There are 

12 provinces in the Netherlands which means there are 12 point observations to be 

predicted per time point. In addition, the data were aggregated per ANWB work area which 

has 33 divisions of area. 

3. Low-level: Logicx car rental pick-up locations 

The low-level model predicted the demand of replacement cars per rental locations, are 

expected to be utilizable as a direct input to plan the right number of cars required at the 

right location. There are 85 locations located all over the Netherlands. 
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Product type 

Further breakdown of the model is to consider the type of the demand. The car group has been 

identified as one of the main factors that define the demand estimation function (Fink & Reiners, 

2006). Depending on the availability of the data, the demand of replacement cars will be predicted 

per category of classes of cars and/or per type of customer requesting the car (either B2B or B2C). 

This is due to the high importance of providing cars from the same category and brand for B2B 

customers as well as the due consequences the company has to suffer for providing cars from higher 

classes. 

3.2.2 Feature Engineering 

Feature engineering is the process of constructing relevant features from raw data based on 

understanding of domain knowledge and data exploration. It is essential for the success of many 

machine learning tasks as oftentimes the raw data is not in a from that can be easily learned by the 

algorithms. A large number of learning algorithms are generic and not designed for a specific 

purpose, while features are usually domain specific (Domingos, 2012). The features need to take into 

account the characteristics and limitations of the algorithms to be able to provide useful insights into 

different aspects of the data (Katz et al., 2016). For example, some algorithms can handle binary 

variables better than categorical variables with more than two values. 

Feature engineering is difficult and time-consuming as it requires domain knowledge and a lot of 

trial and error to design the features. It is a major part of the iterative process of machine learning. 

After building the dataset, training the model, and analyzing the results, one can either modify the 

data or the model and repeat the process to produce a better model. Even with the automation of 

feature engineering process, for instance by automatically generating large number of candidate 

features which will then be fed into a feature selection algorithm, in the end the knowledge 

incorporated into constructing hand-crafted features is still irreplaceable (Domingos, 2012).   

Feature engineering can be done by deriving new features from existing features (e.g. from date to 

day of the week, month, and year), transforming a variable into another format (e.g. from the actual 

month value to a polar coordinates representation of the month), combining the values of two 

variables (e.g. ratio and difference of two variables),  and creating dummy variables for each value of 

categorical variables. Most importantly, in classic time series analysis, the algorithms use the 

previous values of the target output from a certain period of time/rolling window, known as lags, to 

estimate the future values. Lags can be manually constructed as features in the feature engineering 

process to transform classic time series problem into a supervised learning problem. In this study, 

we create a lot of features that we think may be relevant or may improve the learning process even 

the slightest. We then take measures to prevent overfitting or more noise because of the possibly 

irrelevant features using the feature selection afterwards.  

3.2.3 Data Preprocessing and Dimensionality Reduction 

The performance of machine learning algorithms usually depends on the quality of the data, that is 

to say high quality data will lead to high quality results and faster processing (Kotsiantis et al., 2006). 

Furthermore, dataset with large number of features (high dimensionality) means more possibility 

that some of the features are trivial for the model, leading to a potentially unnecessary higher 

complexity and slow process. The following are preprocessing steps we carried out in this study:  
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1. Missing Value 

Real world data are often incomplete. However, most of existing machine learning algorithms are 

developed with the assumption that there are no missing values in the data (Somasundaram & 

Nedunchezhian, 2011). Therefore, missing values can lead to a misclassification or wrong prediction. 

In this study, we take the following measures to handle missing values in the dataset: 

a. Remove feature with large percentage of missing value 

If a feature has a large percentage of missing value, we will remove the feature from the 

dataset as it will not be reliable for analysis. 

b. Imputation 

Missing value will be filled using logical reasoning or approximation from other data rows 

whenever possible. Depending on the feature that contains the missing value, imputation 

will be done by either deducting the value based on values of other columns in the row, or 

taking the value (or mean/median/mode) from the other rows in the dataset (similar case 

imputation). 

c. Remove data row 

If imputation is not possible to do (e.g. it is expected to result in a different effect on the 

model), and the missing value percentage is relatively low that it will not cause a major data 

loss, we will exclude the rows with missing value from the analysis.  

 

2. Correlations 

High correlations between features means these features likely have similar trends and information. 

Highly correlated features can affect models differently. Linear models with multicollinearity can 

have a numerically varying and unstable results (Goldberger & Goldberger, 1991). Interactions 

between different features that can be analyzed by a tree-based model can be overshadowed by the 

redundancy of the features.  

According to Hall (2000), a good feature subset is a subset of features that are highly correlated with 

the target value but uncorrelated with each other. Therefore, Pearson correlation (ρ) will be applied 

to measure the linear dependency between features and an input feature that is highly correlated 

with the other input feature(s) in the dataset will be removed. Correlation coefficient can also be 

used to reduce the dimensionality of the dataset by removing features that have low correlation to 

the output of the model. However, since correlation coefficient does not measure non-linear 

relationships and an interaction of a feature with other feature(s) can be an important predictor 

even though the feature alone has a low correlation to the target, we do not use correlations to 

eliminate features that have low correlation with the target.  

3. Standardization and Normalization 

Lastly, before we start building the model, feature scaling will be carried out as some machine 

learning algorithms can produce better performance and learn more effectively when the data 

attributes are of the same scale or distribution (Kotsiantis et al., 2006). Furthermore, by having the 

same scale for all attributes, we can directly compare the coefficient values in the linear models. 

Standardization and normalization are two widely used methods of data scaling (Kotsiantis et al., 

2006). Normalization rescales the data from the original scale to a range of 0 to 1, while 

standardization rescales the distribution by centering the data (i.e. it has a zero mean and a unit 

variance) assuming that the data are normally distributed.  
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3.3 MODEL BUILDING 

After preparing the dataset, the next process is to train the model on the data. In this study, we 

compare several machine learning and classical time series techniques. Predicting demand of 

replacement car per day can be categorized as a regression problem in machine learning taxonomy 

since the expected output is a continuous value at each point of prediction. In addition to dealing 

with regression problem, clustering and classification have been demonstrated to have the capacity 

to support forecasting (Kharfan & Chan, 2018).  Bandara et al., 2017 proposed to group time series 

based on natural grouping with domain knowledge or automatic mechanism such as time series 

clustering, and build different models for different groups to avoid harm in the overall accuracy 

because of the use of one general model for heterogeneous series (Bandara et al., 2017). 

In car rental domain, companies often experience outlier demand, for instance, because of a surge in 

demand because of special events (Geraghty & Johnson, 1997). Therefore, in this study, we buit the 

model with two different approaches. The first approach is a general approach for building, 

validating, and evaluating machine learning model. We employed this approach to investigate the 

feasibility of replacement cars demand prediction for different aggregation levels. For the second 

approach, we proposed to group the time series into outliers and non-outliers dataset and build 

different models for both groups. This approach consists of three main steps which are outlier 

identification, classification, and prediction. We evaluated this approach by applying it for the high 

level prediction and comparing it to the general approach. The steps for each approach is illustrated 

in Figure 4. 

 
Figure 4 Model building approaches: (1) General approach, (2) Proposed approach 

As discussed in Chapter 2, previous works have shown that there is no definite rule of which model 

performs the best or better than the others. A more sophisticated algorithm does not always 

produce better performance. Model performance highly depends on the problem and the dataset 

used in the project. Time series data are also generally more limited since there will only be as many 

instances as the time series interval in the dataset. With the limited amount of data, we opted to 

start from the simplest models first. We frame the time series problem as a supervised learning 
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problem, taking into account various explanatory variables, both from historical and external data. 

To find the most suitable model for the specific problem, we compared several regression 

techniques as well as classical time series techniques as the benchmark models, as follows.    

Linear Regression 

Linear regression, also known as the ordinary least squares, is the simplest linear model for 

regression. It comprises a linear combination of the input variables to estimate the target value. The 

key characteristic of this model is that it is a function of regression coefficients that minimize the 

sum of squares differences between the actual and estimated values. 

There are a number of variants of linear regression intended to improve its performance by 

introducing regularization.  

1. Lasso Regression 

Lasso regression applies L1 regularization in the linear regression model. It estimates sparse 

coefficients and tends to prefer solutions with less parameter values. It imposes a penalty on 

the sum of the absolute values of the regression coefficients. Thus, the algorithm lowers the 

coefficient values of the unimportant features or set them to zeros, completely eliminating 

the features. 

2. Ridge Regression 

Ridge regression is a linear regression with L2 regularization. It imposes a penalty term on 

the size of coefficients (i.e. the sum of squared values of the regression coefficient) and 

lower the coefficient values when necessary, making the coefficients more stable and robust 

to collinearity. Thus, it can reduce the impact of the less important features.        

Support Vector Regression 

Support Vector Regression (SVR) is an implementation of Support Vector Machines (SVM) for 

regression problems. SVM are based on the structural risk minimization principle that minimizes the 

true error on an unseen and randomly selected test samples, rather than the error for the currently 

seen samples, as implemented by models with empirical risk minimization like linear regression. It 

does so by projecting the data into a higher dimensional space using kernel functions and minimize 

the error margin. The model produced by SVM depends only on the kernel function evaluated on a 

subset of the training data. Therefore, SVM is effective for large scale problems. Different kernel 

functions can be used, such as the linear kernel and the Radial Basis Function (RBF) kernel for non-

linear problem. The key property of this technique is that it uses a convex optimization problem to 

determine the model parameters, thus it guarantees that any local solution is also the global 

minimum. 

Random Forests 

Random forest is an ensemble technique where a number of decision trees are trained on various 

subsamples of the dataset. Furthermore, it splits the node based on the best split among a random 

subset of the features in place of the best split among all features. It then takes the averaged 

prediction of the individual trees. On that account, it overcomes the pitfall of a single decision tree, 

that is the instability and high variance in the result (i.e. a small change in the data can often cause a 

large change in the final model).    
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Gradient Boosting 

Another variant of the ensemble technique known as boosting involves training multiple weak 

learners sequentially to create a strong learner. The error function used to train one model depends 

on the performance of the previous models. Gradient boosting uses multiple decision trees as 

learners. It builds the first model and calculates an arbitrary differentiable loss function. It then 

calculates the residual of the loss function using Gradient Descent method and uses this as the new 

target variable for the next iteration, resulting in an improved model compared to the first model. A 

more advanced and efficient implementation of Gradient Boosting considers the systems 

optimization as well to provide a faster and scalable tree boosting system. It is known as XGBoost or 

Extreme Gradient Boosting. 

Classical Time Series  

For classical time series techniques, we chose a number of techniques that are widely used and have 

distinct characteristics to represent this category well. They are ARIMA and its variations, Holt-

Winters Exponential Smoothing, and a state-of-the-art time series model Prophet.   

ARIMA and variations 

ARIMA (Autoregressive Integrated Moving Average) is a linear model where the predictors in the 

linear equation are the lags of the stationary time series and/or the lags of the forecast errors. The 

time series can be made stationary by differencing. Autoregressive refers to, Moving Average refers 

to the lags of the forecast errors, while Integrated refers to the differenced series which is an 

integrated version of the stationary series. The notation ARIMA(p,d, q) is commonly used, where: 

- p is the number of lags of the stationarized series (Autoregressive) 

- d is the number of nonseasonal differenced required to make the time series stationary 

(Integrated) 

- q is the number of lagged forecast errors (Moving Average)    

There are several variations of ARIMA. SARIMA (Seasonal Autoregressive Integrated Moving 

Average) extends ARIMA by explicitly defining a seasonal component. SARIMAX (Seasonal 

Autoregressive Integrated Moving Average with eXogenous regressors) allows modeling of 

exogenous variables in addition to univariate time series. SARIMAX(p,d,q)(P,D,Q)m is the notation 

used to specify the hyperparameters of SARIMAX where P, D, Q, and m are the seasonal elements 

for autoregressive order, difference order, moving average order, and the number of time steps for 

a seasonal period, respectively. 

Holt-Winters Exponential smoothing 

Exponential smoothing calculated the weighted averages of past observations as the forecasts, 

where the weight is exponentially decreasing as the observations move further in the past. It has an 

explicit modelling of error, trend, and seasonality. 

Prophet 

Prophet (Taylor & Letham, 2018) is a model for forecasting time series data based on an additive 

regression model that models time series as a sum of different components, including non-linear 

trend, various seasonal components (including yearly, weekly, and daily), and holiday. It can model 

exogenous variables as extra-regressors as well. The procedure consists of four main components: 

- A piecewise logistic or linear growth curve trend with automatic detection and selection of 

changepoints (i.e. the point where the growth rate is allowed to change) from the data.  

- A yearly seasonality modeled using Fourier series. 
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- A weekly seasonality created using dummy variables. 

- A built-in national holidays or user-provided list of important holidays. 

3.4 MODEL SELECTION 

Building prediction model does not end with training the algorithm on the dataset. Model selection 

is an important step to produce the optimal model for a problem. Model selection can have three 

different meanings (Luo, 2016): 

1. Selection of an effective algorithm for a given problem. 

2. Selection of effective hyper-parameter values for a given algorithm. 

3. Feature selection. 

To avoid selection bias and overfitting in a given modelling problem, in general, cross-validation is 

used. Cross-validation is a resampling procedure that creates combinations of training-test sets to 

evaluate machine learning models and give a more accurate estimation of how the model will 

generalize to an unseen dataset.  However, in time series problem, the conventional cross-validation 

cannot be used due to the structure of the data. First, the data is time sensitive and changing the 

order of the data will affect the training and the results (Antunes et al., 2018). Secondly, cross-

validation technique has a fundamental assumption that the data are independent and identically 

distributed (Arlot & Celisse, 2010). As the lagged values of the time series are used both as the input 

variables and the reference data,  the training and test sets are not statistically independent if 

chosen randomly and the time series might be produced by a process that changes over time 

(Bergmeir & Benitez, 2012) hence violating the fundamental assumptions of cross-validation. 

For this reason, we first split the dataset into training and test sets by respecting the order of the 

observations. Then for model selection, we use a variation of k-fold cross-validation designed for 

time series data on the whole training set and evaluate the selected model on the held-out test set. 

Time series cross validation (TSCV) does not shuffle the dataset. Instead, for the k-th split, it assigns 

the first k folds as train set and the k+1-th fold as test set. The training set in the succeeding split is a 

superset of the previous training sets. The schema of the procedure is depicted in Figure 5. 

 

Figure 5 Time series cross-validation 
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3.4.1 Hyper-parameter Tuning 

There are a number of techniques to tune the hyper-parameter values. The most common one is 

using grid-search where we define several potential values of the parameters. Grid-search will run 

every combinations of hyper-parameter values and returns the values that gives the best average 

performance from the cross-validation. The drawback of grid-search is that it involves human 

intuition to define and redefine the search area. To overcome this issue, an automated global 

optimization method for model selection, the Bayesian optimization is widely utilized recently (Liu et 

al., 2017; Ru et al., 2017; Kandasamy et al., 2019). Snoek et al. (2012) introduced practical Bayesian 

optimization for hyperparameter selection of machine learning algorithms. This method uses the 

Bayes’ theorem by taking into account the result of the previous selected values of the 

hyperparameters (prior belief) to select the value for the next iteration. However, Bayesian 

optimization can get stuck with many iterations without improvement or result in a local minimum 

of the objective function (Brochu et al., 2010). Considering the trade-off between the above-

mentioned methods, in this research grid-search is mainly used, while Bayesian optimization can be 

an alternative for algorithms that require significant effort and time for tuning due to the large 

number of hyper-parameters that needs to be tuned. 

3.4.2 Feature Selection 

In machine learning, there is a phenomenon known as the curse of dimensionality, which shows that 

generalizing correctly becomes more difficult as the dimensionality (i.e. the number of features) 

increases. Adding more features may appear harmless as they provide no new information at worst, 

but the curse of dimensionality may outweigh the benefits (Domingos, 2012). Some features may 

only introduce noise instead of improving the predictive power of a model and increasing features 

means increasing the processing power and the amount of training data needed. 

There are two main approaches to reduce the number of features, namely feature selection and 

dimensionality reduction. Dimensionality reduction creates new combinations of all the features to 

use as the inputs of the model. On the other hand, feature selection works by including and 

excluding features in the data without modifying them, which will be more useful as insights for the 

business domain. Some features may be irrelevant individually but yield a predictive power when 

trained together with other features.  Therefore, rather than merely evaluating feature importance 

or the relationship of each input feature with the target, we employ feature selection method that 

selects the best subset of features, specifically the Recursive Feature Elimination (RFE).   

RFE is one technique that examines feature subset ranking criterion instead of feature ranking 

criterion individually. The iterative procedure of recursive feature elimination is as follows (Guyon et 

al., 2002): 

1. Train the model, that is, the model optimizes the weights of each feature with respect to its 

cost function. 

2. Compute the ranking criterion (i.e. the effect of removing one feature at a time on the 

objective function) for all features. 

3. Remove the feature(s) with the lowest ranking criterion. 

4. Repeat until the desired number of features is reached. 

In addition, we use RFE with cross-validation (RFECV) to select the best number of features in the 

final subset. 
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3.5 MODEL EVALUATION 

Model evaluation in this study comes in twofold. First, we evaluate different models in the test 

(evaluation) set and compare their performances to find the best performing model for the problem. 

Next, we evaluate the performance of the best model for demand forecasting in the future, that is, 

we run a forecast for one week period that includes multi-step forecasting and uses weather 

forecast data instead of the actual weather data. 

3.5.1 Performance Measures 

The performances of the trained models are evaluated using several error metrics. In particular, 

there are three metrics that are widely used to evaluate point observations in regression problem 

over the years (Botchkarev, 2018): 

1. Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) 

MSE is the most widely used error metrics. It measures the squared error point distance and 

is scale dependent. RMSE is the root of the MSE which can be used to keep the dimension of 

the metrics to the actual values. In other words, it shows the average distance. With 𝑒𝑖 

denoting the error or difference between the actual and predicted value for the i-th 

observation, MSE and RMSE are formulated as follows. 
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2. Mean Absolute Error (MAE) 

MAE is another scale-dependent metrics. It differs from the MSE in terms of the point 

distance it measures, which is the absolute error. 
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3. Mean Absolute Percentage Error (MAPE) 

MAPE normalized the absolute error measure by actual values. Due to the intuitive 

explanation it offers, MAPE is the most commonly used measure for assessing forecasts in 

organisations and has seen an increasing trend of use (Botchkarev, 2018). 
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Besides the three most commonly used metrics, we measure the performance using the median 

absolute error (Median AE) because of its robustness to outliers and the coefficient of determination 

(R2). Median AE calculates the median of all absolute differences between the target and the 

prediction. R2 measures the proportion of explained variance, that is the amount of variance in the 

target variable explained by the factors included in the model. There are several different formulas 

to calculate R2. In this study we implemented the formalization in Kvålseth (1985) as follows.  

𝑅2 = 1 −
∑ 𝑒𝑖

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
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3.6 PREDICTION INTERVAL 

As discussed in Section 2.6, allowing estimation of the uncertainty for the point forecasts can bring 

machine learning method one step further in the application. Specifically, prediction interval can 

provide an extended insight for the business domain, such as the trade-off between the range of 

interval and the granularity of prediction or to find out given the highest possible accuracy, how far 

lower or higher could the actual demand deviates. In this study, we consider several techniques to 

generate prediction interval: 

1. Assuming normality, one step ahead prediction interval (constant variance) is calculated as 

follows. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑦̂ ± 𝑍 𝑠𝑐𝑜𝑟𝑒 ×  𝜎̂ 

where 

𝑦̂ = forecast value 

𝜎̂ = estimate of the standard deviation of the forecast distribution 

𝑍 𝑠𝑐𝑜𝑟𝑒 = multiplier that depends on the coverage probability (e.g. 1.28 for 80% intervals, 

1.96 for 95% intervals)  

 

2. Assuming normality, calculate prediction interval with non-constant variance by fitting input 

variables not only to target variable, but also to error values. 

3. Perform quantile regression at low and high quantile. 

We compare which technique is the most suitable for the problem by evaluating the resulted 

intervals based on the concept of accuracy and precision. The more actual values fall within the 

interval, the more accurate the interval is. Whereas for the precision, the narrower the interval, the 

more precise it is.  These measures are formalized as follows. 

 

3.7 DEVELOPMENT TOOLS 

We have taken into account a selection of representative machine learning methods for the 

prediction model. Python will be used as the programming language to implement the entire data 

processing and machine learning algorithms as it is a general-purpose high-level programming 

language and is widely used in the machine learning community. It is supported by a large number of 

libraries to perform machine learning tasks, including the Scikit-learn, a library that provides a wide 

range of state-of-the-art implementations of machine learning algorithms while maintaining easy-to-

use interface (Pedregosa et al., 2011). We mainly use this library for its simple and efficient way for 

building the model.  
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We develop the model using Jupyter Notebook, a web application that supports literate 

programming paradigm introduced by Knuth (1992). Literate programming combines a programming 

with a documentation using natural language showing the thoughts behind the program. By utilizing 

this methodology, we can produce a more robust and easily maintained program.    

3.8 CHAPTER SUMMARY 

In summary, we carried out this study by following the CRISP-DM framework. We selected several 

machine learning and classical time series models to be applied and compared. We described the 

general approach to build models for various aggregation levels and proposed an approach to 

handle outlier demand to be validated in this study. Then, we define four approaches to generate 

prediction interval for the model which will be compared using the standard performance metrics 

for prediction interval.  
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4 DATASET CREATION 

This chapter describes the results for the first part of the research which consists of the Business 

Understanding, Data Understanding, and Data Preparation phases. The whole chapter focuses on the 

creation of dataset for Model Building phase. It starts with a description of the business context, a 

review of the findings from related works, as well as interview for domain analysis, to obtain initial 

features for the prediction. Then, we proceed to explore the raw datasets that are available. After 

that, we apply data preparation steps to create the final dataset for modelling phase.   

4.1 BUSINESS CONTEXT 

ANWB (The Royal Dutch Touring Club) is an organization for traffic and tourism in the Netherlands. 

ANWB provide services related to assistance, insurance, traffic safety, travel publishing, advice and 

information. Among these services, roadside assistance is the major business line of ANWB. The 

service consists of three major elements, which are breakdown assistance by ANWB road patrols, 

transport service, and replacement vehicles. ANWB provided these services to customers with 

breakdown incidents in the Netherlands as well as abroad. The focus of this study is in the 

replacement vehicle provision process in the Netherlands. 

ANWB partner up with Logicx, their subsidiary company in charge of handling transport (towing) and 

replacement vehicles, to provide replacement cars to their customers. In the Netherlands, Logicx´s 

fleet is distributed in 85 locations owned by Logicx and its partners. Besides ANWB, Logicx provide 

their service to external customers as well, including other roadside assistance providers, 

government, and police. The demand from these external customers amount to 30% of Logicx total 

demand. 

The simplified process of ordering replacement cars for customers with breakdown is illustrated in 

Figure 6. When a breakdown incident occurs, customers contact the ANWB to request for a roadside 

assistance. ANWB receive the information of the breakdown incidents, such as the location, and 

assign a road patrol nearby to handle the incident. Road patrol receive the assignment and proceed 

to assist the customers. When a vehicle cannot be repaired or a reparation is estimated to take or 

has taken too much time, road patrol can request for a replacement car for the customers if the 

customers choose to use the service. Logicx receive the order from the ANWB system and will 

contact the ANWB road patrol to arrange the order. During this arrangement, Logicx will find a rental 

car that match the customers’ cars at the most convenient pick-up location to the customers, be it 

the closest location to the breakdown or any location preferred by the customers. This arrangement 

may end up with a cancelled order if there is no match. If a fitting rental car is found, the expected 

return date and location will also be defined in communication with the road patrol and the 

customer. In most cases, road patrols will then take the customers to the garage and rental location.        
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Figure 6 Business Process of Replacement Car Order 

Logicx use a predefined mapping of cars into several classes to provide cars from the same classes to 

the customers. The detailed categorization is attached in Appendix G.1. However, the choice of 

rental cars is also affected by some business rules. ANWB divide their customers into two market 

segments, the Business-to-Consumer (B2C) and Business-to-Business (B2B) market, where there are 

a number of different rules that may apply to customers of each market segment.  

1. B2C market 

For the B2C market, ANWB offers the roadside assistance as a membership-based service. 

The service applies to the members regardless of the vehicles that they own or drive. For 

customers from B2C market, it is predetermined that the provided rental cars will not be 

higher than C class cars regardless of the class of the customers vehicles. 

2. B2B market 

B2B market segment consists of customers that are entitled to ANWB services through their 

contracts to another company that has a partnership with ANWB. Different policies apply for 

different customers depending on the agreement between ANWB and the partners. For 

example, for customers from company X, ANWB may only assist the customers with 

transport and replacement cars service without the breakdown reparation. Another policy 

may state that ANWB are obligated to provide customers from a manufacturer company Y 

with replacement cars from the same manufacturer/brand. 

Furthermore, the replacement cars are rented for a certain period for the customers while the 

broken cars are being repaired in garage or alike. There is a maximum rental duration that applies to 

each customer depending on the type of subscription that they have or the contract between ANWB 

and the B2B partners in case of B2B segment customers.  

4.2 DOMAIN ANALYSIS 

In the previous section, we have seen the common process of the replacement cars order 

generation. To put it simply, the demand of replacement cars is a portion of the demand of roadside 

assistance where further in the process the breakdown cannot be solved on the spot due to various 
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reasons. In this chapter, the factors that may potentially affect the demand and can be used as 

predictors of the demand will be defined through domain analysis. 

In Section 2.3, we discussed a number of literatures related to rental car demand forecasting. While 

there has been a number of studies on the case, they are intended for the general car rental industry 

which serve rental cars as a means of transportation for business or individual travel and tourism 

purpose (Geraghty & Johnson, 1997; Fink & Reiners, 2006). In addition to historical data of rental 

orders, several other factors that may affect the demand of rental cars were mentioned. They are 

seasonality, special (local) events, and weather conditions. Another more recent research studied 

rental car demand forecasting for the growing car sharing business model (Lei et al., 2017). They 

defined spatial-related factors such as the main function of a region where the demand is to be 

predicted (i.e., business, entertainment, resident, etc.), the density of point of interests of the 

location, and factors such as rental behavior features (e.g. whether the trip is a business or individual 

trip).  

Besides literature review, we conducted a couple rounds of interview to extend and/or validate the 

candidate features, i.e. the factors mentioned in the related works, including the demand 

forecasting predictors from other use cases mentioned in Table 3. The first and second interviews 

were carried out with domain experts with different background within ANWB. During the 

interviews, several potential factors were brought up: 

1. Seasonal pattern 

During summer, a higher demand of rental car is expected. 

2. Weather, whether it is hot or cold 

A lot of breakdown incidents happen during cold days because of battery problems but 

majority of this problem can be fixed easily and do not require replacement cars. On the 

other hand, in the summer, there seems to be more engine problem occurring and causing 

breakdowns due to cooling difficulty. This problem is more difficult (or takes too much time) 

to solve, thus oftentimes end up with a replacement car order.  

3. Day of the week, whether it is weekday or weekend 

One of the reason road patrols send a request for a replacement car is that they have no 

required spare parts on the roadside assistance car and no ANWB shops open close by. 

Some of the shops open all time, while some others open only on weekdays. The opening 

hours also differ based on time of the day. 

4. Holiday and long weekend 

More people are expected to travel during holiday, the day before, or the day after holiday 

and long weekend, which means higher possibility of breakdown incidents and requests of 

replacement cars. 

5. Road patrol’s experience 

The skills of the road patrol might affect their call. Supposedly, more replacement car 

requests come from the less experienced road patrols. 

6. Type of customers, whether they are classified as a part of B2B/B2C market 

Cars of customers from B2B market are generally more modern and more difficult to repair 

(e.g. electric cars), thus they are expected to require replacement cars. Moreover, there are 

regulations for some B2B partners where replacement cars should be provided to the B2B 

customers directly without reparation assistance    
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7. Type of cars 

Conditions that lead to the request of rental cars are mainly those related to the car type. 

For instance, a specific type of cars needs a certain component that is not available in the 

roadside assistance car or ANWB shops. 

The third interview was conducted with a data scientist that developed a model for similar case but 

with the focus of analyzing the demand in two holiday destination countries, France and Spain. As 

their focus is more towards building a geospatial model for the demand prediction, they use similar 

spatial-related features with those mentioned in Lei et al. (2017), which are the number of hotel and 

campsite in an area, and the length of motorway, where a longer motorway is expected to induce 

higher breakdown occurrences. While these features are interesting for the model, they are 

intended for a detailed spatial analysis. The focus of our research is more towards laying the 

groundwork for the demand prediction in the Netherlands in general. Therefore, the characteristics 

of a location is out of the scope of the study and will be left out for future work.   

Table 4 Overview of Potential Features 

Features Related Work Interview 

Historical rental car orders [27], [28] 1, 3 

Seasonality [27] 1 

Special events [27], [28] - 

Weather conditions [27] 1, 2, 3 

Weekday 
 

1 

Customer type [45] 1 

Road patrols experience 
 

1, 2 

Public holiday 
 

1 

School holiday 
 

1, 3 

Car-related features 
 

2 

Sun cycle 
 

3 

Length of motorway 
 

3 

Number of point of interests [45] 3 

 

Table 4 summarizes the factors mentioned in literature and interviews. Some of the features 

mentioned in the interviews are quite hypothetical. Therefore, a further exploratory data analysis 

for the features will be carried out in the next chapter. Furthermore, car-related features may be 

one of the factors that causes a car to be unrepairable, resulting in a request for replacement car. 

However, the replacement car services are not assigned to certain cars but to the member with 

subscription. The breakdown and replacement vehicle services are applicable to any car driven by 

the member. Therefore, the car-related feature cannot be used as a predictor. Features like road 

patrol’s experience and the type of customers may not work as predictors either as their future 

values are unknown. However, a constant/relative number can be used for the feature if a certain 

pattern or seasonality is found in the data which will be explored in the next part.  
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4.3 DATA EXPLORATION 

4.3.1 Rental Car Demand 

Rental car orders are used to represent the rental car demand. We use the data of rental car orders 

from ANWB to Logicx, which comprise approximately 70% of Logicx total rental car orders. It is 

important to take into account that the actual demand may not be fulfilled due to unavailability of 

cars and this unfulfilled demand is not registered in the data of rental car orders. While this may 

affect the accuracy of the prediction to some extent, based on the experience, Logicx expect that 

this number is really small.  

The dataset is created from a total of 253,713 rental car orders from 2014 to March 2019. Data from 

before 2014 are excluded due to the change in customers contracts that include a replacement 

vehicle as a provided service. The demand of rental car has seen an increasing trend since 2014, with 

6.8% increase from 2017 to 2018. Figure 7 shows the trend of yearly rental car demand over time. 

 

Figure 7 Demand of rental cars over the years 

Furthermore, over the last 5 years, the demand of rental cars in total is the lowest during the first 

quartile (January-March) and reaches its highest during the fourth quarter (October-December) 

(Figure 8).  The demand for the third quarter (July-September) are lower compared to the second 

and fourth quarter. This is a period of summer school holiday where most people are on vacation. 

Moreover, more engine problems (which is the most frequent problem leading to replacement car 

orders) are expected to occur during the summer. However, instead of resulting in a higher demand, 

the demand is lower than the second quarter. This is also contradictory with the number of 

breakdowns (which seems to yield a higher number on the third quartile) even though more 

breakdowns are expected to lead to a higher chance of requesting replacement cars. One possible 

explanation is that more breakdowns that happen in Q3 are more repairable than those that happen 

in Q2. 
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Figure 8 Demand of rental cars and breakdowns per quarter 

 

 

Figure 9 Demand, rental duration, and lead time per day of the week 
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In terms of the demand on each day of the week, demand of replacement car is higher on Friday and 

Saturday. On these days, the average rental duration is higher as well. It can be explained by the fact 

that some of the pick-up/drop-off locations are closed on weekend and the rental duration on the 

contract only counts the working days. Another interesting insight is that the lead time between the 

request of replacement cars and the pick-up time is about 50 minutes longer on Friday compared to 

the other days. This may be an indication that there is a shortage of rental cars at pick-up locations 

close by due to the high demand on Friday. This condition would require customers to get the rental 

cars from a further location (hence the increase in the time between the placement of order to the 

arrival at pick-up locations).  Another possibility is that customers tend to travel on a longer distance 

on Friday and request to pick-up the cars at their destination. It means that the further the 

destination, the longer the time to arrive to the pick-up locations from the time of order. 

Additionally, in Figure 10, we can see the spread of the demand for every day of the week. It shows 

that despite the tendency of occurences of higher demand on Friday and Saturday, there seems to 

be quite a number of outliers in the other days, especially Monday and Thursday. It may be a sign of 

some occassionally high demand on a long weekend. The difference in the distribution of the 

demand values over the weekend (Friday, Saturday, and Sunday) and weekday also show how 

demand over the weekend are more varied compared to the more closely spread demand values on 

weekdays. However, there are more potential outliers during the weekdays.    

 

Figure 10 Boxplot of demand per day of the week 

Based on the visualizations with various time intervals, we expect multiple seasonality patterns on 

the dataset, which are weekly with the high demand on the weekend and yearly with lower demand 

on the first quartile and higher demand on the last quartile. Finally, since the goal is to predict the 

demand per day, we restructured the data into daily time series. A total of 1916 instances are 

available to build the prediction model as seen in Figure 11.  
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Figure 11 Daily demand of rental cars 

From Figure 11 we can see again the increasing trend in general from 2014 to 2019. The demand 

seems to fluctuate a lot. However, more fluctuations are found in the latter year, with some 

extremely low and high demand. If we take a look at the distribution of the data in Figure 12 and 

Figure 13, we can see that the distribution of the demand is nearly symmetrical but with a quite long 

right tail. Figure 13 shows that demand over 200 on this long tail are the candidates of outlier from 

the data. 

 
Figure 12 Density plot of daily rental car demand 

 

Figure 13 Boxplot of daily rental car demand 

There could be several reasons for the existence of these potential outliers, such as noise, human 

error or error in the data, or other factors that may be important to the model. These outliers can be 

excluded without further analysis if they are found to be an errror or mistake in the data (Laurikkala, 

et al., 2000). Therefore, we tried to verify some extreme high and low demand numbers to the 

domain experts to see if there are indeed some errors in the data or some known reasons where we 

can exclude the observation (Detailed comments for each sampled outlier cases are attached in 

Appendix A).   
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Overall, it seems that factors related to weather and holiday are still expected to explain the  

occurences of extremely low and high demand values. From the extreme low cases, we also found 2 

weeks consecutively low demand which turned out to be caused by the replacement cars orders 

being recorded in two separate systems due to system migration. We have then dealt with this by 

aggregating the data from both systems/database. For extreme demand cases, the reasons for some 

of the cases are not as obvious as the others. Interestingly, in one case, the actual demand for 

roadside assistance was also much higher than the forecasted demand of roadside assistance, while 

in another case the demand for roadside assistance looks normal and is close to the expected 

demand but the number of replacement cars is high. Since none of the inspected outliers appear to 

be an error in the data and they are reckoned to be caused by the weather and holiday factors that 

are going to be incorporated in our model, we decided to keep the outliers in the analysis. 

4.3.2 Weather 

Weather data for the Netherlands are collected from open data provided by The Royal Netherlands 

Meteorological Institute, KNMI1. There are several weather attributes available on daily level as can 

be seen in Table 5. These data are available in 50 weather stations of the Netherlands. 

Table 5 Description of KNMI Weather Data 

Attribute Description 

FG Daily mean windspeed (in 0.1 m/s) 

TG Daily mean temperature in (0.1 degrees Celsius) 

TN Minimum temperature (in 0.1 degrees Celsius) 

TX Maximum temperature (in 0.1 degrees Celsius) 

RH Daily precipitation amount (in 0.1 mm) (-1 for <0.05 mm) 

PG Daily mean sea level pressure (in 0.1 hPa) calculated from 24 hourly values 

UG Daily mean relative atmospheric humidity (in percent) 

 

Out of 50 weather stations, we excluded 17 weather stations. Four of them do not have a complete 

record of weather data for all dates since 2014 (i.e. they are either new or discontinued), while the 

rests record only the daily mean wind speed out of all variables (See Appendix B for the complete 

percentage of missing weather data).  

For the demand prediction at the high level, we use weather data from De Bilt weather station, 

which is located in central Netherlands and is also the oldest weather station in the country. At 

province and work area level, we take the data from the weather station closest to the center of the 

area. Similarly, the closest weather station to each Logicx pick-up location provides the value of the 

weather variables for the corresponding location every day. 

De Bilt weather station has no missing data. However, some of the other weather stations still have 

a certain percentage of missing values. For these missing values, we fill in the values with values 

from the next closest station to the location. For instance, if in one of the days the minimum 

temperature from the weather station closest to a province is missing, we take the minimum 

temperature value from the second closest station. If the value from the second closest station is 

still missing, we replace it with the value from the third closest station. It goes on until there is no 

more missing value in the data.    

 
1 http://projects.knmi.nl/klimatologie/daggegevens/  

http://projects.knmi.nl/klimatologie/daggegevens/
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To see how the weather may affect the demand of replacement cars, a plot of each weather variable 

from De Bilt weather station and the rental car demand is presented in Figure 14. It can be seen 

from Figure 14 that some extremely high demand happens on the day with either a very low 

temperature, extremely high temperature, or extremely low atmospheric humidity. 

 

Figure 14 Visualization of Weather Variables in comparison to Demand in 2018 

4.3.3 Other features 

In the previous chapter, we have explored historical orders, seasonality, weather conditions, and 

weekday. There are some other features that have been mentioned as potential factors for rental 

car demand according to the literature review and domain analysis (Table 4). Special events, public 

holiday, school holiday, and sun cycle features could be created during the feature engineering 

phase, thus they would be explored directly with the machine learning model. Information regarding 

customer type, in this case the B2B and B2C customers, could be retrieved from the historical rental 
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order data. However, the number of each type of customers in the future is unknown and would 

require a separate prediction. In addition, during the exploration process, we have experimented 

with various constant/relative number of the customer type so that it can be used as an input for 

future prediction, such as the ratio of each type of customers to all customers, ratio of customers 

from a certain type that request replacement cars to ones with breakdowns in general, and various 

other possible values. However, the number of customers over various periods (e.g. daily, weekly, 

monthly) is rather stable and does not exhibit any striking pattern. Therefore, we decided to drop 

this factor and investigate the feasibility of predicting them instead. 

Road patrols experience is another factor that is difficult to quantify. For instance, data related to 

the working years of road patrols are difficult to obtain as they contain private information. Another 

factor with almost similar issue is the car-related features, such as the age, type, or model of the car. 

These data are available for analysis. However, as it has been discussed in Section 4.2, the way the 

current policy are makes the future value of these features extremely difficult to determine. 

Therefore, we decided to exclude the road patrols experience and the car-related features from the 

analysis. In addition, length of motorway and the number of point of interests were also excluded as 

they are more spatial related and would be out of scope of the study. 

4.4 DATA PREPARATION 

4.4.1 Feature Engineering 

To create the full dataset with the required features, we derived new features from the raw 

univariate time series data of rental car demand and the weather data. Using the date feature from 

the original datasets, we created features that can be used for supervised learning, including the 

year, month, and weekday. Sun cycle features are also created according to the date, using Python 

Astral library2. Holidays, school holidays, and special events in the Netherlands are generated using 

an in-house Python script with date as an input. Lags for the demand are generated by taking the 

demand values of the previous 7 days. Seven is chosen as the number of lags given the weekly 

seasonality expected from the data (also exhibited by the autocorrelations plot in Appendix C).  

Next, we created more features using interaction of some features by taking the difference, 

summation, counts of occurrences, average, standard deviation, or other possible form of feature 

interaction. This is done iteratively with the support of domain knowledge and experiments. For 

instance, we created the feature isHoliday which is a single representation of whether a day is a day 

off, regardless of what holiday it is or if it is only a weekend day-off and not a calendar holiday.  The 

average and standard deviation of the demand from the previous week are considered as well to 

extract a better summary of the demand trend compared to using only the values from the previous 

days as 7 individual features. Features such as temperature difference with the day before and a 

count of consecutive cold and warm days are the other examples. 

We also took into account some possible forms which a feature can be used in. For example, Month 

feature that has the value of 1-12 can be presented in a polar format, that is a sine-cosine 

representation, to give an information of its cyclical nature (e.g. Month 1 comes after Month 12). 

Some algorithms can handle binary variables better than categorical variables with more than two 

values. Therefore, we encoded categorical features using several encoding strategies. Originally, 

dummy variables will be created for each value of these categorical features (also known as the one-

hot encoding technique). However, due to the high sparsity induced in the dataset with one-hot 

 
2 Astral documentation https://astral.readthedocs.io/en/stable/module.html  

https://astral.readthedocs.io/en/stable/module.html
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encoded features, we considered comparing it with other techniques, including hashing 

(Weinberger, et al., 2009), binary encoding, and the above-mentioned polar technique. The results 

of this comparison will be discussed in Section 5.1.4. We created a total of 90 features for the 

dataset.  

Table 6 summarizes the features on the dataset after feature engineering (See Appendix D for a full 

description of the features). 

Table 6 Summary of Input Features 

Category Features 

Target lags Demand of replacement car per day, average, and standard deviation for the previous 
7 days 

Datetime attributes Weekday, month, year, sun cycle 

Public holiday New Year's day, Easter, King's day, liberation day, ascension day, Pentecost, Christmas 

School holiday School holiday in the Northern, Central, and Southern regions 

Other special day Good Friday, National remembrance day, New Year's eve, Saint Nicholas' eve, Carnival 

Day before holiday Day before holidays, i.e. day before Good Friday, Easter Sunday, King's day, Liberation 
day, Remembrance day, Whit Sunday, Christmas day, New Year's eve 

Day after holiday Day after holidays, i.e. day after New Year's day, Easter Monday, King's day, Liberation 
day, Remembrance day, Whit Monday, Boxing day, New Year's day, first Monday after 
New Year's day 

Holiday attributes Whether a day is a holiday/weekend, first day of a long holiday, last day of a long 
holiday, a day in a long weekend, a day before a long holiday 

Weather Windspeed, maximum, minimum, and mean temperature, precipitation, sea level 
pressure, atmospheric humidity 

Weather attributes Number of consecutive cold/warm days, total cold/warm days in the previous 7 days, 
temperature difference with the day before 

4.4.2 Dimensionality Reduction  

Dataset with large number of features may not be effective to build a model on. High dimension 

means high complexity and more possibility that some of the features provide similar information or 

only introduce noise to the model. With 90 features on the dataset, we eliminated a number of 

features with high percentage of missing values, low variance, and high correlation with other 

feature(s). 

First, no features have a high percentage of missing value. Secondly, using the low variance filter, we 

removed one holiday feature which is holiday_bevrijdingsdag_off (i.e. Liberation day as an official 

paid holiday), along with the day before and after this holiday, which only has the value True once 

every 5 year and has the value False for the rest of the rows. Finally, we run correlation test on all 

the features.  

The following relationships were found to have high correlations. 

1. Minimum temperature is highly correlated with Average temperature (ρ = 0.93361) 

2. Maximum temperature is highly correlated with Average temperature (ρ = 0.97271) 

3. Time-to-sunrise is highly correlated with Month (cosine) (ρ = 0.9376) 

4. Time-to-sunset is highly correlated with Daylight (ρ = 0.99264) 

We removed Time-to-sunrise, Time-to-sunset and Average temperature and kept the other features. 

We opted to keep both minimum and maximum temperature instead of the average temperature 

due to the previous hypothesis from the domain analysis that suspects a hot day as the trigger to an 

http://localhost:8888/notebooks/3e.%20Preprocessing%20-%202010-2019.ipynb#pp_var_Time_to_sunrise
http://localhost:8888/notebooks/3e.%20Preprocessing%20-%202010-2019.ipynb#pp_var_Month_cos
http://localhost:8888/notebooks/3e.%20Preprocessing%20-%202010-2019.ipynb#pp_var_Time_to_sunset
http://localhost:8888/notebooks/3e.%20Preprocessing%20-%202010-2019.ipynb#pp_var_Daylight
http://localhost:8888/notebooks/3e.%20Preprocessing%20-%202010-2019.ipynb#pp_var_Time_to_sunrise
http://localhost:8888/notebooks/3e.%20Preprocessing%20-%202010-2019.ipynb#pp_var_Time_to_sunset
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engine failure that is difficult to repair on the spot (hence resulting in a request for replacement 

cars). 

Lastly, before training and testing the model, which will be discussed in detail in the next chapter, 

feature scaling was carried out on the dataset. Due to most of the features being categorical and the 

fact that some of the numeric features such as Daylight do not exhibit Gaussian distribution, 

maximum-minimum normalization technique was used instead of standardization to avoid the 

distributional assumption. Normalization was done on the training set and then applied on the test 

set. This is to avoid information leak to a test set that should represent unseen observations. In this 

manner, one could expect the generalization ability demonstrated from the evaluation on the test 

set to reflect the true generalizability to an unseen data in the future. The values in all input features 

were transformed to a range of 0-1. Thus, no feature will dominate the other features just because 

of the larger range of values one has. 

4.5 CHAPTER SUMMARY 

In this chapter, we listed a number of candidate features based on domain analysis through 

literature review and interviews. Then, we selected the most relevant features and eliminated 

features that have no data available or are deemed to be out of scope of the study. Through data 

exploration, we gained more insights about the characteristics and quality of the data, and the 

potential effect of a feature on demand prediction. Then, we created more features that are not 

directly available in the raw dataset, features that are likely to be valuable as predictors and features 

that can help the models to learn the relationships. Lastly, we pre-processed the data accordingly so 

that they are ready to be processed in the modelling phase.  
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5 DEMAND PREDICTION MODEL 

This chapter covers the results of the modelling phase in the following structure. 

Section 5.1 provides the results that will answer SQ2 by following the first approach for model 

building defined on Section 3.3. We first present the results of the prediction models using classical 

time series techniques, followed by the ones using machine learning techniques. After that, we show 

a comparison of different data preprocessing (i.e. encoding categorical variable) strategies as an 

effort to improve the models. Then, the section after presents the result of the automated feature 

selection and the performance of the models retrained using the automatically selected subset of 

features. We analyzed the result of the best performing model. Figure 15 summarizes the 

experiments and comparisons that were conducted for the highest level prediction model.  

 

Figure 15 Outline of experiment on high level prediction 

Section 5.2 to 5.5 discuss the results for the deeper aggregation levels to answer SQ3, by applying the 

approach that perform best according to the results of the high level model in Section 5.1. We discuss 

the demand prediction model per market segment, demand prediction per province, ANWB work 

area, and Logicx rental location in order. Figure 16 outlines of the prediction levels investigated in 

this study and their respective sections.   

 

Figure 16 Demand prediction level 

Afterwards, we proceed to examine the proposed components to enhance the demand prediction 

model, which are the prediction interval and outlier analysis. Section 5.2 describes the prediction 

intervals built on the highest aggregation level model to answer SQ4. Methods defined on Section 3.6 

were applied in this section. Lastly, we implemented the second approach of model building that was 

proposed on Section 3.3 and presented the results on Section 5.7.  
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5.1 DEMAND PREDICTION FOR THE NETHERLANDS 

5.1.1 Classical Time Series Models  

Before we build the model, the univariate time series data can be decomposed into its trend, 

seasonal, and residual components as seen in Figure 17. It can be seen that there is an increasing 

trend and a yearly seasonality on the data. 

 

Figure 17 Time series decomposition 

Next, we train the classical time series models using ARIMA (or variations), Holt-Winters Exponential 

Smoothing, and Prophet. To be able to compare the results with the machine learning performance, 

we train the model using the first 70% data and leave the last 30% of the data to predict and 

measure the evaluation metrics on. We conduct one-step ahead prediction for the classical time 

series model as the prediction on the testing set for the machine learning models will also use a one 

step ahead actual value as the lags. Unlike machine learning model, for classical time series model, 

this procedure requires predicting the data one by one (i.e. one day at a time) and retraining the 

model after adding the data of the predicted day to the training data. 

Auto-ARIMA (with exogenous variables) 

We used Auto-ARIMA to select the most suitable models from ARIMA and its variation along with 

the hyperparameters. We run Auto-ARIMA with the stepwise parameter selection method. 

Exogenous variables (i.e. all input features except the lags features) are also included in the training. 

SARIMAX(1,0,0)(0,0,0)7 is selected as the best performing model. 

Exponential Smoothing 

We manually varied the configuration of the Exponential Smoothing model to get the best result. 

Additive type of trend and seasonality are selected. Seasonal periods of 7 is used as we want to 



  

55 
 

analyze it with the weekly pattern of the daily data. Exponential smoothing analyzes only the 

univariate time series without exogenous variables. 

Prophet without exogenous variables 

We tuned the Fourier order for the yearly seasonality and the seasonality mode for the model. 

Prophet decomposed the data as can be seen in Figure 18 (by default without the holidays and extra 

regressors decomposition) and perform the prediction using these components. Unlike ARIMA, 

Prophet decomposed the time series weekly seasonality in addition to yearly. 

 
Figure 18 Time series decomposition using Prophet with exogenous variables 
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Prophet with exogenous variables (holidays and extra regressors) 

After tuning the Fourier orders for yearly seasonality and custom-defined quarterly seasonality, the 

seasonality mode, and prior scales for the holiday and other exogenous variables, we train the 

Prophet model. Prophet analyzes holiday as one feature for all different holidays, similar to our 

isHoliday feature. Figure 18 shows the decomposition of the time series trained with the Prophet 

model, which include decompositions of the effect of holiday and extra regressors (other input 

features) as well. 

Table 7 shows the performance of each model based on various metrics. It can be seen that 

SARIMAX model outperforms the other classical models on all measures. 

Table 7 Performance of TIme Series Models 

 

5.1.2 Train Models with Time Structured Dataset 

We have evaluated some classical time series models as the benchmark for the machine learning 

models. After that, as discussed in Section 3.4, we trained the prediction model by splitting the 

training and test set keeping the time structure and using time series cross validation (TSCV) 

approach for the cross-validation folds. Five-fold TSCV were used to have at least around one year 

data for each training fold. Table 8 shows the performance of each model on the test set. 

Table 8 Performance of machine learning models with time structured dataset 

 

From Table 8, it can be seen that no model can outperform SARIMAX(1,0,0)(0,0,0)7 for all 

performance metrics. When we investigated further, the time series cross-validation (TSCV) splits 

have resulted in an unstable performance for each cross-validation fold. This may have caused the 

hyperparameters tuned using grid search with cross-validation unable to generalize well to the test 

set. It can be seen from the difference in the performance of the models on the training and test set 

(See Appendix F.1 for a complete performance on both training and test set). There is a clear 

overfitting on all models as the performances on the training set are much better than on the testing 

set, particularly demonstrated by the MSE. It could also be an indication that there are more outliers 

on the test set compared to those learned by the model from the training set. Therefore, shuffling 

MAE MAPE MSE RMSE MEDIAN_AE R2

Auto-ARIMA: SARIMAX(1,0,0)x(0,0,0,7) 13.9534 9.6573 346.0921 18.6036 11.1395 0.5143

Exponential Smoothing 15.3365 17.7173 410.2963 20.2558 12.799 0.4242

Prophet (with exog) 15.4519 10.534 418.9895 20.4692 12.423 0.4119

Prophet (without exog) 16.5318 11.3131 488.031 22.0914 13.024 0.3151

MAE MAPE MSE RMSE MEDIAN_AE R2

Linear Regression 14.1083 9.80982 353.395 18.7988 11.4258 0.504017

Ridge 14.6449 10.1152 384.949 19.6201 11.913 0.459731

SVR (RBF) 14.8243 10.1424 391.446 19.785 12.0018 0.450613

SVR (Linear) 15.0387 10.3556 404.058 20.1012 12.0534 0.432912

Lasso 15.167 10.3459 411.08 20.2751 12.2842 0.423057

Gradient Boosting 15.7201 10.2446 445.146 21.0985 12.7781 0.375246

XGBoost 16.7681 10.7704 506.486 22.5053 12.8608 0.289156

Random Forest 16.9345 10.8908 521.575 22.838 12.8449 0.267979
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the dataset for training and testing are expected to improve the performance as parts of the highly 

fluctuating demand in the more recent years are included in the learning process as well. 

5.1.3 Train Models with Shuffled Dataset 

Considering the nature of supervised learning, it is possible to train the model on a shuffled training 

and test set splits. Theoretically, this is not the most proper approach for time series prediction as 

discussed in Section 3.4. However, Bergmeir and Benitez (2012) has shown that in practice, shuffling 

the dataset has not cause any issue with the solution. Therefore, we shuffled the dataset when 

splitting training and test set and retrain the models. Five-fold cross validation was used to select the 

best parameters of each model instead of the time series cross validation. Table 9 shows the 

performance of each model on the test set (See Appendix F.2 for a complete performance on both 

training and test set). 

Table 9 Performance of machine learning models with randomized dataset 

 

It can be seen that there is a major improvement on all models. The highest performing model has 

69% of the target variance explained by the input features and a significantly lower MSE. However, 

we still observed an overfitting for all the tree-based models, which are XGBoost, Gradient Boosting, 

and Random Forest. Two out of the three models top the performances among all models. However, 

there are not that much difference between their performances with the simpler linear regression. 

One would expect that the model performance of gradient boosting tree models will be improved if 

the overfitting can be controlled.  

Table 10 XGBoost performance 

 

Overfitting on XGBoost can be controlled by controlling the complexity of the model and adding 

randomness to the model. Both techniques have been taken into account by tuning the related 

hyperparameters. Table 11 shows the selected combination of parameters and the negative mean 

squared error values for each cross-validation split. The average performance on the cross-validation 

splits do not differ far from the performance on the test set. However, retraining the data on the 

whole training set introduced the overfitting.  

MAE MAPE MSE RMSE MEDIAN_AE R2

XGBoost 12.0562 9.47926 243.541 15.6058 10.0967 0.689771

Gradient Boosting 12.1378 9.58108 244.092 15.6234 9.72451 0.68907

SVR (RBF) 12.3349 9.60096 250.975 15.8422 10.1916 0.680301

Ridge 12.1955 9.5713 252.68 15.8959 9.76322 0.67813

Lasso 12.3308 9.71742 257.207 16.0377 9.78918 0.672364

Linear Regression 12.3535 9.68606 258.898 16.0903 9.8125 0.670209

SVR (Linear) 12.352 9.65136 261.649 16.1756 9.83929 0.666705

Random Forest 13.0045 10.2575 283.94 16.8505 10.2666 0.63831
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Table 11 XGBoost performance for each cross-validation split 

 

The result of overfitted model often has poor generalization (Bishop, 1991). Therefore, avoiding 

overfitting is necessary to have a better generalization performance to hold-out test set. In our case, 

reducing overfitting by reducing the complexity of the model has worsened the performance on the 

test set as well. It is however worsened only by a little, compared to how much the training set 

performance has decreased. The performance of both training and test set can be controlled to be 

more similar at the cost of lower performance in the test set.  

5.1.4 Comparison of Encoding Strategies 

Overfitting in a tree-based model can occur when the tree ends up with strict rules of sparse data on 

the training set. Considering the dataset that is used to train the model consists of a large number of 

one-hot-encoded features (i.e. binary features where most of the values are False), it may have 

caused the model to overfit. To inspect if a denser dataset can improve the performance, we 

experimented by comparing various encoding strategies to the one hot encoding. The performances 

of the models with different types of weekday and month features are presented in Table 12. 

Table 12 Performance of different encoding strategies 

 

Table 12 shows that in general, the other strategies still cannot outperform the performance of the 

model trained with the initial encoding technique, which is one hot encoding, for weekday and 

month features. Although, there is an exception for Random Forest and Gradient Boosting. Polar 

encoding outperforms one hot encoding technique for these two machine learning algorithms. Also, 

for Gradient Boosting, ordinal encoding appears to outperform all the others, including the polar 

technique. This result may be attributable to the ability of the tree-based model Random Forest and 

Gradient Boosting to treat an ordinal encoded feature as a categorical feature, unlike for example a 

linear regression that would take the value as a continuous value. Besides, polar technique also 

brings additional information of the cyclical nature of the features which may further improve the 

performance. These differences show that the best performance of each algorithm may be obtained 

param_gamma 0.5

param_max_depth 3

param_min_child_weight 5

param_subsample 0.5

split0_test_score -320.132

split1_test_score -228.553

split2_test_score -246.486

split3_test_score -289.736

split4_test_score -256.546

mean_test_score -268.329

std_test_score 32.6984

rank_test_score 1

Model Ordinal One hot Binary encoding Hashing Polar

Random Forest 293,481 288,129 309,822 319,489 280,176

Gradient Boosting 247,077 251,288 266.65 278.06 248,831

XGBoost 254,584 243,541 280,122 281.2 256,132

SVR_RBF 312,806 250,975 254.83 285,033 257,623

SVR_linear 323,426 261,649 297,567 298,032 294,156

Lasso 316,342 254,484 284,235 281,151 285,332

Ridge 316,617 252,415 284,239 284,405 283,735

Linear Regression 318.25 258.92 285,811 295,231 288,262
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by customizing the processing techniques for each algorithm. However, since the difference 

between these algorithms with one hot encoding technique are quite small and one hot encoding is 

favorable for all the other algorithms, we proceeded to use one hot encoded weekday and month 

features for our model to compare these machine learning algorithms in the same manner.  

5.1.5 Feature Selection and Feature Importance 

The current models are still trained on the full feature set. As mentioned in Section 3.4.2, we 

perform the Recursive Feature Elimination with Cross Validation (RFECV) to automatically determine 

the number of features and which feature can result in the best performance. We perform the 

RFECV using for every model with the exception of SVR with RBF kernel due to the limitation that 

RFE can only run on models with coefficient (linear models) or feature importance (tree-based 

models). Figure 19 shows the performance of each iteration of the automatic feature selection on all 

features and the number of final selected feature set for each model. 

 

Figure 19 Performance per RFE iteration 

Among the selected feature set for all models, there are 15 agreed upon features by all models, 

which are Consecutive_cold_days, Consecutive_warm_days, Month_5, RH, Rolling_mean, Target_t-

1, Target_t-2, temp_diff_1_days_ago_TX, TN, TX, Weekday_1, Weekday_4, Weekday_5, Weekday_6, 

and Year. These features are included in the final subset by all models. 

With the new subset of feature, we transform the dataset to include only the selected features and 

retrained the models. The performances of all models using the new subsets of features are 

presented in Table 13. XGBoost came out as the best-performing model with 69.2% explained 

variance by using the least number of features, in fact 36 features. The XGBoost performance after 

applying RFE barely has any difference with the performance before RFE. However, it has reduced 

the number of features from 42 to 36 which will lead to a more efficient processing. 

Table 13 Performance after RFE 

 

MAE MAPE MSE RMSE MEDIAN_AE R2

XGBoost 12.0608 9.49054 241.797 15.5498 10.1423 0.691993

Linear Regression 12.2346 9.67313 250.608 15.8306 9.80661 0.68077

Gradient Boosting 12.2624 9.67205 251.737 15.8662 9.6451 0.679331

Lasso 12.308 9.68269 254.854 15.9642 9.97939 0.675361

Ridge 12.305 9.67334 255.151 15.9735 9.8918 0.674982

SVR (Linear) 12.3439 9.64133 262.694 16.2078 9.87814 0.665373

Random Forest 13.0943 10.3242 288.397 16.9823 10.1547 0.632632
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Before RFE, XGBoost included 42 features in the model. The ranking of feature importance before 

RFE feature selection are as follows. 

1. Rolling_mean (0.156673) 
2. Target_t-7 (0.109680) 
3. Weekday_5 (0.054925) 
4. Target_t-1 (0.045274) 
5. Weekday_4 (0.038948) 
6. holiday_schoolvakantie_zuid (0.037628) 
7. Weekday_6 (0.036103) 
8. Year (0.028780) 
9. TX (0.028020) 
10. Consecutive_cold_days (0.024936) 
11. TN (0.022128) 
12. Consecutive_warm_days (0.021046) 
13. Target_t-2 (0.021036) 
14. temp_diff_1_days_ago_TX (0.018108) 
15. Cold_days_prev_week (0.017567) 
16. Month_6 (0.017362) 
17. Month_10 (0.017199) 
18. UG (0.016262) 
19. Target_t-6 (0.015945) 
20. Weekday_1 (0.015483) 
21. holiday_schoolvakantie_midden (0.014504) 

22. RH (0.014422) 
23. FG (0.014110) 
24. Month_7 (0.013891) 
25. Warm_days_prev_week (0.013848) 
26. Rolling_std (0.013729) 
27. Month_5 (0.013706) 
28. holiday_hemelvaartsdag-1 (0.013558) 
29. Month_11 (0.013163) 
30. isHoliday (0.013034) 
31. Day_before_long_holiday (0.012785) 
32. PG (0.012750) 
33. Target_t-4 (0.012149) 
34. temp_diff_1_days_ago_TN (0.012006) 
35. Weekday_2 (0.009801) 
36. Daylight (0.009720) 
37. Target_t-5 (0.009411) 
38. Target_t-3 (0.009391) 
39. Month_1 (0.008584) 
40. holiday_schoolvakantie_noord (0.008361) 
41. Month_9 (0.008159) 
42. Weekday_3 (0.005816) 

 

After feature selection, six features are further excluded from the model. They are Month_10, 

Holiday_hemelvaartsdag-1, Target t-5, holiday_schoolvakantie_noord, Month_9, and Weekday_3. 

XGBoost feature ranking based on its importance after feature selection are as follows. 

1. Rolling_mean (0.149491) 

2. Target_t-7 (0.118423) 

3. Weekday_5 (0.059693) 

4. Target_t-1 (0.048088) 

5. Weekday_6 (0.041002) 

6. holiday_schoolvakantie_zuid (0.040833) 

7. Weekday_4 (0.039193) 

8. Year (0.033965) 

9. TX (0.033221) 

10. Consecutive_cold_days (0.025869) 

11. temp_diff_1_days_ago_TX (0.023572) 

12. Target_t-2 (0.022929) 

13. TN (0.020471) 

14. Consecutive_warm_days (0.019900) 

15. Month_7 (0.018544) 

16. Month_6 (0.018485) 

17. Target_t-6 (0.018156) 

18. Cold_days_prev_week (0.017586) 

19. Weekday_1 (0.017523) 

20. UG (0.017329) 

21. RH (0.016986) 

22. holiday_schoolvakantie_midden (0.016191) 

23. FG (0.015505) 

24. Month_11 (0.015282) 

25. Warm_days_prev_week (0.014654) 

26. temp_diff_1_days_ago_TN (0.014509) 

27. isHoliday (0.014128) 

28. Rolling_std (0.014083) 

29. Day_before_long_holiday (0.013498) 

30. PG (0.012810) 

31. Target_t-4 (0.012809) 

32. Weekday_2 (0.011720) 

33. Month_5 (0.011318) 

34. Month_1 (0.011231) 

35. Daylight (0.010567) 

36. Target_t-3 (0.010437) 

 

One thing that is important to note is the fact that XGBoost excluded most holiday features. After 

RFE, we do not see any individual holiday feature listed for the model. This can be explained by the 

sparsity of the data. These Boolean holiday features have very few True values. It makes the gain in 

purity per split very insignificant thus the tree is very unlikely to select the holiday feature. More 

holiday features are included in the subset of selected features in the linear models. However, the 

linear models cannot outperform the tree-based model. 
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5.1.6 Prediction Results 

After comparing the models and the different approach used in training them, the best results are 

achieved by XGBoost with RFE selected subset trained on randomized training and test set split. 

Figure 20 shows the visualization of actual vs predicted value for the XGBoost model. From this plot, 

we can see that the model performs quite well by the pattern of the scattered value that follows the 

straight diagonal line. There is a good correlation between the actual and predicted values. 

However, we can see that the model tends to underestimate high value and a bit overestimate the 

low demand value. Overall, it performs well for the demand value around average demand. 

Furthermore, if we see the error, the high error/residuals are not only found for the extremely low 

and high values, but also for some of the average values. 

 

Figure 20 Actual vs predicted demand for XGBoost 

Figure 21 further shows the plot of the predicted values and the residuals. The residuals seem to be 

quite decent considering that it has no clear pattern or trend and are quite randomized and 

symmetrically distributed. Thus, the model may not be perfectly accurate but it represents the case 

well enough.  

 

Figure 21 Residuals for XGBoost 

Compared to the result in a recent study by Whitt and Zhang (2019), the best model in our case 

produced a comparable error rate with their best model, in fact a MAPE of 9.5% compared to 8.4%. 
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Even though the prediction is done for different domain and dataset, there are similarities to our 

study. First, a lot of features used in our study are found in Whitt and Zhang (2019), such as the 

calendar and weather features among others. Furthermore, both studies are intended to predict 

daily demand one step ahead. Thus, this gives us a good insight of how our model has performed in 

comparison to the other state-of-the-art demand prediction.   

However, based on the preliminary interviews with domain experts, it is known that a machine 

learning model can predict breakdown incidents with an error of around 3-4%, while our 

replacement car demand prediction model can only perform with MAPE around 9%. This may be 

caused by the inability of the current model to learn certain patterns from barely 5 years of data. It 

mostly applies for the holiday features. As discussed in the previous chapter, the model excluded 

most holiday features, especially those that only happen once a year. With 5 years of data, we only 

have 5 occurrences of the holiday. Thus, it is normal that the model cannot learn the pattern from 

only 5 occurrences out of 1916 instances.  

However, it is also important to note that this percentage score is the average score for all days. The 

50th percentile of the absolute error values is 10 cars (i.e. 7.5% percentage error). It means that half 

of the cases are well predicted. The 80th percentile has an absolute error value around 20 cars (i.e. 

15% percentage error) which show that for 80% of the model predicted the demand quite decently. 

However, for some of the days in the dataset, we observed some quite high errors as presented in 

Table 14.  

Table 14 Days with highest error 

 

 

Interestingly, even though there is a tendency that the high demand values are underestimated as 

seen in Figure 20, some extreme high/low demand can be predicted better than others. For 

instance, in Figure 22, one of the day in 2018 with 244 actual demand value is predicted with only 16 

cars error while one of the day in 2015 with 251 demand is predicted with 57 cars error. When we 

investigated the features, the temperature on the day with 57 errors is quite high, in fact 31.8oC 

which is also an increase of 9.8oC from the day before. However, it seems that due to the average 

demand being only 139 cars and the highest demand in the previous week is not more than 160 cars, 

the model failed to increase the prediction accordingly. It only increased the prediction to 193 cars. 
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With the existence of such cases, we experimented with another approach to deal with the outliers 

which is later discussed in Section 5.7.    

 

Figure 22 Time series plot of the actual and predicted demand in the Netherlands 

The error in the prediction can also be explained by the absence of other factors that may affect the 

demand. This is demonstrated by the R2 of 0.69 for the model. This value means that the variance in 

the current input features can explain 69% of variance of the replacement car demand. There are 

approximately 30% variance in the target demand that cannot be explained by the current 

predictors.   

Furthermore, through our experiment on a smaller dataset of the demand of replacement cars, we 

found that a model trained on 2 years dataset have shown an even lower performance in terms of R2 

and MSE, which indicates the lower percentage of variance that can be explained by the model and 

the existence of occasional errors that are worse than those in the model with 5 years dataset. 

However, there is not much difference in terms of MAPE. Table 15 shows the comparison across 

different sizes of the dataset.  

Table 15 Performance comparison across different sizes of dataset 

 

Compared to the prediction of the number of breakdown per day, prediction of the demand of 

replacement cars has the repairability of the car to consider in addition to general condition like 

weather and holiday. In our preliminary interview with a domain expert, conditions of cars seem to 

be an important factor that affects the request of replacement cars. However, the replacement car 

service is provided at the basis of membership instead of entitled to a specific car. Customers can 

use the service regardless of the car they use. Therefore, the number of cars with certain conditions 

(e.g. certain age group, certain models, cars with new technology, etc.) cannot be used as predictors 

and may contribute to a part of the unexplained variance in the demand of replacement car. There 

could also be some rare events in the Netherlands that we have not taken into account, that may be 

the reason of some extreme demand. 

Besides the abovementioned issues, the historical data used as the target variable could be 

inaccurate. There is always a chance that the data is wrong somewhere we are unaware of. 

Additionally, in the beginning we have made an assumption that the rental car orders represent the 

Dataset MAE MAPE MSE RMSE MEDIAN_AE R2

2017-2019 13.84 9.37 330.32 18.17 12.26 0.5533

2014-2019 12.06 9.48 243.54 15.61 10.10 0.6898
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demand of replacement cars. In fact, this may not always be true. Customers are entitled to limited 

number of times for when they can use the replacement car service.  Customers can also opt out to 

having the replacement cars provided for various personal reasons. Therefore, there may be times 

where replacement cars are needed following breakdowns that cannot be repaired on the spot but 

orders are not made. All things considered, we have to bear in mind that there is always a random 

effect to the demand of replacement cars every day as well that the model cannot possibly predict 

accurately. 

5.2 DEMAND PREDICTION PER MARKET SEGMENT 

Car group or car type is one of the main characteristics of a rental car request (Oliveira, 2017a) and is 

one of the main factors to consider in rental car demand forecast (Fink & Reiners, 2006). The 

unavailability of a certain car group often puts car rental companies in a position where they have to 

offer cars from higher level group with the same price to avoid lost sales, or cars from lower level 

group with a discounted price (Oliveira, 2017a), leading to the need of forecast at car group level. A 

similar strategy applies to a replacement cars company like Logicx. Out of consideration for 

customer satisfaction, Logicx can upgrade the level of replacement cars at their own cost when cars 

of the same group as the customers’ cars are not available. Likewise, cars from a lower level can be 

offered if the customers are willing to accept. Therefore, it is vital to have an insight of the right 

number of cars from different car groups in addition to the number of cars in general.  

Logicx categorize cars in several classes (Appendix G.1). These classes can further be grouped into 

several bigger categories for planning purpose (Appendix G.2). During the operation, ANWB is 

obliged to provide Logicx the information of these classes of cars so that Logicx can assign cars from 

the same class to the customers’. However, only 3% of the total orders in 2017-2018 have the 

required information available in the database. Due to the unavailability of the data at the moment, 

another alternative of a deeper level forecast that can help company in their planning for different 

car groups is the demand forecast per market segment. In general, market segmentation in car 

rental business is inherent in different car types since the demand for certain car types typically falls 

into specific market segment (Geraghty & Johnson, 1997). In ANWB and Logicx case, there are two 

major market segments, namely B2B and B2C segments. By default, customers from B2C segment 

are provided with cars from class C regardless of the class of their cars. Thus, predicting the demand 

of replacement cars for B2C segment would already provide an insight of the demand of class C cars. 

In the following sections, we discuss the results of the exploratory data analysis and demand 

prediction for the demand of replacement cars for the B2B and B2C segments.      

5.2.1 Data Preparation and Exploration 

Orders for replacement cars are grouped by the customers’ market segment (i.e. B2B and B2C 

segment).  Figure 23 shows the demand of replacement cars from ANWB per market segment. In 

average, there are more demand from B2C segment, in fact an average of 83.35 compared to 49.43. 

Furthermore, the demand from B2C segment have been gradually increasing over the last 5 years, 

while the demand from B2B segment have seen an apparent drop around 2016.      
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Figure 23 Daily Demand of rental cars per market segment 

Besides the trend, another prominent feature is that the B2C segment have seen more fluctuation 

and extreme peaks every now and then. On the other hand, demand from B2B are more stable in 

the daily basis, except for one evident outlier in 2019. Figure X shows the different spread of the 

demand from both segments. 

 

Figure 24 Boxplot of daily rental car demand per market segment 

Applying the same data preparation steps as the demand prediction in the Netherlands, we create a 

dataset for each segment with the same input features as the high level prediction. Furthermore, 

despite the existence of an obvious outlier candidate in B2B segment in 2019, we keep this data in 

the initial analysis and treat the outliers as possible extreme values that may be explained by the 

input features. 

5.2.2 Model Performance per Market Segment 

B2C 

With the new dataset for each market segment, we build the models again using the selected 

machine learning algorithms on a shuffled training-test set. Table 16 shows the performance of each 

model for B2C segment on the test set (See Appendix F.4 for a complete performance on both 

training and test set). 
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Table 16 Model performance for B2C segment 

 

For B2C segment, the best performing model is Gradient Boosting with an mean absolute deviation 

of 9.66 cars per day (12.4% of the actual demand for B2C), followed closely by XGBoost. Figure 25 

shows the actual and predicted demand for B2C segment with Gradient Boosting model. From the 

figure, it can be seen that the model predicted the demand more accurately around the average 

demand value, with only a couple of cases having high deviation. There is also a tendency to 

underestimate extreme high demand and overestimate low demand even though it does not apply 

to all cases. 

 

Figure 25 Actual vs predicted demand for B2C segment 

In Figure 26, we can observe that similar to the demand prediction for the Netherlands in general, 

the model cannot accurately predict an extreme demand that has a high difference with the demand 

around the period, such as the highest demand in 2015 and the lowest demand in 2016.  

MAE MAPE MSE RMSE MEDIAN_AE R2

Gradient Boosting 9.6592 12.4034 151.5030 12.3086 7.9630 0.6197

XGBoost 9.7015 12.5307 152.9030 12.3654 8.4889 0.6162

Ridge 9.8380 12.7097 155.4410 12.4676 8.3329 0.6099

Lasso 9.8215 12.7211 156.5600 12.5124 8.4838 0.6070

SVR (RBF) 9.9572 12.7221 158.2500 12.5798 8.6607 0.6028

SVR (Linear) 9.9458 12.7792 159.2220 12.6183 8.4226 0.6004

Random Forest 9.9276 12.7629 164.5260 12.8268 8.3224 0.5870

Linear Regression 10.4109 13.6021 183.2190 13.5359 8.8185 0.5401
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Figure 26 Time series plot of the actual and predicted demand for B2C segment 

B2B 

The same steps were applied to train and test the models on the B2B dataset. Table 17 shows the 

performance of each model for B2B segment on the test set (See Appendix F.5 for a complete 

performance on both training and test set). 

Table 17 Model performance for B2B segment 

 

In general, the non tree-based models outperformed the tree-based model on this dataset. It 

indicates that the dataset may have different characteristics and underlying relationships of the 

features that make it better explained by regularized models such as SVR, lasso, and ridge 

regression. For this dataset, we obtained a mean absolute error of 6.8 cars a day with the SVR RBF 

kernel model. Considering the actual demand of B2B segment, this value results in a higher relative 

error, as exhibited by the 14.78% MAPE compared to 12.4% for B2C and 9.66% for the high level 

demand in general.  Figure 27 further shows that the predictions for B2B segment are less precise 

compared to B2C and general predictions. The model underestimated the high demand in general, 

regardless of the period/year, as depicted more clearly in Figure 28.   

MAE MAPE MSE RMSE MEDIAN_AE R2

SVR (RBF) 6.8411 14.7507 79.5612 8.9197 5.2753 0.5649

Lasso 6.8949 15.1608 80.6627 8.9812 5.3371 0.5588

Ridge 6.9132 15.1636 80.7130 8.9840 5.4153 0.5586

SVR (Linear) 6.9435 15.1708 81.6669 9.0370 5.7921 0.5534

XGBoost 7.1644 15.6546 83.1704 9.1198 5.7477 0.5451

Gradient Boosting 7.1470 15.6392 84.0733 9.1692 5.9011 0.5402

Random Forest 7.1360 15.6676 85.6179 9.2530 5.7273 0.5317

Linear Regression 8.0948 18.0444 105.2700 10.2601 6.7425 0.4243
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Figure 27 Actual vs predicted demand for B2B segment 

 

 

Figure 28 Time series plot of the actual and predicted demand for B2B segment 

To summarize, the performance of the models become lower as we go into a deeper aggregation 

level with regards to the product type, in this case a market segment level. Table 18 summarizes the 

comparison of the performances. The model for B2C segment produced a better performance 

compared to the B2B segment when we observe their relative errors to their own actual demand 

values, which indicates that the fluctuation in B2B demand is less predictable. Furthermore, the R2 

scores suggest that there is less percentage of variance of the B2C demand, and even less of the B2B 

demand, that can be explained by the same input features used to predict the demand in general. It 

shows that the same set of features may be good predictors for a certain aggregation level but less 

so for a different prediction level and product type. Therefore, adding features that are more 

specific to the case may be necessary besides the features used for the high level.   

Table 18 Comparison of the performance of the best model per market segment 

 

Segment Model MAE MAPE MSE RMSE MEDIAN_AE R2

All XGBoost 12.0608 9.4905 241.7970 15.5498 10.1423 0.6920

B2C Gradient Boosting 9.6592 12.4034 151.5027 12.3086 7.9630 0.6197

B2B SVR (RBF) 6.8411 14.7507 79.5612 8.9197 5.2753 0.5649
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5.3 DEMAND PREDICTION PER PROVINCE 

In addition to the high level prediction (i.e. demand prediction for the whole Netherlands), deeper 

spatial aggregation levels could be more suitable and beneficial for operational planning. For 

example, with a good prediction per Logicx rental location, ANWB can distribute the cars more 

accurately. It is also interesting to investigate to what aggregation level a demand is feasible to 

predict using machine learning techniques. Furthermore, it is possible that the demand of 

replacement cars are more predictable in certain locations and are less predictable in others. This 

section discusses the result of the demand prediction per province as one of the variation of spatial 

aggregation level for the prediction.     

5.3.1 Data Preparation 

Rental car orders are mapped to one of the 12 provinces of the Netherlands based on the 

coordinates of the breakdown. We use a geographical data3 of the provinces of the Netherlands 

containing attributes such as central coordinate and sets of coordinates that define a polygon (area) 

for each province. Then, a rental car order from a breakdown that happens inside the area of a 

province will be marked as a demand for the province.  

There are two types of coordinates data in the ANWB databases, which are the GPS coordinate (i.e. 

longitude and latitude) and the Rijksdriehoeks or RD coordinate (i.e. X-Y points). Data from the old 

system (i.e. system used to record the orders before 2017) stored the RD coordinates of the 

breakdown locations but only 25% of these records have the translation to the GPS coordinates. As 

the external data sources (i.e. geographical data of weather stations and provinces) contain only GPS 

coordinates and the data processing steps carried out up to this point are constructed to use GPS 

coordinates, an extra step is required to convert the RD coordinates of all rental car orders into GPS 

coordinates. For this study, we decided to first exclude the older data and proceed with the data 

from the second quartile of 2017 (after a full migration to the new system) that contains complete 

GPS coordinates of the breakdown locations. Figure 29 shows the total demand per province from 

April 2017 to March 2019. 

 
Figure 29 Total demand per province April 2017-March 2019 

 
3  Hietbrink, Joost. “GeoJSON Data of The Netherlands.” We Build Internet, 9 July 2015, 
https://www.webuildinternet.com/2015/07/09/geojson-data-of-the-netherlands/provinces.geojson  

https://www.webuildinternet.com/2015/07/09/geojson-data-of-the-netherlands/provinces.geojson
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In Figure 29, it can be seen that the demand of rental cars vary per province, with Zuid-Holland 

having the highest demand over the last two years. Figure 30 further illustrates the distribution of 

the demand of rental cars per day in each location. In the less busy locations, the demand seem to 

be quite stable, as shown by the difference between the first and third quartile of the demand that 

are less than 5 cars, with the existence of some high demand identified as potential outliers. On the 

other hand, the demand per day for the busier locations such as Zuid-Holland and Noord-Holland  

vary quite a lot. There are also quite a number of high demand and a few low demand suspected as 

outliers. With the differences in the characteristics of the demand value for each province, we will 

build one model for every province.            

 

Figure 30 Boxplot of daily rental car demand per province 

To build a prediction model specifically tuned for each province, we create a separate dataset for 

each province. The same input features as the high level prediction are used. We use the same steps 

to create the features for each dataset. The only difference is on the data that are used for the 

weather features. Previously, we take the data from one weather station (i.e. De Bilt weather 

station) to represent the weather data for the whole Netherlands. For the lower spatial level, in this 

case the province level, we map a weather station to each province based on the euclidean distance 

between the weather station location and the center of the province. The closest weather station to 

the center of a province is then assigned for the province and its weather data are used as the input 

data for the dataset of the province. The following section discusses the selected models for every 

province and the performance of each model trained on different datasets for different provinces. 

5.3.2 Model Performance per Province 

Table 19 shows the performance of the best performing model for each province. Out of 8 machine 

learning models trained on shuffled training set (i.e. simple linear regression, lasso, ridge, SVR linear, 

SVR RBF, Random Forest, sklearn gradient boosting, and XGBoost), Ridge regression is selected for 5 

provinces, while Random Forest, XGBoost, SVR with linear kernel and Lasso regression are selected 

for the other provinces. The results show that the best prediction performance was achieved by the 

province with the highest average and total demand, which is Zuid-Holland. The model resulted in an 

average of 5.37 cars error per day, which is 17.54% of the actual demand per day in average. This 

performance is lower than those of the prediction models at country level. The results further show 

that the lower the average daily demand of a province is, the lower the model performance it tends 
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to get. For instance, the prediction models for Gelderland, Utrecht, and Noord-Brabant that have an 

average demand of 16-20 cars, resulted in MAPE scores around 23%, which is lower than the MAPE 

of Zuid-Holland and Noord-Holland. Likewise, the average percentage error of provinces with 

average daily demand of 7.57 or lower, are all higher than 39%.             

Table 19 Model performance per province 

 

Besides the prediction errors, the R2 scores are considerably lower than the scores for the high level 

prediction, in general as well as per market segment. The highest R2 for province level is 0.2897 

which implies that at most, only 28.97% of the variability of daily demand can be explained by the 

input features (predictors) collectively. These low R2 scores may also be a consequence of the low 

range of demand values for each location. Low range of values gives a low standard deviation, which 

in turn is likely to result in a rather low R2 score due to the difficulty of obtaining an even lower 

residual for the prediction. In Table 19, it can also be seen that the prediction model for Groningen 

resulted in a negative R2. It indicates that the predictions by the model perform worse than the 

predictions by the mean value of the demand. Figure 31 shows the demand predictions plotted 

against the actual values of the demand for the province of South Holland and Groningen. We can 

see that for South Holland, the predictions still form a correlation to the actual demand even though 

there are high deviations for many cases. Meanwhile, for Groningen, the predictions form a 

horizontal trend line near the average demand value of 2.89 cars per day but with an even higher 

sum of squared error compared to the sum of squared of error from a constant line of the mean 

value.   

Province
Selected

Model
MAE MAPE MSE RMSE MEDIAN_AE R2 Average 

demand

Zuid-Holland Ridge 5.37 17.54% 45.07 6.71 4.49 0.2897 34.09

Noord-Holland XGBoost 4.59 18.46% 31.76 5.64 3.85 0.2047 27.71

Gelderland Random Forest 3.60 22.55% 22.66 4.76 3.01 0.2047 18.27

Utrecht XGBoost 3.59 23.08% 20.26 4.50 3.05 0.1021 16.14

Noord-Brabant Lasso 4.11 23.27% 25.25 5.03 3.53 0.1058 19.59

Flevoland Ridge 1.71 39.29% 4.69 2.16 1.31 0.0174 5.46

Limburg Random Forest 2.41 40.05% 9.76 3.12 2.02 0.1549 7.57

Overijssel Random Forest 1.93 51.24% 5.95 2.44 1.54 0.0864 5.72

Groningen SVR (linear) 1.23 58.60% 2.38 1.54 1.05 -0.0058 2.89

Drenthe Ridge 1.59 61.27% 4.20 2.05 1.31 0.0563 3.40

Zeeland Ridge 1.39 66.24% 3.00 1.73 1.19 0.1506 2.70

Friesland Ridge 1.74 70.63% 4.86 2.20 1.56 0.0261 3.67
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Figure 31 Actual vs predicted demand for Zuid-Holland and Groningen province 

Overall, the provinces appear to have varying distributions and range of the demand of replacement 

cars and hence different performances of the prediction models. The prediction models in some 

provinces are more acceptable than in some others. Provinces with low average demand tend to be 

more difficult to predict, partly due the low range and low variation of the demand values. 

Furthermore, the performance of the prediction models for provinces with average demand lower 

than 6 cars tend be similar to or even worse than the predictions using the mean value of the 

demand.  

5.4 DEMAND PREDICTION PER WORK AREA 

In the previous section, we have seen the results of the demand prediction at province level. 

Another potential spatial aggregation level for predicting the demand of replacement cars is the 

ANWB work area, which is the division of the Netherlands into several area in which ANWB manage 

the roadside assistance operations. In the same way as the demand prediction per province, the 

following section explains the result of our study on the daily demand per work area and their 

predictability.   

5.4.1 Data Preparation 

ANWB divided the Netherlands into 33 work areas as depicted in Figure 32. For every breakdown, 

ANWB define the work area where the breakdown happens and record the information in the 

database. We use this information to aggregate the total demand per day for all work area. There 

are missing work area data in 128 breakdown cases during April 2017 to March 2019. This value 

amounts to 0.0011% of all breakdown cases during the period. In addition, there are 64 cases where 

the work area is undefined, labeled as “Onbekend” and “Niet gevonden” in the database. Since the 

occurrences of these missing and undefined cases are really low, we exclude the records with 

unknown work area value when aggregating the demand. Figure 33 shows the total demand per 

work area from April 2017 to March 2019.       
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Figure 32 ANWB Work Area 

 

 

Figure 33 Total demand per ANWB work area April 2017-March 2019 

Figure 33 shows that, similar to the demand per province, the demand of rental cars also vary per 

work area. Domzicht area has the highest demand in total over the last two years, followed closely 

by Amsterdam area. The average demand in these two areas are in fact nearly the same. However, 

in Figure 34, we can see that Domzicht area has some days with significantly higher demand 

compared to the other days in Domzicht or any daily demand in Amsterdam. We can also observe 

that in some work areas, the outliers are more apparent than in the others. Moreover, some work 

areas also seem to be more skewed than the others. For Eilanden, it is evident that there is no 

demand of replacement cars in most days, while some outlier days only have either 1 or 2 

breakdowns that ended up with a request of replacement cars.  
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Figure 34 Boxplot of daily rental car demand per ANWB work area 

Similar to the demand prediction per province, we will build different model for different work area. 

Therefore, 33 datasets, one for each work area, are created using the same input features as the 

previous prediction models. Similar to the dataset for province level, we use weather data from 

weather stations closest to the center of each work area based on the euclidean distance. The rest 

of the features are created in the same manner as the higher level datasets. In the following section, 

we describe the selected models for every work area and the performance of each model trained on 

different datasets for different work areas.    

5.4.2 Model Performance per Work Area 

For every work area, eight machine learning algorithms were used to train the prediction model on 

the new dataset per work area. The performance on the test set were compared and the best 

performing model were selected. Table 20 shows the performance of the selected model for each 

work area. 

Overall, the MAE scores for the demand prediction at work area level are ranging from 0.24 to 2.82 

cars. It may seem to be quite low. However, the average demand per work area is also rather low. 

They vary from 0.13 cars in Eilanden to 10.63 cars in Domzicht. In terms of MAPE, the lowest 

percentage error is shown by the model for work area with the highest average demand and it tends 

to be higher the less the demand in a work area is. This is in line with the results from the demand 

prediction per province.  

However, the highest R2 is not obtained by the best model in terms of error rate (i.e. the prediction 

model for work area with the highest demand). The highest R2 is produced by the prediction model 

for Scheldeland, followed by NoordHolland-Noord, with R2 of 16.21% and 14.97% respectively. This 

is likely due to the R2 being related to the MSE loss function which makes it more sensitive to 

occasional large errors. Figure 35 visualizes the actual and predicted demand for work area with the 

lowest MAPE, Domzicht, and work area with the highest R2, Scheldeland. It can be seen that the 

predictions for Domzicht, including those for the extreme high demand, spread around the average 
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demand value more closely. Moreover, the prediction for the highest demand has a higher deviation 

than if the demand is predicted at the demand value which has worsened the R2 of the predictions. 

While they appear to lead to a better average percentage error, they resulted in an R2 close to zero. 

On the other hand, predictions for Scheldeland, especially for the potential outliers, are closer to the 

diagonal line than the average demand line (and hence the higher R2). Besides, the average demand 

of Scheldeland is very low, in fact 2.31 cars per day. Therefore, even with deviation averaging around 

1-2 cars, the MAPE score is bound to be high.            

Table 20 Model performance per work area 

 

         

Work Area
Selected

Model
MAE MAPE MSE RMSE MEDIAN_AE R2 Average 

demand

Domzicht Random Forest 2.75 29.52% 12.35 3.51 2.44 0.0520 10.63

Amsterdam SVR (RBF) 2.59 31.79% 10.04 3.17 2.25 0.0769 10.19

Haagland Lasso 2.53 38.14% 10.37 3.22 2.06 0.0879 9.30

NoordHolland-Noord Lasso 1.96 38.32% 6.13 2.48 1.66 0.1497 6.84

Maasland Noord SVR (linear) 2.39 38.40% 8.57 2.93 2.22 0.0468 7.84

Eemland XGBoost 2.26 39.49% 8.24 2.87 1.86 0.0861 7.68

Maasland Zuid LinearReg 2.82 41.00% 11.51 3.39 2.56 0.1110 9.25

Breda Lasso 2.15 45.53% 7.14 2.67 1.80 0.0519 6.60

Planken Wambuis Lasso 2.28 48.14% 8.33 2.89 1.99 0.0609 6.93

Kempenland Random Forest 2.05 51.90% 6.26 2.50 1.78 0.0224 5.69

Zwolle Lasso 1.54 52.42% 3.95 1.99 1.30 0.0611 4.35

Midden Brabant Lasso 2.00 54.11% 6.33 2.52 1.66 0.0362 5.97

Kop van NoordHolland Ridge 0.99 55.71% 1.51 1.23 0.72 0.0342 1.39

Flevopolder II Ridge 1.06 55.81% 1.67 1.29 0.70 0.0071 1.53

Flevopolder I Ridge 1.28 56.20% 2.63 1.62 1.08 0.0099 3.11

Veluwe Random Forest 1.50 57.44% 3.66 1.91 1.11 0.0520 3.39

Schiphol SVR (RBF) 0.70 58.50% 0.79 0.89 0.80 0.0041 0.80

Limburg Zuid Ridge 1.71 58.57% 4.98 2.23 1.46 0.0550 4.06

Kennemerland Ridge 1.88 58.89% 5.54 2.35 1.60 0.0204 4.90

Scheldeland XGBoost 1.32 58.94% 2.93 1.71 1.05 0.1621 2.31

Twente Ridge 1.31 60.25% 2.73 1.65 1.11 0.0446 2.40

Groningen SVR (linear) 1.23 61.64% 2.33 1.53 1.07 -0.0189 2.98

Lexmond Ridge 1.65 61.70% 4.26 2.06 1.40 0.0102 3.51

Assen Ridge 1.39 61.76% 2.98 1.73 1.24 0.0508 2.84

Maas en Waal Ridge 1.73 61.89% 4.81 2.19 1.44 0.0652 3.99

Salland Ridge 1.23 62.68% 2.23 1.49 1.12 0.0351 2.36

Joure Noord Ridge 1.38 63.00% 2.78 1.67 1.36 0.0219 2.56

Bollenstreek SVR (RBF) 1.76 64.42% 4.84 2.20 1.51 -0.0062 4.28

Groene hart I Lasso 1.42 65.53% 3.36 1.83 1.17 0.0178 2.75

Peelland GradientBoosting 1.50 67.01% 3.60 1.90 1.27 0.0807 3.59

Joure Zuid Lasso 1.28 67.56% 2.48 1.57 1.13 0.0077 2.35

Vlaanderen Lasso 0.62 71.25% 0.52 0.72 0.59 0.0239 0.67

Eilanden Ridge 0.24 97.91% 0.17 0.41 0.11 0.0202 0.13
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Figure 35 Actual vs predicted demand for work area 

With almost 60% average percentage error for Scheldeland that only has 2.31 average cars per day, 

it is even more difficult to get a good performance for work area with less average demand per day. 

The results show that for these work area, the percentage error are all higher than 60%. Even worse, 

for Vlaanderen and Eilanden with average demand of 0.67 and 0.13 respectively, the predictions are 

simply unusable. This is due to the intermittent demand pattern (i.e. demand where there are many 

zero values with very little occurences of non-zero demand) occuring in these area. Figure 36 

illustrates how there are only a few days with either 1 or 2 demand of replacement cars. Due to the 

rare occurrences and the low range of demand values, the machine learning models along with the 

input features that are not specifically designed to handle this kind of demand, only managed to 

predict the demand at less than 0.25 cars most of the times.    

 

Figure 36 Time series plot of the actual and predicted demand for Eilanden 

To sum up, demand prediction at work area level shows a similar results to the demand prediction at 

province level where the range of the demand at one area contributes to the difficulty to predict the 

demand. Furthermore, some work areas have a really low average demand, and some of them can 

be categorized as intermitten demand where the prediction models basically predict the demand at 

near zero value due to the frequency of zero actual demand. In addition, the percentages of 

explained variance in the demand at work area level are even lower than the higher level 

predictions, with the highest being 16.21% compared to provinces’ 29.87% and country’s 69.2%, 
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partly due to the more narrow range of demand values per work area that leads the models to 

predict around the average value.   

5.5 DEMAND PREDICTION PER RENTAL LOCATION 

The ultimate goal of predicting the demand of replacement cars is to have the right number of cars 

available in the right rental location at the right time. To achieve this, one of the most 

straightforward approachesa is to predict the demand of rental cars per rental location. In this 

section, we discuss the demand prediction at this spatial level and compare it in comparison to the 

demand prediction at the other spatial aggregation levels.     

5.5.1 Data Preparation 

Logicx fleet for the Netherlands are distributed in 85 Logicx and partners locations all over the 

country. Customer can pick up and return the cars at these locations. In some cases, replacement 

cars can also be transported to the customers’ desired place by Logicx and picked up at an agreed 

location at the end of rental period, provided that the customers have the roadside assistance 

package that allow this service.  

Logicx assign the pick up location of the replacement car based on the following aspects: 

• Distance to breakdown location 

• Availability of the rental cars at the location 

• Customer’s preference 

For ANWB road patrols, the most convenient location is usually the closest location to the 

breakdown location since they can bring the customers the the rental car pick up location in the 

shortest time possible thus allowing them to continue their work with other breakdown cases. 

However, if the right cars are not available at the closest location, another location that is further 

away will be selected. In some cases, customers can also choose to pick up the rental cars at another 

location according to their preferences, such as the one near their home or destination, or the one 

along the way to the destination.    

The information available in ANWB database regarding the pick up location is the name of the city. 

There is no information about the exact Logicx rental location that provides the car. Therefore, to 

get the number of replacement car to predict per Logicx location, it is necessary to assign a Logicx 

location for each breakdown case with replacement car order. Due to the many possible variables 

that affect the decision of which rental locations the customers need to pick up the cars at, assuming 

that the closest location is acceptable for both customers and road patrols (i.e. there is no special 

request from the customers), as well as that Logicx always has the right car at the right location 

(which is the ultimate goal of the prediction), we used the the following rule: 

A rental car order from a certain breakdown location is a demand for the closest rental location 

regardless of the customers preferences and the capacity and availability of the cars at the rental 

location. 
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Figure 37 Thiessen polygons and delaunay triangulation (Burrough et al., 2015) 

To map rental car orders as the demand of exactly one rental location, we divided up the 

Netherlands using the Thiessen (also known as Dirichlet or Voronoi) polygons of Logicx rental 

locations. Thiessen polygons are widely used as a method for relating point data to space in 

geographical analysis and Geographical Information Systems (Burrough et al., 2015).  An example of 

Thiessen polygons is illustrated in Figure 37. Each partition space created using this approach 

contains a specific data point, in our case a Logicx rental location, and all points that are closer to 

this rental location than to the other rental locations. In this study, we excluded 2 out of 85 Logicx 

and partners rental locations, which are: 

• 112 Autoberging, which only serves emergency call centers other than ANWB (i.e. Logicx 

other customers). 

• ABC Amsterdamse Bergings Combinatie, which only delivers BMW cars. 

Logicx call center can reserve a car for ANWB customers in these two locations. However, they only 

do this when other issuing locations cannot help, hence the exclusion in this analysis. Figure 38 

shows the partition of the Netherlands for 83 Logicx rental locations based on the Thiessen 

polygons. 

 

Figure 38 Thiessen polygons of Logicx rental locations 
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After defining the polygons, the demand can be assigned to rental locations the same way the 

demand is assigned to provinces, that is, every rental car order that occurs inside one 

region/polygon is the demand for the rental location corresponding to the polygon. Figure 39 shows 

the total demand per Logicx rental locations from April 2017 to March 2019. Again, just like the 

demand at province and work area level, the demand of replacement cars vary per Logicx location, 

from the highest of 4726 cars in ANWB Servicecentrum Utrect to the lowest of 31 cars in 

Autoberging Dallinga in the span of 2 years.   

 

Figure 39 Total demand per Logicx pick-up location April 2017-March 2019 

In Figure 40, we can see that more than half of the locations recorded a median value of 0 or 1 car 

per day which indicates the high possibility of the demand being an intermittent demand. However, 

in quite a number of locations, the demand can have a median value around 5 cars a day, with some 

outlier days where the demand can reach up to 17 cars. It is also important to note that the 

maximum capacity of cars that the locations can hold at one time differs per location. Some 

locations such as Haulo Den Helder and Autosleepbedrijf Sprankenis v.o.f. Leende can hold a 

maximum of 2 cars while some other locations like BRL B.V. (Leiden), van der Vlier BV, and Kuzee 

Vlissingen have 100 or higher capacity. 
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Figure 40 Boxplot of daily rental car demand per Logicx location 
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Table 21 Rental locations with demand exceeding capacity 

  

Looking at the extreme demand value per location, there are some cases where the high demand 

exceeded the maximum capacity of the location, as listed in Table 21. On the one hand, these cases 

may be actual representations of unavoidable cases where frequent repositioning of cars in a day or 

repositioning of customers are required when outlier demand takes place at a location. For example, 

the demand for Haulo Den Helder are not more than 1 car 75% of the time, thus having a maximum 

capacity of 2 cars is reasonable. However, Logicx will still need to redirect customers to a further 

location when the demand exceed 2 cars in some rare days. On the other hand, these demand-

exceeding-capacity cases may have been a result of our approach to strictly divide the area using 

polygons. For instance, ANWB Servicecentrum Utrect can only hold up to 8 cars but has been 

experiencing demand higher than 8 for a couple of times. In reality, these high number of rental car 

orders would most likely be assigned to Logicx Nieuwegein instead of ANWB Servicecentrum Utrecht 

due to both being less than 2 km apart while Logicx Nieuwegein having much higher capacity, in fact 

a maximum of 40 cars. As the current Logicx process in assigning pick-up locations would be able to 

deal with this kind of problem, we decided to proceed with this demand aggregation. 

Another interesting finding from the demand aggregation at the location level is that the daily 

demand for every location suggests that a high demand in a certain day in the Netherlands may not 

be reflected equally in every location. In Figure 41, a high demand with 276 cars appear to result in a 

high demand for ANWB Servicecentrum Utrecht and Logicx Amsterdam, with 15 and 11 cars 

compared to the daily average of 5.93 and 5.2 respectively. On contrary, the demand for Logicx 

Rotterdam is only 2 cars, which is below its average level around 5. For this reason, it is important to 

build a model for each Logicx rental location using a separate dataset per location. The datasets are 

prepared in similar fashion to the dataset creation for demand prediction at province and work area 

level.     

 

Average 

demand

Highest 

demand

Max 

capacity

861 ANWB Servicecentrum Utrecht 5.93 16 8

853 ANWB Servicecentrum Rhoon 4.00 12 4

940 ANWB Servicecentrum Ypenburg 3.58 10 5

957 Roy van Rijswijk VAS 2.50 10 6

937 ANWB Servicecentrum Naarden 2.44 11 9

671 Roos Autoberging 2.32 9 6

944 ANWB Servicecentrum Geldrop 1.58 9 6

943 ANWB Servicecentrum Groningen 1.43 6 5

675 Takel- en Bergingsbedrijf Gerritse 1.21 6 5

945 Autosleepbedrijf Sprankenis v.o.f. Leende 0.94 7 2

879 Haulo Den Helder 0.52 4 2

Rental location
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Figure 41 Daily demand of rental cars for 3 rental locations with the highest demand 

5.5.2 Model Performance per Rental Location 

With average demand ranging from 0.23-5.93 cars per day, the average absolute deviation per day, 

represented by MAE scores, from the best machine learning model at each location are ranging from 

0.33-2.08 cars per day (See Appendix F.6 for detailed model performances of all Logicx and partner 

rental locations). An error of 0.33 car per day (rounded up to 1) may seem to be quite low. However, 

performance around this level was resulted from a prediction of intermittent demand that are found 

in many Logicx rental locations. In day-to-day basis, the model predicted the demand at around 

average demand value, similar to the result of intermittend demand at work area level (Figure 36). 

In terms of percentage error, the lowest score obtained from the predictions at Logicx locations level 

is no less than 47.03%. Table 22 shows the model performances for 5 locations with the lowest 

MAPE scores. For predictions at province and work area level, the lowest MAPE scores are 

dominated by area with the highest average demand. While the same condition still holds at rental 

locations level to some extend, it is less so than at the higher level. For instance, we can see Bergnet 

Blaricum and Takel-en Bergingsbedrijf Gerritse that have an average demand of 2.16 and 1.21 cars 

respectively, listed in the top 5 locations with lowest percentage error. This is due to the range of 

demand value that are generally low for all locations. With low range of demand value, similar to 

what we found in predictions at work area level, there is a tendency of the machine learning models 

to predict around the average demand value, as seen in Figure 42. As a result, the distribution of the 

demand plays an important part in the final average of percentage error (MAPE). In Figure 42, we 

can see that ANWB Servicecentrum Utrect (i.e. location with the lowest MAPE and the highest 

average demand) as well as Bergnet Blaricum and Takel-en Bergingsbedrijf Gerritse (i.e. locations 

with MAPE in best 5 but low average demand) are all having the highest frequency of the demand 

close to the average demand value, thus resulting in a low percentage error.  
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Table 22 Model performance per rental location - Top 5 based on MAPE 

 

 

      

Figure 42 Distribution of demand per rental location 

According to the R2, the highest percentage of explained variance of a demand in a location was 

obtained from the predictions in Autohulpdienst Broekmans (Venlo) using XGBoost, that is an R2 of 

9.37%. The next highest R2 scores that could be achieved in demand prediction per rental location 

are 7.6%, 7.28%, 5.81%, and 5.53%. Table 23 shows the performances of locations with the best 5 R2 

scores.  This numbers show that there are at least 90% of the demand variance per location that 

cannot be explained by the current input features that we used. This could be put down to the lack 

of samples of extreme demand that could lead to a better learning, the absence of more location-

specific features that we did not incorporate in the model, or due to randomness of the location of 

breakdown in general. In addition, we found a lot of negative R2 scores in many other locations, 

which suggest that a constant prediction using the average demand value will produce a better 

prediction performance compared to the current predictions (see Appendix F.6 for the details).  

Selected

Model
MAE MAPE MSE RMSE MED_AE R2

861

ANWB 

Servicecentrum 

Utrecht

Random 

Forest
2.08 47.03% 7.03 2.65 1.73 0.0295

615 Logicx Rotterdam Ridge 1.68 49.35% 4.39 2.10 1.42 0.0396

613 Bergnet Blaricum Lasso 1.07 49.57% 1.92 1.39 0.99 0.0143

917 Logicx Amsterdam Ridge 1.74 51.40% 4.89 2.21 1.48 0.0013

675

Takel- en 

Bergingsbedrijf 

Gerritse

SVR (RBF) 0.91 51.75% 1.47 1.21 0.80 0.0017

Rental location
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Table 23 Model performance per rental location - Top 5 based on R2 

 

All in all, we saw that the ability of machine learning models trained on less than two years of data 

using the current input features, to predict the demand per Logicx rental location, is really limited. 

The performances of the models are either worse or not significantly better than predictions using 

average demand values. Furthermore, after looking at the results from various demand aggregation 

levels, we found that the range of demand values and the distribution of the demand affect the 

performance of the model. MAPE appears to be a good metric to compare different time series as 

well as to measure performance in an intuitive way. However, it barely holds any meaning for a 

really low range of demand values and intermittent demand, as it tends to reach a really large value. 

5.6 PREDICTION INTERVAL 

As we cannot expect the model to perform accurately for the whole year, we generate a prediction 

interval to estimate uncertainty of the prediction. In this study, the following strategies are 

compared to build the prediction interval. 

Approach 1: Prediction interval with constant variance 

In this approach, we run 5-fold cross-validation on the training set. Then, the upper and lower bound 

of the prediction is calculated as follows.    

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑦̂ ± 𝑍 𝑠𝑐𝑜𝑟𝑒 ×  𝜎̂ 

𝜎̂ represents the estimate of the standard deviation of the forecast distribution. For one step ahead 

forecasting, the standard deviation of the forecast distribution is almost the same as or may be 

slightly larger than the standard deviation of the residuals, but oftentimes this difference is ignored 

(Hyndman, 2018). Therefore, we took the RMSE value of the 5 cross-validation splits as an estimate 

of standard error of the prediction. This approach assumes that the observations are normally 

distributed. Thus, to generate 95% prediction interval, we used Z-score = 1.96. 

As the approach used the variance of the performance of the cross-validation splits, the prediction 

interval using this approach directly represents the stability of the model when it is trained with 

different sets of data. Figure 43 illustrates the prediction interval performed on two months car 

rental demand prediction. The results show the MPIW value of 64.89 which means the demand of 

replacement cars on a day is the predicted demand ±32 cars. This is a relatively large interval width. 

However, it comes with a good coverage of actual value, in fact a PICP value of 95.83%. It shows that 

with 95% prediction interval (which means we can be 95% certain that the true value is within the 

interval), the prediction interval actually includes the true value 95.83% of the time. This level of 

accuracy is very good since there is less than 5% chance that the interval does not contain the actual 

value. However, the constant interval is too large to make it effective for the practice. 

Selected

Model
MAE MAPE MSE RMSE MED_AE R2

620
Autohulpdienst 

Broekmans (Venlo)
XGBoost 1.02 55.97% 1.72 1.31 0.86 0.0937

947 BRL B.V. (Rijswijk) Lasso 1.93 54.03% 5.55 2.36 1.64 0.0760

928
Hoogwout Berging 

BV (Oostzaan)

Random 

Forest
1.64 54.50% 4.06 2.01 1.39 0.0728

955 Kuzee Goes
Random 

Forest
0.75 64.91% 0.86 0.93 0.69 0.0581

631 Logicx Eindhoven
Random 

Forest
1.58 64.11% 3.81 1.95 1.45 0.0553

Rental location
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Figure 43 Prediction Interval with Constant Variance 

Approach 2: Prediction interval with error model 

Prediction interval with error model is carried out by fitting the input features to the residuals after 

testing the model. First, we do 70:30 split on the training set. We train on the 70% split and predict 

the rest 30% split. Then, we calculated the error of this prediction as the validation error. 

This validation error has now become the new target for the error model. For this error model, we fit 

the input features and the validation error. Then, we predict the hold-out test set using this error 

model. The prediction interval can then be calculated by assuming normality and defining the 

standard error of the prediction by the square root of this prediction result. The remaining 

calculation is the same as the previous approach, that is: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑦̂ ± 𝑍 𝑠𝑐𝑜𝑟𝑒 ×  𝜎̂ 

The intuition behind this approach is that the errors of a model are also affected by the input 

features. With this approach, instead of using a constant variance for all the predicted samples, each 

sample has its own deviation, meaning some instances will have large intervals while the others have 

smaller intervals. Figure 44 shows how the prediction interval looks on the prediction of 

replacement cars demand for April-May 2019. For a 95% prediction interval (Z-score of 1.96), the 

performance of this approach reaches a coverage PICP of 88.52% with 44.89 interval width. It means 

that we can be 95% certain that with adjustment of ±23 cars in average, the estimated value will fall 

within this interval 88.52% of the time. 

This approach has resulted in a slightly lower accuracy in comparison to first approach at the 

expense of having a much lower deviation as well. Despite the trade-off, this level of performance 

may be more useful and acceptable for planning or adjusting the predicted demand as they do not 

have to adjust the value too far from the model prediction.  
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Figure 44 Prediction Interval with Error Model 

Approach 3: Prediction interval with quantile regression  

Based on our literature review in Section 2.6, we generated prediction interval using quantile 

regression that does not require assumption of distribution parameter. Using the implementation of 

quantile loss function on XGBoost, we can perform two XGBoost regressions on different levels (i.e. 

upper and lower quantile) as the upper and lower bound of the prediction. For a 95% prediction 

interval, we performed quantile regression at 0.025 and 0.975-quantile. 

Figure 45 visualizes the prediction interval using quantile regression. It can be seen that quantile 

regression at extreme quantile such as 0.025, tends to produce values far off to the actual data. This 

quantile regression values succeed in covering the extremely low demand but provides very distant 

values to the other demand that are not extremely low. This results in the MPIW similar to the first 

approach, in fact average of 64.52 or ±33 cars per day. However, it produces 90% PICP, which is 

lower than the first approach. The difference in coverage probability between this approach and the 

error model approach is not that notable, in contrast to the difference in interval width.  

 

Figure 45 Prediction Interval with Quantile Regression 
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Table 24 shows the summary of the performance for the prediction intervals on the test set. Based 

on the performance of each technique, we can see that there is a clear tradeoff between coverage 

and interval width. While the MPIW for the first approach represents the deviation for all days in the 

forecast horizon, both prediction intervals with error model and quantile regression produce non-

constant deviation for the demand, hence varying prediction interval width. Table 25 describes the 

statistics for the varying width. 

Table 24 Performance of prediction interval methods 

Approach Coverage (PICP) Width (MPIW) 

1. Constant variance, assuming normality 95.823% 64.8941 

2. Error model, assuming normality 88.522% 44.8949 

3. Quantile regression 90.783% 64.1995 

 

Table 25 Statistics of interval width for PI with Error Model and Quantile Regression 

  Error Model Quantile Regression 

mean 44.894859 64.628367 

std 3.840358 15.128772 

min 34.9519 31.818756 

25% 42.515541 53.749458 

50% 44.736912 62.099396 

75% 47.071878 73.993835 

max 59.113995 106.597511 

 

For error model, the standard deviation for the interval width in different days is low compared to 

the one for quantile regression. The interval width is ranging from approximately 35 to 59 per day, 

while in quantile regression it ranges from 32 to 107. As prediction interval is a means of presenting 

uncertainty of the prediction, this variation of width can indicate the reliability of the forecast. On 

certain days where the prediction interval is higher than normal, we can say that the prediction is 

not too reliable. This can act as a signal to the forecaster team to take a look and check whether they 

need to make adjustment to the numbers provided by the model. This is an important aspect to a 

demand forecast.  Due to the nature of the case, one cannot expect to have an accurate forecast of 

the replacement car demand for all days in the whole year. Therefore, accuracy on average does not 

say much for the implementation in practice. According to the experience of domain expert, some 

forecast result on certain days like those on/around holidays are usually not as reliable as the others, 

thus the capability to distinguish certain days where they need to pay attention on and adjust the 

forecast will make the work more efficient. 

Looking at the varying interval width for both error model and quantile regression approach, error 

model seems to provide a better upper and lower bound in general. Quantile regression tends to 

provide an average low value for an extreme low quantile. As a consequence, some of the high 

interval width in quantile regression may be induced by this nearly uniform low quantile estimation 

rather than the uncertainty of the forecast. Therefore, the error model approach may be preferable 

to use in practice. Despite that, since the variation itself is not too high for day to day basis, it may be 

difficult to differentiate or categorize which level of interval width can be regarded as unreliable 

forecast.  
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5.7 OUTLIERS ANALYSIS 

Besides the prediction interval, we proposed an approach to handle the outliers to enhance the 

result of the demand predictions. Up to this point, we found that the demand predictions at the 

Netherlands level was able to perform decently in average, in fact with less than 10% MAPE and 12 

cars per day. However, this performance does not hold for each and every day that was predicted. 

On some cases, the error of the prediction can reach up to 68 cars, which is around 50% of the actual 

average demand.  Therefore, an analysis of such cases is essential to improve the prediction results 

and to support the implementation of the demand prediction model in practice.  

Based on our exploratory data analysis, in the dataset, there are outliers that appear from time to 

time and are expected to be the result of extreme weather condition and/or holidays rather than 

because of an error in the data. Thus, they cannot easily removed without further analysis. 

Moreover, previous study has shown that in forecasting short-term demand, machine learning 

techniques were shown to be reliable provided the data contains no significant anomalies (Antunes 

et al., 2018). Therefore, in this study, we propose the use of similar approach to the three steps 

approach in Kharfan & Chan (2018) (i.e. clustering-prediction-classification). However, instead of 

clustering the data, followed by interpreting the characteristics of the data in each cluster, we 

propose to distinguish the data based on the characteristics, which are outliers and non-outliers, 

using outliers identification techniques. 

5.7.1 Outlier Identification 

There are several possible definitions of outliers, among them are the following (Aguinis et al., 

2013): 

1. Single construct outliers which are extremely large or small data values of the same 

construct/distribution. 

2. Error outliers which are outliers lying at a distance from other data points because of errors 

in observation, recording, or data processing. 

3. Interesting outliers which are accurate values far from other data points but may contain 

valuable knowledge.  

4. Discrepancy outliers which are data points with large residual values that possibly affect 

model fit or parameter estimates. 

5. Influential time series additive outliers which are data points that deviate from surrounding 

values in time series analysis. 

Different type of outliers have different identification techniques and typically different approach to 

handle them. Previously, in Section 4.3.1, we have identified the single construct outliers from our 

dataset using the box plot approach. We applied the box plot to identify outliers (i.e. extreme 

demand values) in 2017-2018. After presenting these outliers to the domain experts, we concluded 

that these outliers are most likely not error outliers and therefore we treated them as interesting 

outliers by keeping them in the dataset for model building.    

However, this method uses the assumption that the data has one identical distribution (Laurikkala et 

al. 2000). Meanwhile, we have observed that adding more historical data seems to violate this 

assumption as there is a clear difference in the range of demand in 2014 compared to the more 

recent period. As a result, with this approach, the lower outliers are gathered mostly in 2014 when 

in fact these values could be a normal demand in this year, as seen in Figure 46. This is in fact a 

known challenge in modelling outlier in time series or temporal data, due to the dynamic nature and 

evolutionary patterns of the data (Gupta et al., 2014). 
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Figure 46 Outliers identifed using box plot 

To identify the extreme values for all period of our data (2014-2019), we employed the peak 

detection approach which is a common task to identify sudden high values in time-series analysis 

and signal processing. These outliers can then be defined as those of the influential time series 

additive outliers. However, peak detection also has a drawback where it often results in a large 

number of false positives due to peaks occuring with different amplitudes (strong and weak peaks) 

and at different scales (Palshikar, 2009), which is also expected in our dataset given the different 

range of values over the years.   

A number of libraries4 with different algorithms that incorporate distance (time window) and height 

(threshold of normal values) in detecting peaks are available in Python. Using these algorithms, we 

identified the peaks (and valleys) in dataset of the demand of replacement cars. Considering our 

purpose of distinguishing outliers and non-outliers, which is to provide valuable insights into the 

cases with high prediction errors and propose an approach to handle such cases, we decided to 

focus on identifying the discrepancy outliers in the dataset. Therefore, we evaluated the detected 

peaks from each algorithm against the results of the best performing demand prediction model (i.e. 

whether the peaks match the cases with high deviations). We found that not all the detected peaks 

have high errors in the prediction results and not all cases with high errrors are detected as peaks. It 

might be that some of the cases with high prediction errors are anomalies because of the different 

underlying distributions or the lack of samples with similar patterns, instead of because of them 

being sudden extreme values.   

Using prediction model to identify discepancy outliers   

Thus far, we have investigated the extreme data values that lie far from the other data points and 

concluded that they are interesting outliers that may carry valuable knowledge instead of one that 

can be removed without analysis. Moreover, the peak detection algorithms show that the peaks in 

the data are not always the data points with large residual values (also known as discrepancy 

outliers). Therefore, we took a direct approach to identify discrepancy outliers by using the results of 

a prediction model. This approach has been mentioned in Gupta et al. (2014), where one can predict 

the value at time t using for instance a regression model, and define whether a data point is an 

outlier based on its deviation from the predicted values. Figure 47 ilustrates the identification 

approach. 

 
4 Tournade, Y., Overview of the peaks detection algorithms available in Python (2013), GitHub repository, 
https://github.com/MonsieurV/py-findpeaks 

https://github.com/MonsieurV/py-findpeaks
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Figure 47 Outliers identification 

Using the best performing demand prediction model for the Netherlands, we predicted the demand 

for the entire dataset of the demand of replacement cars in 2014-2019. Afterwards, we sorted the 

predictions based on the error/deviation from their actual demand values and labeled a certain top 

percentile of the errors as outliers. In this case, we applied three different threshold values to find 

the best distinction of the outliers and non-outliers, which are the values at the top 30th, 25th, and 

20th percentile of the absolute errors. The first threshold gives us a 70:30 split of non-outliers and 

outliers where cases with errors higher than 13.27 cars labeled as outliers. The second one resulted 

in a 75:25 split where the absolute errors are higher than 14.72 cars, while the last one with 80:20 

split separated outliers and non-outliers at 16.12 cars deviation. This choice of thresholds allow us to 

put together outlier datasets that contain at least 383 instances, which is a reasonable number to 

train and test a separate outlier model on. In the following sections, we discuss the results of the 

implementation of separate models for outliers and non-outliers, the comparison of the models 

trained on different composition of outliers and non-outliers, the classification of an instance into 

one of the datasets, and the recommendation for implementation in practice. 

5.7.2 Prediction Models for Outliers and Non-outliers 

After identifying the outliers, we divided the dataset into outliers and non-outliers datasets. We 

retrained the best performing XGBoost model for each dataset. The performance of the model is 

shown in Table 26. 

Table 26 Performance comparison of separate and combined models for outliers and non-outliers 

 

MAE MAPE MSE RMSE MEDIAN_AE R2

12.06 9.49 241.80 15.55 10.14 0.6919

Non-outliers 8.16 6.43 98.13 9.91 7.47 0.8414

Outliers 27.45 21.50 1036.15 32.19 24.40 0.163

Combined results 12.02 9.44 285.73 16.90 9.13 0.6176

Non-outliers 7.59 5.89 89.68 9.47 6.67 0.8509

Outliers 24.55 19.01 756.98 27.51 23.86 0.3878

Combined results 11.83 9.17 256.50 16.02 8.60 0.6666

Non-outliers 7.74 5.95 94.81 9.74 6.61 0.8612

Outliers 24.47 18.47 756.15 27.50 22.99 0.1289

Combined results 12.77 9.71 293.44 17.13 9.48 0.6065

General model

75-25 split

(threshold = 14.72 cars)

80-20 split

(threshold = 16.12 cars)

Model

70-30 split

(threshold = 13.27 cars)
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The results show that in general, removing the outliers, which are instances with high prediction 

errors, have resulted in a significantly better performance across all the metrics used. However, the 

outliers dataset becomes much less predictable compared to the non-outliers. Particularly, the MSE 

that amplifies the impact of outliers or large errors is notably higher for the outlier models. 

Nevertheless, using these two separate models can still produce a better combined results 

compared to the results of a general model that does not analyze outliers and non outliers 

separately. 

The results from different thresholds show that the 14.72 cars threshold (i.e. defining 25% highest 

errors as outliers) produced the best combined results of the separate models. The 80:20 split 

resulted in a quite high error metrics scores for the outliers dataset, thus affecting the performance 

of the combined results. This is reflected especially in the MSE of the combined results that becomes 

notably higher than the general model. The other metrics demonstrate a comparable performance 

to the general model. Meanwhile, the 75:25 split have shown an improved performance for the 

outliers dataset. It could be due to the increase in the number of samples used to train the data. The 

performances of the non-outlier models are also better than the 80:20 split. All of the predictions of 

the 75:25 non-outliers and outliers models combined, an improved performance compared to the 

general model is achieved, with an exception on the MSE that is marginally higher. However, further 

addition of samples to the outliers dataset by including all data points having errors higher than 

13.72 cars produces a really small improvement for the outliers dataset but does not increase the 

performance of the non outliers and the combined results. To sum up, our results suggest that a 

14.72 absolute prediction error is a good lower threshold to label a data point as an outlier for the 

demand of replacement cars in the Netherlands in a sense that it improves the average error of the 

test set.   

5.7.3 Outliers Classification: a feasibility study 

The last step to complete the process of outliers handling is to classify whether an observation in the 

future is a normal data point or an outlier case. To use separate models for outliers and non-outliers, 

one needs to be able to predict whether the demand in a certain day will be a normal or an outlier 

demand. It can be done by classifying a case into either an outlier (i.e. data that cannot be predicted 

well by the machine learning model) or non-outlier category, followed by predicting the demand 

using the corresponding model.  

In the previous section, we have also seen that using separate models for outliers and non-outliers 

have improved the performance of the predictions but it does not show significant difference. 

Another alternative is to still use one sigle model for all data but supporting it with the same 

classification model to give an idea if the demand in a certain day is an outlier demand. If forecasters 

can get an insight about this occurence, we can expect a human intervention for this certain day. 

This section will carry out a first try into such classification. 

We used the same dataset that is used for the general prediction model with a change in the target 

variable, from the demand to the label of the dataset (i.e. outliers and non-outliers). The same 

pipeline of processes was used to build and test the model. Gradient Boosting algorithm was applied 

for the classification task. As we want to emphasize on identifying the outliers, recall (i.e. the ratio of 

the number of instances that are correctly classified as outliers out of all the outliers in the dataset) 

was used as the evaluation metric to select the hyperparameters of the model through cross-

validated grid search.  
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Table 27 shows the number of actual and predicted cases for both outlier and non-outlier classes. 

Out of 135 outliers in the test set, only 21 were correctly identified while the remaining 114 were 

classified as non-outliers. This has resulted in a recall of only 0.16 for the outlier class (see Appendix 

F.7 for a complete evaluation score for both non-outlier and outlier class). While the accuracy of the 

classifications reach 71.48%, the classification model still needs a significant improvement for it to 

be able to effectively classify the outliers. Further tuning of the model and the threshold for 

classifying an instance into either outlier or non outlier may improve the model. In addition, a 

comparison with other classification algorithms may also be useful to find the most suitable model 

for this task. 

Table 27 Confusion matrix of outlier and non-outlier classification 

 

Overall, the proposed approach has shown a good potential to improve the performance of the 

demand prediction. However, a good classification result would be required to effectively use this 

approach. This is because the significant improvement is brought mostly by the improvement in the 

non-outlier predictions. Meanwhile, the performance of the outlier model seems to be weak and 

may be the cause of a little increase in the MSE scores that are more sensitive to outliers. Thus, it is 

important to identify the outlier well from an unseen observation in the future. Furthermore, the 

ability to identify the outlier will provide more benefit in enhancing the prediction result and the 

overal planning activity as will be discussed in Section 6.3.  

5.8 CHAPTER SUMMARY 

Up to this point, we have presented the results of the demand prediction model and the prediction 

interval. Our findings show that for the demand of replacement cars in the Netherlands, machine 

learning models perform better than classical time series when the models are trained by ignoring 

the time structure. Handling the categorical variables (i.e. weekday, month) by one-hot-encoding 

them resulted in the best performance in general. Furthermore, the use of Recursive Feature 

Elimination (RFE) for feature selection produced a better performance with less numbers of input 

features required. In general, there are common features that are included by all models for the 

prediction, but some other selected features differ for each model. On top of the prediction, we 

compared several approaches to generate prediction interval in addition to point prediction. We 

found that there is a trade-off between the coverage of the interval and the interval width. Besides 

the trade-off, we discovered that a high uncertainty of a model does not necessarily lead to a higher 

error, and vice versa. Finally, we proposed a framework to handle the outliers (i.e. non well-

predicted cases) by identifying them, demonstrating the improvement in the model without outliers, 

and providing a first look into the classification of the outliers.                

 

  

Outlier Non-outlier

Outlier 21 (TP) 114 (FN) 135

Non-outlier 50 (FP) 390 (TN) 440

71 204

Predicted

Actual



  

93 
 

6 PUTTING THE MODEL INTO PRACTICE 

In the previous chapter, we have discussed various models and approaches to improve and support 

the use of the model in practice. In this chapter, we will specifically address what models are 

recommended to be implemented and how they should be used in practice, and relate them to the 

goal of the business. 

6.1 ROLE OF THE DEMAND PREDICTIONS IN ANWB & LOGICX 

In our background study in Chapter 2, we have recognized the focus of our study as the tactical fleet 

planning problem where a demand prediction model is built as an input for fleet planning at the 

tactical level. In addition, our findings can also provide an insight for the other phases of planning 

problem, i.e. pool segmentation and strategic fleet planning. We will discuss how the findings from 

this study can assist each problem. 

Tactical fleet planning 

For the daily operation in the Netherlands, the demand prediction for the whole Netherlands is 

applicable as an input to determine the optimal number of cars for every location within the country 

and the repositioning of cars between the locations in the Netherlands. As we predict the daily 

demand of replacement cars in the Netherlands, we provide an insight of how busy a day will be for 

Logicx, thus indicating whether adjustment is required for the number of cars available in every 

rental location. This benefit is acknowledged by Logicx management.  

In the current process, Logicx monitor the current stock against the minimum, maximum, and the 

number of cars expected to be returned at each location. Demand prediction contributes as an 

indicator of whether there is a need to adjust the minimum stock required at each location to handle 

the change of demand. For instance, when the predicted demand in the Netherlands is higher than a 

certain level, Logicx need to increase the stock at each location at a certain number. Currently, the 

focus of this strategy is for the weekend or holiday weekend as an influx of order often occurs during 

these periods. Therefore, the demand predictions in the Netherlands can contribute in Logicx 

planning process as follows:  

1. Predict daily demand for all days in the upcoming week at the end of each week. 

In this way, the required stock on the weekend can be determined several days in advance. 

Given that Logicx have partial control over which location a car should be returned to (as 

long as the customers agree), Logicx can use this capacity to try to have the cars rented at 

the beginning of the week returned at the location that would require more cars around the 

weekend. 

2. Predict daily demand per day every day in a week. 

In addition to the weekly prediction, an update of the demand prediction every day can 

provide a better insight for operational level as one can expect the demand prediction to be 

more accurate due to the more accurate weather forecast. As a result, Logicx have a more 

accurate idea of the demand the day after and can decide for further repositioning or 

outsourcing. This is particularly important since for the outsourcing process, there is around 

half a day lead time between ordering and arrival of cars at Logicx locations.  

Besides as an indicator to adjust stock at each location accordingly. Demand prediction at lower 

spatial level such as rental location can be an even more useful input for planning per location. This 

is due to the fact that a high demand in the Netherlands may be centralized in some locations 
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instead of equally spread over the Netherlands, as we can see in Figure 41. However, the current 

results suggest that the daily demand prediction model per location is not in a good state to be used. 

As an alternative, Logicx can apply the high-level demand prediction and project it to the lower level 

locations. It is also important to note that it may be useful to define several different projections for 

different periods instead of using constant projections for the whole year due to, as an example, the 

demand that is possibly more focused near the seaside during summer holiday period.                  

Strategic fleet planning 

Strategic fleet planning requires demand prediction with a more aggregated period than the daily 

prediction as it concerns with the total fleet size for the Netherlands in the long-term horizon, 

including the decisions about acquisitions and dismissal of cars for the whole fleet. Besides a long 

term demand prediction, a lot of other information may also be useful for this long-term planning, 

such as the data of the number of cars that are currently rented (away) for a certain day, the number 

of cars that are going to be returned, and the number of cars that are going to be rented. These 

number would tell the maximum number of cars needed to be available in a day, which is an 

important information for fleet size problem. Demand prediction per rental duration may be 

required for this purpose. However, it is out of the scope of this study. Demand per group of cars 

which were alternatively investigated as demand per market segment in our study, would also be a 

useful insight for this matter, as suggested in the car rental fleet management framework by Oliveira 

et al. (2017) (Appendix H). 

Pool segmentation 

Currently, Logicx manage the repositioning between all locations spread over the Netherlands. 

Managing the fleet in a couple of more disaggregated pools (i.e. divisions of area that group some 

rental locations together) is suggested in a lot of fleet management problems (Pachon et al., 2006). 

In this study, we investigated the feasibility and performances of various spatial aggregation levels in 

the Netherlands. These results can be useful as an insight in considering potential levels or grouping 

for pool segmentation in the future. Furthermore, demand per location along with other data such 

as pool design requirements and network of stations are suggested as an input for a pool 

segmentation (Oliveira et al., 2017).           

6.2 BENEFIT ANALYSIS 

Among the studied levels for the demand prediction, the most aggregated model (i.e. demand 

prediction for the Netherlands in general) are the one with the best performance in terms of the 

error rate. The demand predictions per market segment may still be acceptable in practice, while the 

demand predictions for the deeper spatial levels would require significant improvement or a 

different approach to be able to be effectively used. 

Table 28 Performance comparison for existing and proposed model 

 

In the current process, Logicx are provided with a demand forecast based on a certain proportion of 

the expected number of vehicle breakdowns per day. Table 28 shows the comparison of the error 

metrics from the prediction results for 2017-2019. Compared to the existing demand predictions, 

the prediction model developed in this study is 6% more accurate as implied by the decrease in 

MAE MAPE MSE RMSE MEDIAN_AE

Existing 23.15 15.01 887.40 29.79 20.00

Model 13.43 9.31 281.42 16.77 11.97
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MAPE. This percentage means that the model is able to reduce the average error (MAE) by 10 cars 

out of average demand of 146 cars per day. In particular, the machine learning model generally 

predict extreme high demand better than the existing predictions which is implied by the significant 

difference in the MSE scores. Table 29 shows the predictions and errors of the existing and the 

machine learning model for the highest actual demand from the test set. The evaluation results 

show that except for one instance (March 1st, 2018), in general the model cut the error of the 

existing forecast by half. The average percentage error of these highest 10 demand reach 33% 

(ranging from 23-57% error) while the model only has 15% percentage error (with a range from 6-

22%). 

Table 29 Demand predictions for the highest actual demand (2017-2019) 

 

On certain days that are expected to have high demand such as during the weekend, holiday, or days 

with high temperature, Logicx usually replace the current estimation with an intuitive prediction that 

usually appeared to be more accurate than the estimation. However, it is possible that some 

unexpected days get ignored and in this case an error of 23-57% percent will occur for the related 

days. With the use of the model, Logicx can rely on the predictions that are data-driven rather and 

minimize the need for individual assumptions. 

Given the potential improvement that the model can bring, the next interesting question would be 

how much this model can offer in terms of cost savings or increased benefit. There are a lot of 

possible scenarios and variable costs involved in the process of car repositioning between locations. 

Due to the complexity and the limited access to the data for the whole process, we approached this 

problem using the utilization rate of Logicx fleet. An improvement of demand prediction is expected 

to lead to a better availability of cars at the location, thus leading to a higher utilization of Logicx 

fleet in the Netherlands. However, Logicx goal is not to get a 100% utilization as in rental car 

business the company needs to have a certain stock at each location to guarantee that the 

replacement cars can always be provided for the customers. Furthermore, commonly in a car rental 

business, it is less likely that all the cars returned on a certain day can be re-rented on the same day 

due to the timing or down time like cleaning. 

Therefore, to estimate the increase in utilization, we assumed a highest possible utilization to be 

close to 80% when a demand forecast can perform almost accurately. This is deemed as an 

optimistic case. Realistically, we assume 70% utilization in average will be achieved in ideal 

condition, which is the highest monthly utilization rate achieved by Logicx once in the last 2 years. In 

pessimistic scenario, it could be the case that even with a 100% accurate forecast, there will not be a 

significant difference in the utilization due to the ineffective fleet size, uncertainty in distribution, or 

the many considerations for repositioning of cars. By assuming these values for a perfect model with 

0% prediction error, interpolation was used to estimate the utilization for the machine learning 

model with 9% error. In Logicx, it is known that 1% higher utilization will increase the margin by 

Date Actual Model Existing Error model Error existing

2-6-2017 205 179.78 149 25.22 56

14-10-2017 201 159.04 111 41.96 90

23-12-2017 220 177.92 103 42.08 117

1-3-2018 244 227.41 247 16.59 3

20-4-2018 225 201.8 156 23.2 69

24-11-2018 208 196.2 134 11.8 74

21-12-2018 208 178.08 141 29.92 67

19-1-2019 218 183.93 138 34.07 80

18-4-2019 207 162.47 159 44.53 48

19-4-2019 233 201.07 165 31.93 68

20-4-2019 232 195.86 156 36.14 76
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approximately € 50,000 per year. Accordingly, with the use of the demand prediction model, Logicx 

could expect an increase in margin as set out in Table 30. 

Table 30 Estimated increased margin 

 

6.3 RECOMMENDATIONS FOR IMPLEMENTATION 

We have previously analyzed the role and the potential of the studied demand prediction models in 

practice. In addition, we demonstrated that the high-level prediction model outperforms Logicx 

existing forecast, hence the potential improvement for customer satisfaction and financial gain. 

Furthermore, in this research, we have studied and proposed some approaches to enhance the 

demand prediction by taking into account the functionality and limitations of the developed models. 

We summarized the proposed usage of the models in the following implementation scheme (Figure 

48). 

 

Figure 48 Implementation scheme 

Demand prediction model is used to predict the demand of replacement cars. However, considering 

the current model cannot predict the demand satisfactorily for 100% of the cases, we proposed the 

use of outlier classification and prediction interval in combination with the knowledge of the domain 

experts. Outlier classification can be used to detect if a day is an outlier day (i.e. one that cannot be 

predicted well by the demand prediction model). If a day is classified as an outlier day, it is an 

indicator for the user of the model to inspect the prediction and decide whether the demand 

predictions need to be adjusted. With a good classification model, it will help the users to more 

effectively focus their attention on the difficult cases. Lastly, prediction interval, which points out the 

how uncertain the model is towards its prediction value, could be used to support the decision. 

Prediction interval shows the possible range of values (i.e. upper bound and lower bound) the 

demand may fall within according to the model. In practice, for instance, if the prediction value 

suggests that a large increase in stock would be required, the user can find out to what extent the 

prediction should be trusted before making a decision to adjust the stock.      

Current average utilization 62.37%

Increased margin per

1% increase of utilization
€ 50,000

Optimistic Realistic Pessimistic

Utilization with 100% accurate model 80% 70% 65%

Utilization with proposed model 69.067% 65.269% 63.370%

Increased utilization 6.694% 2.896% 0.998%

Increased margin € 334,695 € 144,822 € 49,885
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7 DISCUSSION, LIMITATIONS, AND FUTURE WORK 

This chapter consists of discussions of the findings as well as limitations and recommendations for 

future work. In Section 7.1, we interpret and discuss the new understanding and significance of our 

findings. After that, we reflect on several limitations of the study and propose potential future works 

accordingly. 

7.1 DISCUSSION 

The results of this study have shown that the classical time series model, SARIMAX, perform better 

than the machine learning models when the time structure is respected (i.e. the training set and 

testing set are split according to time order). This is in line with the findings in Whitt and Zhang 

(2019) where they found that SARIMAX outperform linear regression and MLP on a 1400 days 

dataset (comparable to our 1916 days dataset). However, this study has also demonstrated that 

machine learning models outperform the classical time series model when the training and testing 

set are split by also shuffling the data, disregarding the time order. One possible reason for this is 

that there is a change in the trend and variations of the demand over the years which make the year 

an important predictor of the demand. Therefore, training the model on older years and testing it on 

the more recent year(s) has brought down the effectiveness of the models. On that account, 

detrending the data may be an alternative approach to shuffling the data as the latter have raised 

concern over the potential violation of assumptions in the cross-validation procedure (Arlot & 

Celisse, 2010; Bergmeir & Benitez, 2012).  

Ultimately, machine learning models, particularly XGBoost model, provided the best performance 

for the prediction of replacement car demand in the Netherlands. This may be an indication of the 

presence of nonlinear relationships that cannot be modeled by the linear models, including the 

classical time series models. By using machine learning model, company can have a better insight on 

the number of requests for replacement cars they can expect in a day, whether a day will be busy or 

if there will be less activities. Company can be more confident in planning their operation as the 

estimation of the predictions are based on real data from the past and expected values of the 

affecting factors in the future.    

Despite the performance of the model, there are a number of shortcomings of the machine learning-

based prediction for the demand of replacement cars. Performance of machine learning methods 

depends on the input data they are trained on. Business data oftentimes are very limited compared 

to other applications where machine learning is typically used, such as energy forecasting, which 

may affect the performance of the demand prediction as proper training may be difficult because of 

the short time series (Makridakis et al., 2018). We have seen this difficulty in our results since there 

are very limited occurrences of extreme demand values and specific holidays from 5 years historical 

data, that are expected to better estimate the actual demand. As a result, the model produced some 

serious errors in a small percentage of the cases. 

For the above-mentioned reason, it may be preferable to have forecasters intervene with the 

machine learning predictions for a few particular cases where the model cannot perform well. 

Therefore, it is important for the company to be able to distinguish the cases where the model can 

perform well and the ones where we cannot expect a reliable and accurate estimation of the 

demand. Prediction intervals are one possible solution to this as it communicates the uncertainty 

level of the model. The wider the interval, the higher the uncertainty of the model towards the 

estimated demand for each day.  
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Unfortunately, we found that the applicability of this uncertainty interval in practice is not as 

straightforward as it seems. Our results show that high uncertainty does not necessarily mean high 

error between the prediction and the actual demand. Instead, it only shows how uncertain the 

model is of the estimated value it provides. Thus, intervention of users may not be necessary even 

though a really wide interval is provided in a certain day. Conversely, a day with really narrow 

interval may end up with a high error.   

Ericsson (2001) addressed this issue in terms of numerical accuracy (i.e. whether a forecast has a low 

error) and statistical accuracy (i.e. whether the uncertainty interval can contain the actual value). He 

further defined two conditions, a poor forecast as one with numerical inaccuracy and forecast failure 

as one with statistical inaccuracy. Therefore, it may be more desirable to avoid forecast failure first 

to make sure that the uncertainty interval always covers the actual value. When a model is 

statistically accurate, then we can expect the uncertainty interval to enable the users to plan 

different strategies for the range of possible outcomes indicated by the interval, as suggested by 

Chatfield (1993). Our second approach in model building, which is to deal with the outliers to 

improve the prediction would be a step forward towards this direction. By separating the outliers 

and non-outliers, we hope to avoid forecast failure in the first place, and after that gain a further 

insight about the uncertainty by looking at the prediction interval.  

Another interesting point of the results of this study is the possible alternatives for the use of the 

demand prediction model. In practice, it is often in the interest of a company to predict demand 

multiple days ahead. In this study, we have only tested the model for a one step ahead prediction. 

However, previous work with similar approach showed that increasing the steps from 1 to 7 days 

ahead increase the error rate gradually for each day added but does not make it substantially bad 

(Whitt and Zhang, 2019). Accordingly, the company should take into account this trade-off between 

the ability to do their planning several days in advance with less accuracy or daily planning with 

more accurate prediction. 

7.2 LIMITATIONS & FUTURE WORK 

7.2.1 Limitations 

With regards to the data and the methods used, there are some limitations we can defined from this 

research. 

1. Data limitations 

The historical data for the demand of replacement car were taken from two different systems. These 

systems were in place for different time period and have different attributes in their record. We took 

the data from the database by filtering the data based on the location and the providers of the 

replacement cars. We used slightly different filters in the data due to the difference in the attributes 

available in each system. As a result, the data that we took may not have represented the exact 

same case. Furthermore, we use only 5 years of data because the relevancy of the older data to the 

current business. As a result, the features representing events that only happen once a year do not 

have a lot of instances which the model can learn the pattern on.  

Besides the historical order data, the models used an actual historical weather data instead of a 

weather forecast due to the availability of weather forecast data for past observations. Meanwhile, 

the input features used for the prediction in the future will be based on a weather forecast. 
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Therefore, there may be an additional error resulted from the error of the weather forecast that is 

not evaluated in this study. 

For benefit evaluation, we have also encountered the difficulty in collecting a more detailed data 

regarding the costs, partly also because of the complexity of the dynamic process related to the fleet 

management at operational level. 

2. Methods limitations 

In the model building phase, we proposed the use of Recursive Feature Elimination (RFE) as an 

automated feature selection technique. However, feature selection using RFE can only be done for 

models that has a coefficient or feature importance attribute. Therefore, the study did not report 

the selected subset of features for SVR with RBF kernel as we had to leave it out for not having the 

required attribute. Another method or extension of RFE for SVR RBF should have been implemented 

for a thorough comparison of all models. 

In addition, using RFE when the input features contain dummy variables has introduced a tricky 

situation. On the one hand, there is an issue of interpretability of k-1 dummy variables (from one hot 

encoding) are included in the input. This is because of dropping another feature from the k-1 

variables will lead to a loss of information of every categorical value in the original variables, thus the 

interpretability of the features is difficult to explain. On the other hand, using all k encoded dummy 

variables without removing any of the resulted binary variables will allow a better interpretation 

after RFE. Using all k dummy variables means that we are treating the features not as one feature, 

but independently. For instance, for weekday feature, the interpretation becomes “if a day is 

Sunday” instead of “what day of the week it is”. However, this choice will introduce a perfect 

multicollinearity in the data. Even so, this dilemma would not affect the result of our study as Neter 

et al. (1996) states that the existence of the multicollinearity would not affect the ability to get a 

good fit. 

Besides RFE, the second approach for creating prediction interval, where we estimated the standard 

error of prediction with a prediction of error values (done by fitting the input features to the 

residuals) does not have a strong theoretical foundation supporting it as of now. This kind of 

limitation for prediction interval has also been mentioned in Makridakis et al. (2018) that points out 

the difficulty of defining a fully acceptable prediction interval method for a lot of machine learning 

algorithms due to the assumption of distribution that has to be used. In this study, we have only 

provided an empirical evidence for this approach as the scope of this study was rather to apply 

available techniques and find the most suitable technique for the case.   

Another limitation is introduced by the weakness of MAPE as error measurement. At the later stage 

of the analysis, we found that demand in some Logicx locations can be categorized as intermittent 

demand, that is when 0 (zero) demand occurs frequently. As a consequence, the intuitive metric 

MAPE will result in an undefined/infinite value for such cases, which is a known disadvantage of 

MAPE (Hyndman, 2006). To compare the forecast results of the lower level time series to the main 

high-level forecast results, we used an adjusted value of MAPE for the zero-demand cases by 

assigning 100% error for every forecast error for the zero-actual demand. Nonetheless, this adjusted 

MAPE does not affect the conclusion of our study as we can still conclude that the daily demand of 

replacement cars on low level is difficult to predict accurately as shown by the highly unexplained 

variance proportion (R2) among other things. However, even though the MAPE scores gave us an 

insight on approximately how far the percentage error differs in different spatial aggregation levels 
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and different area, MAPE is not the most suitable metric to use when comparing several time series 

where an intermittent series exists (Hyndman, 2006; Kim & Kim, 2016).  

7.2.2 Future Work 

Based on the limitations and the current state of the model, we defined several recommendations 

for future work. 

1. Apply more sophisticated approach to deal with holiday features 

Due to the high cardinality of holiday features that is translated into a highly sparse dataset, 

the tree-based model, XGBoost, does not work quite well with the holiday data even though 

it outperforms the others. Therefore, a more advanced approach with hybrid model is worth 

to try. It can be by blending several models (i.e. taking average value of all models) where 

the models should have enough diversity, such as having different base classifiers, different 

feature set, different samples for the training set, and different parameters, or by stacking 

models. Stacking can be done by conducting “out-of-fold” prediction for all the one hot-

encoded holiday features and use the result as an input for the tree-based model.  

 

2. Investigate different time interval for lower level demand prediction 

As the results show that the lower level predictions do not perform well, it may be 

interesting to investigate if a longer period is used, such as weekly prediction per location. 

 

3. Study the prediction of lower level demand as an intermittent demand prediction 

We have seen that the daily demand at lower spatial level resembles an intermittent 

demand pattern. Therefore, future research can focus on applying models that are more 

specialized for intermittent demand or create features that are more customized for 

predicting intermittent demand with machine learning. Furthermore, for a proper 

comparison metric over different series that includes intermittent-demand series, several 

other metrics were proposed in other studies instead of using MAPE, such as the Mean 

Absolute Scaled Error (MASE) (Hyndman, 2006) and the Mean Arctangent Absolute 

Percentage Error (MAAPE) (Kim & Kim, 2016). It may be interesting for further research to 

use these metrics to report the difference of forecast accuracies in different aggregation 

levels. 

 

4. Investigate the feasibility of predicting the demand per rental duration 

Predicting demand for every potential rental length has been pointed out as one of the 

primary levels of aggregation in a demand forecast (Geraghty & Johnson, 1997). The 

effectiveness of this approach has not been proven and rental duration is known as a major 

contributor of demand forecast difficulties in industry (Yang et al., 2008). However, it has the 

potential to bring the demand prediction one step further to the optimization of the number 

of cars needed to be available. For example, the demand of replacement cars can be 

transformed into the demand per each rental duration per day. We can then predict the 

demand of cars that will be rented out for 1-2 days tomorrow, the demand of cars that will 

be rented out for more than 3 days the day after tomorrow, and so on.   

 

5. Investigate correlation between the demand of replacement cars and the number of 

customers with replacement cars in their contract  

For the dataset, part of the reason that the data from earlier than 2014 were not used is 

because of the change in the roadside assistance package (i.e. from 2014, more customers 
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have replacement vehicles covered in their packages). Therefore, a further investigation on 

the correlation between the demand of replacement cars and the number of customers with 

replacement cars in their contract may be useful to improve the model. If they are 

correlated, it may be the case that the change in the distributions of the data are subject to 

the change in the number of customers. In this case, there is a possibility that the demand 

per number of users can be less fluctuating or more stationary than the demand data, thus 

making it easier to predict. In this case, we may be able to use a larger dataset with 

additional data from before 2014. It comes with the difficulty to also predict the unknown 

future values of the customers but since the number of customers are not dynamically 

changing every week, an estimate may work for the model.   
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8 CONCLUSIONS & CONTRIBUTIONS 

This chapter summarizes the results of this study. Section 8.1 answers the sub questions formulated 

in Section 1.3 and concludes the answer to the main research question. Section 8.2 briefly describes 

the contributions of the research for theory and practice. 

8.1 CONCLUSIONS 

In this study, we developed a model to predict demand of replacement cars using machine learning 

techniques with Python, by following the CRISP-DM framework. The answers to the main research 

question and its sub-questions can be summarized as follows. 

SQ1. What features can be used to predict the demand of replacement cars? 

Based on literature study, interviews with domain experts, and data exploration, we listed a number 

of potential factors that can be a predictor of the replacement car demand (Table 4). Out of these 

factors, we selected a set of features that have the data available and/or predictable in the future. 

We created a dataset containing 90 features related to the historical data of replacement cars, time 

of the year, holiday, and weather (Appendix D). To reduce the dimensionality, we eliminated 6 

features with high correlations and low variance. The remaining 84 features were then used to build 

prediction models using 8 machine learning algorithms. Out of the remaining 84 features, we found 

15 features agreed upon by all machine learning models. They are mostly features related to 

historical data, time, and weather. The rest of the features that are used as predictors differ per 

model. The best performing model appears to use 42 features in total and eventually 36 features 

were selected after an automated feature selection using Recursive Feature Elimination.   

SQ2. Which machine learning model is best suited to predict the demand of replacement cars? 

We conducted a literature review to get an overview of machine learning techniques that are 

available and their characteristics (Table 2). There are two categories of techniques that are 

commonly used for time series forecasting, namely classical time series and machine learning 

forecasting. For daily demand prediction problem, supervised machine learning model is more 

efficient since it does not require retraining every day, unlike classical time series model. However, 

our literature study of the state-of-the-art machine learning forecasting (Table 3) has shown that 

classical time series can outperform machine learning model at some occasions. Therefore, we 

compared several machine learning models that work for regression problems, namely simple linear 

regression, lasso regression, ridge regression, Support Vector Regression with linear and RBF kernel, 

Random Forest, Gradient Boosting Regression, and XGBoost, as well as classical time series models 

as the benchmark for the demand prediction problem.  

We trained machine learning models in two variations, which are training on a time-ordered and 

training on a shuffled training-test set split. Machine learning models trained on the shuffled train-

test set split perform best, while the models trained on time-structured train-test set split cannot 

outperform classical time series model SARIMAX. The best performing model to predict the demand 

of replacement cars is XGBoost with 9.49% MAPE. For interpretability, linear regression model, 

including Lasso and Ridge, are more interpretable. However, their performances are lower than that 

of XGBoost. Nonetheless, interpretation for XGBoost can be provided in the form of feature ranking 

and importance. 
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SQ3. What aggregation level works best for the demand prediction? 

Several possible aspects for aggregation level for a demand prediction model were found through 

literature study. Among them, the time interval, product type and spatial aggregation are the most 

relevant to our study. For the time interval, we used daily aggregate of the data as required for the 

planning activity that becomes the focus of our research. For the product type and spatial level, 

demand prediction models were built and compared for various aggregation levels. For product 

type, two demand prediction models for B2B and B2C market segments were developed. The 

evaluation shows that the performance of the demand prediction per market segment are lower 

than the high-level prediction (i.e. aggregated segment), with the mean average percentage error of 

12.4% and 14.8% for B2C and B2B segment respectively, compared to 9.49% MAPE for the 

aggregated segment. For spatial aggregation, three deeper aggregation levels were considered, 

which are province, work area, and rental locations. Each of this level has a varying number of area 

and there are diverse ranges of demand values for every area which lead to varying performances 

per area. Table 31 shows the best performance out of all divisions within each aggregation level.  

Table 31 Summary of the best performance of different aggregation level models 

 

We found that the higher the granularity, the less satisfactory the prediction performance is. For the 

low-level prediction with relatively low average demand, the models tend to predict around the 

average demand value. For some area, the R2 scores even suggest that the models perform worse 

than predictions using the average value. This condition is found in all the spatial aggregation levels 

considered. Therefore, it is clear that for predictions with daily time interval, the aggregation level 

that works best is the highest level, which is all demand in the Netherlands for all market segment. 

The second best would be the predictions per market segment since it exhibits an acceptable 

performance while offering more detailed information for operational planning.  

SQ4. How can we estimate uncertainty of the prediction result? 

Prediction interval is widely suggested in literature as a means of presenting uncertainty. We 

compared three techniques to provide lower and upper bound of the daily demand prediction: using 

constant variance from the prediction model, variance of a fitted error model (both assuming 

observations are normally distributed) and quantile regression. We measured the performance of 

each approach based on the prediction interval coverage probability (PICP) and mean prediction 

interval width (MPIW). There is a clear trade-off between PICP and MPIW demonstrated in the 

performance of all prediction interval techniques. The constant variance approach results in the 

highest coverage compared to the others, in fact 95.82%, followed by quantile regression with 

90.783%, and error model with 88.52%. However, the error model approach produced the most 

reasonable result in terms of the MPIW. Among the three approaches, the error model and quantile 

regression approaches offer more information compared to the constant variance. The variations in 

interval width from day to day produced in the two non-constant approach may indicate when 

prediction is less reliable as a wider interval implies a higher uncertainty. Furthermore, as we found 

that high uncertainty does not always mean a high error, we proposed an outlier separation and 

Aggregation level
Total 

division
Best MAPE Best R2

High level 1 9.49% 69.20%

Market segment 2 12.40% 61.97%

Province 12 17.54% 28.97%

Work area 33 29.52% 16.21%

Rental locations 83 47.03% 9.37%
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classification approach that can be utilized as an indicator of the days on which the error of the 

prediction is expected to be high, hence suggesting the need of forecasters to intervene with the 

results.  

Finally, we can conclude the answer to the main research questions as follows. 

RQ: To what extent can we predict the demand of replacement cars in the Netherlands? 

By using regression models and framing the time series problem as a supervised learning problem, 

we can generate a prediction for the daily demand of replacement cars in the Netherlands. Historical 

data and external data like weather and calendar data are proven to be useful for the demand 

prediction. The best performing model can predict the demand of replacement cars per day with 

9.49% average percentage error in the country level. The distribution of the error for has shown that 

the model performed decently for almost 80% of the cases but it has high errors for the remaining 

cases. In fact, based on the proposed outlier analysis, the exclusion of the outliers has resulted in a 

5.89% average percentage error. 

The performance of the demand prediction gradually decreases each time we add more granularity 

to the prediction (i.e. predicting at lower aggregation level). For prediction per market segment at 

country level, the performance seems to be acceptable despite the decrease from the performance 

of the highest level. For province level, some provinces still demonstrate acceptable performances, 

but the less busy provinces suggest differently. The same goes for the even deeper work area and 

rental locations level. For this granularity, we found at some area resembles that of an intermittent 

demand, which the current input features and machine learning approach cannot predict effectively.       

Moreover, in terms of the explained variance, the input features in the best performing model can 

explain up to 69% variance in the demand value. However, it still has a considerable percentage of 

unexplained variance, in fact 31%, which shows that the case has a significant random effect and/or 

there are other important predictors that cannot or has yet been incorporated in our model that can 

improve the performance of the model. According to the different approach that we implemented 

to generate the prediction interval, this performance of 9.49% error and 69% explained variance 

have an uncertainty where the half width of the interval in average is at least two times the average 

error of the prediction. To sum up, it is not possible to predict the demand of the replacement cars 

completely accurately. However, with the support of knowledge from the domain experts, 

supplementary components to the prediction like prediction interval and outlier analysis can be 

effectively used to enhance the demand prediction.  

8.2 CONTRIBUTIONS 

This research contributed to an enhancement of the current knowledge on the existing literature on 

rental cars demand prediction and demand prediction using machine learning techniques in general. 

This has been achieved by empirically testing a number of prediction models on a real-life dataset. 

This study provides valuable knowledge on what factors are important to predict the demand of 

replacement cars on a daily level. To the best of our knowledge, no literature has explored this topic 

for the specific domain application.  

Furthermore, we have presented empirical comparison of several techniques for generating a 

prediction interval as an estimate of uncertainty for a demand prediction model and discussed the 

possibilities of utilizing it to help improve the effectiveness of demand predictions for planning. We 

empirically compared the performance of different approaches from different 
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category/characteristics (i.e. parametric, non-parametric, supervised learning on residuals), which 

can be generally applied to a wide variety of machine learning models. Previous research for 

demand forecasting using machine learning tend to focus on providing only the point forecast, while 

some others focus on proposing methods to generate prediction interval on top of a specific 

algorithm.    

In this study, we have also directly compared and discussed the effect of deeper location level or 

more granular spatial aggregation. As far as we can tell, most research focused on investigating the 

different time aggregation for the prediction period or time window. Little has explicitly analyzed the 

effect of various location aggregation level in predicting time series demand.  

For practice, this research has laid the groundwork for replacement car prediction model in the 

Netherlands and provided valuable information for the company to implement demand prediction 

and incorporate the result for their planning. All findings in this research are based on real life data. 

Therefore, the results are applicable for real world circumstances, increasing this research’s 

contributions to practice. 
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APPENDIX 

A. OUTLIERS INSPECTION 

1. Low demand  

 

2. High demand 

 

 

Forecast Actual

01/01/2017               2.453             2.703 81 New year's day

31/01/2017               3.539             3.019 79 2 weeks low numbers. Partial data in FLOW?

08/02/2017               3.482             3.146 81 2 weeks low numbers. Partial data in FLOW?

09/02/2017               3.699             3.427 83 2 weeks low numbers. Partial data in FLOW?

13/02/2017               3.778             4.090 83 2 weeks low numbers. Partial data in FLOW?

19/05/2018               3.261             2.987 75 Saturday in long Pentecost weekend

24/10/2018               2.944             2.783 99 Wednesday autumn break

Roadside Assistance
Date Replacement 

Cars
Comment

Forecast Actual

02/06/2017               3.725             3.536 206 Friday before long Pentecost weekend

02/12/2017               3.603             4.373 205 Busy day also for road patrol

23/12/2017               3.414             3.430 220 Saturday first day of christmas holiday

28/02/2018               5.605             6.167 235 Extreme busy because of winter weather

01/03/2018               5.529             7.145 243 Extreme busy because of winter weather

02/03/2018               5.654             5.853 241 Extreme busy because of winter weather

26/05/2018               3.673             3.769 250 ?

27/07/2018               4.119             3.778 230 Start of summer holiday part of the Netherlands

Date
Roadside Assistance Replacement 

Cars
Comment



  

112 
 

B. PERCENTAGE OF MISSING VALUES PER WEATHER STATION 

 

STN Longitude Latitude Altitude Name Date FG TG TN TX PG RH UG Total

323 3.884 51.527 1.40 WILHELMINADORP 73.70 75.05 75.05 75.05 75.05 75.05 75.05 75.05 74.88

210 4.430 52.171 -0.20 VALKENBURG 55.48 55.48 55.48 55.48 55.48 55.48 55.48 55.48 55.48

311 3.672 51.379 0.00 HOOFDPLAAT 50.26 60.28 100.00 100.00 100.00 100.00 100.00 100.00 88.82

215 4.437 52.141 -1.10 VOORSCHOTEN 10.18 10.23 10.23 10.23 10.23 10.23 10.23 10.23 10.22

285 6.399 53.575 0.00 HUIBERTGAT 0.00 24.58 100.00 100.00 100.00 100.00 100.00 100.00 78.07

316 3.694 51.657 0.00 SCHAAR 0.00 9.66 100.00 100.00 100.00 100.00 100.00 100.00 76.21

209 4.518 52.465 0.00 IJMOND 0.00 5.17 100.00 100.00 100.00 100.00 100.00 100.00 75.65

313 3.242 51.505 0.00 VLAKTE V.D. RAAN 0.00 2.97 100.00 100.00 100.00 100.00 100.00 100.00 75.37

312 3.622 51.768 0.00 OOSTERSCHELDE 0.00 2.71 100.00 100.00 100.00 100.00 100.00 100.00 75.34

331 4.193 51.480 0.00 THOLEN 0.00 0.47 100.00 100.00 100.00 100.00 100.00 100.00 75.06

258 5.401 52.649 7.30 HOUTRIBDIJK 0.00 0.31 100.00 100.00 100.00 100.00 100.00 100.00 75.04

225 4.555 52.463 4.40 IJMUIDEN 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00

248 5.174 52.634 0.80 WIJDENES 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00

308 3.379 51.381 0.00 CADZAND 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00

315 3.998 51.447 0.00 HANSWEERT 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00

324 4.006 51.596 0.00 STAVENISSE 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00

343 4.313 51.893 3.50 R'DAM-GEULHAVEN 0.00 0.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00

257 4.603 52.506 8.50 WIJK AAN ZEE 0.00 100.00 0.00 0.00 0.00 100.00 0.00 0.00 25.00

242 4.921 53.241 10.80 VLIELAND 0.00 1.72 1.77 1.77 1.77 1.72 100.00 1.77 13.82

283 6.657 52.069 29.10 HUPSEL 0.00 0.00 0.05 0.00 0.00 100.00 0.00 0.00 12.51

249 4.979 52.644 -2.40 BERKHOUT 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

267 5.384 52.898 -1.30 STAVOREN 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

273 5.888 52.703 -3.30 MARKNESSE 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

277 6.200 53.413 2.90 LAUWERSOOG 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

278 6.259 52.435 3.60 HEINO 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

286 7.150 53.196 -0.20 NIEUW BEERTA 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

377 5.763 51.198 30.00 ELL 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

391 6.197 51.498 19.50 ARCEN 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 12.50

340 4.342 51.449 19.20 WOENSDRECHT 0.00 0.00 0.00 0.00 0.00 0.00 77.87 0.00 9.73

251 5.346 53.392 0.70 HOORN (TERSCHELLING) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.04

330 4.122 51.992 11.90 HOEK VAN HOLLAND 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.01

235 4.781 52.928 1.20 DE KOOY 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

240 4.790 52.318 -3.30 SCHIPHOL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

260 5.180 52.100 1.90 DE BILT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

269 5.520 52.458 -3.70 LELYSTAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

270 5.752 53.224 1.20 LEEUWARDEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

275 5.873 52.056 48.20 DEELEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

279 6.574 52.750 15.80 HOOGEVEEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

280 6.585 53.125 5.20 EELDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

290 6.891 52.274 34.80 TWENTHE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

310 3.596 51.442 8.00 VLISSINGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

319 3.861 51.226 1.70 WESTDORPE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

344 4.447 51.962 -4.30 ROTTERDAM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

348 4.926 51.970 -0.70 CABAUW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

350 4.936 51.566 14.90 GILZE-RIJEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

356 5.146 51.859 0.70 HERWIJNEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

370 5.377 51.451 22.60 EINDHOVEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

375 5.707 51.659 22.00 VOLKEL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

380 5.762 50.906 114.30 MAASTRICHT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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C. AUTOCORRELATIONS OF DEMAND TIME SERIES 

Autocorrelation Function (ACF) plot for the demand of replacement cars in the Netherlands 

 

Partial Autocorrelation Function (PACF) plot for the demand of replacement cars in the Netherlands 
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D. INPUT FEATURES 

 

Description Type Note

Output Target Demand of replacement car per day Continuous

Target_t-1 Demand of replacement car 1 day before Continuous

Target_t-2 Demand of replacement car 2 days before Continuous

Target_t-3 Demand of replacement car 3 days before Continuous

Target_t-4 Demand of replacement car 4 days before Continuous

Target_t-5 Demand of replacement car 5 days before Continuous

Target_t-6 Demand of replacement car 6 days before Continuous

Target_t-7 Demand of replacement car 7 days before Continuous

Rolling_mean Average demand over the previous 7 days Continuous

Rolling_std Standard deviation of demand over the 

previous 7 days

Continuous

Year Year of the replacement car order Continuous

Weekday_sin Polar representation of Weekday feature Continuous

Weekday_cos Polar representation of Weekday feature Continuous

Month_sin Polar representation of Month feature Continuous

Month_cos Polar representation of Month feature Continuous

Daylight Time from sunrise to sunset Continuous

Time_to_sunrise Time from 00.00 to sunrise Continuous Highly correlated with 

Month_cos; removed

Time_to_sunset Time from 00.00 to sunset Continuous Highly correlated with 

Daylight; removed

Weekday_0 Monday Boolean

Weekday_1 Tuesday Boolean

Weekday_2 Wednesday Boolean

Weekday_3 Thursday Boolean

Weekday_4 Friday Boolean

Weekday_5 Saturday Boolean

Weekday_6 Sunday Boolean

Month_1 January Boolean

Month_2 February Boolean

Month_3 March Boolean

Month_4 April Boolean

Month_5 May Boolean

Month_6 June Boolean

Month_7 July Boolean

Month_8 August Boolean

Month_9 September Boolean

Month_10 October Boolean

Month_11 November Boolean

Month_12 December Boolean

Features

Target lags

Datetime 

attributes
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holiday_nieuwjaar New Year's day Boolean

holiday_1e paasdag First Easter day Boolean

holiday_2e paasdag Second Easter day Boolean

holiday_koningsdag King's day Boolean

holiday_bevrijdingsdag Liberation day Boolean

holiday_bevrijdingsdag_off Liberation day as official (paid) holiday 

(every 5 years)

Boolean Low 

variance/occurences; 

removed

holiday_hemelvaartsdag Ascension day Boolean

holiday_1e pinksterdag First Pentecost day (Whit Sunday) Boolean

holiday_2e pinksterdag Second Pentecost day (Whit Monday) Boolean

holiday_1e kerstdag First Christmas day Boolean

holiday_2e kerstdag Second Christmas day Boolean

holiday_schoolvakantie_noor

d

School holiday in The Northern Region Boolean

holiday_schoolvakantie_mid

den

School holiday in The Central Region Boolean

holiday_schoolvakantie_zuid School holiday in The Southern Region Boolean

holiday_goede_vrijdag Good Friday Boolean

holiday_dodenherdenking National remembrance day Boolean

holiday_oudjaar New Year's eve Boolean

holiday_sinterklaas Saint Nicholas' eve Boolean

holiday_carnaval Carnival Boolean

holiday_goede_vrijdag-1 Boolean

holiday_1e paasdag-1 Boolean

holiday_koningsdag-1 Boolean

holiday_bevrijdingsdag_off-1 Boolean Low 

variance/occurences; 

removed

holiday_hemelvaartsdag-1 Boolean

holiday_1e pinksterdag-1 Boolean

holiday_1e kerstdag-1 Boolean

holiday_oudjaar-1 Boolean

holiday_nieuwjaar+1 Boolean

holiday_2e paasdag+1 Boolean

holiday_koningsdag+1 Boolean

holiday_bevrijdingsdag_off+1 Boolean Low 

variance/occurences; 

removed

holiday_hemelvaartsdag+1 Boolean

holiday_2e pinksterdag+1 Boolean

holiday_2e kerstdag+1 Boolean

holiday_1e werkmaandag Boolean

isHoliday If the day is a public holiday, school 

holiday, or weekend

Boolean

First_day_long_holiday The first day of ≥ 3 days consecutive 

holidays, including weekend

Boolean

Last_day_long_holiday The last day of ≥ 3 days consecutive 

holidays, including weekend

Boolean

Long_weekend One of the day in ≥ 3 days consecutive 

holidays, including weekend

Boolean

Day_before_long_holiday The day before ≥ 3 days consecutive 

holidays, including weekend

Boolean

Day after 

holiday

Holiday 

attributes

Public 

holiday

School 

holiday

Event and 

other non-

official 

holiday

Day before 

holiday
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FG Daily mean windspeed (in 0.1 m/s) Continuous

TG Daily mean temperature (in 0.1°C) Continuous Highly correlated with 

TN and TX; removed

TN Minimum temperature (in 0.1°C) Continuous

TX Maximum temperature (in 0.1°C) Continuous

RH Daily precipitation amount (in 0.1 mm; -1 

for < 0.05 mm)

Continuous

PG Daily mean sea level pressure (in 0.1 hPa) Continuous

UG Daily mean relative atmospheric humidity 

(%)

Continuous

Consecutive_cold_days Number of consecutive days where the 

minimum temperature ≤ ‐2°C

Continuous

Consecutive_warm_days Number of consecutive days where the 

maximum temperature ≥ 25°C

Continuous

Cold_days_prev_week Total number of days in the previous 7 

days where the minimum temperature 

≤ ‐2°C

Continuous

Warm_days_prev_week Total number of days in the previous 7 

days where the minimum temperature 

≥ 25°C

Continuous

temp_diff_1_days_ago_TN Difference between minimum 

temperature today and the day before

Continuous

temp_diff_1_days_ago_TX Difference between maximum 

temperature today and the day before

Continuous

Weather

Weather 

attributes
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E. SELECTED FEATURES PER MODEL 

 

 

 

 

 

Features

Total 

Models

Linear 

Regression Lasso Ridge

SVR 

Linear

Random 

Forest

Gradient

Boosting XGBoost

Consecutive_cold_days 7 1 1 1 1 1 1 1

Consecutive_warm_days 7 1 1 1 1 1 1 1

Month_5 7 1 1 1 1 1 1 1

RH 7 1 1 1 1 1 1 1

Rolling_mean 7 1 1 1 1 1 1 1

Target_t-1 7 1 1 1 1 1 1 1

Target_t-2 7 1 1 1 1 1 1 1

temp_diff_1_days_ago_TX 7 1 1 1 1 1 1 1

TN 7 1 1 1 1 1 1 1

TX 7 1 1 1 1 1 1 1

Weekday_1 7 1 1 1 1 1 1 1

Weekday_4 7 1 1 1 1 1 1 1

Weekday_5 7 1 1 1 1 1 1 1

Weekday_6 7 1 1 1 1 1 1 1

Year 7 1 1 1 1 1 1 1

Daylight 6 1 1 1 0 1 1 1

Rolling_std 6 0 1 1 1 1 1 1

UG 6 0 1 1 1 1 1 1

Warm_days_prev_week 6 0 1 1 1 1 1 1

Weekday_2 6 1 0 1 1 1 1 1

Day_before_long_holiday 5 0 1 1 0 1 1 1

First_day_long_holiday 5 0 1 1 1 1 1 0

holiday_1e kerstdag-1 5 1 1 1 1 0 1 0

holiday_2e kerstdag+1 5 1 1 1 1 0 1 0

holiday_2e pinksterdag 5 1 1 1 1 0 1 0

holiday_2e pinksterdag+1 5 1 1 1 1 0 1 0

holiday_goede_vrijdag-1 5 1 1 1 1 0 1 0

holiday_hemelvaartsdag 5 1 1 1 1 0 1 0

holiday_hemelvaartsdag+1 5 1 1 1 1 0 1 0

holiday_hemelvaartsdag-1 5 1 1 1 1 0 1 0

holiday_nieuwjaar 5 1 1 1 1 0 1 0

Month_11 5 1 1 0 1 0 1 1

Month_6 5 1 1 1 0 0 1 1

Target_t-3 5 0 1 0 1 1 1 1

Target_t-4 5 0 0 1 1 1 1 1

Target_t-6 5 0 0 1 1 1 1 1

Target_t-7 5 0 0 1 1 1 1 1

Cold_days_prev_week 4 0 0 0 1 1 1 1

holiday_1e pinksterdag 4 0 1 1 1 0 1 0

holiday_koningsdag 4 1 1 1 1 0 0 0

holiday_schoolvakantie_zuid 4 0 1 0 0 1 1 1

isHoliday 4 0 0 0 1 1 1 1

Month_7 4 1 0 0 0 1 1 1
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Features

Total 

Models

Linear 

Regression Lasso Ridge

SVR 

Linear

Random 

Forest

Gradient

Boosting XGBoost

PG 4 0 1 0 0 1 1 1

Target_t-5 4 0 0 1 1 1 1 0

Weekday_3 4 1 1 0 0 1 1 0

FG 3 0 0 0 0 1 1 1

holiday_1e paasdag-1 3 0 0 1 1 0 1 0

holiday_2e kerstdag 3 0 0 1 1 0 1 0

holiday_oudjaar 3 1 1 1 0 0 0 0

holiday_schoolvakantie_midden 3 0 0 0 0 1 1 1

Month_12 3 1 1 0 1 0 0 0

Month_3 3 1 0 0 1 1 0 0

Month_4 3 1 0 0 1 0 1 0

temp_diff_1_days_ago_TN 3 0 0 0 0 1 1 1

holiday_1e kerstdag 2 0 0 0 1 0 1 0

holiday_1e pinksterdag-1 2 0 0 1 1 0 0 0

holiday_1e werkmaandag 2 0 0 1 1 0 0 0

holiday_koningsdag+1 2 0 0 1 1 0 0 0

holiday_schoolvakantie_noord 2 0 0 0 0 1 1 0

holiday_sinterklaas 2 0 0 0 1 0 1 0

Last_day_long_holiday 2 0 1 0 1 0 0 0

Month_1 2 1 0 0 0 0 0 1

Month_10 2 1 0 0 1 0 0 0

Month_2 2 1 0 0 0 1 0 0

Weekday_0 2 1 0 0 0 0 1 0

holiday_1e paasdag 1 0 0 1 0 0 0 0

holiday_2e paasdag 1 0 0 1 0 0 0 0

holiday_2e paasdag+1 1 0 0 0 0 0 1 0

holiday_dodenherdenking 1 0 0 0 1 0 0 0

holiday_nieuwjaar+1 1 0 0 0 1 0 0 0

holiday_oudjaar-1 1 0 0 0 1 0 0 0

Month_8 1 1 0 0 0 0 0 0

Month_9 1 1 0 0 0 0 0 0

holiday_bevrijdingsdag 0 0 0 0 0 0 0 0

holiday_carnaval 0 0 0 0 0 0 0 0

holiday_goede_vrijdag 0 0 0 0 0 0 0 0

holiday_koningsdag-1 0 0 0 0 0 0 0 0

Long_weekend 0 0 0 0 0 0 0 0
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F.1. MODEL PERFORMANCE WITH TIME STRUCTURED DATASET 

 

F.2. MODEL PERFORMANCE WITH RANDOMIZED DATASET 

 

  

MAE MAPE MSE RMSE MEDIAN_AE R2

Training 11.0675 9.0152 205.566 14.3376 8.85352 0.672707

Testing 14.1083 9.80982 353.395 18.7988 11.4258 0.504017

Training 12.0703 9.88644 250.319 15.8215 9.84373 0.601454

Testing 15.167 10.3459 411.08 20.2751 12.2842 0.423057

Training 11.5101 9.40743 226.548 15.0515 9.23137 0.639301

Testing 14.6449 10.1152 384.949 19.6201 11.913 0.459731

Training 8.50518 6.98514 116.036 10.772 7.03245 0.815253

Testing 16.9345 10.8908 521.575 22.838 12.8449 0.267979

Training 10.3913 8.55885 176.245 13.2757 8.53941 0.719391

Testing 15.7201 10.2446 445.146 21.0985 12.7781 0.375246

Training 10.2114 8.41627 170.99 13.0763 8.46264 0.727758

Testing 16.7681 10.7704 506.486 22.5053 12.8608 0.289156

Training 11.603 9.41152 238.623 15.4474 8.9286 0.620076

Testing 15.0387 10.3556 404.058 20.1012 12.0534 0.432912

Training 10.7351 8.64665 213.092 14.5977 8.19995 0.660725

Testing 14.8243 10.1424 391.446 19.785 12.0018 0.450613

XGBoost

SVR (Linear)

SVR (RBF)

Linear 

Regression

Lasso

Ridge

Random

Forest

Gradient

Boosting

MAE MAPE MSE RMSE MEDIAN_AE R2

Training 11.7942 9.10182 237.555 15.4128 9.53125 0.692933

Testing 12.3535 9.68606 258.898 16.0903 9.8125 0.670209

Training 11.9978 9.24619 245.178 15.6582 9.64758 0.683079

Testing 12.3308 9.71742 257.207 16.0377 9.78918 0.672364

Training 11.8042 9.1029 239.071 15.4619 9.59531 0.690972

Testing 12.1955 9.5713 252.68 15.8959 9.76322 0.67813

Training 8.82478 6.87921 126.813 11.2611 7.40805 0.83608

Testing 13.0045 10.2575 283.94 16.8505 10.2666 0.63831

Training 9.45201 7.41139 144.53 12.0221 7.84885 0.813178

Testing 12.1378 9.58108 244.092 15.6234 9.72451 0.68907

Training 11.067 8.62665 198.766 14.0984 9.14 0.743072

Testing 12.1754 9.64069 246.139 15.6888 10.1648 0.686462

Training 11.65 8.91016 248.74 15.7715 9.10414 0.678475

Testing 12.352 9.65136 261.649 16.1756 9.83929 0.666705

Training 10.4214 7.93812 221.432 14.8806 7.89844 0.713774

Testing 12.706 9.88174 273.035 16.5238 10.3543 0.652201

SVR (Linear)

SVR (RBF)

Linear 

Regression

Lasso

Ridge

Random

Forest

Gradient

Boosting

XGBoost
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F.3. MODEL PERFORMANCE AFTER RFE 

 

F.4. MODEL PERFORMANCE FOR B2C SEGMENT 

 

MAE MAPE MSE RMSE MEDIAN_AE R2

Training 12.1391 9.36855 251.078 15.8455 9.68293 0.675452

Testing 12.2346 9.67313 250.608 15.8306 9.80661 0.68077

Training 11.938 9.20645 242.81 15.5823 9.78793 0.68614

Testing 12.308 9.68269 254.854 15.9642 9.97939 0.675361

Training 11.8995 9.18505 242.511 15.5728 9.66369 0.686526

Testing 12.305 9.67334 255.151 15.9735 9.8918 0.674982

Training 9.9609 7.74652 167.736 12.9513 8.2911 0.783181

Testing 13.0943 10.3242 288.397 16.9823 10.1547 0.632632

Training 9.3988 7.36741 143.095 11.9622 7.68901 0.815033

Testing 12.2624 9.67205 251.737 15.8662 9.6451 0.679331

Training 9.65745 7.55937 156.009 12.4904 7.74156 0.79834

Testing 12.0608 9.49054 241.797 15.5498 10.1423 0.691993

Training 11.6848 8.93205 249.902 15.8083 9.17245 0.676972

Testing 12.3439 9.64133 262.694 16.2078 9.87814 0.665373

Random

Forest

Gradient

Boosting

XGBoost

SVR (Linear)

Linear 

Regression

Lasso

Ridge

MAE MAPE MSE RMSE MEDIAN_AE R2

Training 10.2070 12.7307 173.1700 13.1594 8.3354 0.5520

Testing 10.4109 13.6021 183.2190 13.5359 8.8185 0.5401

Training 8.8308 11.0611 130.8700 11.4399 7.0197 0.6614

Testing 9.8215 12.7211 156.5600 12.5124 8.4838 0.6070

Training 8.7534 10.9551 129.5460 11.3818 7.0146 0.6648

Testing 9.8380 12.7097 155.4410 12.4676 8.3329 0.6099

Training 7.3177 9.2145 88.5450 9.4098 6.0997 0.7709

Testing 9.9276 12.7629 164.5260 12.8268 8.3224 0.5870

Training 6.8947 8.7399 75.1773 8.6705 5.8997 0.8055

Testing 9.6592 12.4034 151.5030 12.3086 7.9630 0.6197

Training 7.9877 10.0994 105.5790 10.2752 6.5570 0.7268

Testing 9.7015 12.5307 152.9030 12.3654 8.4889 0.6162

Training 8.7279 10.8874 133.0760 11.5359 6.7745 0.6557

Testing 9.9458 12.7792 159.2220 12.6183 8.4226 0.6004

Training 6.9539 8.6858 97.0805 9.8530 5.1605 0.7488

Testing 9.9572 12.7221 158.2500 12.5798 8.6607 0.6028

SVR (Linear)

SVR (RBF)

Linear 

Regression

Lasso

Ridge

Random

Forest

Gradient

Boosting

XGBoost
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F.5. MODEL PERFORMANCE FOR B2B SEGMENT 

 

  

MAE MAPE MSE RMSE MEDIAN_AE R2

Training 8.1508 18.1194 108.3800 10.4106 6.9703 0.4276

Testing 8.0948 18.0444 105.2700 10.2601 6.7425 0.4243

Training 6.8213 14.7743 80.1383 8.9520 5.4192 0.5767

Testing 6.8949 15.1608 80.6627 8.9812 5.3371 0.5588

Training 6.8125 14.7522 80.0281 8.9458 5.4173 0.5773

Testing 6.9132 15.1636 80.7130 8.9840 5.4153 0.5586

Training 5.6101 12.0539 53.0894 7.2863 4.6577 0.7196

Testing 7.1360 15.6676 85.6179 9.2530 5.7273 0.5317

Training 5.5520 12.1045 49.3432 7.0245 4.5484 0.7394

Testing 7.1470 15.6392 84.0733 9.1692 5.9011 0.5402

Training 5.6858 12.4329 53.1104 7.2877 4.6036 0.7195

Testing 7.1644 15.6546 83.1704 9.1198 5.7477 0.5451

Training 6.7090 14.4271 80.8781 8.9932 5.2800 0.5728

Testing 6.9435 15.1708 81.6669 9.0370 5.7921 0.5534

Training 5.4343 11.4787 64.0996 8.0062 3.8120 0.6614

Testing 6.8411 14.7507 79.5612 8.9197 5.2753 0.5649

Linear 

Regression

Lasso

Ridge

Random

Forest

Gradient 

Boosting

XGBoost

SVR (Linear)

SVR (RBF)
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F.6. MODEL PERFORMANCE FOR LOGICX RENTAL LOCATIONS 

 

Selected

Model
MAE MAPE MSE RMSE MED_AE R2 Average 

demand

Highest 

demand

Max 

capacity

604 Kuzee Vlissingen SVR (RBF) 0.38 95.60% 0.24 0.49 0.26 -0.0139 0.26 3 150

613 Bergnet Blaricum Lasso 1.07 49.57% 1.92 1.39 0.99 0.0143 2.16 8 25

615 Logicx Rotterdam Ridge 1.68 49.35% 4.39 2.10 1.42 0.0396 5.03 17 45

620
Autohulpdienst 

Broekmans (Venlo)
XGBoost 1.02 55.97% 1.72 1.31 0.86 0.0937 1.66 8 20

622

Autohulpdienst 

Broekmans 

(Roermond)

Random 

Forest
0.89 54.58% 1.14 1.07 0.65 0.0051 1.40 6 40

623
Wolves Autoberging 

BV (Zwolle)

Random 

Forest
0.95 55.79% 1.28 1.13 0.69 -0.0005 1.41 7 9

628
Wolves Autoberging 

BV (Wierden)
SVR (linear) 0.71 67.54% 0.84 0.91 0.85 -0.0027 0.87 5 15

629
Delta Berging en 

Transport (Ermelo)
Ridge 1.13 55.94% 2.01 1.42 0.94 0.0284 1.78 10 15

630

Delta Berging en 

Transport 

(Emmeloord)

SVR (linear) 0.77 62.30% 1.01 1.00 0.88 -0.0124 1.07 8 8

631 Logicx Eindhoven
Random 

Forest
1.58 64.11% 3.81 1.95 1.45 0.0553 3.59 13 26

632
Houterman Wijchen 

BV
Ridge 1.20 62.73% 2.29 1.51 1.07 0.0523 1.93 9 10

633

Van Egeraat Berging 

en Transport CV 

(Rilland)

SVR (RBF) 0.72 67.75% 0.83 0.91 0.88 -0.0034 0.93 6 50

635 Bergnet Amersfoort Ridge 1.53 57.42% 3.67 1.92 1.27 0.0123 3.50 13 25

639 Logicx Den Bosch
Random 

Forest
1.63 69.74% 3.94 1.98 1.51 0.0082 3.72 12 25

644 BCD (Dordrecht) LinearReg 1.14 56.31% 2.17 1.47 0.97 0.0122 1.82 7 25

668 BCF Heerenveen
Random 

Forest
0.72 61.74% 0.88 0.94 0.83 0.0175 0.87 6 6

671 Roos Autoberging Lasso 1.22 59.50% 2.32 1.52 1.14 0.0284 2.32 9 6

675

Takel- en 

Bergingsbedrijf 

Gerritse

SVR (RBF) 0.91 51.75% 1.47 1.21 0.80 0.0017 1.21 6 5

679
Vorgers Autoberging 

BV (Borne)
Ridge 0.77 69.06% 0.95 0.98 0.74 0.0217 0.80 5 12

680

Van Egeraat Berging 

en Transport CV 

(Oosterhout)

Lasso 1.10 58.06% 1.89 1.37 0.88 0.0238 1.63 8 15

682
Vermaat 

Hellevoetsluis
SVR (RBF) 1.13 55.50% 2.03 1.42 0.53 -0.0258 1.58 7 30

802 Haulo Alkmaar Ridge 1.05 55.62% 1.65 1.28 0.74 0.0155 1.60 7 8

808

Auto- en 

bergingsbedrijf 

Besems BV

Ridge 1.28 58.25% 2.51 1.58 1.32 0.0216 2.53 9 10

811 Barendregt Rhoon Ridge 1.07 53.62% 1.95 1.40 0.88 0.0045 2.26 8 10

814 Smits Diemen Ridge 1.18 61.62% 2.17 1.47 1.10 0.0234 2.18 7 15

818
Autoberging 

Dallinga
SVR (RBF) 0.33 95.87% 0.16 0.40 0.24 -0.0203 0.23 2 10

819
Kooijman Takel & 

Berging (Spijk)
Ridge 1.05 58.03% 1.72 1.31 0.65 0.0058 1.48 7 20

820 VaRaMo Breskens Ridge 0.35 94.54% 0.19 0.43 0.26 0.0080 0.24 2 4

Rental location
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Selected

Model
MAE MAPE MSE RMSE MED_AE R2 Average 

demand

Highest 

demand

Max 

capacity

822 Haulo Schagen Ridge 0.46 93.27% 0.36 0.60 0.31 0.0066 0.30 3 10

825 Logicx Assen Lasso 0.80 52.02% 1.11 1.05 0.91 0.0498 1.04 6 25

826
Schoenmaker & 

Zonen BV
SVR (RBF) 0.76 74.47% 0.94 0.97 0.87 -0.0149 0.85 5 10

831
Autohulpdienst Ben 

Heiltjes

Random 

Forest
0.88 57.02% 1.37 1.17 0.94 0.0009 1.04 6 25

832 Haulo Den Oever Ridge 0.58 82.99% 0.45 0.67 0.49 0.0124 0.47 4 30

836
Koolen Garage en 

Bergingsbedrijf
Ridge 0.69 72.60% 0.70 0.84 0.63 0.0195 0.68 6 58

846
Delta Berging en 

Transport (Lelystad)
Lasso 0.97 55.98% 1.33 1.15 0.67 0.0080 1.46 6 15

848

Kraan- en 

Bergingsbedrijf 

Stouwdam 

(Oldebroek)

Ridge 0.92 56.83% 1.31 1.14 0.85 0.0206 1.26 8 10

849 Autax VOF Lasso 0.50 90.10% 0.37 0.61 0.42 0.0195 0.36 3 4

851 BCD (Papendrecht) Ridge 0.84 55.95% 1.13 1.06 0.92 0.0258 1.13 5 10

853

ANWB 

Servicecentrum 

Rhoon

Ridge 1.56 58.94% 3.58 1.89 1.34 0.0118 4.00 12 4

857 BCF Sneek Lasso 0.56 88.50% 0.48 0.70 0.44 -0.0178 0.40 3 25

858
Bergingsbedrijf 

Willem Keizer
Ridge 0.46 90.48% 0.29 0.54 0.37 0.0042 0.32 4 5

861
ANWB 

Servicecentrum 

Random 

Forest
2.08 47.03% 7.03 2.65 1.73 0.0295 5.93 16 8

870 Logicx Valkenburg Ridge 1.31 62.98% 2.99 1.73 1.09 0.0265 2.34 11 40

873 Bergnet Amsterdam SVR (RBF) 1.78 55.14% 5.00 2.24 1.45 0.0344 4.74 13 35

879 Haulo Den Helder Ridge 0.59 79.87% 0.43 0.66 0.51 0.0270 0.52 4 2

891

ABS Autoherstel 

ASG Autoschade 

Gelderland

Random 

Forest
0.50 91.38% 0.37 0.61 0.37 -0.0024 0.36 3 6

900
Iliohan 

Garagebedrijf BV
Ridge 0.60 85.38% 0.47 0.69 0.50 -0.0030 0.48 4 10

914

Takel- en 

Bergingsbedrijf 

Grootveld VOF 

Brunssum

Ridge 1.06 55.28% 1.80 1.34 0.87 0.0294 1.62 8 10

917 Logicx Amsterdam Ridge 1.74 51.40% 4.89 2.21 1.48 0.0013 5.20 13 25

919
24-Seven Berging 

B.V. (Staphorst)
SVR (linear) 0.78 63.46% 1.09 1.04 0.90 -0.0006 1.02 6 15

920 Smits Haarlem
Random 

Forest
1.50 62.02% 3.57 1.89 1.13 0.0199 3.07 10 30

923
Theo Rood B.V. 

(Zwaag)
SVR (RBF) 0.78 54.91% 1.03 1.02 0.99 0.0040 0.99 5 15

926 BRL B.V. (Leiden) SVR (RBF) 1.56 61.38% 3.78 1.94 1.38 -0.0008 3.66 14 100

927

Van Egeraat Berging 

en Transport CV 

(Roosendaal)

Ridge 0.97 56.65% 1.53 1.24 0.74 0.0211 1.33 6 30

928
Hoogwout Berging 

BV (Oostzaan)

Random 

Forest
1.64 54.50% 4.06 2.01 1.39 0.0728 4.41 14 20

930
Wolves Autoberging 

BV (Apeldoorn)
Ridge 1.42 57.58% 3.09 1.76 1.22 0.0552 3.07 12 15

Rental location
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Selected

Model
MAE MAPE MSE RMSE MED_AE R2 Average 

demand

Highest 

demand

Max 

capacity

931 Logicx Nieuwegein Lasso 1.48 61.48% 3.49 1.87 1.15 0.0101 3.01 12 40

937

ANWB 

Servicecentrum 

Naarden

Ridge 1.16 56.77% 2.00 1.42 0.90 0.0044 2.44 11 9

938

ANWB 

Servicecentrum 

Breda

Lasso 1.27 55.93% 2.46 1.57 1.13 0.0288 2.59 9 16

940

ANWB 

Servicecentrum 

Ypenburg

Ridge 1.65 69.44% 3.99 2.00 1.51 0.0194 3.58 10 5

941

ANWB 

Servicecentrum 

Wolfheze

SVR (linear) 1.09 59.52% 1.86 1.36 0.88 0.0327 1.73 7 10

942
Poort Takel- en 

Berging BV
SVR (linear) 0.74 64.96% 0.93 0.96 0.85 0.0054 0.88 5 8

943

ANWB 

Servicecentrum 

Groningen

Random 

Forest
0.93 56.18% 1.20 1.10 0.58 -0.0113 1.43 6 5

944

ANWB 

Servicecentrum 

Geldrop

Lasso 1.00 55.57% 1.52 1.23 0.59 -0.0018 1.58 9 6

945

Autosleepbedrijf 

Sprankenis v.o.f. 

Leende

LinearReg 0.80 66.11% 1.09 1.05 0.83 0.0412 0.94 7 2

946
Delta Berging en 

Transport (Almere)

Random 

Forest
1.14 55.35% 2.09 1.45 1.02 0.0189 2.18 8 25

947 BRL B.V. (Rijswijk) Lasso 1.93 54.03% 5.55 2.36 1.64 0.0760 5.01 13 15

948

De Jonge Auto en 

Bergingsbedrijf vof 

(Hoogeveen)

Lasso 0.75 53.30% 0.94 0.97 0.98 0.0096 1.02 6 10

950 Autoberging Rutjes Lasso 0.76 55.25% 0.99 1.00 0.92 0.0017 1.00 5 20

952 BCF Leeuwarden BV LinearReg 0.72 62.88% 0.84 0.92 0.77 0.0189 0.89 4 15

953 van der Vliet BV SVR (linear) 1.09 58.48% 2.25 1.50 0.98 0.0057 2.29 9 100

954
Kooijman Takel & 

Berging (Vianen)
LinearReg 1.24 64.57% 2.66 1.63 1.05 0.0010 2.08 9 10

955 Kuzee Goes
Random 

Forest
0.75 64.91% 0.86 0.93 0.69 0.0581 0.83 9 10

956 Kuzee Terneuzen Ridge 0.50 89.58% 0.34 0.58 0.41 0.0016 0.37 3 10

957 Roy van Rijswijk VAS SVR (linear) 1.29 98.16% 2.80 1.67 1.09 0.0284 2.50 10 6

958
Houterman Arnhem 

BV
SVR (linear) 1.15 60.00% 2.26 1.50 1.00 -0.0046 1.98 9 12

959
Garage Speerstra 

Workum BV
Ridge 0.57 84.93% 0.41 0.64 0.51 -0.0466 0.48 4 20

961
Autoberging Twente 

Weerselo
SVR (linear) 0.68 63.70% 0.79 0.89 0.79 0.0163 0.81 5 8

962
Houterman 

Nijmegen BV
SVR (RBF) 1.02 59.37% 1.47 1.21 0.58 -0.0048 1.38 6 20

963
Houterman 

Veenendaal
Lasso 1.31 61.49% 2.67 1.63 1.06 0.0119 2.04 8 15

964 BCF Beetsterzwaag SVR (linear) 0.72 60.14% 0.88 0.94 0.90 0.0037 0.97 5 6

965
Vermaat Oude 

Tonge
Lasso 0.39 94.20% 0.28 0.53 0.25 0.0080 0.26 3 15

966 Fruitema SVR (RBF) 0.38 95.60% 0.24 0.49 0.26 -0.0139 0.26 3 10

Rental location
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F.7. PERFORMANCE OF OUTLIER CLASSIFICATION MODEL 

 

G.1. CLASSES OF CARS 

 

G.2. SEGMENTS OF CLASSES OF CARS 

Klein (Small)      A, B, C and S 

Midden (Medium)    D, E and X 

Hoog (High)      F, M, I, G and Q 

Berdijfswagens (Company vans/buses) VC1, VC2, VC3 and VC4 

Specials     Y1, Y2, N1, N2 and P 

 

 

  

Precision Recall F1-score Support

Non-outlier 0.77 0.89 0.83 440

Outlier 0.3 0.16 0.2 135

Accuracy 0.71 575

Macro avg 0.53 0.52 0.52 575

Weighted avg 0.66 0.71 0.68 575
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H. CAR RENTAL FLEET MANAGEMENT FRAMEWORK 

Framework for car rental fleet management problem (Oliveira et al., 2017) 
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