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Stroke induced disabilities of the upper extremity cause significant dysfunctions at the wrist, reducing an
individual’s dexterity while performing activities of daily living. Limited research exists to study abnormal
wrist movement patterns of stroke participants using neuromechanical modeling. Objective: Subject-specific
musculoskeletal modeling of the wrist in stroke patients to help guide neuromechanical modeling strategies
in the future. This study makes use of cumulative spike trains of extension and flexion generated from High
Density EMG (HD-EMG) recordings of stroke patients which were decomposed using Convolution Kernel
Compensation (CKC). Investigations were done to check if HD-EMG could drive the musculoskeletal modeling
pipeline and if this previously tested modeling approach could work with neural and kinematic inputs from
stroke patients. Methods: A subject-specific musculoskeletal model of 6 muscles and one degree of freedom,
wrist flexion-extension was used in this study. The model was driven using decomposed HD-EMG recordings.
Results: The subject-specific HD-EMG driven musculoskeletal model was validated for four stroke subjects
on the basis of torque estimation and transformations estimated by the model, such as activations and muscle
forces. Comparisons were done across all cycles for each trial of a participant, as well as across all trials of
each participants. Conclusion: Results show that for stroke participants, the model estimated torques were
well-correlated with the experimental torques in terms of shape and magnitude.

Index Terms—EMG driven musculoskeletal modeling, wrist, HD-EMG, stroke patients, neural toolbox,
Convolution Kernel Compensation

I. INTRODUCTION

Musculoskeletal systems in humans are highly
redundant. This poses a challenge in the study of
human motor control as it is extremely difficult to
determine which muscles are activated to produce
certain movements [1]. This challenge is even more
palpable in case of abnormal movement patterns
such as those seen in stroke patients. Approxi-
mately 70% to 80% stroke patients are limited
in their ability to carry out activities of daily
living (ADL) due to motor impairment of the more
affected upper limb. Functional independence of
50% to 70% stroke survivors is limited by arm
disabilities at the wrist, elbow or shoulder joint,
post stroke [2].

The structural complexity of the wrist allows
changes in the orientation of the hand to per-
form required tasks. Wrist movements occur around
two main axes, flexion-extension and abduction-
adduction (Appendix A). Neurological and or-
thopaedic impairments lead to inevitable dysfunc-
tion in the movements of the hand and the upper
extremity [3]. Limited studies exist to understand
post-stroke wrist movement abnormalities, as com-
pared to the proximal part of the upper limb, such as
the shoulder and the elbow. Current musculoskele-
tal models prove to be rather primitive in case of
post-stroke participants. Moreover, most of these

models make use of numerical coefficients based
on arbitrarily assigned muscle significance factors
and approximations of only the arm and shoulder
in planar movements [4].

Best practices dictate that knowledge of internal
forces and moments are vital to design neuro-
muscular and rehabilitation strategies [5]. How-
ever, acquiring in-vivo measurements of variables,
such as muscle force, is impractical because of
its invasive approach. Electromyography (EMG)
driven musculoskeletal modeling does not suffer
from the same limitations as recorded EMG, and
kinematic input such as muscle tendon length is
used to determine muscle forces directly. EMG
driven models have previously been used to analyze
movement patterns in healthy subjects, especially
for lower extremities [6][7]. In [8] and [1], the
reader can find examples of cases where EMG
driven modeling has been applied to the upper
extremity. However, this approach has not yet been
applied to the wrist, especially in the case of post-
stroke patients. Therefore, this lends novelty to our
study in many ways.

First of all, the biomechanical models are scaled
according to subject specifications for all four
stroke participants. Secondly, high density EMG
(HD-EMG) is used as the neural input to the model-
ing pipeline instead of EMG envelopes. Finally, this
approach is being tested using data from the upper
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extremity of post stroke patients. The findings of
the study establishes that the EMG driven modeling
pipeline used in the study, is adaptable, irrespective
of the kind of tasks, neural input and muscles under
consideration. This study also helps to understand
the benefits of using HD-EMG recordings over
more prevalent kinds of EMG in case of stroke
participants. Most importantly, conclusions from
this study can be used to design more subject-
specific, robust rehabilitation and neuromuscular
strategies for the wrist joint in stroke participants.

A. State of the Art - Musculoskeletal Modeling
Musculoskeletal modeling has been used actively

to quantify biomechanical output and activities. It
has made non-invasive methods of observing mus-
cle and joint function during dynamic activity pos-
sible [9]. Investigations done on musculoskeletal
models have opened up newer avenues of research
to study the effect of muscles on joint kinematics
and moments. The modeling process involves the
use of kinematic data from passive or active mark-
ers placed on the body.

These models mostly use a Hill-type muscle
model and allow research on treatment and rehabili-
tation possibilities of joints. In [10], the reader can
find studies focused on creating dynamic models
for the upper extremity, that included the elbow,
forearm, and the wrist. Properties such as moment
arm values, muscle geometries and force generation
are essential to establish the accuracy of muscu-
loskeletal models [11]. In studies conducted in [12],
[13] and [14] musculoskeletal models of varying
elbow and forearm positions have been used to
establish moment arms as functions of joint angles
in upper limb muscles responsible for wrist flexion-
extension.

Software packages such as OpenSim and Any-
body allow the possibility of inverse dynamics
and kinematics on experimental data offline using
generic and openly available models that can be
scaled according to subject specific anthropometric
data [15][16]. Broadly, all musculoskeletal model-
ing platforms use one of either two types of opti-
mization to solve redundancy in movement biome-
chanics, namely, static or dynamic optimization and
optimal control theory. OpenSim for example, uses
a static optimization criteria to determine distribu-
tion of forces and muscle activation during a par-
ticular motion, such as, minimal metabolic cost of
transport [17]. Static optimization is computation-
ally faster than dynamic optimization, but cannot
provide reliable simulations for models during tasks
such as vertical jumping.

The reader can find examples of musculoskeletal
models of the wrist adapted on OpenSim for studies

conducted in [18] and [19]. However, these studies
were focused mainly on isometric tasks, specific
pathologies and tests were done on healthy par-
ticipants with artificially generated tremors at the
wrist joint. The muscle force patterns estimated
in this approach are valid for specific conditions.
However, the optimization approach used to arrive
at the estimates ignores the non-linear and context
dependent dynamics of the neuromuscular system
[17].

B. State of the Art - EMG recordings and decom-
position

For the longest time, intramuscular recordings
were used for the investigation of individual mo-
tor unit properties. This method is invasive and
therefore, cumbersome. Surface EMG recordings
is another prevalent method of recording EMG
activity and classical surface EMG is modeled as
interference signals. Spatial filtering and spatial
sampling can be adopted to identify individual mo-
tor units from surface EMG recordings However,
the primary problem of surface EMG decomposi-
tion is to establish its accuracy [20][21].

Movement Muscle Motor Unit
Muscle 
Fiber

Muscle 
Membrane

Surface 
EMG HD-EMG

Intramuscular 
EMG

Figure 1: Scope of prevalent EMG techniques adapted from [22].
Surface EMG is mainly used for movement studies, HD-EMG
gives information at the motor unit level, and intramuscular
EMG gives information at the muscle-fiber level

In HD-EMG recording systems, a grid of elec-
trodes sample the muscular activity over large sur-
face areas. It is a non-invasive method to record
temporal as well as spatial EMG activity. HD-EMG
decomposition is necessary to identify discharge
patterns of motor units (MU) that significantly
contribute to action potentials and also for the
investigation of stretch reflexes [20]. Figure 1 gives
a pictorial representation of the scope of prevalent
EMG types.

Reliable detection of MU behaviour has been
suffered from constraints such as accuracy, inva-
siveness and computational complexity (Appendix
D). Blind source separation is one of the most
commonly employed methods of HD-EMG de-
composition. This method does not rely on prior
knowledge and is not sensitive to the estimation or
superimposition of action potential shapes [23]. The
performance of this method is limited when there
is an increase in motor unit synchronization [20].
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In [21] and [24], the accuracy of the Convolution
Kernel Compensation (CKC) based MU identifi-
cation method for HD-EMG decomposition was
established for both pennate and parallel-fibred
muscles at low force contractions. The accuracy
of the CKC decomposition method (91.5±5.8%)
has been found to be comparable to intramuscular
(95±5.6%) recordings. The discharge patterns of
MUs identified by both types of recordings were
similar for different levels of contraction [24]. CKC
estimates the discharge pattern of individual motor
units and not the underlying mixing process, there-
fore, reducing the computation time significantly
[20][25]. It adopts Bayesian optimal linear mini-
mum mean square error estimators, is significantly
noise resistant and is applied to cross correlated
signals [20][24]. The Pulse to Noise Ratio (PNR)
metric was subsequently introduced to estimate
the accuracy of decomposition. The PNR measure
showed significant correlation with both sensitivity
and false alarm rate of MU discharges for 5% to
70% maximum voluntary contractions and signal to
noise levels ranging from 0 to 20 dB. Experiments
were conducted in [23] and [26] where 97% of the
pulse was successfully reconstructed upto 5 dB of
SNR and discharge patterns of motor neurons were
detected accurately using the PNR measure. PNR
was found to be ≥ 0.9 for all decoded MU and
contraction levels, respectively.

There still exists a few limitations in adopting
CKC for HD-EMG decomposition, such as, inferior
performance in the case of ill conditioned signal
mixtures [20]. Time localization of underlying sig-
nals is also ignored in this approach [23]. Accuracy
and yield of HD-EMG decomposition has been
found to reduce with an increase in muscle activity
and decrease in SNR. The most important disad-
vantage of CKC is the universal assumption that
it can only be applied to relatively low contraction
forces [25].

C. EMG driven musculoskeletal modeling
EMG driven musculoskeletal modeling has been

found to have a few clear advantages over regular
musculoskeletal modeling. Variables such as mus-
cle force cannot be estimated experimentally. EMG
driven musculoskeletal modeling allows the estima-
tion of internal variables of the body using EMGs
and marker data. In this forward dynamic modeling
approach, a combination of EMGs and numerical
simulations are used to account for neuromuscular
strategies. Making assumptions on muscle recruit-
ment is, therefore, avoided in this approach [27]. It
has constantly been suggested to allow participants
to perform a range of complicated tasks to judge
the performance criteria of this approach [28].

Most existing studies make use of envelopes
of surface EMG for neuromechanical modeling
[6][29]. Decomposed HD-EMG has also been suc-
cessfully incorporated in this modeling approach
to measure stiffness during isometric tasks and
also, to decode casual motor neuron behaviour [26].
However, this modeling approach has mostly been
adopted for wrist and hand prosthesis in the case
of phantom-limbed or healthy participants [30].

Adapting this approach to stroke patients could
inspire new neuromechanical modeling and rehabil-
itation strategies. Task training and rehabilitation
could significantly improve the quality of move-
ments in stroke patients.

D. Aim of the Project

In this project, subject-specific HD-EMG driven
musculoskeletal modeling was attempted for four
stroke patients. To this end, cumulative spike trains
from wrist extensors and flexors were used as
the neural input to the musculoskeletal model-
ing pipeline. These cumulative spike trains were
achieved by identifying MUs from HD-EMG
recordings using the CKC decomposition method.
Wrist flexion and extension data was fed as kine-
matic inputs to the pipeline. The validity of the
approach was tested on all trials of four stroke
participants. The model estimations made by the
HD-EMG driven modeling approach in the case
of stroke patients was also compared with healthy
patient data from literature.

II. METHOD

A. Data collection

Experimental data was recorded from five dif-
ferent post-stroke participants, test subject 1 to
test subject 5. Data from test subject 4 could not
be included in the study as the stroke patient
did not return for successive trials. Five sessions
were recorded with each patient over five different
days. The only exception was made for the first
participant where all five sessions were recorded
on the same day. In each session, eight trials
were carried out on average for each participant.
All of the wrist flexion and extension tasks were
done with the Universal Haptic Drive (UHD), a
rehabilitation robotic device which typically allows
two degrees of freedom; planar arm movement with
its ARM mode and wrist flexion-extension and
forearm pronation-supination with its WRIST mode
[31].

The experimental task that the participants had
to perform was wrist flexion-extension. Two arrays
of 5x13 electrodes (from OT Bioelettronica, Torino.
Italy) were used to record HD-EMG signals. These
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Cumulative Spike Train

 Flexion

HD-emg electrode columns

Cumulative Spike Train

Extension

Figure 2: HD-EMG electrode grid placement

HD-EMG electrode columns were positioned cir-
cumferencing the arm, to record muscle activity
from all extensors and flexors of the wrist. HD-
EMG grid placement around the arm and the cumu-
lative spike train patterns can be seen in Figure 2.
Recorded HD-EMG activity was decomposed using
CKC to identify MUs responsible for wrist exten-
sion and flexion activities.

The target for muscle excitation level was set
at either 10% or 20% of the possible maximum
voluntary contraction (MVC) for all participants.
The maximum excitation level was set to 10% on
the UHD and visual feedbacks were sent during
tasks to let participants know if they met the target
excitation level [31]. Tasks were repeated about 10
times for each participant with a rest period of
10 seconds between tasks. The dynamic flexion-
extension tasks were designed such that they could
exceed this target level of 10% and maintain the
exceeded level of muscle excitation for at least
2 seconds. Figure 3 represents the positioning of
the wrist during data collection and the graphical
feedback sent to the participant in the form of the
black dashed line.

B. Data Preparation

The dynamic tasks were recorded at a sampling
frequency of 2048 Hz and all other data was
synchronized with data from UHD. Torque data
existed in separate files for flexion and extension
in normalized units such that the maximum value
was 10 Nm/rad. Deviation and flexion torque were
recorded in the horizontal and vertical directions,
respectively. Positive radial deviation and negative
ulnar deviation were parameters measured in the
horizontal direction. Wrist flexion torque was neg-
ative and measured in the vertical direction along
with positive wrist extension.

The maximum range of motion for flexion and
extension was 90◦. The range of motion was val-
idated on OpenSim visually. Joint position was

Figure 3: Graphical feedback during wrist flexion where the
maximum muscle target excitation level was set to 10% [31]

Cumulative spike
trains Muscles Abb.

CST FLE Flexor carpi radialis FCR
CST FLE Flexor carpi ulnaris FCU
CST FLE Flexor digitorum superficialis FDSR
CST EXT Extensor carpi radialis longus ECRL
CST EXT Extensor carpi radialis brevis ECRB
CST EXT Extensor carpi ulnaris ECU

Table I: HD-EMG to MTU mapping

also plotted with respect to the muscle tendon unit
(MTU) lengths to avoid data misinterpretation.

HD-EMG decomposed using CKC was used to
identify relevant MUs and generate two cumulative
spike trains; wrist extension (CST EXT) and wrist
flexion (CST FLE). CST EXT was used to activate
the three extensor muscles, and CST FLE was used
to activate the three flexors. Table I represents the
spike train to MTU mapping used in this study.

The cumulative EMG spike trains were filtered
using a 4th order Butterworth filter and Matlab’s
filtfilt function [32][33]. A cutoff frequency of 2
Hz was chosen as the flexion-extension movements
were rather slow. Only these filtered cumulative
spike trains were used further in this project. After a
few initial trial routines routines, it was established
that filtered HD-EMG gave better results.

Normalized HD-EMG for flexion and extension
was computed from the set of all trials of each
participant [6]. From all trials of each participant,
the maximum HD-EMG amplitude for flexion was
used as the normalization reference for flexion.
Similarly, the maximum amplitude of HD-EMG for
extension was used as the normalization reference
for extension for all trials.

All three kinds of data files were too large which
caused lags and longer computation times. To this
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Joint Dynamics

MTU Kinematics

MTU 
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Model 
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Dynamics
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Measurement

MTU
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Estimated Torque

Figure 4: Schematic diagram of the HD-EMG driven musculoskeletal modeling pipeline used in the study. Each block has been
explained in detail in the II-C: HD-EMG driven musculoskeletal modeling. This schematic diagram is an adaptation of [6].

end, data from all trials was resampled at 100 Hz.
Thus, resampled torque, joint position and HD-
EMG activity data were used as inputs for the HD-
EMG driven musculoskeletal modeling pipeline.
Only one degree of freedom (DOF), wrist flexion-
extension was investigated during this project.

C. HD-EMG musculoskeletal modeling pipeline

The open-source biomechanical modeling soft-
ware Opensim [15][34] and the open-source tool-
box CEINMS were used to estimate the wrist
joint kinematics [35]. These platforms were also
used to estimate various MTU properties such as
activations, muscle tendon lengths, and moment
arms. A detailed description of this musculoskeletal
modeling pipeline can be found for the lower
extremity in [36]. This pipeline has been adapted
for the upper extremity in this project in Figure
4. The key aspects of the methodology have been
summarized in this section.

• MTU activation block: Cumulative spike trains
decomposed from HD-EMG activity recorded
from the extensors and flexors of the wrist
were mapped into activations α(t). The map-
ping sequence in Table I was used to drive the
six MTUs.

• MTU kinematics block: A generic model
of the MoBL ARMS dyamic upper limb
[37] with six MTUs was scaled on Open-
Sim for each participant. The elbow flexion
and pronation-supination coordinates are set
to 90◦, such that the position of the arm

matched the experimental conditions. Changes
are seen only in the flexion and deviation
movements. The anatomical position of the
arm and hand were taken for all subjects.
Scaling of the model was therefore done us-
ing manual scale factors for each participant.
The MTU lengths(lMTU ) and flexion moment
arm (r) obtained from OpenSim were fed into
the CEINMS toolbox.

• MTU dynamics block: In this block, activa-
tions α(t), lMTU and contraction velocity vMTU

were used in conjunction to compute MTU
forces (FMTU ). FMTU is given by the equation
corresponding to a Hill Type muscle model,

FMTU = F t = Fmcos(φ(lm))

= [α(t) f (l̃m) f (ṽm)+ fp(l̃m)]Fmaxcos(φ(lm))
(1)

In equation 1, Fmax represents maximum iso-
metric muscle force, l̃m and ṽm represent fiber
length and velocity normalized to optimal fiber
length, respectively. MTU force equals both
tendon force, F t and muscle fiber force, Fm

since they are in series [6].
• Calibration block: The HD-EMG driven mus-

culoskeletal model had to be calibrated before
it could be run in open loop for the prediction
of joint torques and muscle forces. In this
block of the pipeline, certain subject specific
model parameters were adjusted using an op-
timization routine. The model parameters that
got adjusted were the three coefficients that
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describe the non-linear muscle activation dy-
namics, i.e. the slack length, the optimal fiber
lengths of the modeled muscles and a strength
coefficient for each MTU. [6] explains the
model parameters in detail for the ankle and
knee joint. An adaptation of this explanation is
used in this study for the upper extremity, and
more specifically, the wrist joint. The objective
of the optimization routine is to minimize the
difference between the estimated torque and
the recorded experimental torque. Therefore,
a pre-requisite to run this optimization proce-
dure is to know the experimental torque for
flexion and deviation of the wrist joint. In our
case, these were already recorded during the
data collection process. Calibration was done
on two trials which had comparatively higher
flexion and extension activity. The results from
this calibrated model were extrapolated to all
trials of that participant.

D. Data analysis
For the ease of data visualization and analysis,

cycles of all trials were extracted and all data
were interpolated and time-normalized using cubic
splines [38]. Each cycle was defined as a complete
period of the torque profile from minimum to
minimum. The HD-EMG driven model was vali-
dated at the torque level. Flexion torques estimated
by the model were compared to the experimental
torques obtained during data collection using the
UHD for wrist and arm movement rehabilitation.
Results were compared in shape using the Pearson
correlation coefficient, R. Results were also inves-
tigated in magnitude by calculating the root mean
square error (RMSE) between the input experimen-
tal and model estimated output torque. A thorough
visual check was done especially for stroke or test
participants. To that end, model transformations
were plotted against each other. Cumulative spike
train excitation to activations, activations to mus-
cle forces, and muscle forces to estimated model
torque were a few of the plots made separately
for both flexor and extensor groups. Finally, flexion
averages of both the experimentally recorded torque
and model estimated torque were plotted and their
Pearson correlation coefficient and RMSE were
calculated to compare their shapes and magnitude.
Torque validation comparisons were done for each
trial and also for all trials of each participant.

III. RESULTS

A. Transformations made by the model - Esti-
mated parameters

The EMG mapping and the CEINMS model
transformations are validated in this section. It

is expected that the joint torques and muscle
forces best match the cumulative spike trains of
flexion-extension EMG generated from experimen-
tally recorded HD-EMG. The cumulative spike
train input is mapped to the activations estimated by
the model, followed by a mapping of the estimated
activations to estimated muscle forces. Finally, the
estimated muscle forces are compared with the es-
timated model torques to check for inconsistencies.
Model transformations were mapped separately for
the flexor and extensor muscles. Figure 5 gives an
idea of the transformations made by the model.
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Figure 5: Transformations made by the HD-EMG musculoskele-
tal modeling pipeline

One trial of the third subject had to be excluded
from the study as there was no noticeable extension
EMG activity. This could have been due to errors
in HD-EMG recording or decomposition. Table II
gives the mean and standard deviations of the
muscle parameters as estimated by the HD-EMG
driven musculoskeletal modeling pipeline for all
cycles of one trial for each participant. It is seen that
the flexors in general have higher activations and
muscle forces than the extensors. And the primary
wrist flexor (FCU) and wrist extensor (ECRB) have
higher muscle forces than the other muscles.

1) Flexor-Extensor muscle activity
Figure 6 investigates the activity of all three

flexors, FCU, FCR and FDSR averaged over all
cycles of the trial, for three representative trials of
participant 1. Similarly, the activity of the three
extensors is investigated in Figure 7. The filtered
cumulative spike train for flexion and extension
were used to activate the flexor and extensor mus-
cles, respectively. Therefore, in each trial, all three
flexors were equally activated (meaning they had
the same value for activation in normalized units)
and all three extensors were equally activated. The
first subplot of Figures 6 and 7 maps the CST to this
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Sub.
Activations

(norm. units)
Muscle forces

(in N) Exp. torque
(in N.m)

Est. torque
(in N.m)extensors flexors ECRL ECRB ECU FCR FCU FDSR

Sub. 1 0.012±0.02 0.45±0.3 1.91±3.2 1.13±2.2 1.49±2.5 50.29±39.1 29.09±24.8 12.47±10.3 1.28±0.5 1.45±0.8
Sub. 2 0.10±0.06 0.41±0.2 4.52±2.1 25.09±2.7 111.57±22.1 30.71±5.9 118.76±63.4 13.92±2.2 2.35±1.3 1.69±1.0
Sub. 3 0.17±0.16 0.43±0.3 17.6±16.3 51.23±11.3 73.87±49.5 80.09±62.4 112.25±91.3 56.43±17.2 2.25±1.3 1.59±1.3
Sub. 5 0.11±0.08 0.35±0.3 72.23±34.3 225.4±29.3 27.87±8.1 135.7±34.8 175.08±46.3 61.6±13.4 1.64±0.9 1.79±1.3

Table II: HD-EMG driven modeling estimations of muscle parameters
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Figure 6: Flexor muscle activity of the first, fourth and fifth trials
of stroke participant 1 are given by 6a, 6b and 6c respectively,
mapped sequentially from filtered flexion cumulative spike train
to estimated flexion torque

activation (in normalized units). The parameters of
the model such as shape factor and activation scale
were 1. Activations and experimental torques were
used to estimate MTU forces. Therefore, activated
flexors/extensors were mapped to estimated MTU
forces (in N) in the second subplot of both figures.
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Figure 7: Extensor muscle activity of the first, fourth and fifth
trials of stroke participant 1 are given by 7a, 7b and 7c re-
spectively, mapped sequentially from filtered flexion cumulative
spike train to estimated flexion torque

Finally, in the third subplot of Figures 6 and 7, the
estimated MTU forces (in N) and estimated model
flexion torques (in N.m) were mapped to each other
to validate the extent of parameter adjustment.

B. Torque level

All the tasks performed during this experiment
were dynamic, and results shown here are from
all four post-stroke participants. The dynamical
consistency of the HD-EMG driven musculoskele-
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(a) (b)

(c)

Figure 8: Flexion averages of the experimental torques and estimated model torque of three representative trials of the first participant.
The magenta and blue lines represent estimated model torques and experimental torques respectively. The shaded region represents
the standard deviation of the experimental and estimated torques. 8a shows the first trial (R 0.947, RMSE 0.0029 N.m) to which the
calibrated model was extrapolated. The std. dev. of the experimental torque is 0.4775 whereas it is 0.4148 for the estimated torque.
Calibration was done on the fourth and fifth trials represented by the second and third subfigures. 8b represents the fourth trial, (R
0.9555,RMSE 0.1050 N.m) the std. dev. of the experimental torque and estimated torques are 1.2965 and 1.2342 respectively. R
and RMSE values for the fifth trial, represented by 8c are 0.1708 and 0.9888 respectively. The std. dev for experimental torque is
0.5156 whereas it is 0.8935 for the estimated torque

tal modeling pipeline was validated by compar-
ing experimental torques with the estimated model
torques.

1) Torque comparison for individual trials
For each of the four post-stroke subjects, the cal-

ibration was done on two trials and this calibrated
model was extrapolated to all trials of that subject.
Across all 92 cycles, RMSE and R values were used
as indicators of goodness of fit of the experimen-
tal and model-estimated values of flexion torque.
Pearson correlation values, R, ranged from 0.8905
to 0.9888. RMSE values ranged from 0.0029 N.m
to 1.5624 N.m. The last two trials (7th and 9th
trial) of the first subject had deviant R and RMSE
values. The seventh trial had an RMSE of 5.3 N.m
with an R value of 0.1095, whereas the ninth trial
had an RMSE of 2.8092 N.m with an R value of
0.7623. This was because the maximum experimen-
tal flexion-extension torque of these two trials were
much higher even though their joint position data
and EMG activity values were comparable to the
other trials. For example, maximum experimental
flexion torque for the seventh and ninth trials of
the first subject fell in the range of 9.0-10.4 N.m.
whereas the maximum flexion torque for all the the
other trials were in the range of 0.28 to 4.60 N.m.
This could have led to underestimation of flexion
torque by the model for these two trials. The sixth
trial of the fifth test subject had a deviant R value

of 0.3326, as the model took mainly the ECRB
muscle force into account to estimate the flexion
torque, which was much higher than the other
extensor muscles. Figure 8 gives a comparison of
flexion averages over all cycles for experimental
and estimated torques. Appendix F has RMSE and
R values, as well as plots of experimental vs.
estimated flexion torque for each trial of all four
participants.

2) Torque comparison across trials for every
participant

The averages of all trials were also taken in
case of each participant to evaluate the RMSE
and Pearson correlation of the experimental and
estimated flexion torques for the participant as
a whole. Trials seven and nine of participant 1
were excluded from the this average because of
their comparatively high experimental torques and
low model estimated torques. On comparison of
averages of experimental and estimated torques
across all participants, it was found that the R value
for all participants were in the range of 0.9601
to 0.9933, with RMSE values ranging from 0.54
N.m to 3.17 N.m. 3.17 N.m was the RMSE value
for participant 3, here flexion torque values were
comparatively much higher for the sixth trial (15.4
N.m) while the other trials had experimental flexion
torques in the range 2.4 N.m to 7.6 N.m. Figure
9 gives standard deviations, RMSE and R values
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(a) (b)

(c) (d)

Figure 9: Flexion averages of all trials were calculated for each participant. The blue and magenta lines represent experimental
and estimated torques respectively, the shaded area around them represents the standard deviation of both torques. 9a gives the
trial average graph for participant 1 (RMSE 0.5360N.m, R 0.9601) where the std. dev. of exp. torque was 1.40 and std. dev. of
estimated torque was 1.59, 9b represents participant 2 (RMSE 1.6593N.m, R 0.9875) with a std. dev. of 2.41 in exp. torque and
1.96 in estimated torque, 9c represents participant 3 (RMSE 3.1783N.m, R 0.9933) with a std. dev. of 2.98 and 2.69 in exp. and
estimated torques, respectively, and 9d shows trial averages for participant 5 (RMSE 0.5436N.m, R 0.9933) where the std dev. for
exp. and estimated torque were 2.3 and 1.95, respectively

across all trials for each participant.

IV. DISCUSSION

In this project HD-EMG driven musculoskeletal
modeling was applied and validated for post-stroke
participants. EMG to muscle mapping showed that
all transformations by the model and the estimated
model torques were validated in terms of shape as
well as magnitude. It was established that the model
was dynamically consistent and gave satisfactory
estimates of joint torque.

Cumulative EMG spike train for both flexion and
extension were filtered using a cutoff frequency of
2 Hz. It is a possibility that using the same cutoff
frequency for both flexion-extension spike trains
and for all trials of each smoothing window lengths,
might have led to some loss in important EMG
information. EMG amplitudes are also dependent
on the kind of task and joint position, which might
limit the accuracy achievable by an EMG driven
model [39][40].

Studies have shown that HD-EMG grids estimate
force 30% better than bipolar electrodes, and other
conventional methods. Collection surface has also
proven to be the singular most important factor
in electrode configuration. Larger collection sur-
faces depict estimations of better quality by about
25% [41]. During data collection, HD-EMG grids
were placed both above and below the arm, thus
covering an optimal surface area.

Joint torques are also dependent on the task
that is being performed and specificity of training

[42][43]. This should be kept in mind during the
data collection process for experiments involving
participants with abnormal movement patterns.

Contraction levels of both extensors and flexors
are reflected in the EMG activation level. Partic-
ipants were also asked to contract their muscles
upto 10% of the maximum possible voluntary con-
traction. The activation and muscle forces of the
flexors was comparatively higher than that of the
extensors. Literature dictates that the flexor mus-
cles are generally stronger than extensor muscles
in healthy subjects as is predicted by [44]. The
standard deviations are high in the stroke patient
data and this could have been due to involuntary
muscle spasticity and less muscle forces during the
tasks [45].

EMG driven musculoskeletal models have been
adopted in many studies for the estimation of
individual muscle forces. Validation of torque and
joint moments has been done by comparing the
experimentally recorded or predicted torques with
the one estimated by the model. The inverse dy-
namics routine often puts accuracy in jeopardy as it
involves numerical differentiation of the joint posi-
tion data. Any movement artifacts in the input data
could potentially influence the derivative values [8].
This problem is averted in this study as joint torques
were recorded experimentally as well, and have
been directly used as an input to the calibration
block of the modeling pipeline.

In [46], HD-EMG recordings were decomposed
using CKC to extract MU firing rate information
from the finger muscles in stroke patients. It was
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found that the MU firing rate was significantly re-
duced in stroke patients over examined force levels
of 2 to 10 N, which could be attributed to changes
in intrinsic properties of spinal motor neurons.
However, the application of CKC decomposed HD-
EMG in studies of stroke patients with a focus on
wrist muscles is still rather limited and needs to be
addressed more urgently.

The proposed methodology is novel on its own as
HD-EMG is included in the modeling pipeline, and
torque validations were performed on stroke partic-
ipants in this study. The model used in the study
also assumed a non-linear relationship between
EMG and force. This is a step ahead of the linear
relationship assumption of EMG and force which
has been found to overestimate activation levels of
muscles [8]. However, this methodology also has
some limitations. First of all, calibration of the
model parameters is a sensitive step in the process
of torque estimation and could always be improved.
The only tasks set for the stroke participants were
wrist flexion and extension, therefore calibration of
the model was done on two trials of the same tasks.
Moreover, six muscles are taken into consideration
instead of all the muscles spanning the wrist and
hand. The wrist model used in this study was also
scaled manually, using scale factors calculated from
segment lengths of the forearm and hand that were
also recorded manually. The scale factors would
have been comparatively more accurate if a static
file (.trc) of the subjects were used which would
also take the mass of the segments into account.
Manual intervention might have given rise to un-
certainties in the measurement and scaling process.
A lot of factors such as ability to achieve target
MVC, responsiveness to tasks are also very subject
and investigator dependent which could give rise to
inconsistencies.

Additionally, when all trials of a participant were
compared, it was found that the torque estimations
made by the model had lower R and RMSE val-
ues for trials with comparatively higher flexion-
extension activity. This was because the two trials
used for calibration of the model as well as the
other trials of the participant had comparatively
similar ranges of EMG activity, joint position and
experimental torques. It would be interesting to
pursue a solution to this in future studies. In
this study, all three extensor muscles are equally
activated and all three flexor muscles are equally
activated. Two filtered cumulative trains were used
to activate all six muscles, such that all extensors
were activated by the extension EMG train and
all flexors by the flexion EMG train. Therefore,
the results could have been improved by including
more specific muscle excitations and activations.

There is no golden standard or the best method for
surface EMG normalization, especially for dynamic
tasks [47]. [48] and [49] suggest using EMGs
from MVC as the normalization reference. HD-
EMG signals of each trial were normalized by the
maximum EMG amplitude among all eight trials,in
case of both flexion and extension. Additionally,
it would be interesting to explore the outcome of
different EMG normalization routines in HD-EMG
driven musculoskeletal modeling.

Wrist torque comparison - healthy vs. stroke
patients

Wrist torques are reported to be around 0.35
N.m for ADL, with a maximum of about 20 N.m
[50]. In Table III, findings from wrist literature for
healthy participants recorded under isokinetic con-
ditions were compared with the overall average of
maximal wrist torques of experimental stroke data
and model estimations. The torque and range of
motion values (Appendix E) reported in this study
seem to be lower than that for healthy participants
as reported in [51][50]. This could be due to a
range of factors such as spasticity in stroke patients,
different experimental conditions and positions of
the wrist during each of the studies. It has been

Torques
(in N.m)

Wrist dynamics
Healthy Stroke

Experimental Estimated
Wrist Flexion 8-9 4.2 3.9

Wrist Extension 5-6 3 2.96

Table III: Wrist dynamics - healthy vs. stroke patient data
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Figure 10: Maximal experimental and model wrist torques
for stroke participants seen at extreme flexion angles for a
representative trial are given by figures 10a and 10b respectively
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established in [51] and [44], that in healthy par-
ticipants, wrist torque in the flexion direction is
significantly higher than the torque in the extension
direction. Table III shows an agreement between
this prediction in healthy patient literature and
experimental/estimated wrist torques from stroke
patients in this study. [51] also proved that under
dynamic conditions maximal wrist torque occurred
during extreme flexion/extension of the wrist in
healthy participants. Experimental and estimated
torque data is investigated and one representative
trial can be seen in Figure 10 which agrees to these
findings as well.

Lastly, CKC decomposed HD-EMG for the wrist
muscles is still a very novel area and very limited
research exists to validate and compare stroke pa-
tient data with healthy patient data specifically for
the wrist. The healthy patient data borrowed from
literature might have had different experimental and
task settings as compared to the settings the stroke
patients were recorded in. It would also be inter-
esting to know the stiffness estimates computed by
the model, and if there is significant difference in
these estimates for healthy and stroke participants.
Appendix C has a stiffness computation method
that can be used to continue this study.

V. CONCLUSION

Stroke is one of the leading causes of adult dis-
ability, and significantly affects quality of life. This
study looked into torque and model parameter esti-
mation via HD-EMG driven musculoskeletal mod-
eling in case of stroke participants. Results show
that for stroke participants, the model estimated
parameters and joint torques were well-correlated
with the experimental torques in terms of shape and
magnitude. Findings from this study can be applied
to understand neuromechanical modeling strategies
of the wrist and in the design of rehabilitation
procedures for the wrist in stroke patients.

Future scope of project
An extension of this study could be carried out,

where healthy patient data could be recorded in
experimental conditions similar to the one reported
in the study. Investigations on ranges of motion and
wrist torque estimates could be compared better
then. Healthy patient data reported in this study was
adopted from existing literature where studies had
different experimental settings, assumed different
neutral positions of the wrist and were task specific
in some cases. Moreoever, calculating the stiffness
estimates of the wrist in case of stroke participants
could bolster the understanding of neuromuscular
dysfunctions in stroke patients. A comparison of
these estimates with those of healthy participants

would result in better prosthetic designs and wrist
rehabilitation measures.
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VII. APPENDIX

A. Anatomical background of the wrist joint

The wrist joint is a complex mechanical and
functional structure. It consists of carpal bones
arranged in two rows. The scaphoid, lunate, trique-
tral and pisiform bones are found in the proximal
row, whereas the trapezium, trapizoid, capitate and
hamate bones form the distal row. It is a condyloid
joint, its design permits flexion, extension, abduc-
tion and adduction. The radio-carpal joint is primar-
ily responsible for movements of the wrist along
two axes, and carries out wrist flexion-extension.
Ulnar and radial deviation takes place along the
anteroposterior axis. Wrist flexion and extension
occurs along the transverse axis. Collateral palmar
and dorsal ligaments restrict movements around the
wrist. The dorsal ligaments are thin in comparison,
and are aligned in the same axis as the forearm.
The palmar ligaments on the other hand join the
carpal bones to the radius and ulna, and remain taut
during wrist extension. In this section, the anatomy
of the wrist is elaborated from the point of view of
applied anatomy and movement biomechanics.

Wrist flexion and extension have a range of
motion of 85◦though that range can be different for
patients with spasticity. This is seen in the data from
the stroke patients used for this project where the
flexion-extension range was approximately 45◦for
flexion and extension separately. The amplitudes of
radial and ulnar deviation for healthy participants
is approximately 15◦and 45◦respectively. However,
radial and ulnar deviation is considered to have
significantly lesser clinical importance. The neutral
position of the wrist is typically defined when it is
held between flexion and extension.

Out of all the muscles and tendons that bind the
wrist joint in place, three flexors and three extensors
were included in this study. All wrist extensors can
be found in the dorsal aspect of the wrist, whereas
all flexors can be found in the palmar aspect of the
wrist.

The extensor carpi radialis longus (ECRL) and
the extensor carpi radialis brevis (ECRB) are inner-
vated by the radial nerve. ECRL brings about wrist
dorsiflexion in conjunction with the extensor carpi
ulnaris (ECU), and radial deviation in conjunction
with the flexor carpi radialis (FCR) muscle. The
ECRB muscle is capable of extending the wrist,
and bringing it back to the neutral position from
ulnar deviation. The extensor function of the ECU
is secondary and it mainly functions as a primary
ulnar deviator of the wrist [52].

The main function of the FCR is wrist flexion
and radial deviation. The flexor carpi ulnaris (FCU)
works in conjunction with the FCR to flex the wrist.

FCU and the ECU also work together to bring about
ulnar deviation. FCR and FCU are innervated by the
median and ulnar nerves respectively. The palmar
longus muscle is another major muscle involved in
palmar wrist flexion, however, it is absent in 15% of
individuals and has not been included in the model.

2

1

Figure A1: Musculoskeletal model of the wrist in neutral posi-
tion. 1 is the anteroposterior axis, the direction of ulnar/radial
deviation. 2 is the transverse axis along which flexion-extension
occurs. Adapted from [52]

B. Processing Procedures

OpenSim 3.3, CEINMS and Matlab 2017 were
used for offline processing of data.

OpenSim Model - data modeling
The MoBL ARMS dynamic model was modified

on OpenSim to include the six muscles, ECRL,
ECRB, ECU, FCR, FCU, FDSR, and one degree of
freedom, wrist flexion-extension. The experimental
joint position data was loaded as motion into the
OpenSim model as .mot files. Visual checks were
done to make sure the motion of the wrist was as
expected, the position of the hand was also changed
to replicate experimental conditions, such that the
elbow flexion and pronation-supination coordinates
were at 90◦each in the input .mot file. The flexion
and deviation coordinate values were obtained from
experimental files. Figure A2 represents the scaling
process.

OpenSimGeneric Model

Experimental joint
position data

Subject-specific
scaled model

Figure A2: Schematic of the scaling process
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Preparation of files for HD-EMG driven simula-
tions

Custom made Matlab functions were used to
create .mot inverse kinematics files, .sto inverse dy-
namics files and .mot EMG excitation files required
for CEINMS.

Muscle Analysis (OpenSim)
The OpenSim model was scaled using manual

scale factors derived from each subject’s anatomical
landmark location. Muscle analysis was run using
this scaled model and the inverse kinematics file
obtained from experimental joint position data. The
Analyze Tool option was used on OpenSim to
perform a muscle analysis for each trial of every
patient. The same six muscles were chosen for
muscle analysis, and moment arms for flexion and
deviation were calculated using the analyze tool
too. Finally, the output files of muscle tendon
lengths of all muscles, and moment arms of flexion
were used going forward. Figure A3 represents
muscle analysis on OpenSim

OpenSimScaled Model

Experimental joint
position data

MTU length
and

moment arms

Figure A3: The scaled model and experimental joint position
data are put into the model to get MTU length and flexion
moment arms

Model Calibration (CEINMS)
The model’s parameters were calibrated using

EMG data, inverse kinematics and inverse dy-
namics. Three parameters were of primary impor-
tance while characterize the activation dynamics of
the muscles; tendon slack length, muscle optimal
fiber length, and a strength coefficient which tunes
the maximum isometric force of the muscle.An
open loop optimization routine minimizes the dif-
ference between the experimental and estimated
torques.Figure A4 gives a schematic of how the
calibrated model is obtained from CEINMS.

CEINMS 

Cumulative EMG 
spike trains

(flexion-extension)

Experimental 
torque data

MTU length
and

moment arms

Calibrated
Model

Figure A4: Schematic of the calibration input and outputs

Forward Dynamics using the HD-EMG driven
model (CEINMS)

The calibrated model, along with the moment
arms and MTU lengths, as well as EMG data
were used to obtain the muscle variables and es-
timate joint torque data. The muscle variables of
importance were; activations, muscle forces fiber

lengths and fiber velocities. Figure A5 represents
the parameter estimation process.

CEINMS 

Cumulative EMG 
spike trains

(flexion-extension)

Calibrated model

MTU length
and

moment arms

Estimated joint
torque

Muscle 
variables

Figure A5: Schematic of CEINMS parameter estimation process

Cycle averages
Torque levels were validated for each individual

trial of a participant and across participants. For
each participant, an average of all cycles in every
trial was taken from minimum to minimum. On
average, four cycles were taken for each trial. An
average of all cycles were taken for the trial and
errors were calculated between experimental and
estimated torques. For each participant, an average
of all trials for that participant was also taken using
the same logic. Once again, errors were calculated
to see how much the estimated and experimental
torques changed in case of each participant.

C. Stiffness computation for the wrist

Muscle variables such as flexion moment arms
and MTU lengths can be used to derive wrist
stiffness estimations for the stroke participants.
Muscle stiffness, Km is estimated as the partial
derivative of muscle fiber force Fm with respect
to the normalized fiber length, lm.

Km =
∂Fm(α, lm,vm)

∂vm
(2)

Wrist stiffness can be estimated on Matlab using
equation 2 and already existing, customized Matlab
functions. The joint muscle names included in the
OpenSim model have to be defined and assigned
an identification value. In our case, the joint muscle
names would be named ECRL, ECRB, ECU, FCU,
FCR, FDSR and would have identity values from 1-
6 serially. Following this, splines can be generated
for activation length,α , normalized fiber length,lm

and normalized fiber velocity, vm and moment arms.
A inverse kinematic routine can be carried out
for each trial to get the entire range of motion,
and the degrees of freedom should be defined.
Once these pre-requisites are done, CEINMS output
files such as normalized fiber length, pennation
angle, optimal fiber length, tendon slack length and
strength coefficients of muscles can be used, for
every trial to estimate wrist stiffness. Figure A6
gives a pictorial representation of the inputs and
outputs during stiffness computation for the wrist.
Healthy and stroke patient data are also assumed
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Matlab MTU length
and

moment arms

Wrist joint
stiffness

Muscle 
variables

Figure A6: Muscle variables, MTU lengths and moment arms
are the inputs which help in the estimation of wrist stiffness

to have significant differences, with spastic wrists
having stiffness greater than 20Nm/rad [50].

D. Motor unit behaviour investigation in stroke
patients

Progressive changes in intrinsic muscle mechan-
ical properties and muscle structures are seen in
paretic-spastic muscles post stroke. Transynaptic
spinal MU degeneration, disuse, loss of central MU
trophic influences could be one of the many factors
behind these phenomena. Investigations on changes
in MU behaviour and function post stroke help
identification of factors that result in the deterio-
ration of muscle strength and activity [46]. Subse-
quently, it could also help in guiding treatment and
rehabilitation strategies.

Future versions of this study too, could focus
on understanding how HD-EMG decomposition
outcomes differ for healthy and stroke participants
in case of wrist muscles.

E. Wrist range of motion - stroke vs. healthy
patients

The flexion/extension angle is limited to
90◦(±45◦) in the stroke patient data. It should be of
note here that all stroke patient data was recorded
with the UHD which may have significantly af-
fected the allowable ranges of wrist flexion/exten-
sion angles. Table IV compares the ranges seen in
experimental stroke patient data to healthy patient
data from literature. The maximum wrist torque

Wrist motion Range of motion

Healthy Stroke
(Experimental)

Flexion 65-80◦ 18-35◦

Extension 55-75◦ 12-25◦

Table IV: Wrist ranges of motion - healthy vs. stroke patient
data

was limited to 10 N.m in the stroke patient data
used in this study. Experimental maximal flexion
torque values were in the range of 3.5-5.3 N.m
whereas maximal model flexion torque estimates
were in the range of 3-5 N.m. Experimental max-
imal extension torques ranged from 2-4 N.m and
maximal model extension torque estimates were in
the range of 2-3.5 N.m.

F. Flexion averages of all trials for each partic-
ipant

The flexion averages were calculated for all
cycles of each trial for every participant. For all
participants, calibration was done for two trials and
the calibrated model was extrapolated to all trials
of that participant.

1) Flexion averages - Participant 1
Figure A7 represents all trials for participant 1.

The R and RMSE values and standard deviations of
both experimental torque and estimated torque was
calculated for all trials. Figure A7a has the first
trial with R and RMSE values of 0.0029 N.m and
0.947 respectively. R and RMSE values for Figure
A7b, the second trial, are 0.2662 N.m and 0.9169
respectively. The third trial is given by Figure A7c
and has an RMSE value of 0.2659 N.m and R value
of 0.9544. The model was calibrated using trials
four and five. The RMSE of the fourth trial given
by Figure A7d is 0.1050 N.m and this trial has an
R value of 0.9555. Figure A7e represents the fifth
trial, and has an RMSE value of 0.1708 N.m and R
value of 0.9888. Figure A7f has RMSE and R val-
ues as 1.0650 and 0.9663, respectively. Figure A7g
has a comparatively higher RMSE value of 5.3036
N.m and an RMSE of 0.1095. Finally, the eight
trial as per Figure A7h has an RMSE of 2.8092
N.m and an R value an of 0.7633. The last two
trials, trial seven and nine have very high torques
in comparison to the other trials even though their
joint position and EMG data is comparable to the
other trials. Therefore, for these two trials the model
estimated torque is not as good as that for the other
trials.

2) Flexion averages - Participant 2
Figure A8 shows plots of all trials for participant

2. The R and RMSE values and standard deviations
of both experimental torque and estimated torque
was calculated for all trials. The first trial (Figure
A8a) has R and RMSE values of 0.0403 N.m
and 0.9273 respectively. The model was calibrated
using trials four and five. R and RMSE values for
the fourth trial (Figure A8b) are 0.6616 N.m and
0.9809 respectively. Figure A8c represents the fifth
trial and has an RMSE value of 0.3077 N.m and
R value of 0.8943. The RMSE of trial six (Figure
A8d) is 0.8781 N.m and this trial has an R value
of 0.9653.

3) Flexion averages - Participant 3
Figure A9 shows plots of all trials for participant

3. The R and RMSE values and standard deviations
of both experimental torque and estimated torque
was calculated for all trials. The fourth trial had
to be excluded from this study as there was no
experimental EMG extension activity in this trial.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure A7: Flexion averages of all trials of participant 1. The thick blue line represents the experimental torque whereas the thick
magenta line represents the estimated torque. The shaded area gives the standard deviation of the experimental and estimated
torques

The model was calibrated using trials three and six.
Trial three, Figure A9a has R and RMSE values of
0.3380 N.m and 0.9446 respectively. R and RMSE
values for the fifth trial, Figure A9b are 0.7201 N.m
and 0.8905 respectively. The sixth trial, Figure A9c
has an RMSE value of 0.6641 N.m and R value
of 0.9746. The RMSE of the seventh trial, Figure
A9d is 0.8498 N.m and this trial has an R value of
0.9668. The final trial number 8, given by Figure
A9e has an RMSE and R value of 1.56 N.m and
0.9688 respectively.

4) Flexion averages - Participant 5

Figure A10 shows plots of all trials for partici-
pant 5. The R and RMSE values and standard de-
viations of both experimental torque and estimated
torque was calculated for all trials. The model was
calibrated using trials three and four. The third trial
(Figure A10a) has R and RMSE values of 0.2527
N.m and 0.9626 respectively. R and RMSE values
for the fourth trial (Figure A10b) are 0.1496 N.m
and 0.9051 respectively. Figure A10c represents the
fifth trial and has an RMSE value of 0.0640 N.m
and R value of 0.9786. The RMSE of trial six
(Figure A10d) is 0.5140 N.m and this trial has an R

value of 0.3326. The sixth trial for this participant
had extremely large ECRB muscle forces and the
model estimated torque follows the pattern of the
ECRB muscle entirely, giving deviant values in
terms of shape and magnitude.
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(a) (b) (c)

(d)

Figure A8: Flexion averages of all trials of participant 2. Blue and magenta lines represent experimental adn estimated torques
respectively. The shaded area gives the standard deviation of the experimental and estimated torques

(a) (b) (c)

(d) (e)

Figure A9: Flexion averages of all trials of participant 3. Blue and magenta lines represent experimental adn estimated torques
respectively. The shaded area gives the standard deviation of the experimental and estimated torques

(a) (b) (c)

(d)

Figure A10: Flexion averages of all trials of participant 5. Blue and magenta lines represent experimental adn estimated torques
respectively. The shaded area gives the standard deviation of the experimental and estimated torques


