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SUMMARY

Recently, the Precision Engineering group at the University of Twente designed a 6-DoF 6-RSS manipulator based on large
stroke flexure hinges. The end-effector of this manipulator connects to the fixed world through a set of six parallel arms. The
manipulator should be capable of a setpoint repeatability of 50 nm, which due to the flexures and therefore lack of friction,
has to be enabled by a feedback controller.

In this work, four different feedback controllers (PID, H2, STSMC, and ADRC) are compared in their ability to maintain
a non-equilibrium position for a single 1-DoF arm of this manipulator. This is a challenging control problem due to the high
stiffness and lack of friction and a self-locking drive. H2 control is found to have the best standstill performance with an
RMS position error of 160 nm at the end-effector.
The comparison of the feedback controllers is extended by comparing their performance in tracking and disturbance rejection.
The tracking performance is tested using different levels of feedforward of the system’s dynamics, such that insight in their
performance for different types of disturbances is gained. When utilizing all the information regarding the system’s dynamics,
H2 has the best tracking performance. When less of the system dynamics is implemented in the feedforward, PID has the
best tracking performance. For the disturbance rejection, PID and ADRC have the best performance.

Furthermore, an analysis of the disturbances on the manipulator is performed. The primary sources of disturbances are
found to be the motor driver, cogging of the permanent magnet synchronous motor, and the hysteresis loop. The disturbance
caused by the motor drive originates from the current ripple caused by the PWM signal and the current sensor. The cogging is
determined using an analytical model, which is verified by a finite element analysis, which explained one of the two harmonics
found. The other harmonic found has a manufacturing origin. The last disturbance source found is the hysteresis loop, which
is believed to be of an electrical origin. The analysis showed that the loop is dependent on the sign of the velocity.
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Comparison of Motion Controllers for a Flexure-Based Precision
Manipulator

Dave Vogel 1

1University of Twente, Netherlands

For a flexure-based precision manipulator, four different feedback controllers (PID, H2, STSMC, and ADRC) are compared.
Their performance in maintaining a non-equilibrium position for a system without friction is measured, for which H2 control is
found to have the best standstill performance of 160 nm at the end-effector. These controllers are, furthermore, tested for their
performance in tracking and disturbance rejection. For the tracking performance, different levels of feedforward based on the
system’s dynamics are tested to give insight into the performance of the controllers. When all the system information is used H2

yields the best tracking results, otherwise PID outperforms the other controllers. For the disturbance rejection, PID or ADRC have
the best performance.

Index Terms—Feedback control comparison, PID, H2, STSMC, ADRC, Feedforward, Tracking, Disturbance Rejection, Precision
Systems.

INTRODUCTION AND BACKGROUND

For many application, e.g. in the semiconductor industry
and optics, the ever demanding increase in positioning perfor-
mance results that bearing based devices are no longer up to
the task due the their friction. Therefore, to meet tomorrows
requirements, a novel flexure-based manipulator is designed.

Flexure-based manipulators allow for high-precision posi-
tioning due to the absence of play and friction. However,
conventional flexure-based manipulators only allow small mo-
tions. Larger motions induce nonlinear and coupled stiffness
behaviour of the flexures, which requires complex analysis,
design, and optimization. This complex behaviour can be
modelled by sophisticated tools to design and optimize large
stroke flexures [1], which enables the design of a large-stroke
spherical joint [2]. The ability to design and model large stroke
joints ignited the idea to develop a fully flexure-based 6-DoF
manipulator with a high stroke over reproducibility ratio [3].

A previous flexure-based 6-DoF manipulator design, the
Commander6 built by Pyschny in 2013 [4], combines a
flexure mechanism with piezo-stages with roller bearings.
That system has a repeatability of 50 nm which is below
commercially available micro positioners listed in [4] that
have a repeatability down to 200 nm. On the other hand,
its workspace (maximum directional stroke ±4.5 mm), is
much smaller than the workspace of commercially available
manipulators.
The novel design presented in [3] and utilized in this paper,
combines a large workspace with low repeatability. The
fully flexure-based design, in combination with direct drive
actuation and contact-less sensing, results in the absence of
friction and play. As a result, the dynamics of the manipulator
are expected to be continuous and well predictable. The
design is depicted in Fig. 1. Its required workspace is a cube
with sides of 100 mm centred around the midpoint of the
platform. Furthermore, it should be able to rotate ±20◦ about
the horizontal axes and ±18◦ about the vertical axis. The

Fig. 1. The novel flexure-based 6-RSS manipulator [3].

desired repeatability is 50 nm. Moreover, it should be able to
reach accelerations up to 50 m s−2.

The unique aspects of the system, the combination of
the lack of friction, and a self-locking drive together with
being flexure-based, result in the absence of an equilibrium
position in the workspace. Furthermore, disturbances that are
conventionally negligible in comparison to friction become
relavant. Therefore, appropriate feedback control is required
to realise the set specifications for the novel manipulator. In
particular, the realisation of the tight standstill performance
results in a challenging control problem. Therefore an appro-
priate feedback controller has to be chosen. The (feedback)
control of manipulators is a well-covered area of research,
and many control strategies have been proposed in literature.
Various one-to-one comparisons have been found: PID vs.
SMC [5]; SMC vs. STSMC [6]; PID vs. H2 [7]; and lastly,
PID vs. Linear ADRC [8]. However, a good comparison of
the performance of the various methods has not been found in
literature. Furthermore, it is not fully clear how the presence of
stiffness and the absence of friction affects their performance.

The contribution of this paper is an extensive comparison
between PID, H2, Super Twisting Sliding Mode (STSMC),
Linear Active Disturbance Rejection Control (LADRC), and
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Fig. 2. An exploded view of the 1-DoF base joint [3]. 1) The butterfly flexure.
2) The stator of the direct drive motor. 3) The rotor of the direct drive motor.
4. illustrates the position of the encoder.

Nonlinear ADRC (NLADRC) for the considered manipulator.
In particular, the suitability of the methods for high standstill
accuracy in the presence of stiffness and absence of self-
locking and friction are investigated. Furthermore, disturbance
rejection and tracking with or without feedforward are evalu-
ated.
The first section presents the one degree of freedom (1-
DoF) system, which is built as a proof of concept of the
more extensive 6-DoF system introduced earlier. Furthermore,
this 1-DoF manipulator is used for the comparison of the
different feedback controllers. The second section introduces
the various feedback controllers. Furthermore, the feedforward
control is described, which is added to the feedback controllers
to show the combinatory effect on tracking performance. The
feedforward is based on the identification of the system’s
dynamics. The third section describes the experimental results
of the feedback controllers for their performance in standstill,
tracking and disturbance rejection. This paper ends with con-
clusions and a discussion on possible improvements.

SYSTEM DESCRIPTION

To prove the concept of the complete system, the actuated
1-DoF rotational joint at the base is built. This allows to
test the behaviour of the base joint and compare control
algorithms for their performance. The 1-DoF system is
depicted in Fig. 2. Furthermore, an additional load of 1.46 kg
can be mounted to mimic the load of the full system. The
joint has similar characteristics as the 6-DoF system as
it is a system without mechanical hysteresis, Therefore,
enabling high precision, high repeatability and overall high
performance. The design goals for the 6-DoF system have
been converted for the 1-DoF system by dividing the earlier
mentioned specifications with the transmission ratio, l, of
0.1 m. This translates to a resolution of 500 nrad, rotations
of ±0.52 rad (30◦) and acceleration of 500 rad s−2 for the
1-DoF system.

The components used to control the 1-DoF system are listed
in Table I, including their main specifications. The encoder
is positioned at the base. Its readout strip is mounted to a
rotational body with a radius of 0.075 m. the corresponding
position measurement resolution of the angle of the 1-DoF
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Fig. 3. The frequency response of the system measured at −25, 0, 250◦ with
different responses.

setup is 0.2 nrad.
The motor driver is set in the current mode control setting. Its
current loop runs a PI controller with a crossover frequency
of 65 VA−1 and a sampling frequency of 2− 4 kHz [9]. The
motor driver has a quantization on the output of 1 mARMS,
which turned out to be one of the key limiting factors for
the accuracy together with the current noise of 4− 9 mARMS
produced by the motor driver1. Higher level control executed
on a Simulink real-time platform at a sampling frequency of
1 kHz.

The system’s dynamic behaviour is identified using a chirp
signal from 2 to 500 Hz with an amplitude of 50 mARMS. This
is energetic enough, such that the linear behaviour is visible.
Moreover, the procedure was performed at various positions
to illustrate the positions influence on the system’s responce.
The transfer function of the system was fitted manually to the
response at 0◦ and is identified as

G(s) =
1

0.2s2 + 0.74s+ 11.46
, (1)

which is a fully observable and controllable plant. The input is
expressed in mARMS and the output in degrees. Fig. 3 shows
the measured system response and the fitted transfer function.
This transfer function is used for all the control designs and the
simulations. The transfer function is accurate up to the second
resonance frequency, which, depending on the position of the
system, is between 65 to 80 Hz. Furthermore, the system has
a delay of 3 time steps.

CONTROL DESIGN

The lack of friction and a self-locking drive result in a
situation where every disturbance on the system is measurable
on the output. Furthermore, the stiffness of the flexures causes
the system to be out of equilibrium during standstill. To meet
the required repeatability of 50 nm, a feedback controller is
required to compensate the various disturbances on the system,
such as input disturbance caused by the motor driver.

The control design is separated into two sections. First,
the feedback controllers are designed to ensure the desired

1A more in-depth analysis of the current noise and its consequences is
found in section C-B.
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TABLE I
OVERVIEW OF THE COMPONENTS USED IN THE 1-DOF SYSTEM.

Component Product name Main specifications

Motor driver Kollmorgon AKD-P00306 [9] Continuous current of 3 ARMS, Peak current of 9 ARMS

Encoder Heidenhain LIC-401 (411) [10] Position resolution ±2 · 10−9 m

Motor Tecnotion QTR-A-133-60-N [11] Motor constant, Km, of 5.57 Nm/ARMS, continuous current of
3.93 ARMS, peak current of 7.37 ARMS, and an ultimate 13.5 ARMS.

Controller Speedgoat [12] Quad core Intel Celeron, 4GB RAM memory, and 32GB SSD
running Matworks Simulink Real-time with a sampling frequency of
1000 Hz

standstill performance and to cancel disturbances. Secondly,
feedforward control is implemented for an increase in tracking
performance.

Feedback
Four feedback controllers are chosen for their advantages.

First, Proportional-Integral-Derivative control (PID) for
its simplicity and its widespread use in industry [13].
Second, H2 control for its optimality and minimalization in
noise [14]. Third, Sliding Mode Control (SMC) and Super
Twisted Sliding Mode Control (STSMC) for its robustness,
model independence and tracking performance [15]. Finally,
Linear and Non-Linear Active Disturbance Rejection
Control (LADRC, NLADRC) for to its robustness, model
independence and overall high performance [16].

PID Control
In 1922 N. Minorsky introduced the PID [17] and although

it is the oldest feedback controller, it is still the most com-
monly used feedback controller in industry, mainly due to its
simplicity and robustness against parameter changes [13]. The
continuous PID controller in parallel form is given by

K(s) = Kp +
Ki

s
+

Kds

sτ + 1
, (2)

where Kp, Ki, and Kd are the proportional, integral and
derivative gains respectively. τ is the time constant selected
a priori which limits the high-frequency gain of the PID-
controller [18]. The process of designing a controller which
has a high performance and stability is relatively complex.
Due to its parallel nature, each parameter has to be individually
tuned. An indication of its complexity are the more than 8.000
hits on www.scopus.com when one searches for ”PID” and
”tuning”. Van Dijk et al. [18] proposed a tuning method for
a serial PID-controller, which reduces the amount of tuning
parameters and has a much clearer connection to the tuning
process. The main idea behind the method is to have maximum
phase lead at the open-loop cross-over frequency ωc to ensure
stability. The method maintains the characteristics of a PID
controller such as the high gain at low frequencies. For a
(dominant) second-order system with equivalent mass meq, the
serial PID controller is described by

K(s) = kp ·
(sτz + 1)(sτi + 1)

sτi(sτp + 1)
, (3)

where τp, τz, τi, and Kp are defined by ωc, α, and β through
the following relationships

τz =

√
1
α

ωc
, τi = β · τz,

τp = 1

ωc·
√

1
α

, kp =
meqω

2
c√

1
α

.
(4)

Here, the parameter ωc defines the cross-over frequency at
which the phase lead is designed to reach its maximum. The
parameter α defines the amount of phase-lead by placing the
poles closer or further away of the cross-over frequency and
is usually set between 0.1 and 0.3. The parameter β ensures
that the phase-lag of the integrator does not interfere with the
phase lead of the derivative action by positioning the integrator
pole further below the pole of the derivative, therefore, β > 1.
The last parameter, kp, scales the controller with the system’s
inertia.

Knowing the design and the identified system, the PID
controller can be designed using Eq. (1). To reduce noise
sensitivity, the bandwidth of the controller is set as high
as possible. The limit on the bandwidth is found to be an
ωc of 35 Hz, with α equal to 0.1, and β equal to 2. The
delay in combination with the sample frequencies limits the
crossover frequency. The open-loop response of the designed
PID controller is shown in Fig. 4 from which can be seen that
stability up to 35 Hz is obtained and that the system’s noise
sensitivity is reduced. Analysis shows a bandwidth of 60 Hz.
The process sensitivity is shown in Fig. 6.

H2 Control

The first commonly used alternative to the PID presented
here is the H2 control design. H2 control its goal is to
minimize the overall energy transfer in the system, which
results in a minimal noise sensitivity and therefore, the best
standstill performance. It was developed in the 1980s and is the
result of the robust control philosophy. The H2 control design
used here is adapted from Kwakernaak [14]. It is commenly
called a ”mixed sensitivity” problem, which minimizes the
energy in the frequency domain and by Parseval’s equality
also in the time domain.
Its solution is optimized by adding weights to the system,
emphasising the location of minimalization. W1 is the weight
on the output and W2 is the weight on the input. Both of
these weights are important in different frequency regimes.



MSC. THESIS D.W. VOGEL 9

-100

-50

0

50

100

M
a

g
n

it
u

d
e

 (
d

B
)

10
0

10
1

10
2

10
3

10
4

-810
-720
-630
-540
-450
-360
-270
-180

-90
0

P
h

a
s

e
 (

d
e

g
)

PID

H

 

Frequency  (rad/s)

2

Fig. 4. Open loop response for PID and H2 control. The black line is placed
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Z2 W

-
K(s) G(s)

W2(s)

W1(s) Z1

Reference

Fig. 5. Schematic of the H2 controller. The positions of W1 and W2 indicate
the signal used for the algorithm.

W1 is dominant in the lower frequency regime and W2 at
higher frequencies. The overall layout of the system with the
controller is shown in Fig. 5. The control problem can be
solved by minimizing the following L2 norm:

|| [W1S,W2KS] ||2H2
= ||W1S||2 + ||W2KS||2

=
1

π

∫ ∞
0

|W1(iω)S|2 + |W2(iω)K(iω)S(iω)|2dω,
(5)

where K is the controller and S the sensitivity function which
is S = 1

1+gk . The optimal controller for the system minimizes
this L2-norm and therefore tries to keep both |W1S|2 and
|W2KS|2 as small as possible. To have zero steady-state error,
an integral action is required. This is done by adding an
integrator (s−1) to W1, which results in the sensitivity function
being small in the low-frequency range. The integral action
has to be cut off after a certain frequency, since otherwise, its
phase lag would negatively influence the system. So, the cutoff
frequency is chosen to be equal to the PID controller, which
is at 30 Hz. Furthermore, it is known that the current noise
at the input is the dominant disturbance. So, by adding the
plant, P , to W1, the input sensitivity of the system is reduced.
W2 mainly influences the amplitude of the input. Attaching
importance to its amplitude does not result in better noise
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Fig. 6. Process senstivity of PID and H2 control.

rejection. Therefore its size is kept much smaller than the size
of W1 such that the minimalization of W1 becomes dominant.
Concluding, the following weights are chosen:

W1(s) = α
G(s) · (s+ 30)

s
,

W2(s) = 1e−8.
(6)

The variable α is added as a scalings factor chosen to be
equal to 10. Based on the weights, the controller is calculated
using the Matlab command h2syn. The resulting controller
is of 5th order, as expected, due to the added orders by the
weights [14] and has a bandwidth of 70 Hz. The open-loop
response of the resulting controller is shown in Fig. 4 and the
sensitivity in Fig. 6. Its shape has the same characteristics as
an PID-plus where an aditional phase is added in the higher
frequency region to increase the bandwidth.

Sliding Mode Control
Sliding Mode Control (SMC) is a well-known discontinuous

feedback control technique. Its design originates from the
Soviet Union around the 1950s. The first western publication is
done by Itkis in 1976 [19]. Its strength is in handling bounded
uncertainties, disturbances, and parasitic dynamics due to its
non-linearity [15]. The SMC algorithm design entails two
phases, namely, design of the sliding mode surface, σ, and
design of the control input. The sliding mode surface defines
the dynamics over which the error is minimized. A typical
sliding surface, which is also used for the system, is

σ =

(
d

dt
+ p

)k
· e. (7)

The parameter e is the error between the reference, r and
the output, y. The goal is to control the variable σ to zero.
The choice of the positive parameter p is tuneable and defines
the unique pole of the resulting ”reduced dynamics” during
sliding. The parameter k, however, is critical and has to be
equal to r − 1 with r being the relative degree between y
and u, which is 2 for the plant. The second phase defines the
control input, u, as a function of σ. The standard version of
the control input is

u = −Ksign(σ). (8)

The input changes on the sign of σ and the variable K
indicates its amplitude. During its reaching phase, the control
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variable u is constant, however, in steady state u commutes
at a very high (theoretically infinite) frequency between the
values u = K and u = −K. This switching between the
positive and negative value is known as chattering, which is a
drawback of the standard sliding mode control. The amplitude
and speed of the chattering depend on both the delay and
sample frequency [15]. The influence of chattering on our
plant is more extensive than for conventional systems due to
the lack of friction, which makes any chattering measurable.
This, together with the high-performance requirement, makes
that the standard SMC does not yield satisfying results. Neither
does the usual solutions such as a smoothing function as
described in [20].

An alternative to the earlier proposed control input function
is a second order sliding mode control, a so-called Super
Twisting Sliding Mode Control (STSMC). This makes the
control signal continuous in time while maintaining its per-
formance and its ability to converge in finite time [20]. The
STSMC uses the same sliding surface as the normal SMC but
with a different control action

u = −λ
√
|σ|sign(σ) + w,

ẇ = −W sign(σ), (9)

with the parameters U and W defined as

λ =
√
U, W = 1.1U, (10)

where U is a positive constant which is taken sufficiently
large. The result can be described as a non-linear PI
controller, which yields a continuous input signal due to the
integral action. This solves the chattering issue and no longer
attenuates the high-frequency components. Furthermore,
it yields better standstill performance. However, it also
compromises the response time due to the integral action.
The system is found to behave optimally for an U equal to
1000. This yields a response, which is neither too strong that
it would reintroduces chattering, nor so weak that it would no
longer filters the disturbances. The STSMC yields a decrease
in disturbance rejection but a better standstill performance
than the standard SMC due to the reduction of chattering.

Active Disturbance Rejection Control
Active Disturbance rejection control (ADRC) is the newest

of the four compared feedback controllers. It was origi-
nally presented by Han in 1999 in Chinese and in 2009 in
English [16]. It was presented as the next step in control
engineering, which would replace PID in the industry. Some
examples of application in industry are discussed in [21],
[22], [13] with beneficiary results. It strives to address four
weaknesses of PID: First, computational errors. Second, noise
degradation in the derivative control. Third, oversimplification
and the loss of performance in the control law in the form
of a linear weighted sum. And finally, the complications
brought by the integral control [16]. ADRC is based on the
formulation of state feedback control and heavily relies on
the Extended State Observer (ESO) for the improvements
over PID, which yields the improved disturbance rejection

K(s)

Reference

TPG
-

-

rx

rv -

Z1 ESO

Z2
Z3

b G(s) Output

Fig. 7. The ADRC topology with the individual components.

property and integral behaviour. Additionally, the ADRC is
composed of a convergence technique based on either a linear
or a nonlinear function, which are applied to the observer
and controller gains [16]. Furthermore, a Transient Profile
Generator (TPG) generates a smooth control reference. The
topology of the ADRC framework is shown in Fig. 7. ADRC,
similar to PID, is a non-model-based control strategy which
requires minimal information of the plant, requiring only the
knowledge of the plant’s inertia and the sampling time.

The ADRC framework here is applied on a second order
SISO plant to show its potential. However, the framework can
also be applied to first and higher order plant, which can also
be MIMO [13]. The second order plant is described by

ẋ1 = x2,

ẋ2 = f(x1, x2, w(t), t) + bu,

y = x1,

(11)

where u is the system’s input, y is the system’s output, b
is either a linear function or a bounded non-linear function,
and f(x1, x2, w(t), t) is a bounded non-linear function that
contains terms of the state vector x, which can be seen as the
internal disturbances since the plant dynamics do not match
the plant’s model, external disturbances w(t), and time t.
From this formulation of the plant, the features of the ADRC
can be designed. Firstly, the transient profile generator (TPG)
is designed. Secondly, the extended state observer (ESO) is
presented. Lastly, the linear or nonlinear feedback parameters
are constructed.

Transient Profile Generator
The transient profile generator proposed by Han [16] is ob-
tained by a time-optimal solution for the control of a double
integrator plant. His primary motivation for the TPG is to filter
setpoint jumps in the reference so that the reference signal
becomes more suitable for tracking. Its result is an input signal
which contains less energy in the higher frequencies, and,
therefore, reduces the tracking error. Furthermore, it improves
the settling time. The TGP is formulated as

v̇1 = v2,

v̇2 = −rsign
(
v1 − v +

v2|v2|
2r

)
,

(12)

where v is the desired value of x1, v1 is the desired trajectory
and v2 the derivative of v1. Where as the parameter r is used
to limit the acceleration of the transient profile. The proposed
solution, however, could introduce significant numerical errors
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in a discrete-time implementation. Therefore, a discrete-time
solution is designed as

v1 = v1 + hv2,

v2 = v2 + hu, |u| ≤ r,
(13)

where u = Fhan(v1, v2, r0, h0). The function Fhan limites the
accelerations. It is described by

d = h20r0,

a0 = h0v2,

y = v1 + a0,

a1 =
√
d (d+ 8|y|),

a2 = a0 + sign (y) · a1 − d
2

,

sy =
(sign (y + d)− sign (y − d))

2
,

a = (a0 + y − a2) sy + a2,

sa =
(sign(a+ d)− sign(a− d))

2

Fhan = −r0
(a
d
− sign(a)

)
sa − r0sign(a).

(14)

The function Fhan guarantees the fastest convergence from
v1 to v without an overshoot. The parameters r0 and h0
are equal to r and the sample time h, which can be tuned
for the desired speed and smoothness. It is important to
remark that this equation is different than the version
presented by Han[16]. The author found that the version in
Han’s paper contains d = h0r

2
0 , which caused unstable results.

Extended State Observer
Next, the Extended State Observer (ESO) of the framework
is described. The ESO is used to estimate the disturbance on
the plant compared to a plant in output canonical form. The
use of a plant in canonical form for the observer eliminates
the requirement of a mathematical expression for the actual
plant which makes it much easier to use compared to other
observers while maintaining a high performance [23]. An ESO
is applicable for most nonlinear MIMO time-varying systems,
but will here be applied to the second order SISO system
described earlier in Eq. (1).

The objective is to make the output, y, behave as desired
using u as the manipulative variable. To accomplish this the
ESO treats the disturbance, f(x1, x2, w, t), as an additional
state, x3. Let ḟ = G(t). As mentioned earlier, f does not
need to be known to be estimated, just like G(t). The original
plant is now described by

ẋ1 = x2,

ẋ2 = x3 + bu,

ẋ3 = G(t),

y = x1,

(15)

which is always observable. The ESO can now be constructed
as a state observer, which makes use of the additional state,
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Fig. 8. Comparison of linear and nonlinear gains with variyng α for the
function fal. The inside of the delta region shows the region where the gains
behave linear. Outside the delta region the gains are nonlinear.

in the continuous form of

e = z1 − y,
fe = fal(e, α1, σ),

fe1 = fal(e, α2, σ),

ż1 = z2 − β1e,

ż2 = z3 +
u

b0
− β2fe,

ż3 = −β3fe1.

(16)

A discrete implementation can be found in the paper of
Han [16]. The ESO can be used with either linear or nonlinear
gains. For the nonlinear ESO the functions fe and fe1 are used
to compute the nonlinear gains which rely on the function fal:

fal =

{
e

δ1−α , |x| ≤ δ
|e|αsign(e), |x| > δ

(17)

where δ indicates the linear gain region. An illustration of
Fal is presented in Fig. 8. It shows that: α ≥ 0 tunes the
nonlinear gains. α ≤ 1 results in a big gain within the δ region
and small outside. α ≥ 1 results in a small gain within the δ
region and big outside. For α = 1, the result is a linear gain
and α = 0 results in a ”bang-bang control” similar to SMC.
This is illustrated in Fig. 8 where it is compared to a linear
gain. The nonlinearity of the function fal yields a remarkable
improvement and results in convergence in finite time [16].
α1 and α2 are empirically determined to be equal to 0.25 and
0.3. The poles for the nonlinear ESO are

Lnonlin = [β1, β2, β3]
T
=

[
1

0.3h
,

22

h
√
h
,
5
√
5

h2

]
. (18)

These values of β1, β2, and β3 have again been determined
empirically. When one prefers to use a linear ESO then fe and
fe1 are replaced by e. The poles for the linear ESO are tuned
as a function of ωo and are described by

Llin = [β1, β2, β3]
T
=
[
3ωo, 3ω

2
o , ω

3
o

]T
. (19)

The estimated disturbance by the extended state z3, from
either the nonlinear or linear ESO, can be used to cancel any
disturbance measured. By applying the following control law

u = b0 (−z3 + u0) , (20)
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the system can cancel both the internal disturbances and
external disturbances. This control law reduces the overall
system to

ÿ = f − b0z3 + b0u0 ≈ b0u0, (21)

which is a typical second-order integral plant. At this point,
all the disturbances have been cancelled indeed without the
need for a mathematical expression of f . A critical remark
to make here is that all the estimates of ESO depend on the
measured value of x1. Hence, the quality of the position
measurement greatly affects the performance of the ESO [16].
The resulting system can be easily controlled by making u0
a function of the error, as discussed below.

Feedback Controller
The last part of the ADRC is the feedback controller. The
feedback controller will be implemented on the resulting
cascade plant from the ESO. Two options are designed, a
linear and a nonlinear feedback controller. The advantage of
nonlinear feedback is that the error can reach zero in finite
time, whereas linear feedback is only able to reach zero
in infinite time [16]. The nonlinear feedback proposed by
Han [16] is

u0 = Fhan(e1, e2, r, h1), (22)

where Fhan is the function earlier described for the TPG. e1
is the error in position v1 − z1, e2 is the error in velocity
v2 − z2, the parameter r sets the acceleration limit, and h1
is the precision coefficient which sets the aggresiveness of
the controller which is a multiple of the sample time h. The
function Fhan can also be used as the feedback controller since
it results in a time-optimal solution for a second-order plant,
which closely resembles the real plant with the ESO. The
result is a feedback controller which reduces the steady state
error in such a manner that an integral control together with
its pitfalls can be avoided and have zero steady-state error
without an integral action as in PID.

In case a linear controller is preferred, a simple PD con-
troller is sufficient to yield decent performance with zero
steady-state error due to the ESO, e.g

u0 = γ1e1 + γ2e2, (23)

where the poles of γ can be tuned as a function of ωc

[γ1, γ2]
T = [2ωc, ω

2
c ]
T . (24)

Now all the individual components have been explained the
complete controller can be put together. Both the linear and
nonlinear controller are designed and tested. The parameters
which are used in both linear and nonlinear are noted first.
The systems inertia, b0, is 0.2. The sample time is 1 ms.
The maximum acceleration is set to 500 rad s−2, which corre-
sponds to 5 G at the end-effector. Next, the parameters of the
linear controller are explained. The linear active disturbance
rejection controller (LADRC) has the crossover frequency of
the observer placed at 80 Hz. Any higher crossover frequency
for the observer results in instability. This instability is the
result of the delay in combination with the sampling frequency.

The crossover of the observer also limits the crossover of the
PD controller, which is generally placed 10 times as slow as
the observer [16]. The optimal crossover for the PD controller
was found to be 5 Hz.

Lastly, the parameters for the nonlinear active disturbance
rejection controller (NLADRC) are designed as a function of
the sample time, h. The only parameter which yet to be defined
is h1, which is set to 10 ms. If h1 would be chosen smaller,
then the system would become unstable due to the delay of 3
ms.

In the experiments, the TPG is removed since a fourth order
reference profile is applied, which removes the benefit of the
TPG. In operations where only a setpoint is given, the TPG
would yield a performance increase.

Feedforward

Due to the highly deterministic nature of the system,
feedforward of the dynamics potentially yields a significant
improvement in its tracking performance. The feedforward
can be separated into four elements: the acceleration, gravity,
stiffness, and, lastly, the cogging. These elements together
have been found to contain all the information to move the
system to the desired position. The complete feedforward is
described by

Iff = Im + Ig + Is + Ic. (25)

The complete design of the feedforward of the system dy-
namics is without a velocity dependent component, since there
are no elements that influence the system, due to the lack of
friction, or they are not big enough to be off a measurable
influence such as the air.

The feedforward for PID, H2, and SMC can easily
be implemented as an additional input. However, the
implementation of feedforward for ADRC requires some
changes. Its observer is based on a moving mass which
does not have the position related dynamics. Therefore, the
acceleration and the other feedforward components have to
be separated, and only the acceleration related components
have to be applied to the observer. The complete feedforward
has to be applied to the system, which reduces the differences
between the observer and system. First, the individual
elements are described. After this, all the feedforward
elements are estimated at once using nonlinear regression.

Acceleration Feedforward
The acceleration feedforward can be easily calculated from

the required acceleration. The required torque for the acceler-
ations is described by

Im =
Jα

Km
, (26)

where Im is the computed RMS current required for the
acceleration. Km is the motor constant. J is the inertia of
the system, and α are the rotational accelerations, which are
given by the reference profile.
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Fig. 9. The stiffness of the butterfly hinge mounted in the base over position.

Gravity Compensation
The gravity component depends on the system’s position.

The amount of torque required for compensating the gravita-
tional forces on the system is

τg =
mgl

Km
sin(2π · θ + φ), (27)

where m is the mass, which is 1.46 kg, g is the gravitational
constant, 9.813 m s−2, at the measurement location (Twente,
Netherlands), l is the distance from the centre of rotation to
the centre of the beam in meters. θ is the angle from the initial
position, and φ is the initial position. The initial position is
estimated using regression and is 3.6652 rad (210◦). 2

Stiffness Feedforward
Simulations of the flexures show that a large and relatively

linear stiffness can be expected. These simulation results are
shown in Fig. 9 and indicate that the stiffness for a clockwise
and counterclockwise rotation only has a minor difference of
5%. Therefore the assumption is made that both sides have a
constant stiffness such that the stiffness can be estimated with
a minimal amount of parameters, which is a linear function
with an offset

Is =
aθ + b

Km
, (28)

where a is the stiffness of the hinges and the variable b is
due to the flexures not being in their neutral angle at 0 rad.

Cogging Compensation
The cogging torque is a consequence of the permanent

magnet synchronous motor (PMSM) and completely
determined by the geometry [24]. It is the result of the
interaction between the rotor’s magnets and the iron in the
stator which have a preferential position. This is where
the reluctance is minimal [24]. If the PMSM is not at this
preferential position, it experiences a torque towards this
position. The cogging has zero mean over a full mechanical
period and a periodicity matching with the motor design3.
Furthermore, the cogging can be separated into a current
independent and dependent element. For the feedforward
design, the current dependent components are assumed to be
negligible. This approximation is valid since the dependence

2See Appendix B for the full calculations.
3See section D for a full explenation regarding the cogging

only starts to play a role when the current rises above the
maximum continuous current of 3 ARMS [11].

The PMSM used in the setup has 21 poles and 28 mag-
nets [11]. From this, the fundamental order of the waveform of
the cogging can be calculated using the lowest common mul-
tiple of the poles and the magnets [25]. The resulting expected
base harmonic, Nb, is 0.0748 rad. The other components
are a higher-order of this base harmonic. However, elements
such as pivot shift of the flexure bearing (the displacement
of the centre of rotation) or non-concentricity may cause
cogging elements in frequencies other than the base or higher-
order harmonics. Therefore, twenty sinusoids with estimated
frequencies, amplitudes and phases are used

Ic =
1

Km

20∑
n=1

an cos(bnθ + φn), (29)

with m being the number of sines used to fit the cogging, an
the amplitude of that sinusoids, φn the estimated phase shift
and bn the estimated frequency.

Complete feedforward
Using the individual elements of the feedforward, the po-

sition related feedforward can be estimated at once. This
minimizes the chance to misinterpret a component by other
elements of the feedforward. Fig. 10 shows the reference
current used for the estimation of the feedforward signal and
the actual fit on the signal. The fit is made using a nonlinear
estimation with Matlab with the initial values set to the values
derived from a model of the system with nominal design
parameters. The RMS error on the position related feedforward
of the estimation is 1.93 mARMS. By combining the fit shown
in Fig. 10 with acceleration feedforward yields the complete
feedforward which has been found to describe the system’s
dynamics.
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Fig. 10. The required current and estimated current for the feedforward over
the position.

EXPERIMENTAL RESULTS

The designed feedback controllers are compared on their
performance at standstill position, tracking, and disturbance
rejection. Standstill performance is the essential measure for
the system. The expectation is that all controllers have their
strengths and weaknesses, such as differences in standstill per-
formance and tracking performance. The tracking performance
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is also evaluated in combination with feedforward, and it is
expected that a more accurate feedforward will improve the
tracking performance. The system’s performance is evaluated
with the RMS error and maximum error. For the disturbance
tests the settling time is also displayed. The RMS error is
calculated by

ERMS = L

√√√√ 1

N

N∑
n=1

(pn − psp)
2
, (30)

where L is the transmision ratio of the complete system, N is
the number of samples of the experiment, pn is the measured
position, and psp is the desired position. The overall results
are shown in Table II.

Standstill performance

Position performance is potentially one of the unique spec-
ifications of the system, which has to be enabled by the
feedback controller. Therefore, the feedback controllers are
compared at the same position since the main goal of the
system to minimize variance in the experiment.
It is tested by maintaining the same position for 160 s. No
feedforward is used since the disturbances influencing the
standstill performance are not implemented in the feedforward.
Feedforward would, therefore, not result in different results.
The results for the standstill RMS error are depicted in Fig. 11
and listed in Table II. In Fig.11 the cumulative power spectral
density (CPSD) is shown, which illustrates the contribution of
the frequency content of the noise spectrum to the RMS noise.
It is calculated by the square root of the cumulative sum of
the signal squared at each frequency. The final value of CPSD
equals the RMS position error in Table II due to Parseval’s
identity.

10 20 30 40 50 60 70 80 90

Frequency (Hz)

0

1

2

3

C
u

m
s

u
m

 R
M

S
 e

rr
o

r 
(m

) 10
-7

PID H
2

STSMC LADRC

NLADRC

Fig. 11. Cumulative Power spectrum of the standstill error for various
controllers.

The best performing controller is, as expected, the H2

control. H2 minimises the energy transfer in the system which
should yield the best noise rejection characteristics. The result
of PID closely resembles the shape of H2. However, it is less
effective in the lower frequency regime. This is expected since
the open loop plot in Fig. 4 also shows a worse performance,
which results in a higher noise level. The LADRC is made
of two components, the PD controller and the ESO. Its PD
controller has a relatively low crossover frequency, which

results in a poor performance in this lower frequency region.
The ESO, however, is its strong point and reduces the noise
in the mid-frequency regime very efficiently. This induces that
the overall noise level is identical to PID, although, with
a different distribution. The NLADRC is tuned differently
and has the best performance of all the controllers in the
lower frequency regime. This is due to the nonlinearity of the
controller, which allows it to be more aggressive. The STSMC
has the highest RMS error of the controllers, which is the result
of the integral action used to solve the chattering. The integral
action causes a delay in the response and therefore, a higher
noise level. Overall, the best performing controller is the H2,
which outperforms all the controllers in every frequency region
beyond 3 Hz.

The system’s standstill performance is limited by the
amount of disturbance on the system. The main noise source
is the motor driver, which exerts an RMS current noise of 4
mARMS in the current position. Furthermore, the motor driver
has a quantisation on the current setpoint of 1 mARMS, which
limits the performance of the system by making it impossible
to cancel the disturbances with a smaller magnitude. The
sampling frequency of 1 kHz together with the 3 time samples
delay, places a limitation on the feedback controllers.

Tracking Performance

Although the main requirement on the feedback controllers
is to achieve high standstill accuracy, the controllers can also
be used for tracking a reference signal. Even though H2 has
the best standstill performance, the same does not have to be
true for the tracking performance. To test this, all the feedback
controllers have been tested for their performance in tracking
a reference signal. The profile has to be sufficiently tough,
such that the feedback controllers have difficulty tracking.
Furthermore, it may not contain any discontinuities or other
properties, which would make it physically impossible to
track.

The reference profile is made following the method pro-
posed by P. Lambrechts [26]. This creates a fourth order
continuous reference profile. The reason that a fourth order
motion profile is beneficial over, for example, a second order
one, is that higher order trajectories inherently have a lower
energy content at higher frequencies. This results in lower
high-frequency content of the error signal, which in turn
enables the feedback controller to be more effective [26], [18].
Therefore a finite jerk, acceleration, and velocity are required
to reduce the tracking error [18].

Furthermore, higher order trajectories have less chance
of demanding a motion which is physically impossible to
perform by the motion system, for example, due to a ’rise
time’ in the current [26].
The designed motion has its initial position at
−0.4363 rad (−25◦) and ends at 0.4363 rad (25◦),
which corresponds to a stroke of 83% of the full range. The
velocity is limited to ±5/9π rad s−1 and the acceleration
to 27/9π rad s−2. The profile for one motion is depicted
in Fig. 12. The profile is designed such that it uses almost
the full range of the system with clearly distinguishable
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TABLE II
OVERVIEW OF THE ERRORS OF THE VARIOUS CONTROLLERS FOR THE DIFFERENT EXPERIMENTS DONE.

PID H2 STSMC LADRC NLADRC

Standstill RMS error (µm) 0.19 0.16 0.28 0.19 0.18

RMS error no feedforward (µm) 174 213 750 1957 545

Max. error no feedforward (µm) 357 489 2350 3674 1120

RMS error Acceleration feedforward (µm) 153 174 590 187 181

Max. error Acceleration feedforward (µm) 374 505 2295 492 481

RMS error Acceleration, gravity, and stiffness feedforward (µm) 51.7 86.7 67.0 76.1 87.1

Max. error Acceleration, gravity, and stiffness feedforward (µm) 140 225 203 200 200

RMS error Full feedforward (µm) 50.7 43.6 48.7 68.6 45.3

Max. error Full feedforward (µm) 145 112 174 222 123

Max. error step disturbance (µm) 137 166 14000 131 133

Settling time (ms) 255 305 374 245 206
Max. error sinusoidal disturbance (µm) 8.8 9.6 30.3 13.0 10.7
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Fig. 12. The fourth order reference profile and its time derivatives as used
for the tracking performance experiments.

sections of constant acceleration and velocity. Furthermore,
the reference trajectory is within the specifications of the
system.

This experiment has been extended by comparing the
tracking performances with different levels of feedforward
of the dynamical system components. The initial experiment
is executed without feedforward. In subsequent experiments,
feedforward components have been added to see their effect.

The elements of the system’s dynamics are added to the
feedforward such that the amount of information required
for the feedforward increases, in particular: no feedforward,
acceleration feedforward, the addition of gravity and stiffness
feedforward and addition of cogging. The controllers are
evaluated on their performance in RMS error and maximum
error during the reference trajectory.

The first test is carried out without any feedforward im-
plemented. The error during this motion is shown in Fig 13
and the measures are listed in Table II as RMS and maximum
error without feedforward. The LADRC has the largest error,
which is highly dependent on the accelerations. This is the
result of the low crossover frequency of the PD controller
and the observer, as well as the system, being unable to track
the reference profile. Therefore, the integral action performed
by the observers is unable to function. However, during the
constant velocity regime, the observer is able to perform its
integral action, and the system’s error becomes identical to
the other controllers. Furthermore, its settling time is the
largest, which is again due to the observer. The NLADRC
shows similar results although its NL PD controller is more
aggressive and therefore results in a smaller error related to the
accelerations. This results in a smaller RMS error and settling
time. The results of H2 and PID are almost identical, which is
predicted by their bode plots, which show a similar behaviour
in the frequency regime at which this movement takes place.
The STSMC lacks in performance due to the super twisting
adaptation, which decreased its response time in favour of its
standstill performance.

During the second experiment, the acceleration feedforward
is added. The same reference trajectory is used to evaluate the
performance. The results are shown in Fig. 14 and Table II
for RMS and maximum error with acceleration feedforward.
All the controllers show a decrease in RMS error during the
accelerations phases. With a minimal improvement of the RMS
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Fig. 13. The tracking error over time for the various controllers without
feedforward.

error for PID, H2, and TSMC since these already performed
well during this phase. However, both LADRC and NLADRC
show a significant improvement. This improvement origniates
from the observer being able to better tracking the reference
signal during this phase of the motion, which enables the
disturbance rejection on the plant. The controllers, except
for STSMC, now perform almost identical. The acceleration
feedforward increases the performance of the system while
it does not require any additional knowledge of the system
than required for the design of PID, ADRC of STSMC, which
makes it easy to implement.
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Fig. 14. The tracking error over time for the various controllers with
acceleration feedforward.

The next elements added to the feedforward are gravity and
stiffness. The gravity is a relatively constant torque over the
workspace but does induce a big load on the systems. The
stiffness is equal in magnitude, but the torque does change
sign during the motion, which has a significant influence
on the controllers. The load for controllers by adding these
feedforward elements is, therefore, decreased significantly, as
expected by a low-frequency approximation of the tracking
error in [18]. The results are shown in Fig. 15 and Ta-
ble II for RMS and maximum error with acceleration, gravity,
and stiffness feedforward. All controllers show a significant
improvement in their performance due to the addition in
the feedforward. The performance of all the controllers is
now almost within the same band with PID having the best
overall performance. The remaining error is mainly due to the
cogging, which is not implemented in the current feedforward.
The cogging has a high variation, and, therefore, also has a
high frequency content. The feedback controllers have a lower
bandwidth, which makes them less successful to compensate
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Fig. 15. The tracking error over time for the various controllers with
acceleration, gravity and stiffness feedforward.

the coggin.
For the last experiment, cogging is added to the feedforward

resulting in all known system dynamics being compensated.
The results are shown in Fig. 16 and Table II for RMS and
maximum error with full feedforward. This experiment re-
sulted in the lowest RMS and max error. The results show that
H2 has the lowest RMS and max error with NLADRC being
a close second. The remaining disturbances are high-frequent
and therefore require high bandwidth to be compensated. The
bandwidth of H2 and NLADRC are higher than PID and
therefore, yield a better result. However, the other controllers
have an almost identical performance, which indicates that
the feedforward cancels the system’s dynamics well. The
remaining error can be attributed to the feedforward not being
an exact match with the disturbances due to the temperature
dependence of the cogging or the quantisation of the current.
This limits the resolution of the current, which, therefore,
limits the resolution of feedforward and the feedback. The
current required for compensating the remaining error is close
to the quantisation limits. This makes further improvements
difficult with the same setup.
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Fig. 16. The tracking error over time for the various controllers with full
feedforward.

Overall, the best performer in terms of tracking performance
is the H2, yielding an RMS tracking error of 43.6 µm, when
all the known system’s dynamics are implemented in the
feedforward. The RMS error is still a factor 400 larger than
the standstill performance. When less information is used,
the PID has the best performance. However, the performance
differences are not significant. An interesting remark is that
the non-linearity of the NLADRC did result in a performance
increase over LADRC, which may be the result of the highly
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deterministic nature of the system. Furthermore, hysteresis in
the current sensor, which has not been implemented in the
feedforward, caused a significant part of the remaining error.

Disturbance Rejection

Another important aspect of the controllers is their
performance in disturbance rejection. This is tested by
injecting at t = 0.25 s a step disturbance of 200 mARMS for
0.4 s into the process. This results in an angular impulse of
0.22Nms.
The results are shown in Fig. 17 and Table II. The STSMC
has the largest maximum error as a result of the disturbance,
which is expected since its response is slower due to the
integral action used to remove the chattering. The other
controllers have an almost identical maximum error with
the LADRC performing the best response overall. That the
ADRCs have the best response can be explained by the fact
that the error caused by a step disturbance is compensated by
the ESO, which has a higher bandwidth than the integrators
of PID and H2. For the same reason, the ADRCs also have
the fastest settling time. Furthermore, PID and H2 have a
small phase margin resulting in oscillations while reaching
steady state, whereas the NLADRC does not have these
oscillations due to the higher bandwidth resulting from the
non-linearity.
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Fig. 17. The systems response with different controllers to a step disturbance
200 mARMS applied from 0.25 s untill 0.65 s.

Next, a sinusoidal disturbance is added. A sinusoid of 50
mARMS and 2 Hz is injected to the system. The 50 mARMS
causes a torque of 0.28 Nm. The frequency of 2 Hz is chosen
such that it is well within the bandwidth of all the controllers.
The performance of the feedback controllers is measured by
the maximum error of the system.
The results are shown in Fig. 18 and Table II. For a sinusoidal
disturbance, the PID controller has the best performance, and
the performances of H2 and NLADRC are only slightly worse.
The STSMC, again, falls behind the other controllers.

EVALUATION AND RECOMMENDATIONS

For the design goal of finding the best feedback controller
for standstill performance, H2 control yielded the best results.
The higher bandwidth of H2 compared to PID results in a
better disturbance rejection and therefore, a better standstill
performance. NLADRC’s standstill performance was slightly
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Fig. 18. The systems response for a sinusoidal disturbance of 50 mARMS
for the different feedback controllers.

better than PID, however behind on H2. The STSMC had the
worst standstill performance of the feedback controllers, which
is related to the integral action, which increases its response
time. Therefore, it can be concluded that for a standstill
task on the considered system, STSMC is not an appropriate
algorithm, but it did show a decent tracking performance. The
difference in PID and LADRC found in [8] is found to be
mainly caused by the TPG. The performances here was much
more identical since a smooth reference profile was chosen,
which removed the advantage of the TPG.

Overall the desired standstill performance of 50 nm has not
been achieved with the current setup. However, no mechanical
influences were found to limit performance. Several measures
can be taken to achieve the 50 nm. The current noise can be
reduced by changing the motor driver. The effect of current
noise can be reduced by decreasing the motor constant or
increasing the inertia, however, it comes at the cost of a
decreased maximum acceleration. Finally, suppression of the
current noise can be improved by increasing the sampling
frequency or decreasing the delay, allowing for a higher
crossover frequency. An experiment using H2 on a sample
rate of 4 kHz resulted in a standstill performance of 106
nm. Furthermore, it is considered to double the inertia, which
would result in 53 nm, being close to the objective. Using
the additional inertia to balance gravity effects and (partly)
joint stiffness makes sure that the maximum acceleration is
not affected too much.

The tracking performance showed a more significant dif-
ference across the different controllers, especially when the
feedforward is not implemented. Without the feedforward, the
performance of STSMC, LADRC, and NLADRC is at least a
factor 2 below the H2. Each additional of the system dynamics
increased the tracking performance significantly. However, the
tracking error with full feedforward implemented remained
a factor 400 above the standstill error. Of the compared
controllers, H2 control has the best tracking performance
of the compared controllers, which follows from the higher
bandwidth.

The best controller for a step disturbance rejection was
found to be either the LADRC or the NLADRC, which is
contributed to the ESO. For a sinusoidal disturbance, the PID
has the best rejection.
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CONCLUSION

Four feedback control algorithms have been compared for
their standstill performance for a flexure-based system without
friction or a self-locking drive. Such an extensive comparison
of these four feedback controllers (PID, H2, STSMC, and
ADRC) has not yet been found in the literature. Filling this gap
highlights the properties of the various controllers and allows
practitioners to choose an appropriate feedback controller for
their task.
The optimal controller for standstill performance was found
to be the H2 control due to the highest bandwidth, while PID,
LADRC and NLADRC had an almost identical performance.
STSMC performed below the bar and should not be chosen
for a standstill task. The tracking performance of different
feedback controllers has also been compared with again H2

yielding the best performance when the feedforward cancels
all low-frequency components. When no feedforward is used,
PID resulted in the best results. For the disturbance rejection
PID, H2, and both ADRC’s yielded similar results with
NLADRC having the fastest settling time.
Overall, the best control method for the considered control
problem is the H2 control.
The required standstill performance has not been realised, but
the work provided insights for modifications on the mechanics
and electronics to achieve the specification.
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and additional cogging torque components of pm synchronous mo-
tors—evaluation and reduction. Automatika, 51(2):157–165, 2010.
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APPENDIX A
SYSTEM IDENTIFICATION

The system’s dynamic behaviour is identified using a chirp
signal with a frequency from 2 to 500 Hz. This is energetic
enough, such that the linear behaviour is visible. The chirp is
repeated eight times, which is averaged to reduce the amount
of noise on the measurement. These experiments are carried
out for the entire range of motion since it is expected that the
system’s response is position dependent due to the flexures.
The position-dependent stiffness of these flexures results in
position-dependent resonance frequencies. The response in
time domain at 0 rad is shown in Fig. 19.

Fig. 19. Input and output signal in the time domain for eight chirps plotted
over one another.

The responses in frequency domain for the entire range of
motion can be found in Fig. 20. The variations in the lower
frequency response are the result of the cogging that behaves
like a stiffness with a high variance over the position. The mid-
frequency response shows a smooth and identical behaviour
over the range of motion. This is expected since the inertia is
dominant in behaviour. The higher frequencies, however, show
again a variance in behaviour. This is the result of the change
in support stiffness of the flexures, which reduces when the
system is in a deflected state. This has a non-colocated pole
as result and has to be taken into account for the controller
design.

The behaviour of the system at 0 rad is taken as the average
system behaviour in order to fit a nominal system for the
control design. On this behaviour, a second order plant has
been fitted. Fig. 20 illustrates the comparison between the
measured behaviour and the estimation. The identified plant is

G(s) =
1

0.2s2 + 0.74s+ 11.46
. (31)

The values are in system units. These can be converted into
SI-units, as done for the mass in section F. The estimated
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Fig. 20. The frequency response of the system over the entire range of motion.

mass of the plant is 1.46 kg which is within the accuracy of
the current. Therefore the assumption can be made that the
plant is correctly identified.

A. Broken Spring

During testing, some of the leaf springs of slaving mech-
anism, which constrained the inner body of the butterfly
hinges broke, releasing a degree of freedom. The system with
the unconstrained body is compared to the system with the
constrained shown in Fig. 21. The system without the leaf
spring has an additional DoF at 19.35 Hz. This shows that the
leaf springs to constrain the inner body of the butterfly hinge
are necessary. Otherwise, low-frequency parasitic dynamics
is introduced, which undermines the bandwidth of a stable
controller.
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Fig. 21. Comparison between the system with and without leaf springs to
constrain the inner body. See the resonance peak at 19.35 Hz.

APPENDIX B
K-FACTOR

The K-factor is the relation between the current and the
resulting torque. It is determined by adding mass to the end-
effector and measuring the difference in the required current
for tracking the same trajectory. The amount of torque required
for this additional mass is known and can, therefore, be used
for the estimation of the K-factor. The experiment has been
done with and without an additional mass of 1.46 kg attached
to the end-effector. In both cases, the same trajectory of
±0.5 rad at low speed is performed with an identical PID
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Fig. 22. The difference in required current to perform the motion with and
without the additional mass.

controller only with a different Kp to scale for the attached
mass. The results are shown in Fig. 22, where one can see
that the loops are indeed identical, only shifted due to the
additional mass.

In order to calculate the K-factor, the measurement without
the mass has to be subtracted from the measurement with
the mass. The result is shown in Fig. 23 together with the
estimation. The K-factor can be estimated using

Km = 1000
mgl

IRMS
sin

(
θ

2π
+ φ

)
. (32)

The range of motion limits the amount of sinusoid that can be
measured. This makes it difficult to identify the phase of the
system. The frequency of gravity is a full rotation, 2π. The
weight of the mass is 1.465 kg, the length from the centre of
rotation to the centre of mass is 0.187 m and the gravity con-
stant at the measurement location (Twente, The Netherlands) is
9.813 m s−2. The factor 1000 is since the current is expressed
in mARMS and the K-factor in Ampere. Using a regression, the
sinusoid has been fit to the measurement. The measured K-
factor is 5.6377 Nm/ARMS. This is higher than specified value
of 5.57 Nm/ARMS [11]. However, the current measurements
of the motor driver have a measurement accuracy of 3% [9].
Therefore the measured K-factor with the error bounds of 3%
is within the given specifications.
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Fig. 23. The measurements compared to the estimated current required to
compensate the gravitational forces.

APPENDIX C
NOISE ANALYSIS

The different noise sources within the system have to be
identified, so possible improvements to the amount of noise

and disturbances can be proposed. First, the position encoder
is analysed. After which, the motor driver is analysed.

A. Position Sensor

The position is measured by the Heidenhain LIC-401 [10],
which has a resolution of ±2 · 10−9 m [10]. In order to test
if the position sensor is able to measure below the required
resolution of 50 nm, the system is held at a fixed location.
During the test, the motor drive is only used to measure the
position, so the current is turned off and does not influence
the system. The measured position noise is 10.5 nm. Fig. 24
shows the frequency content of this measurement, which
is almost entirely white. This is higher than the specified
value. However, this can be the result of the floor vibrations
in combination with the flexures which partially cancel this
movement in the system’s body resulting in a velocity dif-
ference between the floor and the manipulator. Overall, the
position sensor’s performance is below the required accuracy
and does, therefore, not limit the standstill performance of the
system.
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Fig. 24. The frequency response of the fixed system with the motor driver
turned off.

B. Motor Driver

For the motor driver, first, the expected current noise and
ripple are estimated. After this actual current is measured
and compared to the estimated value. Furthermore, different
components of the system are checked for their influence on
the current noise and ripple.

1) Expected Current Ripple and Noise
The first source of a current ripple produced by the motor

drive is PWM voltage signal used to control the desired
current. Although it approaches the desired value, it does have
a current ripple placed upon it. This ripple is dependent on
the voltage bus, the modulation frequency and inductance of
the overall system. Grandi [27] has derived an expression to
quantify this current ripple

imax
pp =

VdcTs

2
√
3L
m, (33)

which is valid for symmetric SV-PWM method. The Kollmor-
gen AKD drive has a DC-voltage bus of 320 V and a PWM
frequency of 10.52 kHz [9]. The method of the PWM signal
is unknown, however, assumed to be symmetric SV-PWM.
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The motor has a phase-phase inductance of 39 mH [11]. The
modulation index, m, is defined as m = V ∗/Vdc, which makes
the current ripple dependent on the reference voltage requested
by the current loop.

The expected amplitude of the current ripple caused by
the PWM signal is shown in Fig. 25. The moment where
the current ripple will be most influential on the system’s
performance is during standstill, which requires around 500
mARMS. The current noise during the standstill corresponds
to a ripple of 3.5 mARMS.
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Fig. 25. The expected current ripple over the work range of the motor driver.

Another possible noise source is the current sensors, the
LTSR 15-NP by produced by LEM [28], used in the drive.
These sensors, which, are used for current measurements on
the motor phases have a measurement accuracy of ±0.2% [28]
which translates to ±1 mA error per phase during standstill
position. The motor drive utilizes two current sensors to
measure the three phases. The third phase, which is not
measured, can be calculated using Kirchhoff’s current law

Iw = −(Iu + Iv). (34)

Therefore, the measurement errors in the first two phases also
affect the estimated current of the third phase. This error in a
single current sensor is, therefore amplified in the RMS current
noise. In Fig. 26 the extreme cases for the error are shown,
such as the case where one of the two sensors estimate the
bottom line of the current and the other overestimates the
current. This results in a maximal over- or underestimation
of the RMS current by 2 mARMS. This estimation error has a
frequency of 2 Hz per electrical rotation, which translates to
the 28th mechanical harmonic.
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Fig. 26. Fault in RMS current calculation for different sensor faults over one
electrical period.

Another element which may cause a ripple is the IGBTs
used in the motor driver. These have a leakage current, which
is caused by that no transistor is a perfect insulator and will,
therefore, always conduct a small amount of charge. In the case
of the IGBT’s an example, the VS-GT120DA65U by Vishay,
was found to have 50 nA as leakage current [29]. This is so
small that, even though it may appear on all three phases in
an unknown combination, it would not yield to a measurable
influence.

The current measurements also suffer from quantization
through the ADC converter. A typical ADC has a measurement
resolution of 16 bits over the measurement range. The RMS
current range of the drive is ±9 ARMS, which translates to
±7.33 A for an individual phase. The quantization error
therefore is 0.274 mA for an individual phase, which
translates to 0.092 mARMS for the RMS current.

2) Measured Current Ripple and Noise
The measured current ripple, however, is bigger than the

expected 5.5 mA by the PWM signal. Fig. 27 shows the
measured RMS current ripple over the position. The noise on
the current is an input disturbance on the system and, therefore,
directly affects the position noise. This correlation can be seen
in Fig. 27. The current noise was found to be between 4.5 and
9.5 mARMS and have a period of 0.2248 rad, which is equal
to the expected 28th harmonic. The origin of this higher noise
level could be noise on the auxiliary power supply, which
powers the logic of the drive and the encoder, or the current
sensor noise.

Fig. 27. Voltage produced by the voltage source for the motor driver. Note
the 50 Hz noise.

Since the current ripple is higher than the expected 5.5
mARMS, other elements have to be tested for influence the
magnitude of the current ripple.

First, the auxiliary power supply for the motor driver logic is
tested if it influences the current noise. The measured voltage
supplied by the power supply is depicted in Fig. 28. The
power supply indeed has a noise of 76 mV on the output
voltage, which is found to be caused by a 50 Hz source.
Therefore, to determine if this voltage noise influences the
system’s performance, the power supply was replaced with
a battery pack which supplied the voltage without the noise.
This, however, did not affect the amount of noise on either
the position or current. Therefore, it can be concluded that
the auxiliary power supply does not influence the current or
position noise.
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Fig. 28. Voltage produced by the voltage source for the motor driver. Note
the 50 Hz noise.

Second, to determine if the current noise indeed originates
from the motor driver, a commutation error has been set into
the drive. This leads to the drive thinking that the electrical
phase is φ degrees away. The shape of both the current noise
and the position noise shifted along with φ. Therefore, the
conclusion can be made that the motor drive indeed causes
the current and position noise.

The overall conclusion regarding the current ripple is
that the motor drive behaves as specified. However, the
design does not meet the requirements of the setup. The
manufacturer specifies a current accuracy of 3% [9], which is
met. The PWM and sensor noise have explained most of the
current noise. The remaining part may be an indication that
there might be an unbalance is present in the system. It is
recommended to use a motor driver with better performance
and especially regarding the current noise since this is the
primary noise source of the overall system and limiting its
performance.

APPENDIX D
COGGING

One of the disturbances within the system is the cogging.
The cogging is defined as the torque ripple present without
any current supplied. This torque ripple is generated by the
interaction between the rotor’s magnetic flux and the angular
variations in the stator magnetic reluctance[24]. The slots in
the iron and the varying magnetic field cause a difference in
permeability path over the rotation. This results in a torque
which is dependent on the position and is a consequence of
the geometry of the PMSM. The cogging torque can be up to
3% of the rated motor torque, according to Grcar et According
to Islam et al., the native harmonics of the cogging, which are
the harmonics originating from the motor design, follows from
the number of magnets and coils present in the motor [30].
The PMSM used in the system has 28 magnets, Nmag, and 21
coils, Ncoils spread evenly over the rotation [11]. Its resulting
native harmonics are calculated using al [31].

According to Islam et al., the native harmonics of the
cogging, which are the harmonics originating from the motor

Fig. 29. Overview of the geometry designed in Comsol. All the known
parameters of the PMSM are used. The unknown parameters are estimated
others are estimated.
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Fig. 30. Result of the numerical analysis, which indeed shows the expected
harmonics.

design, follows from the number of magnets and coils present
in the motor [30]. The PMSM used in the system has 28
magnets, Nmag, and 21 coils, Ncoils spread evenly over the
rotation [11]. Its resulting native harmonics are calculated
using

Hcogging = LCM(Nmag, Ncoils) · i (35)

where LCM is the least common multiple of the number
of magnet poles and coils and, i = 1, 2, 3 , .... The
LCM equals 84 resulting in a base harmonic of 0.0748
rad. This first harmonic is frequency is expected to contain
the largest amount of energy and therefore of the most interest.

For a better indication, if the analytical analysis is accu-
rate, a 2D FEM simulation is done using COMSOL Multi-
physics [32]. The model is constructed corresponding with the
specification in the specsheet [11]. However, since most of the
parameters of the motor are unknown, these parameters, such
as the coil size and placement, have to be estimated. Therefore,
the amount of correspondence for the higher harmonics is
expected to be low, since these are the result of parameters
such as tooth width or skewing [33]. The simulation is
calculated over a rotation of 0.22 rad with no current applied
to the stator. The magnets have a strength of 0.84 T, which
is chosen arbitrarily.

Fig. 30 shows the results of the FEM simulation. These
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clearly show a sinusoidal cogging shape with some minor
numerical noise. The cogging found using the numerical
analysis has a period of 0.747 rad, which is close to the
analytical value. The small difference of 0.001 rad can the
result of simulating only 2.5 periods in combination with the
numerical noise from the simulation. Therefore, the conclusion
is drawn that they yield the same results and that the 84th

is indeed the first harmonic related to the motor design. An
interesting remark is that the numerical simulation did not
show any other harmonics than the first harmonic predicted by
the analytical approach. This may be the result of the motor
design or elements such as 3D space which are not included
in the simulation. Furthermore, in the real PMSM fabrication
error are present. It is, therefore, expected that in the cogging
found on the real system will have other harmonics.

Lastly, the cogging on the real system is estimated. The
movement on the system was performed similarly to section B.
For the cogging estimation, first the current related to the
gravitational forces, see section B, is subtracted from the
measurement. Next, the linear component of the current, which
is related to the stiffness of the flexures, is subtracted. The
remaining current has zero mean, which matches with the
definition of the cogging [24]. The remaining current is,
therefore, related to the cogging. The estimated cogging is
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Fig. 31. The measured cogging of the real system and the fitted estimated
of the cogging.

illustrated in Fig 31. It does indeed contain a sinusoid with
the 84th harmonic as predicted by the analytical and numerical
analysis. However, also, other components have been found.
Černigoj et al. [34] mentioned that other harmonics could
originate from production irregularities, for example, magnet
or stator misplacements. These production irregularities can
cause harmonics which have the number of poles, magnets
or the interlocks in the back-iron in the stator as base har-
monic [35]. The measured harmonic turned out to be the
7th harmonic, which is predicted by the greatest common
devider (GCD) which is equal to 7 and is equal to 4π electric
or 2π mechanical. This harmonic has a mechanical origin. The
combination of the 7th with the 84th is included in Fig 31.
The difference in the estimate and the data can originate
from different elements. First, the amplitudes of harmonics are
affected by the combination between the magnet and coil. A
different combination in the same phase may lead to a different
torque. Second, the lockings of the back iron in the stator may
influence the cogging. Third, the stiffness of the flexures is
assumed to be linear. However, it does show a difference of

5%, which leads to an error. Last, The flexures have a pivot-
shift which alters the cogging. An example in literature showed
a change of 20% [33] as a result of the pivot shift.

The cogging has successfully been identified. An analytical
and numerical approach showed to be able to estimate one of
the two primary harmonics of the cogging.

APPENDIX E
REPEATABILLITY

One of the key points of the system is its expected, highly
deterministic nature and high repeatability. This is one of the
components which has to be tested. The full motion range
is tested and begins at −0.4625 rad (−26.50◦) and stops
at 0.4625 rad (26.50◦) after which the motion is repeated
in opposite direction. This is repeated for ten times. The
movement is done at 10◦ s−1. Fig. 32 shows the requested
currents by the controller over the position for 10 movements
plotted over one another. The differences between the different
motions is around 5 mARMS, which is mainly related to the
noise. The system, therefore, indeed shows its expected deter-
ministic behaviour. However, Fig. 32 also shows a hysteresis
in the system, which is expected to be from an electrical
origin. Fig. 33 shows the hysteresis over the position, which
is calculated by subtracting the backward motion from the
forward.
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Fig. 32. Requested current by the controller for a 1 deg/s. Note the minimal
variance in the current.
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Fig. 33. Difference in requested current between forward and backward
motion (blue). Together with the velocity (purple)

In order to find if the hysteresis is velocity dependent, the
motion described earlier is repeated at different velocities.
It is expected that this would yield a similar result since
there is no expected velocity component, which influences
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the behaviour of the system. Fig. 34 shows that at velocities
below 100◦ s−1 the system indeed behaves identical, however
at higher velocities the forward motion and backward motion
no longer have an identical shape, see Fig. 35. At velocities
of 250◦ s−1 a harmonic arises which only becomes larger at
higher speeds. The harmonic is the result of that at these higher
velocities, the effect of the harmonics of the cogging become
larger. At higher velocities, the harmonics may rise above the
bandwidth of the feedback controller. The highest frequency
component of the cogging is found to be the 84th harmonic.
At a velocity of 250◦, 500◦, 1000◦ s−1 the frequencies in
time domain become, respectively, 5.8, 11.6, 23.8 Hz. This,
in combination with the delay of 3 time samples, results in
a bigger error on the position and velocity and the current
applied by the feedback controller.

Fig. 34. Requested current for forward and backward motion at low velocities.
Note the hysteresis loop.
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Fig. 35. Difference in requested current between forward and backward
motion at high velocities. Differences at begin and end position are related to
the accelations of the system.

These higher speeds can, therefore, not be used to estimate
the hysteresis, since the current shows the effect of the cog-
ging, which makes the hysteresis unreliable. The current model
shows that the hysteresis has an amplitude of 15 mARMS,
which is only present during a motion. The model is expressed
as

Ihyst = 15 tanh(ω), (36)

where ω is the velocity of the system and tanh is the tangent
hyperbolic.

The hysteresis loop has been identified. However, its origin
remains uncertain. The acceleration of the system, which was
limited at 5000◦ s−2, at the beginning and end of the motion,
can be used to gain some insight if it is dependent on the

force or velocity. As shown in Fig. 36, the difference in
the forward and backward motion remains equal even though
the system is accelerating. The harmonics present during the
higher velocities are the result of the frequency being higher
than the bandwidth of the controller. However, the average
current remains equal. Therefore it can be concluded that the
hysteresis is not dependent on the force or acceleration.
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Fig. 36. The hysteresis loop of the requested current at different velocities.
Low frequency components are related to the cogging.

APPENDIX F
UNIT CONVERSION

The estimated values, such as the system’s inertia, are
expressed in system units. This is relatively difficult to compre-
hend and, therefore, the parameters are converted to SI units.
The measured position is in degrees, which can be converted
to radials using

xrad =
π

180
xdeg. (37)

And the required torque to position the system is expressed in
milliampere. This has to be converted to newton meter using

τ =
Km

1000
IRMS, (38)

where Km is the motor constant, the division by 1000 is
since the motor constant is defined as torque per ampere.
The transfer function estimated in Eq. (31) with mARMS as
input and degrees as output has to be converted to the SI units
specified earlier. The conversions presented above are applied
here

Y (s) =
π

180

1

0.2s2 + 0.76s+ 11.46

1000

Km
X(s), (39)

which results in

Y (s) =
1

0.0642s2 + 0.0735s+ 3.6449
. (40)

The system’s inertia is found to be equal to 0.0642 kgm2. The
stiffness is equal 3.6449 Nmrad−1. To calculate the weight
of the system, the inertia has to be converted using

Itotal = Irotor + Ibeam, (41)

where the inertia of the rotor, Irotor is equal to 0.005 kgm2.
The inertia of the added beam is defined by three components.
First, rotations of the center of mass (CoM). Second, rotation
around a different point than the CoM in the x-direction. And,
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last, rotation around a different point than the CoM in the z-
direction

Ibeam =
1

12
mL2 +md2x +md2y, (42)

where the inertia of a beam is calculated and through the
parallel axis theorem the influence of the shift. The parameter
M is the mass of the system. L is the length of the beam,
which is 0.20 m. dx, and dy are the distances between the
centre of mass and the centre of rotation, which is equal
to 0.187 m and 0.05 m. Using the estimated inertia of the
system, the weight of the beam is estimated to 1.4510 kg.
The estimated mass matches the measured mass of the beam.




