
The prediction of actual energy use during 
the use phase of Dutch dwellings using 
building specific parameters.  
 

 

 

 

 

 

 

G.B. Eggens BSc. 
S.1251090 
Master Environmental and Energy Management 
Academic year 2018/2019 
University of Twente 
 
In cooperation with: Royal BAM group 
 
Supervisors: 
dr. Y. Krozer 
dr. M.L. Franco Garcia  

 

Supervisor of BAM: 
W. Schakel  



2 
 

Abstract 
The building sector contributes significantly to greenhouse gas emissions. To reduce the energy 
related CO2 emissions which occur during a building’s lifecycle, knowledge is needed on where the 
emissions occur. This study aims to tackle this knowledge gap by investigating if building specific 
parameters can be used to predict the actual energy use during the use phase of Dutch dwellings. In 
this explorative study to predict the actual energy use this study first assesses current methods used 
in literature and subsequently uses cross-validated stepwise multiple linear regression on the ‘Woon 
Onderzoek Nederland’ [1] dataset using only dwellings built after 2007 and using only building 
specific parameters. The building type, the theoretical total energy use (‘Energy Performance 
Certificate’ score combined with the gross floor area), and the number of rooms (in 5 classes) are 
identified in the multiple linear regression analysis as the key (building specific) parameters in 
predicting the actual energy use during the use phase of Dutch dwellings. The model created to 
predict the actual energy use during the use phase of Dutch dwellings shows that 35% of the variance 
in the data can be explained with these building specific parameters.  
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1 Introduction  
Current environmental problems such as global warming caused by greenhouse gas emissions have 
led to the increasing attention for reducing the impact of human activities on climate change [2]. The 
building and construction sector was responsible for 39% of energy related CO2 emissions in 2016, if 
upstream power generation is included [3]. So, the building sector contributes significantly to global 
Greenhouse Gas (GHG) emissions. Moreover the building industry is a major consumer of natural 
sources, in the EU 50% of raw material consumption is accountable to the built environment [4]. The 
International Energy Agency (IEA) shows that, with existing policies and commitments, the energy 
demand of the building sector will increase 30% by 2060 if there is no more ambitious effort to 
decrease carbon use and increase energy efficiency of construction and buildings [3].  

To mitigate the effects of the building industry on climate change and to be able to reduce the CO2 
emissions which occur during a building’s lifecycle, knowledge is needed on where the emissions 
occur. This knowledge can be gained by calculating and reporting on emissions. It is important to 
track and report emissions for companies to understand the impact they have on GHG emissions and 
climate change [5].  

There are several ways to calculate and report GHG emissions on the company level. The GHG 
protocol is the most widely used and accepted framework for emission reporting [5]. The GHG 
protocol is the result of a 20-year partnership between World Resource Institute (WRI) and the 
World Business Council for Sustainable Development (WBCSD). The framework can be used to show, 
measure and manage the GHG emissions associated with sector operations, value chains and 
mitigation actions [6]. This tool serves as a standard framework for reporting GHG emissions on the 
company level [7]. The GHG protocol divides a company’s emissions in three categories: direct 
emissions on site (scope 1), emissions from electricity, heating and cooling (scope 2), and the up and 
downstream activities in the value chain (scope 3) [8]. The emissions in Scope 1 and 2 are relatively 
easy to collect in comparison to scope 3. Hertwich et al. [9] show that the total CO2 equivalent 
emissions in scope 3, for buildings and construction, for the whole sector, are twice as high as the 
direct emissions in scope 1 and 2. The GHG protocol also provides some guidance to companies to 
calculate their emissions. However, an exact calculation method is not provided. The protocol does 
require from its practitioners that the calculation, of the CO2 emissions, improves each year and that 
the calculation is transparent.  

Several researchers show that the operational phase, also called the use phase, of a building is the 
highest energy consumer [10], [11], [12]. Gong et al. [13] show that the use phase is responsible for 
80-90% of the energy consumption over the whole life cycle of a building. In literature the use phase 
of a building is defined in several ways, the use phase is also called the operation phase or the 
operational phase. In this study the CO2 emissions of the use phase of a building is defined as the 
emissions related to the energy use during the operation of a building. So, embodied carbon, water 
use, maintenance, repair, replacement, and refurbishment are excluded in this study.  

The CO2 emissions in scope 3 are split in 15 categories are also analyzed by a contractor, Royal BAM. 
They identified, in an explorative study, the ‘use of sold products’ and the ‘purchased goods and 
services’ category as the biggest CO2 emitters. This study will focus on this ‘use of sold products’ 
category. The sold products for a contractor are buildings and civil structures, since the emission 
calculations for the use phase of civil structures are complex it is not clear how these emissions could 
be estimated.  

To demarcate this study, the focus will be on the emissions which occur due to energy use during the 
use phase of residential buildings. 
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There are several existing approaches which can be used to calculate the emissions during the 
operation of residential buildings. There is not yet one standard, time-efficient approach. This study 
aims to fill this gap in two-fold: by exploring existing approaches to calculate emissions during the 
use phase of residential buildings, and by identifying key parameters in emission calculations to 
predict the actual energy use during the operation phase of residential buildings.  

The main research question:  

How can the energy related emissions during the use phase of a Dutch dwelling be predicted using 
building specific data? 

Sub-questions: 

1. What approaches are available for the CO2 emission calculations of the use phase of dwellings? 
2. What are the key parameters in predicting the actual energy use of a dwelling? 
3. How are approaches different in terms of data need? 
4. What is the accuracy of the approaches? 
5. How can an approach be used for applying it at a contractor?1 

The first sub-question (SQ) will be answered in chapter 2, the theoretical framework. Chapter 2 will 
also be used to partly answer SQ 2, 3 and 4. To answer SQ 2 properly the WoON dataset is used to 
perform a multiple regression analysis to identify statistically significant predictors of the actual 
energy use. Chapter 3 will elaborate on the study design, the method of data collection, processing 
and analysis, to explain the multiple regression analysis which will be used to answer SQ 2, 3 and 4. 
The results are presented in Chapter 4 and will provide answers to SQ  2, 3 and 4. Chapter 5 will 
present a case study to show the applicability of the method at a contractor which will answer SQ 5. 
Chapter 6 discusses the results and limitations of this study. The conclusion is presented in chapter 7 
to answer the sub-questions and the main research questions.  

  

 
1 This study was performed in cooperation with Royal BAM. Therefore, this question looks at the 
implementation at a contractor, which wants to improve its emission reporting.   
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2 Theoretical framework 
There are several approaches used in literature to calculate the emissions of the use phase of 
residential buildings. This section elaborates on each of these approaches. Criteria for selecting the 
approaches were, that the methods take building´s properties into account and translate this to CO2 
emissions or energy use.  

First existing approaches to predict the actual energy use of dwellings, followed by section on 
important parameters in emission calculations of the use phase of buildings, identified in other 
studies. This chapter finishes with methods to identify important predicting parameters of the actual 
energy use of dwellings.  

2.1 Existing approaches  
This section describes the existing approaches which are used to predict the actual energy use of 
dwellings.  

2.1.1 Life Cycle Assessment  
Life Cycle Assessment (LCA) is a method to assess all the emissions related to a product or a process, 
which takes the whole life cycle into account, e.g. environment & resource depletion, from cradle to 
grave [14]. Four steps are necessary to perform a LCA: the goal and scope definition, the life cycle 
inventory analysis, the life cycle impact assessment, and the interpretation, which is visualized in 
Figure 1 [15].  

 

Figure 1. LCA framework [15].  

If a full LCA is performed on the use phase of a dwelling, the following things should be taken into 
account: operational energy use (space heating and cooling, hot water consumption, building and 
user electricity, etc.), maintenance, embodied carbon, repair, replacement, refurbishment, and 
operational water use [16].  

Differences in goal and scope, assumptions, and errors in input parameters make it challenging to 
compare different cases analyzed with an LCA model [17], [18], [19]. Due to the uniqueness of 
buildings there are a lot of different input parameters which makes comparison of different LCA 
challenging [20].  

There are three types of LCAs: the process based LCA, the Economic Input-Output LCA, and the 
Hybrid LCA. The process-based LCA uses inputs and outputs for each process of a product. This is the 
recommended strategy by the ISO 14044:2006 standard. It is a detailed and accurate process, 
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therefore the process-based approach needs a lot of data which could subsequently lead to high 
costs and time investment [16]. Data uncertainty and narrow boundary definition are also mentioned 
as disadvantages [21].  

The Economic Input-Output (EIO) LCA is very suitable for large supply chains to quantify direct and 
indirect emissions. This method is very suitable to assess a geographical region of buildings. It is in 
general a faster method than the process-based LCA, if the databases are available. It is however also 
a less detailed approach than the process-based approach [16]. Kucukvar et al. [22] used it to analyze 
the emissions of the whole construction sector in the United States. The EIO-LCA method is only 
suitable for ex-post measurement since economic data is used. Therefore, this method is unfit for the 
prediction of the emissions during the use phase of a building.  

The hybrid LCA is a combination of the process-based and the EIO-LCA. The hybrid model combines 
the other two methods so the completeness or accuracy in comparison to the other approaches is 
debatable [16]. This method combines data from both methods which would assure a more 
complete assessment. However, the variation in methodology in different cases makes comparison 
harder [21]. Since the hybrid LCA, like the EIO-LCA, uses economic data, this method is unfit for the 
purpose of this study.   

2.1.2 Dynamic life cycle assessment 
Traditional LCAs are used to assess the environmental impact of a building but do not take the time 
variation into account. The life span of a building is quite long, in literature varying between 40-100 
years [23], and therefore the dynamic LCA aims to respond to this [15]. Dynamic LCA can be used to 
track potential changes, e.g. refurbishment, over a longer period. However, taking the time 
perspective into account also increases the complexity of the model. Moreover, the uncertainty of 
these assumptions should also be taken into account [24]. 

2.1.3 Life Cycle Energy Assessment 
The Life Cycle Energy Assessment (LCEA) is a simpler version of the LCA which only focuses on energy 
to give insight in the different phases throughout the life cycle of a product. When LCEA is used it is 
important to specify whether primary or secondary energy is used, primary energy could be coal and 
secondary energy could be electricity [25].  

According to Chau et al. [25], the operational phase can be analyzed in three ways. The first method 
is to use the actual measured energy consumption, so an ex-post measurement. The second method 
uses energy databases with building and location specific benchmark data to estimate the 
operational energy. So, this second method can predict average energy use. The third method uses 
simulation methods to estimate the operating energy. The third method of LCEA uses two simulation 
methods; the steady state model and the dynamic model of which the dynamic model takes the time 
variant of heating and cooling into account. Dynamic models are more complex. Both simulation 
methods are very sensitive to assumptions for the factors in the model [25].  

Bribian et al. [20] use a simplified LCA method which only includes the operational energy in the use 
stage of a building. Meaning that maintenance, repair and replacement, and refurbishment are 
excluded. However, Martinez-Rocamora et al. [26] show the importance of the maintenance phase 
on the ecological footprint, especially cleaning activities. 

A list of assumptions and uncertainties for the LCEA performed by Atmaca et al. [27] shows several  
relevant ones for the use phase of buildings. Like the buildings lifetime is assumed to be 50 years, the 
energy mix is constant over that 50 years, future price changes which influence energy consumption 
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are not taken into account, inhabitant behavior, heating and cooling comfort is assumed to be 
constant [27].  

2.1.4 Life cycle carbon emissions assessment 
The Life Cycle Carbon Emission Assessment (LCCO2A) or carbon footprint analysis takes all carbon 
emission equivalents into account over the life cycle of a building. This can basically be presented a 
sum of the CO2 emissions of each phase of the life cycle of a building. So, LCCO2A is a subset of a full 
LCA which takes only the CO2 emissions into account [16].  

2.1.5 Building information modelling – life cycle assessment 
Building Information Modelling (BIM) is a virtual 3D building model. The integration of BIM and LCA 
could in theory overcome the barrier of data acquisition [28]. The BIM software is not yet well 
integrated with sustainability databases so this will need significant time effort to import the 
information needed. There are several BIM-LCA integration tools which are suitable for the design 
stage, but Bueno et al. argue that for a full LCA a big software program like GaBi is needed [29].  

2.1.6 Energy performance coefficient  
Energy certification emerged in the early 1990s as a method to reduce energy use and subsequently 
CO2 emissions. In 2002 the European Union introduced a regulatory instrument on energy 
performance of buildings. The instrument must include: an overall Energy Performance Index (EPI), 
meaning energy consumption and CO2 emissions per unit (square meter) of conditioned area. 
Minimum efficiency requirement or a maximum EPI to improve performance. The label is based on a 
score from A-G to achieve a grading of buildings. This should relate to energy regulations, existing 
buildings stock and the zero-energy buildings [30], [31].  

In the Netherlands this has resulted in the ‘Energie Prestatie Coëfficiënt’ (EPC), which calculates the 
building-related energy use. How the EPC of buildings is calculated is stated in the building decree. 
The EPC calculation takes the sum of the energy use by: space heating and cooling, humidification, 
fans (mechanical ventilation), lighting, hot water heating, and subtracts the self-generated energy. 
The losses and efficiencies of the installations and distribution systems are taken into account and 
compensated for [32].  

The energy used for cooking and white and brown goods are excluded in this calculation because 
these are not building-related [33]. The EPC calculation assumes fixed: temperature settings, demand 
for hot water, lightning, and ventilation flow rates. These fixed values are based on standard use of 
building [33].  

The EPC value corrects for the size of the dwelling. So, if a larger dwelling consumes more energy 
because of the size but has the same thermal quality as a smaller dwelling, the larger dwelling is not 
penalized. Thus the EPC value in this case could be the same [33]. 

The EPC is an instrument which has the goal of reducing the building-related energy consumption. 
Guerra Santin [33] shows that there is a statistically significant difference between dwellings built 
before the introduction of the EPC and after, this indicates that the EPC helped to reduce energy 
consumption in residential buildings. 

Every building designer in the Netherlands is obligated to calculate the EPC score during the design 
stage, the EPC score is a dimensionless number. A building with a lower EPC is expected to use less 
energy than a building with a higher EPC. Since 2015 the EPC-score needs to be below 0,4 for 
domestic buildings in the Netherlands [34].  
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Guerra Santin [33] states that the difference in actual energy use in dwellings with various EPC scores 
is not statistically significant. Majcen et al. [35] found that the actual gas consumption is lower than 
the theoretical gas consumption in Dutch residential buildings. They show that residential buildings 
with a bad energy label consume much less energy than the label predicts. Energy-efficient buildings, 
on the contrary, consume more energy than predicted [35].  

Since in the Netherlands building designers are obligated to obtain an EPC-score, using this score to 
predict the building specific energy use is a suitable method. However, the actual energy use during 
the use phase is different than the EPC-score indicates [33], [35].  

2.1.7 Overview of approaches 
This section presents an overview of the approaches described here above. Table 1 presents the 
suitability of the methods used in literature to predict the actual energy use during the use phase of 
a dwelling.  

Table 1.Overview of approaches used in literature to predict the actual use phase emissions of a dwelling.  

Method Ex-ante/Ex-post Input data Suitable 
LCA process based Ex-ante Building specific 

parameters 
No, time-consuming 
[16] 

LCA EIO Ex-post Economic data No, cannot be used to 
predict [22] 

LCA hybrid Ex-post Building specific 
parameters and economic 
data 

No, cannot be used to 
predict [16] 

Dynamic LCA Ex-ante Building specific 
parameters  

No, time-consuming 
[15] 

LCEA 1 Ex-post Measured energy use No, cannot be used to 
predict [25] 

LCEA 2 Ex-post Energy databases and 
benchmark data 

No, cannot be used to 
predict [25] 

LCEA 3 Ex-ante Simulated data No, time-consuming 
[25] 

LCCO2A Ex-ante Building specific 
parameters 

No, time-consuming 
[16] 

BIM LCA Ex-ante Building specific 
parameters 

No, not sufficiently 
developed [29] 

EPC Ex-ante Building specific 
parameters 

No, inaccurate [33], 
[35] 

LCA (Life Cycle Assessment), EIO (Economic Input Output), LCEA (Life Cycle Energy Assessment), LCCO2A (Life Cycle CO2 Assessment), 
BIM (Building Information Modelling), EPC (Energy Performance Certificate) 

 

From Table 1 it becomes apparent that methods used in literature are not suitable for a contractor 
with the purpose of predicting the actual energy use during the use phase of a building in a time-
efficient way.  

2.2 Essential parameters in predicting use phase emission calculations 
The EPC-score is not really accurate in predicting the actual energy use as stated before, there is a 
mismatch in actual and theoretical energy use. Therefore, this section presents more parameters, 
identified in previous research, which are essential to take into account in use phase emission 
calculation. This is split into two categories: building specific parameters, and other parameters.  
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2.2.1 Non-building specific parameters 
There are several non-building specific parameters which are identified as important in use phase 
emission calculations. Ownership of the house and salary of the inhabitants are identified by Majcen 
et al. [36] as important predictors of actual gas use. Income is also mentioned by Guerra Santin [37] 
as an important predictor next to home amenities, family size and composition. Also Sardianou [38] 
shows that family size and annual income are influential parameters. Sardianou [38] also mentions 
age of the inhabitants and rate of occupancy as influential parameters. Gosselin et al. [39] identified 
occupant behavior as the parameter which caused the most variability between dwellings. In the 
regression analysis, opening windows in winter or using electrical appliances are most influential on 
the energy balance in apartments in Canada [39]. Satre-Meloy [40] shows that appliances and 
occupant behavior are associated with increased electricity usage. 

Heesen et al. [41] researched consumer behavior in energy efficient homes in Germany to identify 
the usefulness of energy performance ratings as benchmark. They show that a few outliers in the 
dataset influence the actual energy use and therefore the prediction of energy use is found to be 
troublesome. Room temperature is the variable which mostly influences the actual heating energy 
consumption.  

2.2.2 Building specific parameters 
Building specific parameters are also important in emission calculations. Majcen et al. [36] identified 
floor area and value of the house as important parameters to predict the actual gas use. Heating 
area, building type and number of rooms are influential building specific parameters identified by 
Guerra Santin [37]. Several studies show that dwelling size is an important parameter in actual 
energy use [38], [40], [42]. The number of rooms , energy source, and building type are also highly 
influencing factors in predicting electricity use in Spanish households [42]. 

In a multiple regression analysis Carpino et al. [43] tested the following variables on influencing the 
dependent variable (heating demand) for Mediterranean residential buildings: geographical location, 
typology of external walls, windows, heating system, hot water heating system, gross surface divided 
by the heated volume, solar energy through windows,  and energy performance certificates. This 
study uses a sample of less than 200 houses which is small considering that 28 variables are tested. 
The coefficient of heat transfer is identified as the most important variable [43].  

Table 2. Building specific parameters identified in other studies as important predictors of the actual energy use during the 
use phase of dwellings. 

Building specific parameters reference 
Floor area [36] 
Value of the house [36] 
Heating area [37] 
Building type [37], [42] 
Number of rooms [37], [42] 
Dwelling size [38], [40], [42] 
Energy source [42] 
Heat transfer coefficient [43] 
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3 Method 
In this chapter the method of data collection, processing and analysis is elaborated on. The purpose 
of this chapter is to describe the method used to identify the important building-related parameters 
which predict actual energy use during the use phase of Dutch dwellings.  

3.1 Study design 
To identify predicting parameters of the actual energy use during the use phase of a Dutch dwelling a 
multiple linear regression analysis is used. The general forms of a simple linear regression model and 
a multiple linear regression model are shown in Equation 1 and Equation 2.  

To perform a regression analysis, a dataset is needed with relevant building-specific parameters 
coupled to the actual energy use during the use phase of a Dutch dwelling.  

A simple linear regression fits a line through the data which best describes a Dependent Variable (DV) 
using a constant and an Independent Variable (IV). The formula will be like Equation 1, where a and b 
are numbers. 

Equation 1. Simple linear regression model. Where DV = Dependent Variable, IV = Independent Variable, and a and b are 
numbers [44].  

𝐷𝑉 = 𝑎 ∗ 𝐼𝑉 + 𝑏  

A multiple linear regression attempts to model the relationship between multiple independent 
variables to predict a dependent variable. So, the formula will be of the same structure as Equation 2.  

Equation 2. Multiple linear regression model. Where DV = Dependent Variable, IV = Independent variable, and a and bn are 
numbers [44].  

𝐷𝑉 = 𝑎 + 𝑏ଵ ∗ 𝐼𝑉ଵ + 𝑏ଶ ∗ 𝐼𝑉ଶ + ⋯ + 𝑏 ∗ 𝐼𝑉 

In SPSS there are 5 methods to perform a multiple linear regression analysis (enter, stepwise, 
remove, forward, and backward). The enter method forces all the independent variables in a model 
at once, without regards to the independent variables making a significant contribution to the model 
[44]. The remove method removes all independent variables in a single step (only relevant if user 
specifies multiple steps) [44]. The Backward selection method first enters all independent variables 
and then removes them one at a time based on a significance level, the least significant predictor 
which meets the exclusion criteria will be deleted [44]. The forward method only adds variables 
which make a significant prediction to the model, variables are entered in one at a time, starting with 
the most significant predictor which meets the inclusion criteria [44]. The stepwise method uses both 
the forward and backward regression. It starts with forward regression and adds the most significant 
independent variable of the model. Then a backward step is used to check if there are independent 
variable in the model that need to be excluded which is the case if one of the predictors of a previous 
step has become an insignificant predictor. This method continues until there are no longer any 
predictor variables that meet the criteria for entering the model or being removed from the model 
[45]. 

In this study the dependent variable to predict is: the actual energy use during the use phase of a 
Dutch dwelling. The aim of this study is to predict this dependent variable with building-specific 
independent variables according to the criteria.  

Multiple linear regression analysis is used to create a model to predict the energy consumption in 
Dutch dwellings using building characteristics. In a first step, stepwise multiple linear regression is 
used to determine the importance of variables in the model. In the second step all categorical 
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(nominal) variables are dichotomized and forced into the multiple regression model (using the enter 
method) to subtract coefficients of the variables, where 80% of the data is used to create the models 
and subtract the coefficients and the rest of the data will be used to cross-validate the model. This 
cross-validation step ensures that there is no overfitting of the sample.  

3.2 Data collection 
At BAM the data availability is limited, for one type of building the actual energy use was measured. 
Since this is only 1 type of building, the dataset of BAM is insufficient to use for a multiple regression 
analysis for identifying key parameters in predicting the actual energy use. Therefore, an alternative 
dataset was consulted in the form of the ‘Woon Onderzoek Nederland’ (WoON) dataset [1]. 

Some background information of the research performed by WoON:  

The study carried out by ‘Binnenlandse Zaken en Koninkrijksrelaties’ (BZK) and ‘Centraal bureau voor 
de Statistiek’ (CBS), WoON is a large-scale research with a lot of themes. Themes included: rental-
property or owner-occupied property, relocation tendency, building type, recently moved, monthly 
rent, desired municipality, desired neighborhood, home satisfaction, satisfaction living environment, 
involvement in livability of the neighborhood, interest in private commissioning, interest in buying 
own rental property, and educational level. The respondents are a random sample of the Dutch 
population [1].  

The CBS collected the data between August 2017 and April 2018. In total 110.000 persons were 
approached to participate in the study. The questions were amongst others about energy use, 
maintenance and mortgage. Respondents were asked to fill out an extensive survey, which was 
combined with actual energy and gas data from the distribution companies and data from CBS. 
Inhabitants of the Netherlands which were randomly selected got a letter to participate as 
respondent in the research. With a gift card of 5 euro’s as incentive [1].  

3.3 Data processing  
The dataset of WoON [1] contains over 900 different variables in the various themes described 
above. This study aims to identify key building-related parameters to predict the actual energy use 
during the operation phase of Dutch dwellings. These 900 variables contain building-related variables 
which are relevant for this study but also variables which are irrelevant (e.g. about mortgage and 
searching for social housing). Therefore, the irrelevant variables are deleted. Criteria which variables 
need to meet to be kept in the dataset are:  

1. The variable is a building-specific parameter. 
2. The variables in the dataset can be known before the building is occupied, so in the design or 

construction stage. This design information is available to a contractor and can be used to 
predict the actual energy use in the operation phase of a building.   

3. The variables contain enough respondents, and that the variables contain objective answers.  

Actual energy use, gas and electricity, are also kept as variables in the dataset. The total actual 
energy use is created as extra variable by adding the actual gas use to the actual electricity use. The 
total actual energy use is the dependent variable of which the prediction or calculation is the goal of 
this study. 

Variables that are kept in the dataset are the building specific parameters (gross floor area, building 
type, number of rooms, etc.), and the heating systems, PV panels, energy efficiency measures, and 
EPC-score.  
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As described in section 2.1.6 the EPC-score corrects for dwelling size. So, to predict the actual energy 
use the EPC score needs to be multiplied with the corresponding Gross Floor Area (GFA). The variable 
which combines these two is in this study called: the theoretical total energy use.  

3.4 Data analysis 
The dataset of WoON 2018 [1] was analyzed in SPSS 23.  

Regression analysis is a statistical tool to analyze the relationship between two or more variables. 
Basically, to test the influence of one or more independent variables on a dependent variable. The 
purpose of the regression analysis of the dataset in this study is analyzing and exploring which 
parameters are key in predicting the actual energy use during the operation phase of a building.  

Stepwise multiple regression analysis was used to check which parameters are needed towards a 
prediction of the actual energy use. When the predicting variables are identified, the nominal 
variables are dichotomized (meaning that each category becomes a variable with two possible 
outcomes 0 (no) or 1 (yes)). This is necessary to be able to retrieve the coefficients and create the 
prediction models. 

These requirements need to be taken into account for performing a multiple linear regression [46]: 

1. The dependent variable should be measured on a continuous scale 
2. There are two or more independent variables (continuous or categorical) 
3. Independence of observations is assumed  
4. The linear relationship between the dependent variables and each of the independent 

variables is assumed 
5. The data shows homoscedasticity  
6. The data must not show multicollinearity 
7. There are no significant outliers, high leverage points or highly influential points  
8. Residuals should be approximately normally distributed 

If the R2 value, which predicts the amount of variance predicted by the model, is bigger than 0.3 the 
model is considered a good fit of the data. Further analysis on the predictive value of the model will 
then be presented in the discussion chapter.  

Only respondents living in buildings constructed in 2008 or later are included in the sample analysis. 
This is because in 2008 the EPC score was introduced in the Netherlands [47].  
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4 Results  
This chapter presents the results as they were obtained. This chapter starts with the description of 
the dataset, followed by the multiple linear regression analysis and finishes with the relevant models 
and its coefficients. 

4.1 Description of dataset 
The variables used in the multiple regression analysis are shown in Table 3 together with their type of 
data. The independent variables first and the dependent variables are on the bottom of the table. 
The answering possibilities for the nominal variables are listed in Appendix A.  

Table 3. Independent and dependent variable labels with short notation and type of data. 

Variable Label Type of data 
Independent variables:  
Building type nominal 
Number of floors scale 
Number of rooms scale 
Living room area (m2) scale 
Number of habitable floors scale 
Energy saving measures (double glass, insulation, 
solar panels, new heater system, other, none) 

nominal 

Gross floor area (m2) scale 
Construction year  scale 
Energy label nominal 
Garage or carport nominal 
Building especially for elderly people nominal 
Living room on what floor scale 
Theoretical gas use (m3) scale 
Theoretical electricity use (kWh) scale 
Theoretical total energy use (kWh) scale 
Heater type nominal 
Hot water heater type nominal 
Dependent variables:  
Electricity use (kWh) scale 
Gas use (m3) scale 
Total energy use (kWh) scale 

 

As described in section 3.3 outliers and respondents with a house older than construction year 2008 
are excluded from the dataset. Meaning that all figures and calculations in this chapter only present 
buildings built after 2008. After the exclusion criteria 1746 respondents/dwellings were kept in the 
dataset.  

4.2 Multiple linear regression 
A multiple linear regression was performed to find predictors of the dependent variable: ‘actual 
energy use during the operation phase of a Dutch residential building’. The assumptions for the 
analysis are met and are described in Appendix B. The summary of the multiple regression analysis is 
presented in Table 4, with as dependent variable the total actual energy use.  
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Table 4. Summary of multiple linear regression models2.  

 

 

Table 4 shows that the multiple linear regression models 2, 3, 4, 5 and 6 are considered a good fit. 
The models are created that each new model adds an extra predicting variable in comparison to the 
previous model, e.g. model 2 has 2 variables and model 1 has 1 variable. The Sig. F Change column 
shows that all the models are statistically significant (values are <0.05).  

The most relevant models are model 3 and 6. The R Square change column shows that model 3 is 
1.7% (0.017*100) better explaining the variance than model 2. Model 4 explains 0.2% more variance 
than model 3, model 5 0.3% more than model 4, and model 6 0.1% more than model 5. So, the last 3 
variables added, resulting in model 6, together explain 0.6% of the variance. The exact coefficients of 
the variables in the models are presented in Appendix C.  

The equations of model 3 and model 6 are presented in Equation 3 and Equation 4 respectively. 
Model 3 (Equation 3) includes a constant and the variables: building type, theoretical total energy 
use, and the number of rooms (in 5 classes). Since the building type and the number of rooms (in 5 
classes) are nominal variables these are shown in the equation as dichotomous variables.  

Equation 3. Multiple linear regression model 3. Where all variables are dichotomized except for theoretical total energy use.  

8810 + 1945 ∗ (𝑡𝑒𝑟𝑟𝑎𝑐𝑒𝑑 ℎ𝑜𝑢𝑠𝑒) + 4080 ∗ (𝑠𝑒𝑚𝑖𝑑𝑒𝑡𝑎𝑐ℎ𝑒𝑑 ℎ𝑜𝑢𝑠𝑒) + 9418 ∗ (𝑑𝑒𝑡𝑎𝑐ℎ𝑒𝑑 ℎ𝑜𝑢𝑠𝑒)

+ 2875 ∗ (𝑓𝑎𝑟𝑚) + 2599 ∗ (ℎ𝑜𝑚𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑜𝑟𝑒) + 3450

∗ (𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑢𝑛𝑖𝑡 𝑤𝑖𝑡ℎ 𝑐𝑢𝑚𝑚𝑢𝑛𝑎𝑙 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠) + 0.428

∗ (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒) − 173 ∗ (𝑟𝑜𝑜𝑚𝑠(3)) + 1054 ∗ (𝑟𝑜𝑜𝑚𝑠(4))

+ 2031 ∗ (𝑟𝑜𝑜𝑚𝑠(5)) + 3543 ∗ (𝑟𝑜𝑜𝑚𝑠(6 +)) 

Model 6 (Equation 4) includes a constant and the variables: building type, theoretical energy use, the 
number of rooms (in 5 classes), hot water heater type, GFA (7 classes), and garage or carport. All 
these variables, except theoretical total energy use, are nominal variables. These nominal variables 
are shown in the equation as dichotomous variables.  

 
2 80% of sample data (randomly selected) is used. Dependent variable: total energy use. A: (constant) and 
building type), b: (constant, building type and theoretical energy use), c: (constant, building type, theoretical 
energy use and number of rooms), d:(constant, building type, theoretical energy use, number of rooms, and 
hot water heater type), e: (constant, building type, theoretical energy use, number of rooms (5 classes), hot 
water heater type, and gross floor area(7 classes)), f: (constant, building type, theoretical energy use, number 
of rooms (5 classes), hot water heater type, gross floor area(7 classes), and garage or carport), g: (dependent 
variable: total energy use). 
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Equation 4. Multiple linear regression model 6. Where all variables are dichotomized except for theoretical total energy use.  

8875 + 1984 ∗ (𝑡𝑒𝑟𝑟𝑎𝑐𝑒𝑑 ℎ𝑜𝑢𝑠𝑒) + 3579 ∗ (𝑠𝑒𝑚𝑖𝑑𝑒𝑡𝑎𝑐ℎ𝑒𝑑 ℎ𝑜𝑢𝑠𝑒) + 8512 ∗ (𝑑𝑒𝑡𝑎𝑐ℎ𝑒𝑑 ℎ𝑜𝑢𝑠𝑒)

+ 1695 ∗ (𝑓𝑎𝑟𝑚) + 1772 ∗ (ℎ𝑜𝑚𝑒 𝑤𝑖𝑡ℎ 𝑠𝑡𝑜𝑟𝑒) + 3976

∗ (𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑢𝑛𝑖𝑡 𝑤𝑖𝑡ℎ 𝑐𝑜𝑚𝑚𝑢𝑛𝑎𝑙 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑖𝑒𝑠) + 0.377

∗ (𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑒) − 174 ∗ ൫𝑟𝑜𝑜𝑚𝑠(3)൯ + 903 ∗ ൫𝑟𝑜𝑜𝑚𝑠(4)൯

+ 1678 ∗ ൫𝑟𝑜𝑜𝑚𝑠(5)൯ + 2952 ∗ ൫𝑟𝑜𝑜𝑚𝑠(6 +)൯ − 337

∗ (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝐶𝑉 𝑎𝑛𝑑 𝑠𝑜𝑙𝑎𝑟 𝑏𝑜𝑖𝑙𝑒𝑟) + 872 ∗ (𝑔𝑎𝑠 𝑤𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑒𝑟) + 670

∗ (𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑏𝑜𝑖𝑙𝑒𝑟) − 170 ∗ (ℎ𝑒𝑎𝑡𝑝𝑢𝑚𝑝 𝑤𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑒𝑟) + 1318

∗ (𝑏𝑙𝑜𝑐𝑘 𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑤𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔) − 64 ∗ (𝑑𝑖𝑠𝑡𝑟𝑖𝑐𝑡 𝑤𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔) + 190

∗ (𝑛𝑜 𝑤𝑎𝑡𝑒𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔) − 313 ∗ ൫𝐺𝐹𝐴(50 − 69𝑚2)൯ − 107 ∗ ൫𝐺𝐹𝐴(70 − 89𝑚2)൯

+ 265 ∗ ൫𝐺𝐹𝐴(90 − 119𝑚2)൯ + 670 ∗ ൫𝐺𝐹𝐴(120 − 149𝑚2)൯ + 1176

∗ ൫𝐺𝐹𝐴(150 − 199𝑚2)൯ + 2208 ∗ ൫𝐺𝐹𝐴(200 + 𝑚2)൯ + 488 ∗ (𝑔𝑎𝑟𝑎𝑔𝑒) + 868

∗ (𝑐𝑎𝑟𝑝𝑜𝑟𝑡) 

The cross-validation of model 3 and model 6 are shown in Table 5 and Table 6 respectively.  

Table 5. Pearson correlations between model 3 (predictedmodel3) and the actual total energy use (Totale energieverbruik 
(kWh)).  

 

Table 6. Pearson correlation between model 6 (predictedmodel6) and the actual total energy use (Totale energieverbruik 
(kWh)).  
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Table 5 and Table 6 show the Pearson correlation between the multiple linear regression models 3 
and 6 respectively and the actual total energy use. These tables are split in two categories (Selected) 
80% of the data which was used to create the prediction model and (Not Selected) 20% of the data 
which was used to validate the prediction models. The correlation is for both categories (Selected 
and Non-Selected) and in both models approximately the same (0.590 and 0.592 for model 3) (0.598 
and 0.596 for model 6), implying that there is no overfitting of the data.  
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5 Case study/real application of method 
To show the relevance of these results an advice is presented to BAM. The intention of BAM is to 
improve its emission reporting. BAM as a company is split in three business lines with their own main 
activities. These three business lines are split in business units per country. This case study focuses on 
improving the calculation method of BAM by adding one business unit (BAM Wonen). This chapter 
will in short present the current method, a new method with existing data, and a suggestion for 
implementation of the model for next year. 

The current method used for emission calculation and reporting uses one business unit of BAM, BAM 
Construct UK. Data of BAM Construct UK is used and combined with the UK energy performance 
certificate emission standards (standard emissions for certain energy performance certificate score) 
or reference data of CIBSE to calculate/estimate the emissions of this business unit. These emissions 
are then coupled to revenue and subsequently extrapolated over revenue of the business line: BAM 
Construction M&E services (BAM CME). This method is used for 2017 and 2018.  

The new method with existing data is performed as follows. To update the data of 2018 extra data 
was collected from BAM Wonen (business unit which focuses on Dutch residential buildings and 
represents approximately 10% of the revenue of BAM CME). A list with the number of buildings built 
in 2018 with the EPC score was used to estimate the use phase emissions of BAM Wonen. The actual 
gross floor area was not available data, so the gross floor area was estimated to be 114m2, this is the 
average dwelling built in 2018 in the Netherlands [48]. To estimate the total emissions of BAM CME, 
the emissions calculated for BAM Wonen and BAM Construct are coupled to revenue and 
subsequently extrapolated over revenue of BAM CME. Figure 2 gives an overview of the three 
situations.  

 

Figure 2. CO2 emissions of the ‘Use of sold products’ of BAM CME calculated using 3 different methods. 

Figure 2 shows a big difference between 2017 and 2018 which can be explained by the number of 
finished projects in both years. In 2017 the number of finished projects was higher, while the 
revenue was approximately the same, which means that the emissions reported in that year are 
higher since only finished projects are emission wise reported.  

The results chapter shows 2 different multiple regression models which are statistically significant. At 
BAM it is an important criterium that the information is easily obtained since it is a commercial 
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company. Therefore, the models were also judged on the added value of collecting an extra 
parameter. The cumulative predicting value of parameters are shown in Figure 3. The predicting 
value is composed of the adjusted R2 multiplied by 100 to give a clear, understandable, overview.  

 

Figure 3. Cumulative predicting value of parameters of multiple regression model. 

5.1 Application 
Currently the data availability relevant for emission calculations is limited within BAM. There is not 
yet a central system which keeps important data. There are two main possibilities to start collecting 
data to improve the CO2 emission calculations. 1) The first option is to use the Customer Relationship 
Management (CRM) system. This system is a database in which all projects are noted down with 
some obligatory fields to fill out (like project number and revenue). This system has the possibility to 
expand with extra obligatory or non-obligatory fields to collect the extra data needed. This would 
require some extra work for the people filling the form. An advantage to this option is that in coming 
year this system will be introduced/implemented within all business units of BAM (which also 
involves training to work with the system). 2) The second option is to use BIM. BIM is quite an 
elaborate tool which could contain all these parameters. However, within BAM the coverage among 
dwellings is quite low. To expand this coverage would require quite some work and training in BIM.   

To conclude the case study, for 2018 more data is used to improve the accuracy of the emission 
calculation. Next year extra data can be collected using the CRM system or BIM. BIM requires 
training and knowledge so it will take some time to implement and is perhaps unrealistic for next 
year. The CRM system can be updated with obligatory fields to fill out. BAM Wonen represents 10% 
of the revenue of BAM CME. If regression model 3 which uses 4 parameters (building type, 
theoretical energy use, and number of rooms (5 classes) is implemented to predict the actual energy 
use. The calculation of BAM Wonen will improve up to 35% accuracy. BAM Wonen represents 10% of 
the revenue of BAM so the overall predictive value will improve almost 3.5%. If in the future BIM will 
be standard for all buildings this system could be used to automate these calculations.  
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6 Discussion  
This chapter starts with the interpretation of the results and comparison with other studies followed 
by the limitations of this study and possible future research.  

6.1 Interpretation of results 
This study shows that 35.7% of the variance in actual total energy use can be explained by a linear 
model with 7 parameters, if 4 parameters are used 35.1% of the variance can be explained. The main 
contribution of this study is that it uses few and easily available building specific parameters to 
predict the actual energy use during the operation phase of a Dutch dwelling. 

The results of this study can be used to predict the actual total energy use of Dutch dwellings built 
after 2008. In the best predicting models of the actual total energy use, the last three variables which 
are added to the model together just explain an extra 0.6% of the variance, which means they don’t 
explain a lot of the data variance but are statistically significant predictors. Therefore, the added 
value of the last three variables (hot water heater type, GFA in 7 classes, and garage or carport) can 
be questioned.  

This study shows that the theoretical energy use by itself is not sufficient in predicting the actual 
energy use, which is similar in other studies [33], [35]. The most important parameter in predicting 
the actual energy use is, as stated above, the building type which is in agreement with a study by 
Majcen et al. [35]. The second most important predictor in this study is the theoretical total energy 
use which is the EPC score and the GFA combined. The GFA is by others identified as an important 
parameter, some studies use another term than GFA (e.g. dwelling size or heating area) [37], [38], 
[40], [42]. There is a slight difference, this study combines the GFA with the EPC score instead of GFA 
as a single variable. The GFA is as a single variable not identified as an important variable, this can 
partly be caused by the correlation between the theoretical energy use and the GFA of which the 
theoretical energy use is a better predictor so chosen over GFA. The number of rooms as a predicting 
parameter is in a previous study shown to be an important parameter in predicting electricity and 
therefore energy use [42]. So, the variables which are used in the regression models are in line with 
previous studies.  

6.2 Limitations  
The method used in this study is a stepwise multiple linear regression. An issue with this method is 
the risk of overfitting the model. In this study 80% of the sample is used to create the regression 
models and 20% of the data is used to validate the model to show that overfitting is not an issue [49].  

Carpino et al. [43] identify the coefficient of heat transfer as the most important variable, this 
variable has not been studied because this parameter was not available in the dataset.  

This study is limited to Dutch dwellings, climate and climate-related variables are beyond the scope 
of this thesis. However, the approach taken in this study could be useful for future research in other 
countries with different climate conditions. This study focuses on buildings built after 2008 since the 
EPC score is obligatory since 2008 in the Netherlands. The goal of this study is to predict the actual 
energy use before the building is occupied, in older buildings old energy use data could be used to 
predict actual energy use. If fewer years would have been taken into account the sample size would 
have been smaller so the results would be less valid.  

The energy labels used in this study are categorical variables A-G instead of the exacter (scale) EPC 
value. These energy labels are combined with the GFA to get the theoretical total energy use. So, this 
theoretical total energy use which is a scale variable has a rounding error. In this dataset an exacter 
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value like EPC was not available. The WoON dataset has several building specific parameters 
available and has given the opportunity to use a big dataset, which is appropriate for the method 
used in this study.  

This study uses stepwise multiple linear regression as a method to identify key parameters in 
predicting the total actual energy use of a Dutch residential building. This is an approach often used 
in exploratory studies. This has some risks like: that the adjusted R2 value could be too high, and the 
regression coefficients could be biased [44].  
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7 Conclusions 
The main research question of this study is: How can the energy related emissions during the use 
phase of a Dutch dwelling be predicted using building specific data?  

To answer the main research question the sub questions are answered in this section followed by an 
answer to the main research question.  

This study shows that there are several existing approaches available for the CO2 emission 
calculations of the use phase of dwellings. The approaches are: LCA, dynamic LCA, LCEA, LCCO2A, BIM 
LCA and EPC. All approaches are either time-consuming due to data-need, not predicting (ex-post) or 
inaccurate for predicting the actual energy use of a dwelling. This study used stepwise multiple linear 
regression to create a new prediction model to calculate the energy use in the use phase of Dutch 
dwellings. The key parameters in predicting the actual energy use of a residential building are: the 
building type, the theoretical total energy use (EPC score combined with GFA) and the number of 
rooms. The multiple linear regression model predicts up to 35% of the variance of the data. Time-
efficiency and data-need are important parameters for the implementation of a new calculation 
method at a contractor. This study shows that a relatively simple calculation with 4 variables can be 
used to predict 35% of the variance in the total actual energy use. Therefore, the model with the 
parameters described above is suitable for a quick implementation. 

The model presented in this study uses 4 building specific parameters and can be used to predict 35% 
of the variance in the actual energy use during the use phase of Dutch dwellings built after 2007. This 
prediction of energy use can be used to calculate the energy related emissions.  

8 Recommendations and future work 
On purpose this study focused on residential buildings and not on civil engineering structures 
because very little is known about emissions during the use phase of these structures. But this can be 
an interesting topic for future research.  

With the building specific parameters used in this study almost 35% of the variance in actual energy 
use can be explained. This study focused on building specific parameters, because these parameters 
can be influenced by a contractor, while perhaps also other parameters are of influence on the actual 
energy use. Other possible parameters are: income, home amenities, family size and composition, 
and occupant behavior. This is beyond the scope of this study but could be interesting for future 
studies as well. Where both the prediction of the actual energy use is interesting, but influencing 
occupant behavior to reduce the actual energy use could also be an interesting topic for future 
studies.  
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Appendices 
This chapter presents additional information to provide the reader with extra information if required.   

Appendix A 
Nominal variables in dataset with the answering options.  

Table 7. Answering possibilities nominal variables. 

Label Answering possibilities 

Building type 

Flat (apartment), terraced house, semi-detached house, 
detached house, farm, house with extra function (store), 
house with communal facilities, other, no answer 

Energy saving measures (double 
glass, insulation, solar panels, new 
heater system, other, none) Yes or no (for all individual questions), no answer 
Energy label A, B, C, D, E, F, G 
Garage or carport garage, carport, neither, refuses to answer 
Building especially for elderly 
people yes, no, no answer 

Heater type 

Central-heating boiler, wood-fired heater, pellet-heater, 
gas-heater, heat-pump, block or district heating, city 
district heating, other, no answer 

Hot water heater type 

Central-heating boiler (CV), combination of central-
heating and solar boiler (CV and solar boiler), gas water 
heater, electrical boiler, heat-pump water heater, block 
or district water heater, city district water heater, other, 
no answer 
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Appendix B 
Assumption testing  

Assumption 1 is met since the actual total energy use is created from the total actual gas use and 
total actual electricity use which are both measured on a continuous scale. Therefore, the total 
actual energy use is also measured on a continuous scale.  

Assumption 2 is tested by looking at the table of correlations between independent variables 
included in the model. The correlations between those variables should be below 0.7 [50]. Table 8 
shows these correlations. The variables are shown on the horizontal and the vertical axis. The 
correlations between the variables are shown at the intersections. The number of rooms (5 classes) 
and the gross floor area (7 classes) have a high correlation which is explainable. The building type 
correlates quite high with the number of rooms, which makes sense if we think of detached houses 
having more rooms than flats. The same goes for building type and gross floor area, detached houses 
are in general bigger than terraced houses.   

Table 8. Correlations of assumed independent variables. 

 Building 
type 

Theoretical 
total energy 
use (kWh) 

Number of 
rooms (5 
classes) 

Hot water 
heater 
type 

Gross 
floor area 
(7 classes) 

Garage 
or 
carport 

Total 
actual 
energy 
use 

Building type  .380 .698 -.099 .653 -.114 .520 

Theoretical total 
energy use (kWh) 

.380  .347 -.005 .377 -.048 .414 

Number of 
rooms (5 classes) 

.698 .347  -.030 .698 -.077 .490 

Hot water heater 
type 

-.099 -.005 -.030  -.043 -.026 .100 

Gross floor area 
(7 classes) 

.653 .377 .698 -.043  -.202 .461 

Garage or 
carport 

-.114 -.048 -.077 -.026 -.202  -.113 

Total actual 
energy use 

.520 .414 .490 .100 .461 -.113  

 

The third assumption, the independence of observations is checked with the Durbin-Watson statistic 
and should be between 1.5 and 2.5 to assume there is no first order linear auto-correlation in the 
multiple linear regression data) [50]. The Durbin-Watson statistic is displayed in the rightmost 
column of  Table 4. The value is 1.956, which shows that it can be assumed that the third assumption 
is met.  

Assumption 4, the linear relationship between the dependent variables and each of the independent 
variables is shown in the normal probability-probability plot, in Figure 4. The points should be 
approximately on the line, normality can be assumed since there are no drastic deviations [50].  



30 
 

 

Figure 4. The normal probability-probability plot of regression standardized residual. The dependent variable: total energy 
use. 

Assumption 5. To check for homoscedasticity the residuals scatterplot is presented in Figure 5. The 
data point should be scattered across the sample [50]. The data points are somewhat more scattered 
on the right of the plot but overall the distribution looks good enough to assume homoscedasticity.   

 

Figure 5. Scatterplot of the residuals. The dependent variable: total actual energy use. 
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Assumption 6. The absence of multicollinearity is confirmed by looking at the right end of the 
coefficients table in Appendix C. All the VIF values are below 10 indicating that this assumption is met 
[50].  

The seventh assumption is met. To perform multiple linear regression, outliers in the sample need to 
be excluded. So, outliers are excluded using two criteria. Sample points with a z-score above 1.96 and 
below -1.96 are excluded from the sample. Also sample points with a Cook’s distance greater than 1 
are excluded from the sample to exclude multivariate outliers [50].  

The final assumption to be tested is that residuals should be approximately normally distributed [50]. 
In Figure 6 the distribution of the residuals histogram is shown. The figure shows approximately 
normally distributed residuals and therefore this assumption is met.  

 

Figure 6. Distribution of residuals histogram. Dependent variable: total energy use. 

In the coefficients Table 10 and Table 11 the sig. column all values are below 0.05 which shows the 
statistical significance of the models.  

The 0 hypothesis is rejected since the significance in the ANOVA Table 9 under column ‘Sig.’ is below 
0.05. Which means that all models are significant in predicting the actual energy use.  
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Table 9. ANOVA of multiple regression analysis3.  

 

  

 
3 Dependent variable: total energy use. B: (constant) and building type), c: (constant, building type and 
theoretical energy use), d: (constant, building type, theoretical energy use and number of rooms), e: (constant, 
building type, theoretical energy use, number of rooms, and hot water heater type), f: (constant, building type, 
theoretical energy use, number of rooms, hot water heater type, and gross floor area), g: (constant, building 
type, theoretical energy use, number of rooms, hot water heater type, gross floor area, and garage or carport). 
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Appendix C 
Coefficients table of the multiple linear regression models 3 and 6. This section presents the 
coefficients tables with the unstandardized and standardized coefficients, the significance level of the 
variables (Sig.), the lower and upper boundaries of the 95% confidence intervals and the collinearity 
statistics.  

Table 10. Coefficients, significance, confidence interval and the collinearity statistics of linear regression model 3. 

Approximately 
80% of the cases 
(SAMPLE) 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Sig. 

95,0% Confidence 
Interval for B Collinearity Statistics 

B 
Std. 
Error Beta 

Lower 
Bound 

Upper 
Bound Tolerance VIF 

(constant) 8809,988 129,358   0,000 8556,435 9063,541     

terraced house 1945,417 109,882 ,138 ,000 1730,039 2160,795 ,560 1,787 

Semi-detached 
house 

4079,548 189,047 ,147 ,000 3708,999 4450,096 ,742 1,348 

detached house 9418,333 188,787 ,362 0,000 9048,294 9788,372 ,650 1,540 

farm 2875,069 372,507 ,048 ,000 2144,923 3605,215 ,867 1,153 

Home with store 2598,936 476,235 ,033 ,000 1665,474 3532,399 ,934 1,071 

residential 
building with 
communal 
facilities 

3449,658 799,102 ,026 ,000 1883,348 5015,969 ,958 1,044 

theoretical total 
energy use 

,428 ,014 ,207 ,000 ,400 ,456 ,736 1,358 

rooms (3) -173,859 143,519 -,011 ,226 -455,169 107,452 ,406 2,464 

rooms (4) 1053,856 154,294 ,071 ,000 751,426 1356,286 ,315 3,179 

rooms (5) 2031,436 175,625 ,115 ,000 1687,195 2375,677 ,348 2,870 

rooms (6+) 3543,129 204,118 ,158 ,000 3143,040 3943,219 ,414 2,413 
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Table 11. Coefficients, significance, confidence interval and the collinearity statistics of linear regression model 6. 

Approximately 80% of 
the cases (SAMPLE) 

Unstandardized 
Coefficients 

Stand
ardize

d 
Coeffi
cients 

t Sig. 

95,0% Confidence 
Interval for B 

Collinearity 
Statistics 

B Std. Error Beta 
Lower 
Bound 

Upper 
Bound 

Toler
ance VIF 

(constant) 8875,328 176,736   50,218 0,000 8528,910 9221,747     

terraced house 1983,857 118,944 ,141 16,679 ,000 1750,717 2216,997 ,474 2,111 

semidetached house 3578,691 207,470 ,129 17,249 ,000 3172,031 3985,350 ,611 1,637 

detached house 8512,163 218,958 ,327 38,876 0,000 8082,985 8941,341 ,479 2,088 

farm 1694,939 393,877 ,029 4,303 ,000 922,906 2466,973 ,770 1,299 

home with store 1772,249 484,922 ,023 3,655 ,000 821,758 2722,740 ,893 1,119 

residential building 
with communal 
facilities 

3976,247 807,674 ,030 4,923 ,000 2393,134 5559,360 ,930 1,076 

theoretical total 
energy use 

,377 ,015 ,182 25,332 ,000 ,348 ,406 ,659 1,518 

rooms (3) -173,968 157,923 -,011 -1,102 ,271 -483,511 135,574 ,332 3,008 

rooms (4) 902,836 173,033 ,061 5,218 ,000 563,676 1241,996 ,248 4,031 

rooms (5) 1678,422 194,662 ,095 8,622 ,000 1296,868 2059,976 ,281 3,555 

rooms (6+) 2952,529 221,814 ,131 13,311 ,000 2517,753 3387,305 ,348 2,873 

CV and solar water 
heater 

-337,272 316,716 -,006 -1,065 ,287 -958,063 283,518 ,993 1,007 

Gas water heater 871,756 246,569 ,021 3,536 ,000 388,459 1355,052 ,978 1,023 

electrical boiler 669,680 156,813 ,025 4,271 ,000 362,313 977,048 ,964 1,038 

heat pump water 
heater 

-169,829 346,658 -,003 -,490 ,624 -849,309 509,651 ,993 1,007 

block or district water 
heater 

1317,854 235,873 ,033 5,587 ,000 855,522 1780,186 ,947 1,056 

district water heater -63,847 191,511 -,002 -,333 ,739 -439,226 311,532 ,977 1,024 

no water heater 190,354 2487,333 ,000 ,077 ,939 -4685,040 5065,749 ,997 1,003 

GFA (50-69) -313,462 192,398 -,015 -1,629 ,103 -690,579 63,655 ,385 2,597 

GFA (70-89) -107,912 191,250 -,007 -,564 ,573 -482,778 266,954 ,247 4,041 

GFA (90-119) 264,665 199,733 ,018 1,325 ,185 -126,829 656,159 ,186 5,374 

GFA (120-149) 669,580 228,825 ,032 2,926 ,003 221,062 1118,097 ,276 3,625 

GFA (150-199) 1176,111 269,559 ,043 4,363 ,000 647,751 1704,471 ,355 2,814 

GFA (200+) 2208,334 321,469 ,064 6,870 ,000 1578,226 2838,441 ,392 2,549 

garage 487,761 132,165 ,028 3,691 ,000 228,705 746,816 ,596 1,677 

carport 867,893 242,258 ,021 3,583 ,000 393,045 1342,740 ,951 1,052 

 


