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Abstract

Speech production is a complex process drawingmuch attention from researchers.
When speech is altered due to, for example, cancer in the tongue, lips or palate, it
is important to understand how the articulation has changed to provide optimal
rehabilitation therapy.

In this thesis, we aimed to develop a methodology that enables objective and
replicable assessment of speech articulation. Real-timemagnetic resonance imag-
ing (rtMRI) was chosen as a means to acquire articulatory information during
speech, due to its good soft tissue contrast and non-invasiveness. TheUSCSpeech
and Vocal TractMorphologyMRIDatabase 1 was used throughout this thesis and
contains MR data from seventeen healthy American-English speaking subjects.

A preliminary study was performed to demonstrate that relevant articulatory
information is present in the MRI data. We trained a deep learning network to
predict from a single MR image the phoneme that was articulated. The network
itselfwas analyzedand revealed that it had learned similar relationsbetweenvowels
as is known to phoneticians.

During articulation, the vocal tract shape changes throughwhich sound is trans-
formed to speech. To extract quantitative information on the articulation, we seg-
mented the vocal tract from every rtMRI frame in the dataset with the Chan-Vese
level set method. We used Bayesian hyperparameter optimization to learn opti-
mal parameters for the level set and image preprocessing. With this method, we
showed that all frames could be segmented with the need of a single manual seg-
mentation per subject with a dice score of 95.6 % and a mean surface distance of
1.8 mm.

From these vocal tract segmentations, we subsequently derived the vocal tract
distance function. The centerline of the vocal tract was found and a grid was pro-
jected from which the width of the vocal tract was deducted for each frame. We

1https://sail.usc.edu/span/morphdb/
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have proposed several ways of visualizing the vocal tract dynamics, such that the
location of articulation for different phonemes can be studied and the differences
in articulation space could may be observed.

With this thesis, we developed a methodology to extract the vocal tract dis-
tance function of a large rtMRI dataset. Where most studies focus on merely a
single time point or a single location within the vocal tract over time, the method
proposed here regards both the temporal and spatial dimension. The enrichment
of the dataset is made publicly available to support articulatory studies in healthy
subjects to broaden our understanding of articulation in speech. The tool itself
has the potential to be used in clinical practice by aiding speech therapist with the
assessment of the patient’s articulation abilities. By performing pre- and postinter-
vention measurements the effect of treatment can be studied and a personalized
rehabilitation plan proposed.
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1.1 Oral cancer and consequences

Cancer in the lips and oral cavity is prevalent around the world and had an inci-
dence of almost 19,000 in 2018 inWesternEurope alone [4]. The incidence of oral
cancer is decreasing consistent with the reduction of tobacco use and alcohol in-
take. However, HPV related tongue cancer is becomingmore common, especially
in young people [6, 24]. After oral cancer is diagnosed, many factors influence the
clinical decision about whether treatment is an option and, if so, what treatment
should be offered. For example, the type, the size, and the location of the tumor
play an important role in determining the operability. Also, the expected function
after the therapy, as well as the physical state and wishes of the patient, are taken
into account.

Increasingly, oral cancer is curable with treatments such as surgery, chemo radi-
ation and/or immunotherapy. However, when an extensive resection is necessary
to achieve clear margins, function loss can be so severe that the consequences of
this treatmentmight not be acceptable. The functioning of the tongue and the oral
area has a major impact on the quality of life [12, 21, 26]. The tongue, oral cavity,
and epiglottis are for example essential for eating (Figure 1.1.1). With these struc-
tures, the bolus of food is formed, pushed to the back of the mouth, and directed
to the esophagus for swallowing [1, 14]. If the patient is unable to do this, a diet of
liquids or a percutaneous endoscopic gastrostomy is inevitable. Another impor-
tant consequence of changes to the vocal tract organs, due to oral cancer and/or
intervention, is the decrease in quality of speech, which is regarded in this research.
Research from Suarez-Cunqueiro et al. [26] showed that 64% of patients treated
for oral or oropharyngeal cancer reported speech problems. While functionality
becomes more important, predicting posttreatment impairment remains difficult
[11, 27].

1.2 Speech

Decrease in the quality of speech is mostly caused by surgery of the tongue,
palate, and jaw, since these are important structures used to articulate. To under-
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Figure 1.1.1: The anatomy of the head and neck region based on a midsagittal
MR slice. The vocal tract ranges from the glottis located in the larynx, including
the pharynx and tongue region, to the lips.

stand how speech is altered due to cancer treatment, we use the source-filtermodel
to describe the production of speech [7]. The source-filter model, as illustrated in
Figure 1.2.1, assumes the independent productionof soundby the ‘source’ (mainly
the glottis region of the larynx) and altering of the spectrum by a ‘filter’: the vocal
tract. The vocal tract can be simplified by envisioning a tube with resonant fre-
quencies determined by the shape of the tube. By changing the shape of the vocal
tract, for example, by raising the tongue, the resonance characteristics of the tube
change, and a different sound or phoneme is produced. By creating different vo-
cal tract configurations with our articulators, speech is produced [2]. When, due
to the tumor or treatment, the patient can no longer make specific constrictions
within the vocal tract, speech may be altered [14, 20]. For example, excisions of
the lateral side of the tonguemay cause lisping with sibilant consonants (/s/, /z/,

/S/), as the tongue is no longer able to close off the vocal tract towards the palate
sufficiently. Or the quick changes in the articulators’ positions cannot be met, re-
quired with consonant combinations like /str/ in street.

1.3 Speech therapy

Thespeechquality is usually assessed subjectivelyon the intelligibilityby speech
therapists [17, 22]. Sometimes a more systematic test is performed, trying to iso-
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Figure 1.2.1: Illustration of the source-filter model describing the production of
speech. The source sound is produced by air flowing through the vocal cords in
the glottis. The vocal tract configuration acts as a filter changing the resonance
frequencies of the source sound, resulting in speech. This illustration was taken
from Maurer, 2016 [16].

late the problematic articulations. Here, the patient reads a text out loud and the
therapist keeps score of the words that were not understood or pronounced well.
However, these tests rely heavily on the interpretation of the therapist as well, en-
cumbering the rehabilitation process [11, 27].

Gaining awareness of what happens inside the vocal tract may aid in specifying
appropriate exercises for speech rehabilitation [27]. There is still much unknown
about the relationship between articulation and speech. As an illustration, there
are many different articulatory configurations possible for the production of the
same sound. This variance causes some patients to be able to compensate for their
impairment. Articulatory compensation, however, does not occur with every pa-
tient and little is known about what exactly happens with the articulators when
compensating [8, 10, 17, 27]. Additionally, compensation occurs on a linguistic
level, where patients learn to avoid the sounds they have trouble with and use syn-
onyms instead. This type of compensationmaymask articulatory problems, when
only judged by listening to free speech.

Additionally, it is currentlyhard toprovide feedbackon theprogressmade,when
speech assessment methods are not reproducible or objective. It is known that
therapy adherence and patient motivation is improved when the patient receives
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feedback on the progression made [9]. Furthermore, patient-specific visualiza-
tions of the articulation may function as a therapeutic means to improve speech
[3].

Analysis of the articulation will aid in specifying the location and degree of the
speech disorder regardless of language. Also, it broadens our understanding of
what articulatory compensation mechanisms are possible. In this way, a tool to
objectively assess the articulation could contribute to the rehabilitation therapy
when speech complaints occur [3].

1.4 Technological challenges

To our knowledge, an automated and objective assessment of articulation has
not yet been developed. Although, it is not easy to measure articulation, several
techniques are available to acquire articulatory information. Electromagnetic ar-
ticulography is a method using a magnetic field and electrodes placed in the oral
cavity to track the coordinates of these specific locations. The disadvantage is that
the setup is complex and electrodes are placed manually thus variety exists be-
tween subjects and measurement time points. Furthermore, considering a de-
formed tongue due to a tumor or surgery, electrode positions cannot be main-
tained or even placed due to pain. Another methodology is videofluoroscopy, of-
ten used for the assessment of swallowing function. Apart from the fact that radia-
tion is needed, videofluoroscopy images have poor soft tissue contrast, making the
methodnot an optimal imaging technique for the vocal tract. [5, 15, 18, 19, 23, 28]

Advances in magnetic resonance imaging (MRI), regarding speed and quality
of acquisitions, make it possible to create MR videos, also called real-time MRI
(rtMRI). At this point, sufficient quality is reached with single slice imaging (2D),
while experiments are being performed to acquire volumetric (3D) data over time
[13]. MRI has the advantage of good soft tissue contrast. It gives us information
about the complete vocal tract and not a mere selection of points [5, 15, 18, 23].
In this study, we thus choseMRI as the methodology to extract articulatory infor-
mation.

Additionally, whatmakesour aimdifficult, is the lackof available data, especially
pathological speech MR data. Specialized hardware is needed to record speech
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during MRI acquisitions, because the large magnetic field distorts electrical sig-
nals and the gradient switches cause a lot of noise. For this proof-of-principle
study, this hardware was not available, and we decided to use an existing database
of healthy subjects to develop the analysis methodology. The database is from the
University of Southern California. It contains both 3D static MR imaging dur-
ing sustained sounds and 2D dynamicMR images of seventeen American English
speaking people [25].

1.5 Research aim

In this thesis, we propose amethodology, based on rtMRI, to gainmore insights
into the articulation of healthy subjects. It is the first time, to our knowledge, that
we were able to automatically extract vocal tract information from the segmented
images allowing for dynamic analysis of the articulation of subjects. This enables
the objective and replicable assessment of speech. Especially intra-subject changes
canbemonitored and compared, like the impact of an intervention, or the progres-
sion due to therapy.

1.6 Research questions and thesis outline

To answer the research aim, we first performed a preliminary study, described
in chapter 2, where the goal was to show the power of vocal tract MRI data and
deep learning to extract useful information from vocal tract imaging. We train the
network to classify 27 different phonemes from 2D MR images. The network’s
embedding was used to show the relation between these different phonemes that
could be distorted when speech is pathological.

The third chapter demonstrates a methodology for segmenting the vocal tract
fromrtMRIdata. Theaimwas todevelop amethodology that needed limitedman-
ual labeling effort, while maintaining good segmentation quality. The Chan-Vese
level set methodwas used with Bayesian hyperparameter optimization. With only
one manual segmentation per subject, all frames of all videos could be segmented
(about 35,000 images per subject). The segmentation works as a feature extractor
for further vocal tract analysis.

6



In the fourth chapter, we explore the question how to use rtMRI data to gain
objective and replicable insights into the articulation of a subject. We use the seg-
mentation results of chapter 3 to extract the vocal tract distance function and show
characteristics of articulation in different ways.

The thesis finishes with a general discussion in chapter 5, where the research
goal is answered. Additionally, suggestions on how to proceed in this field of re-
search are described.
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2.1 Abstract

Recent advances in real-time magnetic resonance imaging (rtMRI) of the vo-
cal tract provide opportunities for studying human speech. rtMRI together with
acquired speech may enable the mapping of articulatory configurations to acous-
tic features. In this study, we have taken the first step by training a deep learning
model to classify 27 different phonemes frommidsagittal MR images of the vocal
tract.

An American English database was used to train a convolutional neural net-
work to classify vowels (13 classes), consonants (14 classes) and all phonemes (27
classes) of 17 subjects. Classification top-1 accuracy of the test set was 57% for all
phonemes. Errorsweremostlymadebetween related voiced andunvoiced sounds.
We performed principal component analysis on the network’s embedding and ob-
served topological similarities between the network’s learned representation and
the vowel diagram. Saliency maps gave insight into the anatomical regions most
important for classification and showed congruence with known regions of artic-
ulatory importance.

Wedemonstrate the feasibilityof deep learning todistinguishbetweenphonemes
fromMRI. Network analysis can be used to improve understanding of normal ar-
ticulation and speech and impaired speech in the future. This study brings us a
step closer to the articulatory-to-acoustic mapping fromMR imaging.

2.2 Introduction

Within speech research, it has been a long-standing challenge to be able to es-
timate the acoustic features corresponding to a specific vocal tract configuration,
also called articulatory-to-acoustic mapping. This is not a trivial problem since
there is much variability between subjects. Also during speech production, the
fast transitions of the articulators are difficult to capturewith currentmeasurement
methods.

X-ray is one of the methods to extract articulatory information. However, it
has the disadvantages of bad soft tissue contrast and potentially hazardous radia-
tion. Electropalatography can only measure when and where the tongue touches
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the palate and requires a customized electropalate. In electromagnetic articulogra-
phy (EMA), sensor coils are placed on the tongue which can cause heterogeneity
among speakers and interference with natural articulation. Advances in real-time
MRI make it possible to image the whole vocal tract and soft tissue articulators
at a sufficient frame rate needed for speech analysis. The advantages of this tech-
nique are that no potentially hazardous radiation is needed, and nothing is placed
in themouth that could interfere with the articulators’ movement. This technique
is also suitable for patients with vocal tract pathology, e.g. patients who have had a
(partial) tongue resection or experience pain in these areas. The advantages go at
the expense of the increased complexity to acquire the data and patient-level dis-
advantages such as the high noise level inside an MRI scanner [1, 6, 7, 10]. The
University of Southern California gathered a dataset with rtMRI and MRI from
sustained sounds (USCSpeech andVocalTractMorphologyMRIDatabase)[12].
In this study, we use deep learning and single frame MR images of the sustained
phonemes to model the relation between the vocal tract configuration and the
phoneme.

Saha et al. [9] have previously attempted to classify vowel-consonant-vowel
(VCV) combinations from the USC speech database using rtMRI [8, 12]. Image
features of multiple frames were extracted and combined with a long short-term
memory network to form a general prediction of the VCV-‘video’. They reached
an accuracy of 42% for 51 different VCV combinations.

This study aims to predict the corresponding phoneme from a static MR image
using a convolutional neural network (CNN). We trained a neural network for
three tasks: classification of 13 vowels, classification of 14 consonants, and clas-
sification of all the 27 phonemes. Secondly, we perform an extensive analysis of
what the neural network has learned to gain insights into the relation between vo-
cal tract configurations, speech, and phonetics. These techniques may help us to
gain a better understanding in what makes pathological speech abnormal. This
study is a preliminary work to demonstrate the feasibility of using rtMRI and deep
learning for articulatory-to-acousticmapping. The larger goalwehave is to individ-
ualize the approach for people with impaired speech. We want to predict the im-
pact of interventions like surgery and radiotherapy on functional outcomes, such
as speech and swallowing, for amore personalized treatment plan. Amethodology
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Table 2.3.1: Sustained phonemes (in bold) in USC Speech and Vocal Tract
Morphology MRI Database.

Sustained
vowels

bi:t (beet), bIt (bit), beit (bait), bEt (bet), bæt (bat), pa:t

(pot), b2t (but), bO:t (bought), boUt (boat), bu:t (boot), pUt

(put), bô
"
d (bird), æb2t (abbot)

Sustained
consonants

AfA, AvA, ATA, ADA, AsA, AzA, ASA, AZA, AhA, AmA, AnA, ANA,
AlA, AôA

that is able to perform an articulatory-to-acoustic mapping is essential in order to
reach this goal.

2.3 Methods

2.3.1 Data

Apublisheddatabase, theUSCSpeechandVocalTractMorphologyMRIDatabase
from the University of Southern California, was used for the classification tasks
[12]. The database consists of 2D rtMRI data (1.5 Tesla) including the recorded
speech of the vocal tract and 3DvolumetricMRI (3Tesla)while subjects utter sus-
tainedvowels andcontinuant consonants. The latter setwasusedhere forphoneme
classification. Data of 17 subjects (8 male, 9 female) were present with 13 vowels
(234 images) and 14 consonants (255 images). Further details on the different
phonemes are given in Table 2.3.1. For some subjects, a phoneme was missing or
a duplicate was present. Overall the dataset was balanced with a mean of 18 ± 0.8
samples per class. For the classification task, only the middle sagittal slice was ex-
tracted and used. Each image was unity-based normalized and resampled to 32 by
32 pixels. Data were randomly split on subject level between a train (14 subjects)
and a test set (3 subjects).

TheCifar10dataset [5], existingof 60,000color images from10different classes,
was used to pretrain the network for improved image feature extraction. The three
color channels were averaged to create grayscale images.
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Figure 2.3.1: Classification architecture existing of convolutional layers with
kernel size 3 by 3 and max pooling of 2 by 2 for extracting meaningful image
features, followed by a dense and softmax layer for phoneme classification with
k classes. ReLU activations were present after each convolutional layer.

2.3.2 Architecture and training

The neural network architecture consists of four convolutional blocks. Each block
is made up of two convolutional layers with ReLU activations ending with a max
pooling layer, as shown in Figure 2.3.1. In the last block, the pooling layer is re-
placed by flattening to transform the feature maps to vectorial feature space. A
softmax classifier is used for the prediction of the phoneme resulting in a probabil-
ity score for each class.

Because of the limited data in the speech dataset used, the network was pre-
trained with the Cifar10 dataset to learn general image filters. The training was
performed with a batch size of 10 images, early stopping and restoring the best
performingmodel. For the speech classification tasks, the dense layer and softmax
layerwere replacedbynewly initialized layerswith thenumber of output nodes (k)
corresponding to the number of classes to predict. The number of possible classes
was 13 for the vowel task, 14 for the consonants, and 27 for the vowel+consonant
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task. All layers remained trainable and able to be fine-tuned to the MRI data. For
both the Cifar10 and the speech dataset loss was defined by the categorical cross-
entropy. The network was optimized with Adam optimizer [3].

Six-fold cross-validation was performed for grid hyperparameter tuning with
the training set (training on 12 subjects, testing on 2). Hyperparameters were
drop-out (0.1, 0.3, 0.5, 0.7), batch-size (1, 4, 8, 16), and amount of data augmen-
tation (with varying amounts of zoom, rotation, shift and shear). Early-stopping
with a latency of 30 epochs was applied. For the test phase, the hyperparameter
set with the minimum average loss over all folds and over all tasks (vowels, conso-
nants, vowels+consonants) was chosen. Because of the varying number of classes,
the number of epochs to trainwasdifferedper task andwas set to themeannumber
of epochs of all folds times the factor of 1.3. As the size of training data increases
during the test phase, this scaling factor ensures the convergence of the network.

The final performance was determined on each test subject, by retraining the
network on all subjects except for the test subject (leave-one-out cross-validation).
With this method, as close to all the data could be exploited for the training, while
retaining a strict divisionbetween train and test samples. Thisprocesswas repeated
ten times to minimize the variance caused by random initialization.

2.3.3 Analysis

Top-1, top-3, and top-5 classification accuracywith standard deviationswere com-
puted for each task of the train and test set. The Welch’s t-test was performed in
order to compare train and test set performance. Probability confusion matrices
were computed for the test set with all iterations combined. Principal component
analysis (PCA) was performed on the embedded space (output of the flattened
layer) to visualize the mapping learned by the network’s image feature extractor.
Saliency maps highlight regions in the input image contributing most towards the
predicted class. They were created by computing the change in the prediction to a
small change in the input image, resulting in a sensitivity heatmap over the input
image [4, 11].
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Table 2.4.1: Leave-one-out cross-validation accuracy of train and test set with
batch-size of 4, drop-out of 0.3, and data augmentation with max zoom of factor
0.2, rotation of max 20 degrees, max shift of 0.2 and max shear of 0.2. Average
of 10 iterations is given.

Vowels Consonants Vowels +
Consonants

top-1 accuracy (stdev) % train 51.6 (12.7) 52.1 (13.8) 43.0 (10.9)
test 70.7 (14.1) 61.7 (16.7) 57.0 (8.4)

top-3 accuracy (stdev) % train 87.3 (7.5) 85.7 (10.6) 76.3 (9.6)
test 96.2 (2.9) 93.6 (7.6) 89.2 (5.8)

top-5 accuracy (stdev) % train 97.0 (3.4) 94.2 (7.0) 89.2 (6.0)
test 100.0 (0.0) 99.1 (1.3) 97.4 (2.2)

2.4 Results

2.4.1 Performance

During hyperparameter tuning, themean loss wasminimizedwhen a batch-size of
4 and drop-out of 0.3 were used, and the data augmentation was performed with a
maximum zoomof factor 0.2, amaximum rotation of 20 degrees, amaximum shift
of 0.2 and a maximum shear of 0.2.

Table 2.4.1 shows the mean accuracy and variance of all iterations of the dif-
ferent tasks over the train and test subjects. The vowel classification task shows
the highest accuracy, 70.7%, on the test set. Correctly classifying the dataset with
both vowels and consonants was the most difficult task with 27 classes but, with
57.0% accuracy in the test set, performs well above random chance (±4%). Sur-
prisingly, for all tasks, the test set performance is better than the train set perfor-
mance, though not significant for most metrics. Only for the top-5 accuracies and
the top-3 accuracy for the vowel-task, the difference between the two sets is sig-
nificant (Welch’s t-test, p-value <0.05).

In Figure 2.4.1, the confusion matrix of the consonants shows how voiced and
unvoiced consonants with similar articulation are most easily confused, such as
/AfA/-/AvA/ and /AsA/-/AzA/.
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Figure 2.4.1: Confusion matrix of the consonants classification task. Predicted
probabilities of the three test subjects of all iterations are combined. Especially
where a voiced and unvoiced variant of the phoneme exist confusion can be
seen.

2.4.2 Embedding

InFigure 2.4.2a, the first and second principal components of the embedded space
of all samples of a vowel model are plotted. Wemapped the vowels from the USC
speech dataset to the well-studied vowel diagram serving as the legend [2] (Figure
2.4.2b). The PCA plot is rotated to match the orientation of the vowel diagram.
Visually, the embedding shows congruence with the orientation of vowels in the
vowel diagram, demonstrating that the neural network learned a similar relation
between samples as known to phoneticians. It can be seen that the lower vowels,
like /bat/ and /pot/, are oriented at the bottom, as opposed to the higher vowels
/beet/ and /boot/ that are projected at the top.

2.4.3 Saliency

Figure 2.4.3 shows the saliencymap of six examples from the same subject derived
from the consonants+vowels classification model. Regions in the image light up
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Figure 2.4.2: a. First and second principal component of the output of the
flattened layer of all samples based on one of the vowel models. Axes are
oriented to align with b. b. The legend of a with the samples mapped in
the vowel diagram space. Spatial relations can be seen between the principal
components a and the well-studied vowel diagram in b. Best viewed in color.

where changes in the input have the most impact on the prediction.
For continuant consonants /ATA/, /AfA/ and /AvA/ the lips and tongue are of

high importance, and for /AmA/, /AnA/ and /ANA/ the oropharynx. Vocal tract
configurations that are less differentiable from the other samples, like /bit/ and
/bat/, show more widespread attention maps, opposed to well differentiable im-
ages like, /bird/, /AmA/ and /AhA/. Most vowels show a more widespread field
between the tongue and palate. Figure 2.4.3e and 2.4.3f show the saliency map of
the same input image /pot/ at different iterations, which is once classified correctly
(2.4.3e) and oncemisclassified as /AhA/ (2.4.3f). The saliencymaps differ accord-
ingly and help explain why misclassification took place as the sensitivity in figure
2.4.3f is very local and not most meaningful for predicting the true class /pot/.

The confusion matrices and embedding for the classification tasks not shown
here are included in Appendices A and B.

2.5 Discussion

In this study, we demonstrate that 27 sustained phonemes can be classified from
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Figure 2.4.3: Saliency maps of one of the subjects. Different input samples
are shown with the true class (true) and predicted class (pred). A yellow shade
indicates high sensitivity, thus small changes in these pixels in the input have a
large effect on the predicted class. Best viewed in electronic form.

MR images by a convolutional neural network with an accuracy of 57.0% on the
test set. Ourfindings suggest thatdeep learning represents a viable tool for articulatory-
to-acoustic mapping from rtMRI.

Apart from the top-1 accuracy, we considered the top-3 and top-5 accuracy. Ac-
curacy increased between 26% and 33% depending on the task for the top-3 accu-
racy, which indicates that related classes are confused more often. The confusion
matrix confirmed this effect. The classification task of both vowels and consonants
showed the lowest performance, which can be explained by the fact that twice as
many classes were included making the task more difficult.

Most noteworthy, the test set consistently outperformed the train set results.
Duringmodeling, it is expected that the dataset, on which hyperparameter tuning
was performed, will result in a better performance. One-versus-all cross-validation
was performed on each subject to analyze the differences between subjects, while
being trained on all other subjects. It appears that the random train/test split gave
us three test subjects that outperformed the training set on average. With only 17
subjects in the dataset the risk of having a biased test set is not negligible. The
Welch’s test shows that the differences in the top-1 accuracy do not significantly
differ between the train and test set, thus they come from the same distribution.

The image features learned and visualized in 2D using PCA, demonstrate that
the network has indeed learned “sensible” information that resembles the vowel
diagram. Furthermore, the saliency maps reveal that the network has learned to
focus on the parts of the image that represent the crucial articulatory positions
needed to distinguish the different phonemes, such as the lips, tongue and the

22



oropharynx. The saliency maps were not always similar between subjects since
the vocal tract configurations differwith each subject. Moreover, it seems thatmis-
takes were made more often when the saliency maps showed places of sensitivity
that were not expected to be important for classification. It would be interesting to
apply similarmethodology to data of subjects with impaired speech to compare to
the healthy subjects. The vowel embeddingmight reveal insight in the way the dif-
ferent phonemes are related to each other. Saliency maps could aid in explaining
which articulators are involved in the impairment of phoneme production.

It is expected that the addition of data of more subjects will improve this re-
search. The risk of getting a biased test set from a random split could be avoided
and the model would generalize better. Furthermore, limited experiments have
been done on the model architecture due to endless options. The network archi-
tecture used in this paper is simple and can be trained with limited computing re-
sources and time. Improvements are possible by using other pre-trained image
classification networks as Xception or ResNet.

This research aims to use the speechmodel in combination with a biomechani-
cal tonguemodel to better understand and predict the changes in articulation due
to oral surgery or radiotherapy. The results of this study give us the confidence to
proceed in this direction. The next steps are to develop a method for vocal tract
segmentation and use the output to train an articulatory-to-acoustic model.

2.6 Conclusion

The results of this study show the potential of MRI and deep learning as a vi-
able methodology to create a speechmodel. Analyses of the network provide new
insights into what it is that the neural network has learned and ‘sees’. This can be
used to gain a better understanding of articulation in general and impaired speech
in particular.
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2.7 Appendices

A Confusion matrices

(a) (b)

Figure 2.7.1: Confusion matrix of a. the vowel classification task and b.
vowel+consonant classification task. Predicted probabilities of the three test
subjects of all iterations are combined.
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B Embeddings

Figure 2.7.2: First and second principal component of the output of the flat-
tened layer of all samples based on one of the consonant models. Best viewed
in color.
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Figure 2.7.3: First and second principal component of the output of the flat-
tened layer of all samples based on one of the vowel+consonant models. Best
viewed in color.
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3
Segmentation of the vocal tract from

real-timeMRI with level set method and
Bayesian hyperparameter optimization
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3.1 Abstract

Real-timeMRI (rtMRI) can be used to acquire articulatory information during
speech. To enable objective analysis of speech articulation, segmentation of the
vocal tract is essential. Here, we aimed to develop a semi-automatic segmentation
method that required limited manual labor.

We used the Chan-Vese level set method to segment the images. Bayesian op-
timization was applied to choose optimal hyperparameters for the image prepro-
cessing and the level setmethod. Level sets need an initial contour to start evolving
from. Experiments were performed to explore the effect of different initialization
methods based on manual segmentations. We show that a single manual segmen-
tation per subject results in minimal performance loss compared to a manual seg-
mentation per video. This reduces the manual segmentation work 45-fold, while
having a dice similarity coefficient of 95.8 % and a mean surface distance of 1.8
mm.

The method enabled us to segment the data of seventeen subjects with each
containing around 40,000MR frames. The Bayesian approachmakes themethod-
ology easily adjustable and transferable to different datasets.

3.2 Introduction

The vocal tract is essential to speech production and therefore the region of in-
terest for studies on speech, articulation and speech pathology. A non-invasive
and non-hazardous methodology for dynamically visualizing the vocal tract dur-
ing speech is real-timeMRI (rtMRI).However, to extract quantitative information
on the articulators’ shape and dynamics, segmentation of the vocal tract is crucial.

Speech production is often described by the source filter model, where the vo-
cal tract acts as a filter on the sound source generated by the glottis [10]. The vocal
tract shape, thus, entails a lot of information on the produced speech. Extracting
this shape by segmentation of the vocal tract contributes to the long-standing re-
searchonarticulatory-to-acousticmapping, andvice versa, acoustic-to-articulatory
mapping. It could enable speech simulation, synthesis and aid in rehabilitation
therapy for speech disorders and in tracking their progression.
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A full-automatic or semi-automatic method for the segmentation of the vocal
tract is desired, due to the large amount of data generated by rtMRI. Addition-
ally, an automated method may mitigate high intra- and inter-observer variability
caused by the noisy nature of the images [19].

Semi-automatic segmentationmethodshavebeenproposedusingmethods such
as active appearance models, level set method, and deep learning. Some stud-
ies focus on only the tongue, which limits their usefulness for speech studies [9,
17]. Other researchers have provided evidence for the use of their segmentation
method for data of a single subject. However, evidence is lacking for the extrapo-
lation of the method to multiple subjects [5, 18, 27]. Also the amount of manual
segmented images needed for the development of the segmentationmethod is of-
ten large. For example, Labrunie et al. [14] use 59 labeled images per subject to
create an active shape model. This can lead up to thousands of images when re-
garding deep learning based segmentation [22, 25]. A more elaborate overview
can be found in the Appendix A.

Althoughmany contributions have beenmade to the research field of vocal tract
segmentation, this task remains a challenge to perform with minimal manual seg-
mentation effort. This is caused by the high noise and artifact level of rtMRI and
great variation in vocal tract configurations regarding sounds and subjects.

The aim of this study was to segment the vocal tract of each video frame (about
40,000 frames/subject) from a rtMRI database of 17 subjects using theChan-Vese
level setmethodwith only a singlemanually segmented frame for initialization per
subject. To ‘learn’ the optimal values for the hyperparameters, Bayesian hyperpa-
rameter optimization was performed on a subset.

3.3 Methods

3.3.1 Data

The freely-available database from theUniversity of Southern California, the USC
Speech and Vocal Tract Morphology MRI Database, was used for the vocal tract
segmentation task [23]. It contains 1.5T rtMRI 2D images of the midsagittal slice
recorded during speech with a frequency of 23.18 frames per second and resolu-

33



tion of 68 by 68 pixels. Data of 17 subjects (8 male, 9 female) are present, with a
total of 776 videos of varying length ranging from 130 to 2027 frames each (mean
777 frames). The tasks entailed vowel-consonant-vowel (VCV) combinations,
consonant-vowel-consonant (CVC)combination, sentences, phrases and free speech.
For themethod development, only theCVCandVCVvideoswere used. After the
optimization, the method was applied to the complete dataset.

3.3.2 Preprocessing

The signal-to-noise ratio of the image decreases towards the cranium, making it
difficult to manually segment the images in this region. Cropping was performed
to reduce the impact of the hypo-intense regions towards the cranium. We auto-
matically detected the nose tip through peak detection in the summed intensities
over the x- and y-axis. A positive side effect of the per-video cropping is that the
anatomies become similarly positioned. All frames were cropped to the same size
of 44 by 44 pixels, with the nose tip as reference, and resampled to 98 by 98 pixel
images with bilinear interpolation.

Anobserverperformedmanual segmentationof three areas,with3DSlicer [11],
denoting the air-tissue boundaries. The first area comprises the tongue, lower lip,
jaw and frontal wall of the pharynx (inferior). The second region is bounded by
the nose, upper lip, palate and frontal wall of the nasopharynx (superior). The last
region is the pharyngeal region (posterior) (Figure 3.3.1). For themethod valida-
tion, manual segmentations were performed for five subjects, two videos for each
subject, and four frames of each video.

3.3.3 Segmentation method

For this study, new methods were explored based on optical flow, image registra-
tion, level sets, and an automated deep learning system. The first two were highly
dependent of sequential information and previous output, which resulted in the
explosion of errors over frames. The last option suffered from the low resolution
of the images resulting in sub-optimal segmentations. The level set method was
most promising in these experiments and therefore the methodology of choice.
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Figure 3.3.1: Overview of Chan-Vese level set method development for vocal
tract segmentation. MRI frames were cropped and upsampled. Manual segmen-
tation was performed for a subset of the frames, by delineating the air-tissue
boundaries of the superior, posterior and inferior region of the vocal tract. Half
of the labeled set was used to find optimal hyperparameters (θ) of the level
set method for each region. These hyperparameters were used to test different
initialization strategies as explained in Figure 3.3.2. Results were combined to
obtain the final vocal tract segmentation.
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An overview of the method optimization process is described in Figure 3.3.1.
The Chan-Vese level set based method was used for segmenting the three dif-

ferent regions independently. This algorithm is based on theMumford-Shah func-
tional and particularly good at segmentation of images without clearly defined
boundaries [6]. Level sets evolve in an iterative fashion to minimize an energy
(E) dependent on the closed contour (C) and the color intensities inside (c1) and
outside (c2) the contour (Formula 3.1).

ECV(C, c1, c2) = μL(C)+ λ1
∫
in(c)

(I(x)− c1)2dx+ λ2
∫
out(c)

(I(x)− c2)2dx (3.1)

With I being the image and x a point in I. The first term (μL(C)) is a regular-
izing term and describes the length of the contour. The terms are weighted with
constants μ, λ1, and λ2. [2, 6, 18, 26]

Each level set process starts with an initial segmentation. It was attempted to
make use of the temporal information and use each predicted segmentation as
initial segmentation for the consecutive frame. This approach, however, lead to
an unstable system, where errors accumulated and the segmentation quickly blew
up, even with hyperparameter tuning. Therefore, it was chosen to use a single seg-
mented frame as initial segmentation for each image independently.

3.3.4 Bayesian hyperparameter optimization

The segmentationmethodology hasmultiple hyperparameters to be set. Thevalue
can be chosen manually or with brute force optimization methods like random
search or grid search. However, with each extra parameter to be tuned the com-
plexity of the problem scales exponentially, making these methods tedious and
very expensive to compute. An alternative way for finding optimal parameter set-
tings is Bayesian hyperparameter optimization [3, 21]. This method is superior
due to its capacity of efficiently finding hyperparameters resulting in the optimal
model performance. Bayesian hyperparameter optimization is explained in detail
in Appendix B.

Sequential Model-based Algorithm Configuration (SMAC) was used for op-
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timizing parameters of the segmentation method. SMAC is based on random
forests to form a probabilistic model that is used to select subsequent parameter
configurations to evaluate [8, 13, 16]. TheSMACPython implementation created
by AutoML Freiburg was used [16].

Optimization was performed based on five random videos from five random
subjects, considered as the training set. Fromeach video, four random frameswere
manually segmented. The segmentation of one of the middle frames was taken
as the initialization. The other three frames were used for validation. Hyperpa-
rameter optimization was performed for each region separately. The dice similar-
ity coefficient (DSC) is an overlap metric further described in Section 3.3.5. The
(1 − DSC) was chosen as metric to minimize [7, 24]. The maximum amount of
iterations to evaluate different hyperparameter sets was set at 250.

Level set hyperparameters includedwere μ, λ1, λ2, and dt (amultiplication factor
to accelerate the algorithm). Also hyperparameters related to adaptive histogram
equalization altering the input image were optimized (clip limit and grid size) [4].
The initial segmentationwas filteredwith an averaging kernelwith size k. Themax-
imum number of level set iterations was set at 150 and the tolerance level of the
level set method at 10−3. In Appendix C the default values, limits and optimized
values are reported.

3.3.5 Initialization optimization

Four experiments were performed to explore the trade-off between the effort of
manual segmentations for initializing the level set process and performance. As
we deal with over 700 videos to be segmented, we wish to do this with as little
manual segmentations possible, with minimal performance loss.

For each subject represented in the training set used for hyperparameter op-
timization, another random video was picked for validation of the initialization
experiments. From the validation video also four random frames were manually
segmented. This resulted in a set of five subjects, with two videos each (training
and validation), where four framesweremanually segmented per video (40 frames
in total). Figure 3.3.2 illustrates what frames were used for the initialization and
validation at each experiment with one subject as an example.
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Segmentation 
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Figure 3.3.2: The figure shows how the initialization frame for the different
experiments was determined. An example of one subject is given, copied on
each row. The method was applied to the five subjects used for developing
the methodology. The train videos represented here were the frames also used
for the Bayesian hyperparameter optimization. The red box shows what the
initialization frame is comprised of. The grey boxed frames are the validation
frames and are constant for each experiment. The light-grey segmentations were
disregarded in that experiment.

• Experiment 1 - Singlemanual segmentation per video
Per validationvideo, oneof themanual segmentationswas randomlypicked,
representing the initial segmentation for that video. This initialization frame
wasused to segment theother three validation frames. Thevalidation frames
are kept constant in each experiment for fair comparison. This is our bench-
markmethod and shows the result if wewould choose tomanually segment
a single frame per video.

• Experiment 2 - Singlemanual segmentation per subject
Here, we use a manual segmentation from the training video as initial seg-
mentation to segment the validation videos of the same subject. This is
done to show the feasibility of having a single initial segmentation per sub-
ject that is able to function as an initialization frame for all videos of that
subject.

• Experiment 3 -Multiplemanual segmentations per subject
We take the fourmanually segmented frames from the train video and aver-
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age them to one grey-scale segmentationmap blurred with an average filter
(3 by 3 kernel) to evaluate added value of an initialization with different
images of the same subject, combining information of different vocal tract
configurations.

• Experiment4 -Multiplemanual segmentationsofmultiple subjects for
all subjects
The segmentations from all five subjects from the train video are combined
to one initial segmentation map used to segment all validation videos. This
map was also convolved with an average filter of kernel 3 by 3 to blur the
result. In this experiment, we test the possibility of having a single initial-
ization map to be applied to all videos of all subjects.

The segmentation performances are reported with the overlap metric dice sim-
ilarity coefficient (DSC) (Formula 3.2)

DSC(Apred,Atrue) =
2 |Apred ∩ Atrue|
|Apred|+ |Atrue|

(3.2)

with Atrue and Apred as the manual segmentation areas and predicted areas per
subject. Whengiven as a percentage, theDSCwasmultiplied by100. Also twodis-
tance based metrics were used: the mean surface distance (MSD)(Formula 3.3)
and bi-directed quantile Hausdorff distance (qHD) (Formula 3.4)[7, 24]. The
MSD and qHDwere calculated per frame.

MSD (U,V) =
1
2n

n∑
i=1

(min
j
deuc(vi, uj) +min

j
deuc(ui, vj)) (3.3)

qHD (U,V, f ) = max (f thi (min
j
deuc(vi, uj)), f thi (min

j
deuc(ui, vj))) (3.4)

Here,U = [u1, u2, . . . , un] and V = [v1, v2, . . . , vn] are the predicted and man-
ual labeled point set of the segmentation contours, where the Euclidean distance
is calculated over all n points, with i and j being the point indices. The fth quantile
was selected as f = 0.95 to exclude outliers.
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Table 3.4.1: Segmentation results of four experiments, showing the perfor-
mance on the inferior, superior and posterior region of the vocal tract as well
as the total segmentation performance based on the dice similarity coefficient
(DSC), mean surface distance (MSD) and 0.95th quantile Hausdorff Distance
(qHD).

1) Single
per video

2) Single
per subject

3) Multiple
per subject

4) Multiple
of different
subjects

DSC (%) Inferior 95.6 95.0 95.0 86.1
Superior 91.2 92.5 89.3 81.7
Posterior 97.5 97.0 97.2 94.1
Total 95.8 95.6 94.9 90.2

MSD (mm) Inferior 1.8 2.2 2.2 7.2
Superior 2.9 2.6 4.0 9.3
Posterior 1.37 1.7 1.6 4.3
Total 1.7 1.8 2.2 5.1

qHD (mm) Inferior 10.6 11.4 11.4 29.3
Superior 15.1 17.6 20.4 44.1
Posterior 6.46 7.4 7.1 15.0
Total 9.1 8.8 10.4 20.6

3.4 Results

The outcomes of the four experiments are reported in Table 3.4.1. It shows the
mean of the DSC,mean of theMSD and themean of the 0.95th qHDof the differ-
ent regions independently (inferior, superior, posterior) and the same metrics for
the overall binary segmentation map (total). There is only a small performance
loss between experiment 1 and 2, with a DSC of 95.8% and 95.6% and a MSD
of 1.7mm and 1.8mm respectively for the overall segmentation map. Combining
multiple frames as an initial frame (experiment 3) is more manual labor intensive,
however, does not result in improvedperformanceover experiment 2. Theattempt
to use a single initializationmap for all subjects (experiment 4) resulted in large de-
terioration of performance. The standard deviations are given in Appendix D and
generally increase with each subsequent experiment.

Regarding the differences between regions, we see that the superior region has

40



the lowest performance for all experiments and the posterior region the highest.
When calculating themetrics over the total segmentationmap, the results are bet-
ter than a mere average. This is due to the fact that regions are independently pre-
dicted and can overlap when combined diminishing the error. An example of this
situation is demonstrated in Figure 3.4.1d.

Figure3.4.1 showsexample imagesof the results of experiment2, comparing the
manual segmentation contour (white) with the predicted segmentation contours
(red, green and blue dashed line). The areas most prone to error are those where
regions touch (e.g. fig 3.4.1d: palate and tongue), especially around the velum
(also called soft palate) (fig 3.4.1h), areas of low contrast (fig 3.4.1e, 3.4.1g), and
where sharp corners occur (fig 3.4.1f: teeth socket).

An example of the segmentation results of one of the subjects and tasks not used
formethodoptimization is given in Figure 3.4.2. The subjectwas reading theRain-
bow passage aloud (4.7.1) of which the first sentence is displayed by every ninth
frame.

3.5 Discussion

In this study, we describe a methodology for semi-automated vocal tract seg-
mentation based on level setmethods andBayesian hyperparameter optimization.
We find that a single manual initialization segmentation per subject results in lim-
ited performance loss opposed to a manual segmentation per video. The DSC re-
duced only 0.2% going from 95.8% to 95.6%, and theMSD increased 0.1mm from
1.7mm to 1.8mm. Also, the results of these two experiments arewithin the bounds
of each other’s standard deviation. This means there is limited added value in pro-
viding a manual segmentation for each video opposed to a single manual segmen-
tation per subject, which diminishes the manual segmentation workload 45-fold.
The Bayesian approach makes the methodology suitable for transfer to different
datasets. With a small reference set, the parameters can easily be tuned for the
method to function optimally for the dataset at hand.

It is difficult to compare previous work to this study directly as researchers have
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4.1: Examples of different subjects and sequences of the results of
experiment 2 are shown. The white line represents the manual segmentation and
the dotted colored lines the prediction. a and b show high quality segmentations.
c and d show similar configurations with different results. In c the level set
method managed to find the boundary between palate and tongue, which in
d was not the case for the superior region. This error does not influence the
performance of the vocal tract segmentation considered as a whole instead of
the separate regions. The bottom row shows how segmentation quality can
differ around the area of the velum. Best viewed electronically.
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   [ ]                                       [ ]             when              the       s     -        un  -    l    -  ight 

str -  ik   -    es         rain    - dro       -        ps                    in                the     air 

  th   -    ey                a  - ct               as                  a      pri         - sm        a    -  nd 

fo  - rm       a       rain       -           b       -       ow                                 [ ]        [ ] 

Figure 3.4.2: Example of predicted segmentations of every ninth frame of
the first sentence of the Rainbow passage read aloud by a subject not used
for method optimization. In bold and central above the image is the sound
articulated at that frame. The sentence is: ‘When the sunlight strikes raindrops
in the air, they act as a prism and form a rainbow.’ Best viewed electronically.
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used different data, approaches, metrics and reference areas. Thework of Sampaio
et al.[18] also uses DSC as and a distance method (mean Hausdorff distance) re-
lated to MSD used here. Results are in a similar range, with DSCs between 87%
and 99%. In their method, however, a manual segmentation per video is used.
Labrunie et al.[14] showed a high performance with a MSD of less than 1 mm,
but used 59 manually segmented images per subject to reach this result opposed
to the single frame per subject in this study.

Oneof thedifficulties in segmenting this vocal tract dataset is that the images are
of lowquality. This is caused by a trade-offwhen recording rtMRI at a frame rate of
23.18 images per second. The resolution is low, motion artifacts are present, and
signal intensity differs heavily over the image. This does not only complicate the
process of manually segmenting the images, but also in predicting the right con-
tours with themethodology described here. With the continuous development of
MRI hardware and sequences, we believe image quality will improve over time.

Segmentation of the superior region had lowest performance of the three re-
gions, which is mostly caused by the velum. The velum itself is thin and has poor
contrast to the oropharyngeal cavity. Furthermore, it has a widely varying posi-
tion. This made it more difficult for the level set to converge to the right position.
For the final application, wemanually selected an initialization frame in which the
velum had a neutral position instead of randomly appointing one, to improve the
segmentation in this region. An alternative approach to mitigate this problem is
to pick two initialization frames: one where the velum is open and one where the
velum is closed similar to [19]. Together with a classifier determining which ini-
tialization to use for which frame, it is likely to get a more accurate segmentation.
It must be considered however that this adds complexity and doubles the number
of manual segmentations to be performed.

Another improvement that could be made to reduce the segmentation error, is
a more robust method for the cropping of the images as part of the preprocessing.
As we only use a single manual segmentation per subject, it is important that the
orientation of the different rtMRI videos are in line with themanual segmentation
used for initializing the level set method. Here, we use a threshold based method
to locate the nose tip and crop based on that location. An alternative could be to
manually crop the initialization frame and perform registration allowing transla-
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tionminimizing an image similaritymetric to find theoptimal location and transla-
tion of the other videos tomatch the manual segmentation. Also, sensitivity maps
of the receiver coils could be estimated to get amore homogeneous signal-to-noise
ratio over the image and between different acquisitions.

There is a broad interest for segmented vocal tract data. It can aid in solving
the long-standing problem of articulatory-to-acoustic mapping and acoustic-to-
articulatorymapping, leading to speech simulation. Recently, researchers from the
University of California San Francisco [1], have taken this one step further. They
work towards the goal of developing a speech neuroprosthetic where one could
‘speak’ with the brain. To reach this goal they trained a model to decode neural
activity to articulatory information and anothermodel to generate speech from the
predicted articulation. For the articulatory informationEMAdatawas used. Vocal
tract segmentation from rtMRI data could be used as an alternative means to gain
more detailed spatial information on the articulators and potentially an improved
model representation.

For the quantitative assessment of speech disorders, segmentation of the vo-
cal tract is essential. It can aid in rehabilitation and progression tracking. In the
context of head and neck oncology, knowing the functioning of the articulators
before and after interventions, could enable the prediction of the effect of inter-
vention and therapy on speech quality. This may lead to useful information when
counseling patients by physicians and speech therapists.

3.6 Conclusion

In this study, we proposed a vocal tract segmentation method where only a sin-
gle user defined initialization for each speaker is needed for unsupervised opera-
tion thereafter for all the remaining frames or images. The resultingmethod should
beeasily transferable tootherdatasetswith theBayesianhyperparameteroptimiza-
tion process in place.
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3.7 Appendices

A Literature overview

Table 3.7.1: A non-exhaustive literature overview is given mentioning the segmentation task performed, what type of data was
used, on how many subjects, with what segmentation method, how many manual labeled frames were needed, and the performance
reported.

Segmentation

target

Data Number

of

subjects

Methodology Manually

labeled data

needed

Performance

Bresch &Narayanan, 2009 Vocal tract rtMRI 1 Fourier contour descrip-
tor

1/subject Not reported

Labrunie et al., 2018 Vocal tract Static and
rtMRI

3 Active ShapeModels 59/subject 0.43- 0.65mmMSD

Silva & Teixeira, 2015 Vocal tract rtMRI 3 Active AppearanceModel 51/3 subjects 82% DSC of vocal tract region

Peng et al., 2010 Tongue Static MRI 4 Chan-Vese level set 1/sound Not reported

Eryildirim & Berger, 2011 Tongue Static MRI 4 Chan-Vese level set 1/sound 2.33-3.9 MSD in pixels

Sampaio&Jackowski, 2017 Vocal tract rtMRI 1 Chan-Vese level set 1/subject/video 87%-99%DSC2.31mmmeanHD

Vasconcelos et al., 2011 Vocal tract Static MRI 1 Active Shape/Appearance
Models

21/subject 4.35-14.23 Euclidean distances
(unit not mentioned)

Valliappan et al., 2018 Vocal tract rtMRI 4 Deep learning (fully con-
volutional networks)

±6000/4 subjects ±99% pixel accuracy, ±1 pixel
Dynamic TimeWarping distance



B Bayesian hyperparameter optimization

Bayesian optimization can be applied to find optimal hyperparameters for a given
function. The methodology itself is function agnostic and can be applied to all
sorts of problems. In this research it was used to find optimal hyperparameters of
the level set method for segmenting the vocal tract.

Consider the segmentationmethodS that is dependentofhyperparametersθ1, . . . , θn
drawn from domainΘ1, . . . ,Θn, with the hyperparameter space defined byΘ =

Θ1 × . . .× Θn. We try to minimize a metric or loss (L) of S dependent of θ with
respect to a constant dataset (D) as seen in Formula 3.5 and 3.6.

f (θ) = L (Sθ,D) (3.5)

θ∗ = argmin f(θ) (3.6)

The idea of Bayesian hyperparameter optimization is to search the hyperparam-
eter space Θ in a non-random fashion to find a global optimum resulting in the
best performance. A probabilistic model pM(f | θ) is constructed by point evalu-
ating the function with different hyperparameter configurations (Figure 3.7.1a).
What configuration is chosen next to evaluate, is based on an acquisition func-
tion using the probabilistic model (Figure 3.7.1b). This acquisition function de-
fines how useful the evaluation of the hyperparameter space is expected to be. The
next hyperparameter configuration to evaluate is where the acquisition function is
maximal (Figure 3.7.1c). The acquisition functions aim to trade-off between ex-
ploration of the hyperparameter space and exploitation of known areas of good
performance.[8, 12, 21]

One of the most applied acquisition functions is the expected improvement,
EIfmin(θ) in Formula 3.7, which tries to maximize the probability of improvement
as well as maximize the size of the improvement at the next evaluation.

EIfmin(θ) =
∫ fmin

−∞
max {fmin − f, 0} · pM(f | θ) df (3.7)

There are different implementations available of Bayesian hyperoptimization
algorithms that mostly differ in the type of model they use to predict pM(f | θ).
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Sequential Model-based Algorithm Configuration (SMAC), Spearmint, and Tree
Parzen Estimator (TPE) are some popular examples.

• SMAC: SMAC makes use of random forests to model the probability dis-
tribution on f as a Gaussian distribution with mean and variance based on
the predictions of the forest’s trees [8, 13, 16].

• Spearmint: this method uses a Gaussian process to model pM(f | θ) and
performs slice sampling over theGaussian process’ hyperparameters [8, 13,
20].

• TPE: TPE assumes hierarchy in the hyperparameter space, making it tree-
like, hence its name. Also where SMAC and spearmint model pM(f | θ) di-
rectly, the TPE approach models pM(θ | f ) and pM(f ) [3, 8].

SMAC was used for this study as it showed an overall superior performance
on different use-cases. Furthermore, it has an interpretable implementation and
supports continuous, categorical and conditional parameters [8, 15].
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Figure 3.7.1: Simplified illustration of Bayesian hyperparameter optimization
process. a. Shows the loss (y-axis) of five different samples with certain hy-
perparameter (x-axis). The different colored lines represent samples from the
probabilistic model pM(f | θ). The acquisition function is in this example the ex-
pected improvement and visualized in b. The marked point in c shows the next
hyperparameter value to evaluate next as it represents the maximal expected
improvement. Illustration taken from Snoek et al., 2012 [21].
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C Chan-Vese level set hyperparameters

Table 3.7.2: All hyperparameters set or tuned for the Chan-Vese level set segmentation method. Lower and upper limits are given
as well as the optimized values for each region to be segmented.

Default Lower limit Upper limit Superior Inferior Posterior
Level set parameters
μ Weighing constant length term. 1.2 0.01 1.5 1.34 0.35 0.08
λ1 Weighing constant for difference of the inner region intensity from

average.
1.0 0.1 2.0 1.68 0.97 0.34

λ2 Weighing constant for difference of the outer region intensity from
average.

1.0 0.1 2.0 1.55 0.69 0.21

dt A multiplication factor applied at each iteration to accelerate the
algorithm

0.5 0.5 2.0 1.87 0.60 0.97

tolerance Stopping criterion: L2norm(φ1 − φ0) < tolerance 10−3 - - 10−3 10−3 10−3

iter Maximum iterations 150 - - 150 150 150

Image parameters
clip limit Contrast limit to prevent noise amplification in adaptive histogram

equalization
0.5 0 15 13.7 10.6 14.4

grid size Tile size over which histograms are equalized for adaptive his-
togram equalization

4 2 10 8 6 8

Initial segmentation parameters
k Kernel size averaging filter (a value of 1 means no filtering takes

place)
1 1 10 3 4 1



D Segmentation results including standard deviation

Table 3.7.3: Segmentation results of four experiments, showing the performance on the inferior, superior and posterior region of
the vocal tract as well as the total segmentation performance based on the dice similarity coefficient (DSC), mean surface distance
(MSD) and 0.95th quantile Hausdorff Distance (qHD). Standard deviation of the validation frames is given between brackets.

1) Single per video 2) Single per subject 3) Multiple per
subject

4) Multiple of
different subjects

DSC (%) Inferior 95.6 (1.1) 95.0 (2.3) 95.0 (2.3) 86.1 (5.5)
Superior 91.2 (3.5) 92.5 (2.5) 89.3 (4.8) 81.7 (8.2)
Posterior 97.5 (1.0) 97.0 (1.0) 97.2 (0.9) 94.1 (4.0)
Total 95.8 (0.9) 95.6 (1.1) 94.9 (1.4) 90.2 (3.5)

MSD (mm) Inferior 1.8 (0.4) 2.2 (1.1) 2.2 (1.1) 7.2 (3.7)
Superior 2.9 (1.1) 2.6 (1.2) 4.0 (2.1) 9.3 (6.9)
Posterior 1.37 (0.6) 1.7 (0.6) 1.6 (0.6) 4.3 (3.6)
Total 1.7 (0.3) 1.8 (0.5) 2.2 (0.8) 5.1 (2.5)

qHD (mm) Inferior 10.6 (3.1) 11.4 (4.1) 11.4 (3.5) 29.3 (16.2)
Superior 15.1 (6.6) 17.6 (10.9) 20.4 (7.8) 44.1 (20.8)
Posterior 6.46 (2.5) 7.4 (2.6) 7.1 (2.6) 15.0 (7.3)
Total 9.1 (2.3) 8.8 (2.9) 10.4 (3.4) 20.6 (9.0)
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4
Objective analysis of articulation inspeech

from real-timeMRI
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4.1 Abstract

Sound is transformed into speech through articulationwith the vocal tract. Oral
cancer and its treatmentsmay change the ability to articulate. To objectively assess
articulation, we propose amethodbased on real-timemagnetic resonance imaging
(rtMRI) of the head and neck region.

Vocal tract segmentations of the rtMRI were used to extract the vocal tract dis-
tance function on a frame-to-frame basis. The centerline through the vocal tract
was computed on which a grid was projected to find the width of the vocal tract.
Different representations are proposed to explain the dynamics and local charac-
teristics of articulation. For example, a heatmap representation demonstrates the
dynamics of the vocal tract configuration over time. A text read aloud in different
styles could be differentiated from each other through the articulatory space.

With the articulation analysis tool and enrichment of the rtMRI dataset, we can
extend our knowledge in the field of speech articulation. Furthermore, it has the
potential to be used by speech therapists to aid in speech rehabilitation after oral
cancer treatment.

4.2 Introduction

Data that captures articulation is an important source for studying speech pro-
duction, both in healthy as in pathological situations. Real-time magnetic reso-
nance imaging (rtMRI) is a technique that is able to capture the vocal tract over
time with a good spatial resolution. This data allows for the exploration of pho-
netic principles, like the impact of a specific phoneme on the articulation of the
following consonant or vowel, also called coarticulation [17]. Another example
is the study of constrictions at specific vocal tract locations to compare different
phonemes [5, 10].

Gainingmore insights into articulation is of interest clinically to improve speech
quality and intelligibility with more targeted therapy. Hagedorn et al. [4] demon-
strated the articulatory characteristics of apraxic speech and increased the under-
standingof thepathologicalmechanismsunderlying apraxiaof speech. Somestud-
ies have also been performed on patients after partial glossectomy (surgery where
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the tonguewas partly removed). Researchers observed articulatory compensation
mechanisms to maintain speech intelligibility[6, 16]. Mady et al. (2003) [12]
showed the differences in the vocal tract distance function between the speech
production of /s/ pre- and postoperative.

With the increased amount of available data and growing interest in the clinical
application of articulatory analysis, amethodology is needed to analyze and assess
rtMRI of speech. This method should enable more objective and reproducible
evaluation of articulation, with limited manual annotations involved. Different
methodologies have been used to assess articulation so far, which can broadly be
defined in four classes: (1)basis decompositionormatrix factorizationbased tech-
niques, (2)pixel- or region-of-interest (ROI)-based, (3)grid-based, and(4) contour-
based [15].

An example ofmethod 1 is the study of Carignan et al. [3]. They applied princi-
pal component analysis directly on image data to extract articulatory information,
including the movement of short sequences, to explore the differences in articula-
tion between similar vowels. However, the results were difficult to interpret.

The second, ROI-based method, is a common method that uses (changing)
pixel intensities in a certain region to show opening and constriction of the vocal
tract [2, 5, 10, 13, 18]. No segmentation of the images is necessary, however, ROIs
are typically manually defined for a set of locations along the vocal tract having a
negative impact on the replicability [15].

The grid-basedmethod superimposes a grid on the image frame based onman-
ually defined landmarks [1, 8, 14, 20]. The landmarks are defined in a way that
the gridlines approximate perpendicularity to the vocal tract. The pixel intensities
on these gridlines are then used to extract vocal tract distance information. It is a
popular method due to its interpretability [15].

With the fourth contour-based method, ROIs in the image are first segmented
and sometimes labeled with the different articulator structures. An overview of
the contour-based methodologies is given in Chapter 3.2 of this thesis. From the
segmentations, vocal tract and articulator representations can be extracted.

One of the main problems with the current methodologies is that they heavily
rely on manual annotations. Either regions-of-interests have to be picked, or air-
tissue boundaries contoured, or reference points need to be placed to construct
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gridlines[15]. Apart from minimizing manual labor to be able to digest the large
amount of data and improve reproducibility, we also wish to use all dimensions
of the data, both spatial as temporal. In previous research, either the vocal tract
cross distance at a particular location is studied over time, or the complete vocal
tract distance function is regarded, however only for a single time point. If wewant
to study the relationship between the articulators over time, both the spatial and
temporal dimensions need to be taken into account, which has to our knowledge
not yet been done. Last, it is important that the results are interpretable to enable
pre- and postoperative comparison by physicians and speech therapists.

Wedeveloped anobjectivemethodology that aids in assessing articulation. This
tool has been developed taking into account eventual clinical use by speech ther-
apists to improve speech intelligibility for patients treated for oral cancer. We,
therefore, focus on the ability to compare pre- and postoperative articulation. The
proposed methodology is a combination of the contour- and grid-based method
and was used to analyze data from 17 subjects with 25 rtMRI ’videos’ each [21].
Data will be made available for further research on the resources page of https:
//sail.usc.edu/span.

4.3 Methods

4.3.1 Data

For the analysis of articulation, we used the real-time MRI data from the USC
Speech and Vocal Tract Morphology MRI Database [21]. All frames (776 videos
with ameanof 777 frames per video of in total 17 subjects)were automatically seg-
mented according to the methodology explained in Chapter 3. The database con-
tains videos of vowel-consonant-vowel (VCV) and consonant-vowel-consonant
(CVC) combinations, stories and free speech. In this chapter, we demonstrate the
articulation analysis methodology based on the repeated recordings of the VCV
and CVC combinations and the Rainbow passage read aloud in different styles
(normal, loud,whisper, fast, slow). Table4.7.1 inAppendixA shows theused record-
ings.
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Figure 4.3.1: Schematic overview of the automated frame-by-frame vocal dis-
tance extraction methodology. Scaling, padding and spacing parameters were
adjusted for improved visualization.

4.3.2 Vocal tract distance extraction

For each frame the vocal tract distance function was extracted. The process, as
illustrated in Figure 4.3.1 can be split up in: preprocessing, centerline extraction,
projection of gridlines, finding the intersections of the gridlines with the contours,
and lastly, calculating the vocal tract distances.

Preprocessing

Thesegmentationwasupscaled300%with cubic spline interpolationand smoothed
with a Gaussian kernel with a standard deviation of two pixels. The three differ-
ent segmentation areas (superior, posterior and inferior of the vocal tract) were
eroded individually to cause a small space between contacting areas, e.g. when the
tongue touches the palate as in Figure 4.3.1. This is necessary to find a continu-
ous centerline. The segmentation was zero-padded with 300 pixels on each side to
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make the centerline extractionmore robust on the edges. Thepadding and eroding
were made undone after the centerline extraction.

Centerline extraction

The segmentation was inverted followed by thinning the vocal tract to reduce the
area to a single-pixel wide skeleton [11]. All endpoints of the skeleton, except
where it exited the lips and glottis at the edge of the image, were pruned to re-
move redundant lines, such as the line going through the nasopharynx. A breadth-
first search was performed to find the shortest route from the lips to the glottis.
This further removed inconsistencies and orders the skeleton pixels to a path. An
order-two Savitzky–Golay filter smoothed the line. The centerline was resampled
to have equal spacing between every subsequent point with a distance of 0.01mm,
to ensure equal spacing between the gridlines projected in the next step.

Gridline projection

The Frobenius normal on the centerline was computed every kmm, with k set to
1 to have a fairly high resolution at the cost of longer computational time. The
normal was calculated using the x and y slope with a window size, w = 6mm,
to make the normal less sensitive to noise in the centerline. The normals on the
centerline form an equally spaced grid from which the vocal tract distances were
extracted.

Contour-gridline intersections

The contours from the segmentation and the gridlines were vectorized to find the
intersections of the two line types. For the contours, a vector was created between
every subsequent point. We iterate over the gridlines and contour segments and
search for intersections. To calculate a distance, two intersections of the gridline
with the contour are needed, representing the bounds of the vocal tract. When
more than two intersections on a single gridline were found, filtering took place by
creating vectors between any combination of intersection points. The two inter-
section points remained if the combination had the shortest distance of all combi-
nations, while the vector between the two points crossed the centerline. In Figure
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4.3.1 this situation is demonstrated with the green intersection points around the
velum. When no intersection was found, the space was filled with distance 0mm,
as seen in the Figure at the tongue tip at 25mm from the lips. When only a sin-
gle intersection was detected on a gridline (missing value), the distance value was
estimated by linear interpolation based on the neighbouring vocal tract distances.
Distance values of gridlines directly next to amissing valuewere prone to error and
therefore also replaced by interpolation. The vocal tract distance sequence starts
at the first gridline, considered from the lips, where two intersections were found.
All gridlines before that were disregarded, as also seen in Figure 4.3.1 before the
lips. TheEuclidean distance was calculated between the two intersection points of
the gridline and the centerline, representing the vocal tract distance function.

4.3.3 Analysis and visualizations

Articulation dynamics

The power of the dataset and method used here is in the fact that dynamic artic-
ulation can be analyzed. To visualize the articulatory dynamics of each VCV and
CVC task, they had to be isolated from the video sequence containing multiple
tasks. Weused peak detection of the collected sounddata to label eachVCV/CVC
task for the start and end frame in the video. In this way, we could extract a specific
VCV/CVC combination. The vocal tract distance functions from the correlating
frames to the VCV/CVC task were then plotted as a function of distance from the
lips and time, with vocal tract distance magnitude in color. For color coding con-
sistency, the magnitude values were clipped at 20mm. This methodology was also
applied to the Rainbow passage.

Articulatory space

The articulatory space was calculated and visualized by aggregating the vocal tract
distance function (D) of all frames in a certain set. Themean (mD) and 90% confi-
dence interval were calculated of the Rainbow passage for each speaking style (nor-
mal, loud, whisper, fast, slow) and repetition j (Equation 4.1). Di denotes the vocal
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tract distance function of frame i, with the total amount of frames n.

mDstylej =
1
n

n∑
i=1

Dstylej
i (4.1)

To zoom in on the differences with respect to the average of the two normally read
passages, we calculated the difference according to

ΔmDstylej = mDstylej − mDnormal1 + mDnormal2

2
. (4.2)

The articulatory space of the Rainbow passage was compared for the different
speaking stylesquantitativelyby computing the rootmean squareddifference (RMS),

RMS(mDp,mDq) =

√
1
2
(mDp

2 + mDq
2) , (4.3)

with p = q = [1, 2, . . . , k] and k being the number of styles times the number of
repetitions, in this case 10. Similarly the Pearson correlation coefficients (PCC)
were computed.

PCC(mDp,mDq) =
k
∑

(mDp mDq)− (
∑

mDp)(
∑

mDq)√
[k
∑

mDp
2 − (

∑
mDp)2][k

∑
mDq

2 − (
∑

mDq)2]
(4.4)

To take a closer look at the constriction and opening of the vocal tract at certain
phonemes, we use the data from the CVC and VCV tasks. The VCV and CVC
tasks were grouped by consonant, vowel (/A/, /u/, /i/), and articulation location
according to the groups described in Figure 4.3.2. ThemDwas calculated for each
group. The differences from the mean of all mD together are given in a heatmap
showing where the vocal tract is closed or opened more than average.

64



Bilabial 

Glottal 
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Dental 
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[k,g,j,w] 

[h] 

Figure 4.3.2: Different locations of consonant articulation. Examples of con-
sonants for each category are given for English.

4.4 Results

4.4.1 Articulation dynamics

Thechanges in the vocal tract during speechwere visualizedwith aheatmapas seen
in Figure 4.4.1, 4.4.2, and 4.4.3. Figure 4.4.1 shows as an example the VCV combi-
nation of /uwu/, /iwi/, /AwA/. The consonant /w/was chosen as an example as
it illustrates how such data and its visualization can be used to study coarticulation.
In Figure 4.4.1a, we see /uwu/ being said between frame 10 and 40 with a stable
change throughout the VCV combination, while /u/ and /w/ have a similar vocal
tract configuration. In Figure 4.4.1b and 4.4.1c, a clear distinction is visible when
the /w/ is pronounced in between the vowels /i/ and /A/. Also, in Figure 4.4.1b,
the second /i/ is less profound than the first /i/. This can be explained by the fact
that /w/ has a very different configuration than /i/, influencing the subsequent
vowel.

Figure 4.4.2 shows another example from two different subjects for the CVC
task /rAr/. The /r/hasmanydifferent pronunciations andmanners of articulation.
In Figure 4.4.2a, the subject uses a bunched postalveolar approximant (/ô/) and in
Figure 4.4.2c another subject shows a retroflex approximant (/õ/). Additionally,
Figure 4.4.2a shows how the initial /r/ is articulated differently from the final /r/,

65



   

u

w

u 

(a) /uwu/
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(b) /iwi/
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(c) /AwA/

Figure 4.4.1: A heatmap representation of the vocal tract distance function
from the lips (x-axis) over time (y-axis) of the VCV tasks /uwu/, /iwi/, and
/AwA/. The color illustrates the vocal tract distance magnitude. Green repre-
sents a small vocal tract distance (constriction) and red a large distance (open-
ing). The effect of coarticulation is demonstrated. a. The /u/ and /w/ are
similar sounds, and little change in articulation is needed to produce the sounds.
b. The /i/ and /w/ need different configurations and the second /i/ is less well
articulated as observed by a larger vocal tract distance in the velar region. c.
More symmetric articulation is seen in /AwA/.

66



 

ɹ 

ɑ 

ɹ 

ɻ 

ɑ

ɻ 

(a) /ôAô/ (b)

 

ɹ 

ɑ 

ɹ 

ɻ 

ɑ

ɻ 

(c) /õAõ/ (d)

Figure 4.4.2: A heatmap representation of the vocal tract distance function
from the lips (x-axis) over time (y-axis) of the CVC task /rAr/ of two differ-
ent subjects. The color illustrates the vocal tract distance magnitude. Green
represents a small vocal tract distance (constriction) and red a large distance
(opening). a shows a bunched postalveolar approximant (/ô/) with in b the
frame corresponding to frame 8 in a. c shows a retroflex approximant (/õ/)
with in d the frame corresponding to frame 9 in c.

with increased constriction in the alveolar and velar region for the first /r/.
Figure 4.4.3 illustrates a similar heatmap of the first sentence of the Rainbow

passage. Different articulatory phenomena can be observed, like the assimilation
of the place of the articulation. This happens when phonemes are articulated in a
different position, because of the influence of surrounding phonemes.

4.4.2 Articulatory space

Aggregating the vocal tract distance functions from each frame results in an articu-
latory space profile given (mD) in Figure 4.4.4a. Figure 4.4.4b shows how the style
in which the passage was read aloud changes the mean articulatory profile. Figure
4.4.4d shows the differences from the passage read normally (ΔmD)with the stan-
dard deviation of the two normal repetitions in shaded red. For the largest part
along the vocal tract, the articulatory space is larger for the passage read loudly,
whispered and slow. Reading the passage fast resulted in a smaller articulatory
space than normal. The root mean squared difference (Figure 4.4.4c) and correla-
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(a) (b)

Figure 4.4.3: a. Vocal tract distance function as a function of video frames
from the first sentence of the Rainbow passage spoken normally. b. Illustrates
the corresponding anatomy from frame 147 in a. The red centerline represents
the x-axis in a, with in blue the gridlines over which the vocal tract distance was
calculated, and in dashed white, the contours of the segmentation. The subject,
video sequence and frames correspond to the frames displayed in Figure 3.4.2.

tion coefficients (Figure 4.4.4e) show a similarity between the two repetitions in
each style as well as large similarity between fast and normal. Especially, whisper
differs largely from normal as well as from the other styles.

Figure 4.4.5 visualizes the articulation space profile of the VCV and CVC tasks
grouped in different ways. At every location s, the mean of all rows is zero. The
color shows the deviation from the mean with red being more open than average,
and green signifying more closed than average. In this example, it can be seen that
for the bilabial and labio-dental sounds, constriction (green) is present at the be-
ginning of the vocal tract, close to the lips. Theconstrictionmoves posteriorlywith
alveolar and velar consonants. Figure 4.4.5b shows each consonant present in the
dataset separately, revealing a clear sequential pattern of constriction amongst the
consonants. The bilabial and nasal consonant /m/ shows constriction around the
velum (soft palate), caused by the lowering of the velum to let air through to the
nasal cavity. In Figure 4.4.5c the vowels are presented. The /A/ and /i/ show in-
verse behavior, with a more open vocal tract before the velum and more closed
vocal tract behind the velum for /A/ and vice versa for /i/.
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(a)

(b) (c)

(d) (e)

Figure 4.4.4: a. Vocal tract distance functions of each frame of the Rainbow
passage (read normally), with on the x-axis the distance from the lips towards
the glottis, and on the y-axis the vocal tract distance. Each ’line’ represents
one frame. The blue line is the mean (mD) of all frames, with its 0.9 confidence
bounds in dashed lines. b. Shows the mean of all frames of the Rainbow
passage read aloud in the different styles (mDnormal, mDloud, mDwhisper, mDslow,
mDfast). There were two repetitions for each style. d. Here, the articulatory
space means of the Rainbow passage from the different repetitions are shown
with respect to the normal passage (ΔmDstyle), with the standard deviation of
the two normal repetitions shaded in red. c and e show the root mean squared
and correlation coefficients of the ten repetitions.
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(a)

(b)

(c)

Figure 4.4.5: From a single subject, all VCV and CVC combinations were
grouped according to the classes on the y-axis. The mean articulatory space was
computed per group. The difference of each mean from all groups aggregated
is visualized as a vocal tract distance larger than average (red) and a vocal
tract distance smaller than average. a. Tasks were grouped according to the
location of the consonant articulation. b. Tasks were grouped according to the
consonant present. c. Tasks were grouped according to the vowel present. All
frames from the VCV or CVC task were used.
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4.5 Discussion

In this study, we described a method that can be used for the objective assess-
ment of speech articulation. The method allows for both holistic analysis of the
articulatory space within a complete story as well as detailed information on the
vocal tract dynamics of a certain phrase or phoneme. We have shown that subtle
changes in the articulatory space can be observed. Here, a similar task spoken in
different styles was used to demonstrate this. However, the principle should be
translatable to a pathological situation. In such a manner, changes observed in the
articulatory space can provide insights into the effect of the therapeutic interven-
tion and/or rehabilitation. Furthermore, we demonstrate that the dynamics of the
articulation can well be visualized by a heatmap representation of the vocal tract
distance function revealing known articulatory phenomena. The vocal tract dis-
tance functions extracted here will become available opening up opportunities to
explore characteristics of articulation in multiple healthy subjects, with a diverse
set of tasks.

The advantage of the vocal tract distance extraction method described here is
that no manual input is needed for the analysis of such a large dataset. Further-
more, the representations proposed here are interpretable, which is important for
clinical use. The heatmap visualization was inspired by high-resolution manome-
trymeasurements for the assessmentof swallowingdisorders. Researchers showed
that with only a single 20-minute training session, even novice users showed high
inter-rater reliability for the analysis of the pressure-based manometry heatmaps
[7, 9]. We expect, with some training and regular use, that speech therapists will
also be able to interpret and use the articulatory data in clinical practice.

Previously, Silva and Teixeira [19] have also proposed a representationmethod
of the vocal tract configurations. They developed a method, where the data was
normalized allowing for not only intra-speaker but also inter-speaker comparison.
However, their representation is abstract and especially when visualizing articula-
tion dynamics, only very small time periods can be represented and results are dif-
ficult to interpret. Here, we did not aim to allow for comparison between subjects
and applied limited normalization techniques. It could be interesting for further
research to extend the method to allow inter-speaker comparison. However, the
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wide variety of subjects makes solving this problem non-trivial [15]. Apart from
the differences in speaker anatomy, the continuously changing shape and length of
the vocal tract, and thedifferences in speed atwhich speech is produced, encumber
normalization.

In articulation studies, it is common to represent the vocal tract distance from
the glottis to the lips. Here, for several reasons, we chose to deviate from this com-
modity by starting from the lips. First of all, it is the practical reason that the glottis
is not easy to automatically detect in the rtMRI frames. The resolution of the im-
ages is not of sufficient quality to detect the glottis on a frame-to-frame basis. The
anatomical structure could be manually labeled, but as the glottis moves as well
during speech, this should be done for each frame making it very labor-intensive.
Secondly, when considering articulation the focus mostly lies on the tongue area
which comprises about the first two-thirds of the vocal tract distance function.
Placing this part first draws attention to the area of interest. Important to realize is
that neither the glottis or the lips are a static point of the vocal tract and that the
length of the vocal tract changes due to the extrusion of both structures. When
interpreting the data, it should be taken into consideration that, for example, the
lengthening of the vocal tract for the /u/ sound, is shown as an extension at the
side of the glottis, while it actually is a lengthening of the vocal tract through ex-
trusion of the lips. Preferably, we would like to have a static reference point along
the vocal tract, so the extension of the vocal tract can be acknowledged in both the
lip and glottic directions. The hard palate is fairly static over time and could be
considered as such a reference point in future research.

Artifactsmayoccur in the vocal tractdistance extractionwhen the lips arepressed
together and the first vocal tract distance calculated from the lips is 0mm. The first
non-zero value is considered the start,meaning the first gridlines are skippedwhen
no intersection or a single intersection only is found. However, no intersection
may be found when the lips are pressed together, as the gridline that should be
first, might be located within the segmentation completely. In the visualizations,
these artifacts are easy to detect and ignore, as suddenly the vocal tract is shorter
than themeasurements of the surrounding time frames. Using the three individual
segmentation contours instead of the combined contour to find gridline intersec-
tions might mitigate this problem.
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Further improvements may be made in the way interpolation was performed
when no intersections between the vocal tract contour and gridlines were found.
Vocal tract distances were linearly interpolated on a frame-to-frame basis. Higher-
order interpolation methods could lead to overshooting, thus linear interpolation
was chosen as a more reliable option. The vocal tract distance functions from sur-
rounding frames were not used for interpolation as we wanted the method to be
applicable for single frames only as well, though the interpolation quality would
most probably benefit its use.

The vocal tract distance data resulting from themethodology could be a starting
point for many types of speech and articulatory research. Think of articulatory-to-
acoustic mapping, speech synthesis, studying the articulatory proximity between
sounds, different accents, and speakers. To prove its value for clinical use, it is im-
portant to acquire pre- and postoperative data of oral cancer patients and apply the
methodology in this context.

4.6 Conclusion

Here, we presented an automated methodology for extracting articulatory in-
formation from rtMRI during speech. We see the extraction of the vocal tract dis-
tance functions as an enrichment of the existing rtMRI dataset that can be further
explored for analysis. Here, we presented several ways the data can be further an-
alyzed and visualized, however, possibilities are ample. This methodology for as-
sessing articulationmaynotonly broadenourunderstandingof speechproduction
but also aid in improving speech intelligibility in oral cancer patients.
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4.7 Appendices

A Speech tasks

Table 4.7.1: Data from the USC Speech and Vocal Tract Morphology MRI
Database focused on in this chapter.

Reference Task Repetitions
CVC 1 sAs-sus-sis, zAz-zuz-ziz, SAS-SuS-SiS, TAT-TuT-TiT 3x
CVC 2 fAf-fuf-fif, vAv-vuv-viv, lAl-lul-lil, ôAô-ôuô-ôiô 3x
VCV 1 ApA-upu-ipi, AtA-utu-iti, AkA-uku-iki, AbA-ubu-ibi,

AdA-udu-idi, AgA-ugu-igi

3x

VCV 2 ATA-uTu-iTi, AsA-usu-isi, ASA-uSu-iSi, AmA-umu-imi,

AnA-uni-ini, AlA-ulu-ili

3x

VCV 3 AfA-ufu-ifi, AvA-uvu-ivi, AôA-uôu-iôi, AhA-uhu-ihi,

AwA-uwu-iwi, AjA-uju-iji

3x

Rainbow
passage

When the sunlight strikes raindrops in the air, they act as
a prism and form a rainbow. The rainbow is a division
of white light into many beautiful colors. These take the
shape of a long, round arch, with its path high above, and
its two ends apparently beyond the horizon. There is, ac-
cording to legend, a boiling pot of gold at one end. Peo-
ple look, but no one ever finds it. When a man looks for
something beyond his reach, his friends say he is looking
for the pot of gold at the end of the rainbow.

2x normal
2x loud
2x whisper
2x fast
2x slow
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5
General discussion
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5.1 Relevance

The goal of this study was to develop a methodology that enables objective and
replicable assessment of articulation in healthy subjects. Real-time MRI (rtMRI)
data acquired during speech was analyzed in an automated fashion. We have used
deep learning to demonstrate that important information is present in the images
that enable phoneme classification, without manually extracting features from the
image. Also, the relation between the different vowels became apparent. Next, we
developed a methodology based on level set methods to segment the vocal tract
from each frame of the USC dataset [13], with only a single manual segmentation
per subject. From the vocal tract segmentations, we automatically extracted the
vocal tract distance function for each frame. Wepropose several interpretableways
of visualizing and analyzing the dynamic vocal tract distance function data. This
method can be used to broaden our understanding of articulation in speech and to
aid speech rehabilitation.

The data enrichment that resulted from this thesis, is a stand-alone result, as
well as, a start for further articulatory studies. We are the first, to our knowledge, to
propose amethod andwayof visualization, to extensively analyze articulation over
time. Within the field of speech science, this is of great interest to for example un-
derstand the influenceof certainphonemesonotherphonemes (coarticulation)[11],
to explore howpeople apply intonation to voiceless (whispering) speech, or to un-
derstand the articulation differences between people. In this thesis, we do not pro-
vide answers to these questions, however, by making the segmentation and vocal
tract distance function data available, we hope to stimulate other researchers to use
the data to support them finding the answers.

Clinically, this thesis is deemed relevant, as there is currently a limited under-
standing of the impact of oral cancer therapy on the articulation. In the near fu-
ture, such methodology could be used to acquire knowledge on pathological ar-
ticulation and the way patients are sometimes able to compensate for their impair-
ment. On a patient-level, having insights into the articulation pre- and postinter-
vention may aid the speech therapists in creating a patient-specific rehabilitation
strategy and tracking the progression more objectively. In the long-term, when
more pathological speech data has been acquired, we hope we can get a better un-
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derstanding of the relation between therapeutic intervention and the quality of
speech. Currently, it is hard to predict what the functional consequences are after,
for example, a partial glossectomy (tongue resection). Being able to predict the
functional outcome, would provide the treating physicians with an indicator for
functional inoperability and may thus influence the clinical decision-making pro-
cess of oral cancer treatment.

5.2 Limitations of currentwork

The aimwas to develop an objective methodology to describe the quality of ar-
ticulation. In this research, we showed how to extract more quantitative informa-
tion from theMR images, though,wewerenot able to comeupwith away toobjec-
tively score articulation. We have seen that a large variety exists between subjects
and it is difficult to compare these subjects. Also, we did not have any pathological
speech MRI acquisitions to compare the healthy situation with. Accordingly, we
were able to objectively extract information on the vocal tract distance over time,
however, the quality of the articulation remains, for now, up to the interpretation
of e.g. a speech therapist.

The methodology and data presented here are not yet without error and im-
provements can be made, as described more extensively in the discussions of the
corresponding chapters. The segmentation method, described in Chapter 3, may
fail when the orientation of a video deviates toomuch from the single manual seg-
mentation performed on a different video. The method of cropping and similarly
orientating the videos should be made more robust to avoid these artifacts occur-
ring. As for the vocal tract extraction (Chapter 4), artifactsmayoccurwhen the lips
are pressed together and the first vocal tract distancemeasurements are skipped as
no intersections between the gridline and contours are found. Using the contours
of the segmentations of the three regions separately would probably alleviate this
problem.

A limitation of rtMRI regarding vocal tract imaging is that the teeth are not vis-
ible in the images as they contain very few hydrogen nuclei. The teeth, however,
do influence the vocal tract shape and the sound produced, especially for anterior
fricative consonants [15]. One way to deal with this is merely to realize the fact

81



that the teeth are missing when interpreting the data. The segmentation can also
be modified in retrospect by modeling the teeth [4, 7], and superimpose them on
the segmentation contours. Best would be to avoid the problem, by visualizing
the teeth when acquiring the MR images. Researchers [9, 14] have proposed to
use MRI contrast agents like ferric ammonium citrate in a bite splint leaving the
teeth as signal voids. Superimposition remained necessary as the negative of the
teethwas imagedwith by the contrast agent. Also, advances in boneMRI aremade
using, for example, ultrashort echo time imaging [6]. These techniques are, how-
ever not compatible with rtMRI.

5.3 Future perspectives

5.3.1 Data

To continue this line of work and prove its clinical applicability, it is important to
start gathering patient data pre- and posttreatment of oral cancer. We have experi-
mentedwith acquiring our ownDutch database of rtMRI using a specialized head-
and-neck coil [17] and sequence [16], however, lacked appropriate hardware for
the speech acquisition. It is advised to use a fiber-optic microphone with noise-
cancelling specialized for speech acquisition in theMRI. A system popular among
researchers in this field [1–3, 8, 10] is the FOMRI from Optoacoustics (Optoa-
coustics Ltd., Moshav Mazor, Israel). A protocol for Dutch speakers was devel-
oped and can be found in Appendix 5.4.1.

Another interestingdevelopment regardingdata acquisition is the researchdone
towards volumetric rtMRI [5]. Currently, we use only the midsaggital view of the
tongue and ignore the lateral dynamics of the articulators. However, especially in
pathological situations, the vocal tract and itsmovementsmight not be symmetric,
and a midsaggital view may not be sufficient to assess the articulation. Once, this
technology becomes more widespread, the methodology described in this thesis
could be extrapolated to a 4D situation, expanding the view of the vocal tract and
its articulators.
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5.3.2 Inter-subject comparison

In this thesis, we focused on the aim to enable comparing speech within the same
subject before and after intervention as well as to monitor the progression of ther-
apy. It has been proposed, to also compare between subjects [12]. To be able to
truly quantify the quality of speech compared to a group of healthy speakers, the
method described here needs to be extended. Normalization procedures should
be improved as subjects vary heavily by their vocal tract anatomy and manner of
articulation. Also, variation is present in the timing and speed of the speech pro-
duced when considering the dynamics of speech. However, what should be con-
sidered before developing this further, is whether being able to compare subjects
amongst each other is relevant for the purpose described here. The perception of
the quality of speech is very personal. Some patients might have a slight lisp after
surgery and are dissatisfied with their speech, while others are satisfied with their
speech quality as long as they are understandable to other people. The patient’s
judgment of speech will, in clinical practice, most probably overrule an objective
speech quality score, when deciding on the rehabilitation plan.

5.3.3 Validation

In this study, we chose rtMRI as the means to measure articulation. This tech-
nology has many advantages, elaborated on in Chapter 1.4, like a good soft tissue
contrast, its non-invasiveness, painless and radiation-free. However, as for clini-
cal application, there are also downsides. MRI acquisitions are costly and time-
consuming, moreover many hospitals experience waiting lists due to lack of per-
sonnel or hardware. As this method is primarily aimed for rehabilitation, its cost-
effectiveness, and therefore clinical feasibility, remains a question.

Apart from demonstrating the cost-effectiveness of the technology itself, the
method should also be extensively clinically validated for its added value. Several
sessions were held with speech therapists to gather feedback. When pathological
speech data has been acquired, I believe the collaboration with the speech thera-
pists should be intensified to make sure, we work to a solution that is relevant and
well interpretable. We have, for example, also worked on visualizing the speed of
the movement of the vocal tract by calculating the power spectrum over time and
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vocal tract location. However, these resultswere difficult to interpret and therefore
most probably of less value in the clinic.

Noteworthy is that the method and proposed application in this thesis is an in-
novative idea and there is no gold standard or current comparable clinical practice.
Assessment of speech is in current practice subjective and based on the observa-
tions of the speech therapist and complaints of the patient. Introducing a new
methodology to judge the quality of speech, influences the usual clinical practice.
We should realize that demonstrating the added value of the method will be im-
portant as well as difficult and integration in clinical practice will most probably
require time and patience.
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5.4 Appendices

5.4.1 Proposed speech tasks, Dutch

Table 5.4.1: Proposed protocol for Dutch rtMRI database acquisition.

Task Imaging Assignment
CVC 2D sAs, sus, sis, zAz, zuz, ziz, (SAS, SuS, SiS), fAf, fuf, fif, vAv, vuv, viv, lAl, lul, lil, XAX, XuX, XiX, KaK,

KiK, KoK

VCV 2D ApA, upu, ipi, AtA, utu, iti, AkA, uku, iki, AbA, ubu, ibi, AdA, udu, idi, AgA, ugu, igi, AsA, usu, isi, (ASA,

uSu, iSi), AmA, umu, imi, AnA, unu, ini, AlA, ulu, ili, AfA, ufu, ifi, AmA, umu, imi, AhA, uhu, ihi, AwA,

uwu, iwi, AjA, uju, iji

Sentences 2D 1. Op het gras mag men niet lopen. 8. Steile trappen zijn gevaarlijk.
2. De zon gaat in het westen onder. 9. De hond blafte de hele nacht.
3. De kat van de buren is weg. 10. De trein vertrekt over twee uur.
4. Het was heel stil in de duinen 11. Hij rookte zijn sigaret op.
5. De rivier trad buiten haar oevers. 12. De jongen singen er gauw vandoor.
6. Moezaam klom de man naar boven. 13. De biefstuk is vandaag erg mals.
7. De kat likt het schoteltje leeg.



Passage 1 2D DE AUTO
Er was eens een man uit Finland. Hij had veel geld gespaard. Dat was voor de auto van zijn dromen. Hij
nam de trein om de auto te gaan kopen. Maar de man was bang voor dieven. Hij bewaarde het geld in zijn
onderbroek. Hij droomde al van de eerste rit in de nieuwe wagen. Plots moest hij naar het toilet. De man
dacht niet meer aan het geld. Het zakje met geld viel recht in de pot. En deman spoelde door. Daar ging zijn
fraaie plan! Gelukkig was de politie in de buurt. Die vond het zakje terug op de sporen.

Passage 2 2D DENOORDENWIND ENDE ZON
De noordenwind en de zon waren erover aan het redetwisten wie de sterkste was van hun beiden. Juist op
dat moment kwam er een reiziger aan, die gehuld was in een warmemantel. Ze kwamen overeen dat degene
die het eerst erin zou slagen de reiziger zijn mantel te doen uittrekken de sterkste zou worden geacht. De
noordenwind begon toen uit alle macht te blazen, maar hoe harder ie blies, deste dichter trok de reiziger zijn
mantel om zich heen; en ten lange leste gaf de noordenwind het op. Daarna begon de zon krachtig te stralen,
en hierop trok de reiziger onmiddellijk zijn mantel uit. De noordenwindmoest dus wel bekennen dat de zon
van hun beiden de sterkste was.

Sustained vowels 3D bAd (bad), bEd (bed), bIt (bit), bOt (bot), pYt (put), bA:t (baat), be:t (beet), bit (biet), bo:t (boot), byt

(buut), beit (bijt), høp (heup), buk (boek)
Sustained consonants 3D AfA, AvA, AsA, ASA, AzA, AmA, AnA, AKA, AXA
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