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1 Introduction

This thesis was written while working at APG, a service provider for pension

fund of the Netherlands. I was part of the Groeie Fabriek, the business develop-

ment department. I was staffed in the Pension infrastructure (PI) project that

aims to optimise the management of the process involved in maintaining the

participants of a pension fund. I was not directly involved in writing the soft-

ware and the database structure. as not directly involved in writing the software

and the database structure. In order to maximize the profit while expanding as

much as possible the sales departent’s network of clients, my task was to study

the pricing strategy that the department should follow, analyzing the incentives

created by different cost alllocation methods and the optimal sequence of bid.

2 Problem description

Each pension fund in the Netherlands manage the data of its own participants.

This system creates redundancies that do not allow the full exploitation of the

benefit granted by an economy of scale. Furthermore the participants have the

option to switch pension provider when they change job, and therefore it is

necessary to transfer the data regarding that person from the old fund to the

new one. Since each fund uses its own data structure and has different internal

processes, this transfer can be costly and time consuming. The process usually

involves sending and receiving multiple letters, that have to be manually pro-

cessed by the employees of both pension funds.

In order to solve these problems a third party system, the seller PI, created a

centralized database that can host the data of each service provider’s partici-

pants. This means that there is the possibility of exploiting the economy of scale

that comes with a centralized data management and reduce the cost of trans-

ferring participants between funds that use the system, since the network will
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use standardized data and can automatically perform all the controls needed to

validated an operation. The results will be a network of fund that are able to

communicate faster with less possibility of human error.

The seller is interested in licensing the use of this centralized database using

a Software as a Service (SaaS) business model. The provider will licence the use

of this software to each pension fund and will receive a periodic fee for services

offered. In this thesis I will answer the following questions:

1. Assuming complete information and that the player are willing to cooper-

ate, which is the best way to allocate the maintenance cost of the network

infrastructure to each fund?

2. Assuming incomplete information what is the best sequence of bid that

PI can make to maximize its expected revenue?

In section 3 I analyze the problem as a cooperative game , assuming that

all the buyers are willing to disclose any information required to compute the

fair cost allocation. This section is an overview of the existing literature on cost

allocation methods, where I also discuss the incentive that each one gives to

different type of funds. Section 4 will give an historical overview of literature

about bargaining problems, with a focus on recent developments that are par-

ticularly useful for this thesis. In section 5 and 6 I describe the assumptions

needed to analyze this particular bargaining scenario and the model used. In

section 7 and 8 I analyze the problem of bargaining the licence price of the

data management services, starting from the simple case of one possible buyer

and deriving an approximated optimal strategy for the general case with any

number n of possible buyers.

In section 9 and 10 I will explain why the results of the two previous sections can

not be directly applied to bargain the data transfer services and how to modify

the Markov Decision Process to this new scenario. In section 11 I propose an
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approximated greedy strategy to avoid the curse of dimensionality. In section

12 I draw the conclusion of my dissertation and suggest further research in the

field.

3 Cost allocation methods from cooperative game

theory

In order to use a cooperative game theory framework I have to introduce the

assumption that the players are willing to collaborate with one another both

by sharing all private information that are necessary for computing a cost allo-

cation scheme and by subscribing the proposed fee. The solution concept I am

interested in must have the following characteristics

1. Each fund spends less being in the coalition than being on his own.

2. If a fund i has an higher cost than fund j , i will contribute more than j

to the cost of the network.

3. No fund in a coalition should prefer a smaller coalition.

4. No fund is subsidizing another

Condition 1 is given by the individual rationality of each fund, nobody is willing

to switch to a new system if this decision causes an increase in cost without ad-

ditional service. Condition 2 is necessary because the funds are in competition

in other business areas, and the new system should preserve the current relative

strength of each player. The fund will be less willing to join a coalition if this

decision will give a competitive advantage to an adversary. Condition 3 and 4

are necessary to guarantee the stability and scalability of the network. If some

of the current participants see an increase in cost when the network expands

they will be hostile to new joiners and might veto them or leave the network.
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The main issue with cost allocation rules is that there is no perfect notion

of fairness that can be used to allocate the cost, and every method used will

inevitably favour some business more than another, focusing only on certain

aspects. In the next section of the thesis I will present an overview of 4 different

methods, and a brief discussion on the consequences of using one rather than

the other. In conclusion I make a proposal on what I believe is the best option.

3.1 The cost of managing a coalition and parameters of

the problem

Before discussing the cost allocation methods it is necessary to define which

parameters influence the cost incurred by all the participants of the game, both

the vendor and the buyers The seller cost of managing a coalition depends on

the number of participants in it. The allocation of this cost will depend on

the rule used and the current cost of each fund. The first part of this section

is dedicated to analyze the cost allocation when there are no transfer between

funds. The parameters of this problem are

• n: The number of funds that can join the network

• xi: The number of participants in each fund i

• γi: The current fixed cost incurred by each fund i during a billing period

• γ0: The fixed cost incurred by the seller during a billing period

• a, b: The parameter to compute the cost incurred by the seller to manage

a certain coalition

The cost of managing the participants data of a coalition S are computed as

c(S) = γ0 + bxaS (1)

where xS :=
∑
i∈S xi is the total number of participants in the coalition. Given

that, for any coalition, the cost c(s) is known, each cost allocation rule will assign
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a weight wiS to each player, in order to compute the licence fee φiS = wiSc(S).

Theorem: The corresponding cost allocation game is convex iff a < 1.

Proof. A necessary and sufficient condition [1] to have a convex game is that

∀i ∈ S ⊂ T ⊂ N\{i} → c(S ∪ i)− c(s) ≥ c(T ∪ i)− c(T ) (2)

Let xT =
∑
j∈S xj , xT =

∑
j∈T xj and define the auxiliary function g(x) :=

c(x + xi) − c(x) = b(x + xi)
a − bxa. Since S is a subset of T and each fund

has a non-negative number of participants I have that xS ≤ xT . Without loss

of generality the game is convex iff ∀x1 ≤ x2, g(x1) ≥ g(x2) or equivalently

g′(x) < 0.

g′(x) ≤ 0

ab(x+ xi)
(a−1) − abx(a−1) ≤ 0

(x+ xi)
(a−1) − x(a−1) ≤ 0

(
x+ xi
x

)(a−1) ≤ 1

(3)

Given that xi ≥ 0 for all possible fund, the base (x+xi
x ) is greater than 1 for all

possible funds. This means that the game is convex only if the economy of scale

factor a is strictly smaller than 1. If the scale factor is equal to one there is no

economy of scale and the game is inessential, that is c(s∪ i) = c(s)+c({i},∀S, i.

In this situation each player is indifferent in either joining the coalition or in

being on its own.

The computation of the cost of managing the value transfers between players

in the coalition S requires to define some additional parameters.

• ri: the average leave rate from fund i

• pij : The probability that a transfer from i arrives to fund j.

• B,A: The scale parameter to compute the cost of managing the transfers
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The probability that a transfer goes to a fund is directly proportional to the

number of participants. it follows that the probability is calculated as

pij =
xj

xN − xi
(4)

In the current system both parties in a value transfer face administrative cost

in the process,since the request must be approved and then registered on both

ends. Therefore even a fund with no outgoing transaction will have to bear

some of the cost. This means that the total number of transactions to manage

amounts to the sum of all out going and in going value transfers, costing

t(S) = B(
∑
i∈S

rixi
∑

i∈S,i 6=j

pij +
∑
i,j∈S

rjxjpji)
A (5)

Given that the transactions to manage are only the one that completely

belongs in the network, the number of total outgoing transactions is the same

of total ingoing transactions. This means that the cost function in (5) can be

simplified to

t(S) = B(2
∑
i∈S

rixi
∑

i∈S,i 6=j

pij)
A (6)

The cost of maintaining the information centers and the cost of managing

the value transfers are allocated separately.

3.1.1 Allocation proportional to use

Each fund will use the service provided by PI at a different rate. The IT cost

will depend on the current number of participants in a given coalition, while

the cost of the value transfer depends on the number of ingoing and out going

jobs. One way to allocate the cost is proportional to the labor required by each

fund. Therefore the portion of c(S) allocated to each fund will be

wic(S) =
xi
xS

(7)
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Similarly the portion of t(S) paid by each fund will be

wit(S) =
rixi

∑
j∈S pij +

∑
j∈S rjxji

2
∑
i∈S rixi

∑
i∈S,i 6=j pij

(8)

This weighting system assigns a fixed cost per participants and a fixed cost per

job to each fund. The cost grows linearly with the number of participants and

transfers, while the current management cost grows sublinearly with the same

parameters. This means that larger funds, with an efficient economy of scale,

are penalized with this cost allocation rule. The smaller funds on the other

hand will be the main beneficiaries, since they will have a higher percentual

saving. The cost of the coalition is smaller than the sum of the individual cost,

thanks to the concavity of the cost function, and therefore each fund has an

incentive to join in. Given that the cost grows sublinearly adding funds to the

coalition reduce the average cost per user and therefore reduces the fee that

each fund has to pay and therefore every player in the network will always be

favourable to a bigger coalition. However this allocation rule does not guarantee

the preservation of the relative cost order since a large efficient fund might end

up paying more than a smaller but more inefficient competitor.

3.1.2 Allocation proportional to current management cost

The weight of each fund is proportional to its current management cost

wic(S) =
γi∑
j∈S γj

(9)

and

wit(S) =
βi(rixi

∑
j∈S pij +

∑
j∈S rjxjpji)

αi∑
k∈S βk(rkxk

∑
j∈S pkj +

∑
j∈S rjxjpjk)αk

(10)

Given that large funds are usually more efficient this cost allocation penalize

smaller funds, that will save less switching to the new system. The allocation is

individually rational, provided that the sum of the individual cost is greater than

the cost of managing the coalition S. Given that each fund pays proportionally
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to its current cost condition 2 follows directly. The third condition is guaranteed

by the concavity of the cost structure. This cost allocation presents the opposite

problem of the allocation proportional to the number of user. It only rewards

the efficiency of larger funds, proportionally charging the smaller funds more.

Furthermore since the cost are allocated based on individual cost it does not

take into account the price of managing each fund in S.

3.1.3 Shapley allocation

The Shapley value [2] is a well known method to allocate the cost of a product

or share the profit in a joint venture. In order to allocate to each player a fair

share of the cost the weigth is given by the average of the marginal cost created

by joining any possible ordered coalition.

φ =
∑

S⊆N\{i}

|S|! (N − |S| − 1)!

N !
(c(S ∪ {i})− v(S)) (11)

It is worth noting that the first fund to join the system in any possible coali-

tion brings a management cost of at least γ0, that is the fix cost of maintaining

the system. This means that each agent has to pay at least γ0
n , that is the

fixed cost are allocated per capita, ignoring the size of the fund. This minimum

allocation hits the smaller fund particularly hard. Furthermore the complexity

of compute the Shapley value grows factorially with the maximum possible size

of the coalition, therefore an exact computation of this value becomes unfeasible

for a realistically sized network of around 150 customers.

3.1.4 Separable Cost Remaining Benefit allocation

The three previous cost allocation methods focus mostly on the cost of manag-

ing the coalition S but fails to capture another important aspect of the prob-

lem: some funds will save more than others when switching to a centralized

data management, therefore have a greater incentive to join and are willing to
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pay more.The Separable Cost Remaining Benefit allocation method, historically

used to allocate the price of building water distribution infrastructures [3, 4],

incorporate this savings in the computation of the allocated cost.

While it is not possible to define how much managing a fund will cost exactly,

since the same fund in different coalitions has different marginal cost, there is

a part of the total cost involved in managing a coalition that can be directly

assigned to each fund. This is the marginal cost of managing the fund when it

enters the great coalition, that is

mi := c(N)− c(N\{i}) (12)

This cost is a direct consequence of the fund i entering the coalition, and

therefore will be allocated to the fund. Since the cost function is not linear the

sum of the total marginal cost
∑
imi will be lower that the total cost c(N).

The difference

g(N) := c(N)−
∑
i∈N

mi (13)

is called non separable cost, and can not be attributed directly to any particular

fund. Each player has a potential saving ( or benefit) joining the grand coalition

given by the difference of its current cost c{i} and the its marginal cost mi,

that is the minimum charge it will incur by joining the grand coalition,(ri =

c{i} −mi).

As a matter of fact a player will join a coalition only if it is charged less

than its current cost and this is possible only if its marginal cost is lower than

its current cost. If a player join a coalition and is charged less than the its

marginal cost it means that the fund is subsidized by the others, and no other

funds would accept this condition. This means that the remaining benefit of a

player is always non negative.

The non separable cost are allocated in proportion to the benefit it brings to
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each player, that is

φi = mi +
ri∑
j∈N rj

g(N)

The computation of this allocation is more efficient than the Shapley value,

since it is only necessary to compute n marginal cost, instead of n!. However

it has the downside of considering only the great coalition and all the single

funds. This does not guarantee that there are no subcoalitions preferred by

some funds.

While this is a well known issue of the SCRB allocation method in this par-

ticular application it can be neglected, at least in the allocation of the database

management cost. Since the game is convex, and therefore semiconvex, the sep-

arable cost allocation coincide with the cost gap allocation and with the τ−value

defined by Tijs in [5] . In this case the player does not have any credible threat

to force a subcoalition S smaller than the grand coalition N , since the marginal

cost used to compute their fair share of the total cost is already the smallest

possible.

3.1.5 Conclusion and recommendation

The graphs in figure 1 show the effects of different cost allocations on the 5 differ-

ent funds, ranging from 30000 to 100.000 participants. The larger funds prefer

allocation based on current cost, while the smaller prefer an allocation based

on the number of participants. The Shapley value and the SCRB allocation are

between the two other methods and are not the best cost allocation for anyone.

As mentioned in section 3.1.3 the smaller fund are particularly impacted by the

per capita allocation of the fixed cost γ0. I believe that the The SCRB is a

good compromise to allocate the cost between the funds that combines well the

main characteristic of the three other methods. Part of the cost is allocated on

the basis of the cost of managing the fund, and is roughly proportional to the

size of a fund, On the other hand, when sharing the non separable cost, the
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efficient funds that will not save much capital by switching system are rewarded

with a low weight. Furthermore since the game is convex it implicitly takes into

account all possible subcoalitions, without the added factorial complexity of the

Shapley value.

(a) No fix vost (b) fix cost = 2000

Figure 1: Effect of the 4 cost allocation methods discussed on 5 different funds

4 Literature Review on bargaining problems

Modelling bargaining has always been a challenge for mathematicians and economists.

The first solution for a mathematical approach to bargaining theory is due to

Nash [6], that proposed an axiomatic approach to the propriety that a bargain-

ing solution should have. Although discussed in the appendix B of the thesis

this approach has limited application to its central question, since it relies on

complete information about the players default status in case of a failed nego-

tiation and it is implicitly relying on a one turn bargaining game. The original

paper describes a simple two player game, but it can be generalized to any num-

ber n of players. Since no buyer is willing to share its current data management

cost (the default status) this method is of limited use in this thesis.

Rubinstein also tackled the problem[7], adding the possibility for the players to

continue bargaining for an infinite time. Provided that there is a discount factor

greater than 1
2 or that delays are costly the article shows that a deal between

the parties will be reached immediately, if these information are public. The
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immediate reach of an equilibrium is a natural consequence of public informa-

tion, since each player can foresee the strategy of the other and the first player

can force its preferred solution.

The existence of incomplete information and the possibility of making mul-

tiple bids adds new strategic options to the decision makers, as discussed in

[8], where the case of infinite horizon bargaining with incomplete information is

analyzed. Furthermore it provides a useful justification of the assumption that

only the seller can make offers and ignore all counteroffers. The article also as-

sumes that the seller has a sunk cost of production and a null reservation price,

an a priori that can not be made for this thesis. The seller will face an increased

network maintenance cost after the buyers agreed to the bid and therefore there

is a lower bound strictly greater than 0 on the possible bid that a rational seller

can actually propose.

The work discussed in the previous paragraphs offers an interesting insight on

the nature of incomplete information bargaining, and why sequential games nat-

urally arise when some necessary information are not publicly disclosed. How-

ever they only described a very limited class of bargaining problems: a two

person game with one buyer and one seller. This can be useful to model the

extremely specific case of trying to sell the software licence to only one fund,

but is of limited use for a general number of funds n.

Given that PI will face recurring cost to manage the funds in a coalition,

such as server cost, research cost and employee salary, it needs a recurring source

of revenue to remain profitable. This constraint lead to the decision of adopting

as Software as a Service business model [9]. The funds that decide to outsource

the management of their data and their value transfers to PI will pay a periodic

fee, to cover the cost and allow the seller to be profitable. The computation of

the optimal licence cost is the main focus of this thesis.
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The rise in popularity of SaaS business model[10] ignited an interest in re-

searching the price equilibria between buyers and sellers. The article [11] study

a static game with complete information, where the service provider and the

receiver have to decide their privacy preference at the same time. The article

[12] introduces a 1-to-1 bargaining for a cloud computing service, where the

seller can quote the price of services and the buyer decides which percentage

of its service will outsource to the provider. Furthermore the article discusses

1-to-many bargaining scenarios and the effect of economies of scale on the re-

sulting profit. However this model assumes a one turn game and a continuous

spectrum of choice available to the buyer, namely which percentage of service

will be made in house. The Service offered by PI gives a binary choice to the

buyer: either accepting the offer and outsource all its service or maintain the

status quo.

The widespread of online marketplace and complex environments lead to an

increased interest in automated decision making, since the number of choices

to make and the speed required represent an unfeasible challenge for human

decision makers. The game theoretic approach is discussed Jenning et al [13] and

its limitation are highlighted: the computation required for the optimal solution

are often long and expensive, the fact that a solution exist is no guarantee that

is actually achievable. The heuristic approach, relying on a realistic assumption

on the behavior of the opponents, are presented as an approximation of game

theoretic models, able to reach a ”good rather than optimal” solution. An

example of the application of a Markov Decision Process to a bargaining games

is described in [14]. The aim of this thesis is to expand on the existing literature

on the application of Markov Decision Process and game theory to bargaining

problems, finding the optimal bids in a multiple bids 1-to-many bargaining

scenario.
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5 Bargaining with private information and game

description

The cost allocation methods discussed in the previous sections rely on the im-

plicit assumptions that all funds join the PI network at the same time and are

willing to disclose information regarding their management cost, both fixed and

variables. This is not always a realistic assumption, since most buyers are un-

willing to disclose their reservation price, hoping to get a better price if the seller

is forced to make an offer. In this section I will discuss the model used to study

this case and an optimal strategy to maximize the expected profit obtained from

licensing the SaaS.

Given that PI is the only agent that sells this service it has a good bargain-

ing power, since it is not competing with other players to license its product

to the possible buyers. This does not mean that it can behave as a monopoly,

setting any possible price, since it is still competing against the current database

management system of each individual buyer. The pension funds need to man-

age their IT infrastructure and the value transfer, but still have the possibility

of doing it in-house if the price quote by PI is deemed to be excessive. This

bargaining advantage allows the seller to be the only player that is allowed to

make an offer, while the buyer only have the options to accept the quoted price

or refuse if they know that is cheaper to maintain the status quo. The seller will

continue to quote offer, provided that the price does not fall below the marginal

cost of managing the new fund.

The decision to accept or decline the offer depends on the risk preference of

the player. A risk seeker or a risk neutral player is inclined to refuse an offer

even if it is below their current cost, if the decision maker believes that the seller

is above its marginal cost. A completely risk averse player will accept the first

offer that achieves a positive saving, since it is not willing to risk not receiving
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a new offer and to be stuck with their default cost. In this thesis the buyer are

assumed to be completely risk averse.

This scenario can be modelled as a 1-to-many bargaining game, with a finite

number of turns T. The players are divided in two categories:

• 1 seller who developed the software and intend to licence it for a fixed fee.

• n possible buyers of licence

At the beginning of the turns 0, 1, . . . T − 1 the seller proposes a licence fee

to each buyer that is not licencing the service, that will be accepted of refused.

The vendor will stop making offers if it is forced to quote a fee lower than

the marginal cost of managing the new fund. After an offer is accepted the

seller start to collect the revenue and incurr in the cost associated with the new

coalition. No party can renegotiate a licencing agreement after the acceptance.

6 The Markov decision process for data man-

agement bargaining

Since the buyers can only accept or refuse the bid proposed by PI, the evolution

of the system is uniquely determined by the sequence of the price quoted by the

seller to each player. Furthermore the decision of joining depends uniquely on

the last price quoted. This assumption allows to model the system as a Markov

chain and therefore study the optimal strategy using Markov Decision Theory.

In order to describe the Markov process it is necessary to define the state space,

the decision space, the transition probability matrix, the reward and the pa-

rameters of the problem. The parameters of this problem are:

• n: Number of possible seller

• N : The grand coalition
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• T : Number of times it is possible to quote an offer

• δ: discount factor to actualize future cash flow

• [γiL, γiH ]: the lower and upper bound of the reservation price of fund i

• γi: Current administrative cost of fund i, this parameter is a private

information known only to the buyer

• F (·): The probability distribution function of the reservation price.

• xi: Number of participants managed by the fund i

• 1− k: The minimum saving that a fund need to obtain to accept the offer

• a, b: The parameters to estimate the cost of managing the participants in

the network. These parameters are private information, only known to

the seller.

• γ0: Fixed cost of operating the network.

The state of the network is uniquely identified by the players that accepted

the offer, the coalition S. To ease the notation I introduced the binary vector s

defined as 
si = 1 if i ∈ S

si = 0 if i /∈ S

While the vector s identifies each possible state it is also necessary to keep track

of the licence fee of each fund in the system, to compute the future revenue,

and the last refused price quoted to funds that are not in the network, to have

a new upper bound to the possible future quote. These information are stored

in the vector φ, that is 
φi license fee if si = 1

φi last quote if si = 0

18



Given that the state space is described by a binary vector the dimension of

the state space grows as 2n.

The only decision available to the seller is which price to quote to each pos-

sible buyer at the beginning of the period t. Theoretically the seller can quote

any price ψi ∈ [γiL, γiH ] to all buyers. However it is pointless to quote a price

to buyers already licensing the services, since the price can not be renegotiated,

or to quote a price ψi ≥ φi, since the buyer was already not willing to buy at φi.

This means that the seller will quote a price ψi ∈ [γiL, φi] to each player that

is not in the network. This implies that the decision space shrinks after each

turn, no matter the outcome of the bid: if a fund decides to join there is one

less decision variable, if it refuses the bid then the range of viable bid is reduced.

The transition probability is determined by the price quoted at a certain

turn. The probability of going from the state s to the state s′ is equivalent to

the probability that the offers are accepted by the funds i ∈ S′\S and refused

by the funds i ∈ N\S′. Each fund decision depends only on its current cost γi

and the proposed cost ψi, and therefore is independent from the action of all

the other funds. Calling P (ψi) the probability that a fund accept the price ψi

quoted the transition probability can be written as

P (s′|s, ψ) =
∏

i∈S′\S

P (ψi)
∏

i∈N\S′
(1− P (ψi)) (14)

Given that the accepted offers cannot be renegotiated by either party the

state s = 1N is an absorption state, since there are no more decisions to be

made, and the fee received and the cost incurred at each turn are known and

constant.

Finally the reward of a particular state is given by the sum of the total fee

19



minus the cost of managing the participants in the system.

R(s, φ) =
∑
i∈N

(siφi)− b(
∑
i∈N

sixi)
a − γ0 (15)

The expected reward at the end of a turn is given by the weighted sum of the

reward in each possible state after the bargaining turn.

E[Rt(s(t), ψ(t))] =
∑
S′⊃S

R(s′)P (s′|s(t), ψ(t)) (16)

Given that there is a finite number of bargaining turns T the goal of the decision

maker is to maximize the discounted expected total reward,

E[Rtot] =

T∑
t=1

δtE[Rt] (17)

Before going into an in depth analysis of this Markov Decision Problem,

it is useful to know which kind of optimal policy should be expected. The

state space S is countable, there are 2n possible subcoalition. The decision

space in any given state is finite, since each possible ψi belongs in [γiL, γiH ].

This two conditions guarantee the existence of an optimal deterministic Markov

policy[15]. It is worth noting that the existence of an optimal policy does not

guarantee it is possible to find it. In the next sections of this thesis I show that

finding an optimal strategy is possible in the special case with n = 1 and that

for larger network the curse of dimensionality makes it infeasible to compute

the best solution.

7 Optimal bidding strategy for one fund

The simplest scenario to study is the particular case in which there is only

1 possible fund that can join in the network. While this case will never be

encountered in the real world it is useful to study as a basis for a more general

analysis of the problem. In this scenario the state space is composed by only

two elements, s = 0 the fund does not licence the software and s = 1, the fund
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accepted the offer. This also means that the state 1 coincides with the grand

coalition and is therefore an absorption state for the corresponding Markov

chain. The total discounted reward is just the sum of the discounted cash flow

from the turn t that the fund accept the price quoted ψt and to the dismissal

of the software at time T . Using the notation Rt(ψt) I identify the value of the

reward obtained when the fund joins at t and it is possible to write:

Rt(ψt) = −
T∑
t′=1

δt
′
γ0 +

T∑
t′=t+1

δt
′
(ψt − c) (18)

where c is the cost incurred in managing the fund. The seller incurs in this

cost only after the the fund agrees to buy its service, and therefore it is only

subtracted after t. To simplify the notation in the future calculation it is useful

to define the factor Dt1t2 , the factor to compute the total Net Present Value of

a cash flow received from t1 + 1 to the period t2.

Dt1t2 =

t2∑
t=t1+1

δt

=

t2∑
t=0

δt −
t1∑
t=0

δt

=
1− δt2+1

1− δ
− 1− δt1+1

1− δ

=
δt1+1 − δt2+1

1− δ

(19)

Using (19) it is possible to rewrite (18)

Rt(ψt) = −
T∑
t′=1

γ0δ
t′ +

T∑
t′=t+1

δt(ψt − c)

Rt(ψt) = −γ0

T∑
t′=1

δt
′
+ (ψt − c)

T∑
t′=t+1

δt
′

Rt(ψt) = −γ0D0T + (ψt − c)DtT

If I call Pt the probability that the buyer joins at time t I have that expected

reward can be written as

E[R(ψ)] = P0R0(ψ0)+(1−P0)P1R1(ψ1)+. . .

T−2∏
t=0

(1−Pt)PT−1RT−1(ψT−1) (20)
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A fund will accept the price quoted ψ if and only if ψ < kγ, this mean that

the possibility of accepting the first offer can be written as

P0 = P (ψ0 < kγ) = 1− P (γ <
ψ0

k
) = 1− F (

ψ0

k
)

If the first bid is not accepted it gives a new upper bound to the problem, I

know that since the bid was declined the reservation price must be smaller than

the bid, and I have

P1 = P (ψ1 < kγ|ψ0 > kγ) =
P (ψ1 < kγ < ψ0)

P (kγ < ψ0)
=
F (ψ0

k )− F (ψ1

k )

F (ψ0

k )

...

Pt = P (ψt < kγ|ψt−1 > kγ)=
P (ψt < kγ < ψt−1)

P (kγ < ψt−1)
=
F (ψt−1

k )− F (ψtk )

F (ψt−1

k )

Since the probability of refusing an offer is the complimentary case I can

write

1− Pt = 1−
F (ψt−1

k )− F (ψtk )

F (ψt−1

k )
=

F (ψtk )

F (ψt−1

k )

and the possibility of obtaining the reward R(t) can be rewritten as

t′−1∏
t′=0

(1− P ′t )Pt = F (
ψ0

k
)
F (ψ1

k )

F (ψ0

k )

F (ψ2

k )

F (ψ1

k )
. . .

F (ψt−1

k )− F (ψtk )

F (ψt−1

k )

= F (
ψt−1

k
)− F (

ψt
k

)

The function in (20) can therefore be write as

E[R(ψ)] = (1− F (
ψ0

k
))R0(ψ0) +

T−1∑
t=1

(F (
ψt−1

k
)− F (

ψt
k

))Rt(ψt) (21)

In order to maximize the expected value of this function I can solve the

following optimization problem

minimize
ψ

− E[R(ψ)]

subject to γL ≤ ψt ≤ γH , t = 0, . . . , T − 1.

(22)
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Given that most of literature on continuous optimization is dedicated to mini-

mization problems it is useful to rewrite a maximization problem as the mini-

mization of the opposite. In order to find a candidate maximum of the reward

function it is necessary to find its critical points, that is the values ψ0, ψ1, . . . ψT−1

such that −∇R = 0. Using the fact that

∂F (ψtk )

∂ψ
=

1

k
f(
ψt
k

)
∂R(t)

∂ψt
= ψtDtT

the gradient can be written as

−∂E[R(ψ)]

∂ψ0
=

1

k
f(
ψ0

k
)(ψ0 − c)D0T − (1− F (

ψ0

k
))D0T −

1

k
f(
ψ0

k
)(ψ1 − c)D1T

−∂E[R(ψ)]

∂ψ1
=

1

k
f(
ψ1

k
)(ψ1 − c)D1T − (F (

ψ0

k
)− F (

ψ1

k
))D1T −

1

k
f(
ψ1

k
)(ψ2 − c)D2T

...

−∂E[R(ψ)]

∂ψt
=

1

k
f(
ψt
k

)(ψt − c)DtT − (F (
ψt−1

k
)− F (

ψt
k

))DtT −
1

k
f(
ψt
k

)(ψt+1 − c)D(t+1)T

...

−∂E[R(ψ)]

∂ψT−1
=

1

k
f(
ψT−1

k
)(ψt − c)D(T−1)T − (F (

ψT−2

k
)− F (

ψT−1

k
))D(T−1)T

Since the fix expenses γ0 can not be changed they do not have to be con-

sidered when studying the optimal strategy, without loss of generality I will

consider γ0 = 0 for the rest of the thesis. The number of solutions and the

type of critical points obviously depends on the distribution function of the

reservation prices.

7.1 Uniform distribution of the reservation prices

The uniform distribution function is the most simple that cna be used to de-

scribe the reservation prices. In this section I find an analytical solution of the

optimization problem(22). If I assume that the distribution of reservation prices
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follows a uniform distribution in the support [γL, γH ] I have that

F (
ψt
k

) =
ψt
k − γL
γH − γL

∂F (ψtk )

∂ψt
=

1

k(γH − γL)

F (
ψt
k

) =
ψt − kγL

kd

∂F (ψtk )

∂ψt
=

1

kd

where d := γH − γL is defined to simplify future notation. Using these results

the gradient of −E[R(ψ)] can be written as

−∂E[R(ψ)]

∂ψ0
=

1

kd
(ψ0 − c)D0T −

kγh − ψ0

kd
D0T −

1

kd
(ψ1 − c)D1T

=
2ψ0

d
D0T −

ψ1

kd
D0T −

D0T −D1T

kd
c− γH

d
D0T

...

−∂E[R(ψ)]

∂ψt
=

1

kd
(ψt − c)DtT − (

ψt−1 − γL
kd

− ψt − γL
kd

)DtT −
1

kd
(ψt+1 − c)D(t+1)T

= −ψt−1

kd
DtT +

2ψt
kd

DtT −
ψt+1

kd
D(t+1)T −

DtT −D(t+1)T

kd
c

...

−∂E[R(ψ)]

∂ψT−1
=

1

kd
(ψT−1 − c)DtT − (

ψT−2 − γL
kd

− ψT−1 − γL
kd

)DtT

= −ψT−2

kd
D(T−1)T +

2ψ(T − 1

d
D(T−1)T −

D(T−1)T

kd
c

The system of linear equations can be rewritten in matrix form as

1

kd



2D0T −D1T

−D1T 2D1T −D2T

. . .

−D(T−1)T 2D(T−1)T





ψ0

ψ1

...

ψT−1


=

1

kd



c(D0T −D1T ) + kγHD0

c(D1T −D2T )

...

cD(T−1)T


Aψ = b (23)

The critical point ψ is a minimum iff the matrix A is Positive semidefinite

(PSD). A sufficient condition to prove that a tridiagonal matrix is PSD can be
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found in [16]. The matrix must be diagonally dominant, that is

|Ajj | > |A(j−1)(j)|+ |A(j+1)j |,∀j ≤ T − 1 (24)

With the parameters provided this reduces to the inequality

2DtT > DtT +D(t+1)T

DtT > D(t+1)T

δt+1 − δT+1

1− δ
>
δt+2 − δT+1

1− δ

δt+1 > δt+2

1 > δ

Since I am only discussing scenarios with δ < 1 the last inequality always

holds. This means that the matrix A is PSD for any possible combination of

input parameters and the vector ψ that solve the system of equation (23) is a

minimum of the objective function.

Another advantage of working with a PSD matrix is that it is possible to

use Cholesky decomposition using the algorithm described in [17] and rewrite

the matrix as

A = LLT

With the matrix rewritten in this new form it is possible to solve the linear

system Aψ = b becomes LLTψ = b. This new form allows to compute the

optimal strategy vector ψ solving the system Ly = b using forward substitution

and LTψ = y using backward substitution.[18].

The results of the previous discussion can be summarized in the following the-

orem.

Theorem 1 : Given a buyer that has a uniform distribution of reservation price

γ in the range [γL, γH ], a cost of service c, a discount factor δ and T bargaining

turns, the vector ψ of that describe the optimal bid at each bargaining turn can
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be obtained by solving the linear system

Aψ = b

The matrix A and the vector b are defined as

A :=



2D0T −D1T

−D1T 2D1T −D2T

. . .

−D(T−1)T 2D(T−1)T



b :=



c(D0T −D1T ) + kγHD0

c(D1T −D2T )

...

cD(T−1)T


DtT :=

δt+1 − δT+1

1− δ

The pseudocode to solve the optimization problem stated in 22 is the following.

function find_optimal_psi(gamma_H,c,k,DF,T)

#DF=discount factor

t=0

#compute D_tT

while t<T:

D(t)=(DF^(t+1)-DF^(T+1))/(1-DF)

t=t+1

#initialize matrix A

diagonal(A)=2*D

diag_inf(A)=-D(1:T-1)

diaf_sup(A)=-D(1:T-1)
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#compute L such that A=LL^T

L=cholesky(A)

#initialize column vector b

b(0)=c*(D(0)-D(1))+k*gamma_H*D(0)

t=1

while t<T:

b(t)=c*(D(t)-D(t+1))

t=t+1

#solve A*psi=b using backward and forward substitution

y=inv(L)*b

psi=inv(L^T)*y

return psi

At each turn the decision maker has the choice to quote a price, if the fund is

not licencing the services, or do nothing, if the fund is already in the network.

The vector ψ = (ψ0, ψ1 . . . ψT−1) is used to determine the optimal offer at any

time t = 0, 1, . . . T −1. The optimal Markov Decision Strategy is shown in table

1.

State Action

st = 0 Bid max(ψt, γL)

st = 1 Do nothing

Table 1: Optimal Markovian Deterministic Strategy

It is not necessary to recompute the optimal bidding strategy at each turn since

all the relevant information (the price distribution and administrative cost c)

are already known at the beginning of the the bargaining period. The only

information that can modify the strategy is that the fund accepted the bid,

in this case the bargaining ends and there is no need to make any new offer.
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If the marginal cost of managing the fund is lower that the lower bound of

their administrative cost γL there is a probability that no mutually beneficial

agreement will be reached. PI is not willing to provide services at a loss, since

it would be be better off only paying the fix maintenance cost γ0 instead of

γ0 + (ψ − c) since if ψ is smaller than c accepting a client lead to an even

larger loss per turn. The probability of not reaching an agreement is simply

the probability that the reservation price of the fund is below the marginal cost

c, that is Pfail = F (c). In the opposite case, if the marginal cost is below the

minimum reservation price I are sure that an agreement will be reached, since

even bidding the minimum amount γL will lead to a certain agreement that

saves capital to the fund and increase APG’s future cash flow. Beside being

influenced by the range of reservation prices, the cost of managing a fund and

the number of turns, the optimal bid is also determined by the discount factor

δ. If δ → 0 the value of future cash flow becomes very small and therefore

the decision maker has an incentive to make lower offer, since it needs to start

licensing the software as soon as possible.

In order to show the effect of different input parameters on the optimal

bidding strategy I computed the optimal ψ for different scenarios. In figure 2a

PI licence the software to a fund with a minimum reservation price γL above the

marginal cost c. In this scenario the bid at each turn decreases, until it reaches

γL, at which point the seller is certain to reach an agreement offering a price

γL. In figure 2b PI licence the software to a fund with a minimum reservation

price γL above the marginal cost c. In this case the bid decreases and goes to

c when the bargaining is close to the end turn T . Provided that all the other

parameters are equal the bid at any given turn the optimal bid is higher the

closer the discount factor δ is to 1.
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(a) Optimal strategy to bargain with a fund with

γL = 300

(b) Optimal strategy to bargain with a fund with

γL = 100

Figure 2: The graphs show the optimal bid at the beginning of each bargain

turn, for different discount rate δ. The purple line is the cost of managing the

fund in the system.

7.2 Truncated normal distribution

The assumption of a uniform distribution of reservation prices yields an ele-

gant analytic solution but it is not realistic. The chance that a fund spends all

its administrative costs in database management (γ → γH) or does not spend

anything in information management (γ → γL) are highly unlikely. A more
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suited distribution to describe the reservation prices is the truncated normal

distribution. It allows to give more weight to the best estimate of the actual

management cost, that is the mean µ of the normal distribution, and to quantify

the uncertainty of this estimation, using the variance σ2. It is necessary to use

a truncated distribution, since there is no chance that the reservation price can

be below γL or above the total administrative cost of the fund, and therefore a

finite support is needed. A normal distribution has an unlimited support, which

would allow the unrealistic cases of a negative reservation price or one higher

than the current management cost.

Given a truncated normal distribution with mean µ and variance σ2, and sup-

port [γL, γH ] the probability distribution function and the cumulative distribu-

tion function are respectively

f(ψ) =
φ(ψ−µσ )

σ(Φ(γH−µσ )− Φ(γL−µσ ))

F (ψ) =
Φ(ψ−µσ )− Φ(γL−µσ )

Φ(γH−µσ )− Φ(γL−µσ )

The resulting system of equation −∇R = 0 does not have an analytical

solution and it is necessary to use numerical methods to find the root. I decided

to find the minimum with a iterative approximation algorithm, the gradient

descent method as described in described in [19]. This method is only applicable

provided that both F (·) and f(·) are continuous, as in our case.

It is worth noting that also the triangular distribution would be a suitable

candidate to describe the reservation prices, since it has a finite support and is

possible to give more weight to certain values. However the fact that the cdf is

not continuously differentiable makes it impossible to use most of the continuos

optimization approximation methods.

Using the analytical function described in section 7 it is possible to compute the

gradient in any given point of the decision space, and use this value to apply the

gradient descent method. The pseudo code of the algorithm is written below.
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fuction find_optimal_trunc_norm(psi0,c,gamma_L,gamma_H,mu,sigma)

next_psi=psi0

i=0

while i< max_iters:

curr_psi =next_psi

next_psi = curr_psi - learning_rate * gradient(curr_psi)

step = next_psi - curr_psi

if norm(gradient(next_psi)) <= precision:

break

return next_psi

i=i+1

Using the norm of the gradient as the stopping criterion it is possible to

approximate the optimal results as much as possible. As a stopping criterion I

used norm(∇(E[R] < 0.001). It is interesting to show the effects that different

values of µ and σ have on the optimal strategies. I am mainly interested in

three situation

1. µ < 0.5(γh + γL): The best estimation of the reservation price is below

the average of the uniform distribution (Fig.11a)

2. µ = 0.5(γh + γL):The best estimation of the reservation price is equal to

the average of the uniform distribution (Fig.11b)

3. µ > 0.5(γh + γL):The best estimation of the reservation price is above the

average of the uniform distribution(Fig.11c)

With low values of σ the bid changes slowly from one turn to the other.

This is justified, since if the estimation of the reservation price is good, there

is no point in lowering significantly the previous bid,given that the changes in

the probability of making a successful offer are negligible when ψ is far from µ.

For relatively small µ the bid is always lower than the on obtained assuming
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uniform distribution, while for higher the opposite is true. Qualitatively it is

also possible to notice that for high uncertainty σ the optimal bids are almost

equal to the optimal bid obtained assuming a uniform distribution of reservation

prices. This is a natural consequence of the fact that for large σ the truncated

normal distribution approximates the uniform distribution on the same support,

as shown in fig.12. This means that if the decision maker of the seller has no

accurate estimate of the buyer reservation price (σ → ∞) it is equivalent to

playing using a uniform distribution of the reservation prices.

8 Multiple funds

If there is more than one possible fund that can join the system, optimizing

the expected total revenue becomes more challenging. The main issue is that

the number of possible states, and therefore the complexity of the function that

represents the expected reward, grows exponentially with the number of funds.

In the next sections I will study thoroughly the case with 2 and 3 funds, then

propose an approximated solution for the general problem with n funds.

Due to the curse of dimensionality it is unfeasible to have an analytical

function to compute the expected reward. Therefore it is necessary to use

numerical experiment to compute the results obtained using different strategies.

The testing method is described in appendix A.

8.1 2 Funds

Even the second simplest system, with only two possible clients, prove to be

computationaly challenging to extend to a multiple turn bargaining. In this

section I find an analytical solution to a one turn bargain game. When the

number of possible funds is 2 there are 4 possible states of the systems, identi-

fied by the binary vectors s
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s =



(0, 0) Both funds are outside the network

(1, 0) Fund 1 joined, fund 2 didn’t

(0, 1) Fund 2 joined, fund 1 didn’t

(1, 1) Both funds joined

Using the notation ψit to indicated the offer made to fund i at time t and defining

the cost 
c1 = bxa1

c2 = bxa2

c12 = b(x1 + x2)a

it is possible to write the reward received in each state as



R(0, 0) = 0

R(1, 0) = δ(ψ1
0 − c1)

R(0, 1) = δ(ψ2
0 − c2)

R(1, 1) = δ(ψ1
0 + ψ2

0 − c12)

If a 6= 1 then c12 6= c1 + c2 the total reward is not the sum of the individual

rewards and it is not possible to study the Markov Decision problem as two sep-

arate optimization problems. Restricting the analysis to a one turn bargaining

game the expected total reward can be written as

E[R] = δ[(1− P (ψ1
0))(1− P (ψ2

0))R(0, 0) + P (ψ1
0)(1− P (ψ2

0))R(1, 0)+

+ (1− P (ψ1
0))P (ψ2

0)R(0, 1) + P (ψ1
0)1P (ψ2

0)R(1, 1)]

= δ[P (ψ1
0)(1− P (ψ2

0))(ψ1
0 − c1) + (1− P (ψ1

0))P (ψ2
0)(ψ2

0 − c2) + P (ψ1
0)P (ψ2

0)(ψ01 + ψ2
0 − c12)]

= δ[P (ψ1
0)(ψ1

0 − c1) + P 2
0 δ(ψ

2
0 − c2)− P (ψ1

0)P (ψ2
0)∆c12]
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where ∆c12 := c12 − c1 − c2 takes into account the difference in managing the

funds separately and combined. Provided that δ 6= 0 I can fix it to 1 without loss

of generality. Assuming again that the reservation price of both funds follows

two uniform distributions [γ1L, γ1H ][γ2L, γ2H ] I obtain the optimization problem

minimize
ψ

− E[R] = −γ1H − ψ1
0

d1
(ψ1 − c1)− γ2H − ψ2

0

d2
(ψ2 − c2) +

γ1H − ψ1
0

d1

γ2H − ψ2
0

d2
∆c12

subject to γ1L ≤ ψ1
0 ≤ γ1H ,

γ2L ≤ ψ2
0 ≤ γ2H ,

The gradient necessary to find the critical points is
∂R
∂ψ1

0
= 1

d1
(ψ1

0 − c1)− γ1H−ψ1
0

d1
− 1

d1

γ2H−ψ2
0

d2
∆c12 = 2

d1
ψ1

0 + ∆c12

d1d2
ψ2

0 −
c1+γ1h
d1

− ∆c12

d1d2
γ2h

∂R
∂ψ2

0
= 1

d2
(ψ2

0 − c2)− γ2H−ψ2
0

d2
− 1

d2

γ1H−ψ1
0

d1
∆c12 = ∆c12

d1d2
ψ1

0 + 2
d2
ψ2

0 −
c2+γ2h
d2

− ∆c12

d1d2
γ1h

This can be written in matrix from as 2
d1

∆c12

d1d2

∆c12

d1d2
2
d2

ψ1
0

ψ2
0

 =

 c1+γ1h
d1 + ∆c12

d1d2
γ2h

∆c12

d1d2
γ1h + c2+γ2h

d2



Using the condition (24) the critical point is the optimal solution iff
| 2
d1
| > | δc12d1d2

|

| 2
d2
| > | δc12d1d2

|
2d2 > c1 + c2 − c12

2d1 > c1 + c2 − c12

A priori it is not possible to guarantee this condition and it is necessary

to check it before solving the linear system. It is worth noting that when the

parameter ∆c12 → 0 the solution converge to
ψ1

0 = c1+γ1H
2

ψ2
0 = c2+γ2H

2
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which is the sum of the optimal bidding strategy of two independent funds

when there is only one bidding turn. This means that the closer this parameter

is to 0 the more this solution resembles the case of two independent funds.

The difference in cash flow of the two bidding strategies becomes important

the closer the upper bound on the funds reservation prices is to the maximum

marginal cost. Figure 3 shows the results of this analytical optimal bid compared

to the ones obtained using the naive strategy described in section 8.3.1 with

λ = 0. The maximum reservation price of the two funds is a multiple m of

their maximum marginal cost ci. For low multiple m the exact bidding strategy

clearly outperforms the Naive strategy. For greater values of m the strategy

leads to practically the same results. This is due to the fact that for high upper

bound γi the correction introduced by ∆c12

d1d2
becomes negligible and the optimal

bid goes to ψi0 ∼
ci+γiH

2 ∼ γiH
2 .

8.2 3 funds

With three funds there are 8 possible states and studying a solution for the

general problem with t turns becomes unfeasible. In this section I study the

simplified case with only one possible bargaining turn. This bidding strategy

can be the base for a greedy approximation of the complete case with n turn.
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Figure 3: 2 funds b = 1, x1 = x2 = 100.000, ci = bxai , γiH = mci, γiL = 0. The

results are expressed as a multiple of the expected cash obtained using the naive

strategy with λ = 0

With three funds the expected value of the total reward can be written as

E[R] =P (ψ1
0)1(1− P (ψ2

0))(1− P (ψ3
0))(ψ1

0 − c1) + (1− P (ψ1
0))P (ψ2

0)(1− P (ψ3
0))(ψ2

0 − c2)+

(1− P (ψ1
0))(1− P (ψ2

0))P (ψ3
0)(ψ3

0 − c3) + P (ψ1
0)P (ψ2

0)(1− P (ψ3
0))(ψ1

0 + ψ2
0 − c12)+

P (ψ1
0)(1− P (ψ2

0))P3(ψ1
0 + ψ3

0 − c13) + (1− P (ψ1
0))P (ψ2

0)P (ψ3
0)(ψ2

0 + ψ3
0 − c23)+

P (ψ1
0)P (ψ2

0)P (ψ3
0)(ψ1

0 + ψ2
0 + ψ3

0 − c123)

= . . . . . .

=P (ψ1
0)(ψ1

0 − c1) + P (ψ2
0)(ψ2

0 − c2) + P3(ψ(ψ3
0)− c3)− P (ψ1

0)P (ψ2
0)∆c12−

P (ψ1
0)P (ψ3

0)∆c13 − P (ψ2
0)P (ψ3

0)∆c23 − P (ψ1
0)P (ψ2

0)P (ψ3
0)∆c123

(25)
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The critical points can be found by solving the following non linear system
2
d1

∆c12

d1d2
+ γ3h∆c123

d1d2d3
∆c13

d1d3
+ γ2h∆c123

d1d2d3

∆c12

d1d2
+ γ3h∆c123

d1d2d3
2
d2

∆c23

d2d3
+ γ2h∆c123

d1d2d3

∆c13

d1d3
+ γ2h∆c123

d1d2d3
∆c23

d2d3
+ γ2h∆c123

d1d2d3
2
d3



ψ1

ψ2

ψ3

−

ψ2ψ3

∆c123

d1d2d3

ψ1ψ3
∆c123

d1d2d3

ψ1ψ2
∆c123

d1d2d3

 =


γ1H+c1
d1

+ γ2H∆c12

d1d2
+ γ3H∆c13

d1d3
+ γ2Hγ3H

d1d2d3
∆c123

γ1H∆c12

d1d2
+ γ2H+c2

d2
+ γ3H∆c23

d2d3
+ γ1Hγ3H

d1d2d3
∆c123

γ1H∆c13

d1d3
+ γ2H∆c23

d2d3
+ γ3H+c3

d3
+ γ1Hγ2H

d1d2d3
∆c123


Bψ − ω = b

The additional term ω contains multiplication between the variables and intro-

duces non linear element in the system. This system of equation does not have

an analytical solution. In the particular case that the input parameters are such

that ∆c123

d1d2d3
� 1 it is possible to neglect the non-linear term ω. Therefore it is

possible to solve the simpler linear system
2
d1

∆c12

d1d2
∆c13

d1d3

∆c12

d1d2
2
d2

∆c23

d2d3

∆c13

d1d3
∆c23

d2d3
2
d3



ψ1

ψ2

ψ3

 =


γ1H+c1
d1

+ γ2H∆c12

d1d2
+ γ3H∆c13

d1d3

γ1H∆c12

d1d2
+ γ2H+c2

d2
+ γ3H∆c23

d2d3

γ1H∆c13

d1d3
+ γ2H∆c23

d2d3
+ γ3H+c3

d3


The results for this situation are comparable to the case with only two funds.

When a→ 1 the optimal bid becomes similar to the optimal bid for independent

funds while correcting the bid to take into account the economy of scale is

more important when the upper bounds on the reservation price is close to the

maximum marginal cost. The ratio of expected cash flows between the corrected

optimal bid and the naive strategy is show in figure 4.

In case of more than 3 funds there will be even more mixed terms between

decision variable and the system will be even more non linear. In general the

expected reward function of a single turn bargaining for a network with n funds

can be written as

E[R] =

n∑
i=1

P (ψi0)(ψi0 − ci)−
∏

(S∈N,|S|>1)

PS∆S (26)
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Figure 4: 3 funds b = 1, x1 = 100.000, ci = bxa, γiH = mci, γiL = 0. The

results are expressed as a multiple of the expected cash obtained using the

naive strategy with λ = 0

where the last term takes into account all the possible coalition of 2 or more

funds and the corrective term associated with managing the players in the coali-

tion jointly or individually. The probability PS =
∏
iin§ Pi roughly goes as

∝ 1∏
i∈S di

. This means that the greater the coalition is, the smaller is the asso-

ciated correction factor. If it is possible to ignore the corrective term for n = 3

it should also be possible the corrective term of higher, since the product at the

denominator is even bigger. Neglecting all correction terms above the 2 players
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coalition the sub optimal bids are given solving the linear system Bψ = b where

Bii =
2

di

Bij = Bji =
∆cij

didj

bi =
γiH + ci

di
+

∑
j 6=i

γjH∆cij

didj

Fig 5 and fig 6 show the results of this strategy applied to networks with 2 to

5 players, for scale factor a > o.5. These results show that the quality of the

approximation deteriorates even for a small network of 5 funds. This means

that higher order corrective term introduce non linearity to big to be ignored.

Figure 5: 4 equal funds Figure 6: 5 equal funds

8.3 Approximation for n funds

The two previous sections showed that it is not feasible to find an analytical

solution when the possible size of the network is considerably larger, like in a

realistic scenario where n > 50. It is necessary to find a method to approximate

the optimal strategy.

8.3.1 Naive approximated strategy

The main issue in finding an analytical solution for the optimal bidding strategy

is that the cost of managing funds in a coalition grows non linearly and therefore
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it is not possible to compute independently the optimal strategy for each possible

participants in the coalition.

No matter the size of the possible grand coalition it is possible to define an upper

and a lower bound for the cost of managing a particular fund: the maximum

marginal cost MCi and the minimum marginal cost mci. Given the concavity

of the cost function they correspond respectively to the cost of managing the

fund i in the smallest possible coalition s = i and to the extra cost added by

the fund when completing the grand coalition. That is

MCi = bxai mci = bxaN − b(
∑
j 6=i

xj)
a (27)

Since it is certain that the actual marginal cost of managing a fund in any

subcoalition lies between this two extreme values I can introduce a fictitious

management cost

cλi = λ ·mci + (1− λ)MCi, λ ∈ [0, 1] (28)

This ficticious cost can be used to approximate the real marginal cost of

managing a fund. The value of λ used depends on the decision maker’s desire to

take into consideration the economy of scale of the cost function. Qualitatively

I can say that

• λ → 1: the approximated cost cλi tends to the minimum marginal cost

mci. The seller decides to fully take advantage of the economy of scale

to offer the lowest possible price to each possible buyer. This increases

the chance that each fund accepts the bid as soon as possible. However

the cost estimation might be to optimistic, if not enough funds decide to

licence the software the seller might faces losses, since the bid is low and

few licences were sold.

• λ → 0: The seller ignores the benefits of the economy of scale. The bid

obtained using this approxiamted strategy are high and might not be a
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sufficient incentive to convince the buyers to switch to the new system.

However the seller is guaranteed to have a positive cash flow, since the

licence revenue is never below the highest possible marginal cost.

This approximated cost can be used to reduce the dimensionality of the problem

from 2n to a much more manageable 2n. Using this approximated cost it is

possible to rewrite equations 18 and 20

Rit(ψ
i
t) = −

T∑
t′=1

δt
′
γ0 +

T∑
t′=t+1

δt
′
(ψit − cλi )

E[R(ψi)] = P i0R
i
0(ψi0) + (1− P i0)P i1R

i
1(ψi1) + . . .

T−2∏
t=0

(1− P it )P iT−1R
i
T−1(ψiT−1)

for all funds i = 1, 2 . . . n. Using the analytical method developed to solve the

optimization problem (22) it is possible to solve n optimization problems, one

for each possible client. The pseudocode of this approximation algorithm is

written below

function find_naive_psi(x,a,b,gamma_H,k,lambda,DF,T)

for i =1:n :

c_lam=lambda*mc+(1-lambda)*MC

psi(i)=find_optimal_psi(gamma_H(i),c_lam,k,DF,T)

return psi

The results of the approximated strategies are tested with the numerical ex-

periments described in appendix A for different m to see which weight λ yields

the best results. The best λ to compute the optimal strategy depends on the

number of funds. The graphs in figure 13 and 14 show the results for different

maximum sizes of grand coalition.In order to have a clear comparison of the

different strategies, the expected cash flows are expressed as multiples of the

expected results obtained with λ = 0. For small coalitions the best option is to

use the maximum marginal cost as the approximated cost. Using an approxi-

mated cost close to the minimum marginal cost opens up to a high probability of
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bidding below the actual cost of managing the resulting coalition and therefore

it does not yield acceptable results. When the coalition size becomes significant,

(n ≥ 20) the probability of managing a large coalition increases and it becomes

beneficial to consider the lowest marginal cost mci as the approximated man-

aging cost. Another interesting result is that the performances of the strategy

is influenced by the width of the price distribution. If the maximum reservation

price is much higher than the maximum marginal cost ( γiHMCi
� 1) the impor-

tance of the weight λ becomes negligible. When m = 1.2 using the appropriate

weight can increase the expected profit more than 200%, provided that n is

large. Putting to much enphasis on the economy of scale λ → 1 also creates a

significat chance of losing money at the end of the bargaining games, especially

for small network. On the other hand with m = 5 the difference between the

expected profits is less than 4% and the possibility of having a negative cash

flow is negligible for any network of realistic size.

There is no method that I am aware of to estimate a priori what is the value

λ that yields the highet expected profit, given the number of funds n and the

probability distribution of their reservation prices. However it is possible to

find the optimal weight a posteriori, using a Monte Carlo simulation. The time

needed to run the simulations necessary for an accurate estimation is negligible

compared to the time the decision makers has to decide the optimal bids.

While it is possible to use Monte Carlo simulations to find the weight λ

that yield the highest expected reward, I am not able to find a boundary of this

approximation. That is I cannot know how close the result of this approximated

strategy is from the true optimum.

8.3.2 Refined Approximated Strategy

The naive approximated strategy is easy to compute and the systems of equa-

tions need to be solved only once, that is at the beginning of the bargaining

turn t = 0. The simplicity of this strategy comes at a cost, since it ignores any
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new information revealed after each offer. Since at the beginning of each turn

there is the possibility that new funds join the system the decision makers have

more elements to decide the better strategy.

The maximum marginal cost of managing new participants might change at

each turn. Given a certain coalition S at a turn t the maximum marginal cost

of managing the fund i /∈ S can be computed as

MCiS = bxaS∪i − bxaS

This allows to have a more accurate approximated cost cλiS = λ ·mci + (1 −

λ)MCiS , λ ∈ [0, 1]. Since the effort of computing n independent strategies

is negligible the decision makers can recompute the optimal bid at each turn,

solving (22) and act accordingly. The differences between this refined behaviour

and the naive approximated strategy become negligible when λ → 1, since the

minimum marginal cost is not influenced by the current state of the network.

The main advantage of this strategy is that it allows to use λ → 0, which

decreases the chance of a negative outcome, while still exploiting the benefit of

the economy of scale, since the maximum marginal cost is updated with new

information after each turn. Figure 15 show the result obtained using the refined

and the naive strategy on the same set of randomly generated funds. It is clear

that for any given weigth λ the refined strategy outperforms the naive strategy,

being up to 3 times more profitable for large network. However looking at the

absolute performance it is possible to notice that the best results are obtained

for λ→ 1, where the two approximated strategies converge to the same optimal

bids.

8.4 Conclusion and recommendation

The two strategies proposed avoid the curse of dimensionality by splitting a

single Markov Decision Problem with 2n possible state into n problem with a

know analytical solution. The quality of this approximation depends on the

43



weight λ used to compute the weighted average of the maximum and minimum

marginal cost of managing each possible fund. The optimal value depends on

the contest and can be estimated a posteriori using numerical experiments on

fictitious funds with the reservation prices randomly drawn from their probabil-

ity distribution. Usually for large network the best results are obtained using

a fictitious cost close to the minium marginal cost, that is λ → 1. The added

complexity of using the refined approximation compared to the naive approxi-

mation is worth for risk averse vendor that want to use the maximum marginal

cost as a fictitious cost while partially exploiting the economy of scale granted

by the centralization of the data management services.

9 Markov Decision Process for value transfer

bargaining

This bargaining problem will be tackled using Markov Decision Theory. It is

necessary to introduce the additional parameters:

• ri: The average leave rate of fund i.

• pij : The probability that a transaction from i goes to j.

• A,B: The economy of scale parameter of the vendor.

• Ai, Bi: The economy of scale parameters for fund i

• [AiL, AiH ], [BiL, BiH ]: The support of the distribution functions F (A), F (B)

• αi, βi: The economy of scale parameters quoted by PI to fund i.

There are several major differences between this game and the one described

in section 6

• The seller must quote two parameters αi, βi instead of a single one ψi
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• The decision to accept or refuse the price offered by PI now depends on

the state of the network: the same offer can lead to different outcome

based on the subcoalition that is currently licencing PI services.

• It is not possible to study simple case such as n = 2 or n = 3 since in

these scenarios there is no network effect.

The binary vector s identifies the state of the system also in this Markov

chain. It is also necessary to store the last offer (αt−1, βt−1), to keep track of

the revenue from each fund and to know the current shape of the decision space.

There are two decision variables for each fund that is not in the network, the

economy of scale parameters (αi, βi) offered by the vendor. Since the leave rate

r and the transition probabilities pij are public information it is possible to

compute zi, the total number of value transfer that a fund has to manage and

εiS , the number of transaction that are managed by PI if the fund i joins the

current coalition S, as

zi := rixi
∑
j 6=i

pij +
∑
j 6=i

rjxjpji

εiS := rixi
∑
j∈S

pij +
∑
j∈S

rjxjpji

Since only the transfers that are completely in the coalition S can be managed,

the buyer will pay

ψiS = βiε
αi
iS (29)

If the coalition is not complete the fund will also have to bear the cost of all

the transactions with funds that are not in S. The buyers must choose between

two cash flows:

1. CFdef : The current cost of managing the system, its default situation

2. CFPI : The cost of managing the value transfers in a mixed system.

A perfectly risk averse decision maker will base its decision only on facts

that are certain. This means that the buyer i faced with the choice of joining
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the coalition S it will compute the cost CFPI considering the coalition S ∪ i,

since it does not know what other funds will do. The two cost can be estimated

as

CFdef = BzAi

CFPI = βεαi(S∪i) +B(zi − εi(S∪i))A

The decision maker will accept the quote iff

CFPI < CFdef (30)

Unfortunately it is not sufficient that αi < Ai, βi < Bi to fulfill (30). For any

combination of (Ai, Bi, αi, βi) there is a minimum εi necessary to make a rational

switch to licence PI service. Figure 7 shows that if ε < ε∗ the fund will pay more

in PI than in the current situation. This means that if the current subcoalition

does not guarantee at least ε∗ transfers inside the network the buyer will decline

the offer. While it is true that the switch might become profitable in the future,

if enough fund will join the system, a perfectly risk averse decision makers is not

willing to sustain certain losses in a period for the hope of reducing operative

cost in the future.

Since the decision regarding the offer is also influenced by the state of the net-

work εi(S∪i) this parameter must be considered when computing the probability

of making a sucessful bid and the transition probability. Similarly to the previ-

ous Markov chain the possibility of transitioning from the state s to the state

s′ : S′ ⊃ S is equivalent to make a successfull offer to the buyers in S′ \ S and

an unsucessful one to the buyers in N \ S′. That is

P (s′|s, α, β, ε) =
∏

i∈S′⊃S
P (αi, βi, εi(S∪i))

∏
N\S′

(1− P (αi, βi, εi(S∪i))) (31)

The reward function used to evaluate the vendor decision is the net profit of the

vendor that is

R(s, α, β, ε) =
∑
i∈S

(siψiS)−B(
∑
i∈S

εiS)A (32)
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Figure 7: Comparison of cash flow, for zi = 1000, Ai = 0.9, Bi = 950, αi =

0.88, βi = 900

Given that there is a finite number of turn T the objective is to maximize the

total expected reward. Given that the state space is discrete and the decision

space is finite there is an optimal markov strategy.

10 Bargaining Value Transfer Service licence

Before starting to discuss the bidding strategy I need to compute what what is

the probability of success of an offer (αi, βi), This is equivalent to computing

the integral

I =

∫
κi

f(Ai)f(Bi)dAidBi (33)

where κi is the region of the space [AiL, AiH ] × [BiL, BiH ] that fulfills the in-

equality in (30).

This inequality can be analytically written as
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Biz
Ai
i > βiε

αi
i(S∪i) +Bi(zi − εi(S∪i))Ai (34)

Given that (αi, βi, εiS , zi) are known to the vendor I can rewrite the inequality

to find a condition on the variable B for any possible value of A as

Bi(A) >
βiε

αi
i(S∪i)

zAii − (zi − εi(S∪i))Ai
(35)

The threshold acceptance value B∗i (A) might be outside the support interval

[BiL, BiH ]. Adding the condition that B∗i (A) must be in this interval, it is

possible to write

B∗i (A) =


BiL if

βεαi(S∪i)
zAi −(zi−εi(S∪i))A

≤ BiL
βεαi(S∪i)

zAi −(zi−εi(S∪i))A
if BiL <

βεαi(S∪i)
zAi −(zi−εi(S∪i))A

≤ BiH

BiH if
βεαi(S∪i)

zAi −(zi−εi(S∪i))A
> BiH

Using this piecewise definition of B∗i (A) it is possible to write an integration

domain κi(αi, βi, εi(S∪i)) for any combination of the decision variables (αi, βi)

and the network parameter εi(S∪i). Figure 8 show the integration domain

κi(αi, βi, εi(S∪i)) for different decision variables and network parameters.

Figure 8: Integration domain κ for different decision variables and network

parameter. An offer is accepted if the pair of private (A,B) is contained in the

blue region of the graph.

The unconditional probability of making a successful offer can be found com-
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puting (33) over the integration domain κi(αi, βi, εi(S∪i)).

P (Success|αi, βi, εi(S∪i)) = P ((A,B) ∈ κ(αi, βi, εi(S∪i)))

=

∫ AiH

AiL

∫ BiH

B∗(A)

f(Ai)f(Bi)dBidAi

=

∫ AiH

AiL

1

AiH −AiL
1

BiH −BiL
(BiH −B∗(A))dAi

= µi

∫ AiH

AiL

(BiH −B∗(A))dAi

where µi := 1
AiH−AiL

1
BiH−BiL to ease the notation. Since B∗(A) the last integral

is defined piecewise, the integral can be further divided in at most three integrals,

defined in the intervals [AiL, A
∗
iL], [A∗iL, A

∗
iH ], [A∗iH , AiH ], where [A∗iL, A

∗
iH ] are

the solutions of the equations

BiHz
A∗iL
i = βiε

αi
i(S∪i) +BiH(zi − εi(S∪i))A

∗
iL

BiLz
A∗iH
i = βiε

αi
i(S∪i) +BiL(zi − εi(S∪i))A

∗
iH

(36)

These equations does not have an analytical solution and will be solved using

the Newton approximation method[20], as described in the appendix C. It is

now possible to write the integral as

P ((A,B) ∈ κi(αi, βi, εi(S∪i))) = µi

∫ AiH

AiL

(BiH −B∗(A))dAi

= µi(

∫ A∗iL

AiL

(BiH −BiH)dAi

+

∫ A∗iH

A∗iL

(BiH −
βεαiS

zAi − (zi − εiS)A
)dAi +

∫ AiH

A∗iH

(BiH −BiL)dAi)

= µi(

∫ A∗iH

A∗iL

(BiH −
βεαiS

zAi − (zi − εiS)A
)dAi + (BiH −BiL)(AiH −A∗iH))

(37)

The first term of the Right Hand Side of the last equation does not have an

analytical solution and is computed using the rectangle numerical integration

method, with stepsize dA = 0.01(A∗iH −A∗iL).

In figure 9 I show the probability of a making a successful offer for the same

fund with different network conditions. The results clearly show that the same
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offer (αi, βi) has a much higher chance to be accepted when the network is close

to completion (εi(S∪i) → zi). This happens because, when the network manage

a small number of value transfers, the efficiency gain in outsourcing part of

the transfers is negligible, and therefore a fund will required very favourable

condition to join the network. On the other hand this probability highlights

a major issue during the first bargaining turn: no fund has an advantage to

be the first to join the coalition. Indeed if S = ∅, the network parameter

εi(∅∪i) = εii = 0. A null network parameter lead to an empty integration

domain, and therefore no offer will be accepted. I explain how this problem is

goiung to be solved with a greedy bidding strategy in the next section.

(a) Network 30% complete (b) Network 50% complete

(c) Network 80% complete (d) Complete network

Figure 9: Probability of making a successful bid αi, βi,for different network

states. The completeness of a network is defined as εiS
zi
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All the previous computation are needed to compute the probability of mak-

ing a successful offer during the first bargaining turn. If this offer is turned

down the decision maker gain new information regarding the possible value of

the buyer reservation values, namely that (Ai, Bi) /∈ κti(α
t
i, β

t
i , ε

t
i(S∪i)). The

exponent t is introduced to identify the integration domain and the decision

variables at each turn t.

The conditional probability of making a sucessful offer can be written as

P ((Ai, Bi) ∈ κti|(Ai, Bi) /∈ κt−1
i ) =

P ((Ai, Bi) ∈ κti \ κ
t−1
i )

(P ((Ai, Bi) /∈ κt−1
i )

=
P (κti)− P (κt−1

i )

1− P (κt−1
i )

The previous equation requires that κt−1
i ⊂ κti. This is always true, given that a

rational decision maker can use the information provided by the decision of the

buyer to avoid bidding in a region that guarantees a refusal.. Figure 10 show how

successive bid influence the integration domain during two bargaining turns. It

also highlight another important difference between this bargaining game and

the previous one. Provided that the network parameter ε increase between two

consecutive bargaining turn, it is possible to repeat the previous offer with a

non zero probability of success.

11 Greedy strategy approximation

I intend to use a two part greedy strategy to bargain this service offering

1. Convince the two most active fund to join the network

2. Greedy optimization of the next turn expected rewards

The first part of the strategy is necessary to kickstart the network formation

process. Without a minimum number of transaction no fund is willing to accept

the offer. The pathological case when there is an empty network is that εi∅ =
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Figure 10: integration domain κ0 \ κ1

0,∀i. This mean that no fund wants to be the first to join. In order to avoid

this scenario it is necessary to guarantee a minimum number of transactions to

make the switch more convenient to every individual buyer. The first part of

the strategy serves this purpose. The most active funds are the pair ij with the

highest number of transaction between them. That is

i, j = argmax εij
i,j

(38)

In order to be certain that these offers made will be accepted it is necessary
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to quote economy of scale parameters (αi, βi) and (αj , βj) that will lead to a

cash flow CFPI below the lowest possible estimate of CFdef , that is when both

target funds operate with parameters AiL, BiL and AjL, BjL. This means that

there are two conditions to respects

BiLz
AiL
i > βiε

αi
ij +BiL(zi − εij)AiL

BjLz
AjL
j > βjε

αj
ij +BjL(zj − εij)AjL

In these two inequalities all the parameters are known and therefore it is

possible to find and infinite number of pairs (αi, βj), (αj , βj) that are guaranteed

to satisfy them. I choose to use the pairs

αi = AiL βi = 0.98
BiLz

AiL
i −BiL(zi − εij)AiL

εαiij

αj = AjL βj = 0.98
BjLz

AjL
j −BjL(zj − εij)AjL

ε
αj
ij

These offers are not optimal and, depending on the scale parameter A,B of the

vendor, might even lead to a temporary negative cash flow per turn. However

they are necessary to create a significant number of transactions inside the

network.

The curse of dimensionality is avoided using the same method employed

in the bargaining of data management service using approximated strategies

(section 8). A problem with 2n state space is divided in n optimization problems

using a fictitious management cost, as a weighted average of the minimum and

the maximum marginal cost of managing the new fund in the current coalition.

That is the fictitious management cost cλi is computed as

cλiS = λ ·mci + (1− λ)MCiS , λ ∈ [0, 1] (39)

The expected rewards of this new Markov problems are the expected ficti-

tious profits, the difference between the revenue that a certain offer would bring
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and the fictitious cost of offering these services, that is

E[Ri(κ
t
i)] = P (κti|κt−1

i )(βti ε
αti
i(S∪i) − c

λ
iS)

=
P (κti)− P (κt−1

i )

1− P (κt−1
i )

(βti ε
αti
i(S∪i) − c

λ
iS)

(40)

The complexity of computing the probability of making a sucessful offer

means that it is not feasible to compute the optimal value of a sequence of

offers, as I did for the previous MDP. In this situation the reward are optimized

greedily, that means that the bid chosen maximizes the immediate expected

profit without taking into account the long term effects of the decision. The

optimization algorithm used to find the optimal greedy bid is described in the

appendix D.

The numerical methods required to compute the sub-optimal greedy bids

make this algorithm quite inefficient. While the time required to compute the

decision in any given turn is still compatible with the time available to the ven-

dor, testing this algorithm is incredibly time consuming. For these numerical

results I only conducted 500 numerical experiments for each set of parameters,

instead of the usual 10.000.

Figure 16 shows the results for network of 5, 10 and 20 possible buyers, when

the seller is much more efficient than the buyers. The value of the weigth λ

does not contribute to the expected profit. For larger network the possibility of

ending the game with a negative expected loss are almost 0. This is not true

when considering a scenario where the vendor is only slightly more efficient than

the buyers, show in figure 17. The value of λ is still irrelevant to the expected

results. The probability of a positive profit in this scenario is below 20%, and

the expected profit of the numerical tests is negative. This is due to the fact that

the low efficiency of the vendors does not allow to recoup the loss caused by the

extremely favourable offer made to the two most active fund. The network is

losing capital at each turn and at the same time can not make other favourable

bids, since the economy of scale is not that effective. Unfortunately the ex-
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tremely favourable bid proposed to the most active funds can not be avoided.

A bid that increases the profit obtained by PI lead to a non-zero probability

that it might be declined by the active funds. This makes it impossible to have

the first transfers inside the network and therefore it is not possible to attract

the smaller funds

12 Conclusion and further research

The aim of this thesis was two answer two research question:

1. Assuming complete information and that the player are willing to cooper-

ate, which is the best way to allocate the maintenance cost of the network

infrastructure to each fund?

2. Assuming incomplete information what is the best sequence of bid that

PI can make to maximize its expected revenue?

I answered the first question with a review of cost allocation methods de-

veloped in cooperative game theory. The Separable Cost Remaining Benefit

proved to be the most suited allocation method for this particular cost game. it

takes into account both the cost increase due to new fund joining the network

and the savings that each player can achieve outsourcing its operation to a third

party software house. Furthermore it is computationally efficient.

The answer to the second research question proved to be more challenging since

it depends on which bargaining game is played and on the size of the largest

coalition. I found an analytical solution for the simple case of a 1-to-1 bargaining

of data management licence. The more realistic case 1-to-many bargaining has

been tackled with an approximated strategy that use a fictitious management

cost to approximate the true marginal cost. This approximated cost is used to

solve n 1-to-1 problems with knows analytical solution. This approach is sub-
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optimal but the numerical experiments proved that it is effective and always

lead to a positive expected profit. I was nt able to find an analytical solution

to the value transfer bargaining problem and therefore I implemented a greedy

strategy to decide the bids at each bargaining turn. The numerical simulations

proved that while this method is effective when the sellers is significantly more

efficient than the buyers it leads to an average net loss when the difference in

efficiency is small.

This thesis highlight that further research is needed in investigating 1-to-

many bargaining games with one-sided offers, especially in the case where the

acceptance decision is not only influenced by the private information of the buyer

but also by the state of the system. These games are subject to the course of

dimensionality and new approximated strategy need to be developed to simplify

the state space and improve suboptimal decision making. The approximated

strategy proposed mostly lead to an average positive net profit but there how

close these results are to the true optimal results is still an open question.

Furthermore these methods relies on the assumption of a perfectly risk averse

buyer which limits the general validity of the methods proposed. It is possible

to study the case where the buyers have different risk appetite and how this fact

influence the optimal bidding strategy.
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A Testing a strategy

Given the difficulty of computing exactly the expected value of a strategy, the

expected profit is computed using Monte Carlo simulations.

In every simulation each fund is assigned a reservation price drawn randomly

from its distribution probability. The strategy to test is played and the fund

will accept the first offer below its reservation price. Given that the joining time

and the offer accepted by each fund uniquely identify the cash flow at each turn

it is possible to compute the total cash discounted cash flow received by PI. The

results obtained in the current thesis are tested using 10.000 trials.

B A note on Nash Equilibria

The Nash equilibria of a bargaining game with n player is the set of payoff ψ

that maximize the function

π(ψ) =
∏
i∈N

(ψi − di)αi

s.t. ψi ≥ di∀i

where di is the payoff in case of disagreement and αi is the risk aversion coeffi-

cient of a player i. In out bargaining case the default value di are the current

administrative cost of each player and the unavoidable cost γ0 of the service

provider. This means that in order to compute this value the reservation prices

of each player must be common knowledge, along with its risk preference αi.

Furthermore the implicit assumption is that the bargaining is a non repeated

game. It is anyway interesting to solve this problem, and compare it to the

cooperative solution concepts and the bargaining results.
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Calling APG player 0 I have that the utility functions needed are

u0 = (

n∑
j=1

ψi − c)α0

ui = (γi − ψi)αi i = 1, 2, . . . n

where c is the total cost of managing the network. The corresponding maxi-

mization problems becomes

minimize
ψ

− π(ψ) = −(

n∑
j=1

ψi − c)α0

∏
i∈n

(γi − ψi)αi

subject to
∑
i∈n

ψ ≥ c i ∈ n.

ψ ≤ γi i ∈ n.

By basic property of logarithm it can be rewritten as

minimize
ψ

−α0 ln(

n∑
j=1

ψi − c)−
∑
i∈n

αi ln(γi − ψi)

subject to
∑
i∈n

ψ ≥ c

ψ ≤ γi i ∈ n.

The partial derivatives are

∂π

∂ψ1
= − α0∑

j ψj − c
+

α1

γ1 − ψ1
= −

α0γ1 + α1c− (α0 + α1)ψ1 − α1

∑
j 6=1 ψj

(
∑
j ψj − c)(γ1 − ψ1)

∂π

∂ψ2
= − α0∑

j ψj − c
+

α2

γ2 − ψ2
= −

α0γ2 + α2c− (α0 + α2)ψ2 − α2

∑
j 6=2 ψj

(
∑
j ψj − c)(γ2 − ψ2)

...

∂π

∂ψi
= − α0∑

j ψj − c
+

αi
γi − ψi

= −
α0γi + αic− (α0 + αi)ψi − αi

∑
j 6=i ψj

(
∑
j ψj − c)(γi − ψi)

Provided that no denominator is zero (that is
∑
ψi 6= c ψi 6= γi∀i ∈ n) the
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critical points of this function are found by solving

α0 + α1 α1 α1 . . . α1

α2 α0 + α2 α2 . . . α2

. . .

αn αn αn . . . α0 + αn





ψ1

ψ2

...

ψn


=



α0γ1 + α1c

α0γ2 + α2c

...

α0γn + αnc


C Solution of equation (36)

In this section I will discuss the solution of the first equation, the second equation

is solved in a similar manner. I applied Newton iterative method described in

[20]. The equality can be rewritter as

f(A∗iL) = BiHz
A∗iL
i −BiH(zi − εi(S∪i))A

∗
iL − βiεαii(S∪i)

an I am interested in finding the solution f(A∗iL) = 0. The derivative of this

function is continuous as is computed as

f ′(A∗iL) = BiHz
A∗iL
i ln (Zi)−BiH(zi − εi(S∪i))A

∗
iL ln (zi − εi(S∪i))

Starting from the initial guess A∗0iL := 0.5(AiL + AiH) the solution is find

iterating, that is

A∗n+1
iL = A∗niL −

f(A∗niL )

f ′(A∗niL )

The process stopp after a set number of iteration of when the error |A∗n+1
iL −

A∗niL | is smaller then the desired precision µ. In this thesis I used nmax = 10000

and µ = 0.001

D Maximum expected profit greedy search

Given that it is not possible to find an analytical expression of the probability

of success it is not possible to use the optimization method used in section 7. I

can not compute the gradient and use it to find the critical pints where ∇R = 0.
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One way to find the maximum expected profit is to divide the support of

both Ai and Bi in a given number of step n. This will give a grid with n2

pair of coordinate and it is possible to find the maximum with brute force,

computing the expected profit using every point in the grid as an bid (α, β).

This is guaranteed to find at least one maximum value but is computationally

expensive. It is possible to reduce the number of grid value to evaluate using the

fact that, for a fixed α there is only one maximum value β(α). This means that,

if the expected value E[R(α, βk+1)] < E[R(α, βk)] the offer (α, βk) is the best

possible for the given α. Therefore if the expected value decline it is possible to

stop iterate over β and move to the next gridpoint on α. the pseudocode code

for this optimization algorithm is written below

#initialize variables

alpha=A_min

beta=B_min

step_A=(A_max-A_min)/n

step_B=(B_max-B_min)/n

#compute fictitious management cost

c=lam*min_mc+(1-lam)max_mc

while alpha<=A_max:

max_beta_profit=-M

while beta<=B_max:

%compute the probability for the offer alpha beta,

%given the parameter of the network

p=compute_probability(alpha,beta,z,epsilon)

expected_profit=p*beta*epsilon^alpha

if expected_profit>max_beta_profit:

max_beta_profit=expected_profit

beta=beta+step_B

else:

%save current coording and maximum expected profit

%of the maxium given alpha

coord_maxes.append([alpha,beta],expected_profit)

break

alpha=alpha+step_A

bid=argmax(coord_maxes)

This algorithm iterate over all the discrete values of α but iterates over the
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value of β only as long that the expected value improves. After it finds the

maximum of a given α it stores the coordinates of this value and the value

itself. Once it finishes the iteration overs the discrete value of α there is a direct

collection of n possible maximum points. The optimal greedy bid is the pair of

coordinate that have the maximum expected value among the n candidates.

E Graph

In this section are reported all the graphs that were to large to be included in

the body of the thesis.
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(a) Low µ

(b) Mid µ

(c) High µ

Figure 11: These graphs show the optimal bidding sequences for different values

of uncertainty σ and how they relate to the results obtained for the uniform

distributions.
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Figure 12: Comparison of truncated normal distributions with the uniform dis-

tribution on the same support
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Figure 13: Strategy performance for different number of fund and weigth λ,

with γh = 1.2MCi. The results are expressed as a multiple of the expected

profit obtained when λ = 0
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Figure 14: Strategy performance for different number of fund and weigth λ,

with γh = 5MCi. The results are expressed as a multiple of the expected profit

obtained when λ = 0
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Figure 15: Strategy performance for different number of fund and weigth λ,

with γh = 5MCi
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Figure 16: Results of numerical tests when the vendor is significantly efficient

compared to the buyers. The results are expressed as a multiple of the expected

profit obtained when λ = 0
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Figure 17: Results of numerical tests when the vendor is NOT significantly

efficient compared to the buyers. The results are expressed as a multiple of the

expected profit obtained when λ = 0
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