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Abstract

A dry bulk terminal can be seen as the buffer between the product flows on
the landside and the waterside. These flows depend on multiple stochastic dis-
tributions, such as the arrival times of trucks and vessels and their load sizes.
This causes large differences in the storage level of the terminal over time. In
this research the required storage level of a dry bulk terminal is investigated.
With different queueing models of a terminal, the steady state probability dis-
tribution of the storage level is determined. Besides these models, two different
simulations of a terminal are made, one in Python, the other in Trafalquar, the
simulation tool of TBA. With a case study of an export terminal with five com-
modities, the results of the simulations and the queueing models are compared
to each other to find the required storage capacity.
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Chapter 1

Introduction

The world gets smaller every year. For work we have contacts all over the
world, we go on holidays to see total different cultures, we eat food that could
never grow in our own country, and a lot of our daily used products are made
on the other side of the world. For all those things a lot of transportation is
needed, mostly over sea. Massive vessels sail the oceans to spread the products
over multiple continents. In the ports they unload their products, where trucks,
trains or smaller vessels will transport it to the final destination. Because those
different phases of transport do not connect perfectly on each other, some buffer
is needed to store the products for a while; a terminal.

There are many different kinds of terminals in the world. They differ in size
and in the way of transportation to and from the terminal. Goods can be
brought and picked up by trucks, trains, deep sea vessels and barges. Another
big difference is the kind of products they can handle. Some products are packed
in containers, others will be transported as dry or liquid bulk. This research
is focused on terminals that handle dry bulk. The major commodities of those
terminals are iron ore, grain, coal, phosphate rock and bauxite ore (UNCTAD,
1978).

Another division of terminals can be made in import and export. Export ter-
minals are located in producing countries and can be used to store the products
until it is sold for a good price. Those terminals mostly have only one commod-
ity in stock. Import terminals are situated in countries with demand for raw
products and will often handle multiple commodities (Van Vianen, Ottjes, and
Lodewijks, 2011).

To get the products in and out the terminal, different equipment is needed. An
example of a dry bulk export terminal is schematically shown in figure 1.1. On
the landside trucks and trains arrive that get unloaded in their stations. From
these stations the product is transported with conveyor belts to the stacker
that puts it in the storage yard. When a vessel arrives at the quay the reclaimer

3



Figure 1.1: Schematic overview of an export terminal

will place the commodity back on the conveyor belts, which transport it to
the loading station. Here the product is loaded into the vessel and leaving the
terminal. On the waterside it is also possible that barges arrive that deliver
goods to the terminal.

For an import terminal the idea is the same, but now the vessels deliver prod-
ucts, while the trucks, trains and barges will pick it up. Some terminals are a
combination of import and export, then all transport equipment arriving at the
terminal could be loaded and unloaded. It is also possible that the terminal has
some bypass of conveyor belts, then the product can be transported from land-
to waterside without being stored in the storage area.

An interesting question for terminals is the needed storage capacity. The ter-
minal is a buffer between two transportation flows, but which size does this
buffer have to be? This stockyard size depends on the arrival distribution of the
ships, the shipload size, the hinterland transport distribution and the loading
and unloading rates of the different equipment (UNCTAD, 1978). Because of
the stochastic nature of those systems, it is not easy to find the required storage
size.

The main research question of this report is:

What is the required storage capacity of a dry bulk terminal?

Some subquestions are:

- What is the difference in the required storage capacity of a terminal with
multiple commodities compared to only one commodity?
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- Which characteristics of the terminal have a large effect on the required
storage capacity?

This research is conducted at the simulation department of TBA Delft. TBA
provides integrated software solutions to simplify the operations of ports, ter-
minals and warehouses all over the world. At the simulation department they
model the terminals of the customer to find the optimal design and strategy
for their operations. They answer questions like, what types of transport and
(un)load equipment is needed, how much equipment is needed and what is the
required capacity of the terminal.

This report starts with a literature background of terminals and mathematical
models that can be used. Then the problem description is stated with all the
assumptions that are made in the models together with a queueing model de-
scription. In the next chapter the departure process of the unloading station
at a terminal is investigated, followed by the determination of the steady state
probability distribution of the queue length at the loading station. Chapter 6
explains models that are combinations of these unloading and loading stations.
After all those mathematical models the structure of the simulation in Python
and an explanation of the simulation tool of TBA is given. In the end a case
study is conducted with the two simulation tools and the effects of changes in the
input are investigated. The same input of the case study is used in the different
queueing models and those results are compared with the simulation results. At
the end the conclusion of the research is given, together with discussion points
and ideas for further research.
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Chapter 2

Literature

In the current literature there is not yet much published about the required stor-
age capacity of a terminal. In general the amount of literature about container
terminals is larger than about dry bulk terminals. To determine the required
storage capacity for those terminals different methods are used. For container
terminals it is calculated with the mean dwell time of the containers (Mulinas,
2012). For dry bulk terminals the rule of thumb is to have 10 percent of the
annual throughput as storage area (Schott and Lodewijks, 2007) or two to four
times the largest shipload per commodity (Agerschou, 2004, chapter 8).

Products in the storage area of a terminal are waiting to be picked up and
transported further to their final destination. This could be seen as a queue
of products, waiting on their service. The modes of transport also could queue
before the loading and unloading stations when the machines are busy with
other vehicles. Therefore, one way to model a terminal is as a network of
queues.

There are already papers published that use queuing theory for (bulk) termi-
nals, but mostly to determine the waiting time of the vessels and the best berth
allocation. Mulinas (2012) mentions often used queueing systems for the arriv-
ing vessels. One of those systems is applied by El-Naggar (2010) to a container
terminal in Egypt. Jagerman and Altiok (2003) also apply a queueing system at
the quay, but for bulk terminals. Bugaric et al. (2011) take the ship unloading
cranes as queues and Robenek et al. (2014) use a MIP to allocate the vessels to
the berths and assign the commodities to the yard.

For the design of the yard there is also research conducted. So do Lodewijks
et al. (2007) use a discrete event simulation to find the best locations of the
stackers and reclaimers. Binkowski and McCarragher (1999) look for the best
ratio of the number and size of stockpiles in a storage area of a certain size. And
Van Vianen, Ottjes, and Lodewijks (2014) use a simulation to find the optimal
stockyard size.
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In other transportation applications queueing is also already used. Schwarz
and Epp (2016) looked at the circulating vertical conveyor system which can
be seen as a GX |G0,C |1|K queue and determined the queue length distribution,
waiting time and inter-departure times. Alfa (1982) studied the queue length
distribution of a discrete time bulk server queue with time-inhomogeneous com-
pound Poisson input, which can be used for bus stops. Medhi (1975) obtains
the distribution with its moments of the queue length for a M |Ma,b|1 queue.
Krishnamoorthy and Ushakumari (2000) use forward Kolmogorov equations to
determine the queue length probabilities and busy period distribution for a
M |M1,d|1 queue with single departures. These systems can be used for eleva-
tors. Gupta and Sikdar (2004) looked at a M |Ga,b|1 queue with single vacations.
They use partial differential equations to determine the steady state distribution
of the queue length through an imbedded Markov chain approach.

The arrival process of products into the terminal can be seen as batch ar-
rivals. Every arriving mode of transport delivers a variable amount of product.
Chaudhry and Templeton (1983) give a general overview for bulk queues. They
show some common used techniques, such as the imbedded Markov chain tech-
nique, the supplementary variable technique, basic renewal theory and Laplace-
Stieltjes transforms. Kabak (1970) finds the blocking and delay probabilities for
a MX |M |1 queue. Maraghi et al. (2009) show a clear derivation of the proba-
bility generating function of the queue length for a MX |G|1 queue with random
breakdowns and Bernoulli vacations. Henderson and Taylor (1990) proved that
for queueing networks with batch arrivals and services a product form equilib-
rium distribution exists. Suhasini et al. (2013) looked at a system with two
parallel queues with bulk arrivals and a single queue in series. With differential
equations the generating function of the joint probability of the three queue
lengths is determined.

When the unloading stations are defined as queues, the arrival process to the
storage area is actually the departure process of those unloading stations. Whitt
(1984) gives some methods to approximate the departure process from a single-
server queue. Hu (1996) determines the MacLaurin series of the moments and
covariances of the departure process of the G|G|1 queue. Daley (1976) looks at
the output process of a general G|G|s|N queue with finite and infinite N and
gives for some arrival and service distributions an equation for the distribution
of the departure process. More interesting for the bulk arrival queue is the work
of Kempa (2008), who determines the generating function of the Laplace trans-
form of the departure process of a GX |G|1 queue. Stanford and Fischer (1989)
describe the Laplace-Stieltjes transform of the interdeparture time distribution
function of a M |G|1 queue where multiple types of customers arrive. This is
interesting when the terminal handles multiple commodities.

The loading station can be modelled as a double-ended queue with arrivals
of product and arrivals of transportation equipment. Kim et al. (2010) show a
simulation model for a double-ended queue with extensions such as bulk arrivals,
batch size service, general distributions and non-zero processing times.
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Chapter 3

Problem description

A terminal is a complex system of a lot of different service points and movements.
To model this system, first some assumptions are made to explain and simplify
the problem.

3.1 Assumptions

A terminal has a lot of different equipment to transport the goods through
the terminal. In this research one of the main assumptions is that all transport
between the loading and unloading stations, such as conveyor belts, stackers and
reclaimers, have enough capacity to handle the flows of product, without being
a bottleneck. Another main assumption is that the terminal is either importing
or exporting goods, and can not do both. In both cases the unloading and
loading stations are strictly separated. So it is not possible to first unload a
vessel and then load another one.

In this way the terminal can be modelled as a system with two handling stations;
loading and unloading. See figure 3.1 for a schematic overview. For an import
terminal the unloading station is located at the waterside and unloads the vessels
at the quay, while at the loading station the products are loaded into the trucks
and trains on the landside. For an export terminal the unloading station is on
the landside and at the quay the vessels are loaded.

At both the stations different types of vehicles arrive. With vehicles is meant
all types of equipment that can deliver or pick up goods. At the landside these
are trucks and trains with different lengths and volumes. At the waterside there
are different types of vessels that moor at the berth. All those different types
of vehicles have their own load size distribution. When a load size distribution
is continuous, every value taken out of this distribution will be rounded to a
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Figure 3.1: Model of a terminal

discrete load size, for example in whole tons. In this way all processes in the
terminal can be defined per unit of product.

The two stations at the terminal have multiple machines that can handle the
goods. Those machines (un)load the vehicles per unit of product. It is assumed
that all machines in a station have the same service distribution to handle one
unit of product independent of the type of vehicle and the commodity they are
working on. Every type of vehicle has its own maximum number of machines
it can be served by. A truck for example can only be handled by one machine,
while a big vessel could be handled by five machines.

The terminal can store multiple commodities. Different vehicles with different
commodities can be in service at the same time. So we assume that the terminal
has enough routes from the stations to the storage yard to simultaneously handle
commodity A from vehicle 1 and commodity B from vehicle 2. All vehicles
arriving at the terminal have exactly one type of commodity loaded.

Vehicles arriving at the unloading station will be served first in, first out (FIFO).
When a machine has finished its current vehicle, it will check if all other vehicles
in service already have their maximum number of machines assigned to it. If
some vehicle has not reached its maximum number of machines yet, the idle
machine is assigned to this vehicle and starts unloading it. If all vehicles in
service have enough machines working on it, the first vehicle waiting at the
station goes into service and the idle machine starts working on this vehicle.
We assume that a machine changing of vehicle and therefore possibly also of
commodity, does not take any time.

At the loading station the handling order of the vehicles is a bit different. A
vehicle can only go into service when a certain percentage of its load is already
in the storage area. When the first vehicle wants a commodity that is not in
stock, while the second vehicle in the queue wants another commodity which is
in the storage area, this second vehicle will be served first. When this percentage
is set to 0 percent, the vehicles are served FIFO.
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In a real terminal the quay has besides a limited amount of machines, also a
maximum number of berths. Lets take an example of vessels which have a
maximum of three machines working on it and a quay with five machines. The
first vessel arrives and will be served by the first three machines. Then the
second one arrives and in this model the service will start with the remaining
two machines. In this research is assumed that there is always enough space at
the quay to moor all ships assigned to the machines, so there is no maximum
number of berths. It is also possible that a machine in the middle of the quay
becomes idle and gets assigned to a vessel moored at the end of the quay, because
that vessel has not reached its maximum number of machines yet. It could be
that this machine actually can not reach this vessel, because it then has to move
along two other cranes. This is, however, more a problem of the berth schedule
than of the storage level, and therefore ignored as well. So we only take into
account the number of machines in the (un)loading stations and not how those
machines can reach the vehicles and where those vehicles are.

The terminal has only space for a maximum number of (waiting) vehicles at
both the stations. If a vehicle arrives at the terminal and sees the maximum
number of vehicles at the station, it will not join the queue, but leaves without
being handled and will not come back. This maximum number of vehicles is
independent of the types and commodities of the present vehicles and could also
be infinite.

The terminal has also a maximum capacity of storage area. When the storage
yard is full, all machines in the unloading station will stop working. All vehicles
at this station, in service and waiting, will stay and wait. If in the loading
station product is handled into a vehicle and removed from the storage yard,
the unloading station can start handling product again. All machines start with
a new handling of a unit of product, there is no remaining handling time from
before the stop. Because we are interested in the required storage capacity
of the terminal, this maximum storage capacity will in the models be set to
infinity.

If in the loading station a vehicle is in service with a wanted commodity that is
not in stock, the machines working on this vehicle will stop and the vehicle waits
in service. When new product of this commodity arrives in the stockyard, the
machines can start a new handling of one unit of product into this vehicle. The
machines will not be assigned to other vehicles that pick up other commodities
which are still in stock.

If a vehicle is almost completely served or a certain commodity is almost out of
stock, some machines will stop working earlier than the point it is completely
empty. For example, there are only two units of product A in stock and a
third machine will start loading this commodity into a vehicle. In a realistic
case, this machine will not start the handling of a new unit of product, because
the two units are already handled by two other machines. In this model we
assume that we do not know what other machines are doing. So all machines
are working on the last unit of product and when the first machine finishes its
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handling time, all machines will stop working. One of the disadvantages of this
assumption is that in the current handling time, a new unit of product could
be unloaded and arrived in the storage yard. The start of the loading process
of this unit then actually already started before it was in the storage yard. But
this disadvantage will not have a large impact on the storage level, since the
terminal handles large amounts of product, so these one or two units will not
make the difference.

All combinations of vehicle type and commodity type have their own arrival dis-
tribution independent of each other. The load size distributions of the vehicles
are independent of the commodity.

3.2 Queueing theory

As mentioned in chapter 2 one way to look at a terminal is as a network of
queues. In figure 3.2 a model of two queues is shown which represents a terminal.
The first queue is the unloading station where vehicles arrive with a batch of
product. This first server has s1 machines that handle the batches of product
per unit. After this server the units of product go into the waiting line of the
second server, which can be seen as the storage yard. The second server is the
loading station with s2 machines. When a vehicle arrives here the machines
start loading units of product from the storage queue into this vehicle. This
continues until the load size of this vehicle is loaded, and the vehicle will leave
the system.

In this system we are interested in the queue length distribution of the second
queue. First the two queues will be explored separately, so the departure process
of the first queue and the queue length distribution of the second queue. Then
the two queues will be combined in one model.
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Chapter 4

Departure process of the
unloading station

The arrival process of units of product into the storage yard is equal to the
departure process of units of product out of the unloading station. When the
vehicles at this station arrive in a Poisson process bringing one unit of product at
a time and the s1 machines in the station have all the same exponential service
distribution, this station is a M |M |s1 queue. That system has a departure
distribution equal to the arrival distribution (Ross, 2006, corollary 6.6).

4.1 MX |M |1 queue

When the vehicles do not bring only one unit of product, but deliver batches
of product into the station, and there is only one machine in this station, the
system changes to an MX |M |1 queue. For this queue the departure process of
units of product from the station into the storage yard can be divided in two
cases. The first case is when after a departure there are still unloaded vehicles
in the station. The second case is when the queue is empty after an end of
handling of one unit of product.

For the first case the time until a new departure is equal to the time of a new
end of service, since a new unit of product immediately goes into service. Let
FB(t) be the probability that the service time is less or equal than t. For an
exponential service with rate µ1 this is FB(t) = 1− exp(−µ1t).

When the queue is empty after an end of handling, the new departure first
has to wait for a new arrival and then has to unload a first unit of product.
Let FA(t) be the probability that the inter-arrival time between two batches
of product is less or equal than t and let FA+B(t) be the probability that the
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inter-arrival time plus the service time is less or equal than t. Assume that the
batches arrive in a Poisson process with rate λ, then FA(t) = 1−exp(−λt). The
joint probability for FA+B(t) now can be determined, using the fact that the
arrival process is memoryless.

FA+B(t) = Pr(A+B ≤ t) =

∫ t

y=0

Pr(B ≤ t− y)Pr(A = y)dy

=

∫ t

y=0

FB(t− y)dFA(y) =

∫ t

y=0

(
1− exp(−µ1(t− y))

)
λ exp(−λy)dy

= 1− µ1

µ1 − λ
exp(−λt) +

λ

µ1 − λ
exp(−µ1t).

Now the cumulative distribution function (CDF) for the inter-departure times
(FD(t)) is a combination of FB(t) and FA+B(t). Let p0 be the probability that
there are no vehicles at the station, so the machine is working 1 − p0 fraction
of time. Let p1 be the probability there is only one unit of remaining work in
the station, so after the handling of that unit of product the station is empty.
The fraction of times that the queue is empty after a departure is equal to p1

1−p0 .
The CDF for the inter-departure times is

FD(t) =

(
1− p1

1− p0

)
FB(t) +

p1

1− p0
FA+B(t)

=

(
1− p1

1− p0

µ1

µ1 − λ

)
(1− exp(−µ1t)) +

p1

1− p0

µ1

µ1 − λ
(1− exp(−λt)),

which is a hyperexponential distribution.

When the batch arrivals are just single arrivals, p0 = 1 − λ
µ1

and p1 = λ
µ1
p0,

so p1
1−p0 = µ1−λ

µ1
. This gives a departure distribution of FD(t) = 1 − exp(−λt),

which is a Poisson process with rate λ. In this case the queue is just M |M |1,
for which was already mentioned that the departure process is Poisson.

When multiple commodities arrive to the terminal, but all types of vehicles
arrive in independent Poisson processes, the departure process per commodity
is also according to the given hyperexponential distribution. Since the sum of
Poisson processes is still a Poisson process with a rate equal to the sum of the
independent rates and the service times per commodity are all the same, the
queue is still MX |M |1. So the departure process FD(t) of all commodities is
the hyperexponential distribution, but now λ =

∑
c λc where λc is the arrival

rate of vehicles with commodity c.

For different types of vehicles it works as well, but now p0 and p1 will be different
because of the different batch sizes of arrivals.
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4.2 MX |G|1 queue

When the service times of the unloading machine are not exponentially dis-
tributed, but according to another, general, distribution, the queue becomes
MX |G|1. For this system the departure distribution can be determined on a
same way as for the MX |M |1 queue, but now with another service distribu-
tion.

After a departure there are again two possibilities, an empty system and a
system with waiting vehicles. For the second case a new unit of product goes in
service right away, so the time until the new departure has the same distribution
as the service time, FB(t).

When the station is empty after a departure, the server has to wait for a new
arrival. Since the vehicles arrive according to a Poisson process, the time until
a new arrival is independent of the time of the departure. After the arrival of
the first vehicle the server starts unloading. When the first unit of product is
unloaded, the new departure occurs. So again the distribution FA+B(t) has to
be determined.

FA+B(t) = Pr(A+B ≤ t) =

∫ t

y=0

Pr(B ≤ t− y|A = y)Pr(A = y)dy

=

∫ t

y=0

FB(t− y)fA(y)dy = (FB ∗ fA)(t),

where ∗ is the convolution of the two functions and fA(t) = λ exp(−λt) because
of the Poisson process of arrivals.

The ratio of FB(t) and FA+B(t) is again p1
1−p0 , so

FD(t) =

(
1− p1

1− p0

)
FB(t) +

p1

1− p0
(FB ∗ fA)(t).

This equation works again for multiple commodities and multiple types of ve-
hicles arriving at the loading station, as long as λ is adjusted to the right sum
of all individual independent arrival processes and p0 and p1 are set to the
right probabilities. The important assumption in this model is that all arrivals
are independent Poisson processes, because only then the arrival processes are
memoryless.

The departure distributions of these models are not easy to use in the models of
the loading station, since the inter-departure times are not independent of each
other. For example, when the queue of vehicles is empty, the first inter-departure
time takes the time of a new arrival of a vehicle and the service of a first unit
of product. The second inter-departure time will take only a service time, as
long as the batches are larger than one unit of product. So after a relative long
inter-departure time of an arrival and service, always a shorter, only service,
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inter-departure time will follow. Because dependent inter-departure times are
harder to model than independent ones, the models in the next chapter will
assume Poisson or Poisson batch arrivals into the storage yard. So these models
ignore the service times of the unloading station.
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Chapter 5

Queue length distribution
of the loading station

The storage level of the terminal is in the queueing model equal to the queue
length of products before the loading station. Therefore we are interested in
the probability distribution of this queue. The system of this second queue is
actually a double queue where both products and vehicles arrive and then have
to be matched to each other. In this section we will look for the stationary
probability distribution of the queue length. Let pn be the probability that
after an infinite time the storage area stores n units of product.

In this chapter all models assume only one commodity. In the last section 5.6 an
explanation is given how these models can be expanded to more commodities.
Other main assumptions are Poisson arrivals of vehicles and exponential service
times of the machines in this station.

When we set the incoming flow of vehicles at the loading station such that
it brings more workload than the inflow of products can supply, the queue of
vehicles will grow to infinity. In this way it can be assumed that the machines in
the loading station are always working as long as the storage area is not empty.
This simplifies the system to a more general queue with only one flow instead
of the double queue.

When the vehicles at the unloading station arrive in a Poisson process with
load sizes of one unit, the arrivals of units of products to the loading station
are also according to a Poisson process, see the introduction of chapter 4. If the
s2 machines in the loading station have all exponential service times with rate
µ2, this loading queue can be modelled as an M |M |s2 queue, which has queue

16



length probabilities

p0 =

(
s2−1∑
i=0

(s2ρ)i

i!
+

(s2ρ)s2

s2!

1

1− ρ

)−1

,

pn =


(s2ρ)n

n!
p0, for n = 1, 2, . . . , s2;

ss22 ρ
n

s2!
p0, for n = s2, s2 + 1, . . . ,

(5.1)

with occupation rate ρ = λ
s2µ2

< 1. (Ross, 2006, section 8.9.2)

5.1 MG|M |1 queue

If you assume that there is no unloading station, but that the goods are delivered
in batches into the storage yard, and that the loading station has only one
machine, the second queue could be seen as an MG|M |1 queue. Here batches
arrive according to a compound Poisson process with rate λ and batch sizes
according to distribution G. Let gk be the probability of an arrival of k units
and assume g0 = 0. The machine in the loading station has exponential service
times with rate µ2. Again an infinite queue of vehicles at the loading station
is assumed, such that the machines will always work as long the storage area is
not empty. The balance equations for this system are

λp0 = µ2p1,

(λ+ µ2)pn = λ

n∑
k=1

gkpn−k + µ2pn+1, for n > 0.

The generating function for this probability distribution is P̂ (z) =
∑∞
n=0 pnz

n

and for the batch size distribution Ĝ(z) =
∑∞
k=1 gkz

k. By multiplying the
balance equations with zn and summing over all n we get

λ

∞∑
n=0

pnz
n + µ2

∞∑
n=1

pnz
n = λ

∞∑
n=1

n∑
k=1

gkpn−kz
n + µ2

∞∑
n=0

pn+1z
n,

λP̂ (z) + µ2

(
P̂ (z)− p0

)
= λ

∞∑
k=1

gkz
k
∞∑
n=k

pn−kz
n−k + µ2z

−1
∞∑
m=1

pmz
m,

(λ+ µ2)P̂ (z)− µ2p0 = λĜ(z)

∞∑
j=0

pjz
j + µ2z

−1
(
P̂ (z)− p0

)
,

P̂ (z) =
µ2(1− z−1)

λ
(

1− Ĝ(z)
)

+ µ2(1− z−1)
p0,

which is already stated in Chaudhry and Templeton (1983, section 3.1).
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Using the properties of generating functions P̂ (1) = 1 and P̂ ′(1) = E[P ] and by
applying L’Hôpital’s rule, the value of p0 can be determined.

1 = lim
z→1

P̂ (z) = lim
z→1

µ2(1− z−1)

λ
(

1− Ĝ(z)
)

+ µ2(1− z−1)
p0

= lim
z→1

µ2z
−2

−λĜ′(z) + µ2z−2
p0 =

µ2

−λE[G] + µ2
p0,

p0 =
µ2 − λE[G]

µ2
= 1− ρE[G],

with ρ = λ
µ2

and E[G] as the mean batch size.

By solving the balance equations directly the other steady state probabilities
can be found.
Proposition 1. For an MG|M |1 queue with gk as probability of a batch arrival
of k units and g0 = 0, the steady state probabilities of the queue length are

pn = p0

[
ρ(ρ+ 1)n−1 +

n∑
`=1

(−ρ)`
n−∑̀
k=1

(ρ+ 1)n−k−`−1

(
(n− k)!

(n− k − `)!`!
ρ+

(n− k − 1)!

(n− k − `)!(`− 1)!

)
Cg(`, k)

]
, (5.2)

for n > 0, with

Cg(`, k) =
∑
m̄∈N`

m1+...+m`=k

∏̀
i=1

gmi
.1

Proof. This proposition is proven by induction and using the balance equations
for i > 1

pi = (ρ+ 1)pi−1 − ρ
i−2∑
m=1

gmpi−1−m − ρgi−1p0.

For i = 1 the proposition is true since p1 = ρp0, which can be determined by
equation 5.2 and by the balance equation of p0.

For i = 2 the balance equation is p2 = (ρ+ 1)p1 − ρg1p0 = p0 (ρ(ρ+ 1)− ρg1).
This is equal to the proposition, since its sums have only positive terms for ` = 1
and k = 1, so

p2 = p0

(
ρ(ρ+ 1) + (−ρ)(ρ+ 1)−1 (ρ+ 1)Cg(1, 1)

)
= p0 (ρ(ρ+ 1)− ρg1) .

1For example Cg(3, 5) = g1g1g3+g1g2g2+g1g3g1+g2g1g2+g2g2g1+g3g1g1 = 3g21g3+3g1g22 .
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Now assume that for all i < n the proposition is true. The balance equation for
i = n can then be written as

pn
p0

= −ρgn−1 + ρ(ρ+ 1)n−1 +

n−1∑
`=1

(−ρ)`
n−1−`∑
k=1

(ρ+ 1)n−k−`−1

(
(n− 1− k)!

(n− 1− k − `)!`!
ρ+

(n− k − 2)!

(n− 1− k − `)!(`− 1)!

)
Cg(`, k)

+

n−1∑
r=2

gn−r

[
− ρ2(ρ+ 1)r−2 +

r−1∑
`=1

(−ρ)`+1
r−1−`∑
k=1

(ρ+ 1)r−k−`−2

(
(r − 1− k)!

(r − 1− k − `)!`!
ρ+

(r − k − 2)!

(r − 1− k − `)!(`− 1)!

)
Cg(`, k)

]
.

Rearranging the terms and using Cg(1, k) = gk, gives

pn
p0

= ρ(ρ+ 1)n−1 −
n−2∑
k=1

ρ2(ρ+ 1)n−k−2Cg(1, k)− ρCg(1, n− 1)

+

n−1∑
`=1

(−ρ)`
n−1−`∑
k=1

(ρ+ 1)n−k−`−1Cg(`, k)(
(n− 1− k)!

(n− 1− k − `)!`!
ρ+

(n− k − 2)!

(n− 1− k − `)!(`− 1)!

)
+

n−2∑
`=1

(−ρ)`+1
n−`−1∑
s=2

(ρ+ 1)n−s−`−2
n−1∑

r=n−s+1

gn−rCg(`, s− n+ r)(
(n− 1− s)!

(n− 1− s− `)!`!
ρ+

(n− s− 2)!

(n− 1− s− `)!(`− 1)!

)
.

The sum
∑n−1
r=n−s+1 gn−rCg(`, s − n + r) is equal to all combinations of ` + 1

gi’s with the sum of i’s equal to s, so Cg(`+ 1, s).

pn
p0

= ρ(ρ+ 1)n−1 −
n−2∑
k=1

ρ2(ρ+ 1)n−k−2Cg(1, k)− ρCg(1, n− 1)

+

n−1∑
`=1

(−ρ)`
n−1−`∑
k=1

(ρ+ 1)n−k−`−1Cg(`, k)(
(n− 1− k)!

(n− 1− k − `)!`!
ρ+

(n− k − 2)!

(n− 1− k − `)!(`− 1)!

)
+

n−1∑
`=2

(−ρ)`
n−∑̀
k=2

(ρ+ 1)n−k−`−1Cg(`, k)(
(n− 1− k)!

(n− k − `)!(`− 1)!
ρ+

(n− k − 2)!

(n− k − `)!(`− 2)!

)
.
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Because Cg(`, 1) = 0 for ` > 1, terms with these values can be added without
changing the sum. This gives

pn
p0

= ρ(ρ+ 1)n−1 −
n−2∑
k=1

ρ2(ρ+ 1)n−k−2Cg(1, k)− ρCg(1, n− 1)

+

n−1∑
l=2

(−ρ)`Cg(`, n− `)− ρ
n−2∑
k=1

(ρ+ 1)n−k−2 ((n− k − 1)ρ+ 1)Cg(1, k)

+

n−1∑
`=2

(−ρ)`
n−1−`∑
k=1

(ρ+ 1)n−k−`−1Cg(`, k)(
(n− 1− k)!

(n− 1− k − `)!`!
ρ+

(n− k − 2)!

(n− 1− k − `)!(`− 1)!

)
+

n−1∑
`=2

(−ρ)`
n−l−1∑
k=1

(ρ+ 1)n−k−`−1Cg(`, k)(
(n− 1− k)!

(n− k − `)!(`− 1)!
ρ+

(n− k − 2)!

(n− k − `)!(`− 2)!

)
.

Rearranging the terms again leads to

pn
p0

= ρ(ρ+ 1)n−1 +

n−1∑
`=2

(−ρ)`
n−1−`∑
k=1

(ρ+ 1)n−k−`−1

(
(n− k)!

(n− k − `)!`!
ρ+

(n− k − 1)!

(n− k − `)!(`− 1)!

)
Cg(`, k)

+

n−1∑
`=1

(−ρ)`Cg(`, n− `)− ρ
n−2∑
k=1

(ρ+ 1)n−k−2 ((n− k)ρ+ 1)Cg(1, k).

The last term of this equation is the second term for ` = 1 and the second-last
term is equal to this second term for k = n− `. This concludes to

pn
p0

= ρ(ρ+ 1)n−1 +

n−1∑
`=1

(−ρ)`
n−∑̀
k=1

(ρ+ 1)n−k−`−1

(
(n− k)!

(n− k − `)!`!
ρ+

(n− k − 1)!

(n− k − `)!(`− 1)!

)
Cg(`, k).

The only term missing in this equation compared to equation 5.2 is for ` = n,
but then the sum of k goes from 1 to n − n = 0. This term is therefore not
existing so can be added without changing the output. In this way it is proven
that the outcome of the balance equation for i = n is equal to the proposition.
By induction can now be concluded that the steady state probabilities are as
stated as in equation 5.2 for all n > 0.
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5.2 M +M r|M |1 queue

In the previous section we assumed an infinite queue of vehicles at the loading
station, which implies that the machines can always load product into some
vehicle. But the system is actually a double queue with both arriving products
and arriving vehicles. To take this fact into the model, a second variable will
be added to the state of the model. Suppose the following system.

Units of product arrive in a Poisson process with rate λ. Empty vehicles ar-
rive in a Poisson process with rate γ having a constant load size of r units of
product. There is one machine with exponential service times with rate µ2.
These assumptions lead to an M +Mr|M |1 queue. Take as state of this queue
(n, v), where n is the number of units of product in the storage area and v the
remaining work of the present vehicles in units of product. This system has the
following transitions.

• With rate λ a new unit of product arrives. (n, v)→ (n+ 1, v)

• With rate γ a new vehicle with workload r arrives. (n, v)→ (n, v + r)

• With rate µ2 one unit of product is loaded into the vehicle. (n, v) →
(n− 1, v − 1)

Take pi,j = Pr(n = i, v = j). The balance equations are

(λ+ γ)p0,j = µ2p1,j+1, for j < r,

(λ+ γ)p0,j = µ2p1,j+1 + γp0,j−r, for j ≥ r,
(λ+ γ)pi,0 = µ2pi+1,1 + λpi−1,0, for i > 0,

(λ+ γ + µ2)pi,j = µ2pi+1,j+1 + λpi−1,j , for i > 0 and 0 < j < r,

(λ+ γ + µ2)pi,j = µ2pi+1,j+1 + λpi−1,j + γpi,j−r, for i > 0 and j ≥ r.

Now take the generating function P̂ (y, z) =
∑∞
i=0

∑∞
j=0 pi,jy

izj . Summing over

all balance equations and multiplying them with yizj gives

(λ+ γ)P̂ (y, z) + µ2

∞∑
i=1

∞∑
j=1

pi,jy
izj

= µ2

∞∑
i=0

∞∑
j=0

pi+1,j+1y
izj + λ

∞∑
i=1

∞∑
j=0

pi−1,jy
izj + γ

∞∑
i=0

∞∑
j=r

pi,j−ry
izj ,

(λ(1− y) + γ(1− zr) + µ2(1− (yz)−1))P̂ (y, z)

= µ2

(
1− (yz)−1

) ∞∑
i=1

pi,0y
i +

∞∑
j=0

p0,jz
j

 .
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This last sum between the brackets is the probability that the machine is not
working, lets define p̂idle(y, z) =

∑∞
i=1 pi,0y

i+
∑∞
j=0 p0,jz

j . Then the generating
function becomes

P̂ (y, z) =
µ2

(
1− (yz)−1

)
λ(1− y) + γ(1− zr) + µ2 (1− (yz)−1)

p̂idle(y, z).

Instead of looking to the probabilities of these two-dimensional states, it is also
possible to only look at the probability of the storage level. Therefore let pi be
the probability of i units of product in storage, independent of the remaining
workload in the system. So pi =

∑∞
j=0 pi,j . Using the balance equations for

n = 0 we get

(λ+ γ)
∞∑
j=0

p0,j = µ2

∞∑
j=0

p1,j+1 + γ

∞∑
j=r

p0,j−r,

(λ+ γ)p0 = µ2

∞∑
j=1

p1,j + γ

∞∑
j=0

p0,j ,

λp0 = µ2(p1 − p1,0).

So p1 = λ
µ2
p0 + p1,0. In the same way the probabilities for i > 1 can be

determined.

(λ+ γ)

∞∑
j=0

p1,j + µ2

∞∑
j=1

p1,j = µ2

∞∑
j=0

p2,j+1 + λ

∞∑
j=0

p0,j + γ

∞∑
j=r

p1,j−r,

(λ+ γ + µ2)p1 − µ2p1,0 = µ2(p2 − p2,0) + λp0 + γp1,

p2 =
λ

µ2
p1 + p2,0.

pi =
λ

µ2
pi−1 + pi,0 =

(
λ

µ2

)i
p0 +

i−1∑
k=0

(
λ

µ2

)k
pi−k,0, for i > 0.

The sum over all probabilities has to be one, which gives

1 =

∞∑
i=0

pi = p0 +

∞∑
i=1

(
ρip0 +

i−1∑
k=0

ρkpi−k,0

)
=

∞∑
i=0

ρip0 +

∞∑
i=1

i−1∑
k=0

ρkpi−k,0

=
1

1− ρ
p0 +

∞∑
k=0

ρk
∞∑
j=1

pj,0 =
1

1− ρ

p0 +

∞∑
j=1

pj,0

 ,

with ρ = λ
µ2

. This last sum between the brackets can be seen as pidle.

To make sure this system is stable, the inflow of products has to be equal to
the inflow of workload, so λ = γr. By determining the distribution of this 1− ρ
over the elements in pidle, all steady state probabilities of the storage level in
this model can be found.
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5.3 Virtual storage level

Instead of the two dimensional state (n, v), you could also look at the system
with a one dimensional state (n − v). So the stock level minus the remaining
work already in the system. We now also assume that there is finite maximum
of vehicles (V ) that can be at the station. Therefore the state space has range
[−rV,∞). In this model we will look at the virtual storage level, so when a
vehicle arrives, it is immediately loaded completely. Another way to see this,
is that there are no loading machines, or these loading machines are infinitely
fast. The transitions in this system are

• With rate λ a new unit of product arrive. (m)→ (m+ 1)

• With rate γ a new vehicle with workload r arrives. This vehicle only goes
into the system if not already V vehicles are at the station. (m)→ (m−r)

Again both arrival processes are assumed to be Poisson processes.

This model is only stable if the incoming flow of workload is more than the
incoming flow of products, because of the limitation of the queue of vehicles.
This is the same as λ

γr < 1.

To simplify the notation, we will shift the states with −rV , such that all the
states are positive. So pi = Pr(n− v = i− rV ). The balance equations for this
system are

λp0 = γpr,

λpi = λpi−1 + γpi+r, for 0 < i < r,

(λ+ γ)pi = λpi−1 + γpi+r, for i ≥ r.

Lets take as basic solution pi = xi−rpr for i ≥ r, the balance equations for i > r
then become

(λ+ γ)xi−rpr = λxi−r−1pr + γxipr,

0 = γxr+1 − (λ+ γ)x+ λ. (5.3)

The value of x in the basic solution of pi has to satisfy this balance equation
5.3, and because the summation of all pi has to be one, the value of x also has
to be in the interval (0, 1).

Proposition 2. If λ < γr, then the function L(x) = γxr+1 − (λ+ γ)x+ λ has
one real root in the interval (0, 1).

Proof. The second derivative of L(x) is γr(r+ 1)xr−1, which is nonnegative on
the interval [0, 1]. This implies that the function is convex on this interval. On
the borders of the interval the values of L are L(0) = λ > 0 and L(1) = 0. This
implies, together with the convexity, that the function is either strictly positive
on (0, 1) or has another root in this interval.
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The minimum of a convex function is the point where the first derivative is
equal to 0. For L(x) this is

0 = L′(xmin) = γ(r + 1)xrmin − λ− γ,

xmin = r

√
λ+ γ

γ(r + 1)
.

When λ < γr, the value of the fraction in xmin is

0 <
λ+ γ

γ(r + 1)
<

γr + γ

γ(r + 1)
= 1.

So the value of xmin lies in the interval (0, 1). The value of L(1) = 0, which has
to be above the minimum. This implies that L(xmin) < 0, so the function is
not strictly positive in the interval (0, 1). By combing this with the convexity
of L(x), is proven that L(x) has one real root in the interval (0, 1).

Because this system is only stable if λ < γr, the balance equations for i > r
give one real solution x̄ to use in the basic solution of pi. The balance equations
for i < r give

p0 =
γ

λ
pr,

p1 = p0 +
γ

λ
xpr =

γ

λ
(1 + x)pr,

pi = pi−1 +
γ

λ
xipr =

γ

λ

i∑
k=0

xkpr, for 0 < i < r.

The value of pr can now be determined with the normalisation equation.

1 =

∞∑
i=0

pi =

r−1∑
i=0

γ

λ

i∑
k=0

xkpr +

∞∑
i=r

xi−rpr,

1

pr
=
γ

λ

r−1∑
k=0

(r − k)xk +
1

1− x
=
γx(xr − 1) + γr(1− x) + λ(1− x)

λ(1− x)2
.

By filling in x̄ and using equation 5.3 this equation is equal to

pr =
λ

γr
(1− x̄),

which concludes to

pi =


1

r
(1− x̄i+1), for i = 0, 1, . . . , r − 1;

λ

γr
(1− x̄)x̄i−r, for i = r, r + 1, . . . .
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Because of the shifting that was done to get only positive states, the states now
can be shifted back. Let pm = Pr(n − v = m). The probabilities of positive
virtual storage levels are

pm =
λ

γr
(1− x̄)x̄m+rV−r for m = 0, 1, . . . . (5.4)

5.4 Breakdowns

In the previous sections the second state variable saved the remaining workload
of the vehicles and could get an infinite amount of different values. This induces
a large state space with two infinite variables. To reduce this size of the state
space, another second variable could be taken. This variable only has two
values; working and not-working. When a vehicle arrives at the loading station
the machine starts working and the variable will be set to 1. When the vehicle
leaves the terminal, the machine can not load anything anymore. This can
be seen as a breakdown of the machine and the second variable will be set to
0.

Suppose the following system. Units of product arrive to the loading station
in a Poisson process with rate λ with single arrivals. In this station is one
machine with exponential service times with rate µ2. This machine is working
for an exponentially distributed time with mean 1

θ . When the vehicle leaves the
system or when the storage area is empty, the machine goes in downtime. The
time until it starts working again is exponentially distributed with a mean time
of 1

γ . This process is an M |M |1 queue with breakdowns.

The states of this model will be (n,w) where n is the number of units of product
in the queue and w is the state of the machine. If the machine is working w = 1
and w = 0 if it is in downtime. Take pi,j = Prob(n = i, w = j). The balance
equations are

λp0,0 = µ2p1,1,

λp0,1 = 0,

(λ+ γ)pi,0 = θpi,1 + λpi−1,0, for i ≥ 1,

(λ+ θ + µ2)pi,1 = γpi,0 + µ2pi+1,1 + λpi−1,1, for i ≥ 1.

This is a quasi birth-death process with generator

Q =


B0 A0 0 . . .

B1 A1 A0
. . .

0 A2 A1
. . .

...
. . .

. . .
. . .

 ,
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with

B0 =

[
−λ 0
0 −λ

]
, B1 =

[
0 0
µ2 0

]
, A0 =

[
λ 0
0 λ

]
,

A1 =

[
−(λ+ γ) γ

θ −(λ+ θ + µ2)

]
, A2 =

[
0 0
0 µ2

]
.

Take pi = [pi,0, pi,1] and lets try a basic solution pi = pi−1R = p1R
i−1. By the

balance principle the flow from pi to pi+1 has to be equal to the flow from pi+1

to pi. So λpi,0 + λpi,1 = µ2pi+1,1, or piA3 = pi+1A2, with

A3 =

[
0 λ
0 λ

]
.

The balance equations for i ≥ 1 can in this way be written as

0 = pi−1A0 + piA1 + pi+1A2,

0 = pi−1A0 + pi(A1 +A3).

Because the determinant of (A1 + A3) is µ2(λ + γ) 6= 0, matrix (A1 + A3) is
invertible. This gives R = −A0(A1 +A3)−1.

R = −
[
λ 0
0 λ

]([
−(λ+ γ) γ

θ −(λ+ θ + µ2)

]
+

[
0 λ
0 λ

])−1

=

[
λ 0
0 λ

] [ (θ+µ2)
µ2(λ+γ)

1
µ2

θ
µ2(λ+γ)

1
µ2

]
=

λ

µ2(λ+ γ)

[
θ + µ2 λ+ γ
θ λ+ γ

]
.

To find the values of p0 and p1, the boundary equations together with the nor-
malisation equation are used. The boundary equations are the balance equations
for i equal to 0 and 1, which give

0 = −λp0,1, =⇒ p0,1 = 0,

0 = −λp0,0 + µ2p1,1, =⇒ p1,1 =
λ

µ2
p0,0,

0 = θp1,1 − (λ+ γ)p1,0 + λp0,0, =⇒ p1,0 =
λ(θ + µ2)

µ2(λ+ γ)
p0,0.

The normalisation equation gives

1 =

∞∑
i=0

pie = p0e+ p1(I +R+R2 + . . .)e = p0e+ p1(I −R)−1e,

where I is the identity matrix and e a vector of ones.
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Using the determined values of R, p0 and p1, this normalisation equation can
be written as

1 =
[
p0,0 p0,1

] [1
1

]
+
[
p1,0 p1,1

]([1 0
0 1

]
−

[
λ(θ+µ2)
µ2(λ+γ)

λ
µ2

λθ
µ2(λ+γ)

λ
µ2

])−1 [
1
1

]
= p0,0 +

p0,0

µ2γ − λθ − λγ

[
λ(θ+µ2)
µ2(λ+γ)

λ
µ2

] [(µ2 − λ)(λ+ γ) λ(λ+ γ)
λθ µ2γ − λθ

] [
1
1

]
= p0,0

µ2(λ+ γ)

µ2γ − λθ − λγ
,

p0,0 =
µ2γ − λθ − λγ
µ2(λ+ γ)

= 1− λ(γ + θ + µ2)

µ2(λ+ γ)
.

This queueing system can therefore only be stable if λ(γ+θ+µ2)
µ2(λ+γ) < 1, which is

equal to λ
µ2
< γ

θ+γ .

Now for all i > 0 applies

pi =

(
λ

µ2(λ+ γ)

)i
µ2γ − λθ − λγ

µ2

[
(θ+µ2)
(λ+γ) 1

] [(θ + µ2) (λ+ γ)
θ (λ+ γ)

]i−1

. (5.5)

To get realistic results for a terminal, the values of the variables λ, µ2, γ and θ
need to be determined. The first three are given as input, since λ is the arrival
rate of vehicles to the unloading station, µ2 is the service rate of the loading
station and γ is the arrival rate of vehicles at the loading station. The value
of θ could be seen as the inverse of the mean loading time of a vehicle at the
loading station. So if these vehicles have load size r, θ would be µ2

r . In this
setting the stability condition can be written as

λ

µ2
<

γ

θ + γ
=

γ
µ2

r + γ
=

γr

µ2 + γr
,

λγr < µ2(γr − λ).

For a terminal you would expect that the inflow of products is equal to the
inflow of workload, so λ = γr, but in that case λγr has to be negative, which is
impossible.

A reason that he value of θ is not exactly µ2

r , is because it is possible that a new
vehicle arrives while another vehicle is still being loaded. The time the machines
are now working continuously is doubled, which will increase the mean time the
machines are not in downtime. So we are interested in the probabilities that a
new vehicle arrives, before the previous one has left the terminal.

The vehicles arrive in a Poisson process with rate γ and lets assume a constant
loading time per vehicle T , with T = r

µ2
. The probability that a busy period

of the loading station only takes one vehicle is equal to the probability that
the inter-arrival time between two successive vehicles is more than T . Let Pi
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be the probability that a busy period handles i > 0 vehicles and Ai the time
between the start of a busy period and the arrival time of the i’th vehicle after
this start. Because the vehicles arrive in a Poisson process P1 = Pr(A1 > T ) =
exp(−γT ).

For P2 the first arrival has to be before T and the second one has to be after
2T . This gives

P2 = Pr(A1 < T,A2 > 2T )

=

∫ T

a1=0

Pr(A1 = a1)Pr(A2 −A1 > 2T − a1|A1 = a1)da1

=

∫ T

a1=0

γ exp(−γa1) exp(−γ(2T − a1))da1 = γT exp(−2Tγ).

For larger i the idea is the same.

P3 = Pr(A1 < T,A2 < 2T,A3 > 3T )

=

∫ T

a1=0

γ exp(−γa1)

∫ 2T

a2=a1

γ exp(−γ(a2 − a1)) exp(−γ(3T − a2))da1da2

= γ2 exp(−3Tγ)

∫ T

a1=0

∫ 2T

a2=a1

da1da2 =
3

2
T 2γ2 exp(−3Tγ).

P4 = γ3 exp(−4Tγ)

∫ T

a1=0

∫ 2T

a2=a1

∫ 3T

a3=a2

da1da2da3,=
16

6
T 3γ3 exp(−4Tγ).

Pi =
ii−2

(i− 1)!
T i−1γi−1 exp(−iTγ), for i > 0.

The mean time of a busy period of the loading station is

1

θ
=

∞∑
i=1

iTPi =

∞∑
i=1

ii−1

(i− 1)!
T iγi−1 exp(−iTγ). (5.6)

5.5 Finite queue of vehicles

In the previous section the state of the machine in the loading station was on or
off, so two choices. Another value for this second variable can be the number of
vehicles at the loading station, so the machines are not working if this number
of vehicles is zero, and working if this variable is nonzero. Lets take as states
of the system (n, v) where n is the storage level en v the number of vehicles at
the terminal. This number of vehicles will have an upper limit of V , so there
can not be more than V vehicles simultaneously at the loading station.

The units of product again arrive in a Poisson process with rate λ in single
arrivals and the vehicles arrive in a Poisson process with rate γ. The loading
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machine has exponential service times per unit of product with rate µ2 and
with probability q this is the last unit of the vehicle, after which the vehicle will
leave the system. So the workload of a vehicle is geometrically distributed with
parameter q.

The balance equations of this system are

(λ+ γ)p0,0 = qµ2p1,1,

(λ+ γ)p0,j = γp0,j−1 + (1− q)µ2p1,j + qµ2p1,j+1, for 0 < j < V,

λp0,V = γp0,j−1 + (1− q)µ2p1,j ,

(λ+ γ)pi,0 = λpi−1,0 + qµ2pi+1,1, for i > 0,

(λ+ γ + µ2)pi,j= λpi−1,j + γpi,j−1 + (1− q)µ2pi+1,j + qµ2pi+1,j+1,

for i > 0 and 0 < j < V ,

(λ+ µ2)pi,V = λpi−1,V + γpi,V−1 + (1− q)µ2pi+1,V , for i > 0.

Take pi as vector [pi,0, . . . , pi,V ]. In matrix notation the balance equations for
i > 0 are pi−1A0 + piA1 + pi+1A2 = 0 with

A0 =

λ 0

0
. . . 0
0 λ

 , A2 =


0 0
qµ2 (1− q)µ2

. . .
. . .

qµ2 (1− q)µ2

 ,

A1 =


−(λ+ γ) γ

−(λ+ γ + µ2) γ
. . .

. . .

−(λ+ γ + µ2) γ
−(λ+ µ2)

 .
Those three matrices have dimension (V + 1)× (V + 1).

The boundary equation for i = 0 is p0B0 + p1A2 = 0 with

B0 =


−(λ+ γ) γ

−(λ+ γ) γ
. . .

. . .

−(λ+ γ) γ
−λ

 .

This model is again a quasi birth-death process with generator

Q =


B0 A0 0 . . .

A2 A1 A0
. . .

0 A2 A1
. . .

...
. . .

. . .
. . .

 .
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Lets take as basic solution pi = p0R
i for all i, where R is the minimal nonneg-

ative solution of A0 +RA1 +R2A2 = 0. This can be iteratively solved through
Rk+1 = −(A0+R2

kA2)A−1
1 and starting with R0 = 0. After finding R, the vector

p0 can be determined by the boundary equation 0 = p0B0+p1A2 = p0(B0+RA2)
and normalising equation 1 = p0(I −R)−1e.

5.6 Multiple commodities

All models in this chapter are about terminals with only one commodity. When
a terminal has more than one commodity, the systems can be adjusted in two
ways.

The first way is just to see all commodities as one commodity and sum up over
all the incoming vehicles and the storage level. This is a relatively easy way
to make it usable for the models. It, however, will probably give lower storage
levels than in the real case. A vehicle at the loading station will now be loaded
with all commodities instead of only one, so the terminal will have less waiting
times and lower storage levels.

Another solution is to give all commodities an individual terminal. When there
are, for example, three commodities, three probability functions for the storage
levels, Fc(x) = Pr(nc ≤ x) with nc the storage level of commodity c, can be
determined. The probability function of the total storage level is the convolution
of these individual probability functions per commodity. For the example with
three commodities it will be

F (x) = Pr(n1 + n2 + n3 ≤ x) =

∫ x

y=0

Pr(n2 + n3 ≤ x− y)dF1(y)

=

∫ x

y=0

∫ x−y

z=0

F3(x− y − z)dF2(z)dF1(y) = (F1 ∗ F2 ∗ F3)(x).

In this way all vehicles will get only one commodity, which is an advantage over
the first solution. A disadvantage of this solution is that vehicles with different
commodities can be loaded simultaneously in the virtual different terminals,
which is not possible in the real terminal.
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Chapter 6

Queue length distribution
of the total system

A terminal is a combination of the unloading and loading station. To model
this system we can use a similar model as in section 5.5, but now with a three
dimensional state space.

6.1 Geometric load sizes

Let the state of the system be (n, v1, v2) with n the storage level, v1 the number
of vehicles at the unloading station and v2 the number of vehicles at the loading
station. Take pi,j,k as the steady state probability of state (n = i, v1 = j, v2 = k).
To get finite matrices, the number of vehicles at the unloading and loading
station will be limited at V1 and V2 vehicles respectively. So when there are V1

vehicles at the unloading station and a new one arrives, it will not go in to the
system, but leaves without being unloaded.

We assume that the inter-arrival times of the vehicles at the unloading and
loading station are exponentially distributed. At both stations there is only one
machine with exponential handling times per unit of product with rate µ1 and
µ2. With probability q1 the handling of one unit of product was the last unit
of product of that vehicle at the unloading station, and the vehicle will leave.
At the loading station this is with probability q2. In this way the load sizes
of the vehicles have geometric distributions with a mean of 1

q1
and 1

q2
units of

product.

The transitions of this model are as follows.

• With rate λ vehicles arrive at the unloading station as long as there are
less than V1 vehicles at this station. (n, v1, v2)→ (n,min(v1 + 1, V1), v2)

31



• With rate γ vehicles arrive at the loading station as long as there are less
than V2 vehicles at this station. (n, v1, v2)→ (n, v1,min(v2 + 1, V2))

• With rate µ1 one unit of product is unloaded from a vehicle into the storage
area. With probability q1 the vehicle leaves, with probability 1 − q1 the
vehicles stays in the system.

– Rate q1µ1 (n, v1, v2)→ (n+ 1, v1 − 1, v2)

– Rate (1− q1)µ1 (n, v1, v2)→ (n+ 1, v1, v2)

• With rate µ2 one unit of product is loaded from the storage area into a
vehicle. With probability q2 the vehicle leaves, with probability 1− q2 the
vehicles stays in the system.

– Rate q2µ2 (n, v1, v2)→ (n− 1, v1, v2 − 1)

– Rate (1− q2)µ2 (n, v1, v2)→ (n− 1, v1, v2)

The main balance equation for i, j, k > 0 and j < V1 and k < V2, is

(λ+ γ + µ1 + µ2)pi,j,k = λpi,j−1,k + γpi,j,k−1 + q1µ1pi−1,j+1,k

+ (1− q1)µ1pi−1,j,k + q2µ2pi+1,j,k+1 + (1− q2)µ2pi+1,j,k.

This model is a quasi birth-death process, which has solutions of the form pi =
p0R

i. Here is pi the vector [pi,0,0, . . . , pi,V1,0, pi,0,1, . . . , pi,V1,V2
] and R a square

matrix of order (V1 + 1)(V2 + 1). R is the minimal nonnegative solution of
equation A0 +RA1 +R2A2 = 0 with

A0 =

A
′
0

. . .

A′0

 , A′0 =


0 0

q1µ1 (1− q1)µ1

. . .
. . .

q1µ1 (1− q1)µ1

 ,
with A′0 having dimension (V1 + 1) × (V1 + 1) and A0 consists of (V2 + 1) A′0
sub-matrices.

A1 =


A′1 A′′′′1

A′′1 A′′′′1

. . .
. . .

A′′1 A′′′′1

A′′′1

 ,

A′1 =


−(λ+ γ) λ

−(λ+ γ + µ1) λ
. . .

. . .

−(λ+ γ + µ1) λ
−(γ + µ1)

 ,
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A′′1 =


−(λ+ γ + µ2) λ

−∆ λ
. . .

. . .

−∆ λ
−(γ + µ1 + µ2)

 ,

A′′′1 =


−(λ+ µ2) λ

−(λ+ µ1 + µ2) λ
. . .

. . .

−(λ+ µ1 + µ2) λ
−(µ1 + µ2)

 ,

A′′′′1 =

γ . . .

γ

 ,
with ∆ = λ + γ + µ1 + µ2 and A′1, A′′1 , A′′′1 and A′′′′1 , having dimension (V1 +
1)× (V1 + 1). A1 consists of (V2 + 1) sub-matrices on the diagonal.

A2 =


0
A′′2 A′2

. . .
. . .

A′′2 A′2

 ,

A′2 =

(1− q2)µ2

. . .

(1− q2)µ2

 , A′′2 =

q2µ2

. . .

q2µ2

 ,
with 0 as zero square matrix of order (V1 + 1), A′2 and A′′2 , having dimension
(V1+1)×(V1+1) and A2 consists of (V2+1) sub-matrices on the diagonal.

R can again be iteratively found by using Rk+1 = −(A0 + R2
kA2)A−1

1 and
starting with R0 = 0. Then p0 can be determined by the normalising equation
1 = p0(I − R)−1e and the boundary equation 0 = p0(B0 + RA2), where B0 is
equal to A1 without µ2 in the sums on the diagonal.

6.2 Constant load sizes

Another way to model this total system is by changing the state variables from
number of vehicles to remaining workload. So again the states are (n, v1, v2)
with n as the number of units of product in the storage area, but now v1 and
v2 as the remaining workload at the unloading and loading station in units of
product. The last two variables will be limited at r1V1 and r2V2, where r1 is the
load size of the vehicles arriving at the unloading station and r2 the load size
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of the vehicles arriving at the loading station. These load sizes are assumed to
be constant for all arriving vehicles.

When the other distributions and parameters stay equal to the previous section,
the transitions in this model become

• With rate λ vehicles arrive at the unloading station as long as there are
less than V1 vehicles at this station. (n, v1, v2)→ (n, v1 + r1, v2)

• With rate γ vehicles arrive at the loading station as long as there are less
than V2 vehicles at this station. (n, v1, v2)→ (n, v1, v2 + r2)

• With rate µ1 one unit of product is unloaded from a vehicle into the
storage area. (n, v1, v2)→ (n+ 1, v1 − 1, v2)

• With rate µ2 one unit of product is loaded from the storage area into a
vehicle. (n, v1, v2)→ (n− 1, v1, v2 − 1)

So the main balance equation for i, j, k > 0 and j < r1V1 and k < r2V2, is

(λ+ γ + µ1 + µ2)pi,j,k = λpi,j−r1,k + γpi,j,k−r2 + µ1pi−1,j+1,k + µ2pi+1,j,k+1.

Again we use the solution pi = p0R
i with R as the minimal nonnegative solution

of equation A0 + RA1 + R2A2 = 0. Matrices A0, A1, A2 and R are all square
matrices of order (r1V1 + 1)(r2V2 + 1).

A0 has only nonzero elements on the diagonal below the main diagonal. This
row consists of a repetition of r1V1 times µ1 followed by one zero.

A1 has nonzero elements on three diagonal rows. On the main diagonal the first
element is −(λ+γ), then r1(V1−1) times −(λ+γ+µ1) and r1 times −(γ+µ1).
After this there is a r2(V2 − 1) times repetition of one time −(λ + γ + µ2),
r1(V1 − 1) times −(λ + γ + µ1 + µ2) and r1 times −(γ + µ1 + µ2). And this
main diagonal ends with r2 repetitions of one time −(λ+ µ2), r1(V1 − 1) times
−(λ+µ1 +µ2) and r1 times −(µ1 +µ2). This gives in total (r1V1 + 1)(r2V2 + 1)
elements on the diagonal.

The second nonzero diagonal row in A1 is r1 columns to the right and consist of λ
on the rows that the main diagonal also consists a λ. So there are r1(V1−1)+1
times λ followed by r1 zeros, and this all (r2V2 + 1) times, where the last
repetition will not have the zeros anymore. The last nonzero diagonal row in
this matrix is r2(r1V1+1) columns on the right of the main diagonal and consists
of all γ.

Matrix A2 has only one nonzero diagonal, which is r1V1 +1 rows below the main
diagonal. All those elements are equal to µ2.

To find R and p0 the same algorithms are used again. So Rk+1 = −(A0 +
R2
kA2)A−1

1 , normalising equation 1 = p0(I −R)−1e and the boundary equation
0 = p0(B0 + RA2) where B0 is equal to A1 without µ2 in the sums on the
diagonal.
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The order of all the square matrices is (r1V1 + 1)(r2V2 + 1) which grows fast
when the load sizes of the vehicles increase or when more vehicles are allowed
at the terminal. These large dimensions give numerical problems by solving the
equations to find R.
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Chapter 7

Simulation

To compare the queueing models with a more realistic model, a simulation of
a dry bulk terminal is made in Python and in Trafalquar. Python is used
to get the simulation close to the assumptions that are made in the queueing
models. Trafalquar is the simulation tool of TBA which they use to answer the
questions of their customers and which is more extensive than the simulation in
Python.

7.1 Python

In Python a simulation is made that models the terminal according to the
assumptions of section 3.1. The following sets, variables, parameters and distri-
butions are used in this simulation.

Sets

C Set of all commodities stored in the terminal.

Xunload Set of all arriving vehicles at the unloading station.

Xload Set of all arriving vehicles at the loading station.

Yunload Set of all types of vehicles arriving at the unloading station.

Yload Set of all types of vehicles arriving at the loading station.

Munload Set of all machines in the unloading station.

Mload Set of all machines in the loading station.

Lets define X = Xunload ∪ Xload, Y = Yunload ∪ Yload and M = Munload ∪
Mload.
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Variables

nc Number of units of commodity c in the storage area, for c ∈ C.

lx Remaining units of workload of vehicle x, for x ∈ X. 0 if x not at
the terminal.

hx,m Assignment of the machines to the vehicles. 1 if machine m serves
vehicle x, 0 otherwise, for (x,m) ∈ (Xunload,Munload) and (x,m) ∈
(Xload,Mload).

Parameters

capacity Maximum number of units of product that can be stored at
the terminal.

maxUnloading Maximum number of vehicles at the unloading station.

maxLoading Maximum number of vehicles at the loading station.

commodityx Type of commodity in vehicle x, for x ∈ X.

typex Type of vehicle x, for x ∈ X.

loadx Load size of vehicle x, for x ∈ X.

maxMachinesy Maximum number of machines working on a vehicle of type
y, for y ∈ Y .

minStorage Fraction of load size of vehicle that has to be in the storage
area before the vehicle can be assigned to a machine in the
loading station.

initStorage Initial number of units of product in the terminal at the
start of the simulation.

Distributions

Ay,c Distribution of inter-arrival times of successive vehicles of type y
with commodity c, for y ∈ Y and c ∈ C.

Ly Load size distribution of vehicles of type y, for y ∈ Y .

Bunload Handling distribution of a machine in the unloading station handling
one unit of product.

Bload Handling distribution of a machine in the loading station handling
one unit of product.

When these parameters and distributions are given as input, the most in-
teresting output of this simulation are the probability distributions of nc, so
pi = Pr(

∑
c nc = i) and pc,i = Pr(nc = i).
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This model has a state space with elements of the form (n, l, Hunload, Hload),
with

n = (nc for c ∈ C) ∈ N|C|0 ,

l = (lx for x ∈ X) ∈ N|X|0 ,

Hunload = (hx,m for x ∈ Xunload,m ∈Munload) ∈ [0, 1]|Xunload|×|Munload|,

Hload = (hx,m for x ∈ Xload,m ∈Mload) ∈ [0, 1]|Xload|×|Mload|,

where N0 is the set of natural numbers [0, 1, 2, . . .] and |Z| is the cardinality of
set Z.

Further there are some limitations to this state space.∑
c∈C

nc ≤ capacity,∑
m∈M

hx,m ≤ maxMachinestypex , ∀x ∈ X,∑
x∈X

hx,m ≤ 1, ∀m ∈M,

hx,m ≤ lx, ∀x ∈ X,∀m ∈M,∑
x∈Xunload

1{lx > 0}, ≤ maxUnloading,

∑
x∈Xload

1{lx > 0}, ≤ maxLoading,

with 1{Z} as the indicator function. So 1{Z} = 1 if Z is true and 0 other-
wise.

The first limitation says that the total amount of units of product in the storage
area can not exceed the capacity. The second equation limits the number of
machines working on vehicle x to the maximum number of machines allowed
to work on that type of vehicle. The third limitation says that a machine can
work at most at one vehicle at a time. The next limitation makes sure that a
machine is only assigned to vehicles with positive workload. If the remaining
workload is 0, the vehicle is not in the system, so no machine can work on it.
The last two limitations define the number of vehicles at the terminal, which
can not exceed the capacity of the stations.

The state of this system changes over time. For all possible events the following
changes of the state occur.

Arriving vehicle If vehicle x arrives, according to distributionAtypex,commodityx ,
the remaining workload of this vehicle gets the value of the load size of this vehi-
cle, according to Ltypex (lx ∼ Ltypex). This is only possible if the vehicle queue
at the station has not reached its maximum queue length yet.
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New assignment of machine to a vehicle If some machine is not assigned to
any vehicle yet (if ∃m with

∑
x hx,m = 0) and there are vehicles waiting or served

without maximum capacity, a new assignment is made. If a vehicle is already
in service, but not having the maximum number of machines assigned to it yet,
then the idle machine is assigned to this vehicle (if ∃x with 0 <

∑
m∈M hx,m <

maxMachinestypex then hx,m = 1). If all vehicles in service already have their
maximum number of machines working on it, the idle machine will be assigned
to the first vehicle in the waiting line that has already enough commodity in
the storage area (if ∃x with lx > 0,

∑
m∈M hx,m = 0 and minStorage · lx ≤

ncommodityx , then hx,m = 1). The last constraint only applies for vehicles at the
loading station.

Start of unloading one unit of product If an idle unloading machine m is
assigned to a vehicle x (hx,m = 1), a new unit of product starts to get handled.
The end time of unloading this unit is determined according to distribution
Bunload. This can only be done if the total storage level has not reached the
capacity yet (

∑
c nc < capacity).

Start of loading one unit of product If an idle loading machine m is assigned
to a vehicle x (hx,m = 1) and the right commodity is in storage (ncommodityx >
0), a new unit of product starts to get handled. The end time of loading this
unit is determined according to distribution Bload.

End of unloading one unit of product If one of the unloading machines m is
done with handling one unit of product, the number of units in the storage yard
increases by one (ncommodityx = ncommodityx+1). The remaining workload of the
vehicle it is handling decreases by one (lx = lx− 1, for x with hx,m = 1).

End of loading one unit of product If one of the loading machines m is
done with handling one unit of product, the number of units in the storage yard
decreases by one (ncommodityx = ncommodityx − 1). The remaining workload
of the vehicle it is handling decreases by one as well (lx = lx − 1, for x with
hx,m = 1).

End of service vehicle If a vehicle x is totally (un)loaded, the workload will
be equal to zero (lx = 0). This automatically implies that the vehicle has left
the system. The assignments of the machines which were working on this vehicle
become 0 (hx,m = 0,∀m). For the other machines that were working on this
vehicle, their end of handling times will be deleted.

Empty storage If the product in stock of a certain commodity c becomes
empty (nc = 0), all loading machines serving vehicles with this commodity stop
working. So ∀m ∈ Mload with hx,m = 1 for some x ∈ Xc where Xc is the set
of vehicles with commodity c (commodityx = c), the end of handling times of
these machines m are deleted.
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Full storage If the total number of units of product in the storage yard reaches
the maximum capacity (

∑
c nc = capacity), all unloading machines will stop.

All end of handling times of the machines in the unloading station will be
deleted.

With all these transitions, the simulation can start running over time. All
the times in the future when events will happen, are saved. These events are
chronologically executed, changing the state space and adding new events to the
timeline. The storage levels of the different commodities are saved over time
and their movements will tell something about the storage requirement.

7.2 Trafalquar

Trafalquar is the name of the model TBA made for simulating mainly the wa-
terside of a terminal, but it is also used to simulate a dry bulk terminal. This
model is made in eM-Plant 7.0.

Trafalquar is much more detailed than the Python simulation. Besides the han-
dling times of the machines in the unloading and loading station, in Trafalquar
also all movements between those stations and the storage area are simulated.
At the waterside the arriving vessels got a much more detailed planning of
where to moor and there are berthing times and times to leave the terminal
again.

This all give much more realistic and detailed results than the Python model
and therefore we will first compare the results of Trafalquar with the results of
Python. Because of the complexity of Trafalquar, this model is slower than the
simulation in Python.
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Chapter 8

Results of simulation

8.1 Case study

To compare the mathematical results with the simulation of a terminal, a case
study is executed. The study is about an export terminal with five commodities.
This terminal has a throughput of 5 million ton per year. The first commodity
has a throughput of 30 percent of the total throughput per year; 1.5 million ton.
The other commodities have respectively 25, 20, 15 and 10 percent of the total
throughput.

All those commodities are brought to the terminal with one type of truck.
Those trucks all bring a constant load of 30 ton and will always bring only
one commodity. The number of trucks that arrive in one year is such that it
brings the total throughput. So for the first commodity 50 000 trucks arrive
in one year. At the terminal there are three dumpers where the trucks can be
unloaded. The trucks will get handled first come, first serve and get unloaded
by only one dumper. The dumpers have a mean service time of 3.6 seconds per
ton, so they can unload 1 000 ton per hour per dumper.

At the waterside four different type of deepsea vessels arrive; Handysize, Handy-
max, Panamax and Capesize. Those vessel types have respectively mean load
sizes of 20 000, 40 000, 65 000 and 90 000 ton. Every arriving vessel will have
a load size according to a triangle distribution with a maximum of 20 percent
above or below the mean load size of its corresponding vessel type. Into all
vessels only one commodity will be loaded. Of those four types of vessels re-
spectively 27, 31, 26 and 17 vessels arrive per year, so 101 in total. In the
simulations an arrival scheme for the vessels is used that tells which day which
vessel type and commodity will arrive, this scheme can be found in appendix
A. The load sizes of the vessels are not uniformly distributed over the year,
see table 8.1. In the fourth and fifth month more vessels are scheduled to ar-
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Commodity jan feb mar apr may jun
1 20 000 125 000 255 000 150 000 125 000 125 000
2 125 000 130 000 85 000 190 000 175 000 40 000
3 130 000 20 000 105 000 85 000 40 000 175 000
4 65 000 90 000 20 000 40 000 155 000 40 000
5 0 65 000 0 90 000 20 000 65 000

Total 340 000 430 000 465 000 555 000 515 000 445 000

Commodity jul aug sep oct nov dec
1 150 000 190 000 60 000 60 000 110 000 130 000
2 125 000 40 000 110 000 40 000 150 000 40 000
3 105 000 0 105 000 110 000 40 000 85 000
4 20 000 40 000 65 000 110 000 65 000 40 000
5 0 90 000 40 000 65 000 0 65 000

Total 400 000 360 000 380 000 385 000 365 000 360 000

Table 8.1: Overview of vessel arrivals in ton per commodity

rive than in the rest of the year. The vessels do not exactly arrive on their
scheduled day, but can arrive earlier or later. Their delays are according to a
normal distribution with a mean of 36 hours late and a standard deviation of
48 hours.

At the terminal there is a berth of 300 meters long. All types of vessels can
moor here, but only one at a time. At the quay two cranes will load the vessels,
so they are always both working on the same vessel. Those two cranes have
both mean service times of 3.6 seconds per ton, so every crane can load 1 000
ton per hour into a vessel.

The distributions of the arrivals of the trucks and the handling times of the truck
dumpers and vessel cranes differ in Python and Trafalquar, see appendix B. For
the handling times Python uses an exponential distribution with a rate of 1 000
ton per hour, while in Trafalquar every truck and vessel get its own productivity
factor. For trucks this is between 0.8 and 1.2 and for vessels between 0.9 and
1.1. This factor is then multiplied with the mean handling time of 3.6 seconds
and every ton loaded in this vessel or unloaded from this truck will take this
amount of time.

For the inter-arrival times of the trucks Python takes an exponential distribution
per commodity. For the first commodity 50 000 trucks have to arrive in a year,
or around 5.7 per hour. With this rate the trucks of this commodity arrive to the
terminal in a Poisson process. The other commodities have their own rate and
arrive all in independent Poisson processes. In Trafalquar the arrivals of trucks
have a week and day pattern, for example in the weekends and at night less
trucks will arrive than on a Wednesday afternoon. At the beginning of every
day in the simulation the mean number of trucks of that day is determined
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according to the week pattern. Then these trucks get a uniform random arrival
time on that day with the given day pattern.

8.2 Experiments

With all this input multiple experiments can be run with the Python and
Trafalquar simulation. Because the arrival scheme of the vessels is only for
one year, all experiments will be done for one year. Another reason for this
is that a real terminal will have control over the in- and outflow and therefore
can control the storage level. In the simulations this is not possible, so longer
simulations can lead to unrealistic results. For example, when the workload of
the arriving vessels is a bit less than the amount of product the trucks deliver,
after a couple of years the storage level will be increased this difference in inflow
and outflow.

In the mathematical models the stationary probability distribution is given.
This will not be attained in simulations of only one year. Therefore multiple
experiments are run with different initial storage levels. We will look at a
terminal starting with an empty storage area, starting with 100 000 ton in stock
and starting with 200 000 ton. So the parameter initStorage is set to these
values. These amounts are the total initial storage levels which will be equally
divided over the five commodities.

In the experiments it is possible that a vessel is at the berth to get loaded, while
there is not sufficient stock of its commodity yet to completely load the vessel.
Other vessels at the terminal now have to wait until this vessel is loaded. This
can cause long waiting times for the other vessels. To prevent this, a rule is
made that at least 90 percent of the vessel load has to be in the storage area,
before a vessel can go to the quay. So in Python parameter minStorage is set
to 0.9. In this way the long waiting times of the vessels with enough of their
commodity in stock will be reduced.

A last experiment is called ‘unlimited’. Here the terminal starts with an initial
stock equal to the total throughput per commodity. In this way none of the
arriving vessels have to wait on their commodity. At the end of the year the
storage levels of the simulation will be lowered such that the minimum storage
level per commodity over the year is zero. In this way the value of minStorage
does not matter, since all commodities are always available and the vessels will
be loaded FIFO.

All experiments will have 20 replications of one year with 20 days setup time.
At the end of an experiment we are interested in the storage levels and the
waiting times of the vessels. We will look at the storage levels that the terminal
does not exceed in 90%, 95% and 98% of the time. These limits can be seen
as a required upper bound of the storage area. For the vessels we will look at
the fraction of vessels that can go to the quay immediately and to the fraction

43



Figure 8.1: Mean storage level over the year for one commodity

of vessels that has to wait more than three days before it gets loaded. For all
these results a 95% confidence interval is taken.

All the experiments are done for the terminal with five commodities and for the
same terminal where all commodities will be set to the same one. This last case
can be considered as a terminal with only one commodity.

8.3 One commodity

For the terminal with one commodity, we first look at the experiment with an
initial stock of 100 000 ton. In figure 8.1 the mean storage level over the year is
shown and in figure 8.2 the probabilities of a certain waiting time per vessel type
can be seen. Both figures show the results of the Trafalquar and the Python
simulation.

In this terminal around half of the vessels are loaded immediately and around
20 percent of the vessels have to wait for more than three days before it goes
into service. The storage level shows an upper limit around 200 000 ton. In
table 8.2 the numerical results are shown for this and the other experiments in
Python and Trafalquar.

When the initial stock changes, the limits change with almost the same amount.
So the 90% limit is around 70 000 ton above the initial stock, for 95% this is
around 90 000 ton and by 98% it is around 108 000 ton more than the initial
stock. In figure 8.1 can be seen that the maximum storage level for the experi-
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Figure 8.2: Waiting times of vessels at the terminal with one commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 83 ± 5 97 ± 7 114 ± 9 42 ± 2 24 ± 1
100 000 167 ± 6 185 ± 6 202 ± 6 52 ± 2 18 ± 2
200 000 272 ± 10 292 ± 10 308 ± 9 65 ± 4 9 ± 2

Unlimited 365 ± 16 383 ± 17 401 ± 18 84 ± 2 0 ± 0

(a) Python

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 80 ± 3 93 ± 5 108 ± 7 43 ± 2 25 ± 1
100 000 170 ± 6 189 ± 6 207 ± 7 52 ± 2 18 ± 1
200 000 268 ± 8 289 ± 10 308 ± 10 64 ± 2 9 ± 1

Unlimited 369 ± 12 390 ± 13 409 ± 13 79 ± 2 0 ± 0

(b) Trafalquar

Table 8.2: Results for one commodity
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Figure 8.3: Mean storage level over the year for five commodities

ments is reached at the beginning of the year. That could be the reason of the
big dependency of the initial stock and the storage level limits. When at the
end of the unlimited experiment the actual needed initial stock is determined,
the mean is found around 300 000 ton. So for this experiment the same upper
limit differences seem to appear.

For the waiting times of the vessels it is clear to see that higher initial stock
implies less waiting vessels. The unlimited experiment has the lowest waiting
times, with no vessels that have to wait for more than three days. It is not
possible to load all vessels immediately, since some vessels arrive before the
previous vessel can be completely loaded.

The simulations of Python and Trafalquar give similar results for all experi-
ments.

8.4 Five commodities

Looking at the total terminal with five commodities, again with an initial stock
of 100 000 ton in total, the mean storage level over the year in the Python and
the Trafalquar experiments can be seen in figure 8.3. The distribution of the
waiting times of the vessels is shown in figure 8.4. The initial stock is equally
divided over all the commodities, so 20 000 ton per commodity.

The total storage level in this case is larger than for the terminal with only
one commodity. The maximum storage level is above 300 000 ton, while for
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Figure 8.4: Waiting times of vessels at the terminal with five commodities

one commodity this is around 200 000 ton. About 40 percent of the vessels can
be loaded immediately, and the same amount of vessels have to wait for more
than 72 hours. For a terminal with one commodity this was only 20 percent.
Especially the Capesize vessels have to wait more often, because vessels can only
go to the quay if 90% of their load is already in stock. For this vessel type this is
81 000 ton, so it is likely that other (smaller) vessels will be loaded first.

In table 8.3 the numerical results of the experiments can be found for the ter-
minal with five commodities. The initial stock is for the total terminal, so every
commodity gets a fifth of it.

The storage level limits increase again when the initial stock increases, but this
increment is not the same as the increment of the initial stock, like it did for one
commodity. For the experiment with no initial stock the 98% limit is around
280 000 ton above this initial stock. For the experiment with 200 000 ton initial
stock, the 98% limit is only around 175 000 ton above this starting point.

The waiting times decrease again when the initial stock increases and for the
unlimited experiment the waiting times of the vessels are again minimal. The
vessels in this experiment are served exactly first in, first out and never have
to wait for new products to arrive. The storage level however is a lot higher
in this case than in the other experiments, because that is the only way that
the vessels can always be served immediately. The initial stock of the terminal
in this experiment is different for all five commodities. The means of initial
stock are around 140 000, 225 000, 115 000, 75 000 and 25 000 ton. So in total
the simulation starts with an initial stock of 580 000 ton, which is already more
than the upper limit storage levels of the other experiments. The difference
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Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 241 ± 10 259 ± 11 277 ± 12 29 ± 3 51 ± 3
100 000 275 ± 5 295 ± 6 315 ± 8 39 ± 3 39 ± 3
200 000 326 ± 9 354 ± 8 381 ± 10 47 ± 3 31 ± 3

Unlimited 663 ± 17 684 ± 18 701 ± 18 83 ± 2 0 ± 0

(a) Python

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 244 ± 3 265 ± 4 285 ± 5 26 ± 2 52 ± 2
100 000 273 ± 5 296 ± 6 320 ± 9 38 ± 2 40 ± 2
200 000 319 ± 4 347 ± 4 371 ± 5 45 ± 2 32 ± 2

Unlimited 654 ± 10 673 ± 11 691 ± 12 80 ± 2 0 ± 0

(b) Trafalquar

Table 8.3: Results for five commodities

between the initial stock and the 98% limit is around 120 000 ton, which is
much less than this difference for the other initial stocks.

Because the experiments of Python and Trafalquar give comparable results and
Python is around 6 times faster than Trafalquar, further experiments will only
be done in Python.

8.5 Seasonality of truck arrivals

In the case study the arrivals of the trucks are evenly distributed over the year,
while the load sizes of the vessels are not, see table 8.1. The previous two
subsections show that this induces a large decrease of the storage level in the
months with higher demand. It is however very likely that the trucks have a
same seasonality in their arrivals as the vessels do. Therefore, a seasonality
factor for the trucks is introduced. They still arrive in a Poisson process with
averaged over the year the same rate as before, but for every month this rate
is multiplied with the seasonality factor of table 8.4. The factors in the row of
the total values are used for the experiments with one commodity.

Table 8.5 shows that for one commodity the unlimited experiment requires on
average an initial stock less than 100 000 ton, because the storage level limits of
this experiment are below the limits of the experiment with 100 000 ton initial
stock. Compared to the results of section 8.3 the storage level limits decreased
for all experiments and the waiting times of the vessels also became less.

For five commodities figure 8.5 shows that the mean storage level is more stable
over the year than without the seasonality, especially for the unlimited experi-
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Commodity jan feb mar apr may jun
1 0.16 1 2.04 1.20 1 1
2 1.20 1.25 0.82 1.82 1.68 0.38
3 1.56 0.24 1.26 1.02 0.48 2.1
4 1.04 1.44 0.32 0.64 2.48 0.64
5 0 1.56 0 2.16 0.48 1.56

Total 0.82 1.03 1.12 1.33 1.24 1.07

Commodity jul aug sep oct nov dec
1 1.20 1.52 0.48 0.48 0.88 1.04
2 1.20 0.38 1.06 0.38 1.44 0.38
3 1.26 0 1.26 1.32 0.48 1.02
4 0.32 0.64 1.04 1.76 1.04 0.64
5 0 2.16 0.96 1.56 0 1.65

Total 0.96 0.86 0.91 0.92 0.88 0.86

Table 8.4: Seasonality factors for truck arrivals

ment. The storage level limits of the unlimited experiment are more than 200 000
ton below the limits of section 8.4 and the waiting times decreased as well. This
shows that the seasonality of arrivals has a large impact on the storage level
limits. The experiment with no initial stock gives worse results than without
the seasonality and the 100 000 ton experiment has a bit lower storage level lim-
its and waiting times. The experiment with 200 000 ton initial stock also gives
better results with seasonality, where especially the waiting times decreased a
lot.

8.6 Other arrival scheme for vessels

Another way to stabilise the storage level over the year is by changing the arrival
scheme of the vessels. If the arrival scheme is adjusted such that the arriving
workload per month is better divided over the year, see table 8.6, and the trucks
arrive again homogeneous over the year, we get the following results.

In table 8.7a the results of one commodity with the new arrival scheme is shown.
Compared to the original arrival scheme, this terminal needs less storage ca-
pacity. Interesting to see is that the unlimited experiment needs less storage
capacity than the experiment that starts with 200 000 ton initial stock. The
unlimited experiment starts on average with an initial stock around 150 000
ton, which is below the initial stock of the 200 000 ton experiment. The waiting
times of the vessels decrease with this arrival scheme faster when the initial
stock increases, than with the original arrival scheme. In figure 8.6 can also be
seen that the mean storage level over the year of the unlimited experiment is
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Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 69 ± 2 77 ± 2 85 ± 3 37 ± 4 24 ± 4
100 000 157 ± 10 168 ± 10 182 ± 10 83 ± 1 0 ± 0
200 000 250 ± 13 261 ± 13 274 ± 13 83 ± 1 0 ± 0

Unlimited 141 ± 7 153 ± 7 166 ± 8 85 ± 2 0 ± 0

(a) One commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 285 ± 34 343 ± 46 399 ± 57 22 ± 3 59 ± 5
100 000 254 ± 20 278 ± 27 300 ± 36 39 ± 3 36 ± 4
200 000 309 ± 16 324 ± 16 341 ± 19 62 ± 3 15 ± 2

Unlimited 410 ± 9 421 ± 9 434 ± 10 83 ± 2 0 ± 0

(b) Five commodities

Table 8.5: Results for seasonality of truck arrivals

Figure 8.5: Mean storage level over the year for five commodities with season-
ality of truck arrivals
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Commodity jan feb mar apr may jun
1 150 000 125 000 125 000 130 000 85 000 125 000
2 125 000 90 000 85 000 125 000 110 000 60 000
3 90 000 60 000 85 000 105 000 65 000 85 000
4 65 000 90 000 65 000 60 000 90 000 60 000
5 0 20 000 90 000 0 65 000 65 000

Total 430 000 385 000 450 000 420 000 415 000 395 000

Commodity jul aug sep oct nov dec
1 150 000 125 000 125 000 60 000 150 000 150 000
2 125 000 80 000 110 000 105 000 105 000 130 000
3 80 000 90 000 105 000 90 000 60 000 85 000
4 20 000 40 000 65 000 90 000 65 000 40 000
5 0 90 000 40 000 65 000 0 65 000

Total 375 000 425 000 445 000 410 000 380 000 470 000

Table 8.6: Overview of vessel arrivals in ton per commodity of new arrival
scheme

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 77 ± 10 86 ± 11 94 ± 12 39 ± 4 24 ± 3
100 000 126 ± 12 140 ± 12 155 ± 12 70 ± 6 6 ± 3
200 000 244 ± 15 259 ± 16 273 ± 16 83 ± 1 0 ± 0

Unlimited 172 ± 12 185 ± 12 200 ± 13 85 ± 2 0 ± 0

(a) One commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 256 ± 13 276 ± 14 298 ± 16 32 ± 3 48 ± 3
100 000 286 ± 15 306 ± 15 327 ± 14 42 ± 3 34 ± 3
200 000 324 ± 18 340 ± 19 359 ± 19 55 ± 4 22 ± 3

Unlimited 423 ± 14 436 ± 14 452 ± 16 83 ± 2 0 ± 0

(b) Five commodities

Table 8.7: Results with another arrival scheme for vessels
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Figure 8.6: Mean storage level over the year for one commodity with another
arrival scheme for vessels

below the 200 000 ton experiment and that the storage level is more stable over
the year than with the original arrival scheme.

For five commodities the results are shown in table 8.7b. For low initial stocks
the storage level limits increased a bit, but for the 200 000 ton and the unlim-
ited experiment it decreased. The waiting times however decreased for all the
experiments with this new arrival scheme.

For all experiments the confidence intervals increased. A reason for this could
be that the peak of the year is not at the beginning of the year anymore, but
more to the end. And points further in time will have larger variations than
points at the beginning of the timeline.

8.7 Larger arrival delays

Another way to change the arrival pattern of the vessels is by changing the
distribution of the delay times of the arriving vessels. In the original model
the vessels arrive before or after the scheduled time with a normal distribution
with a mean of 36 hours and standard deviation of 48 hours. In this way all
vessels arrive between 3 days before or 7 days after. When the parameters of this
distribution is changed to a mean of 48 hours and standard deviation of 72 hours,
all vessels will arrive between 5 days before or 10 days after the scheduled time.
This change gives the results of table 8.8. Because of the increased variation
the experiments are run with 30 replications instead of 20.
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Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 88 ± 7 106 ± 9 127 ± 10 43 ± 2 23 ± 2
100 000 182 ± 9 205 ± 8 226 ± 9 51 ± 2 17 ± 2
200 000 284 ± 8 307 ± 8 331 ± 9 65 ± 3 8 ± 2

Unlimited 373 ± 11 396 ± 11 416 ± 12 81 ± 1 0 ± 0

(a) One commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 246 ± 8 265 ± 8 286 ± 9 29 ± 2 50 ± 2
100 000 288 ± 11 313 ± 11 338 ± 13 39 ± 2 38 ± 2
200 000 345 ± 13 371 ± 13 398 ± 13 47 ± 2 29 ± 2

Unlimited 664 ± 13 689 ± 14 709 ± 14 80 ± 1 0 ± 0

(b) Five commodities

Table 8.8: Results for larger arrival delays

For one commodity the results of table 8.8a differs a maximum of 25 000 ton
with the original model and the fractions of waiting vessels are also similar.
Table 8.8b shows that the results for five commodities also give similar results
as the original model. So this change of the delay distribution does not seem to
have a lot of impact on the storage requirement, but the little changes are not
advantageous.

8.8 Other values of minStorage

In all the previous experiments a vessel only got accepted to go to the quay
when at least 90 percent of its load is in the storage area. This ensures that the
quay cranes do not get blocked by a vessel that has to wait on a large amount
of product that is not available yet, but that vessels with other commodities
will be loaded first. To show this effect the experiment with 100 000 ton initial
stock is run with other values of parameter minStorage.

For a terminal with one commodity table 8.9a shows that the storage level
limits do not depend a lot on this parameter, while the waiting times increase
when the threshold percentage decreases. The reason of the small change in
this system is that all vessels want the same commodity. So the only change in
loading order can be that smaller vessels will be loaded before a larger vessel.
Looking at the productivity of the vessels, so the mean amount of product that
is loaded into the vessel per hour, the increased waiting times are also visible.
For the 90% experiment the productivity is on average 1 999 ton per hour, and
with the two cranes with loading speeds of 1 000 per hour, this productivity
is on its maximum. For the 50% and 0% the productivity drops to 1 606 and
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minStorage Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

90 % 167 ± 6 185 ± 6 202 ± 6 52 ± 2 18 ± 2
50 % 164 ± 8 186 ± 7 205 ± 6 45 ± 4 21 ± 3
0 % 170 ± 8 190 ± 7 207 ± 7 47 ± 5 34 ± 6

(a) One commodity

minStorage Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

90 % 275 ± 5 295 ± 6 315 ± 8 39 ± 3 39 ± 3
50 % 309 ± 11 340 ± 12 371 ± 13 8 ± 2 80 ± 3
0 % 586 ± 35 655 ± 37 699 ± 39 2 ± 1 94 ± 2

(b) Five commodities

Table 8.9: Results for other values of minStorage

1 257 ton per hour respectively. So the mean time a vessel will be at the quay
increased, and therefore the waiting times of the other vessels at the terminal
also increase.

For the terminal with five commodities the impact is bigger, see table 8.9b.
When the percentage is set to zero, the vessels will be served first in, first out
and almost all vessels have to wait for more than three days. Figure 8.7 shows a
large peak in the middle of the year for this experiment, because some vessel with
an unavailable commodity demand is blocking the cranes and all other vessels.
The productivity of the vessels in the 90% experiment is on average 1 765 ton per
hour, while for the other two experiments this is 1 399 and 1 485 ton per hour.
This last productivity is better than for the one commodity experiment and 50%
experiment. A reason for this could be that in this experiment one vessel will
block the system for a long time and gets a low productivity, but in the meantime
the other commodities have increased in stock level, such that the next couple
of vessels can be loaded relatively fast with a high productivity.

8.9 Exponential arrivals of vessels

In the mathematical models the assumption is made that the vehicles at the
loading station arrive in a Poisson process. This process has much more variation
than the scheduled arrivals of the case study. In Python this arrival process can
be changed to a Poisson process. The order of the vessels with its commodities
is the same as in the arrival schedule, but now the time between two arrivals
is exponentially distributed with a mean of 101 vessels per year. The same
experiments are run, but now with 50 replications, because of the increased
variation. The results of these experiments are shown in table 8.10.
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Figure 8.7: Mean storage level over the year for five commodities for different
threshold percentages

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 229 ± 49 261 ± 51 291 ± 53 46 ± 4 22 ± 4
100 000 294 ± 64 331 ± 63 361 ± 63 51 ± 5 17 ± 4
200 000 427 ± 61 473 ± 61 506 ± 61 58 ± 4 11 ± 3

Unlimited 584 ± 42 614 ± 41 643 ± 38 70 ± 1 0 ± 0

(a) One commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 321 ± 37 350 ± 40 377 ± 41 33 ± 4 46 ± 5
100 000 385 ± 42 420 ± 46 447 ± 47 40 ± 4 36 ± 4
200 000 443 ± 48 481 ± 49 515 ± 49 46 ± 4 30 ± 5

Unlimited 768 ± 42 803 ± 43 832 ± 43 71 ± 2 0 ± 0

(b) Five commodities

Table 8.10: Results for exponential arrivals of vessels
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Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 288 ± 74 319 ± 78 342 ± 80 37 ± 8 27 ± 6
100 000 379 ± 76 416 ± 74 443 ± 74 48 ± 8 18 ± 5
200 000 403 ± 73 442 ± 69 472 ± 66 49 ± 7 17 ± 5

Unlimited 608 ± 44 648 ± 42 672 ± 39 72 ± 2 0 ± 0

(a) One commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 676 ± 76 708 ± 77 731 ± 76 41 ± 4 37 ± 5
100 000 778 ± 69 813 ± 71 840 ± 71 49 ± 4 28 ± 4
200 000 772 ± 61 807 ± 61 834 ± 60 48 ± 3 28 ± 4

Unlimited 1 071 ± 37 1 095 ± 34 1 116 ± 32 72 ± 2 0 ± 0

(b) Five commodities

Table 8.11: Results for exponential arrivals of one type of vessel

The storage level limits of the experiments with one commodity are almost twice
the limits of the experiments with the scheduled arrivals of vessels, while the
waiting times of the vessels are similar. For five commodities the differences of
the storage level limits are not that big, but still above the original model. The
waiting times of the vessels are here less than before.

The unlimited experiment again has the highest storage levels, but also can
handle the highest percentage of vessels immediately. The storage level limits are
even higher than with the scheduled vessel arrivals and the waiting times are a
bit longer, since in a Poisson process two successive vessels can arrive in a relative
short time, while for the scheduled arrivals this probability is smaller.

8.10 One vessel type

Besides the exponential arrivals, the queueing models also assume only one type
of vessels to arrive. To see if this has impact on the results of the simulation,
the experiments are also done for a terminal with only one vessel type. This
vessel type has a mean load size of 5000000

101 ≈ 49 505 ton. The arrivals will again
be in a Poisson process with as rate the number of vessels divided by the hours
per year. For the case with one commodity this is 101

365·24 . For the experiments
with five commodities, every commodity has its own independent arrival process
with the same ratio’s as for the total throughput are used, so the vessels of the
first commodity have arrival rate 0.3 · 101

365·24 .

In table 8.11 the results of these experiments can be found. The difference
between no initial stock and 100 000 ton initial stock is around 100 000 ton, while
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the difference between 100 000 and 200 000 ton initial stock is much smaller. The
waiting times of the vessels also do not differ a lot. The unlimited experiments
need again a much bigger storage area, but then the waiting times drop to their
minimum.

Compared with the four types of vessels arriving in a Poisson process, the storage
level limits are in this section higher. This difference is even bigger for the five
commodity terminal, than for only one commodity. A reason for this could be
that the Poisson processes for the vessels lead to less than 101 vessel arrivals per
year. In the previous section there is only one Poisson process of arrivals, while
here every commodity gets its own process. When all those five commodities
have 2 vessel arrivals in a year less than the schedule, the simulation misses 10
vessels of around 50 000 ton at the end of the year. This induces that the storage
area has at least 500 000 ton in stock. This large values of the storage level at
the end of the year causes increments of the storage level limits.

8.11 Geometric vessel load sizes

In the queueing models of sections 5.5 and 6.1, a vessel leaves after every end
of loading one unit of product with probability q. This could be seen as vessel
load sizes according to a geometric distribution, since after every end of loading
there is a ‘succes’ with probability q, or a stay with probability (1−q). In figure
8.8 the previous used triangular distribution of the vessel load is shown together
with the geometric distribution. Both have a mean load size of 5000000

101 ≈ 49 505
ton and the triangular distribution has a 20 percent margin above and below this
mean. In this figure can be seen that the variation of the geometric distribution
is much bigger than of the triangular distribution.

To see the impact of this variation, we take a model with one type of vessels
with a geometric load size distribution arriving in a Poisson process. All other
parameters are the same as before. The Python simulation gives then the storage
level limits shown in table 8.12. The confidence intervals are wider, because the
variation of the load size vessels is larger here, but also the mean values of the
limits are higher than for the same system with triangular load size distribution
(section 8.10). The initial stock has for five commodities less impact on the
storage level limits, than in the case of one commodity. The waiting times are
lower than before, which could be because of the increased probability of a vessel
with a small load size.

The assumption of these geometric vessel load sizes is not realistic, because
of the large variability. Since the simulation already gives higher storage level
limits, it can be expected that the queueing models with this assumption also
give higher results than in a real terminal would be needed.
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Figure 8.8: Load size distributions of vessels

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 411 ± 84 453 ± 86 490 ± 86 62 ± 3 13 ± 3
100 000 533 ± 99 578 ± 100 615 ± 101 65 ± 3 10 ± 2
200 000 600 ± 98 651 ± 99 687 ± 98 66 ± 3 9 ± 2

Unlimited 845 ± 70 890 ± 67 922 ± 64 72 ± 2 2 ± 0

(a) One commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 960 ± 88 1 006 ± 88 1 046 ± 87 57 ± 3 24 ± 3
100 000 991 ± 96 1 042 ± 96 1 080 ± 96 58 ± 3 20 ± 3
200 000 1 019 ± 92 1 064 ± 92 1 100 ± 91 59 ± 3 20 ± 3

Unlimited 1 474 ± 64 1 526 ± 62 1 554 ± 59 70 ± 2 4 ± 2

(b) Five commodities

Table 8.12: Results for exponential arrivals of one type of vessel with geometric
load size distribution
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Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 197 ± 47 228 ± 50 259 ± 53 54 ± 2 18 ± 2
100 000 240 ± 64 279 ± 67 309 ± 69 55 ± 2 18 ± 2
200 000 261 ± 48 305 ± 53 342 ± 56 56 ± 2 17 ± 2

Unlimited 974 ± 75 1 006 ± 65 1 033 ± 58 66 ± 2 4 ± 0

(a) One commodity

Initial stock Storage level (×1000 ton) Waiting vessels (%)
90 % 95 % 98 % 0 hour >72 hours

0 941 ± 77 1 002 ± 81 1 049 ± 82 59 ± 2 24 ± 2
100 000 901 ± 64 958 ± 66 1 005 ± 66 59 ± 2 23 ± 2
200 000 888 ± 73 937 ± 75 976 ± 75 59 ± 2 22 ± 2

Unlimited 1 576 ± 64 1 613 ± 62 1 638 ± 58 67 ± 2 5 ± 0

(b) Five commodities

Table 8.13: Results for a terminal with a finite waiting queue

8.12 Finite waiting area for vessels

In some of the queueing models the waiting space for the vessels is limited. When
we set this value to a maximum of 5 vessels, some arriving vessels will not go
into the terminal. Therefore the number of arriving vessels will be increased by
20 percent, so instead of 101 vessels per year, now 121 vessels will come to the
terminal. Again we will assume that the vessels have geometric load sizes with
a mean of 49 505 ton and arrive in a Poisson process per commodity.

For one commodity table 8.13a shows that the initial stock in these experiments
does not have a lot of impact on the storage level limits and the waiting times of
the vessels. The storage level stays around a mean value and does not increase or
decrease a lot over the year. The unlimited experiment with this input actually
does not say anything, because too many vessels arrive at the terminal. There
is unlimited stock so all 121 vessels will go into the terminal, which will pick up
20 · 49 505 = 990 100 ton more products than the trucks deliver. So the storage
level in this experiment only decreases over the year and the storage level peaks
are at the start of the year.

For five commodities, table 8.13b, the unlimited experiment does the same. For
the other three cases the storage level increases over the year. Only around
93-99 vessels will be accepted to the terminal per year, which do not have the
capacity of the 5 million ton that the trucks deliver. So at the end of the year
there is a surplus of product and the storage level limits are touched here. When
at the start of the year the initial storage level is higher, more vessels will be
accepted, so less surplus at the end, which induces lower storage level limits.
The waiting times do not differ a lot between the experiments.
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Compared to the same simulations with unlimited waiting space for the vessels
(section 8.11) are the storage level limits in this section lower. Presumably
because in this section more vessels arrive per year to lower the storage level
again. This also explains the longer waiting times.
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Chapter 9

Results of queueing
models

To compare the results of the simulations with the results of the queueing mod-
els, the input of the case study first has to be adjusted to the needed parameters.
Since all trucks bring the same amount of product, 30 ton, most sections use as
unit of product a truckload instead of a ton. The throughput of the terminal is
5 000 000 ton per year, which are 166 667 trucks.

In all the models of the loading station, we assumed Poisson arrivals of the units
of product into the storage area. The rate of these arrivals is λ per hour. In the
case study this λ is equal to the 16 667 trucks divided by 365 · 24 hours a year,
so λ = 5000000

30·365·24 ≈ 19.03.

In the loading station there are two cranes which both can load 1 000 ton per
hour into the vessels. By assumption these cranes have exponential service
times per truckload. The rate of these cranes is µ2 = 1000

30 ≈ 33.33 truckloads
per hour. Most models have only one machine instead of two, therefore we
adjust µ2 to 2 · 1000

30 ≈ 66.67.

All queueing models only work if the occupation rate of the system ρ = λ
s·µ is

at least less than one. In this study the terminal satisfies this condition since
ρ ≈ 19.03

2·33.33 ≈ 0.285 < 1.

The last important parameter is γ, the arrival rate of the vessels. In the case
study 101 vessels arrive per year. This gives γ = 101

365·24 ≈ 0.012. Again we
assume that those vessels arrive in a Poisson process.

In the mentioned models it is easier to assume that all vessels have the same
load size distribution. Therefore we take as mean load size of the arriving
vessels the total throughput divided by the number of arriving vessels. So
r = 5000000

101 ≈ 49 505 ton ≈ 1 650 truckloads per vessel.
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With all these parameters, the models given in chapters 5 and 6 about the
probability distribution of the storage level can be evaluated. Because all the
queueing models assume only one commodity, the results of this chapter will
be compared with the simulations of one commodity. First all models will be
explained with the input of the case study and some results with different values
of the parameters are given. In the end of this chapter a summary of the results
is given and compared with the results of the simulations.

9.1 M |M |2 queue

In the introduction of chapter 5 the standard M |M |s2 queue, in this case an
M |M |2 queue, is introduced. Equation 5.1 gives the steady state probabilities
for the storage level as

p0 =

(
1 + 2ρ+

2ρ2

1− ρ

)−1

≈ 0.56,

pn = 2ρnp0, for n ≥ 1.

In this model 96 percent of the time the storage level will be below two truckloads
and 98 percent of the time below three truckloads. This is far too little to really
fulfill the needs of the terminal. The main reason for this is that this model
assumes constant work for both the machines, while in the terminal the machines
only work when there is a vessel at the quay.

One way so adjust this system to a more realistic case, is to lower µ2 to the
rate of the 5 000 000 ton per year. By the current speed of 1 000 ton per hour,
only 5 000 machine hours are needed to load all the throughput into the vessels.
With two machines, this is only 2 500 hours per machine, which is 2500

365·24 ≈ 28.5%
of the time. When µ2 is therefore lowered to 1 000 × 0.285 ≈ 285 ton or 9.5
truckloads per hour, the new ρ will be 19.03

2×9.5 = 1, which gives an infeasible
system. This is logical since we set the inflow of trucks equal to the handling
time of the cranes.

When µ2 is just adjusted to 10 trucks per hour, so a bit of overcapacity of the
cranes, ρ will become 19.03

2×10 ≈ 0.95 and p0 will be approximately 0.025. Now
the storage level limits of 90, 95 and 98 percent are respectively 46, 60 and 78
truckloads. So 1 380, 1 800 and 2 340 ton, which is still far too small.

9.2 MG|M |1 queue

The next model in chapter 5 is the MG|M |1 queue (section 5.1). Here we will
not assume truckloads as unit of product, but tons. Therefore µ2 will now have
value 2 000 ton per hour, since the two cranes will be seen as only one crane.
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ρ is now λ
µ2
≈ 0.01. The trucks have a constant load size of 30 ton, so in this

model p0 = 1− 30ρ ≈ 0.71.

Because of this constant load size of the trucks, the balance equations of this
system can be simplified to

p1 = ρp0,

pn = (1 + ρ)pn−1 = ρ(1 + ρ)n−1p0, for 1 < n ≤ 30,

pn+1 = (1 + ρ)pn − ρpn−30, for n ≥ 30.

These can be solved in two ways; iteratively or by taking pn = xnp0 and solving
0 = x31 − (1 + ρ)x30 + ρ, which has one real solution less than one.

With the ρ of the case study the 90, 95 and 98 percent limits of the storage
level are at 25, 31 and 47 ton, which are in the same order as the M |M |2 queue.
Again we have the assumption that the cranes always work instead of only when
there are vessels at the quay. By again adjusting µ2 to 20 truckloads or 600 ton
per hour, ρ becomes approximately 0.03 and p0 ≈ 0.05. The storage level limits
are now 710, 927 and 1 214 ton which are even lower than results of the M |M |2
queue model. The assumptions of these two models are to strict to determine a
realistic storage level.

9.3 Virtual storage level

The next model (section 5.3) is a model that looks at the virtual storage level,
so with instant loading into the vessels. In this model we assume there is a
maximum number of vessels that can be at the terminal, V , and that the vessels
will bring more workload than the trucks do. So λ < γ · r. Therefore we will
increase the value of γ by 10 percent and limit the number of vessels at the
terminal to V = 3.

Solving equation 5.3 with λ ≈ 19.03, γ ≈ 0.012 ∗ 1.1 ≈ 0.013 and r ≈ 1 650, we
find x̄ ≈ 0.99988. Now with equation 5.4 the storage level limits are found at
15 530, 21 443 and 29 259 truckloads, so 465 900, 643 290 and 877 770 ton.

In table 9.1 results for other values of γ and V can be found. As you can see,
the difference of the storage levels when V changes is exactly this change times
r ≈ 49 500 ton, because the process is only shifted that amount to the left or
right and the parameters of λ, γ and r, which determine x̄ stay constant. When
the number of vessels that arrive increases, the storage level decreases because
the outflow will be larger.
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Parameters Storage level (×1000 ton)
γ (%) V 90 % 95 % 98 %

105 3 1 038 1 388 1 850
105 5 939 1 289 1 751
110 3 466 643 878
110 5 367 544 779
120 5 81 172 293

Table 9.1: Results for model of virtual storage level

9.4 Breakdowns

For the system with breakdowns (section 5.4), we need four parameters; λ, µ2, γ
and θ. The first three are already known; 19.03, 66.67 and 0.012. The last
parameter, θ, is the rate in which the system goes from working to not-working.

The system is only stable if λ
µ2

< γ
θ+γ , so only if θ < γ(µ2−λ)

λ ≈ 0.029. The
mean time the system is continuously working has therefore to be larger than
1
θ ≈ 35 hours.

The mean load size of a vessel is about 49 505 ton, the cranes will need ap-
proximately r

µ2
≈ 24.75 hours per vessel. With equation 5.6 the value of θ

becomes

1

θ
≈
∞∑
i=1

ii−1

i− 1!
· 24.75i · 0.012i−1 · exp(−i · 24.75 · 0.012) ≈ 34.6.

This would give θ ≈ 0.029, which does not satisfy the stability condition since
now λ

µ2
= γ

θ+γ . Therefore we will increase the mean loading time per vessel, T ,
with 10 percent to 27 hours, which gives θ approximately as 0.025.

With these parameters, the matrix R becomes[
λ(θ+µ2)
µ2(λ+γ)

λ
µ2

λθ
µ2(λ+γ)

λ
µ2

]
≈
[
0.9998 0.2854
0.0004 0.2854

]
.

With equation 5.5 the probability of a storage level of n > 0 truckloads is

pn =
λ

µ2(λ+ γ)

[
(θ+µ2)(µ2γ−λθ−λγ)

µ2(λ+γ)
µ2γ−λθ−λγ

µ2

] [ λ(θ+µ2)
µ2(λ+γ)

λ
µ2

λθ
µ2(λ+γ)

λ
µ2

]n−1 [
1
1

]

≈
[
0.000055 0.000016

] [0.9998 0.2854
0.0004 0.2854

]n−1 [
1
1

]
.

Together with the probability of an empty storage p0 = 1 − λ(γ+θ+µ2)
µ2(λ+γ) ≈

0.000055, the storage level limits can be found at 896 730, 1 116 670 and 1 523 520
ton.
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Parameters Storage level (×1000 ton) Working fraction
T θ 90 % 95 % 98 % γ

γ+θ

110% 0.025 897 1 117 1 524 0.31
120% 0.022 489 636 831 0.34
130% 0.020 353 460 600 0.37

Table 9.2: Results for model with breakdowns

In table 9.2 the storage limits are shown for different values of T , which induces
different values of θ. If θ becomes smaller, the fraction of time the cranes are
working increases, so the needed storage capacity decreases. In the last column
the fraction of time the machines are working is shown.

9.5 Finite queue of vessels

The last mentioned model in chapter 5 has a finite queue of vessels (section
5.5). It has a lot of similarities with the model with breakdowns, but now the
matrices have larger dimensions.

The same values for the parameters are used again, so λ ≈ 19.03, µ2 ≈ 66.67 and
γ ≈ 0.012. But since the number of vessels at the terminal is limited, γ will be
increased by 40 percent. The last parameter in this model is q, the probability
that a vessel leaves after handling one unit of product. This probability is the
inverse of the load size of a vessel, so q = 1

r ≈ 0.0006.

Lets start with a maximum number of vessels at the terminal of two, so the
matrices of section 5.5 have dimension 3× 3.

A0 =

λ 0 0
0 λ 0
0 0 λ

 , A1 =

−(λ+ γ) γ 0
0 −(λ+ γ + µ2) γ
0 0 −(λ+ µ2)

 ,

A2 =

 0 0 0
qµ2 (1− q)µ2 0
0 qµ2 (1− q)µ2

 , B0 =

−(λ+ γ) γ 0
0 −(λ+ γ) γ
0 0 −λ

 .
Now the matrixR can be found, by iteratively solvingRk+1 = −(A0+R2

kA2)A−1
1

until Rk is equal to Rk+1, starting with R0 = 0. With this R the null space of
B0 + RA2 can be found to determine p0 together with normalisation equation
1 = p0(I −R)−1e.

With the mentioned values of the parameters the matrix R and vector p0 be-
come

R ≈

1.00 0.22 0.07
0.00 0.29 0.00
0.00 0.00 0.29

 , p0 ≈
[
0.00 0.11 0.17

]
.

65



Parameters Storage level Number of vessels (%)
(×1000 ton)

γ (%) 1
q V 90 % 95 % 98 % 0 1 2 3 4 5

140 1 650 2 262 363 496 43 28 29
140 1 650 5 90 176 290 14 10 11 15 21 29
120 1 650 5 362 535 762 30 15 12 12 14 17
120 2 000 5 72 164 285 11 9 11 15 22 32
100 2 000 5 401 598 858 28 14 12 13 15 18
100 2 000 2 851 1 135 1 511 57 26 18

Table 9.3: Results for model with finite queue of vessels

With pi = p0R
i all probabilities are calculated and the storage level limits are

determined. For this system these limits are around 262 000, 363 000 and 496 000
ton. With this input the system has 43 percent of the time no vessels at the
terminal, 28 percent one vessel and 29 percent of the time two vessels.

In table 9.3 results can be found for other values of the parameters γ, q and V .
When the maximum number of vessels decreases, more storage area is needed,
since the probability of no vessels becomes larger. When the arriving rate of
the vessels decreases, also more storage area is needed, because it takes a longer
time before a new vessel arrives. When the vessels become larger, so q smaller,
the outflow becomes bigger, so the storage level limits decrease.

9.6 Total system with geometric load sizes

In chapter 6 two models are explained for a combination of the unloading and
loading station. In these models the queues of vehicles at the unloading and
loading station are limited. A maximum of V1 trucks and V2 vessels can be si-
multaneously at the terminal. First we will look at the model with the geometric
load size distributions (section 6.1).

At the unloading station the trucks arrive with λ ≈ 19.03 with a load size of
30 ton, so q1 = 1

30 . In this station three machines are handling 1 000 ton per
hour, for the model we take one machine with µ1 = 3 000. At the loading
station vessels arrive with γ ≈ 0.012 with mean load size of 49 505 ton, so
q2 ≈ 1

49505 ≈ 2 · 10−5. In this station two cranes are handling 1 000 ton per
hour, so µ2 = 2 000.

For the total system, again the matrix R has to be found. The order of this
square matrix is (V1 + 1)(V2 + 1), which increases fast when V1 and V2 become
larger. The convergence of the iterative method to find R is slower than for the
previous model of only the loading station.
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Parameters Storage level (×1000 ton) Number of vessels (%)
γ (%) V2 90 % 95 % 98 % 0 1 2 3 4

140 2 254 352 482 42 28 30
140 4 128 213 325 19 14 16 21 30
120 4 395 564 787 36 18 14 15 17

Table 9.4: Results for model of total system with geometric load sizes

Again γ will be increased by some percentage, to make sure that enough vessels
arrive to pick up the goods. Since the waiting space is limited, not all vessels
will go into the terminal so the total workload of the accepted vessels will be
equal to the inflow of the trucks.

See table 9.4 for some results of this model. V1 is set to 3 and because the
probability of three trucks at the unloading station is in all these experiments
around 0.005, this value is not changed. Decreasing γ induces higher storage
level limits. And less waiting space for the vessels also leads to increasing storage
level limits.

9.7 Total system with constant load sizes

In the previous section the load sizes of the trucks and vessels were geometric
distributed. In figure 8.8 can be seen that this distribution has a lot more
variation than the triangular distribution used in the simulations. The other
model in chapter 6 (section 6.2) uses constant load sizes for the trucks and
vessels, which is closer to the triangular distribution.

In this model with constant load sizes a square matrix R of order (r1V1 +
1)(r2V2 + 1) has to be found, where ri are the load sizes and Vi the maximum
number of vehicles at the unloading and loading station. In the case study the
values of these parameters are r1 = 30 and r2 = 49 505 and for V1 and V2 we
take values 3 and 2 respectively. With these values the order of R is 9 010 001,
which gives numerical problems by solving the iterative determination of R.
When the units of products are truck loads instead of tons, this order still is
(1 · 3 + 1)(1650 · 2 + 1) = 13 204.

To decrease this order significantly, we will now assume that not trucks, but
trains will deliver product to the terminal. These trains have load sizes of 1 000
ton, which implies that vessels have load sizes of 50 train loads. Now the order
of R is (1 · 3 + 1)(50 · 2 + 1) = 404, which is low enough to find Rk close enough
to the real R.

The values of the other parameters change also with this adjustment. λ becomes
5000000

1000·365·24 ≈ 0.57, γ ≈ 0.012 will be the same as before but again this value will
be increased by some percentage, because the waiting area of the vessels is
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Parameters Storage level (×1000 ton) Number of vessels (%)
γ (%) V2 90 % 95 % 98 % 0 1 2 3 4 5

140 2 107 159 228 29 42 29
140 5 2 3 58 2 5 9 18 37 30
120 5 86 177 296 13 11 13 18 27 18

Table 9.5: Results for model of total system with constant load sizes

limited. r1 is 1, r2 is 50 and V1 is set to 3. The results of this model with
multiple values for γ and V2 are shown in table 9.5.

The storage level limits are lower than for the model with the geometric load
sizes, which can be explained by the decreased load size variation. In the geo-
metric model there could arrive a couple of small vessels after each other, which
will increase the storage level. In the constant model this is not possible. The
probability of no vessel at the terminal is also lower in this model, which also
induces lower storage levels. Decreasing the arriving rate of the vessel implies
increment of the storage level limits, which is also easy to explain by the de-
creasing number of vessels that arrives at the terminal. When the waiting area
for the vessels is larger, the storage level limits decrease, because then a larger
amount of time vessels are at the terminal to be loaded.

9.8 Summary

Now all the queueing models can be compared with the simulations of the ter-
minal. For all models we take the same values for the parameters, which are
λ ≈ 19.03, γ ≈ 0.012, µ1 = 100, µ2 ≈ 66.67, r ≈ 1 650, q1 = 1 and q2 = 1

r .
When the number of vessels at the terminal is limited to V = 5, the rate γ
will be increased with 20 percent. For the system with breakdowns the working
time per vessel will be increased with 30 percent, so T = 1.3 r

µ2
, which gives

θ ≈ 0.020. For the models of the total system, V1 is set to 3 and V2 to 5. To
reduce the order of matrix R in the model with constant load sizes, the same
parameters as in section 9.7 are taken.

In table 9.6 the results of the different models are shown together with the results
of the Python simulation for one commodity with an empty initial storage. The
models are compared with these experiments, because we assumed only one
commodity and because the queueing models spend most of their time in the
state of an empty storage.

In the simulation the difference between the 90 and 98 percent limit is much
smaller than in the mathematical models. The first four experiments in table
9.6b are the closest to a real terminal. The models with the virtual storage level
and for the total system with constant load size distribution, seem to give the
most similar limits to these four experiments. The difference between these two
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Model Storage level (×1000 ton)
90 % 95 % 98 %

Virtual storage level 81 172 293
Breakdowns 353 460 600
Finite queue of vessels 362 535 762
Total system with geometric load sizes 344 511 731
Total system with constant load sizes 86 177 296

(a) Queueing models

Experiment Storage level (×1000 ton)
90 % 95 % 98 %

Base case 83 ± 5 97 ± 7 114 ± 9
Seasonality of trucks 69 ± 2 77 ± 2 85 ± 3
Other arrival scheme of vessels 77 ± 10 86 ± 11 94 ± 12
Larger arrival delays 88 ± 7 106 ± 9 127 ± 10
Exponential arrivals 229 ± 49 261 ± 51 291 ± 53
One type of vessel 288 ± 74 319 ± 78 342 ± 80
Geometric vessel loads 411 ± 84 453 ± 86 490 ± 86
Geometric vessel loads and V2 = 5 197 ± 47 228 ± 50 259 ± 53

(b) Python, one commodity with empty initial storage

Table 9.6: Summary of results for one commodity

systems is only the speed of the machines in the loading station. In the virtual
storage level model the machines are not taken into account and the vessels are
loaded in no time. In the total model these loading times are set to the input
of the case study, but compared to the arrival rates of the trucks and vessels,
these machines are relatively fast. The machines only need to work less than 30
percent of the year.

The last experiment of table 9.6b satisfies the most assumptions of the three
other queueing models (breakdowns, finite queue of vessels and total system
with geometric load sizes). This experiment has exponential arrivals of one
type of vessel with geometric distributed load sizes and its waiting area for the
vessels is limited to only 5 vessels at a time. These queueing models, however,
seem to give much higher storage level limits than this experiment does and the
other two queueing models are closer to the results of this experiment.

9.9 Five commodities

For the terminal with five commodities, the convolution of five probability dis-
tributions can be taken to find the storage level limits for the total terminal.
To determine the probability distribution of the storage level per commodity,
the two best models for one commodity are taken; the model with the virtual
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storage level and the model of the total system with constant load sizes. But
first the parameters per commodity have to be determined.

For the model with the virtual storage levels, the values of λc, γc and r need
to be known. The commodities are respectively responsible for 30, 25, 20, 15
and 10 percent of the total throughput. The arrival rates of the trucks per
commodity, λc, are therefore this percentage multiplied with the value of λ
used for one commodity, so approximately 5.7, 4.8, 3.8, 2.9 and 1.9. The arrival
rates of the vessels, γc, are also the percentages multiplied with the previously
used γ, so approximately 0.0035, 0.0029, 0.0023, 0.0017 and 0.0012. The mean
load size of the vessels is the same for all commodities; r ≈ 1650 truckloads per
vessel. Because the number of vessels is in this model limited to a maximum of
V , γc is increased for all commodities. Let V be 5 again and increase γ with 20
percent.

Per commodity the value for x̄c,min can be determined with equation 5.3, which
then gives the probability distribution for the storage levels per commodity. By
taking the convolution of these five distributions, the storage level limits of the
total terminal are determined.

For the model of the total system with constant load sizes again trains of 1 000
ton deliver the products to the terminal and vessels with load sizes of 50 train
loads will pick it up. The values for λc are the throughput per commodity
divided by the train load and the number of hours in a year. In this model the
waiting queues at the unloading and loading station are limited by a maximum
of 3 trains and 5 vessels. The values for γc are equal to the model of the virtual
storage level and again multiplied by 1.2 to increase the outflow of the terminal
over the inflow.

The results of these two models are shown in table 9.7a. The results are of
the same order. Compared to the storage level limits of the simulation with
five commodities again the difference between the 90% and 98% limit is in the
mathematical models larger than in the simulations. The 98% storage level limit
of the queueing models is around twice this storage level limit of the case study
simulations.

Because these queueing models assume exponential arrivals of only one type of
vessel, the results could also be compared to the experiment ‘one type of vessel’.
In this way the 98% limit seems to come close by, but the other two limits are
much lower than the results of this experiment.
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Model Storage level (×1000 ton)
90 % 95 % 98 %

Virtual storage level 352 474 630
Total system with constant load sizes 363 487 647

(a) Queueing models

Experiment Storage level (×1000 ton)
90 % 95 % 98 %

Base case 241 ± 10 259 ± 11 277 ± 12
Seasonality of trucks 285 ± 34 343 ± 46 399 ± 57
Other arrival scheme of vessels 256 ± 13 276 ± 14 298 ± 16
Larger arrival delays 246 ± 8 265 ± 8 286 ± 9
Exponential arrivals 321 ± 37 350 ± 40 377 ± 41
One type of vessel 676 ± 76 708 ± 77 731 ± 76
Geometric vessel loads 960 ± 88 1 006 ± 88 1 046 ± 87
Geometric vessel loads and V2 = 5 941 ± 77 1 002 ± 81 1 049 ± 82

(b) Python, five commodities with empty initial storage

Table 9.7: Summary of results for five commodities
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Chapter 10

Conclusion

Finding the storage requirement of a dry bulk terminal is not an easy task. The
various stochastic distributions and lots of variables with large impact on the
storage level, make it hard to predict the maximum required storage level. As
mentioned in the chapter about literature, nowadays the rule of thumb for dry
bulk terminals is to have 10 percent of the annual throughput or two to four
times the largest shipload per commodity as storage capacity. For the case study
this would be 500 000 ton or 180 000-360 000 ton per commodity. Comparing
this to the results of the simulation, you could say these amounts are a bit high,
but when there is more seasonality over the year this extra storage area could
be needed.

When the terminal stores more than one commodity, it is even harder to deter-
mine a storage requirement, since it also depends on the kind of commodities
and storage area. When the storage area is one open area where the different
commodities can be placed in the same area after each other, the results of the
base case simulations with five commodities can be used. But when the storage
area consists of silos and the terminal stores different commodities that need to
be strictly separated, the total capacity of the terminal has to be larger. When
in this case one commodity has a lower storage level than usual and another
one has a peak storage, it is not possible to store the second commodity in the
same silo as the first one. So for all commodities you need to have spare space
to handle its peak volumes.

The main problem of this research was the balancing of the in- and outflow of
the terminal. A real terminal will have an inflow of products completely equal
to the outflow, since all products will be picked up sometime. In the case study
101 vessels arrived in the year of the simulation. Their arrivals were scheduled,
so exactly 101 vessels arrived in the simulation with a total workload around 5
million ton. When the arrivals of the vessels were set to a Poisson process, to
satisfy the assumptions of the mathematical models, the number of vessels that
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arrived per year could decrease to 90, but also increase to 120. When 10 vessels
less arrive in a year, around 500 000 ton of product will not be picked up, so
the storage levels will in this way be much higher than it normally would. The
trucks also arrive in a Poisson process, but since they only deliver 30 ton and
19 trucks arrive per hour, at the end of the year the total delivered amount is
not that far from 5 million ton. In all simulations without seasonality of truck
arrivals, the trucks delivered between 20 000 ton above or below the 5 million
throughput, which is not even 1 percent difference.

When in the mathematical models the in- and outflow were set equal to each
other, a symmetric random walk arises. Because in that way the probability
of an increasing storage level is equal to the probability of decreasing. But
symmetric random walks have steady state probabilities that are equal for all
states, so the upper limits for the storage level will grow to infinity.

The Poisson arrivals of the vessels is one of the reasons that the mathematical
models of this research do not give the desired results to apply them on a real
terminal. It could be that models with deterministic arrivals of vessels would
have given better results, where only the storage levels at the points in time that
vessels arrive were determined, instead of the total time horizon. Other reasons
are that some models are too much simplified to compare with a terminal and
others give numerical problems by solving it with real input.

Another problem in the mathematical models were the steady state probabili-
ties. The simulations are all run for only one year, again because a real terminal
can adjust the longer term scheduling of arrivals to control the storage level.
But since the simulation experiments are very dependent on the initial stock,
it can be concluded that in one year the steady state probabilities are never
reached. Transient probabilities are more comparable to the results of the sim-
ulations than the longer term steady state probabilities. It is also possible to
look at the probability that some storage level is reached after starting with an
empty storage, because only the maximum storage level probabilities have to
be determined.

Besides the problems of the mathematical models, the simulation also has its
difficulties. It still stays a simplification of the reality and not all aspects of a
terminal can be taken into account. For example the order of the vessels into
the terminal has a lot of impact on the storage level when there are multiple
commodities handled. But the initial stock and arrival scheme of vessels have
impact on the storage level as well, so it is hard to conclude to a best way of
determining the required capacity.

In the results of the simulations can be seen that a terminal with more com-
modities needs more storage capacity. For the case study the storage level limits
for five commodities were almost twice the limits of one commodity. The sea-
sonality of the arrivals of vessels had a lot of impact on these limits as well.
When the trucks got the same seasonality pattern or when the vessel arrivals
were better spread over the year, the storage level limits decreased a lot. When
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the delay times of the vessels became larger, the storage level limits increased
as well as the waiting times of the vessels. So the punctuality of the vessels also
has its impact on the required storage area.

A clear result of this research is the dependency of the waiting time of vessels
and the storage levels. A smaller storage area induces the increment of the
waiting times of the vessels. When there is not enough storage area to store the
load of multiple vessels, multiple vessels that arrive in a relatively short time
will always have long waiting times until new units of product arrive again to
load into the vessels. A terminal should make a good consideration about the
impact of the size of their storage area on the waiting times of the vessels.

Other subjects that can be investigated in this research area are import termi-
nals and the impact of downtimes. The results in this research are all about an
export terminal, which has other characteristics than import terminals. Sim-
ulating import terminals give other problems and will have other storage re-
quirements. Downtimes can also affect the requirements, since maintenance
and broken machines will slow down the unloading and loading processes. Dry
bulk terminals also have a lot of downtimes because of the weather. In rain or
strong wind the processes often be paused, which can lead to other results for
the storage requirement.

Further research can also be done for this case study by using different math-
ematical methods. This research focuses on queueing theory and steady state
probabilities, but, as already mentioned, transient probabilities could give bet-
ter results and also deterministic arrivals of vessels are interesting to investigate.
Or models used for insurances can be adjusted such that they are usable for this
research area. Instead of the probability of going bankrupt, we are interested
in the probability that the storage level becomes above some threshold value.
Because the storage level is partly controllable by calling more or less vessels
and trucks, decision theory models could also help finding a storage require-
ment.
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Appendix A

Arrival scheme of vessels

In this appendix the arrival scheme of the vessels is shown, which is used in
the Trafalquar and Python simulations. It shows the day a vessel arrives, the
corresponding vessel type and which commodity it will pick up.

Arrival day Vessel type Commodity
1 Panamax 4
6 Handysize 2
8 Handymax 3
12 Capesize 3
20 Panamax 2
26 Handysize 1
27 Handymax 2
31 Handymax 1
34 Panamax 1
38 Handysize 1
40 Capesize 2
46 Handymax 2
49 Panamax 5
54 Handysize 3
55 Capesize 4
61 Panamax 1
66 Handymax 3
68 Capesize 1
74 Panamax 2
78 Handymax 1
81 Handysize 1
82 Handysize 2
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Arrival day Vessel type Commodity
84 Panamax 3
88 Handymax 1
90 Handysize 4
92 Handymax 4
94 Capesize 1
99 Handymax 2
101 Handysize 1
102 Handysize 3
103 Capesize 5
108 Handymax 1
110 Panamax 2
114 Panamax 2
118 Handysize 2
119 Panamax 3
122 Panamax 4
126 Capesize 2
131 Panamax 2
135 Handymax 3
138 Panamax 1
141 Handysize 2
143 Capesize 4
148 Handymax 1
150 Handysize 1
151 Handysize 5
153 Handysize 3
154 Handymax 2
157 Panamax 3
161 Handymax 4
164 Handysize 1
165 Panamax 1
170 Panamax 5
174 Handymax 1
177 Capesize 3
183 Handymax 1
186 Handysize 2
188 Handymax 2
191 Handysize 1
192 Handymax 3
195 Panamax 3
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Arrival day Vessel type Commodity
200 Handysize 4
202 Panamax 2
207 Capesize 1
213 Handymax 1
217 Handymax 4
220 Capesize 5
228 Panamax 1
233 Handymax 2
237 Panamax 1
242 Handysize 1
244 Capesize 2
251 Handymax 1
254 Panamax 3
259 Panamax 4
265 Handysize 1
266 Handysize 2
268 Handymax 5
271 Handymax 3
274 Handymax 1
277 Capesize 3
285 Handymax 2
288 Handysize 4
289 Capesize 4
296 Handysize 3
298 Handysize 1
300 Panamax 5
305 Capesize 2
312 Handysize 1
314 Handysize 2
316 Capesize 1
323 Panamax 4
328 Handymax 3
332 Handymax 2
335 Handymax 2
338 Handysize 3
340 Handymax 1
344 Panamax 5
349 Capesize 1
357 Panamax 3
362 Handymax 4
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Appendix B

Used distributions

In this appendix the differences of the distributions used in Trafalquar and
Python are shown. The first two figures show the unloading time of a truck
of 30 ton and loading time of a vessel of 50 000 ton, both served by only one
machine. The third figure shows the distribution of the inter-arrival times of
the trucks and the last figure shows the delay time distribution of the vessels
relative to their scheduled arrival time.

Figure B.1: Unloading time distribution of truck of 30 ton
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Figure B.2: Loading time distribution of vessel of 50 000 ton

Figure B.3: Inter-arrival time distribution of trucks
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Figure B.4: Delay time distribution of vessels
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