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Summary

Traffic state is defined by the traffic variables intensity, speed and density. When two of the three
defining variables are known a traffic state can be determined. When only one of the variables is known,
additional information is needed for traffic state estimation.

INWEVA is an overview of intensities on the Dutch national roads. For the parts of the road network
that are not covered by detection loops, intensities are estimated by a model. Since only an estimation
of intensities is known for these road sections, traffic state cannot be determined directly. Additional
procedures have to be taken to estimate speed, and thus defining traffic state.

In this research the relation between intensities and speeds is studied. This research aims to give a
good estimation of speed, based on intensity data only. When speeds are known, it can be determined
whether or not congestion occurs, and traffic state is defined. The estimations of traffic state are made
by inputting intensities into machine learning models. The main question for this research is given
below and is answered by researching the appropriate machine learning technique for traffic estimation
and researching if there are additional attributes that may improve estimation. The last subquestion
tries to find an answer to whether or not characteristics of road section are transferable to other road
sections, in order to train models on other road sections than they will be tested on.

How can machine learning techniques estimate traffic state based on intensity data?

Literature review

The relation between intensity and speed is given by the fundamental diagram (figure 2.1). This
fundamental diagram consists of two parts, a free flow branch and a congested branch. In both these
branches the same intensities occur, the speed, however, is different. Because the same value for intensity
can belong to different speeds, speed cannot be directly derived from intensities.

Different researches have tried to make estimations of traffic state, only having one defining variable
available. This can be the case in speed estimation, only knowing intensities (in cases of single detection
loop data), or in estimating intensities, only having speed data available (e.g. from floating car data).
All methods that are doing these estimations need to have additional input. It is rather impossible to
find a direct relation between the traffic state variables, based on only knowing one of them.

Many different techniques for machine learning are available. Two main categories in supervised
machine learning are decision tree learning models (DTL) and artificial neural networks (ANN).
Regression is a mathematical approach that also tries to find relation between the input and output
variables. Machine learning models are trained on exemplary data and tested on another set for their
performance. Recurrent machine learning models perform well at capturing patterns where time
sequences are involved.

Methodology

Data from NDW (Nationale Databank Wegverkeersgegevens) is used for training the machine learning
models. This NDW data, that consists of intensities and speeds, is used as input to the model. This one
minute aggregate data is aggregated to a 15-minute resolution and prepared to be used by the machine
learning software. A set of locations is selected for this research and this is researched over a timespan
that covers many situations.

The estimation of traffic states consists of two parts: congestion estimation and speed estimation. The
performance of congestion estimation is measured by the f-score, which combines precision and recall.
For speed estimation the performance measure is the root mean squared error (RMSE), which gives an
indication of how much the estimation is on average apart from the measured value.

3



4

Different types of machine learning models are tested, using the weka software, for their performance.
Before testing machine learning models, regression models are tested. The inputs that are used in the
model are only intensities. Intensities from the selected location and an upstream and downstream
location. For these three locations the input is given for the time that it is estimated, as well as the
intensities on the interval before it and after it. The different models are compared to each other using
the performance measures.

Additional input attributes are tested for their influence to the model outcomes. The additional factors
tested are influence of the weather, deviation in the intensity data and the percentage of long vehicles.
The outcomes of the attribute testing is compared to the values for testing only on intensities.

The last part of this research consists of testing models that are trained on data from multiple road
sections. In the first place a model is tested that was trained on a combined training set of all roads,
including the training set of the road that is tested on. In the second place a model is tested that is
trained on a dataset that does not contain instances of the road section that is tested. These results are
compared to earlier results. In order to combine data sets, road specific characteristics were added, such
as speed limit, distance to up– and downstream location, number of lanes and what kind of bottleneck
is present. Also, the intensities are scaled to a percentage of the roads capacity, in order to make the
intensities of the different roads comparable.

Data

Thedata that is used, is NDWdata that comes fromMONICAorMONIBAS detection loops. MONIBAS
is data that is already further processed than MONICA data. MONICA, however, more often contains
data on vehicle length, this is one of the reasons also often MONICA data is used. Whenever MONICA
data is used, it is processed in the same way MONIBAS data is processed, so both sources can be used
together. Not all data does contain information on vehicle classes, most of the locations that are selected
do have information on this.

The NDW data comes in a resolution of one minute. The input for the model in this case is 15 minutes,
so it has to be aggregated to this resolution. Also the different lanes on the road are aggregated. For
the data that is used for congestion estimation, an instance is considered congested when the speed is
below 70 km/h. From this data instances are formed that can be used as an input to weka.

A total of twelve locations are selected for this research. These locations have a variety for several road
situations. Most of the selected locations contain a bottleneck. Six have a decrease in the number of
lanes, four have an on-ramp and two locations do not have a bottleneck at the site. A total of nine weeks
of data is used divided throughout the year. Three weeks are taken from October 2017, three weeks
from January 2018, and three weeks from April 2018.

Results

Different kind of models are tested and scored using the performance measure. Testing has been done
both in congestion estimation as in speed estimation. Testing these models took place at a road section
on the A27. A summary of the results of this model testing is shown in table 1. In all cases the recurrent
version of the model performs better than the non-recurrent version. Recurrent neural networks (RNN)
show both in congestion as in speed estimation the best results. A f-score of 0.90 is found for congestion
estimation and a RMSE of 9.4 (km/h) for speed estimation. Because RNNs score highest, they are used
for all other testing in this research.

Weather, vehicle classes and deviation within the intensity data have been tested as additional input
attributes for their influence on the performance of the model. The road that is tested on is a section on
the A58. This road section was chosen because this road section has information about vehicle classes
available. In figure 1 the results of this testing is shown. Information about weather does not lead to
improvement of the model. Adding information on vehicle classes and deviation in the intensity data
does improve the results significantly. Combine the latter two even gives slightly better results.
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Table 1: Results of model testing on the A27.

Con. est. Speed est.
Technique f-score RMSE
Regression / Logistic 0.61 26.2
Recurrent Regression / Logistic 0.84 23.7
J48 0.60 —
Recurrent J48 0.72 —
Random Forest 0.66 18.1
Recurrent Random Forest 0.69 15.8
Artificial neural network 0.83 19.4
Recurrent artificial neural network 0.90 9.4

base weather veh. cls. dev. flw veh. cls. + dev. flw.
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Figure 1: Results of adding additional input attributes in congestion and speed estimation on the A58.

Testing on a model that is trained on a training set that is combined from multiple road sections lead to
scores that are comparable to the scores of models that are trained on a single road section. On average
the results were slightly worse, but on average these changes are not significant. When a model that
is trained on data, in which the road section on which is tested, is not included, results become very
bad. There is hardly any estimation power left and these models should not be used for traffic state
estimations. An overview of all results on all road is given in table 2.

Conclusions

For traffic state estimation based on intensity data, the RNN is the most suitable machine learning
technique. Because of the fact that traffic state is a temporal sequence, recurrent models are always
preferred. The RNN is capable of estimating traffic state, based on intensity data. Best results are found
in cases of clear bottlenecks, where all intensity data is available, for example at lane drops.

Weather input was found not to improve the results of the model significantly. Adding information on
vehicle length and deviation in intensity data did result in a significant improvement in performance.
A combination of the latter two resulted in even slightly better results. In congestion estimation the
f-score improved by 7.8%, and in speed estimation the RMSE improved even 22.9%.

Having a model trained on a larger training set than the road section only, will lead to comparable
results as when it is trained on a specific road section only. But when the training set does not contain
instances from the road section that it is tested on, the model performs badly. This shows that the RNN
is not capable of transferring the characteristics from one road section to the other. Neural networks
seem not to be able to interpolate and extrapolate well.

Discussion

In the context of estimating speeds using intensity data of INWEVA, the results of this research cannot
be used. In order to do so, a model should be trained on known data (from other road sections) as the
use case. This research showed that doing that does not result in good estimations. For cases where it is
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Table 2: Results of different models on all road sections. (The underlined values indicate the road and value
this model was trained on.)

Congestion Estimation (f-score) Speed Estimation (RMSE)
RNN RNN RNN RNN RNN RNN RNN RNN

Road base1 add. attr.2 merged3 other4 base add. attr. merged other
A01_03 0.72 0.69 0.68 0.07 11.2 11.3 12.3 82.4
A02_02 0.66 0.66 0.72 0.50 9.7 9.2 10.1 13.8
A04_01 0.77 0.78 0.76 0.24 10.5 11.8 11.2 29.6
A04_02 0.86 0.92 0.93 0.42 8.8 6.8 7.5 51.5
A07_01 0.62 0.64 0.56 0.16 9.4 9.2 11.2 19.0
A27_02 0.90 0.89 0.85 0.66 9.4 10.5 11.3 39.6
A27_03 0.39 0.52 0.48 0.18 13.5 13.1 13.3 54.3
A28_01 0.48 0.50 0.51 0.20 15.1 14.4 14.8 22.0
A28_02 0.58 0.23 0.26 0.04 6.8 6.2 8.1 31.1
A58_01 0.81 0.84 0.87 0.26 10.4 9.7 11.3 44.7
A58_02 0.78 0.87 0.74 0.51 11.5 8.2 12.2 16.5
A58_03 0.87 0.89 0.86 0.53 10.0 9.2 9.8 14.6

possible to have a base measurement of intensities and speeds, this research shows, however, that for
situations on that same road section where only intensities are known, it is possible to make proper
estimations of the speed.

The methodology and the data have caused some limitations to the scope of this research. A lack of
data caused that situations with ramps had incomplete intensity data, because many ramps were not
measured. A limitation from the methodology is the limited number of locations that were chosen. By
choosing more road sections, the dataset could have been a better representation of the Dutch motorway
network. A limitation for the practical use is that data from the future time steps are used for estimation,
this makes it impossible to apply the model real time.

There are a few directions for future research that can be followed from this research. The most
interesting direction is carrying out the same research, but the other way round. Then a model would
be made to estimate intensities, based on speeds, using machine learning techniques. Comparing those
results to this research could give more insight in the relation between intensity and speed.

1Trained on intensity data only.
2Having added additional attributes.
3Instances from all roads are included in both the training set as the test set.
4Tested on a model that is trained on a model that does not contain instances from the same road as it is tested on.
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1 Introduction

In this introduction the context of the research is explained, the objective and the research questions
are defined.

1.1 Context

Two elements that define a traffic state are the intensity on a road and the speed that is driven. Those
two factors do not have a one-to-one relationship, which means that when only one of the two is known,
the other cannot be derived from it. In figure 1.1a the progress of both intensity and speed during
a typical day are shown. What can be seen here is that a specific value for intensity does not always
correspond to the same speed. This can be seen more clearly in the fundamental diagram in figure
1.1b, where speed / intensity combinations are plotted. Because the same intensity can belong to a low
speed (around the red line) or to a higher speed (around the green line), having knowledge about a
specific value for intensity will give no certainty on the corresponding speed.

(a) Progress of intensity and speed
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(b) The fundamental diagram

Figure 1.1: Example of the progress of intensity and speed (DatMobility, 2017) and a fundamental diagram
(Treiber & Kesting, 2013), showing that the same intensity does not always correspond to the
same speed.

In the Netherlands there is an overview of intensities on the Dutch national roads, which is called
INWEVA (meaning: intensities on road stretches). For a significant part the intensities are measured by
detection loops, but there also is a part of the network that is not covered by loops. For these uncovered
road stretches the intensities are estimated by a model (Rijkswaterstaat, 2018). For the measured road
stretches both intensities and speeds are known, since the loops that are used in the Netherlands are
double loops, that can both measure intensity and speed. For the unmeasured road stretches all that is
available is a modelled estimation of intensity.

As mentioned before, with only intensity data, speed cannot be determined evidently. This makes it
also difficult to determine whether or not congestion takes place at a road stretch, with intensity data
only. Being able to estimate or predict congestion state and speed could hugely improve the INWEVA
data for the Dutch national roads. When speed were to be linked to the corresponding intensity data, a
complete picture of traffic state for the national road system could be given. Also only being able to link
congestion to the intensities would be of great benefit, since it can be identified where bottlenecks are
located and when they are likely to be congested.

A research on identifying congestion based on intensity data was conducted by DatMobility (2017).
The intensity data that was used was measured traffic intensity with 15 minute intervals. An artificial
neural network was used to find out if it is possible to predict whether or not congestion is occurring,
based on these modelled intensities. Some good results were found at locations where often congestions
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Research objective and research questions 9

occurred by clearly identifiable bottlenecks. There is, however, improvement possible on the method
and the techniques used.

This research builds on the research done by DatMobility (2017). It has the same goal, which is
identifying traffic state, based on 15 minute intensity data. Also machine learning techniques are used
in order to achieve this goal, but more advanced techniques were applied to the problem. Also this
research goes one step further in estimation of traffic state, since it does not only try to detect congestion,
but does also try to give an indication of the speed at locations. Further this research is not limited to
single road sections, but aims to make a framework that can estimate traffic state throughout the whole
network of motorways in the Netherlands.

1.2 Research objective and research questions

Before giving an overview on how the research is conducted the objective and research questions are
formulated. The aim of this research is using machine learning techniques to give an estimation on
traffic state, based on intensity data. This will be useful for cases were only intensity data is known and
more information is desirable, such as the modelled intensities on the parts of the Dutch national roads
were traffic monitoring is not present. The formal aim of this research is generalized from this context
and is as follows:

Using machine learning techniques to give an estimation of congestion state and speed,
based on intensity data.

This aim has been formulated as a research question that was attempted to answer in the research. To
be able to answer this research question, it is divided into three subquestions, which together provide
for an answer to the main question. The main question is defined as follows:

How can machine learning techniques estimate traffic state based on intensity data?

The main question is divided into subquestions as follows:

1. What is the appropriate machine learning technique for estimating traffic state?
2. What input variables are important in the machine learning process?
3. How can a general approach be made for estimating congestion state and speed based on 15

minute aggregate intensity data on Dutch highways?

1.3 Thesis outline

This thesis starts with a literature review, which is focused on how traffic state is usually estimated and
what variables play a role in it. Also different types of machine learning algorithms are discussed. A
few examples of how machine learning can be combined with traffic engineering from literature are
discussed.

In the methodology it is explained how this research is conducted. All steps that are taken are explained
and motivated. The methodology is followed by a chapter on data collection. Choices for which data
are used, is motivated. Also the process how the data is prepared is described.

In chapters 5 to 7 the results of the research are presented. This starts with testing different types of
machine learning models, in which regression models, decision tree learning models and artificial
neural networks are tested for its suitability in traffic state estimation for a particular road section. The
best tested model is used for additional attribute testing. In the last phase of this research it is tested if
the model still has estimating power when the model is trained on multiple road sections and when the
model is trained on road sections that are not included in the test set.

In the conclusions the research questions are answered. In the discussion it is discussed how these
findings can be of practical use in the outlined context. Also the limitations are discussed and recom-
mendations for future work are given.



2 Theoretical framework

2.1 Traffic states

Traffic state is defined by the variables speed, flow, and density. The relation between these will be
discussed in this chapter, by using the fundamental diagram. This is followed by a short view on how
traffic state can be estimated, when not all variables are known.

2.1.1 Fundamental diagram

In highway traffic there are roughly two traffic regimes. In the free flow regime densities are low enough
that congestion does not appear and single vehicles can to some extend choose their own speed. In
this traffic regime speeds will generally be high. In the congested state speeds are lower than the free
flow speed. The maximum intensity is found at the place where the congested regime and the free flow
regime meet. This can be seen in figure 2.1 at the place where the green and the red line intercept.
In traffic state estimation all traffic variables that define the current traffic state need to be estimated
(Wang & Papageorgiou, 2005).
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Figure 2.1: The relation between intensity and speed (one minute intervals) in the fundamental diagram
(Treiber & Kesting, 2013).

The fundamental diagram of traffic describes the relation between the three variables that define traffic
state in stationary conditions. Those variables are speed (𝑣), density (𝜌) and intensity or flow (𝑞), that
relate to each other 𝑞 = 𝜌𝑣. Theory of the fundamental diagram assumes that these three variables
satisfy the equations 2.1 and 2.2 (Seo, Bayen, Kusakabe, & Asakura, 2017).

𝑣 = 𝑉(𝜌) (2.1)

𝑞 = 𝜌𝑉(𝜌) = 𝑄(𝜌) (2.2)

In which 𝑉 and 𝑄 represent the fundamental relations between speed-density and flow-density respec-
tively. This fundamental diagram plays an important role in traffic state estimation, because it is the
core of traffic flow theory (Seo et al., 2017). Knowing this relation means that two of the three traffic
state variables are needed to define a traffic state. The third variable can be deducted from the other
two, assuming a stationary and homogeneous flow.

A visualisation of one of those fundamental relations is shown in figure 2.1. Measurements of speed-
intensity combinations are shown as black dots. In this relation between traffic intensity and speed two

10



Traffic states 11

different traffic states can be distinguished. The green line indicates the free flow condition, while the
red line shows congested traffic flow. As can be seen in figure 2.1 a certain intensity does not always
belong to the same speed. Roughly almost every intensity can belong to the free flow regime, or to
the congested regime, with its corresponding speeds. This means that only measuring intensity will
not automatically lead to knowing the speed or the current traffic state. Knowing the regime of the
current traffic state would already give a much better view on the speed of traffic. Therefore separation
of intensities in either the free flow or the congested regime would already be very beneficial.

Another way to determine traffic state when only intensity is known, is finding the density. Finding
density, however, is difficult with the current technology. In order to find the density the number of
vehicles on a certain road stretch in one moment needs to be determined. This is only possible when
each vehicle is located at the same moment. Approaches of this can only be made when many vehicles
would continuously transmit their location, which is not the case at the moment. Therefore, to estimate
traffic state flow and speed are generally used.

What can be seen in figure 2.1 is that in the free flow traffic regime is that the green line is rather flat.
This indicates that within in the free flow regime vehicles drive their maximum speed (speed limit),
even when the intensity increases. Only with lower intensities in the free flow regime, the variation in
speeds is higher, which is probably caused by freight traffic at night, which drive at lower speeds. The
flow-speed dots in the fundamental diagram are aggregate values, so the speed is a average speed for
a certain interval. This means that when the share of long vehicles (with a lower speed limit) in the
interval is higher, the average speed will be lower, even though there are free flow conditions.

An interesting place in figure 2.1 is the place where the red and green line meet. This is the place
with the maximum capacity during congested situations. In free flow conditions the capacity can be
higher. When the traffic state changes from free flow conditions to congested conditions a capacity drop
occurs (Treiber & Kesting, 2013). This means that as long as there is a congested situation, the free flow
capacity cannot be reached. If the dots between consecutive flow-speed combinations were connected
the effects of hysterics could be shown and it could be seen that the intensity needs to drop significantly
during congested situations, before the system can recover again to free flow conditions. Because of
these sequences, it is important to look at the history of traffic state when defining a current traffic state.

For the relation between intensity and speed, also the location and time play a role and the fundamental
diagram function can be expressed as𝑄(𝜌, 𝑡, 𝑛, 𝑥), in which 𝜌 is the density, 𝑡 the time, 𝑛 the type of
vehicle and 𝑥 the location (Seo et al., 2017). Therefore factors as these are important to consider when
discussing the intensity-speed relation.

For the location it is important to know the road configuration, e.g. the number of lanes, whether it is
located just before or after a bottleneck or if it is on a rather constant part of the road (no bottlenecks
near and no changes in the number of lanes). For the time it is important to consider the traffic state of
time intervals before the current time interval. The traffic state could come from a congested state, or
from free flow conditions, or from a transition phase of evolving or resolving congestion.

2.1.2 Traffic state estimation

A traffic state is defined when two of the three defining variables (𝜌, 𝑣, and 𝑞) are known. When this
is not the case, and only one of the variables is known, techniques are needed to make a traffic state
estimation. As described before density is a variable that is hard to measure, therefore to find a relation
between traffic flow and speed would help increase the quality of traffic estimation

In uncongested conditions there are functions available to say something about the relation between
flow and speed. The most well known is the function of the Bureau of Public Roads (BPR function)
(Irawan, 2010). This function is shown in equation 2.3, where 𝑇 is the travel time, 𝑇0 the free flow
travel time, 𝑣 the flow and 𝑐 the capacity. 𝛼 and 𝛽 are parameters. This function is proven to give a good
estimate on travel times (which can be considered average speeds). In congested conditions however,
where the flow that attempts to use a link exceeds the link’s capacity, the output of this function becomes
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unreliable.

𝑇 = 𝑇0 �1 + 𝛼 �
𝑣
𝑐
�
𝛽
� (2.3)

Instead of finding a direct relation between flow and speed, finding a relation between speed variance
and flow could be an intermediate step. Blandin, Salam, and Bayen (2011) have researched this relation
and found results as displayed in figure 2.2. In general it was found that higher flows lead to lower
speed variances. These speed variances are measured per individual vehicle, under stationary conditions.
In the research of Bulteau, Leblanc, Blandin, and Bayen (2012), however, a positive relation between
those two variables was found. This positive relation is caused by the differences in speed between lanes.
Those findings mean that under certain conditions, it is possible to say something about flow, when
knowing the variance in speed and vice versa .

Figure 2.2: Relation between flow and speed variance (Blandin et al., 2011)

A better relation was found by Blandin et al. (2011) between speed and flow directly. Some examples
are shown in figure 2.3. Certain relations between the two variables can be seen here, in the form the
fundamental diagram also has (figure 2.1). But this form is not always the same and often it is unclear
where the separation between the free flow and the congested regime is situated. The duality of some of
the intensities (it is unclear whether an intensity belongs to the free flow or the congested regime) is not
fully clarified by these relations.

Making estimations of speed, based on flow data have often been carried out by researches that do
this based on single loop detectors (Coifman, 2001; Coifman & Kim, 2009). Making assumptions
on or calculations of vehicle lengths is the base of these estimations. Jain and Coifman (2003) have
conducted a research that is not based on this fact, but uses traffic flow theory principles to identify
erroneous speed estimates. In this research data from adjacent lanes is combined to improve and filter
bad estimations. This led to a significant improvement in speed estimations.

Also research was done on estimating flow, based on knowledge of speeds. Altintasi, Tuydes-Yaman,
and Tuncay (2017) find that even though having only average travel speed information, it is still possible
to detect critical patterns on urban roads. Those patterns were not real flows, but it were states as ‘free
flow’, or ‘dissolving congestion’ etc. Seo et al. (2017) state that without additional assumptions it is not
possible to derive traffic state from only knowing speed (from floating car data). Always a fundamental
diagram is needed for estimation, that needs to be calibrated on stationary data (Seo et al., 2017).

Those researches show that under conditions it is possible to make estimations of speed based on flow
data and vice versa. A very clear relation between those two traffic state defining variables, however,
cannot be shown, there is always additional data needed to say something about its relation. The main
difficulty in estimation is caused by the duality from the fundamental diagram in the speed flow relation.
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Figure 2.3: Relation between flow and speed (Blandin et al., 2011)

2.2 Machine learning in traffic engineering

Machine learning algorithms can be used for numerous different tasks. The most well known example
for this is image recognition. In this case an image is shown to the computer and the computer will
recognise the object. But its applications are much broader than image recognition. In this chapter
some well known machine learning techniques are discussed. Also the application of machine learning
in the field of traffic engineering is discussed.

2.2.1 Regression

Before discussing machine learning techniques, the principles of regression are discussed, since regres-
sion is more or less a basis of machine learning. In regression, input variables are taken to predict an
output variable, based on known examples (a training set). In contrast to machine learning, which is a
black box, regression uses mathematical functions in order to make a proper prediction on a certain
output variable.

Regression works by finding a function ℎ𝜃(𝑥) that comes closest to the values 𝑦 of the training set.
When 𝑦 is only dependent on one variable 𝑥, a cost function 𝐽 can be defined, based on the function
ℎ𝜃(𝑥(𝑖)) = 𝜃0 + 𝜃1𝑥(𝑖). This cost function for 𝑚 samples is given in equation 2.4 (Ng, 2018). This
cost function equals the mean squared error (MSE) between the estimated set and the set of the real
values. Minimization of the cost function 𝐽(𝜃0, 𝜃1)will find the values for 𝜃 that makes the best possible
predictor for 𝑦, based on this regression technique. The cost function can be minimized using the
method of gradient descent, which is discussed in chapter 2.2.3 on artificial neural networks.

𝐽(𝜃0, 𝜃1) =
1
2𝑚

𝑚
�
𝑖=1

(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖))2 (2.4)

Often 𝑦 is not dependent on only one variable, but there are multiple variables involved. The function
ℎ𝜃(𝑥) that describes 𝑦 in this case can be written as in equation 2.5 (Ng, 2018), in which 𝑥0 = 1 for the
convenience of writing it vectorized. To find the values for 𝜃 the algorithm in equation 2.6 can be
used for all features 𝑗 of the regression model. In this algorithm 𝛼 is the step size for the convergence of
the model (Ng, 2018).
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ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 +⋯+ 𝜃𝑛𝑥𝑛

= �𝜃0 𝜃1 ⋯ 𝜃𝑛�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥0
𝑥1
⋮
𝑥𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝜃𝑇𝑥

(2.5)

repeat until convergence: {

𝜃𝑗 ∶= 𝜃𝑗 − 𝛼
1
𝑚

𝑚
�
𝑖=1

(ℎ𝜃(𝑥(𝑖)) − 𝑦(𝑖)) ⋅ 𝑥(𝑖)𝑗 for j := 0 ... n

}

(2.6)

The difference between regression and other machine learning techniques is that with regression the
classification of data is based on mathematical rules and formulas. While with machine learning, the
algorithm learns by example, instead of by rules. This makes that regression can be used for problems
in which correlation can be easily found. In other cases, for example when it is not clear why a certain
correlation is caused, or when the most accurate prediction possible are desired, machine learning
techniques are a good alternative (Stewart, 2019).

2.2.2 Decision tree algorithms

A decision tree is a model for supervised learning, in which the local region is identified in a sequence
of splits (Alpaydin, 2010). The model is made of decision nodes in which a certain property is tested
and dependent on the outcome a different path is chosen. By doing this all data is split into categories
that will be identified by going through all steps. A simple example can be seen in figure 2.4. For each
decision that is to be made a boundary needs to be found between two classifications. The main strategy
that is followed by a decision tree algorithm is ‘divide-and-conquer’, this means that the problem is
divided by the nodes in the tree, and it is attempted to make the division in each step as big as possible,
in order to reduce the amount of decision nodes.

Figure 2.4: Decision tree inwhich theboundaries are shownas lines and the classifications as shapes (Alpaydin,
2010).

Decision trees are often used for classification problems. Advantages of decision tree models to more
complex models, which may be more accurate, is that the model is very interpretable. The model can
be written as a set of if-then rules and can be relatively easily understood by humans with knowledge in
the field of application (Alpaydin, 2010).

2.2.3 Artificial Neural networks (ANN)

A machine learning algorithm that is widely studied is the artificial neural network. Those neural
networks consist of at least three components, which are the inputs, the hidden units and the outputs
(Nielsen, 2017). Those three components can be regarded as layers of units, in which all units from
each layer communicate with all units from all adjacent layers. In figure 2.5 a basic neural network is
shown.
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Figure 2.5: A simple neural network with one hidden layer (Bishop, 2006).

In a neural network, the nodes are called the neurons and can take any value between 0 and 1. All
connections between the layers are weighted and so the value of the neurons in the next layer can
be determined. The output of the neuron is determined by an activation function, often the sigmoid
function (as can be seen in equation 2.7) is used for this. The 𝑧 in this function is a linear combination
of all inputs and a bias and can be denoted as ∑𝑗𝑊𝑗𝑋𝑗, in which 𝑋 represent the inputs (and the bias
𝑋0, which always takes a value of 1) and𝑊 the weights (Nielsen, 2017). The reason that the sigmoid
function is applied is to scale the output to values between 0 and 1. Another scaling function that is
often used is tanh (𝑧) which scales between -1 and 1.

𝜎(𝑧) =
1

1 + 𝑒−𝑧
(2.7)

As stated, the values for 𝑧 are determined by a linear combination. An example of this in matrix notation
can be seen in equation 2.8 for the first step from the inputs 𝑋1...𝑋𝐷 to the hidden layer 𝑍1...𝑍𝑀. A
similar transition is made in the step between the hidden layer 𝑍1...𝑍𝑀 to the output layer 𝑌1...𝑌𝐾. In
these neural networks the first layer of neurons represent the inputs of the neural network (which is
shown as 𝑋1...𝑋𝐷 in figure 2.5, 𝑋0 denotes the bias). In image recognition for example, every neuron
in this network could represent the darkness of one pixel on a scale from 0 to 1. But in traffic engineering
other inputs features can be given, such as present or past intensities together with the properties of the
road.
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(2.8)

The output layer (𝑌1...𝑌𝐾 in figure 2.5) provides the information that is requested. In the situation
of traffic state estimation using intensity data this would be either a binary classification such as ‘free
flow’ or ‘congested’, but it could also be more specific such as a real speed, or a range within the speed is
expected to be. The output layer can be seen as a vector, in which all entries represent a classification.
The number this vector entry (output neuron) holds, can be seen as a probability that given the input
this classification would be correct.

Between the input and the output layer, there is the hidden layer. This layer is called the hidden layer
since it will never be completely clear what the values these neurons hold exactly mean. However,
behaviour of single neurons can be studied and some logical patterns may be found. In this way it may
be cleared up what the hidden layer ‘thinks’, when it is trained.
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The properties of a neural network are defined by the weight matrices. Finding good values for these
weights is done by training the network. In order to do this all weights are initiated randomly and after
this gradually improved, until satisfactory weights are found. This is done by trying to minimize the
error function. This error function gives the distance between the model output and the known answers
from the training set. In equation 2.9 an error function is given (Bishop, 2006) for a training set of
size 𝑛. In this function 𝑡𝑡𝑡𝑛 stands for the target vector.

𝐸(𝑤𝑤𝑤) =
𝑁
�
𝑛=1

𝐸𝑛(𝑤𝑤𝑤) =
1
2

𝑁
�
𝑛=1

||𝑦𝑦𝑦(𝑥𝑥𝑥𝑛,𝑤𝑤𝑤) − 𝑡𝑡𝑡𝑛||2 (2.9)

This error function is often minimized with the method of gradient descent (Nielsen, 2017). With this
method the weights are updated in order to make 𝐸(𝑤𝑤𝑤) smaller. This updating of weights takes place
as in equation 2.10 (Bishop, 2006), in which 𝜏 denotes the iteration step and Δ𝑤𝑤𝑤(𝜏) a weight vector
update, which in case of gradient descent is given by the gradient vector of the error function ∇𝐸(𝑤𝑤𝑤). 𝜂
is the learning rate of the method.

𝑤𝑤𝑤(𝜏+1) = 𝑤𝑤𝑤(𝜏) + Δ𝑤𝑤𝑤(𝜏) = 𝑤𝑤𝑤(𝜏) − 𝜂∇𝐸(𝑤𝑤𝑤(𝜏)) (2.10)

To find the updated weights𝑤𝑤𝑤(𝜏+1), ∇𝐸(𝑤𝑤𝑤) needs to be determined. For the network shown in figure
2.5, it can be found that

𝜕𝐸𝑛
𝜕𝑤(2)

𝑘𝑗
= 𝛿𝑘𝑧𝑗 and

𝜕𝐸𝑛
𝜕𝑤(1)

𝑗𝑖
= 𝛿𝑗𝑥𝑖 (2.11)

in which

𝛿𝑘 = 𝑦𝑘 − 𝑡𝑘 and 𝛿𝑗 = (1 − 𝑧2𝑗 )
𝐾
�
𝑘=1

𝑤𝑘𝑗𝛿𝑘. (2.12)

By iteratively updating the weights, by calculating the gradient of the error function, using the updated
weights, a satisfactory low value for the error function may be found in a local minimum of the error
function. It is hard, or often impossible, to claimwhether or not a local minimum is the global minimum.
Therefore it may be useful to repeat the procedure with different initial – random – weights, since
different local minima may be found. Although the method of gradient descent is commonly used,
also other optimization methods are available as the Levenberg-Marquardt method and the Genetic
algorithm (Ma, Tao, Wang, Yu, & Wang, 2015).

The main differences between machine learning methods such as decision tree algorithms and neural
networks is that within decision trees it is relatively simple to see what happens in the model, while
a neural network is more a ‘black box’ model, in which the algorithm learns by non-visible iterative
steps. As it is easy to see how the decisions which are made within a decision tree algorithm separates
different classes, it may be very difficult to find a proper decision tree when patterns within the available
data are hard to find.

In artificial neural networks, logical patterns do not need to be the input to the model in order to make
a classification of the data. The neural network iteratively optimizes its result for the given training data.
This makes it a good method for classifying data in which patterns cannot be found or are very hard to
identify. However, sometimes ANNs give good results on training data, because it optimizes for this,
but fails to do so on other data.

2.2.4 Deep neural networks (DNN)

The difference between a ‘normal’ neural network and a deep neural network is the amount of hidden
layers. In a conventional neural network there is only one hidden layer and only the amount of neurons
is variable. In a deep neural network there are multiple hidden layers. This can range from a few hidden
layers to over a hundred (MathWorks, 2017). In figure 2.6 the architecture of a deep neural network is
shown.
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Figure 2.6: A deep neural network with multiple layers (MathWorks, 2017)

Advantages of deep learning networks compared to normal neural networks are improved accuracy
of predictions made. Since there are many more connections to be made when there are more layers
present. At the same time the large number of connections in a neural network has some disadvantages.
In the first place it will take much longer to train the network. The fine-tuning of weights is the method
to train the network, so with many more weights this fine-tuning will take much more time.

Since deep neural networks are more sophisticated than normal neural networks because of the higher
amount of hidden layers, it can be trained so that for the training and the test data it will give very
accurate results. However, this does not automatically mean that the network is of good quality. When
the amount of connections is much higher than the amount really needed, the ‘training’ of the network
will at some point become optimized for the provided data, instead of finding patterns that can be
applied to other cases. So it will always be needed to evaluate the complexity of the network that is
needed for the particular problem.

2.2.5 Recurrent neural networks (RNN)

Another variant on the neural network is the recurrent neural network (RNN). In this network the
input is not only fed forward, but feedback loops are included, an example of such a network can be
seen in figure 2.7.
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Figure 2.7: A recurrent neural network, in which the output layer is fed back to the hidden layer (Quiza &
Davim, 2009)

In an ordinary neural network all inputs are sent through the network at once, so a single output is
given. In a RNN time plays a role and the output is not determined instantly but with time steps. In
every next step the output of the network will be fed back to the hidden layer. In this way with every
next time step the output will change (Nielsen, 2017).

RNNs are good for the capturing evolution of traffic flow, volume and speed. Since RNNs use internal
memory units for processing arbitrary sequences of inputs, RNNs have the capability of learning
temporal sequence (Ma et al., 2015). Traffic patterns are defined by temporal sequences of the traffic
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state variables, therefore RNNs are expected to capture patterns in a better way than ordinary ANNs.

2.2.6 Use for traffic state estimation

Several researches have been conducted on using big data / machine learning in traffic engineering.
Most of these researches are about traffic flow prediction, but there are also some papers on traffic state
estimation. Giving this short overview will help to see what techniques were found useful for which
application in traffic engineering.

Most of the applications of machine learning within the field of traffic engineering are about forecasting
the near feature, based on current traffic variables. Good results have been found by using (deep) neural
networks for the short term prediction on traffic flow (Polson & Sokolov, 2017; Zhu, Cao, & Zhu, 2014)
and using several machine learning techniques on short term prediction of traffic speed (Ma et al.,
2015; Fusco, Colombaroni, & Isaenko, 2016). The challenge for this research, however, is not to make a
forecast of traffic state, but to define traffic state when only one of the defining variables is available.

DatMobility (2017) has conducted a research on using an ANN to make an estimation of whether or
not there is congestion, based on 15 minute aggregate data of modelled traffic flow. The input for this
model intensity data was used. These intensities are from the road stretch for which the classification
is made, as well from the road stretch upstream and downstream. The intensities that are used are
the intensity of the moment for which the state of congestion is estimated and three data points of 15
minute aggregate intensity before that. So for the input intensities variation was made both in time and
space. The research showed rather good results on the training set, but for other situations it mostly
failed to detect congestion, so likely the ANN that was used was trained for the specific situation, in
stead of being a generic model. This could have been caused by model overfitting, but it is more likely
that there were characteristics of the specific road situations that were not included in the model. It is
hard to say which characteristics this were exactly, but missing those makes that a model trained one
road situation is not transferable to other locations.

2.2.7 Comparison of techniques

Regression is a non-machine learningmathematical approach for classifying data based onmathematical
rules, while machine learning techniques learn by example and are therefore useful when a clear relation
between input variables and the classification cannot be found. Within machine learning, two methods
are decision tree learning and artificial neural networks. DTL divides the data into categories and by
doing this a tree with branches and leaves is constructed. ANNs take input data and process it through
hidden layers of neurons, in order to make a prediction of a specified category.

Variants on the ANN are the deep neural network and the recurrent neural network. The advantages
of such more complex networks is that its results are often more accurate. RNNs can be useful when
changes during time are important for the classification of data. Drawbacks of these more complex
techniques are more calculation time and that it may become harder to correctly interpret the results.

When using DTL techniques it is very clear what the output of the machine learning is. It will be a set
of rules on which decisions are made, that makes it useful for finding how the input variables are used
within the model. RNNs are made for situations when patterns in time series are to be found, which is
the case when classifying speeds base on intensity series. Because of the properties of these techniques
it is chosen to apply these in the research.
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The approach that is used in order to be able to answer the research question is discussed in this chapter.
Since the final aim of this research is to come up with a model that is able to estimate traffic state from
intensity data, all steps that are taken will serve this goal. The following steps will be taken:

1. Collection of data;

2. Testing different kind of models;

3. Testing additional input attributes;

4. Testing multiple roads.

This methodology explains how those steps are taken.

3.1 Data collection

3.1.1 Data selection and gathering

In order to research the relation between intensity and speed patterns on highways using machine
learning techniques, data needs to be acquired. This needs to be highway data where speed is linked to
flow, in order to train a supervised machine learning model. Also this data should be diverse in terms
of road properties, because otherwise the model could train for one specific situation. Within this data
locations in which congestion occurs have to be included.

For the road stretches the data is acquired from the ‘Nationale Databank Wegverkeergegevens’ (NDW,
2018), which has a tool for downloading historical highway data on a one minute time resolution. The
definition for road stretch will be derived from this NDW data. A road stretch or a road section is
defined as the road around a detection loop. The beginning of this section is the upstream detection
loop and the end the downstream detection loop.

Using NDW data means that the model is trained on measured intensities and not on modelled
intensities, which is a use case for this research. But it is assumed that it is better to train a model
based on measured intensity and measured speed data, than when modelled intensity data is linked to
measured speeds.

For doing this research twelve locations are selected, that have a certain diversity on road characteristics.
Most locations need to have an identifiable bottleneck, because these locations are expected to have
the properties to make good estimations. Also locations without a bottleneck are included. All those
locations need to have detection loop data available on its location, as well upstream and downstream
from the location. For the researched location speed information must be available, for the upstream
and downstream location intensity is enough.

In this research, complex road situations, such as weaving lanes at motorway intersections, peak lanes,
motorways where transit traffic are separated from local traffic and other complex situations, other than
lane drops and ramps, are not included in this research. Those situations are hard to fit in the model
because of their specific characteristics. Using the format in this research where only intensities are
used from the location (and upstream and downstream), would not be possible.

Testing the different types of machine learning models is done on a selected road section that has a very
clear bottleneck, so good estimation can be made on the traffic state. Also for testing which additional
properties, a location with a clear bottleneck is selected. This location must have information on vehicle
length available, because this is one of the additional properties that the road is tested on.

19
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For the selection of the road stretches a diversity is pursued. This means those road stretches will differ
in the number of lanes, their place in the network, whether or not on– and off ramps are present, being
upstream or downstream of a bottleneck and speed limit. This diversity will be in both the training
and the testing data. For all road stretches both speed and intensity have to be known, as well for the
researched road stretch as the road stretches up– an downstream. Not all this data can be acquired by
NDW, but Google Maps is used to gain additional information.

Other properties of the researched road stretches that are needed are the speed limit at the time, whether
or not an on– or off ramp is present, the number of lanes and for the up– and downstream road stretch,
the distance to the researched road stretch and whether or not there is a lane drop. All those features
are listed in table 3.1. These properties are included because they are the main characteristics of the
road. These properties will vary for each road section, so information on these properties is needed to
identify the type of road. Having all properties that define a road situation included in the model may
make it possible to use another road section for testing and for training.

Table 3.1: Input to machine learning model

Selected road stretch Upstream road stretch Downstream road stretch
Speed 𝑡0 — —
Intensity 𝑡0, 𝑡−1, 𝑡+1 Intensity 𝑡0, 𝑡−1, 𝑡+1 Intensity 𝑡0, 𝑡−1, 𝑡+1
— Distance to selected road

stretch
Distance to selected road
stretch

Speed limit Speed limit Speed limit
Number of lanes Number of lanes Number of lanes
On-ramp lane present On-ramp lane present On-ramp lane present
Off-ramp lane present Off-ramp lane present Off-ramp lane present
Presence of lane drop Presence of lane drop Presence of lane drop

3.1.2 Data preparation

Applying machine learning techniques will be done by using weka. Weka is a software package that
includes many different machine learning algorithms (University of Waikato, 2019). Algorithms that
are included are regression methods, decision tree learning models and neural networks. Weka is
originally a Java based program that can be used using a GUI or in Java. There is a Python API available
(Python-weka-wrapper, 2019), that is used in the research to include the weka models in the other
program code.

The gathered data needs to be put in a form that it can be used by the weka software. But first the data
needs to be aggregated in the way the data will be used. In order to be comparable to the research by
DatMobility (2017), and to be applicable for comparable causes, it is chosen to aggregate the data to 15
minute data, because the modelled data that this research will be used for, also has a time resolution of
15 minutes.

Since NDW highway data comes with a resolution of 1 minute, this has to be changed. For intensities
this is relatively easy, since all intensities can be added to each other. The best way for aggregating speed
is calculating the space mean speed. This is not as straightforward as calculating the time mean speed,
which is just a weighted average of all the speeds of every one minute data interval of the vehicles that
pass. A way for finding the space mean speed is shown in equation 3.1 (Soriguera & Robusté, 2011).
This will be applied in aggregating the speed data from one minute to 15 minute intervals. It has to be
noted that the original one minute aggregate data consists of time mean speeds, this cannot be changed
to space mean speeds. This means that the 15 minute aggregate speed value is not the true space mean
speed, but an approximation of the space mean speed.

𝑣𝑠 = 𝑣𝑡 −
𝜎2𝑡
𝑣𝑡

(3.1)
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Whenever an erroneous data entry is found, it is removed from the dataset if it is possible to still keep
reliable data. This means that when for one aggregated 15 minute data point for example one minute of
a certain vehicle category is missing, the data point can still be determined in a reliable way, since most
data is available. In the case many data are missing or corrupted it is considered to delete that certain
day for that certain road stretch from the dataset, since it may influence the model too much. If this is
the case another day will replace this day of data, this will be a day that is the same day of the week and
close to the original day that was used in the model. If structural errors or missing data is found for a
certain road stretch, it is decided to replace this road stretch with a similar road stretch, that has no
structural errors in the data.

3.2 Testing several models

When the data is prepared in the format that is needed for weka, the models are trained. It is chosen to
train both a decision tree learning model (DTL) and a recurrent neural network (RNN). But before
training these machine learning models a regression model is applied, in order to see the performance
of linear regression.

The DTL model can be useful, because it can give a good insight in what happens in the model, because
this will divide characteristics into branches and leaves. Also it has not been tested yet for this particular
problem. RNNs are good in working with time series, and will probably give in this situation better
results than ANNs, which are tested in the research of DatMobility (2017).

Since these models are only applied to one single road stretch, the speed limit, number of lanes and
the prevalence of ramps will be constant on this road section, therefore they will not be included as
an input to the model. The input that remains is the intensity data of the researched road stretch, the
intensities up– and downstream and the distances to this up– and downstream locations. For testing
the additional input attributes, these attributes are added to the intensities.

For congestion estimation multiple performance measures can be used. The most simple measure
is the accuracy, which simply gives the percentage of correctly identified instances. A disadvantage
of this measure is that in cases with a low number of congested instances, identifying all instances
as not congested will lead to a very high accuracy. That is why it is chosen not to use accuracy as a
performance measure. The measure that is used in this research is the f-score, which can be seen in
equation 3.2. The f-score is a compromise between precision and recall. The precision is the share of
correctly identified cases of congestion of the total number of congestion identifications. The recall is
the share of correctly identified cases of congestion of the total number of cases of congestion. These
two measures include the number of false positives and false negatives. The f-score gives a better view
on whether or not the model is able to capture congestion than precision and recall separately.

F1 =
⎛
⎜⎜⎜⎝
precision−1 + recall−1

2

⎞
⎟⎟⎟⎠
−1

= 2 ⋅
precision ⋅ recall
precision + recall

(3.2)

For estimating speed the root mean squared error (RMSE) is the performance measure that is used
(equation 3.3, in which �̂� are the estimated speed values and 𝑌 the measured speeds). Other measures
are available, such as the MASE (mean absolute scaled error), which just calculates the average of all
errors. The advantage of the RMSE is that it gives a larger penalty to larger errors. This is useful in the
researched situation, since the data can be roughly divided into congestion and free flow and having a
larger penalty for larger errors, gives a big punishment for estimated speeds that are free flow and are
estimated congested and vice versa.
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1
𝑛
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(𝑌𝑖 − �̂�𝑖)2 (3.3)
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The model that is found to have the best results is used for the other parts of this research. Because it is
expected that this model will also be best fitted for all other uses of the model, such as attribute testing.
The best model will be validated by testing on the other road sections.

3.3 Testing additional attributes

In order to improve the results of the testing on a single road stretch, the influence of additional attributes
is tested. These attributes are added to the intensities that originally were the only input to the model. A
road section is selected for carrying out those tests. The following three attributes are tested:

1. Weather information;

2. Percentage of long vehicles;

3. Deviation in the intensity data.

For information on the weather KNMI data is used from a nearby station. KNMI has data on whether
or not bad weather circumstances have occurred during a certain period. For most locations there is
information available on the share of long vehicles, this data can be acquired from the NDW data. The
last value that is tested is the deviation in intensity data. Because all data was aggregated to 15 minute
intervals from one minute intervals, it is possible to calculate the standard deviation of the intensity of
these intervals. This deviation can be an indication of changing circumstances.

Whether or not these three factor have influence is tested by comparing the f-scores and RMSEs to the
base test, where only intensities are fed to the model. If a positive change is registered, this additional
attribute can be of extra value to the model. The attributes that contribute positively to the model are
also combined and tested. The best configuration found will be validated on the other road sections.

3.4 Testing on a set of multiple roads

At first the machine learning models were trained for the researched road stretches only, this means all
selected road stretches are trained individually and tested individually. Now a general classification
model will be made. In contrary to the previous part of the research, where only one road stretch was
researched, now different road stretches together will serve as an input to the model. This means that
also a variety in road properties is introduced at this point. So from this point onwards the speed limit,
the amount of lanes and the prevalence of ramps are used as an input. Also intensities are normalized,
in order to make them comparable to each other. This has been done by representing intensities as a
percentage of the roads capacity. This capacity is determined by the value in which 99% of all values on
that road are lower than the capacity value.

This part of the research consists of two parts. In the first part all road sections are combined in one
training set and tested on each road individually. This makes it possible to see if adding multiple roads
as an input confuses the model, or whether it is still possible to make proper estimations. The results of
this testing are compared to the results of testing on models that are trained on one specific road.

In the second part the models will be tested on roads that are not included in the train set. This must
show if it is possible that properties of the roads are transferable to other roads, so still good results can
be found. Also here the finding are compared to the results of specific road testing.



4 Data collection

The data that is used to train a speed estimation model contains data of both traffic speed and intensity.
In this chapter it is discussed which data is obtained, how it is processed and what are the properties of
the data.

4.1 Data Sources

Two main sources for traffic analysis are available, which are loop detector data and floating car data.
Since for floating car data a good estimation of speed can be made, but it is very hard to give a good
indication of traffic flow, detector data is the preferable data source to use for this research and this is
used for this research.

4.1.1 MoniCa / MoniBas

In the Netherlands many highways are equipped with the MoniCa detector system, which is a double
loop detector in the road that is able to measure both speed and intensities. MoniBas is the name for
the processed data from MoniCa. MoniBas checks the MoniCa data for reliability and missing data (De
Jong, 2012).

NDW (Nationale Databank Wegverkeergegevens) is a corporation of several administrations in the
Netherlands, such as provinces and Rijkswaterstaat. NDW gathers, manages and distributes traffic data
in the Netherlands, that can be used for traffic information and traffic studies. It also makes detector
data for the roads in the Netherlands available. MoniBas data, and also raw MoniCa data at some places
is available in this data set. This dataset is the data source that is used for this research.

Figure 4.1: MoniCa and MoniBas locations where the data is divided into vehicle classes.
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4.1.2 Characteristics of the data

All MoniCa and MoniBas data from NDW contain information on both intensities and speeds. This is
available for each individual lane in one minute intervals. Some of the MoniBas data makes a distinction
between different vehicle classes, also the raw MoniCa data does this. All passing vehicles are divided
into three length categories (which can be found in table 4.4).

This distinction can be used to see differences in speed between different vehicle classes or can be used
to determine the percentage of long vehicles. This share of long vehicles is a property that is researched.
Not all MoniBas data makes this vehicle length distinction, many data entries only provide the class
‘anyVehicle’, in which all lengths are aggregated. In figure 4.1 it is shown at which locations in the
Netherlands MoniCa and MoniBas data is available that have the different vehicle classes, these are the
best locations for using in this research.

4.1.3 Data completion

When a minute of data is missing or corrupt, MoniBas completes the data if the duration of the missing
data is not more than 5 minutes. Within the MoniBas system there is a check for whether or not data is
correct. Sometimes the vehicle categories are only available in the MoniCa data and not in the MoniBas
data. In this case MoniCa data is used and processed in a way that is is usable, such as the MoniBas data.

Whenever there is corrupt of missing data, a gap within the time line of data points evolves. MoniBas
does fill in the values of this gap, if the length of the gap is not more than 5 minutes. For completing
the data the last accepted minute value (𝑡1) from before the gap of missing data and the first accepted
minute value (𝑡2) from after the gap are used. For the minutes in between (never more than 5), the
value for intensity (𝐼) or the speed (here defined as 1/𝑣) are chosen on the linear interval between the
values of 𝑡1 and 𝑡2, as can be seen in figure 4.2 and in equations 4.1 and 4.2 (NDW, 2013). Whenever
MoniCa data is used and data is missing, the same rules as for completion of the MoniBas data are
applied.

𝐼𝑡 = 𝐼𝑡1 + (𝑡 − 𝑡1)
𝐼𝑡2 − 𝐼𝑡1
𝑡2 − 𝑡1

(4.1)

1
𝑣𝑡

=
1
𝑣𝑡1

+ (𝑡 − 𝑡1)
1/𝑣𝑡2 − 1/𝑣𝑡1

𝑡2 − 𝑡1
(4.2)

In which 𝐼𝑡 is the interpolated value for intensity and 𝑣𝑡 the interpolated value for speed. 𝑡1 indicates
the time of the last known value before the gap and 𝑡2 the time of the first correct value after the gap.
This interpolation is applied for all minutes within the gap, making the time series complete again.
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Figure 4.2: Completion of missing data in MoniBas. The blue points indicate normal data points in the dataset,
the gap between 𝑡1 and 𝑡2 that came frommissing or corrupt data is filled with interpolation, based
on the last value before and the first value after the gap. When the gap is no longer than 5minutes,
this results into a continuing stream of data points.
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4.2 Locations

A total of twelve locations have been selected for this research. These locations cover different kind of
road situations. Most of these road situations are bottlenecks, but also situations without bottlenecks
are researched. Different kind of road section have been researched, because the goal is to create a
model that can estimate speeds on a wide range of locations

The reason that many bottlenecks are researched, is that at these locations the relation between intensity
and speed is expected to be most easily demonstrated. At a bottleneck it is most times very clear what is
the cause of congestion and congestion will occur regularly. Especially lane drops are bottlenecks that
can well be fit into models, because in contrary to ramps, all traffic stays on the same road, there is no
traffic leaving or entering the road.

In table 4.1 an overview is given of the locations, which are put on a map in figure 4.3. As can be
seen six of the selected location contain a lane drop. four have an on-ramp and two have no particular
bottlenecks. Most locations have information available on the length of the vehicles, just two do not.
One location on the A27 near Breda is located on a bridge, which causes the lanes to be more narrow
than normal lanes, which may be regarded as a flow preserving bottleneck. Another case that is unique
in these locations is the A58 near Breda, where two motorways are merging. This can be seen as an
ordinary lane drop, but upstream there is not one road, but there are two different roads.

Table 4.1: Specifications of the locations in this research.

location # lanes speed on off lane length bottleneck
limit ramp ramp drop info

A01_03 3 130 no no yes yes lane drop
A02_02 2 130 yes yes no yes on ramp
A04_01 3 100/130 no no yes no lane drop
A04_02 2 100 yes no no yes on ramp
A07_01 2 130 no no no yes none
A27_02 3 130 no no yes no lane drop
A27_03 2 130 yes no no yes on ramp /

narrow lanes
A28_01 2 120/130 yes yes no yes on ramp
A28_02 3 120 no no no yes none
A58_01 3 120 no yes yes yes lane drop
A58_02 3 130 no no yes yes lane drop
A58_03 3 130 no no yes yes lane drop /

merging highways

4.3 Time periods

Three time periods of three weeks are selected to use as input data for the model. These three periods
are chosen throughout the year, so not only one single season is researched. From all three periods the
first two weeks will serve as training data for the model and the last week as testing data, so all periods
have both training and testing data. In table 4.2 the three periods are shown. Taking this time span of
nine weeks creates 6048 instances per road of which two third is used for training, the other third for
testing purposes.

For two days (5 and 10 October 2017) there was much missing data for all points. Therefore it was
chosen to replace these days with two other comparable days. Both days were replaced by the same day
of the week of the week after the October period.

A day that is included in the data set, that was remarkable, is 18 January 2018. On that day on many
measurement locations low speeds were registered. This was caused by a severe storm in theNetherlands,
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Figure 4.3: The twelve locations that are used in this research.

Table 4.2: Time periods in which is measured

training set test set
begin end begin end

1 01-10-2017 14-10-2017 15-10-2017 21-10-2017
2 07-01-2018 20-01-2018 21-01-2018 27-01-2018
3 01-04-2018 14-04-2018 15-04-2018 21-04-2018

in which was advised not to drive (code red). In the chosen road sections however, no special congestion
due to this fact was found and therefore it is chosen to keep this day in the dataset.

It is chosen not to exclude non-recurring traffic patterns. It may be argued that having only regular
situation in the dataset makes better predictions possible, but excluding this data makes that this model
can only identify recurrent patterns. When this data is included, the model can be trained on situations
that do not often occur. Having this data included in the data increases its estimating power. Also it
will probably not lead to confusion in the training set, as there will be enough examples of recurring
congestion. This means that not excluding special event data will lead to the same capabilities as when
they would be excluded, but including makes that the model has a higher change of also capturing
special event situations.

4.4 Obtaining and processing the data

The data is obtained by making requests at NDW (Nationale Databank Wegverkeergegevens) for the
selected time periods. The data was made available in large XML-files that contain all measurement
points of the Netherlands. These XML files were parsed using a Python script and the selected locations
– together with some upstream and downstream measurement points – were filtered out of this data
and stored to a plain text format, which makes is easy to access the data when needed.

Since the NDW data comes at a time resolution of one minute, it was aggregated to 15 minute intervals,
because that time resolution was chosen for this research. This was also done using a python script.
For aggregating the intensity the values of all lanes and all separate minutes were added. This value is
corrected, so the unit of intensity will remain veh/h.



Information on the road sections 27

For aggregating the speeds the harmonic mean is used in order to get an approximation of the space
mean speed. Unfortunately the values that are provided by MoniBas are the arithmetic mean for one
minute for one lane. Since this is the only value provided (no standard deviation), only the time mean
speed on a one-minute scale is available. For the aggregation of the speeds the harmonic mean of all
values is determined, so that the speed that is used can be seen as an approximation of the space mean
speed.

It appeared that some minutes of data were missing in the raw MONICA data. This was only the case for
some days and was never more than a few minutes of data per day and never more that two consecutive
minutes. This is not considered a problem, since 15 minutes intervals are used. When there are missing
minutes in the data, this is interpolated, on the same way MoniBas does this (as described earlier). The
maximum gap that is considered acceptable is 5 minutes, which is the same maximum type of missing
data that MoniBas uses.

4.5 Information on the road sections

In order to give good information on the road sections these are divided for the different parts of the
day. In this way the morning and the evening peak can be distinguished from other parts of the day. In
table 4.3 the division is shown. The division between night and day is made, because at some roads
there is a variable speed limit. The lower speed limit is during daytime. The times for day and night are
based on the times that the variable speed limits are active.

Table 4.3: Definition interval times

Start End

Week day

Night 19:00 6:00
Morning peak 6:00 9:00
Day, off peak 9:00 16:00
Evening peak 16:00 19:00

Weekend day Night 19:00 6:00
Day 6:00 19:00

For most roads there in information on vehicular length. The categories that are in the data are shown
in table 4.4. For this research the division line is 5.6m. All vehicles shorter are regarded as short
vehicles, all vehicles longer than 5.6m are regarded long vehicles is this research. It is chosen to make
this simplification, so that a single value can be fed to the model, which is the percentage of long vehicles.

Table 4.4: Definition of vehicle classes

Minimum Maximum
length [m] length [m]

Short vehicles 0.0 5.6
Medium vehicles 5.6 12.2
Long vehicles 12.2 —

All 15 minute instances are classified as either free flow or congested. The boundary for this is chosen
at 70 km/h. In figure 4.4 a histogram is shown in which the prevalence of all speeds is categorized
for the A27 near Lexmond. This histogram shows that the free flow conditions almost all have average
speeds in the interval of between 90 and 120 km/h, while all congested intervals have average speeds of
between 10 and 50 km/h. There are very little instances with an average speed between 50 and 90 km/h.
Because of this the boundary for congestion and free flow is set in the middle at 70 km/h.

An overview the traffic performances on the roads is given in table 4.5. On the left for each road the
percentage of the instances that are congested are shown, on the right the average speeds. These are
shown for the total, for the morning peak (M.P.) and the evening peak (E.P). From this table can be



28 Data collection

Figure 4.4: Histogram of occurring speeds at A27 near Lexmond.

seen that all roads perform very differently. Many road sections suffer from much congestion, some
mostly during the morning peak, others mostly during the evening peak. On the A28 near Zwolle, a
road section without a clear bottleneck, almost no congestion is registered. On the A7 there also is
no clear bottleneck, but congestion occurs in the morning peak, this is probably caused by on ramps
downstream of the measured location.

Table 4.5: Statistics of speed and congestion on the road sections.

road % con. % con. M.P. % con. E.P. av. sp. av. sp. M.P. av. sp. E.P.
A01_03 4.0% 33.8% 1.5% 96.0 61.5 111.6
A02_02 4.7% 43.3% 1.1% 95.4 63.4 107.0
A04_01 10.5% 72.2% 17.6% 79.0 43.7 80.2
A04_02 9.6% 17.4% 72.0% 80.3 81.6 41.6
A07_01 2.2% 20.2% 0.0% 104.3 83.2 113.2
A27_02 14.5% 11.5% 91.7% 65.9 85.9 25.2
A27_03 1.4% 1.1% 11.6% 97.3 97.2 82.3
A28_01 4.6% 33.1% 4.1% 96.5 68.3 100.3
A28_02 0.4% 3.0% 0.0% 111.6 105.5 114.4
A58_01 7.6% 8.7% 60.6% 83.9 94.3 45.5
A58_02 7.6% 14.8% 61.3% 82.8 81.7 42.0
A58_03 13.6% 30.6% 57.4% 75.0 66.2 48.2



5 Testing several machine learning techniques

Different types of machine learning techniques were tested on their effectiveness. The place for this
testing is the road section on the A27 near Lexmond. All testing has been done using weka. This
model testing consists of two parts. In the first part an estimation of whether or not the traffic is in a
congested state has been made. In the second part a speed estimation of the traffic has been made. For
all techniques in which randomness is involved, the average of five different runs has been calculated,
for some of those runs box plots have been made, so the range of the values can be identified.

5.1 Tested road section

For finding testing different kinds of machine learning models a stretch on the A27 near Lexmond is
selected. At this point there is a lane drop from three to two lanes as can be seen in figure 5.1b. This
location is a bottleneck that gets activated almost daily. There are no other points of interest near this
point that cause congestion. This means that (almost) all congestion occurs because of this bottleneck at
this road stretch. In figure 5.1a it can be seen that the detector that is researched is situated just before
the bottleneck. Also the detector from upstream and the detector of just downstream the bottleneck are
taken.

(a) Location

(b) Road configuration

Figure 5.1: Location and situation of the tested A27 road section near Lexmond.

There have been made statistics from this road section, that can be found in table 5.1. There is almost
no missing data on this data, only during one day there are two hours of data missing. This missing
data is removed from the dataset. Because of the completeness of the data, recurrent models can more
easily be applied. From these statistics can be seen that there is a lot of congestion on this road. During
the evening peak there is almost always congestion, even in the weekends or during the night there
sometimes is congestion. In the previous chapter is shown that this road has most congested intervals
of all researched roads, which makes this road suitable for this research.

Table 5.1: Road statistics of A27

Week day Weekend day
night morning day evening night day

peak off-peak peak
Missing [%] 0.0 0.0 1.3 0.0 0.0 0.1
Flow [veh/h] 817.2 2725.7 2733.9 2515.9 912.7 2061.1
Speed [km/h] 102.8 97.9 91.3 44.8 112.2 110.7
Con. ints [%] 1.4 4.4 10.2 88.3 1.1 2.1
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In figure 5.2 a plot of flow and speed for a typical day have are displayed. Also taking into account
all other days, it can be seen that the maximum intensity on this road lies around 4000 veh/h. When
that number is reached, almost always congestion will occur. But also at much lower intensities often
congestion occurs. It is very probable that hysteresis that Treiber and Kesting (2013) describe can be
one of the causes. When a congested state is reached it is difficult for the system to restore to its full
capacity. Before the system can reach full capacity again, the intensity has to drop first, so the system
can come out of the hysteric situation. In the example shown, both in the morning– as in the evening
peak congestion occurs. The evening peak is almost always present during weekdays. In extreme cases
it already starts at 15:00h, and it can last up to 20:00h.
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Figure 5.2: The situation on a typical day on the A27

5.2 Congestion estimation

For the estimation of whether or not congestion occurs three different kind of models are evaluated.
These include a logistic regression model, decision tree learning models and neural network models.
All models are evaluated by the f-score (as explained in equation 3.2). The property that the f-score
includes both the precision and recall, makes that this is a proper measure for comparing the different
speed estimation methods, since it both includes instances that are classified as free flow, while they
were in fact congested and it includes instances that are classified as congested, which were in fact not
congested. All f-scores for the different models are summarized in table 5.2.

5.2.1 Logistic model

The logistic model is in fact an ordinary regression model that can be used to make classifications. An
advantage of this model is that it is relatively simple and very fast in execution. The output of the model
is a number between 0 and 1 for each class, which represents the probability that the model gives to each
classifications. All those probabilities add up to 1, the highest probability that is given is the estimation
that the model makes. In this case with only two classes (congestion and free flow), the classification
‘congestion’ is made if the probability for congestion is higher than 0.5. The f-score for a normal logistic
model is 0.61.

From this logistic model a recurrent version is applied. This means that the estimated probability of
congestion is fed back to the model and iteratively new estimations are made. The probability values
that are fed back are the estimation for congestion of the estimated instance and of the instance just
before it and just after it. So a total of three congestion estimations are fed back into the model. This
process is visualized in figure 5.3. In each step these estimations can be used to further improve the
model. Having a recurrent model makes it possible for the model to look into the future and in into the
past, which is of great help in this estimation, since what happens in the near past and near future can
give much information on the current traffic state.

Several iterations have been made in this model, in which in every step the new congestion estimations
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Figure 5.3: A schematic recurrent regression model with two iterations.

were used. This is shown in figure 5.4. It is remarkable that the f-score drops after six iterations, after
having increased very vast in the first stage. This might be the case, because the fed back information
plays a very important role in the estimation. When one of the estimations is incorrect, it can have a
big effect on further iterations. The optimum in this case lies around 6 iterations. Recurrent logistic
regression can get the f-score up from 0.61 to 0.84, which is an improvement of 38% from the non-
recurrent logistic regression.

Figure 5.4: F-scores for the logistic model

5.2.2 Decision tree learning models

There are several DTL-algorithms included in weka, of which two have been tested. The tested J48
algorithm is an open source java implementation of the C4.5 DTL algorithm. This algorithm is a
proven basic form of DTL, although it is possible to make some alterations in the algorithm. The most
important options that can be chosen is the amount of pruning and the minimum instances a leaf must
have. Those options have been researched for their performance on the estimation of congestion.

It was found that pruning the model did not improve it, but resulted in lower f-scores. Changing the
minimum number of instances per leaf however did result in a better performance. When a higher
minimum number of instances per leaf is set, the model becomes smaller, because branches with few
instances are removed. Setting such a number may prevent overfitting, however when the number is
too high, proper separations are not made.

Several values for the minimum number of instances per leaves have been tested. In figure 5.5 the
results are shown. The figure clearly shows that low and higher values give bad results. The best results in
this case were found for values between 13 and 25. The best f-score of 0.60 was found with a minimum
of 16 instances per leaf.

The J48 DT has been improved by making the model recurrent. The estimation that has been made for
the instance on moment 𝑡 have been fed back to the model, together with the estimation for moment
𝑡 − 1 and 𝑡 + 1. Figure 5.6 shows that this does improve the f-score from 0.60 to 0.72 at 6 iterations,
after which no further improvement is found.
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Figure 5.5: The performance of a unpruned J48 tree model. The minimum number of instances per leaf has
been varied.

Figure 5.6: Based on a minimum of 16 instances per leaf, a recurrent model has been implemented.

A more complex implementation of DTL is the random forest algorithm. The random forest consists of
many decision trees, which together make a forest. All those trees are built up independently from each
other, so that different features can be combined in each tree. The classification that is made most by
the trees wins and becomes the estimation for the instance. A box plot is made, because different seeds
are used for generating the random forest.

In figure 5.7 the box plot is shown with the results for a (recurrent) random forest. When comparing
the non-recurrent result to the result of the J48 tree a better result is found with a f-score of 0.66.
However when the recurrent random forest is applied, the performance does not improve as much in
the J48 tree. After three iterations, no further improvement was found. The resulting f-score is 0.69 for
the recurrent random forest, opposed to 0.72 from the recurrent J48 tree.

5.2.3 Artificial neural networks

The neural network that is used in this research is a network in which the inputs are the intensities (all
represented by one node) and the outputs are two nodes, one for the probability of congestion and one
for the probability of free flow. The standard neural network from weka is used. This neural network
is a network in which all perceptrons are activated by the sigmoid function, all weights are initialized
randomly and all inputs are normalized into values between -1 and 1. For a neural network there are
some parameters that have to be set.

For the learning process the learning rate and themomentum are two important parameters, they decide
the speed and the precision of the model. In figure 5.8 the performance for the different configurations
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Figure 5.7: Performance of a random forest decision tree estimator. 0 iterations is the normal random forest
estimator, no change was seen after three iterations in the model.

is given. It can be seen that a high momentum works well with a slower learning rate. In this case a
combination of a learning rate of 0.05 and a momentum of 0.9 gives the best output. For finding these
values, 500 epochs were evaluated. When a higher number of epochs was used, lower learning rates
improved, but did not exceed the value found at the combination
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0.1 0.77 0.81 0.81 0.81 nan

0.05 0.74 0.78 0.83 0.80 0.77
0.01 0.63 0.65 0.77 0.81 0.81

0.005 0.47 0.63 0.74 0.76 0.82
0.001 0.01 0.24 0.63 0.65 0.80
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Figure 5.8: - scores for different combinations between the learning rate and the momentum on a neural
network with 8 nodes in the hidden layers.

Another aspect of importance for the performance of a neural network is its size. This size is determined
by the number of hidden nodes that are in the hidden layer(s) of the model. Results of applying different
number of nodes in the model are shown in figures 5.9 and 5.10. Figure 5.9 give a box plot with
the performance of the neural network, that consists of one hidden layer. The figure clearly shows that
adding a lot of nodes does not improve performance. The highest value is found at 8 nodes in the
hidden layer, with a f-score of 0.83.
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Figure 5.9: Performance of the neural network, based on the the number of nodes in the hidden layer.

Also the ANN was tested with two hidden layers, with different combinations of the sizes of both layers.
Figure 5.10 shows that this gives good results, but no better results than having a single hidden layer
ANN. The f-scores for both are no higher than 0.83.
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Figure 5.10: Performance of a neural network with two hidden layers, there is no improvement on a single
layer neural network.

The last ANN variant that is tested is the recurrent neural network (RNN). As in the previously discussed
recurrent models, the RNN feeds its estimations back in the system, so it can look back in time and
look forward in the future in every iteration. The RNN was tested on single hidden layer ANNs, with
different sizes of the hidden layer, as can be seen in figure 5.11.

The performance of the RNN is much better than that of the normal ANN. Already after one iteration
the f-score increases substantially. After about 3 iterations a 10 node hidden layer RNN has a f-score of
0.90, which no further increases at more iterations.
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Figure 5.11: Performance of a recurrent neural network with a different number of nodes in the hidden layer.

5.2.4 Comparison

In table 5.2 all f-scores have been summarized per category. The recurrent neural network gives the
highest average score of 0.90. The neural networks score better than the logistic– and decision tree
models. It is remarkable that the logistic models score better than the decision tree learning models,
while the DTL model is a supervised machine learning technique and the logistic model is an ordinary
mathematical regression model.

In all cases the recurrent version of the model scores better than the non-recurrent version. This is not
unexpected since traffic patterns are temporal sequences of the traffic state variables and in recurrent
models those temporal sequences can be captured. These results do show that this indeed leads to a
better estimation model.

In order to see what the congestion estimation looks like in the different models, three plots for a typical
day have been made. These can be seen in figures 5.12 to 5.14. The differences can be seen quite
clearly. In this case the RNN estimation is flawless and estimates all congestion with high certainty
correctly. The logistic– and DTL model however have more difficulties. They both miss out an entire
(morning) congestion. Also the DTL model is very uncertain during the afternoon congestion.

5.2.5 Alternating the boundary of acceptance

An alteration to the boundary of acceptance has been tested on the RNN model. The RNN models has
been chosen for researching this boundary, because it was the best performing model. In training and
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Table 5.2: Performance of the different machine learning techniques.

Technique F-score Configuration
Logistic 0.61 –
Rec. Logistic 0.84 6 iterations
J48 0.60 unpruned, min. 16 inst. per leaf
Rec. J48 0.72 6 iters., unpruned, min. 16 inst. per leaf
Random Forest 0.66 –
Rec. Rand. For. 0.69 3 iterations
ANN 0.83 l.r.: 0.05, mom.: 0.9, 500 epochs, 8 hidden nodes
ANN (2 lay.) 0.83 l.r.: 0.05, mom.: 0.9, 500 epochs, 12, 4 hidden nodes
RNN 0.90 l.r.: 0.05, mom.: 0.9, 500 epochs, 10 hid. nod., 3 iter.
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Figure 5.12: Congestion state estimation of recurrent logistic model on a typical day.
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Figure 5.13: Congestion state estimation of recurrent J48 tree learning model on a typical day.
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Figure 5.14: Congestion state estimation of recurrent neural network on a typical day.

testing the model an instance is considered congested when the congestion exit node has a value higher
than 0.5. Although within the training process the model is optimized on this boundary value, results
could theoretically become better by altering this boundary value.
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This boundary has been alternated, with values between 0.01 and 0.99. The results of this alternation are
shown in figure 5.15. Logically it can be seen that the precision increases with a higher boundary, while
the recall decreases. This can be explained by the definition of both precision and recall. The factor of
error in recall is the false positive and with recall it is the false negative. With a boundary approaching
1 there will no longer be false positives, since hardly any instances are classified as positive. At the same
time at high acceptance boundary there will be many false negatives, thus the recall decreases.

The f-score combines precision and recall and can therefore be considered as a compromise performance
measure between those two. Figure 5.15 shows a very flat f-score when plotted to a variable boundary
value. It is lower at very high and very low boundaries, but roughly between 0.1 and 0.9 it is almost
constant. An explanation can be found in figure 5.14, where can be seen that in the estimation of
congestion in this model, the model is very certain of itself, only outputting very low and very high
values. There are hardly any values between 0.1 and 0.9, so varying between this values does not change
much. More extreme boundary values lead to lower f-scores, therefore there is no reason for changing
the boundary value of 0.5.

Figure 5.15: Performance with variable boundary.

5.3 Speed estimation

For speed estimation the speed is estimated based on intensities. This is a slightly different process
that the congestion state estimation, since in that case there were only two categories, while with speed
estimation a numeric value is estimated. The performance of these models are compared by the root
mean squared error (RMSE, equation 3.3), which is a value for how much the estimation is in line
with the true value. Within this method big differences in real value and estimation have a big effect on
the outcome of the performance measure.

5.3.1 Linear regression model

Also in speed estimation the first tested model is a regression model. The difference between the logistic
version in congestion estimation is that in the logistic model the exit node generates a value between
0 and 1, indicating the probability of congestion, while in speed estimation the exit node gives a real
speed. Actually this model is less complex than the logistic model, since the categoric scaling part of
the logistic model can be omitted.

The output of a non-recurrent regression model was an RMSE of 26.2 km/h. This improved to a RMSE
of 23.7 km/h after 13 iterations in the recurrent version, after which the performance is constant (figure
5.16).

5.3.2 Decision tree learning models

For DTL only the random forest is applied, since the J48 decision tree can only be applied when data is
categorized into a discrete number of categories. In figure 5.17 the performance of the random forest
model is shown. In figure a a boxplot of a non-recurrent version is shown, in figure b the recurrent
version. It is remarkable that it takes many iterations before the performance improves. With a RMSE
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Figure 5.16: Performance of linear regression model. The RMSE decreases until 13 iterations, after which it is
stabilized.

of 18.1 km/h for the non-recurrent version and 15.8 km/h for the recurrent version the random tree
performs significantly better (13%) than the regression model.
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Figure 5.17: Performance of the (recurrent) random forest model.

5.3.3 Artificial neural networks

For speed estimating neural networks of different sizes are tested. Except for its size and its output
node, the specifications of the network are the same as in congestion estimation. The neural network is
capable of directly estimating speeds. In figure 5.18 a box plot is shown with the results for an ordinary
non-recurrent ANN. An RMSE of about 20 km/h was found, with not much difference between the
different model sizes.
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Figure 5.18: Performance of neural network, with several values for the number of nodes per hidden layer.

When testing the RNN for speed estimation, a difference was found between the single layer and the
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multilayer neural network. Figure 5.19a shows that some models start to diverge at a higher number
of iterations. With about three iterations, improvement is shown, but after these iterations those models
(with a higher number of nodes in the hidden layer) start to perform very badly, resulting in high
RMSEs. The reason for this is unclear. A possible explanation is that the information that is fed back
to the system is a big factor in the estimation in the iteration step. When there are some small errors
in the information that is fed back (there will always be errors in this info), each iteration can build
on on these errors, and it can start to get worse at every iteration. Even though this is the most likely
explanation, that does not explain why it happens in some model configurations, while it does not
happen in others. For example it does not happen in the model with 8 and 10 nodes in the hidden layer,
nor did it happen in the multilayer configuration.

Those multilayer configuration of the RNN gives the best results on speed estimation. In figure 5.19b
results of this are shown. For these results five iterations in the model were made. After five iterations
there was no improvement in the scores, but the previously discussed divergence after many iterations
did not happen either. This RNN delivers scores for the RMSE of under 10 km/h. This means that
on average the estimated speed is fairly close to the real, measured speed. This difference is at least
small enough to give a good indication of the speed. An example in figure 5.22 is discussed in the
comparison between the models.
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Figure 5.19: Performance of the (recurrent) random forest model.

5.3.4 Comparison

A comparison has been made for all models tested and is summarized in table 5.3. The regression
models perform worst of all models tested. Even the recurrent version of this scores much worse than
all other models, even though it improves a little on the non-recurrent version. When comparing the
non-recurrent versions of the random forest DT and the ANN, it was found they have similar scores,
the random forest even scores a little better, which is remarkable, since in congestion estimation the
ANN scored much better than the decision tree learning model.

The best scoring models again were the recurrent versions. When the recurrent version of the neural
network is compared to that of the decision tree learning model, a bigger improvement is seen by
the neural network. This is the best scoring model in this case, with a RMSE of 9.4 under the best
configuration.

In figures 5.20 to 5.22 an illustration is given of these results on a day with congestion. Also scatter
plots have been made plotting all measured and estimated speeds of the test set. The linear regression
line has been plotted on it and the 𝑟2 value is displayed. The function for the linear regression line
should optimally be 𝑦 = 𝑥.

When viewing the regression model it can be seen that this does not give a good impression of the
speed. The estimated speed is a little lower during congestion, but it does not really follow the measured
speeds. This example shows that linear regression is unsuited for speed estimation. In the scatter plot it
can be easily seen that the function does not suit well. The estimated speeds are too high, indicating
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Table 5.3: Comparison in speed estimation

Technique RMSE Configuration
Linear regression 26.2 –
Rec. lin. regr. 23.7 13 iterations
Random Forest 18.1 –
Rec. Rand. For. 15.8 59 iterations
ANN 19.4 l.r.: 0.05, mom.: 0.9, 500 epochs, 14 hidden nodes
RNN 11.4 l.r.: 0.05, mom.: 0.9, 500 epochs, 8 hid. nod., 10 iter.
RNN (2 lay.) 9.4 l.r.: 0.05, mom.: 0.9, 500 epochs, 10, 12 hidden nodes, 5 iter.

that congestion often remains undetected, but also the speed for congested circumstances is estimated
far too high.

The recurrent random forest model and the RNN give a much better estimation of the speeds. Both
these models follow in the example day the actual speeds quite well, the RNN better than the random
forest. In the scatter plots it can be seen that especially the RNN performs well. A value of 𝑟2 = 0.89
was found here, while the regression line is very close to 𝑦 = 𝑥. Also the RNN makes some mistakes
(both of type I as type II), but the majority of all instances are estimated close to the measured speed.
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(a) Typical day example. (b) Scatter plot.

Figure 5.20: Performance of recurrent linear regression model.
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Figure 5.21: Performance of random forest model.

5.4 Validation on other roads

All testing took place at one road section on the A27. This testing is validated on the other road sections
in this research. For this validation the RNN with the best scoring setting was chosen. In this validation
all roads data sets are split in training and test sets, so every road is tested using a model that is also
trained on that specific road. The training set and test set are separated by the same dates as the A27
was separated, meaning two third of the instances were used for training and one third of the instances
is used for testing. This means a different model is made for each road section.
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Figure 5.22: Performance of RNN model.

In table 5.4 the results of the validiation are shown and the results differ a lot from each other. These
differences have to do with the characteristics of the roads, that were discussed earlier and can be seen
in tables 4.1 and 4.5. On roads on which the bottleneck is a lane drop congestion estimation leads to
high f-scores.

Table 5.4: Results of validation on other road sections.

road f-score std RMSE std
A01_03 0.715 0.041 11.16 0.30
A02_02 0.664 0.010 9.65 0.65
A04_01 0.769 0.011 10.45 0.78
A04_02 0.861 0.026 8.77 0.87
A07_01 0.621 0.029 9.42 0.85
A27_02 0.901 0.013 9.44 1.00
A27_03 0.391 0.028 13.47 0.25
A28_01 0.479 0.026 15.10 0.89
A28_02 0.578 0.031 6.84 0.17
A58_01 0.805 0.021 10.37 0.55
A58_02 0.780 0.032 11.49 1.02
A58_03 0.870 0.011 9.99 0.45

Very low f-scores were found on the A27 near an on ramp and narrow lanes and on the A28 near a
ramp. An explanation for the lower scores in general at places with a ramp is the fact that not all traffic
intensities are there in the model. For example when there is a off-ramp between the upstream location
and the measured location, there is no conservation of flow, since some of the flow will have taken the
off-ramp.

The two locations without a particular bottleneck have f-scores of around 0.6, scoring better than the
locations with a ramp, but worse than the locations with a lane drop. A cause of the relatively low scores
is that on places without a particular bottleneck there is not much congestion, so these places have
relatively few instances of congestion, which makes training harder. When comparing the RSME of
these sections without bottleneck, they score relatively good, when comparing to their f-score. This
can be explained by the fact that there are few instances of congestion, so estimating a speed near the
‘normal’ speed will deliver good results.

Taking all these things together, it can be said that the RNN model performs well on sections with a
clear bottleneck in which all traffic intensities are included in the model. If intensities are missing, due
to ramps, this makes results become worse. In cases without a bottleneck the speed estimation performs
well, while congestion estimation is harder.



6 Additional input attributes

In this chapter the influence of additional attributes is tested. In the previous chapter different machine
learning methods were discussed on a specific road section, only feeding intensities to the model. In this
chapter three different types of extra data are included, which are the weather conditions, the percentage
of long vehicles, and the variance of the intensities within the interval. The effects of these extra factors
are tested and evaluated.

6.1 Tested road section

For testing additional factors a road segment on the A58 has been chosen. Previous (model) testing took
part at a road section at the A27, which was very suited for that purpose. This road section however
did have one disadvantage, it has no information on vehicle length available. Since the A58 has this
information, this road is chosen for testing the influence of additional input attributes.

6.1.1 Description of road section

The road section of the A58 is located in the west of Tilburg, just downstream of on-ramp Goirle, as is
shown in figure 6.1a. The point that is measured is in western direction, out of the city of Tilburg.
Because of this direction, intensities are highest during the afternoon peak hour. There is a bottleneck
located at this road section, which is a lane drop from three to two lanes figure 6.1b. This bottleneck
often causes congestion. The researched location locates just upstream from the lane drop.

(a) Location

(b) Road configuration

Figure 6.1: Location and situation of the tested A58 road section near Tilburg.

An overview of statistics has been made in table 6.1, to illustrate the traffic patterns of the road section.
High flows occur both during morning peaks and evening peaks, the highest numbers during evening
peak, as is expected, since it is an outbound motorway from a larger city. Because of this high intensities
during evening peak, most congestion occurs during that time of day. Over 60% of all measured
intervals during evening peak (4 – 7 PM) are congested, having an average speed during that period of
only 42 km/h. In figure 6.2 a typical day is shown, in which the high intensities during peak hours
and the congestion during evening peak can easily be identified.

The share of long vehicles varies over different parts of the day. During peak hours the share of long
vehicles is lower, while at night it is higher. There is a chance these patterns could lead to a certain bias
in the machine learning model. Instead of combining the data on long vehicles, it could just associate
high shares of long vehicles with nightly conditions and automatically estimate free flow conditions.
When this attribute would become too important in the model, it could potentially estimate all instances
with a high number of long vehicles as free flow, also in daytime instances. The chance that this bias is
problematic is rather low, because together with the long vehicle share the intensities are still included
as attributes. This probably already gives an indication of the time of day. Therefore it is not expected
that adding long vehicle data would give more bias than only feeding intensities would give.

41
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Table 6.1: Road statistics of A58 near Tilburg

Week day Weekend day
night morning day evening night day

peak off-peak peak
Missing [%] 0.0 0.0 0.0 0.0 0.0 0.0
Flow [veh/h] 729.2 2865.8 2608.9 3029.2 789.5 1918.9
Speed [km/h] 112.6 81.7 98.6 42.0 118.0 116.0
Con. ints [%] 0.1 14.8 3.7 61.3 0.0 0.3
Long veh. [%] 21.2 11.9 16.1 5.6 6.7 6.0
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Figure 6.2: Flow and speed on a typical Thursday in October.

6.1.2 ML performance on road

Before testing additional attributes a base estimation has been made. The machine learning model that
is used for testing is the same that gave the best results in the comparison of machine learning methods.
For congestion estimation this was an RNN with 10 nodes in the hidden layer and doing three iterations
in time. For speed estimation the best method also was the RNN, but with 5 iterations in time and
two hidden layers of 10 and 12 nodes respectively. The comparison of all outcomes is the f-score for
congestion estimation and RMSE for speed estimation.

First an estimation of congestion state has been made for the A58. These results already give relatively
good results, showing that many situations are correctly classified. The number of cases in which
congestion remains unidentified is much higher however than the number of cases in which congestion
is falsely estimated. In total five runs with different seeds in the model were made. This led to an average
f-score of 0.780 with a standard deviation of 0.032. In figure 6.3 the estimation for congestion on a
typical day is shown.

Also a base on speed estimation has been made out of five different runs. An average RMSE of 11.48was
found with a standard deviation of 1.02. In figure 6.3 the estimation of speed is shown on a specific
day. In speed estimation on that day can be seen that the estimated speed closely follows the measured
speed, there is only one little difference in the evening peak. The same mistakes seems to be made in
congestion estimation where one time during the evening peak the model suddenly estimates free flow,
while in a congestion. But on average these models capture the traffic patterns very well.

Compared to the results of the A27 in the previous chapter, the model performs slightly worse, as
already could be seen in table 4.5. An explanation for this can be that on the A27 there were even more
cases of congestion than on the A58, giving the model more opportunity to be trained to recognize
congestion. Still, the results on the A58 are good for testing additional attributes, as it already gives
quite good results, but there is still a place for improvement.
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Figure 6.3: Congestion and speed estimation on the A58 on a typical thurday.

6.2 Tested additional data

The results of the additional attributes that are tested are displayed. In figures 6.6 and 6.7 a comparison
of all tested attributes can be found. All results are discussed in the comparison.

6.2.1 Influence of weather

Studies have shown weather influences traffic performance. Goodwin (2002) gives an overview on
types of weather that influence traffic performance. Rain, snow, hail, fog and other conditions have
an influence on traffic speed and capacity (Goodwin, 2002). For example rain was found to cause
10% reduction of speed. Because of the possible effects weather on speed estimation, it was chosen to
research the effects of these conditions on the model.

Weather data from the KNMI weather station of Gilze-Rijen is used as a source. This weather station is
location approximately 8 kilometres from the road section. It is assumed that weather conditions on
the weather station are the same as on the road section. KNMI provides hourly data on whether or not
one of the following conditions occurred: Fog, rain, snow, thunder and ice. Since snow and ice did not
occur at all in the data and thunder only in less than 1% of the instances (all instances were only in the
training set), it was chosen not to include these factors. Rainy conditions were there in 25.1% of the
instances and foggy conditions were there in 3.6% of the instances.

On congestion estimation the average f-score is 0.777 with a standard deviation of 0.019. When
estimating speed an average RMSE of 11.63 was found with a standard deviation of 0.74. Both of
these results do not significantly differ from the base model, therefore it is concluded in this case that
information on rainy and foggy conditions does not improve the model, so it is not useful to keep
including it.

6.2.2 Different vehicle categories

For many road sections there is information on the share of different vehicle length categories. It is
expected that information on this does influence model outcome, especially on speed estimation. Long
vehicles generally have a lower speed limit than ordinary cars (80 km/h for trucks, 90 km/h for cars with
trailer and 80 or 100 km/h for buses). For example in periods with low traffic intensity it is expected
that the average speed is lower when there is a higher share of long vehicles, because the average speed
limit for each vehicle is lower in that situation.

In order to test whether extra information on vehicle length improves the model the percentage of
vehicles with a length of more than 5.6 meters has been given as an extra input. This size is provided
in most of the NDW data and makes the difference between ordinary person cars and longer vehicles.
Adding this vehicle length attribute as an input resulted into better results in both congestion estimation
as in speed estimation. In congestion estimation this led to a f-score of 0.841 with a standard deviation
of 0.016. In speed estimation the RMSE was 8.85 with a standard deviation of 0.67.
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6.2.3 Deviation in intensity data

The data that is given as an input to the model is aggregated to 15 minutes, while the source NDW data
that is used comes at a one minute resolution. This aggregated data only has the average intensities
over the interval that is constructed of 15 separate values. As has been described in the methodology
it is intentionally chosen to work with 15 minute intervals. Within this choice however it is possible
to use more information from the original data. The additional data which is tested on its influence
on the model is the deviation of the 15 intensity values. In stationary conditions (especially free flow
situations, but also in congested situations) the deviation in the intensity data is low, while in situations
where the deviation in intensities is higher, this likely indicates a change in the situation. A higher
deviation for example is expected at the moment a congestion is formed or dissolved. Because of this
property adding the deviation is expected to have a positive influence on the model. It is chosen to add
the standard deviation of the intensities on the researched location.

It was found that adding the standard deviation to the intensities improves the estimations that are
made by the model. In congestion estimation the f-score was 0.859, with a standard deviation of 0.023,
which is more than 10% higher than the base model. In speed estimation an RMSE of 9.82 with a
standard deviation of 0.64 was found, which is a considerately better score than the base measurement.

6.2.4 Combined results

Of the three tested additional attributes to the model two have showed an improvement to the scores of
the models. While weather conditions did not influence the outcome much and resulted into similar
results, adding information about vehicle length and about the deviation in intensities resulted into
higher scores. Because of these results these two factors have been added both to as input attributes and
its effects were measured. In congestion estimation adding both these factors resulted into a f-score of
0.865 with a standard deviation of 0.017 and in speed estimation this resulted in a RMSE of 8.61 with a
standard deviation of 0.94. In figures 6.4 and 6.5 the results of estimation on a specific day are shown.
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Figure 6.4: Estimation on the A58, using vehicle length and intensity variation data, on a typical day.
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Figure 6.5: Estimation on the A58, using vehicle length and intensity variation data, on a typical day.

6.2.5 Comparison

In figure 6.6 a comparison of f-scores is shown for all tested attributes on congestion estimation. In
this box plot all of the previously discussed findings are summarized. This figure again shows that
including weather in the data gives no improvement on estimation. Adding the share of long vehicles
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and deviation within the interval does improve the results. A combination of these two gives the best
results. The f-score increases from 0.78 to 0.87.
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Figure 6.6: Comparison of f-scores with different additional attributes.

The same can be seen in speed estimation (figure 6.7). Also here a combination of adding the share of
long vehicles and deviation gives the best results. The RMSE can be reduced using this additional data
from over 11 km/h to 8.6 km/h.
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Figure 6.7: Comparison of RMSEs with different additional attributes.

6.3 Validation on other road sections

The results of this are tested on the other road sections is this research. The combination of additional
attributes is added to the base dataset and tests have been run. For two road sections no information on
vehicle length was available, this attribute is not included in those tests, so only deviation within the
interval is added.

In table 6.2 the results for all road sections are shown. In congestion estimation on average a small
improvement is found. Two locations show an extreme change in the f-score, these are both locations
that scored bad in the original test. In speed estimation on average there is improvement to the situation
without additional input attributes. Only the locations that have no information on vehicle length score
worse.
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Table 6.2: Improvement on road sections by adding attributes ‘deviation in speed’ en ‘percentage long vehi-
cles’. (∗ indicates a road section with no information on the length of vehicles.)

road f-score f-score improve- RMSE RMSE improve-
base add. ment base add. ment

A01_03 0.715 0.689 -3.6% 11.16 11.27 -1.0%
A02_02 0.664 0.664 0.1% 9.65 9.24 4.2%
A04_01∗ 0.769 0.781 1.6% 10.45 11.81 -13.0%
A04_02 0.861 0.920 6.8% 8.77 6.82 22.2%
A07_01 0.621 0.641 3.3% 9.42 9.16 2.7%
A27_02∗ 0.901 0.892 -1.0% 9.44 10.50 -11.2%
A27_03 0.391 0.519 32.9% 13.47 13.14 2.4%
A28_01 0.479 0.500 4.5% 15.10 14.40 4.7%
A28_02 0.578 0.227 -60.7% 6.84 6.24 8.9%
A58_01 0.805 0.837 4.0% 10.37 9.69 6.5%
A58_02 0.783 0.865 10.5% 11.49 8.20 28.6%
A58_03 0.870 0.892 2.5% 9.99 9.18 8.1%



7 Multiple road input

Until this point in this research all model testing has solely been done on models that were trained with
data from the same road. It is more interesting what the performance of the test sets will be that are
trained on data that contains more than only the test road, or even on data that was not included in the
train set at all. This chapter describes the performance of those kind of models.

7.1 Attribute selection

Since until this point all model testing has been carried out using the same road data as it was trained
on, road characteristics did not have to be fed to the model. Because on the same road this data is all the
same and would not add any extra information to the model. When multiple roads are included in the
same dataset, these differences will be important, because by adding this extra information the model
will ‘know’ the properties of the road section. The following attributes are added as input attributes:

– Speed limit [km/h]
– Number of lanes [-]
– Presence of on ramp on the road section [yes/no]
– Presence of off ramp on the road section [yes/no]
– Presence of a lane drop on the road section [yes/no]
– Distance to upstream location [m]
– Distance to downstream location [m]

All road sections do have their own capacity. This capacity is the maximum number of vehicles a road
can process per hour. Because this differs per road, it is difficult to compare the meaning of values
of intensities of different road sections with each other. To overcome this all intensities have been
normalized to a percentage of its road’s capacity. The capacity is determined by the boundary value
at which 99% of all intensity values of the specific road are smaller than the number of capacity. By
taking this value at 99%, outliers of intensities are not taken as the capacity value. After the capacity is
determined all other intensity values are represented as a percentage of this capacity. This makes that
the intensities of the different roads can be compared to each other, since they are both a comparable
percentage.

7.2 All roads in both sets

The first test that has been carried out is a test in which the training data consists of the training sets of
all researched roads combined. The size of the training set is about 48000 instances. Both a congestion
estimation and a speed estimation has been made, using the most optimal models from the previous
chapter. This is the RNN for both cases. Five runs were made for each test, with different random seeds
and the average f-score is calculated.

This model is tested on the test sets of all road combined. For congestion estimation this resulted in an
average f-score of 0.794 and for speed estimation in a RMSE of 11.86. These scores are slightly worse
than the testing in the previous chapter, but still provide a good model for estimating. These models
can estimate congestion state or speed almost as good as the model that is only trained on the specific
road is tested on.

Another test was done on the same training set (training sets of all roads combined). But the difference
to the previous test is that the test set is not a combination of all test sets, but it is tested on all roads
individually. Those scores are compared to the scores where the road is tested on a model that is only
trained on the specific road. The results of this testing is shown in table 7.1.
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On average the scores on the test of the merged training set are slightly worse than the base score, which
is determined in the previous chapter. The differences are small however. A remarkable result is the
road A28_02 near Zwolle, where the congestion estimation improves, but the speed estimation became
significantly worse. This can be explained by the fact that this is one of the roads without a bottleneck.
By merging the training data, this road has more examples of other roads of what is a congestion, so the
estimation of congestion improves. However this increased training set also causes confusion on the
speed estimation as now there is much more variation of speeds in the training set.

The results show that it possible to make a merged set and still estimate congestion and speed. Even
though on average the scores are lower, they are still of a quality level that estimations can be made with
a high certainty.

Table 7.1: F-scores and RMSEs for the merged set.

road f-score f-score diff. RMSE RMSE diff.
base merged base merged

A01_03 0.689 0.684 -0.7% 11.27 12.28 -9.0%
A02_02 0.664 0.723 8.9% 9.24 10.06 -8.9%
A04_01 0.781 0.760 -2.7% 11.81 11.24 4.8%
A04_02 0.920 0.931 1.2% 6.82 7.52 -10.3%
A07_01 0.641 0.560 -12.6% 9.16 11.20 -22.2%
A27_02 0.892 0.850 -4.7% 10.50 11.27 -7.3%
A27_03 0.519 0.483 -7.0% 13.14 13.29 -1.1%
A28_01 0.500 0.506 1.1% 14.40 14.80 -2.8%
A28_02 0.227 0.263 15.9% 6.24 8.10 -29.9%
A58_01 0.837 0.867 3.5% 9.69 11.29 -16.5%
A58_02 0.865 0.735 -15.1% 8.20 12.20 -48.8%
A58_03 0.892 0.856 -4.0% 9.18 9.82 -6.9%

7.3 Different roads in train set and test set

The last test that has been carried out, is one in which models are tested on data from roads it is not
trained on. This is the most tricky test of all tests carried out, since testing takes place on a trained
model, that does not contain examples from that specific road. This means that properties of other road
sections must give enough information on patterns of congestion, that the model is able to transfer
these properties to other road sections.

Thismodel is expected to performworse than othermodels tested because of the fact that all information
must be transferred from other road sections. But since it is interesting to see whether or not this
model still has some estimating power, this model is tested. It is possible that on roads that have similar
properties as other roads in the set, relatively good results are found.

This testing is carried out by creating a training set that contains data of all roads, except for the road
that is tested on. Also the test sets of the other roads are included, in order to create a bigger training
set. This means that for each road section that is tested, a unique training set has been created. Testing
was done using both the original training and test set of the road section that is tested.

Results of these tests are shown in table 7.2. It is directly visible that the performance of testing on
all roads has dropped a lot. Not a single road section shows performance that is comparable to that of
tests that were taken before. Even though worse results were expected, these are very low scores, which
cannot be used for estimating traffic conditions on roads.

In congestion estimation the f-scores have dropped almost all. Only a few road sections still have a
f-score of over 0.5, which is a very low estimating power. The highest scores are found on the A27 near
Lexmond, A58 near Tilburg and A58 near Breda. These are all locations with a lane drop from three to
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two roads. It is possible that because of these similarities, the model could more or less successfully
transfer properties from one road section to the other

In speed estimation there is also a big decrease in performance, but a variety is seen among the results.
A few models now have vary bad scores for the RMSE of over 50 km/h, one road section even has a
RMSE of over 80 km/h. With these scores the model has no power to say anything useful about speed
on the road sections. The best scoring road sections have RMSEs between 10 and 20 km/h. This is the
case for example on two road sections on the A58.

These results show that when one wants to estimate congestion or speed using a recurrent neural
network, training data must include data from the same road section as is tested on. Having roads with
similar properties in the training set helps to get better scores, but still these scores are very low and not
really useful when an estimation of congestion and speed is required.

Table 7.2: F-scores an RMSEs for testing on a set that is not included in the training set.

road f-score f-score diff. RMSE RMSE diff.
base not incl. base not incl.

A01_03 0.689 0.068 -90.1% 11.27 82.42 -631.3%
A02_02 0.664 0.501 -24.5% 9.24 13.83 -49.7%
A04_01 0.781 0.238 -69.5% 11.81 29.60 -150.6%
A04_02 0.920 0.415 -54.9% 6.82 51.51 -655.2%
A07_01 0.641 0.159 -75.2% 9.16 19.02 -107.7%
A27_02 0.892 0.660 -26.0% 10.50 39.55 -276.7%
A27_03 0.519 0.176 -66.2% 13.14 54.29 -313.1%
A28_01 0.500 0.204 -59.2% 14.40 22.01 -52.8%
A28_02 0.227 0.041 -82.0% 6.24 31.11 -398.5%
A58_01 0.837 0.258 -69.1% 9.69 44.65 -360.8%
A58_02 0.865 0.512 -40.8% 8.20 16.51 -101.4%
A58_03 0.892 0.528 -40.9% 9.18 14.64 -59.5%



8 Conclusions and discussion

This chapter contains the final conclusions and the discussion. In the conclusion the research question
is answered. This is done per subquestion that was formulated, before answering the main question. In
the discussion the limitations are discussed, together with recommendations for future work.

8.1 Conclusions

8.1.1 Best fitting machine learning technique

The first part of this research was focused on finding a suitable machine learning technique for traffic
state estimation. In order to answer this, different models were tested on a dataset that was gathered
on a motorway with much congestion, caused by a lane drop. Three kind of models were researched:
regression models, decision tree learning models and neural networks. All those models were tested in
a recurrent and a non-recurrent form.

The first important conclusion to draw here is that recurrentmodels are always preferredwhen compared
to non-recurrent models. Recurrent models have the ability to make iterations, this makes is possible to
take into account estimations of previous and future instances. Since traffic patterns are in fact sequences
of the defining traffic variables, including estimations of those instances improve the estimation in
the following iteration. In all tested models the recurrent version scored significantly higher than the
non-recurrent version, both in congestion as in speed estimation.

Regression models gave satisfactory results in congestion estimation, but failed to capture the traffic
patterns in speed estimation. In fact regression is not a machine learning technique, but a mathematical
approach for an estimation model. Decision tree learning models performed better than regression
models on speed estimation, while on congestion estimation the regression models scored a little better.
Both these techniques can help in estimating traffic state, but is not the best option for doing this.

Recurrent neural networks provided the best results in the testing. In congestion estimation the RNN
had an f-score of 0.90 on identifying congestion, which means that most congestion is detected and also
there are not many false positives in congestion estimation. On speed estimation the RNN managed to
estimate speed with a RMSE of 9.4 km/h. This means that the estimation is on average close to the real
measured speed.

In the validation of these results on other road sections it was found that the RNN has a different
performance on these road sections. It scored very well on road section with a clear identifiable
bottleneck in which all traffic intensities were known. This occurred most often in the case of a lane
drop. In the cases were a ramp is included in the road section, not all traffic flow was captured by the
model. This is the most probable reason the model performed worse in these cases. In cases where
there was no clearly identified bottleneck congestion estimation performed bad, while speed estimation
scored good. The bad scoring on congestion estimation is caused by a lack of example data, since not
much congestion was included in the data set. Speed estimation went better, because those road sections
often have similar speeds, because of the lack of congestion.

8.1.2 Chosen input variables

In order to improve the results of traffic state estimation, three additional input attributes were tested on
its influence on the model. Those three input variables that were tested are the influence of the weather
(fog and rain), the influence of the share of long vehicles on the road, and the influence of adding the
deviation in the intensity data of the input intensities. The results of this testing are compared to a base
measurement. Testing was done by using the RNN that was tested best in the previous section.
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The weather did not have a large influence on the estimation. Data about whether or not it rained and
there were foggy conditions from a nearby weather station were added to the model. No improvement
was found by adding these variables.

Adding the share of long vehicles as input variables was found to improve the model with 7.8% on the
f-score in congestion estimation and 22.9% on the RMSE in speed estimation. The improvement on the
speed estimation can be explained by the fact that long vehicles often have a lower speed than short
vehicles. Adding information on the length of vehicles was found to improve the results of the model.

Also adding deviation in the intensity data was found to make improvements to the model. A higher
value in the deviation can indicate a change in traffic patterns and thus give useful information to the
model. The f-score improved by 10.1% by adding this information, and the RMSE improved with 19.1%.
Because of these numbers adding deviation data was found to be useful to the model.

The deviation and the share of long vehicles were also added combined to the model. This resulted in
a increase of the f-score of 10.5% and the RMSE improved with 28.6%. The combination was tested
on the other road sections. It must be noted that for two road sections there was no vehicle length
information available. On these two road sections adding the additional attributes resulted in worse
scores. On the other roads there was found a small improvement on the performance measures on
average. Although it must be said that the improvement was in general smaller than the improvement
measured on the tested road section.

8.1.3 Approach for congestion and speed estimation

Two approaches for a merged dataset have been tested. In the first place all the train sets of all road
sections were added and a model was trained on this and tested on the separate road sections. In the
second place a merged train set was created in which the to be tested road was not included. In order to
do so additional information on the characteristics of the road sections was added and all intensities
were normalized to a percentage of the capacity of the specific road section, this was done for both tests.

The first test provided results that were comparable to the tests that were carried out on individually
trained road sections. On average the scores were a few percent worse, but for others there was no
difference or they even scored a little better. This shows that training on many different road sections
still means that it is possible to make estimations for single road sections. The model does not get
‘confused’ to a great extent by adding varying data. The model is still able to use the instances that are
needed for classification.

When data is tested on a model that is trained on data in which the tested road section is not included,
the results drop enormously. Even though some comparable road sections score a little better than
other road sections, there is no indication that the model can transfer characteristics of one road to
another. In order to get good results on the test data, there must be data from the same road section in
the training data.

From these results can be concluded that the RNN model is incapable of extrapolating. Interpolation
shows slightly better results, but in general the model fails here too. With all attributes that were
provided in this research extrapolation an interpolation are not

8.1.4 Use of machine learning in traffic state estimation

The main question for this research is ‘How can machine learning techniques estimate traffic state based
on intensity data?’. This question was split up in the three parts that are discussed above. These three
parts together answer the main question. The results of the tested road section on the A58 near Tilburg
are shown in table 8.1.

For estimation of traffic state (congestion state and speed) recurrent neural networks are useful. Those
networks are to be fed with intensities of the road section, a location upstream and downstream and of
time intervals just around the researched instance. Especially in case of a bottleneck and in cases where
no intensities are lost or added by ramps, RNNS can estimate traffic state based on intensities. Adding
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information on vehicle length and deviation of the intensity data help to improve those estimations.

In order to give a good estimation of traffic state on the road sections it is important that data from that
road section is included in the training set of a model. The best option is to have a model for each road
section separately, but a trained set on a combination of road section will also give satisfactory results.
It is of no use to estimate traffic state by a model not trained on the specific road section, such models
have no estimation power.

Table 8.1: Summary of all results on A58 near Tilburg.

Test F-score RMSE
RNN, tested on the same road section as it is trained on. 0.783 11.49
RNN, tested on the same road section as it is trained on, with additional
attributes.

0.865 8.20

RNN, tested on a model trained on multiple road sections, including
the tested road section, with additional attributes.

0.735 12.20

RNN, tested on a model trained on multiple road sections, not includ-
ing the tested road section, with additional attributes.

0.512 16.51

8.2 Discussion

In the discussion the practical use of the research is discussed, but also its limitations are discussed.
This discussion finishes with recommendations for future work on the topic.

8.2.1 Practical use of findings

The outcomes of this research can be useful in a number of situations. The context of this research was
finding corresponding speeds for the modelled intensities of INWEVA data. This research did not use
modelled data, but used measured data, but this does not mean it has no meaning for modelled data.
RNNs can be useful in this context. A model trained for a specific road can be applied to modelled data.
Of course, this model will have to be validated by a set of modelled or known speeds, connected to the
modelled intensities.

The fact that it was found that training data from the same road section is needed that this model will
be applied to, makes that these findings cannot be used for INWEVA right away. It was desired that a
model that was trained on known intensity-speed combinations could give good estimations on other
road sections where only modelled intensity data was known. Because of the fact that neural networks
are known for their limited capability of extrapolating and interpolating, it is expected traffic state
estimation using neural networks that are trained on other road sections than at which they are tested,
will always remain a difficult task.

Possible directions of accomplishing estimation of road sections outside the training set can be sought in
adding more input attributes or extending the train set. In this research all attributes that were expected
to have an impact on the outcome – this are the attributes that define the characteristics of a road section
– were added as input attributes. Therefore giving directions in which can be sought for other input
attributes that may capture all characteristics of a road section is difficult. Possibly a research on the
impact of the attributes that were already selected can give directions. Extending the training set to
more road sections may result in grasping a more complete picture of the Dutch motorway network.
By attempting to get a more extensive input of road section the results might improve. However, a
drawback will be more calculation time for all new instances added to the model. Also, even though it
may lead to an improvement of results, it is not expected capture all characteristics of road sections not
in the training set.

Another use case for this research are motorways on which only intensities are measured. If only
intensities are measured, but information on speed is desired, a RNN can be trained on such motorways.
In order to do this for a certain period speeds will need to be registered. This can optionally be done by



Discussion 53

using floating car data, which can give relatively precise data on speeds. Those speeds can be used to
train a RNN that can be used for further estimations on the speed, without having access to information
on speed. A drawback for this is that this cannot be applied real time, because the RNN needs to have
the input of a time series, that also lies in the future.

8.2.2 Limitations

The research that has been done has limitations that are discussed here. Most of the limitations are due
to the chosen methodology, while other thing are limited by the properties of the available data.

The first limitation of this research is that the followed approach does not make it possible to make real
time estimations or predictions. Because future data is used as an input to themodel, real time prediction
is impossible. Also applying RNNs, in which future estimations are available in every iteration makes it
impossible to make estimation for the future. These choices limit the applications of this research. If
real time estimations or predictions were possible, the applications could be much broader.

A limitation because of a lack of data is that on most ramps there was no intensity data available.
Because of the lack of data on ramps not all intensity data that plays a role on the specific instance
was captured, the model cannot make a good estimation of difference between the measured location
and the up– or downstream location, because a certain number of vehicles have left or entered the
motorway. In stationary conditions this number can be obtained because of the law of conservation of
flow. The number of vehicles that take the ramp is then equal to the difference of the location upstream
and downstream of the ramp. But in conditions at which speeds are different, this number cannot be
determined. It was hoped that this lack of information did not matter much, because the model might
have been able to capture this by itself. This however did not work very well, because the performances
near ramps was worse than at other locations.

By choosing only twelve road sections this research does not give an overview of the whole motorway
network of the Netherlands. Also complex locations as motorway intersections or locations with a
plus– or peak lane were not included in this research. The reason for this is that those locations would
not fit in the format of data that is used in this research. For example at intersections there is not one
upstream or downstream locations, but there are multiple. Or in the case of a peak lane the number of
lanes would vary over the day and it is not exactly known when those lanes were open or closed. The
choice not to include such locations limits the applications for this research.

A drawback of the outcome of this research is that it does not give new insights in the relation between
intensity and speed. The neural network that was used is a black box and it remains mostly unclear why
certain estimations are made. Only the quality of the result can be used as an output. In other words the
neural network shows that a relation can be found between speed and a pattern of intensities, but how
this relation works is unclear. The DTL and regression models give more insight in what happens in the
model. This however also does not tell much about the speed intensity relation. The regression model
only shows which inputs have a positive and negative correlation to the output and to what extent. The
DTL gives a tree of rules, which in this case is so extensive, it does not really give much insight. In
addition, the DTL and regression model performed worse than the RNN, meaning that the relation
that eventually could be found is less reliable.

8.2.3 Future work recommendations

This research has some points on which further research can be of added value. A few possible research
directions for future research are outlined.

An option for further research is applying neural networks on the relation between modelled data and
speed. A data source for speeds can be floating car data. It would be interesting to see whether or not
the same relations between those two data types can be found as were found in this research. If in that
case the same results are found, models can be trained for estimating speed based on modelled intensity
data.
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This researched focused on estimating speeds when only intensities are known. Researching the other
way round could be interesting as well: Estimating intensities based on speeds. On motorways where
there is no observation of traffic this could give insight in the number of vehicles using that specific
road. Speeds can be used from external parties, again floating car data is the most likely data source for
this. Also, if it is possible to estimate intensities based on speed, with the same results as the RNN has
in this research, the relation between speed and intensity can be explained better.

Finally, the last suggestion for further research is making speed estimation real time or even for the
future. In order to do so intensity values in the future can no longer be used. For making prediction for
the near future, even the intensity value of the present can no longer be used. Making such a model
can be of great use, because on the short term congestions or other disruptions can be predicted. This
could make improvement for example in software for navigation. Making predictions for the future
will be hard however. In the models that are used in this research the present value for intensity is
very important for the estimation. The future value for the instance is less important, but is also of
importance in speed estimation.
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