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Abstract

Social agents and robots might become widely used in our daily life. To better collaborate with hu-
mans, these systems need to be designed to learn from humans and the environment to function
autonomously. In recent years, Reinforcement Learning(RL) has been used in different areas with
successful results in task learning. An important feature for human-robot cooperation is lacking,
robot-to-human transparency. The learning process in RL could be hard for humans to understand
and therefore not able to give proper feedback to the robot about its behaviour, which is important
for autonomous learning. One way to overcome this problem is to add emotions to the robot, as
emotions are used by humans and many animals to express their internal states.

Temporal Difference Reinforcement Learning (TDRL) Theory of Emotion proposes a structure for
agents to express appropriate emotions during the learning process. Simulations have been done to
test simulate emotions in several scenarios, but there is no further experiment to test how plausible
these simulated emotions are when perceived by humans.

This thesis aims to find out the plausibility of simulated fear perceived by humans. 6 different fear
calculation methods based on TDRL emotion theory were compared with a baseline, 237 human
participants were recruited to evaluate different fear calculation methods in terms of the plausibility
of fear intensity and fear location. Results suggest the fear calculation method with ε-greedy fear
policy(ε = 0.1) and long-horizon provides a plausible fear estimation, and humans could understand
simulated fear based on TDRL Theory of emotions when properly expressed.
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Chapter 1

Introduction

1.1 Introduction

The collaborations between humans and robots are becoming more important when robots are more
and more present in society and our daily life. Just like the collaboration between humans, success-
ful teamwork between humans and robots cannot be achieved without an agreed goal and mutual
understanding about team members’ intention [1]. However, it is impossible for the robot designer to
pre-program for all different scenarios and user habits. Also, most users are not experts on machine
learning or programming. Therefore, the robot’s system needs to be designed to learn from the user
and the environment.

Reinforcement Learning(RL), a machine learning method inspired by instrumental conditioning,
provides an efficient algorithm for robots to learn new skills by trial-and-error [2]. By repeatedly in-
teracting with the environment, an RL agent(the actor that decides what action to take) could use
the adaptive state-action pairs to achieve the optimal state transition policy that maximizes the re-
wards [3]. In recent years, the autonomous learning feature of RL has been used in different areas,
like trajectory optimization [4] and intelligent control [5]. But RL lacks a crucial feature for good
teamwork, robot-to-human transparency. The learning process in RL could be hard for users to un-
derstand [6]. A user needs to understand why a robot behaves in a certain way [7]. This lack of
transparency makes the user hard to give proper feedback to the robot, which is important for au-
tonomous learning [8] [9].

One way to overcome the problem is to add emotions to the robot. Studies have shown that
emotional expression by robots can help humans to better understand robots. Participants in [10]
report higher pleasantness for an emotional robot, participants in [11] perceive emotional agents
more convincing and participants in [12] report more effective communication. With emotions in RL
agents, the robot’s interactions with human will be more natural for human in the loop RL.

Temporal Difference Reinforcement Learning (TDRL) Theory of Emotion [13] proposes a structure
for agents to express appropriate emotions to a human about the robot’s internal state during the
learning process. In this theory, emotion is defined as a valenced reaction to (mental) events that
modify future action, grounded in bodily and homeostatic sensations [13]. In [6], it is argued that
TDRL Theory of emotion provides sufficient structure to simulate emotions. However, experimental
evidence that these emotions are understandable by, and plausible for human observers is lacking.
This thesis aims to investigate the understandability and plausibility of the simulated fear based on
TDRL Theory of emotions perceived by humans.

1



2 CHAPTER 1. INTRODUCTION

1.2 Report organization

The remainder of this report is organized as follows. In Chapter 2, basic concepts about reinforce-
ment learning will be explained. Chapter 3 describes the related works about emotions in reinforce-
ment learning agents and research questions. The implementation details about fear simulation will
be presented in Chapter 4. Chapter 5 will explain the simulation environment and evaluation meth-
ods. Results and relevant discussions are presented in Chapter 6. Finally, Chapter 7 will finalize the
work and give an outlook for possible future research and improvements on this topic.



Chapter 2

Reinforcement Learning concepts

Reinforcement Learning (RL) is a branch of machine learning methods, it is inspired by how animals
learn to interact with their surroundings. In RL, a learning agent has no supervision, it learns the task
by discovering on its own via trial-and-error interacting with the environment. During learning, the
agent observes the state of the environment and the reward received for the corresponding action.
After incorporating these observations in its decision making strategy, the agent chooses its next
action based on the current new state and action-selection policy. Then, again, the agent observes
the next reward for that action and the loop repeats. The goal of the agent is to maximize the
cumulative rewards over time. See Figure 2.1.

Figure 2.1: Basic RL model [2]

RL problems are usually defined in terms of Markov Decision Process (MDP), which provides
a standard formalism for describing sequential decision making in an environment. In this chapter,
relevant concepts for MDP will first be introduced, then different methods of RL will be described in
the rest of this chapter. Most concepts in this chapter are referenced from [2].

2.1 Markov decision process

A Markov decision [2] process can be defined by M =< S,A, P,R >, where

• S: set of states s ∈ S

• A: set of actions a ∈ A

• P (st+1 | st, at): transition function, the probability of reaching state st+1 while in state st choose
action at

3



4 CHAPTER 2. REINFORCEMENT LEARNING CONCEPTS

• R(st, at, st+1): reward function, the immediate reward of reaching state st+1 while in state st

choose action at

Return
A typical sequence for MDP looks like this: (s0, a0, r0, s1, a1, r1...sn−1, an−1, rn−1, sn, an, rn...)

For an environment with a final time step, this sequence is finite. The goal of maximizing cumu-
lative received reward, in the long run, could be defined as to maximize expected return. The return
for time step t, can be denoted as Gt:

Gt = rt + rt+1 + rt+2 + ...+ rT (2.1)

For an environment can go on without limit, the above Gt could be infinite. Thus, a discount factor
γ ∈ [0, 1) is used to make sure the return is bounded and earlier rewards are preferred over later
rewards in the optimization process. Gt is defined as:

Gt = rt + γrt+1 + γ2rt+2 + ... =

∞∑
k=0

γkrt+k (2.2)

For a continuing task, the goal would then be to maximize the expected discounted return. Differ-
ent γ value gives different weights to future rewards. A small γ value emphasizes immediate rewards
and a large γ value emphasizes future rewards.

Policy
In MDP, a policy is defined as a mapping from states to the probability of choosing possible action

in the corresponding state. The policy at time t, denoted as π(a | s), represents the probability of
choosing at = a when st = s. In RL, the goal is to find the optimal policy that maximizes expected dis-
counted return. Generally speaking, there are 2 approaches to find the optimal policy: value-function
based method and policy based method. The former one tries to find the optimal policy by finding the
optimal value function, the later one directly learns the optimal policy by policy parametrization [2]. In
this thesis, the focus is on value-function based methods.

Value function
In MDP, value function estimates how good it is for an agent to be in a certain state(or state-action

pair), and it is measured by the expected value of the cumulative discounted reward over the future
following a certain policy start from that state(or in short expected return). The state value function
of state s under policy π, denoted as Vπ(s), is given by:

Vπ(s) = Eπ(Gt | st = s) = Eπ(

∞∑
k=0

γkrt+k | st = s) (2.3)

Similarly, the action value function is defined as the expected return starting from s, taking the
action a, and then following policy π. It is denoted as Qπ(s, a) and given by:

Qπ(s, a) = Eπ(Gt | st = s, at = a) = Eπ(

∞∑
k=0

γkrt+k | st = s, at = a) (2.4)

Bellman Equations
The Bellman equation for the state-value function can be derived by rewrite equation 2.3:

Vπ(s) = Eπ(

∞∑
k=0

γkrt+k | st = s)

=
∑
a

π(a | s)
∑
s′

P (s′ | s, a)[R(s, a, s′) + γVπ(s′)]

(2.5)
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Similarly, the Bellman equation for the action-value function can be derived as:

Qπ(s, a) =
∑
s′

P (s′ | s, a)[R(s, a, s′) + γ
∑
a′

π(a′ | s′)Qπ(s′, a′)] (2.6)

The Bellman equation expresses the value of a state s in terms of next state s′, this means the
value of st can be calculated if the value of st+1 is known. This property makes it possible for iterative
approaches to calculating the value for each state.

Optimal Policy and Optimal Value Functions
A policy π is defined to be better than or equal to policy π′ if its expected return is greater than

or equal to that of π′ for all states, which implies Vπ(s) ≥ Vπ′(s) for s ∈ S. An optimal policy π∗ is a
policy that is better than or equal to all other policies. And the optimal value function, V∗(s) is defined
as:

V∗(s) = max
π

Vπ(s),∀s ∈ S (2.7)

The optimal action value function, Q∗(s, a) is defined as:

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S, a ∈ A (2.8)

According to optimal policy, the following equation can be derived:

V∗(s) = max
a∈A(s)

Qπ∗(s, a) (2.9)

By combining Equation 2.4 and 2.9, the Bellman optimality equation for V∗(s) can be derived:

V∗(s) = Eπ(Gt | st = s, at = a)

= Eπ(rt + γGt+1 | st = s, at = a)

= Eπ(rt + γV∗(s
′) | st = s, at = a)

= max
a

∑
s′

P (s′ | s, a)[R(s, a, s′) + γV∗(s
′)]

(2.10)

And the Bellman optimality equation for Q∗ is:

Q∗(s, a) = Eπ(rt + γmax
a′

Q∗(s
′, a′) | st = s, at = a)

=
∑
s′

P (s′ | s, a)[R(s, a, s′) + γQ∗(s
′, a′)]

(2.11)

2.2 Model-free vs model-based RL

There are many ways to classify RL algorithms, one that is often used in literature is based on whether
the algorithm use environment model. Algorithms that use this model are called model-based RL,
the rest are called model-free RL.

2.2.1 Model-free methods RL

Model-free RL algorithms do not need an environment model. These methods learn explicitly by trial-
and-error from experience, in other words, they try to learn a value function from interacting with the
environment and derived an optimal policy from that. Monte-Carlo learning and Temporal-Difference
learning are two typical learning methods of this kind.
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Monte Carlo learning method
Monte Carlo(MC) usually can only be applied to episodic tasks, where experience can be divided

into episodes(each episode has a clear terminal state, reaching terminal state would reset the task).
The learning of the MC method is in an episode-by-episode fashion, instead of a step-by-step(online)
way. This means values estimates and policies will only be changed after the completion of an
episode. MC method learns optimal policy and value function by iteratively taking two steps: policy
evaluation and policy improvement.(see Figure 2.2). The policy is repeatedly improved with respect to
the current value function, and the value function is repeatedly improved with respect to the current
policy. As they keep change against each other, both policy and value function will approach to
optimality [2].

In the policy evaluation step, a roll-out is generated for one episode according to current policy π,
(s0, a0, r0, s1, a1, r1..., sT , aT , rT ). The value function is estimated using this episode.

In the policy improvement step, the policy is improved by taking current value function greedily.
For example, the greedy policy of an action-value function Q at state s is to choose an action with
maximum action-value:

π(s) = argmax
a

Q(s, a) (2.12)

In this method, by taking these two steps alternatively, an arbitrary policy π0 will converge to optimal
policy π∗, and optimal value function Q∗ can be found:

π0 → Qπ0 → π1 → Qπ1 → ...→ π∗ → Q∗ (2.13)

Figure 2.2: Monte Carlo Control [2]

Temporal Difference learning method
Temporal Difference(TD) learning is similar to the MC method, it can directly learn from raw ex-

perience without a model for the environment. But, TD learning can learn online after each step,
unlike the MC method which only updates policy after each episode. Thus, TD learning can also be
used for non-terminal tasks. The idea of TD learning is to update estimates based on other learned
estimates, in other words, it updates guess from another guess. The simplest form of this method
is the TD(0) algorithm(or one-step TD) proposed by Sutton in 1998, and the update rule for value
function is:

V (s) = V (s) + α(r + γV (s′)− V (s)) (2.14)

where α is learning rate, γ is discount factor, s′ is current state after taking an action at last state
s, r is received reward arrived at state s′. The value of r + γV (s′) is called one-step target, and



2.2. MODEL-FREE VS MODEL-BASED RL 7

(r + γV (s′) − V (s)) is called one-step TD error. One of the famous TD learning algorithms is Q-
Learning(see Algorithm 1). In Q-Learning, the action-value function Q directly approximate optimal
action-value function.

Algorithm 1: Q-Learning

1 Initialize Q randomly
2 for each episode do
3 Initialize s
4 for each step of episode do
5 Choose action a for s using policy derived from Q (e.g., ε-greedy)
6 Take action a, observe reward r and next state s′

7 Q(s, a)← Q(s, a) + α(r + γ max
a
Q(s′, a)−Q(s, a))

8 s← s′

9 end
10 end

2.2.2 Model-based methods RL

Model-based RL methods can use information about environment dynamics for planning. Generally,
model-based RL can be divided into 2 categories, if the transition functions and reward functions
are known, then Bellman optimality equations can be solved iteratively. Otherwise, the model can
be estimated online by collecting information about the environment. The former approach is also
known as Dynamic Programming since it requires the knowledge of the model, which is rarely the
case in practice. Nowadays most model-based methods choose to learn the model online. One of
the examples is Dyna-Q algorithm.

Dyna-Q
Dyna-Q is a simple architecture that combines planning and learning at the same time. In this

architecture, real experience is used in two ways: i)improve the model, ii) directly improve value func-
tion and policy. The first one is called model-learning, the second one is called direct reinforcement
learning(direct RL) [2]. Figure 2.3 illustrates this architecture.

Figure 2.3: Dyna architecture. Real experience is used to improve value function & policy by: direct
RL and model-learning. [2]

Algorithm 2 shows the pseudo-code for Dyna-Q. It first performs one-step tabular Q-Learning(Step1-
6), then learning the model by observing the received reward and next state for a particular pair of
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state and action, the transition function P and reward function R is thus updated according to this
information(Step 7). Then, it performs random-sample one-step tabular Q-planning(Step 8-12), in the
planning, simulated experiences are generated from the model and used to improve value function
as if they are real experiences.

Algorithm 2: Dyna-Q

1 Initialize Q and Model

2 Loop forever:
3 s← current (non terminal) state
4 a← ε-greedy(s,Q)
5 Take action a, observe reward r and next state s′

6 Q(s, a)← Q(s, a) + α(r + γ max
a
Q(s′, a)−Q(s, a))

7 Model← r, s′(assuming deterministic environment)
8 Loop repeat n times:
9 s← random previously observed state

10 a← random action previously taken in s
11 r, s′ ←Model

12 Q(s, a)← Q(s, a) + α(r + γ max
a
Q(s′, a)−Q(s, a))

2.3 Exploration-Exploitation

In RL, most algorithms initialize with a random policy, so the agent could try different possibilities and
explore the environment(exploration). After some learning, the policy will converge to a solution and
the agent will stick to that solution(exploitation). But if the agent always chooses the actions that stick
to this solution, it might miss a better solution. This is the dilemma of exploration and exploitation. In
the following, 2 action-selection policies will be discussed for dealing with this dilemma.

ε-greedy policy

In this policy, an agent chooses the optimal action with a probability of 1 − ε and randomly oth-
erwise(See equation 2.15). It is widely used in RL algorithms because of its simplicity and intuitive
nature. In practice, ε is usually set to a large value(for example, 0.9) initially to ensure the agent has
enough exploration for the environment, then let the value decay to a small number(for example, 0.1)
when approaching convergence to make sure there is still some exploration while most of the time
the agent is following the found policy.

a =

{
arg max

a∈A
Q(s, a) with probability 1− ε

Random a, a ∈ A with probability ε
(2.15)

Boltzman/Softmax policy

One disadvantage of ε-greedy policy is that it chooses all actions with the same probability when
it chooses a random action. This means the worst action has equal chance to be chosen as other
actions, and this can be problematic in some situations. The softmax policy tries to overcome this
problem by giving actions with a higher value a higher probability of being selected. In the following
equation 2.16, τ is a positive parameter. When τ → 0, softmax becomes greedy action selection,
and when τ →∞, softmax becomes random action selection. The drawback of this policy is that it is
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difficult to find a proper τ for different environments.

π(a | s) =
exp(Q(s, a)/τ)∑

b∈A
exp(Q(s, b)/τ)

(2.16)
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Chapter 3

Related work & research questions

3.1 Emotion in nature and psychology

In psychology, there are mainly three emotion theories: categorical, dimensional and appraisal theo-
ries.

Categorical emotion theory suggests there exists a set of discrete emotions shared among differ-
ent cultures and societies [14]. According to evolution theory, these emotions were selected through
evolution to ensure species’ survival and improve the adaptive fit in primitive environments [15].

The Circumplex model, the most prominent dimensional model of emotion, was developed by
James Russell [16] [17]. This theory suggests that there is a two-dimensional emotion space,
arousal(emotion intensity) and valence(positive or negative). In this model, emotional states could
be represented in a two-dimensional space with different levels of arousal and valence.

Appraisal theory was proposed by Arnold [18] and developed by Lazarus [19], it considers emo-
tions as appraisal processes triggered by stimuli evaluated according to personal relevance. Com-
pared to the previous two theories, modern appraisal theory define emotions as processes rather
than states [20].

The role of emotion can be categorized into two groups: intrapsychic and interpersonal. The
former one refers to the roles within an individual: emotions help ensure individual survival, adjust
behaviour by goal management, and contribute to learning and information acquisition [21] [22] [23].
The interpersonal refers to the roles in social interaction, where emotions are used to communicate
internal state and mediate group behaviour to maintain social structure [21].

3.2 Computational models of emotions in RL agents

The idea of implementing an RL agent or robot with emotions is not new. According to the review pa-
per by Moerland et al. [24], many studies have been done in the field of the computational modelling
of emotion in RL agents. The benefits of using emotions can be roughly divided into three categories:
learning efficiency, emotion dynamics and human-robot interaction(HRI).

Learning efficiency

According to [24], the majority of the researches about emotion in RL are related to learning efficiency.
For example, in one of the core papers in this field by Gadanho and Hallam [25], emotions(joy,
sad, fear and angry) are derived from homeostasis/internal drive. In their emotion model, each

11



12 CHAPTER 3. RELATED WORK & RESEARCH QUESTIONS

emotion intensity is based on a set of virtual robot’s internal feelings, and feelings are derived from
the robot’s sensations. The set of feelings are (Hunger, Pain, Restlessness, Temperature, Eating,
Smell, Warmth, Proximity). For instance, hunger rises when lacking resources, pain rises when
bumping with obstacles, restlessness increases if the robot does not move and the temperature
rises with high motor usage. After feelings are generated, each emotion is calculated through linear
weighted dependencies from feelings, e.g. joy is derived from eating or smell food, sad from high
hunger, fear from pain and anger from high restlessness. In their experiments, they compared the
performance of emotional and non-emotional robots in a virtual world with obstacles and energy
sources for a surviving task of maintaining adequate energy levels. The robot used reinforcement
learning techniques(e.g. Q-learning) to learn the environment, and the emotion model was also
integrated into the reinforcement learning framework for robot control. Results from their experiments
suggest that emotional robots could achieve higher average reward and more likely to avoid collisions.

Another example is by the work of Marinier and Laird [26], in their model, emotions are elicitated
based on the appraisal theory by Scherer [27]. Appraisal theories hypothesize that an emotional
reaction to a stimulus is the result of an evaluation of that stimulus along a number of dimensions,
most of which relate it to current goals. In Marinier and Laird’s work, they used a subset of the
appraisal dimensions described by Scherer. In their model of emotions, emotional feedback helps
drive reinforcement learning by controlling RL attributes with different appraisal dimensions.

Apart from the above 2 studies, there is also much other research on learning efficiency, for
example, emotional agent could learn faster(Ahn and Picard [28], Zhang and Liu [29]), emotional
agent could avoid obstacles and collisions(Lee-Johnson et al. [30], Shi et al. [31]), emotions help
agents improve the ability to switch goals(Cos et al. [32], Goerke [33]), and emotion helps in improving
the exploration(Broekens et al. [34]).

Emotion dynamics

In this category, emotion signals are usually compared with known psychology theories. Jacobs
et al. [35], propose a computational model of joy, distress, hope and fear as mappings between
RL primitives(reward, value, update signal, etc...) and emotion labels. Joy/distress is derived from
positive or negative TD for the current state, and hope/fear is derived from the learned value of the
current state. In the experiments, an agent-based simulation was used for an RL-based agent in a
virtual maze world. Results showed that their model meets the requirements from emotion elicitation
literature [36], emotion development [37], emotion habituation and fear extinction [38].

Some research in this category worked on how emotion dynamics fit in social interaction. Tanaka
et al. [39] focused on a model that emotions are affected by interacting with humans. In their emo-
tion model, emotions are elicitated through internal state variables: fullness, pain, hunger, comfort,
fatigue, and sleepiness. Different combinations of internal state values are associated with differ-
ent emotions, and 7 emotions could be generated: happiness, sadness, anger, surprise, disgust,
fear and neutral. In experiments, participants interact with the robot by hitting or padding, then the
robot generates emotions and behaviours (gesture, voice and facial expression) according to the
model. The results showed appropriate emotional responses(joy or fear) to people padding or hitting
the robot. Moussa and Magnenat-Thalmann [40] included emotions, attachment and learning in a
decision-making architecture for a virtual agent. Their framework was evaluated through simulation
evaluations by interacting with users under different scenarios. The results showed correspondence
with psychology theories and the virtual agent showed an appropriate emotional response to different
user behaviours.
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Human robot interaction

In this category, the focus is to show how emotions could be beneficial for interacting with humans,
and this is usually done by participants filling in questionnaires after the experiments. Ficocelli et
al. [12] proposed an emotion-based assistive behaviours model for a real robot that focuses on natural
HRI scenarios. In their emotion model, emotions are derived from human’s affective states and
assistive tasks while interacting with humans. The robot would try to persuade participants to engage
in an activity utilizing the observed participant’s emotional state and the robot’s emotion module.
Results of comparing a robot with a working emotional module and a robot without emotional module
showed emotional robot is more efficient at obtaining compliance from participants.

El-Nasr et al. [11] proposed a computational model of emotions that uses a fuzzy-logic repre-
sentation to map events and observations to emotional states. Reinforcement learning methods
were also incorporated in the agent to learn about the environment so that the agent could adapt
its response to make its behaviour more believable. To evaluate their model, a virtual pet was im-
plemented and participants were asked to perform tasks in different scenarios with this pet. After
experiments, participants were asked to fill in a questionnaire to assess the virtual pet’s behaviour
in different aspects. Results showed that the adaptive component of the emotion model made the
virtual pet’s behaviour more convincing.

In the work of Kim and Kwon [10], an emotion model was implemented based on cognitive ap-
praisal theory. A real robot that interacts with humans for a given service task utilized this model
to appraise task-related situations and generate corresponding emotions. The interaction task is a
game consisting of some questions. Two experiments were carried out to evaluate the interaction:
the first was used to understand the overall affective evaluation of the interaction with the robot and
the second one was used to understand the suitability of the emotion model. The evaluation of the
experiments showed that an emotional robot during the task gives participants more positive feelings.

Summary from previous studies

So far, most of the computational models of emotions in RL agents and robots are based on cognitive
appraisal theory and they assume emotions arise form a cognitive reasoning process instead of a
learning process based on exploration and positive/negative feedback. This means that in most of
the models, a cognitive reasoning module is needed. TDRL Theory of emotion, on the other hand,
assumes emotions that are simulated and expressed by the agent are grounded in the learning
process of that agent. So no cognitive reasoning module is needed to generate emotions.

In this thesis, the computational model of emotions is based on the work of [41], it is one im-
plementation of the TDRL Theory and results of it showed emotions occur at appropriate states in
3 simulation scenarios. Since the generated emotions have only been tested in simulations and no
experiment has been done to check the plausibility of the emotions perceived by humans, my con-
tributions in this field are: 1)Verify the plausibility of the simulated fear emotion, 2) Test different fear
calculation methods for fear intensity and fear locations.

3.3 TDRL Theory of Emotions

The essence of the TDRL Theory of Emotion is that all emotions are manifestations of temporal dif-
ference errors [13]. The definition of emotion in here is a valenced experience in reaction to (mental)
events providing feedback to modify future action tendencies, grounded in bodily and homeostatic
sensations and evolutionary developed serviceable habits [13].
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Joy (Distress) is the manifestation of a positive (negative) temporal difference error [13].
In Q-learning, Joy and Distress are defined as [6]:

if(TD > 0)⇒ Joy = TD (3.1)

if(TD < 0)⇒ Distress = TD (3.2)

With TD defined as:
TD = r + γmax

a′
Q(s′, a′)−Q(s, a)old (3.3)

Hope (Fear) is the anticipation of a positive (negative) temporal difference error [13].
In [41], Hope and fear are simulated using Monte Carlo Tree Search procedure(UCT). Results

from 3 test scenarios suggest hope and fear could emerge from anticipation in a model-based RL.

3.4 Research questions

TDRL theory of emotion could provide sufficient structure to simulate emotions [6], but there is no
experiment so far to test how humans feel about these simulated emotions. Therefore, in this thesis,
a TDRL-based emotion model is used for a virtual agent to generate fear in the autonomous learning
process. Further, an approach to evaluate the generated fear is proposed. Concerning this issue,
two main research questions are addressed:

• How plausible is the simulated fear perceived by humans?

• What is a proper fear calculation method for fear intensity and fear locations?



Chapter 4

Fear simulation based on TDRL
Theory of Emotions

4.1 Overview of the fear simulation architecture

In this section, the details of the architecture for fear simulation in RL agents will be described. The
architecture has three major components: forward planning, fear calculation, and agent learning.
Algorithm 3 shows abstract steps of this architecture. As the algorithm shows, before each agent ac-
tion, the agent uses forward planning based on learned knowledge to imagine different futures(step
3). From these imaged futures, the agent calculates fear for future states according to its fear policy.
Then, the agent takes a step using the action-selection policy π. After observing the immediate re-
ward r and next state s′, the agent uses this observation for learning by updating the model and Q
values. This loop then goes up until terminated. One important notice for this architecture is that the
emotion fear does not affect the action-selection policy. In the following sections, these components
will be described in more detail.

Algorithm 3: Fear simulation based on TDRL Theory of Emotions

1 Initialize R,P,Q
2 while s is not terminal do
3 Fear← MCTS-T+(s, d,N ) // section 4.2&4.3
4 a← π(s, a) // action-selection policy
5 Take action a, observe r, s′

6 R, P← Update model(s, a, r, s′) // section 4.4
7 Q← Q-Update(l, d) // section 4.5
8 s← s′

9 end

4.2 Planning with MCTS-T+ (modified to stochastic model)

In order to estimate a proper future state, forward planning should be used for the current state. A
commonly used algorithm for this purpose is Monte Carlo Tree Search (MCTS) [42]. Different varia-
tions of it are often used in board games, and the most famous one is Upper Confidence Bounds for
Trees (UCT) [43] [44]. But one disadvantage of MCTS is that it is not good at dealing with asymmetric
tree structure or loops in the tree, which is not a problem in board games. In navigation tasks, this
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can occur quite often, like a narrow tunnel between walls. In [45], a MCTS-T+ algorithm is proposed,
where an uncertainty attribute is added to deal with the previously mentioned problems. Testing re-
sults on a set of OpenAI Gym and Atari games show this algorithm always perform better than or
at least equivalent to standard MCTS. However, it is only for the non-stochastic environment, which
limits the usage of it. In this thesis, a modified version of it is used to fit the stochastic environment.
Different from standard MCTS procedure of 4 steps( select, expand, roll-out and backup), in here
MCTS-T+ is only used for building a tree structure and environment dynamics is learned online, thus
the roll-out step is not used for a future state value estimation. The general approach is shown in
Algorithm 4. The computational budget in this algorithm is decided by the maximum depth of the tree
d and the number of search iterations N .

Algorithm 4: MCTS-T+(s, d,N ) approach

1 Create root node with state s
2 while within computational budget do
3 Select child node
4 Expand current node
5 Backup
6 end
7 return built tree

In Algorithm 4, three steps are applied per search iteration:

1): Select child node

2): Expand current node

3): Backup

These three steps will be explained in details in the following.

1.Select child node

Starting from root node, recursively select child nodes according to Algorithm 5.

Algorithm 5: Select child node

1 Current node is s
2 while s is fully-expand & non-terminal do
3 s← SELECTCHILD(s) // Algorithm 6
4 end
5 return s

In the above algorithm, a node is fully-expand if all possible child nodes according the built model
is added to this node.
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Algorithm 6: function SELECTCHILD(s)

1 Current node is s
2 if node s has stochastic child nodes then
3 for all a ∈stochastic action do
4 for all s′ ∈ stochastic child nodes with action a do
5 σ(s, a)← (

∑
s′

[n(s′) ∗ σ(s′)])/(
∑
s′
n(s′))

6 end
7 end
8 else
9 pass

10 end

11 act← arg max
a

(
Q(s, a) + σ(s, a) ∗

√
2·log n(s)
n(s,a)

)
12 s′ ∼ P (s′ | s, act) // sample a child according to transition probability
13 return child s′

In Algorithm 6, a node having stochastic child nodes means there are multiple possibilities of
next state s′ when in state s taking action a. For example, in Figure 4.1, the left tree structure has
no stochastic child node, but in the right tree structure, node s0 has 2 stochastic child nodes and
stochastic action is a1 because the action a1 can result 2 possible next state s1 and s2.

Figure 4.1: Tree structure without stochastic child nodes(left) and tree structure with stochastic child
nodes(right).

In step 5, σ ∈ [0, 1] is the tree uncertainty attribute. σ(s) represents the tree uncertainty below the
sub-tree of s, σ(s) = 1 indicates a completely unexplored sub-tree below s, and σ(s) = 0 indicates
a fully enumerated sub-tree. Similarly, σ(s, a) represents the tree uncertainty below the sub-tree of s
for branches with action a. And n(s′) represents the number of visits for node s′.

In step 11, an action is chosen according to equation similar to UCB1 [46], which balance explo-
ration and exploitation. n(s, a) represents the total number of visits for all the child nodes with action
a under node s.

2.Expand current node
If current selected node is non-terminal, then it will be expanded with a child node. The child node

is randomly chosen from all possible non-added child nodes. After this child node c is added, it will be
initialized with attributes {n(c) = 0, σ(c) = 1} if node c is non-terminal, otherwise {n(c) = 0, σ(c) = 0},
and this node c is chosen as current node.

3.Backup
Finally, recursively backup the uncertainty attribute and node visit information from the current
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node until the root node s0. The procedure is shown in Algorithm 7.

Algorithm 7: Backup

1 Current node is s
2 while s is not root node do
3 if s is leaf node then
4 n(s)+ = 1

5 else
6 n(s)+ = 1

7 UncertaintyUpdate(s)
8 end
9 s← ParentNode(s)

10 end

In step 7, the UncertaintyUpdate for node s is by the equation:

σ(s)←

∑
s′∈C

m(s′) · σ∗(s′)∑
s′∈C

m(s′)
(4.1)

where C is all possible child nodes according to model, and:

m(s′) =

{
n(s′) , if n(s′) ≥ 1

1 , otherwise
σ∗(s′) =

{
σ(s′) , if n(s′) ≥ 1

1 , otherwise
(4.2)

4.3 Fear calculation

In [47], the belief-desire theory of emotion(BDTE) is proposed to describe emotions based on two
dimensions: belief and desire. In this theory, belief about a state s, b(s) ∈ [0, 1] is defined as the
perceived probability of state s happening, and desire about state s, d(s) ∈ R, as the desirability
for s. According to this theory, fear originates when 0 < b(s) < 1 and d(s) < 0, since fear is about
an uncertainly future event that is undesirable. In RL terms, fear can be modelled as anticipated
negative temporal differences about a forward state [41]. In BDTE, fear intensity is defined as the
product of belief and desire, I(s) = b(s) × d(s). Thus, in this thesis, fear is defined as the worst
product of likelihood and temporal difference among all imaged future states. This will be explained
in more detail below.

When the planning with MCTS-T+(s, d,N ) is finished, a tree is built staring from root node s with
depth d and N forward traces. For example, Figure 4.2 shows a built tree starting from root node s0,
with depth d = 2 and N = 5 trajectories. In the example tree, the 5 forward planning trajectories are:

T1 = {s0, s1}
T2 = {s0, s2}
T3 = {s0, s1, s3}
T4 = {s0, s1, s4}
T5 = {s0, s2, s1}
The different planning trajectories are like different imaged futures. For each imaged future, fear

will be calculated for the end state, but the most feared state s′ is the state that has highest negative
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Figure 4.2: A MCTS-T+(s, d,N ) tree with s = s0, d = 2, N = 5. (Two s1 nodes in the tree are treated
as different nodes, they do not share visit count information)

TD error among all imaged futures. For each trajectory T , the fear in node s0 is given by:

f(T ) = f(send | s0)

= b(send | s0)× d(send | s0)

=

end−1∏
t=0

[π(st, at) · P (st+1 | st, at)]×

([
end−1∑
t=0

γtR(st, at, st+1)

]
+

[
end∏
t=0

γ

]
V (send)− V (s0)

)
(4.3)

where send is the last state in a trajectory, π(st, at) is the emotion policy and V (s) = max
a

Q(s, a).

The uncertainty of a state depends on the emotion policy and environment dynamics P (st+1 | st, at).
In practice, there could be multiple paths towards a state s′, for example, both T1 and T5 traces

lead to state s1. This means state s1 is more likely to happen, so the fear for s1 is the sum of trace
T1 and T5, F = f(T1) + f(T2). In general, the most feared state s′ when in state s0 and its intensity
is defined as:

F (s0) = m
s′
in

 ∑
T∈Trajects end with s′

f(T )

 (4.4)

4.4 Update model

After each step, (s, a, r, s′) is observed and will be used to update the transition function and reward
function by normalized transition probability and average observed rewards, respectively. Assuming
the observed sequence is like: s0, a0, r0, s1, a1, r1, s2, a2, r2, s3... Then:

P (s′ | s, a) =

∑
i=0 1 {si = s, ai = a, si+1 = s′}∑

i=0 1 {si = s, ai = a}
(4.5)

R(s, a, s′) =

∑
i=0 1 {si = s, ai = a, si+1 = s′} ri∑
i=0 1 {si = s, ai = a, si+1 = s′}

(4.6)

4.5 Q-Update(l,d)

After P (s′ | s, a) and R(s, a, s′) are updated for the observation of (s, a, r, s′), Q estimates will also be
updated according to the Bellman equation:

Q(s, a) =
∑
s′

P (s′ | s, a)[R(s, a, s′) + γmax
a′

Q(s′, a′)] (4.7)
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During learning, the agent always keeps a record of the l most recent steps including state, action
and reward information. To propagate back TD errors fast over state-space, this Q update process is
repeated for the l most recent step in reverse chronological order(e.g. the step just happened update
first). And for each step in this record, this update process is again repeated for the steps that could
lead to the step in the record until the depth of d.



Chapter 5

Simulations and evaluation methods

5.1 Introduction

In this chapter, the simulation environment and evaluation methods will be described. According to
the research questions and TDRL Theory of emotions, the layout of the maze environment with a
ghost is chosen based on the following reasons:

• The environment should not be too complex. To evaluate different fear calculation methods,
human participants will be asked to watch the agent’s learning from scratch in the environment.
If the layout is too complex, it could take a long time for the agent to learn the task, and boring
to watch.

• Since fear is an uncertain negative TD error from a future state, the stimuli in the environment
for fear should be stochastic, so it can’t be a still obstacle with negative rewards.

• The expression of the emotion should be intuitive and simple. Thus, the fear intensity of the
agent is represented by the agent’s color, instead of a separate diagram like a bar chart.

5.2 Environment

In this thesis, the learning agent and environment are implemented using Python and OpenAI Gym
library [48]. OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms,
it contains a collection of benchmark environments designed for testing different RL algorithms. Since
the environment used in this thesis has a different focus than normal benchmark environments in
Gym, Gym library is only used for the environment visualization.

Situation Reward
Make a step -0.01
Hit wall -0.1
Hit ghost -10
Reach target 10

Table 5.1: Reward for agent in different situations

The environment used for this thesis is shown in Figure 5.1, it is a typical 2D discrete stochastic
grid world maze. In this environment, the learning agent(gray block) starts at an initial position(central
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Figure 5.1: Agent’s learning environment

lowest). It can move up, down, left or right one step each time. If it bumps into a wall(black surround-
ing), it will collide with the wall, receiving a small negative reward and stay at the original position.
If it reaches the target(blue block, central highest), it will get a big positive reward and be sent back
to the initial position(central lowest). On the way to the target, there is a ghost randomly appearing
in one of the three green positions. If the agent hits the ghost, the agent will receive a big negative
reward. The rewards for different situations are shown in Table 5.1. The agent’s state is represented
by its position in the grid world and whether the agent hits the ghost. The set of states for the agent
is shown below:

S = {13, 22, 31, 38, 39, 40, 41, 42, 47, 48, 49, 50, 51, 56, 57, 58, 59, 60, 67, 76, 85, 48D, 49D, 50D}
Each numeric state represents a position in this grid world without hitting the ghost(13 is the state

of reaching Target, 85 is the initial start state). 48D, 49D and 50D represent three states when the
agent hits the ghost in state 48, 49 and 50, respectively.

The set of actions for the agent is: A = {move up,move down,move left,move right}
Some examples are shown in the following:

• Agent move up from initial position not hit anything: s = 85, a = move up→ s′ = 76, r = −0.01

• Agent move left from initial position and hit wall: s = 85, a = move left→ s′ = 85, r = −0.1

• Agent move up and hit the ghost: s = 58, a = move up→ s′ = 49D, r = −10

• Agent move up and not hit the ghost: s = 58, a = move up→ s′ = 49, r = −0.01

• Agent move up and reach the target: s = 22, a = move up→ s′ = 13, r = 10

Initially, the agent has no prior knowledge about the environment(it doesn’t know the layout, exis-
tence of the target, etc...), and it only has local information(e.g. it knows move left will get a reward
of -0.1, but it does not know the reward of move up 5 times). By interacting with the environment, the
agent will learn more about it and builds a more accurate model for it.

In this thesis, the chosen action-selection policy for the learning agent is ε-greedy. In total, the
agent learns for 500 steps, the ε value decay linearly for the first 300 steps from 0.5 to 0.1, and
maintained at 0.1 for the last 200 steps. With these ε values, the agent is able to first explore the
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environment in all directions, but still maintain some randomness after the agent converges to a
solution. From the behaviour aspect, one would observe the agent first explores the environment
like randomly, then after the agent learns the ghost positions are harmful, it would try to avoid those
position. In the end, the agent would follow the path to the target by going left or right in the center to
avoid hitting the ghost.

5.3 Simulation settings

Hardware configuration

The experiment device is a laptop with 2.3 GHz Intel Core i5 CPU, 16 GB RAM, macOS 10.13
system. The used libraries are: Python 3.5 and OpenAI Gym.

Experimental variation of calculation methods

In this thesis, the emotion of fear doesn’t affect the learning process(action-selection policy is not
affected by fear in Algorithm 3). Therefore, to control variables, only one version of the learning
agent is trained in the environment. Then, different fear calculation methods are varied to calculate
fear for the same version of agent movement behaviour.

6 different fear calculation methods(3 fear policies x 2 horizons) are compared with a baseline for
the experiment, see Table 5.2. Note that fear policy is different from action-selection policy. The fear
policy is the π in MCTS-T+ used for assigning a probability for a future state in a forward planning
tree, it does not affect how the tree is built. Horizon is the d in MCTS-T+, it affects the depth of
the built tree, and it represents how far the agent can imagine for the future. Short-horizon is for
MCTS-T+ with d = 2, and long-horizon is for MCTS-T+ with d = 10.

Version 1 uses ε-greedy fear policy with ε = 0.1(choose the best action with probability of 0.9 for
future states in a built forward planning tree) and MCTS-T+ with d = 2.

Version 2 uses softmax fear policy with τ = 5.0(choose the best action with a high probability for
future states in a built forward planning tree) and MCTS-T+ with d = 2.

Version 3 uses ε-greedy fear policy with ε = 1(assign equal probability for choosing different
actions for future states in a built forward planning tree) and MCTS-T+ with d = 2.

Version 4 is the baseline, it does not use MCTS-T+ or any fear policy to calculate fear for a future
state. It generates a random value uniformly in the range of [0, 1] at each step for a random location
in the grid world.

Version 5 uses ε-greedy fear policy with ε = 0.1 and MCTS-T+ with d = 10.
Version 6 uses softmax fear policy with τ = 5.0 and MCTS-T+ with d = 10.
Version 7 uses ε-greedy fear policy with ε = 1 and MCTS-T+ with d = 10.

Version Fear policy Horizon
1 ε-greedy 0.1 2
2 softmax 5.0 2
3 ε-greedy 1.0 2
4(baseline) Ranom -
5 ε-greedy 0.1 10
6 softmax 5.0 10
7 ε-greedy 1.0 10

Table 5.2: Different fear calculation methods
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To investigate the plausibility of the fear intensity and fear location separately, 2 different videos1

have been made for each of the 7 fear calculation methods. The first video shows the fear intensity
by the color of the agent(fear intensity is the normalized fear value by dividing the fear value with the
max fear value throughout the entire process for each method), if the agent has no fear, it’s color is
gray, if agent has max fear, then it will show red color(color scale is shown in Figure 5.2, and Figure
5.3 shows 2 examples).

The second video focuses on the fear location, this time the color of the agent itself doesn’t
change according to its fear intensity, but the agent’s most feared location in this environment will be
marked by red(see Figure 5.4).

Apart from 2 videos, a fear plot is also made for each fear calculation method. This plot shows
fear value and location in the environment when the agent is set back to the initial position after 500
steps of learning. By using this plot, an observer will be able to assess the plausibility of the fear
policy and horizon at the same time. One of the example is shown in Figure 5.5, the plots for all fear
calculation methods are shown in Appendix A.3.

Figure 5.2: Color scale for the agent’s fear intensity

Figure 5.3: 2 examples of different agents’ fear intensities. The agent in A(left) has more fear than
the agent in B(right)

1All 14 videos are available at https://www.youtube.com/playlist?list=PLfe14MM6YWfyK_edFQYJxnI2ARePC3psm. ’a’
is for fear intensity, ’b’ is for fear location.

https://www.youtube.com/playlist?list=PLfe14MM6YWfyK_edFQYJxnI2ARePC3psm
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Figure 5.4: 2 examples of the agent’s most feared location. The agent’s color does not change
according to its fear intensity(always in gray), the ghost is not shown for clarity. The most
feared location is marked in red.

Figure 5.5: Fear plot for version 5(ε-greedy fear policy with ε = 0.1 and long-horizon).

5.4 Evaluation method

Evaluation protocol and dependent measures

To evaluate how different fear calculation methods affect human’s perceived fear plausibility, par-
ticipants watched simulations for different fear calculation methods using pre-recorded videos. A
between-subject setup is used, each participant only saw one of the seven conditions. All partici-
pants were asked to watch 3 videos about the agent’s learning process and a fear plot from an agent
with the same fear calculation method. The overall flow is shown in Figure 5.6. Video 1 was shown
to participants twice to ask different questions.

Each video and plot was followed by a set of mandatory questions for participants to answer. The
length for each video is about 2 minutes, and the total time for an average person to finish this survey
is about 12 minutes.

In the survey introduction, the background information was explained to participants, for example,
the gray block is the agent, the blue block is the target with positive reward and the agent receive
small punishment when hitting the wall. But participants were not told the existence and function
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Figure 5.6: Study flow chart

of the ghost, and they were only informed the color of the agent represents one particular emotion
intensity. Video 1 shows the agent’s learning in this environment for 500 steps, emotion intensity as
the color scale in Figure 5.2, and the ghost is randomly appearing in one of the three green positions.
After this video, in Question set 1, participants were asked to answer the following 3 questions:

1. What do you observe in this agent’s behaviour?

2. Which emotion do you think the agent’s color intensity represents?

A.Anger B.Disgust C.Fear D.Happiness E.Sadness F.Surprise G.Other

3. Which of the following item do you think the popping green block rep-

resents?

A.Food B.Danger C.Other

The first question was set up to check how participants observe the agent’s learning process in
general. For the second question, the purpose is to check participants’ first instinct about the agent’s
emotion type just by observing the emotion intensity of the agent accompany with its moving be-
haviours. The third question is used to check the participants’ understanding of the ghost’s function
just by observing the agent’s behaviours and emotion intensity.

After participants answered the above questions, they were told the emotion felt by the agent is
fear, and the agent will get punishment for hitting the green block. Then they were instructed to watch
Video 1 again, and answer the following questions in Question set 2:

1. How plausible do you think the fear intensity is?

Rate your answer on a scale 0-10. (0 = fear intensity makes no sense at

all, 10 = fear intensity makes perfect sense)

2. Rating explanations:

When previous sections were finished, participants were told to watch Video 2 and given the
information that this time the most feared location will be marked in red, the popping green block
and the intensity of fear will not be shown for clarity. Then, they were asked to answer questions in
Question set 3:
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1. How plausible do you think the fear location is?

Rate your answer on a scale 0-10. (0 = fear location makes no sense at all,

10 = fear location makes perfect sense)

2. Rating explanations:

Finally, the fear plots and the following questions in Question set 4 were shown to participants:
Now assume the agent is done learning and replaced at the starting loca-

tion of the maze (bottom middle). We show you a graphical representation of

what the agent fears.

Do you think this distribution of fear over the locations makes sense? In

other words, do you think it is logical for an agent in this environment to

fear the locations that are most red more than the locations that are beige?

Pay attention to the relation between the locations, not so much to the ac-

tual values of the fear.

1. How plausible do you think the fear plot is?

Rate your answer on a scale 0-10. (0 = fear plot makes no sense at all,

10 = fear plot makes perfect sense)

2. Rating explanations:

Selection of participants

Participants in the evaluation were recruited from Amazon Mechanical Turk(MTurk). The reward for
participation is 1$, and each participant was only allowed to take part in the survey once. To en-
sure the reliability of the results, the selection criteria on MTurk for participants were set as following:
(Completed assignments≥ 500, Approve rate for assignments≥ 97%, Location: U.S.). No other spe-
cial demographic requirements were chosen to reduce the bias from users background knowledge,
for example, a user with HRI background might have a different focus than a normal user.
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Chapter 6

Results and discussion

The surveys were collected and analyzed for 237 participants in total, each fear calculation method
version was taken by about 33 different participants, the details are shown in Table 6.1. In general,
most participants are in the age range of 25-44, with college background and even distribution among
genders.( see Figure 6.1 and 6.2). The layout and questions in the survey were structured to evaluate
different fear calculation methods from various aspects. In this section, the survey results will be
presented with some participants comments about their observations.

Version # participants
1 38
2 34
3 35
4 33
5 28
6 36
7 33

Table 6.1: Number of participants for each version of fear calculation method

Figure 6.1: Age and education distribution for participants
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Figure 6.2: Gender distribution for participants

6.1 General observation

The first question in Question set 1 is about how participants observe the agent’s learning process in
general. Most participants observed the agent’s exploration behaviour in the initial phase, after some
struggle, the agent learned to avoid the center positions with popping green block and took path to
the target with a detour. Participants wrote for example:

”It seems to be learning. Initially, it would generally go in one direction, but it would have a higher
intensity. Later, it changed and started going in the opposite direction (right). Then it would switch
between going left and right in direction to be more successful in avoiding the green box obstacle.”

”It took a little bit for an agent to learn how to get to the target but it experienced high emotions
every time it get bumped by a green block until the end.”

”In the first part of the video, there seems to be a lot of learning behavior as the agent realizes
there must be a moving obstruction in the middle of the map. There was some confusion as it won-
dered why it was able to move or not move into spaces it had before (due to the moving green square).
However, it very quickly learned the ”correct” path after some moving around and experimenting. It
discovered the path of the green object and eventually came up with a way to avoid it”

”The agent tries to reach its goal by all means. When the green blocks arises in front of it, it finds
a way to go round and reach its goal.”

For the second question about emotion guess in Question set 1, the overall result for all partici-
pants is shown in Figure 6.3. According to this result, it seems the most recognized emotion is anger
based on perceived behaviour in general. This is also the case for each of the 7 fear calculation
methods(see all plots in Appendix A.1). For the 6 non-baseline calculation methods, a multinomial
logistic regression analysis is performed to check whether there is a significant effect of fear policy
or horizon affecting people’s perceived emotion. Figure 6.4 shows the model fitting information, the
p-value(0.538) is larger than 0.05. This means the model does not fit the data significantly better
than the null model. Figure 6.5 shows the results for likelihood ratio tests, the p-values for both fear
policy(0.292) and horizon(0.872) are larger than 0.05. This means neither fear policy nor horizon has
a significant overall association with people’s perceived emotion.

Among the participants who think the emotion is anger, their descriptions about the agent’s be-
haviour in the previous question usually are about the agent tries to reach the target but keeps
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Figure 6.3: Emotion type guess distribution

Figure 6.4: Model fitting information for multinomial logistic regression analysis on emotion guess

Figure 6.5: Likelihood ratio tests for multinomial logistic regression analysis on emotion guess

blocked by the green square and the agent seems frustrated in the initial phase. Participants wrote
for example:

”The agent continually getting blocked by a green square, but also sometimes making it around
the green square. The agent is showing intense emotion.”

”It gets angry when it hits an obstacle. It learns as it goes.”



32 CHAPTER 6. RESULTS AND DISCUSSION

”It seemed to be confused and frustrated at first when it reached the center part with the moving
green block. It eventually appeared to learn where the walls were and the range of the green block’s
movement though.”

”At first, the agent struggled to figure out how to get to the blue block, but after it figured it out the
first time, it seemed to find it faster the next few times. It is definitely experiencing intense emotions
frequently, maybe anger? or fear?”

”The agent is very persistent and always tries to overcome the obstacle and teach the target.
However, it seems very irritated and frustrated by the process and turns red frequently out of frustra-
tion.”

”The agent is angry when he is bumping into the obstacle in the middle. He is always attempting
to get toward the blue area at the top of the puzzle.”

”I feel likke the block is trying to move up but keeps getting caught up”

For the participants who think the emotion is fear, their answers for the previous question usually
focus on describing the agent tries to avoid the center part and the agent’s emotion gets more intense
when close to the green square. Participants wrote for example:

”It turns red when it gets close to the green block but it learned a path around the green block”
”The agent becomes red when it gets close to the green block.”
”The agent appears to show high levels of fear when it is near the green block.”
”The agent is trying to go around the green box. The level of intensity increases and decreases

with where the green box is”
”It would change color when it came into contact with the green square.”
For the third question about guessing the ghost’s function in Question set 1, the overall result

for all participants is shown in Figure 6.6, majority of the participants believe the green block is not
beneficial for the agent. This is also the case for each of the 7 fear calculation methods(see all
plots in Appendix A.2). For the 6 non-baseline calculation methods, a multinomial logistic regression
analysis is performed to check whether there is a significant effect of fear policy or horizon affecting
people’s perception about the ghost’s function. Figure 6.7 shows the model fitting information, the
p-value(0.814) is larger than 0.05. This means the model does not fit the data significantly better
than the null model. Figure 6.8 shows the results for likelihood ratio tests, the p-values for both fear
policy(0.712) and horizon(0.698) are larger than 0.05. This means neither fear policy nor horizon has
a significant overall association with people’s perception about the ghost’s function.

Figure 6.6: Ghost’s function guess distribution
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Figure 6.7: Model fitting information for multinomial logistic regression analysis on the ghost’s func-
tion guess

Figure 6.8: Likelihood ratio tests for multinomial logistic regression analysis on the ghost’s function
guess

6.2 Fear intensity plausibility

For the fear intensity plausibility rating in Question set 2, the standard deviation with 95% confidence
for each version of the method is calculated. And it is calculated using the following formula:

x̄ ± Z ∗ σ√
n

(6.1)

where x̄ is the mean, Z is 1.96 for 95% confidence, σ is the standard deviation and n is the size
of the sample.

Table 6.2 shows the means and confidence intervals of the ratings, the lowest rating is the baseline
V4. Figure 6.9 shows these ratings graphically. Table 6.3 shows the T-test results of null hypotheses
between the 6 non-baseline calculation methods and the baseline. The p-values of V3(ε-greedy
fear policy with ε = 1 and short-horizon), V5(ε-greedy fear policy with ε = 0.1 and long-horizon),
and V6(softmax fear policy with τ = 5.0 and long-horizon) are smaller than 0.05, thus those 3 null
hypotheses of equal ratings with the baseline are rejected, there are significant differences between
those calculation methods and the baseline. Figure 6.10 shows 2-way ANOVA analysis about the
non-baseline ratings for how fear policy and horizon affect the ratings. For the following 3 hypotheses:
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• H1: Fear policy will have no significant effect on fear intensity plausibility ratings

• H2: Horizon will have no significant effect on fear intensity plausibility ratings

• H3: Fear policy and horizon will have no significant effect on fear intensity plausibility ratings

All their p-values are larger than 0.05( p1 = 0.691, p2 = 0.400, p3 = 0.202), thus all 3 hypothesises
are not rejected. Fear policy, horizon or the combination of those two have no significant effect on
fear intensity plausibility ratings.

In participants explanations for low ratings(0-3), the reasons are usually the same, except for the
V4 baseline. In the V4 baseline, participants gave low ratings because they think the fear emotion
seems random, for example:

”The fear intensity seemed very random and did not coincide with the movements of the agent.”
”For me to think that the color intensity was fear, I’d need to see it change color each time it got

near the green square. It only does so randomly. Maybe the green square is more scary at certain
times, but I don’t see any subtle changes either showing a slight fear.”

In other calculation methods, participants’ low rating explanations usually describe the agent
shows fear before or after hitting the ghost without avoiding it and fear should decrease to zero
over time. Participants wrote for example:

”It doesnt make a lot of sense that its fear, because it only turns red before it does something
wrong”

”They should not be fearful as the game progresses. They should be getting less fearful, and
eventually to almost no fear at all.”

”It seemed to have a higher intensity whenever it came upon an obstacle that wasn’t the green
block, like when it ran into a wall. I would equate this to like you’re in a dark fun house and can’t see
anything but can only feel your way around.”

”It does not really avoid the green block”
”As time went on, the agent learned to avoid the block and reach the target. If the fear as its

emotion made sense, as the agent learned to avoid punishment and receive more reward, its level
of fear should decrease for each reward received but during the video, this did not happen. The fear
experienced kept on being repeated each time the agent received a reward. This is not logical.”

Version Mean Confidence Interval
1 6.63 5.81-7.45
2 5.88 5.05-6.72
3 6.91 6.08-7.75
4 (baseline) 5.52 4.56-6.47
5 7.0 6.10-7.90
6 6.97 6.07-7.87
7 6.39 5.45-7.34

Table 6.2: Ratings for fear intensity plausibility
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Figure 6.9: Ratings for fear intensity plausibility

T-statistic 2 tailed p-value
V1 vs V4 1.71761 0.09057
V2 vs V4 0.56037 0.57720
V3 vs V4 2.13407 0.03665
V5 vs V4 2.19028 0.03247
V6 vs V4 2.14997 0.03521
V7 vs V4 1.26438 0.21068

Table 6.3: Fear intensity plausibility ratings T-test results

Figure 6.10: Fear intensity plausibility ratings 2-way ANOVA results about fear policy and horizon
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6.3 Fear location plausibility

Participants’ responses about the plausibility of fear locations are shown in Table 6.4 and Figure
6.11. For the fear location plausibility ratings, again, the baseline V4 has the lowest rating score.
The V5(ε-greedy fear policy with ε = 0.1 and long-horizon) is considered as the most plausible one
with a mean score of 7.04. Though the difference between it and the second highest rating is not
significant(p-value = 0.3 for T-test). Table 6.5 shows the T-test results of null hypotheses between the
6 non-baseline calculation methods and the baseline. The only p-value larger than 0.05 is V6(softmax
fear policy with τ = 5.0 and long-horizon), thus the null hypothesis of equal ratings between V6 and
the baseline is not rejected, and there are significant differences between the rest non-baseline
calculation methods and the baseline. Figure 6.12 shows 2-way ANOVA analysis about the non-
baseline ratings for how fear policy and horizon affect the ratings. For the following 3 hypotheses:

• H1: Fear policy will have no significant effect on fear location plausibility ratings

• H2: Horizon will have no significant effect on fear location plausibility ratings

• H3: Fear policy and horizon will have no significant effect on fear location plausibility ratings

All their p-values are larger than 0.05( p1 = 0.305, p2 = 0.930, p3 = 0.286), thus all 3 hypotheses
are not rejected. Fear policy, horizon or the combination of those two have no significant effect on
fear location plausibility ratings.

In the non-baseline fear calculation methods, most low ratings(0-3) or medium ratings(4-7) are
given for about the same reason, the agent sometimes doesn’t show fear locations in the center(this
is observed in all non-baseline methods), especially the fear locations in the start hallway or target
hallway makes no sense. Participants wrote for example:

”Some of the time the fear location made sense, because it was around the center area, and other
times it made no sense at all, like when it was near the corner edges nowhere near the center.”

”The corners I don’t believe make a lot of sense, however, the middle I totally get.”
”It feels fear as it navigates the area and that is justified. however, it also feels fear as it gets close

to the reward and that is odd.”
”Because it did not make sense that the agent experienced fear at the very beginning and at the

very end where the target was because there was no moving green block and it must have learned
and figured that out. All the middle section is reasonable.”

”Some of the fear locations make sense, where as others don’t. If the agent learns where the
walls are, then it doesn’t make sense for it to fear a location it has already learned is an acceptable
move. Especially the entrance to the target ”hallway” should not be feared. It also doesn’t make
sense it would decide to move into a space it was afraid of.”

”I feel like it makes sense while the green block is there, but not otherwise. Maybe the blue block
represents death, and the block is reincarnated whenever it reaches it? That would explain why he
is afraid of the hallway to the blue block, even though it is clearly safer there than in the more open
square plot.”

”Why would it feel fear when it is closing in on the target or when it is starting out?”
”It doesn’t make sense that there would be fear in the beginning hallway section because there is

no block or anything in the way or anything threatening to the agent here. It does make sense for it
to feel fear toward the middle because that is where the block is.”

”I don’t understand why the regions at the start and end would produce fear. Also, it seemed fairly
arbitrary at times, as the outer border areas also caused ’fear’.”
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Version Mean Confidence Interval
1 6.08 5.21-6.95
2 6.06 5.09-7.02
3 6.23 5.15-7.31
4 (baseline) 4.39 3.39-5.40
5 7.04 6.00-8.08
6 5.5 4.56-6.44
7 5.94 5.02-6.86

Table 6.4: Ratings for fear location plausibility

Figure 6.11: Ratings for fear location plausibility

T-statistic 2 tailed p-value
V1 vs V4 2.44449 0.01719
V2 vs V4 2.30421 0.02443
V3 vs V4 2.39450 0.01950
V5 vs V4 3.51490 0.00086
V6 vs V4 1.54652 0.12675
V7 vs V4 2.18610 0.03250

Table 6.5: Fear location plausibility ratings T-test results
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Figure 6.12: Fear location plausibility ratings 2-way ANOVA results about fear policy and horizon
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6.4 Fear plot plausibility

Table 6.6 and Figure 6.13 show participants ratings for different fear plots. It is apparent that fear
calculation method V5(ε-greedy fear policy with ε = 0.1 and long-horizon) is regarded as the most
plausible one with a mean score of 8, while the rest methods have rating scores around 4. Table
6.7 shows the T-test results of null hypotheses between the 6 non-baseline calculation methods and
the baseline. The only p-value smaller than 0.05 is V5, thus the null hypothesis of equal ratings
between V5 and the baseline is rejected, and there are no significant differences between the rest
non-baseline methods and the baseline. Figure 6.14 shows 2-way ANOVA analysis about the non-
baseline ratings for how fear policy and horizon affect the ratings. For the following 3 hypotheses:

• H1: Fear policy will have no significant effect on fear plot plausibility ratings

• H2: Horizon will have no significant effect on fear plot plausibility ratings

• H3: Fear policy and horizon will have no significant effect on fear plot plausibility ratings

All their p-values are smaller than 0.05( p1 = 8.62E − 06, p2 = 2.29E − 05, p3 = 1.94E − 04), thus
all 3 hypotheses are rejected. The combination of fear policy and horizon has a significant effect on
fear plot plausibility ratings. And this can be explained by the effect of ε-greedy fear policy(ε = 0.1)
with a long-horizon.

Figure 6.15 shows the percentage of low rating(0-3), medium rating(4-7) and high rating(8-10)
for fear plots with each method. In fear calculation method V5(ε-greedy fear policy with ε = 0.1 and
long-horizon), participants mostly think that the plot makes a lot of sense because the 3 most feared
positions are the ghost positions. Participants wrote for example:

”It very plausible because the fear plot intensifies as the agent gets to the location of the previous
punishment and danger. ”

”yes, based on the agent’s past experience, it realizes that’s where the trouble lies, in those fear
zones.”

For other non-baseline plots, the low ratings are because participants believe the most feared
locations should be where the ghost appeared, instead of the beginning hallway. Participants wrote
for example:

”There is only fear reaction at the beginning, before being blocked, hence the fear is irrational,
and nonsensical.”

”The fear is only located at the beginning, not in the the main section.”
”It doesn’t make sense for the agent to fear the safest spot in the plot, at the start position.”
”It makes no logical sense for the agent to fear the starting position which has always been safe,

and not fear any of the rest of the board, which it knows could have danger or punishment.”

As for the participants gave high ratings in other non-baseline plots, they either think the agent
feared to start over or think fear come from the unknown in the beginning. Participants wrote for
example:

”I think it’s logical because the agent keeps ending up at the same point, even after accomplishing
the goal of reaching the blue tile. The agent is confused and doesn’t know how to progress.”

”It fears having to start over at the beginning.”
”This is the point they are starting out and have no knowledge, so yes this makes sense”
”The unknown can create a lot of fear so when you begin a task you can have a lot of fear.”
”It makes sense that they fear the most at the beginning because of the fear of the unknown”
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”Right before the agent started is the most feared spot, it is plausible because it may not know
what to expect.”

The fear plot for the baseline V4 is a special one(see Appendix Figure A.13) because it is plotted
by generating random numbers in all positions. Therefore, some participants regard is as completely
random and makes no sense at all, others think it makes sense because many fear locations are
corners or on the way to the ghost. Participants wrote for example:

”If it is learning that the green block in the middle is punishment, it would fear those squares the
most.”

”it doesn’t seem plausible because the red areas seem random”
”There is a lot of fear felt right at the target area, when I don’t see any reason for that. There is

not a lot of fear in the middle area where the green block hangs out, and I feel there should be.”
”It makes a lot of sense this way, the point of reentry and the corners cause more fear.”
”Corners, starting out, and possibly entering a long unknown area are points where someone

would feel the most intense fear. So by that logic, I definitely think it is plausible. ”
”In those corners that have a higher intensity of fear, the path leading up to the green block

pathway and the path to the finish make sense as to why those would be higher in fear. The agent
feared going up to the green block, feared going around, and then feared going up the finish as it
most likely had a ”something is following me” feeling.”

Version Mean Confidence Interval
1 3.63 2.68-4.58
2 3.03 1.92-4.14
3 3.54 2.56-4.53
4 (baseline) 4.03 3.12-4.94
5 8.0 7.20-8.80
6 3.89 2.87-4.91
7 3.82 2.82-4.82

Table 6.6: Ratings for fear plot plausibility

Figure 6.13: Ratings for fear plot plausibility
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T-statistic 2 tailed p-value
V1 vs V4 -0.58566 0.56002
V2 vs V4 -1.34360 0.18391
V3 vs V4 -0.70095 0.48580
V5 vs V4 6.32051 3.8E-08
V6 vs V4 -0.19969 0.84233
V7 vs V4 -0.30232 0.76340

Table 6.7: Fear plot plausibility ratings T-test results

Figure 6.14: Fear plot plausibility ratings 2-way ANOVA results about fear policy and horizon

Figure 6.15: Percentage of 3 rating ranges for 7 fear plots
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6.5 Discussion

6.5.1 General observation & fear intensity

Most participants were able to recognize the agent’s learning behaviour, exploring the environment
in the initial phase and avoid the ghost after some contacts with it. However, based on the overall
results, it seems the majority of the participants interpreted the agent’s movement behaviour and
change in emotion intensity as anger. The reason for this is they observed the agent trying to reach
the target but blocked by the ghost and emotion intensity increased at the same time. One possible
cause for this anger interpretation might come from the difference in perceived risk probability for
the agent and participants. For participants, they could always see there is a green square popping
in one of the three locations in the center, so the existence and locations of the ghost are relatively
certain for them. But for the agent, it only knows there is a small probability of a penalty when in
a certain state and takes a certain action, therefore, the risk for the agent is uncertain and uncon-
trollable. According to the research of Smith and Ellsworth [49], both anger and fear are negative in
valence, but these two emotions differ in terms of the certainty and control dimensions. Anger has
more individual control(how individual influence the situation) and certainty, but fear is more about sit-
uational control(how the environment influences the situation) and uncertainly. Therefore, the agent’s
emotion, perceived by the participants as certain and self-controllable, is mostly regarded as anger.

After participants were informed about the punishment for hitting the ghost and the emotion was
fear, fear calculation method V4(baseline) was regarded as the least plausible one for fear intensity.
The ratings for V3(ε-greedy fear policy with ε = 1 and short-horizon), V5(ε-greedy fear policy with
ε = 0.1 and long-horizon), and V6(softmax fear policy with τ = 5 and long-horizon) have significant
differences compared with the baseline. Among the low ratings(0-3) explanations, there are two
common ones almost appear in all calculation methods: the agent shows fear before or after hitting
the ghost without avoiding it and the ghost should show fear intensity decrease to zero over time. In
TDRL Theory, fear is defined as a forward temporal difference, and distress is defined as immediate
temporal difference. That’s why the agent doesn’t show fear the moment it hits the ghost. Sometimes
the agent shows fear for the ghost, but still goes into that direction, the reasons for this can be twofold.
First, in some calculation methods, the fear showed by the agent could be the fear for the wall it just
hit instead of the ghost. Second, the action-selection policy is ε-greedy with ε decay from 0.5 to 0.1 for
the initial 300 steps and keeps at 0.1 for the last 200 steps, so there is always some randomness in
choosing an action. In the experiments, the agent gradually builds the model for the environment by
interacting with it. The forward planning(or future imaginations) is based on the environment model.
If in this model there is no knowledge about the consequence of taking an action in a certain state,
then the agent won’t be able to predict whether it should be afraid for that situation or not. This is
why in some cases the agent seems to not have fear after just hitting a ghost. Humans have more
information than the agent by just looking at the environment layout. For example, for a sequence
during the exploration phase shown in Figure 6.16, the agent moved from position A to B and hit the
ghost, then it moved down to position C but felt no fear for position B. This is because the agent had
never taken the action ”up” in position C, so it didn’t know the consequence of moving up will end
up in position B based on its knowledge. Therefore, it showed no fear for position B even just hit the
ghost in there. During experiments, the random parameter for the fear policy was kept at a constant,
0.1 or 1 for ε-greedy and 5 for softmax. This random parameter decides the probability of randomly
choosing an action in a forward planning tree. So when the agent approached converge in the later
phase, there is always some fear due to this randomness. This explains why participants didn’t see
fear decreased to zero in the videos.
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Figure 6.16: The agent doesn’t have fear after hitting the ghost. In this sequence, the agent in A
position move right hit the ghost in B position, and then move down to C position.

6.5.2 Fear location & fear plot

Both fear location video and fear plot check the plausibility of fear locations for different fear calcu-
lation methods. The difference is that the former one shows the agent’s most feared location during
the entire video, while the later one shows all fear locations and values when the agent is situated in
start position after 500 steps of learning. In theory, the rating results for these two should be similar.
However, there is a significant difference between these two rating results. For the fear location rat-
ings, the highest is V5(ε-greedy fear policy with ε = 0.1 and long-horizon) with a mean score of 7.04,
other non-baseline methods are around 6. For the fear plot ratings, the highest is V5 with a mean
score of 8, and the rest are around 4.

This difference in ratings might be explained by how fear is expressed in videos and plots. In fear
plots, participants had an overview of all feared locations and corresponding fear values at the same
time. In fear location videos, there were no overviews and it’s more difficult for participants to analyze
in real-time. For the fear plots, the effects of fear policy and horizon are obvious with an overview,
most participants were able to recognize the most feared locations should be the ghost’s positions
and gave low ratings for non-V5 calculations methods(See participants’ comments in Section 6.4
and Figure 6.15). The comparison of Figure A.10(V1, ε-greedy fear policy with ε = 0.1 and short-
horizon) and A.14(V5, ε-greedy fear policy with ε = 0.1 and long-horizon) shows the effect of horizon.
Both fear plots use the same fear policy, the only difference is the former one can only imaging 2
steps away(short-horizon) but the later one can imaging 10 steps away(long-horizon). For the V1
fear plot, the most feared location is its position, since it can only imagine a short future and most
futures are about staying in that place after hitting the wall. For the V5 fear plot, the agent’s most
feared positions are the center positions because it could image that far away. The comparison of
Figure A.14(V5, ε-greedy fear policy with ε = 0.1 and long-horizon), A.15(V6, softmax fear policy with
τ = 5.0 and long-horizon) and A.16(V7, ε-greedy fear policy with ε = 1 and long-horizon) shows the
effect of different fear policies. These three fear plots use the same horizon but different in the fear
policy. In both Figure A.15 and A.16, the most feared position is the agent’s own position because of
implausible fear policy.

In fear location videos, the effects of fear policy and horizon were more difficult to notice. For
example, Figure 6.17(V1, ε-greedy fear policy with ε = 0.1 and short-horizon) and 6.18(V5, ε-greedy
fear policy with ε = 0.1 and long-horizon) show fear locations of two different horizon agents after the
same amount of learning when in exact positions. The differences are obvious in the form of static
images, but in videos, those 3 frames were shown in just one second.

The small environment used for the agent’s learning also diminishes the effect of different horizons
in fear location videos to some extent. For the previous examples of Figure 6.17 and 6.18, the agent
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will move up a step and take the right side path to the target after in position C. During the right
path until the target hallway, those 2 calculation methods will have same fear locations because the
distance between the center position and the agent is not larger than the distance of short-horizon.

Figure 6.17: A sequence of fear V1(ε-greedy fear policy with ε = 0.1 and short-horizon) shows the
most feared location(marked in red) after some learning when in position A, B and C.
In both positions A and B, the agent most feared location is its own location.

Figure 6.18: A sequence of fear V5(ε-greedy fear policy with ε = 0.1 and long-horizon) shows the
most feared location(marked in red) after some learning when in position A, B and C.

Although V5(ε-greedy fear policy with ε = 0.1 and long-horizon) calculation method has the high-
est rating for both fear location and fear plot, there are some comments about its implausibility. For
the fear location videos, the low rating comments are mainly about showing fear locations in the target
hallway made them confusing. Figure 6.19 shows an example for this, in the presented sequence,
the most feared locations for the agent on the way to target is shown for position A, B, and C. When
the agent is in position A, according to its knowledge, there are many outcomes that could result in
the center ghost position(e.g. move left, move down and move right). After the agent moves up in
the target hallway, now the most feared location is its own place. This is because during the learning
process it learned the best action in that position is to move up, and second-best actions are move
left and move right. The worst action is to move down and according to the transition model the
probability of choosing move down is pretty small(e.g. 1%), thus the fear for the ghost in the center is
not as big as the penalty for hitting the wall. For the fear plot ratings, 3 participants gave low ratings
because they believe there should be fear in more places based on previous videos.
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Figure 6.19: A sequence of fear V5(ε-greedy fear policy with ε = 0.1 and long-horizon) shows the
most feared location(marked in red) after some learning when in position A, B and C.
Agent move up from A to B, then to C.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

Emotions can help humans better understand learning robots. The TDRL Theory of emotions pro-
posed a computational model of emotions grounded in RL process. Preliminary results have shown
hope and fear could be efficiently estimated in 3 simulation scenarios. But there is no study about the
plausibility of the simulated emotions perceived by humans. In this thesis, 6 fear calculation meth-
ods(3 fear policies x 2 horizons) based on TDRL Theory of emotions are compared with a baseline
to check: a) the plausibility of fear simulation perceived by humans b) the effect of different fear cal-
culation methods for fear intensity and fear location. The forward planning for fear simulation was
based on a modified version of MCTS-T+, which efficiently solves the problem of an asymmetric tree
with loops.

In total, 237 participants were recruited from Amazon Mechanical Turk. On average, each of the 7
fear calculation methods had about 33 participants. According to participants’ general observations
for different methods of simulations without knowing the exact type of emotion, they believed the most
probable emotion is anger. After analyzed participants’ comments, the possible reason about why
they thought the emotion is anger instead of fear is discussed in detail in Chapter 6.5.1. In short, it is
possible that showing participants the presence of the ghost(green square) in the video affects their
understanding of the agent’s situations.

After participants were informed the emotion type is fear. The rating results for fear intensity
plausibility suggest V3(ε-greedy fear policy with ε = 1 and short-horizon), V5(ε-greedy fear policy
with ε = 0.1 and long-horizon), and V6(softmax fear policy with τ = 5.0 and long-horizon) fear
calculation methods are better than the baseline with a significant difference. From participants
rating explanations that associated with low ratings, it seems the current fear expression from the
simulation is not human intuitive enough and fear policy needs some more improvement.

The rating plausibility results from fear location videos and fear plots suggest V5 calculation
method( ε-greedy fear policy with ε = 0.1 and long-horizon) gives the most plausible fear among
the rest. And the 2-ANOVA results of the fear plot suggest the combination of fear policy and horizon
has a significant effect on the ratings. However, participants’ comments about this method on fear
location and fear plot also suggest that the expression of the most feared object can be improved by
setting a threshold on fear values or other mapping functions.

In summary, fear calculation method with ε-greedy fear policy(ε = 0.1) and long-horizon provides
a plausible fear estimation. And humans could understand simulated fear based on TDRL Theory of
emotions when properly expressed.
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7.2 Future work

This thesis provides interesting results for how humans perceive the simulated fear based on TDRL
Theory of emotions. The followings could be possible improvements for a more plausible fear simu-
lation or future research directions.

• In the first part of the results, most people think the emotion expressed by the agent is anger
instead of fear. The possible cause could be the situation perceived by the agent and by the
participant is different. Therefore, to properly investigate the plausibility of the simulated emo-
tion, the experiment should be designed to make sure participants have the same perception
about the environment as the agent.

• In the experiments, fear intensity expression is by first normalize the TD error for each calcula-
tion method and then expressed by color using a gray to red scale. From participants comments
about the ratings, the current expression method is not natural. Maybe some other mapping
function from TD error to emotional intensity and visual cue can be used for improvements.

• For the current implementation of fear simulation, fear doesn’t affect the learning process. But,
some participants believe the agent should always avoid the feared object. So one of the future
research direction could be to test the agent with emotion affect action-selection policy.

• For all fear location videos, the most feared location is marked by red in the environment for all
steps, even the fear value for that location is pretty small. This leads to some confusions for
participants, especially when the agent shows fear locations in places they believe should be
safe. One improvement for current fear location estimation could be to only show fear locations
if the fear for that object exceeds a certain threshold.
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Appendix A

Appendix

A.1 Emotion guess for 7 different fear calculation methods

Figure A.1: Emotion type guess distribution for V1(ε-greedy fear policy with ε = 0.1 and short-
horizon)

Figure A.2: Emotion type guess distribution for V2(softmax fear policy with τ = 5.0 and short-
horizon)
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Figure A.3: Emotion type guess distribution for V3(ε-greedy fear policy with ε = 1 and short-horizon)

Figure A.4: Emotion type guess distribution for V4(baseline)

Figure A.5: Emotion type guess distribution for V5(ε-greedy fear policy with ε = 0.1 and long-horizon)
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Figure A.6: Emotion type guess distribution for V6(softmax fear policy with τ = 5.0 and long-horizon)

Figure A.7: Emotion type guess distribution for V7(ε-greedy fear policy with ε = 1 and long-horizon)
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A.2 Ghost guess for 7 different fear calculation methods

Figure A.8: Ghost guess distribution for V1, V2, V3 and V4
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Figure A.9: Ghost guess distribution for V5, V6 and V7
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A.3 Fear plot for 7 different fear calculation methods

Figure A.10: Fear plot for version 1(ε-greedy fear policy with ε = 0.1 and short-horizon)

Figure A.11: Fear plot for version 2(softmax fear policy with τ = 5.0 and short-horizon)
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Figure A.12: Fear plot for version 3(ε-greedy fear policy with ε = 1 and short-horizon)

Figure A.13: Fear plot for version 4(baseline)

Figure A.14: Fear plot for version 5(ε-greedy fear policy with ε = 0.1 and long-horizon)
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Figure A.15: Fear plot for version 6(softmax fear policy with τ = 5.0 and long-horizon)

Figure A.16: Fear plot for version 7(ε-greedy fear policy with ε = 1 and long-horizon)
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