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Summary 

Background: Many patients with focal epilepsy arising from the pericentral gyri suffer from 

refractory seizures. When they present for epilepsy surgery, large parts of the pericentral gyri are 

considered surgically unamenable without causing permanent functional deficits, due to the region’s 

key role in sensorimotor processing. Responsive cortical electrical stimulation (CES) may be a 

promising alternative to surgery. It is unclear how much of the reported effect of responsive CES is 

actually due to closed-loop seizure suppression and how well these seizures are recognized by 

intelligent systems. Improved approaches for highly specific and fast seizure detection, validated on 

central lobe epilepsy (CLE) patients, are required for the development of a new generation of 

intelligent implantable responsive CES devices. This study aims to employ a combination of existing 

machine learning methods, which have demonstrated sensitive and specific real-time classification of 

the ictal and non-ictal electrocorticogram (ECoG), and compare the performance of the combined 

algorithm with a reference algorithm similar to the algorithm used in an existing responsive CES 

device (RNS Neuropace).  

Methods: A systematic literature review was performed to establish which features and classifiers 

are likely to have a high sensitivity and low false detection rate (FDR) for detecting seizure onset in 

ECoG. Based on the literature review, a 138-dimensional feature space, consisting of cross-

correlation features and a set of per-channel time and frequency domain features was chosen to be 

used in a patient-specific machine learning algorithm. Recordings of ten CLE patients, who had at 

least three seizures with similar onset characteristics during presurgical intracranial evaluation in the 

University Medical Center Utrecht, were used. Six bipolar ECoG channels were selected for each 

patient to represent cortical areas inside and outside the clinically identified seizure onset zone. 

Features were extracted from 1s epochs of ictal and interictal ECoG data. To explore the feature-

space, a nonparametric test was performed to find sensitive features and rank the features by their 

class separability to explore the feature space. A Random Forest (RF) classifier was trained for each 

patient and early detection (<10s) sensitivity was obtained from seizure-level leave-one-out cross-

validation. The FDR was determined using a 24h interictal test set from the same patient the 

classifier was trained on. As an approximation of the Neuropace detection scheme, a line-length 

based thresholding algorithm was used, for which same performance metrics were obtained. 

Results and Conclusion: In the literature, relatively simple classifiers such as RF outperform more 

complex classifiers and they have been shown suitable for low-power applications. Based on patient-

specific separability rankings, the most promising feature types in the used set are line-length, 

gamma power, beta power, power ratio, fluctuation index, variance, time-series cross-correlation, 

frequency cross-correlation, and eigenvalue of the frequency cross correlation. The algorithm, 

consisting of the full feature space and RF classifier, demonstrates an improvement of early detection 

sensitivity (98% mean) and FDR (1.53/h mean) as compared to the reference algorithm, while 

maintaining a short detection delay (3.9s mean). The used feature set and patient-specific RF 

classifier may be employed to achieve closed-loop seizure suppression in future responsive CES 

implants for CLE treatment.  
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1. Introduction 
Epilepsy is a common neurological disease, with a prevalence ranging from 0.3% to 1.2%1. It is 

characterised by recurrent episodes of dysfunctional brain activity associated with changes in 

behaviour. These episodes are called seizures, defined as “a transient occurrence of signs and/or 

symptoms due to an abnormal excessive or synchronous neuronal activity in the brain”2. The clinical 

manifestations of seizures vary greatly, including loss of awareness and disturbances of movement 

and sensation3.  

Despite the high number of antiepileptic drugs (AED) available, approximately one third of treated 

epilepsy patients remain suffering from seizures and are classified as refractory to medical 

management after two failed AED trials4. For these intractable patients, other treatments are 

considered, such as ketogenic diet or, in case of focal epilepsy, resective surgery and laser ablation of 

the epileptogenic tissue5. Before any attempt at removing cortical tissue is made, the epileptogenic 

zone6 and the eloquent cortex are mapped to plan such a surgical intervention. This pre-surgical 

evaluation includes seizure semiology, magnetic resonance imaging and electroencephalography 

(EEG) and sometimes functional magnetic resonance imaging, magnetoencephalography, ictal single-

photon emission computed tomography, and intracranial EEG (iEEG) monitoring. The evaluation may 

indicate an epileptogenic zone overlapping with or adjacent to eloquent cortex7, such as the primary 

sensorimotor cortex. 

The pericentral sensorimotor cortex and its surroundings are a common location for focal cortical 

dysplasia, often leading to intractable epilepsy characterised by hemiclonic or tonic-clonic seizures. 

Localisation of the seizure focus in this cortical area is facilitated by the somatosensory symptoms 

usually presented in a confined body part, corresponding to a contralateral representation in the 

somatotopically organised central area of the cortex, and spreading semiology according to the 

somatotopic arrangement along the central sulcus (Jacksonian march8). Because the central gyri play 

a key role in sensorimotor processing, large parts are considered to be inoperable without 

permanent functional deficits, especially regarding fine intended movement and motor learning.9 

Electrical stimulation has been used as an alternative method to manage inoperable epilepsies, 

through cortical electrical stimulation (CES) directly on the epileptogenic zone or highly connected 

cortical areas. Short-term continuous CES has shown to be capable of reducing seizure rate10. Both 

open-loop and closed-loop CES approaches have been used11. Open-loop approaches use pre-

scheduled or chronic stimulation, whereas closed-loop approaches only stimulate in response to 

signals of an impending or starting seizure. Closed-loop CES requires continuous brain activity 

monitoring using intracranial electrodes and early automated seizure onset detection to allow for 

responsive stimulation, in order to prevent or terminate clinical symptoms of seizures.  

The RNS System by Neuropace is currently the only approved implantable responsive neuro-

stimulator for cortical stimulation as a treatment for epilepsy12. Although this device has proven 

efficacy both under short-term and long-term application13, it suffers from a high number of false 

detections (estimated to be 25 to 83 false detections per hour14). This complicates the assessment of 

the effectiveness of closed-loop suppression of seizure-related ictal activity. Improved approaches of 

seizure detection with higher specificity are thus required.  
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Online electrographic seizure detection 
Due to high variation of the EEG patterns that characterize a seizure15, the variability of background 

EEG activity among patients, as well as intra-individual fluctuations in EEG activity, the challenge of 

automated seizure detection in the EEG has been an active field of research for over three and a half 

decades16. Early seizure detection poses a difficult problem as seizure onset patterns are diverse and 

may closely resemble interictal epileptiform bursts that can occur frequently between seizures17. 

Electrographically, seizure onset may be characterised by onset patterns such as low voltage fast 

activity, rhythmic sharp waves, repetitive spiking, rhythmic alpha waves, rhythmic beta waves, 

rhythmic theta waves or amplitude depression18. Multiple onset patterns may even occur in the 

same patient. Little research has been done to characterise epileptic activity in the pericentral gyri of 

the brain cortex specifically. The primary motor cortex is known to microscopically differ from other 

neocortical areas, in that it contains strongly developed infra-granular layers19. In the EEG, the 

sensorimotor areas present mu-rhythms when the body is at rest. These properties may have an 

impact on automated seizure onset detection in this specific cortical area.  

Several signal properties at seizure onset have been identified that can be used for seizure onset 

detection in iEEG, or more specifically electrocortigraphy (ECoG) signals15. Fast activity was noted to 

be a common pattern being observed across different pathologies, including mesial temporal atrophy 

and focal cortical dysplasia18. Additionally, ripples (>80Hz) are observed in many seizure-onset 

patterns6,20. Oscillations in beta-gamma-ripple bands have previously been used to identify seizure 

onsets in the University Medical Center Utrecht epilepsy monitoring unit for the development of a 

seizure alarm21. The used threshold algorithm showed a false detection rate (FDR) as high as 1/h on a 

subset of patients. The algorithm was not sensitive to the seizures of three patients suffering from 

sensorimotor epilepsy22, which makes the algorithm unsuitable for general use in closed-loop CES 

targeting the primary sensorimotor cortex. 

Features and algorithms 
For many other existing seizure detection algorithms, methods from the field of machine learning 

have been employed to classify the ictal ECoG and non-ictal ECoG in real time23. These seizure 

detection algorithms consist of a feature extraction part and a classification part. In the feature 

extraction part, raw or pre-processed ECoG data is analysed in various ways in order to extract 

relevant features to pass to the classifier. In the classification part, feature values or subsets thereof 

are analysed and classified as being indicative of a seizure pattern or not. Detecting seizure onset 

patterns in the sensorimotor cortex requires comprehensive and discriminative features, to be 

extracted from the ECoG signal. Both linear and nonlinear features have been employed in existing 

detection algorithms. 

Due to their simplicity and versatility, several linear features have been employed in the area of 

seizure detection. Examples are the variance of a signal, which represents the dynamics in the 

underlying ECoG, and features based on autocorrelation, exploiting the periodic nature of seizures. 

Alternatively, the spectral characteristics of a signal can be estimated using e.g. linear prediction 

filters, Fourier transform, or wavelet transform, which all can be used to detect changes in the 

spectral density at seizure onset. Other linear features include the (relative) fluctuation index, which 

relies on the assumption that there is an increased intensity of fluctuation in the ECoG signal during a 

seizure24. 

Nonlinear analysis of ECoG has received increasing interest as it incorporates the non-stationary 

nature of the ECoG signal. For example, many estimation algorithms have been developed for the 

fractal dimension, which characterises the complexity of a time series25. Alternatively, a metric for 
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the exponential divergence of time series trajectories in the phase space, called Lyapunov exponent, 

characterises the ECoG’s chaotic nature has been used26. Other nonlinear measures include 

information theory based entropies, which describe the irregularity, complexity or unpredictability of 

a signal27. 

A challenge in the field of seizure detection is the lack of reproducible validated algorithms. While 

many seizure detection algorithms have been published28,29, few studies have been carried out to 

assess the reproducibility of algorithm performance. Thus, these algorithms likely suffer from 

overfitting of the dataset used for development. Whereas reviews of features for seizure detection 

are available30, and the selection of features for online seizure detection in scalp EEG has been 

thoroughly addressed by Logesparan et al.28, there is no exhaustive overview of promising features 

applicable to intracranial recordings, let alone to online ECoG on the sensorimotor cortex specifically. 

Aims of the study 
In this study, we develop an algorithm that can detect different seizure onset patterns in the ECoG, 

relevant for implementation in closed-loop CES on the sensorimotor cortex. We employ methods 

from other studies that have demonstrated a highly sensitive and specific classification of ictal and 

non-ictal iEEG in real-time. The steps of the project are threefold:  

 Chapter 2: A systematic literature review is performed to establish which algorithms are 

likely to have a high sensitivity and low FDR for detecting seizure onset in ECoG. 

 Chapter 3: Based on the literature review, features from the most promising algorithms for 

the purpose of detecting seizure onset in ECoG are combined to build a detection algorithm 

that can be implemented in closed-loop CES. The characteristics of the selected features are 

evaluated on clinical data.  

 Chapter 4: The features are used with a classifier and the algorithm is validated in a 

retrospective study using ECoG data from the University Medical Center Utrecht epilepsy 

monitoring unit. The performance is compared with a seizure detection algorithm similar to 

the algorithm used in the Neuropace responsive neurostimulator. 
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2. Literature review 
The literature review aims at comparing existing seizure detection algorithms for ECoG data. To 

possibly achieve true closed-loop suppression in responsive CES implants, highly specific and fast 

seizure detection approaches are required. This review sought to establish which algorithms may 

have a high sensitivity and low FDR in detecting seizure onset. The following review questions were 

addressed:  

 Which features extracted from the ECoG data are most likely to distinguish between seizure 

onset and background activity, i.e. by showcasing the best sensitivity and FDR, in a 

convincing sample (i.e. benchmarking set or at least >10 patients, >80 seizures, >100 hours)? 

 Which classifiers are used to classify the ECoG signal? 

2.1 Methods 

Inclusion criteria 
1. Seizure detection/prediction algorithm was designed especially for ECoG data (i.e. iEEG using 

cortical electrodes, e.g. grid or strip). 
2. Involving an algorithm that is able to automatically detect seizure onset 
3. Either on-line early detection or short-term (<1min) prediction was the aim of the algorithm 
4. Studies that verified the used algorithm in (human) clinical data 
5. Publication 2009-2018 
6. Language of publication: English 

Exclusion criteria 
1. Exclude delineation-, mapping-, localization-

only studies 

2. Exclude exclusive depth electrode based 

detection (i.e. stereo EEG; sEEG) 

3. Exclude exclusive scalp EEG, thalamic or 

hippocampal based detection 

4. Exclude high-density grid based detection 

5. Exclude focus on high-frequency oscillations 

6. Exclude non-human only experiments 

Articles were chosen based on the inclusion and 

exclusion criteria. Additional articles were chosen from 

the reference lists of already included publications if 

they were published since 2009. In addition to the 

mentioned inclusion and exclusion criteria, all articles 

aiming at the prediction of seizures more than 1 minute 

before the seizure onset were excluded. 

The used validation methodology and the obtained 

performance results were analysed. Articles that 

validated an existing algorithm on a broader dataset, selected validation subjects to represent 

different seizure onset patterns, or showcased the best performance using a complete benchmarking 

set were further evaluated. 

  

Search strategy 
In PubMed: 
(electrocorticogra*[Title/Abstract] OR 
ECoG[Title/Abstract] OR “intracranial 
EEG”[Title/Abstract] OR 
iEEG[Title/Abstract] OR intracranial 
electroencephalograph*[Title/Abstract]) 
AND 
(automat*[Title] OR predict*[Title] OR 
detector[Title] OR detection[Title]) 
AND 
(seizure[Title] OR ictal[Title] OR 
epilep*[Title]) 
NOT 
(delineat*[Title] OR map*[Title] OR 
localiz*[Title] OR outcome[Title]) 
AND 
("2009"[Date - Publication] : 
"3000"[Date - Publication]) 
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2.2 Results 
The search in PubMed resulted in 140 articles. After reading titles and abstracts, 56 articles remained 

which seemed to meet all initial inclusion criteria. After closer inspection of the methodology, 

subjects and performance indicators used, and after reducing the set of articles by excluding the 

articles aiming to predict seizures more than 1 minute before onset, 27 articles remained for review 

(Figure 1). 

These studies varied greatly in their detection algorithms, as well as the subjects used for validation. 

Performance indicators of interest were either a combination of sensitivity of seizure events, 

detection delay, and FDR per hour, or a standardised area under the curve (AUC) for early (<10 s) 

detection. To establish whether the algorithms are properly validated, the validation methodologies 

were first analysed before proceeding to evaluation of the used features. 

Datasets used for validation 
In the reviewed literature, a variety of datasets was used to validate the algorithms. A recurring (13 

articles) benchmarking set of subjects is the University of Freiburg’s data pool31,32 comprising of over 

600 hours of iEEG data and 88 seizures from 21 patients. Later studies (4 articles) made a selection of 

subjects from the successor of the Freiburg dataset, the European Epilepsy Database33. Several 

publications (4 articles) used the dataset from the University of Pennsylvania and Mayo Clinic's 

Seizure Detection Challenge34, consisting of iEEG recordings obtained from 4 dogs with naturally 

occurring epilepsy and 8 patients with temporal and extra-temporal lobe epilepsy. One paper used 

data from the iEEG portal35; others from their own respective Epilepsy centres (3 articles), or had not 

specified the origin of the used clinical iEEG data (3 articles). No study validated exclusively on 

patients with focal epilepsy in the sensorimotor cortex. 

 

Figure 1| Review flow chart 

Further evaluation of used features and classifiers 
The features from two studies that validated an algorithm on a broader dataset36,37, and two studies 

that selected subjects to represent different seizure onset patterns14,38, were further evaluated. 

Additionally, from the studies that used the Freiburg dataset, the features of the study that applied 

cross validation with three seizures per subject39, as well as those that included all subjects and had 

an outstanding performance (i.e. sensitivity > 93% average FDR < 0.25/h) in their validation were 

further evaluated. Other studies that used a small sample (n<10) of patients without accounting for 

the selection of these patients were not further evaluated. In total, further evaluation was 

performed for features of 10 studies, representing 12 algorithms (Table 1). 
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Table 1 | Overview of analysed studies and algorithms 
Entire separate algorithms in the same study are shown in their own row (2-4). Some studies employed multiple 
classifiers on the same feature space. RF: Random Forrest, SVM: Support Vector Machine, NN=Neural Network, CART: 
Classification and Regression Tree, AdaBoost: Adaptive Boosting, BLDA: Bayesian Linear Discriminant Analysis, GBoost: 
Gradient Boosted, DT Decision Trees, LR: Logistic regression. AUC (<10s): Area under the curve for early seizure detection 
(within 10 seconds from seizure onset), FDR: False detection rate, DWT: Discrete wavelet transform, GMM: Gaussian 
mixture models, SR-EMD: sparse representation-based Earth Mover’s Distance. MAD: Mean absolute deviation. 
 
Study 
(algorithm) 

Time-domain features (Time-)Frequency-domain 
features 

Classifier Performance 

Manzouri et al.38 Mean 
MAD 
Variance 
Skewness 
Kurtosis  
Line length 
Autocorrelation 

Average power in beta (13-30Hz) 
Average power in gamma (30-
50Hz) 
Power ratio between alpha, beta 
and gamma bands 

RF 
SVM 
 

AUC (<10s): 
0.90 (RF) 
0.83 (SVM) 
 

Baldassano et al.37 
(Hills) 

Pairwise cross-correlation 
Sorted cross-correlation 
eigenvalues 

Normalised frequency magnitudes 
1-47 Hz 
Pairwise cross-correlation 
Sorted cross-correlation 
eigenvalues 

RF AUC (<10s): 0.966 

Baldassano et al. 37 
(Olson & Mingle) 

Covariance of 3 selected 
bandpass signals 
(5-200Hz) 

- NN AUC (<10s): 0.925 

Baldassano et al. 37 
(Talukdar, Moore & 
Sood) 

Maximum amplitude 
Mean amplitude 
Absolute deviation 
Variance 
Global: 
Maximum amplitude mean 
amplitude 
Maximum absolute 
deviation  
Maximum 
Mean 
Variance of the variance 
Covariance between 
channels 

Maximum power 
Mean power 
Variance 
Maximum power frequency 
Global: 
Maximum power 
Mean power 
Maximum variance 
Maximum max frequency 
Mean max frequency 
Variance of max frequency 

RF AUC (<10s): 0.970 

Zhang and Parhi39 - (Prediction error filter signal based) 
Power 
Log sum 
3 Wavelet decomposed powers 
3 Wavelet decomposed log sums 

SVM 
AdaBoost 

Sens: 95.0% FDR: 0.12/h (SVM 
Sens: 98.8% FDR: 0.075/h 
(AdaBoost) 

Zhang and Parhi40 - Absolute spectral power in 13 
subbands (3-400 Hz) 
Relative spectral powers 
Spectral power ratios 

CART+SVM AUC (<10s): 0.914   

Yuan S et al.41 - SR-EMD between GMM using three 
DWT bands (4–8 Hz, 8–16 Hz, 16–
32Hz) 

BLDA Sens: 94.9% FDR: 0.223/h 

Zhou et al.42 - Lacunarity (from 3 DWT bands) 
Fluctuation index (from 3 DWT 
bands) 

BLDA Sens: 96.25% FDR: 0.13/h 

Shoaran et al.36 Line length 
Variance 

Power 
Power in Delta, Theta, Alpha Beta, 
Gamma, Ripple, Fast Ripple 

GBoost DT Sens: 98.3% 

Donos et al.14 Mean 
MAD 
Variance 
Skewness 
Kurtosis 
Autocorrelation 

Power in infra-slow (0.1-0.5Hz) 
Power in beta (13-30 Hz) 
Power in gamma (30-128 Hz) 
Power-ratio between alpha (7-
13Hz), beta and gamma bands. 

RF Sens: 93.84% FDR: 0.33/h 

Bandarabadi et al.43 - (Bipolar) power ratio (12–26Hz and 
0.5-3Hz) 
 

Threshold Sens: 86.9% FDR:0.06/h 

Yan et al.24  Stockwell transform: 
Delta (0.4–4Hz), Theta (4–8Hz), 
alpha (8–12 Hz), beta (12–30 Hz) 
power in three sub-epochs 

GBoost LR Sens: 94.26% FDR: 0.66/h. 
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Feature sets 

The simplest feature set included only power bands (delta-beta)24. It was designed to evaluate 4s-

epochs, deriving the power band features from three sub-epochs. This epoch length causes a 

minimum delay of 4 seconds. Another simple feature set only uses a power ratio (12–26Hz divided by 

0.5–3Hz) in bipolar channels43. Bipolar signal are considered to be a measure for neuronal potential 

similarity, as contains information of both amplitude similarity and phase synchrony between brain 

regions, which is typical for ictal activity. 

Donos et al.14 applied a simple seizure detection algorithm meant for closed-loop CES. In their 

system, eleven features from the time and frequency domains are computed for each monopolar 

(average re-referenced) iEEG channel, i.e. mean, mean absolute deviation (MAD), variance, 

skewness, kurtosis, autocorrelation, line length, power in infra-slow frequency band (0.1– 0.5Hz), 

beta (13–30Hz) and gamma (30–128Hz) bands and a power-ratio between the alpha (7–13Hz), beta 

and gamma bands. In their recent comparison of two classifiers, Manzouri et al.38 used ten of these 

time and frequency domain features, selected based on a reasonable computational demand. They 

found that the complex calculations for autocorrelation had a relatively large impact on runtime. In 

feature importance studies by Shoaran et al.36, Iine-length and a patient-specific single spectral 

power turned out to be dominant features in their algorithm. 

Zhang and Parhi 39 extracted features using a two-level wavelet decomposition. Three disjoint sub-

bands are decomposed and each total power is used as a feature, as well as the logarithm of the 

product of the absolute values of each. Later they used a feature reduction algorithm (CART) to 

automatically reduce the amount of spectral features to 3 or 4 features to achieve early seizure 

detection40. Non-linear approaches from the field of Brain Computer Interfaces were used in two 

feature sets, both based on three discrete wavelet transform (DWT) bands (4–8 Hz, 8–16 Hz, 16–

32Hz)41,42. 

When using multiple channels, the use of global features may provide additional information to the 

classifier. Pairwise cross-correlations and sorted eigenvalues in both time- and frequency (1-47 Hz) 

domain, was shown to be quite effective to classify 1-s segments (early AUC 0.967)37. Other 

covariance or cross-correlation based algorithms confirmed the high performance when using these 

global features (early AUC 0.970)37.  

Choice of classifier 

A Random Forest (RF) classifier, or other ensemble classifier was used by eight of the evaluated 

algorithms14,24,36–39. It is considered to be of particular interest for early seizure detection in closed-

loop CES, because of its relative resistance to overtraining, ability to efficiently work with large data 

sets, no need for normalization of features, few required parameter optimizations and the evaluation 

of features’ importance by measuring the mean decrease in the Gini index44. The Gini index is a 

measure of how often a randomly chosen element from the set would be incorrectly labelled, if it 

was randomly labelled in accordance with the distribution of labels in the subset. Overall high 

performances were achieved in diverse seizure onset patterns. With delay optimisation, a delay of 3s 

was achievable with 93.84% mean sensitivity and 0.33/h FDR14. 

In two studies.42,45, Bayesian linear discriminant analysis (BLDA) was used to classify 4-s epochs from 

three channels and achieved sensitivity of 96.25% and a FDR of 0.13/h with a mean delay time of 

13.8s. The system performed less well when using shorter epochs41. 

A Support Vector Machine (SVM) classifier was used by three of the evaluated algorithms38–40. In 

combination with a classification and regression tree for feature selection, Zhang and Parhi achieved 

high performance (early AUC 0.914) in a solution they considered suitable for low complexity and low 
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power hardware implementation. However, when they compared the performance of an SVM to a 

simpler AdaBoost classifier, they showed that the AdaBoost performed better on their data 

(sensitivity 98.75; FDR 0.075/h). 

Comparing the RF and SVM classifier, Manzouri et al.38 found that the RF performed best in real-time 

seizure onset detection (delay <10s) with an AUC for early seizure detection of 0.90. Furthermore, 

they showed that RF classification is feasible on a low power microcontroller. Comparing their 

solution to the Neuropace responsive neurostimulation (RNS) device, they found that their wider 

spectrum of extracted features and more advanced classification of ictal electrographic patterns 

came closer to a “true closed loop” intervention strategy. 
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2.3 Discussion 
The methodologies used in the reviewed articles had a rather wide variety in source data, evaluation 

criteria, and validation and testing sets. 

The selection of patients may affect the performance of a used algorithm. For example, whereas a lot 

of studies used the Freiburg dataset, it is unclear why some had to exclude patients due to 

artefacts24,46, onset pattern47, or seizure duration48, while other studies included all. Including only 

patients with three or more seizures to allow for cross-validation39 constitutes a loss in comparability 

to other studies, but does add to the meaningfulness of performance measures (cross-validation 

sensitivity). Another example from studies using the European Epilepsy database, two studies 

selected subjects randomly43,49, with the only condition being a high sampling rate (1024Hz), while 

other studies14,38 selected 10 patients a priori with a representative variety of seizure onset patterns. 

The latter does add to the representativeness and thus their performance gives a stronger indication 

of the applicability in CES. Two publications36,37 applied entries from the UPenn and Mayo Clinic's 

Seizure Detection Challenge to a wider dataset for validation, actually giving insights in the 

applicability of some high-performing algorithms. 

Performance measures used in literature vary. Some articles report epoch-based sensitivity and 

specificity rates, which do not translate directly to detector performance in a clinical application. 

Epoch-based specificity may even lead to over-optimistic results, as rates over 95% may still falsely 

indicate hundreds of seizures per hour. Alternatively, FDR per day or per hour are often counted, 

which give a meaningful number related to the selectivity of the system and the amount of 

potentially unnecessary interventions. For sensitivity, most studies agree that a correct detection of a 

seizure occurs if the detector alerts a seizure once during the seizure, but in some studies also 

detections a few seconds before the marked onset are counted as true positives. Algorithms which 

contain adjustable thresholds or other parameters allow for a meaningful description of their 

performance via receiver operating characteristic (ROC) curves. The trade-off between sensitivity and 

FDR in that case can be represented by the AUC, which facilitates comparison between different 

studies. 

It is likely that for CES to be successful, interventions are to be performed early during an 

electrographic seizure. Therefore, the detection delay between the visually annotated seizure onset 

and the first detection is used as a third performance measure, although often omitted. In a few 

cases, the delay was reduced by using a collar technique in post-processing24,41,42, which does not 

apply to real-time applications of seizure detection. Instead of the detection delay, accuracy 

measures for the detection in the first ten seconds are sometimes presented37,38,40. This simplifies 

optimisation and facilitates the comparison of algorithm performances. The underlying assumption 

that the seizure does not manifest clinically within the first 10 seconds after electrographic onset, is 

questionable though, as the clinical onset may ensue within a shorter timespan.  

Features 
In several studies, a combination of features in the time and frequency domains was effective for 

achieving high sensitivities. Line-length and a patient-specific single spectral power have been shown 

to be dominant features in algorithms that focussed on linear features. Alternatively, a combination 

of spectral power features and power ratios has the potential to perform well with only few features.  

Autocorrelation, cross-correlation, covariance between channels and other global features may 

improve performance, as these can utilise the repetitive and synchronising nature of seizures and 

were used in the best performing algorithms of the Mayo Clinic challenge37. Bipolar signals contain 

information  for the synchronising nature of seizures. Prediction error filtering provides a simple 
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alternative signal to extract features, and has been shown to perform well on a single monopolar 

channel. Promising non-linear features from the field of brain-computer interfaces may provide 

additional information on the underlying state of the brain, yet they are not widely used in machine-

learning approaches. Features such as lacunarity42 may contribute to detection performance and are 

supposed to have low computational demand. 

Features derived from the time domain signal do not require any additional processing and it has 

been shown that pre-processing techniques such as Fourier transform or wavelet transform can be 

implemented in low-power dedicated circuits28. The Stockwell transform, i.e. a combination of Short 

Time Fourier Transform(STFT) and Wavelet Transform, is expected to require more complex 

computations. It may have better performance as it retains phase information of the signal24. 

Classifiers 
The evaluated papers demonstrated that relatively simple classifiers, e.g. RF or boosted ensembles, 

outperform more complex classifiers, e.g. neural networks or SVM, and are suitable for low-power 

applications. The RF is an ensemble learning method for classification that constructs a group of 

decision trees consisting of binary decisions in which each tree is trained on a subset of the training 

data and a subset of features. When performing the classification, each individual tree assigns a 

label, after which the final label is given by majority of the trees. It combines the bagging technique 

with random feature selection, which allows for out-of-bag error evaluation and performance 

calibration50. The RF classifier has a relative resistance to overtraining, an ability to efficiently work 

with large data sets, no need for normalisation of features, and it allows for the evaluation of 

features’ importance by measuring the mean decrease in the Gini index. 

Limitations 
The performance indicators of the evaluated papers cannot be directly compared, because of 

different datasets used in the different studies. Even for studies that used the same dataset for 

validation, the calculation of performance indicators heavily depends on pre- and post-processing 

steps and experiment setup, complicating a direct comparison of performance. Mentioned delay 

times are not comparable, and sometimes even irrelevant for on-line detection applications if a collar 

technique was employed (e.g. 42). Furthermore, we cannot assume the used datasets can adequately 

represent the population of sensorimotor epilepsy patients in an everyday setting. Hence, it is not 

safe to make a generalized assumption about the performance of the evaluated algorithms and their 

features. However, the outcomes provide a clear lead as to which features are most likely to 

distinguish between seizure onset and background activity. 

Despite the intrinsic difficulties, this review aims to introduce and foster the understanding of 

available methods in the area of real-time seizure detection. Its contribution is towards developing a 

seizure onset detection system balancing computational complexity and accuracy for responsive 

treatment, such as CES.  

Future perspective 
One of the major points to bring responsive CES devices to a higher level in the therapy of epilepsy 

patients will be the implementation of new and more specific algorithms for seizure detection. Since 

the first generation of certified neurostimulation devices, a lot of studies have been published 

presenting increasingly more ideas to solve the problem of automatic seizure detection. It can be 

expected that by the need of getting better solutions to this problem, the increasing amount of 

available data sets and the increasing availability of toolboxes for machine learning, the amount of 

studies in the field will continue to expand. 
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3. Feature extraction and potential for seizure detection 
The goal of this study is to provide a seizure detector that is suitable for online responsive 

intervention, such as CES, at the early stages of a seizure. Based on the literature review, a 

combination of time and frequency domain features is used which can be implemented in a detector 

using a machine learning classifier. In this chapter, the features are extracted from interictal and ictal 

ECoG segments to analyse their properties and potential for detecting seizures. 

3.1 Methods 
Before applying the features in a classifier, their behaviour is studied on a sample of 10 patients 

(Table 2) with sensorimotor epilepsy. All patients underwent presurgical evaluation at the University 

Medical Center Utrecht epilepsy monitoring unit between 2012 and 2018, using implanted cortical 

electrodes. ECoG was recorded for a period of 5-7 days and included in the ‘RESPect’ research 

database with approval of the local medical ethics committee. To allow for cross-validation of a 

classifier later (described in chapter 4), only patients who presented at least three seizures of the 

same type during the intracranial monitoring period, are included. 

The ECoG-data were obtained using the Micromed EEG system at a sampling rate of 512 or 2048 Hz. 

The signal was filtered in the recording system with a 0.15 Hz high-pass filter and anti-aliasing low-

pass filter at 117 or 468Hz, respectively. For faster and eventually more energy efficient 

computation, the recordings are down-sampled to 512 Hz during pre-processing. The data was 

processed with Matlab (Matlab R2018a, Mathworks Inc. MA, USA), using the open source Fieldtrip 

MEG/EEG analysis toolbox51 for pre-processing as described below. 

Channel selection 
The ECoG was manually annotated to identify seizure onset and artefacts, by visual inspection. The 

annotated data was converted to Brain Imaging Data Structure (BIDS)52. To limit computational 

demand, and respect realistic constraints of an invasive neurostimulator, six bipolar channels are 

selected for each patient. The bipolar channels are chosen to include different behaviours in ictal 

activity: for each patient two electrode pairs involved in the seizure onset (SO-SO) are included, along 

with two electrode pairs not involved in seizure onset (NSO-NSO) and two electrode pairs of which 

each has one electrode involved in seizure onset and the other electrode not (SO-NSO). In choosing 

electrode positions, we did not discriminate between underlying motor- or somatosensory cortical 

area. The bipolar electrode selection is illustrated for one patient in Figure 2. 

 
Figure 2| Schematic representation of implanted ECoG grids and channel selection for patient RESP0295. Shown are 

two cortical grids (F and C) with numbered electrodes. Electrodes involved in seizure onset are indicated in red and initial 
spread of ictal activity in orange. Blue lines are selected bipolar channels involved in seizure onset, purple are channels 
that have one electrode involved in seizure onset and the other not, red lines are channels not involved in seizure onset. 
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Pre-processing 
Selected channels are digitally re-referenced to apply the specific bipolar montage. Data with a 

sampling frequency of 2048Hz was resampled to 512 Hz. Data quality is improved with a 6th order 

digital bidirectional Butterworth filter with a high-pass frequency of 0.5 Hz. Power-line noise is 

removed using a discrete Fourier transform (DFT) filter. The DFT filter fits a sine and cosine at 

interference frequencies (50Hz, 100Hz, 150Hz) to the signal, after which the estimated interference 

components are subtracted from the data.  

The six filtered bipolar channels are subsequently segmented into 1s non-overlapping epochs. Epochs 

with prior visually annotated artefacts are removed. No epochs were removed during seizures. 

Additional information on the activity the patient is performing is included for later use (Chapter 4). 

The pre-processing pipeline is shown in Figure 3. 

 
Figure 3| Pre-processing steps. Acquired data is annotated and converted to Brain Imaging Data Structure. From this 

structure, bipolar channels are selected, downsampled to 512Hz, filtered with a high-pass filter and DFT band-stop filter, 
segmented into 1s epochs and cleared from prior visually annotated artifacts. Addittional activity labels are attached to 

the segments to facilitate the compilation of learning and testing sets later on (chapter 4). 

 

 

Figure 4|Overview of used feature set. Basis set is inspired by Manzouri et al.38, Extra features include global features 
(cross-correlation), lacunarity and fluctuation index. Local features are extracted for each of six bipolar channels. Cross-

correlation features consist of 15 combinations and 6 eigenvalues both in the frequency and time domain. 
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Features 
Based on the literature review (chapter 2), the following features are selected: Mean, MAD, variance, 

skewness, kurtosis, line length, autocorrelation, average power in beta and gamma range, as well as 

power ratio between higher (beta, gamma) and lower (alpha, theta) ranges. In addition, cross-

correlation features are included to utilise synchronising nature of seizures, and the added value of 

lacunarity and fluctuation index is assessed by including them in the feature set (Figure 4) as well. 

The used features are described in detail below. 

Simple (statistical) features 
The four statistical moments, i.e. mean, variance, skewness and kurtosis, provide 
information on the location (mean), variability (variance) and shape (skewness, 
kurtosis) of the amplitude distribution of a time series53. MAD is used as another 
measure of statistical dispersion of the time series, more suitable for non-normally 
distributed data54. These statistical features are calculated for every epoch in each 
bipolar ECoG channel. 

 

 

 

Line length feature 

Line-length is a signal feature defined as the sum of distances between successive 
points within a certain window55. As such, it represents the total length of the ECoG 
curve within a given epoch of length N: 

 𝐿 = ∑ 𝑎𝑏𝑠[𝑋𝑡−1 − 𝑋𝑡]

𝑁

𝑖=1

 (1) 

The line-length increases, both when the data sequence magnitude or frequency 
increases. It is computed for every epoch in each channel. 

 

 

Autocorrelation feature 
For each epoch the autocorrelation was computed using the following definition: 

 𝑅(𝜏) =
𝐸[( 𝑋𝑡 −  µ)  ×  (𝑋𝑡+𝜏  −  µ)]

σ2
 (2) 

where E is the expected value operator, Xt is the signal at the t time moment, µ is 
the mean of the signal in the 1-s epoch, σ2 is the variance of the signal, and τ is the 
time lag. 
The lowest value of the autocorrelation coefficient during each 1s epoch was used. 
The assumption is that when the seizure starts, the seizure onset pattern is rather 
different from the baseline ECoG, and therefore low autocorrelation coefficients 
are expected14. 

 

 

 

Band powers and ratio 
Band powers are estimated power spectral densities (PSD) in the beta (12.5-30Hz) 
and gamma (30-80Hz) band. In addition to absolute spectral densities in these 
bands, the ratio between the sum of the power in the gamma and beta band 
divided by the sum of the power in the alpha and theta bands (3.5-12-5Hz) is 
computed. This power ratio corresponds to the first step of the computation of the 
epileptogenicity index6, and has been suggested to be sensitive for low voltage fast 
activity onset patterns14. 
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Cross-correlation features 
Cross-correlation features were based on the winning submission in the Seizure 
Detection Challenge by Michael Hills56. In the time domain, time series data is 
normalised for every epoch. Correlation coefficients between ECoG channels and 
the sorted complex magnitudes of eigenvalues in the time domain are used as 
features. 
To obtain correlation coefficients between ECoG channels and their eigenvalues in 
the frequency domain, power in 1-Hz frequency buckets in the range of 1-47Hz per 
segment is normalised for every frequency bucket (i.e. all buckets for each 
channel). From the normalised data, a correlation matrix is obtained. The (upper 
right) correlation values are used as features, as well as the sorted complex 
magnitudes of the eigenvalues. 
By sorting the eigenvalue features, they form a so-called spectrum of the 
correlation matrices.  

 

 

Lacunarity 
Lacunarity features are computed by first applying a DWT to split the signal in three 
frequency domains. DWT employs long time windows for more precise low 
frequency information, and short time intervals for high frequency information. A 
Daubechies 4 wavelet is used, as it is considered appropriate to detect changes in 
ECoG signals42. The number of decomposition levels is chosen to be six. With a 
sampling frequency of 512Hz, this decomposition yields the relevant detail 
coefficients (d) representing 16–32 Hz (d4), 8–16 Hz (d5), and 4–8 Hz (d6). 
Lacunarity represents the gaps or ‘lacunae’ present in a given surface. In our 
application, it is based on the DWT detail coefficients shifted to positive values, and 
subsequently calculating the first (M1) and second (M2) order moments of mass. 
Lacunarity(Λ) then follows as described by Zhou et al.42: 

 𝛬 =
𝑀2 − 𝑀1

2

𝑀1
2  (3) 

 

 

 

Fluctuation index 
The fluctuation index features use the same detail coefficients from DWT as used 
for lacunarity. The fluctuation index can be considered to be similar to the line 
length feature in a specific frequency domain, normalised for the amount of DWT 
coefficients in a certain scale (Nd4, Nd5, Nd6). For example, the fluctuation index in 
d4, representing fluctuations in the 16-32 Hz band, is calculated as follows42: 

 𝐹𝐼(𝑑4) =
1

𝑁𝑑4
∑ 𝑎𝑏𝑠[𝑑4𝑡−1 − 𝑑4𝑡]

𝑁𝑑4

𝑖=1

 (4) 

 

 
 

 

Statistical analysis and interpretation 
For each patient, the relevance of each feature is computed by comparing the feature values of the 

first 20 ictal segments with the pre-ictal segments from the preceding 30 minutes. Boxplots are made 

comparing the pre-ictal and ictal feature values for each seizure. All ictal segment sets and pre-ictal 

segment sets are combined per patient to find sensitive features on the patient level. Significance of 

all features is determined using the Mann-Whitney nonparametric test with Bonferroni correction, 

for each patient. All 138 features are ranked using the absolute value of the standardised U-statistic 

as class separability criterion. Significant increases and decreases of feature values are assessed for 

all patients to see if universal patterns can be found.  
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3.2 Results 
A total of 98 seizures was analysed, with a median of 8.5 seizures per patient (range 3-20, Table 2). In 

the separability ranking, the highest ranking features were different for each patient. Based on the 

top 15 features for each patient, the feature types with the highest standardised U-statistics were 

variance, MAD, line-length, gamma power, beta power, power ratio, fluctuation index, time-series 

cross-correlation, frequency cross-correlation, and eigenvalue of the frequency cross correlation. The 

feature types ranking among the top 15 for each patient can be found in Table 2. 

Table 2| Overview of analysed patients and top performing feature types 
Up to 20 seizures were included in the analysis per patient. RESPect numbers are references for the ‘RESPect’ research database entries 
of the University Medical Center Utrecht epilepsy research group. FCD: Focal cortical dysplasia (ILAE classification provided if known). 
RAW: rhythmic alpha waves; RBW: rhythmic beta waves; RBW: rhythmic beta waves; RGW: rhythmic gamma waves;  RTW: rhythmic 
theta waves; RS: repetitive spiking; RSW: rhythmic sharp waves; LVFA: low-voltage fast activity 

RESPect 
number 

Seizures Age / 
Sex 

Pathology Grid location Onset 
pattern 

Top discriminating feature types 

295 14 31 / M Unknown 
(FCD 1a) 

L Frontocentral / 
temporal 

RGW Line-length, gamma power, eigenvalue freq. cross-
correlation, freq. cross-correlation, power ratio 

733 3 9 / M Perienatal 
ischaemia 

L Frontocentral / 
interhemisph. 

RBW Line-length, fluctuation index, variance, MAD 

545 4 9 / M FCD 2 L Central / 
Interhemisph. 

RSW  MAD, variance, freq. cross-correlation, eigenvalue freq. 
cross-correlation, time-series cross-correlation, power ratio 

529 4 16 / F Trauma R Central RAW, RSW Line-length, gamma power, beta power, fluctuation index, 
variance, MAD 

621 20 18 / F FCD 2b L Central RBW, RGW Line-length, power ratio, gamma power, fluctuation index, 
variance 

677 7 17 / M FCD 2b L Central RGW Fluctuation index, power ratio, freq. cross-correlation, 
MAD, variance, eigenvalue freq. cross-correlation 

561 10 28 / M unknown L Central / 
interhemispheric 

RBW Line-length, freq. cross-correlation, power ratio, eigenvalue 
frequency cross-correlation, gamma power 

608 6 24 / M FCD 2b L Cental / 
temporal 

RS,  LVFA Line-length, eigenvalue freq. cross-correlation, power ratio 
gamma power, fluctuation index, beta power 

294 10 35 / F unknown L frontal/ 
frontocentral 

RS Line-length, gamma power, beta power, fluctuation index, 
eigenvalue freq. cross-correlation 

699 20 13 / M FCD 2a (2b) R frontocentral RTW, RGW Line-length, power ratio, gamma power, fluctuation index, 
variance 

 

An example patient 
For the example patient 295, the mean and all lacunarity features showed no significant differences 

between the pre-ictal and interictal epochs sets. MAD and variance show co-varying significant 

increases and decreases of the median values in all channels. Kurtosis shows a significant decrease in 

channels not involved in seizure onset (NSO-NSO), whereas skewness shows a significant change in 

channels involved in seizure onset (SO-SO). The line-length feature has a significant increase in all six 

channels. Autocorrelation shows a significant decrease in NSO-NSO channels, and an increase in one 

SO-SO channel. Gamma power and Power rate are significant in all channels and show the highest 

increase in SO-SO channels. Beta power mostly has a significant decrease, although it increases in 

one SO-SO channel. Fluctuation index decreases in most of the channels in all three bands, while in 

the higher band (16-32Hz) one SO-SO channel shows a significant increase. 

Among the global features, the time-series cross-correlation feature was significantly increased or 

decreased in five correlations between channels of which one channel had one electrode involved in 

seizure onset and the other not (NSO-SO), and a significant increase in one correlation between an 

SO-SO channel and an NSO-NSO channel. One cross-correlation eigenvalue showed a significant, yet 

minor, decrease. Frequency cross-correlation showed a significant decrease in all cross-correlations, 

except the cross-correlation between the two NSO-NSO channels. The lowest five sorted eigenvalues 

of the frequency cross-correlation showed a significant decrease, while the highest eigenvalue in the 

spectrum decreased. Patient level significance for this example patient is illustrated in Figure 5. 
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Aggregated results of all patients 
When compiling all the results of the 10 patients (Figure 6), we see that the insignificance of the 

mean feature is universal for all patients. Lacunarity, however, does show significant changes in 

seven patients. The detail coefficient representing the 4-8Hz band only has significant lacunarity 

changes in one patient (608). The lacunarity of detail coefficients representing 8-16Hz and 16-32 Hz 

change significantly for six and seven patients respectively. 

MAD and variance features co-varied in all patients, i.e. they show the same significant increases and 

decreases across all channels in both features. For one patient (677), there was only one channel in 

which the variance and MAD changed significantly. Kurtosis and Skewness were not significant for 

this patient. The autocorrelation feature decreased significantly in both NSO-SO channels for four 

patients (295,561,294,699). For one patient (529), autocorrelation increases in all channels except 

one NSO-SO channel. 

The fluctuation index is significantly increased across all bands in at least one channel of each type 

for three patients (733,529,608). It also shows significant decreasing values across all types of 

channels and bands for the seven other patients, along with some significant increases, 

predominantly in the higher frequency band. 

Line-length increased significantly in all channels for seven patients, and in a majority of the channels 

for the other three (545,529,621). For one patient (545), it did not increase significantly in both the 

SO-SO channels, but it did increase in the other channel types. Gamma power did also not increase 

significantly in patient 545’s SO-SO channels, nor did it increase in the SO-SO and NSO-SO channels of 

patient 677. Otherwise, it showed a general significant increase among the channels, except for one 

NSO-NSO channel in patient 621, in which it actually decreases. Beta power shows general increase 

for two patients (733,608), but there are channels with a significant decrease for four patients 

(295,621,677,699). In patient 677 this significant decrease occurred in both of the SO-SO channels. 

Power ratio increased significantly in all SO-SO for all patients and all other channels for five patients 

(733,677,561,608,294). A significant decrease occurred for two patients (295,699) in SO-NSO 

channels, and in a NSO-NSO channel for patient 621. 

Among the global features, the time-series cross-correlation between both SO-SO channels was 

significantly increased for two (677,608), and decreased for four patients (545,529,561,294). 

Between different types of channels, both significant increases and decreases occur. One patient 

(621) has no significant change in cross-correlation, except for one SO-SO/SO-NSO correlation. Cross-

correlation eigenvalues showed no significant changes for two patients (621,699). The highest sorted 

eigenvalue was significantly decreased for four patients (733,677,561,294), whereas it was 

significantly increased for two (545,529). 

Frequency cross-correlation feature is decreased in most correlation pairs for nine patients. Patient 

621 has fewer significantly decreasing correlation pairs and two increasing correlation pairs, of which 

one is between both NSO-SO channels. The lowest five sorted eigenvalues of the frequency cross-

correlation showed a significant decrease in seven patients, and the highest eigenvalue in the 

spectrum decreased significantly for all but one patient (621).  
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Figure 6 |Overview of significant (P < 0.01/138) changes in feature levels. Green represents a significant increase of the 
feature, blue a significant decrease of the feature value, grey represents no significant change. The 16 local features 

types are extracted from six bipolar channels for each patient. Local feature channels are grouped in rows by their 
location’s involvement in seizure onset (SO-SO, NSO-NSO, NSO-SO). MAD and variance show the same behaviour in all 
channels. Line-length, gamma power, power ratio and show relative consistent increases in most channels. For global 
features, the eigenvalues are in increasing order (*), with the lower three and higher three shown in two rows. Cross-

correlations are grouped by the involvement of each of the correlated channels in seizure onset. Eigenvalues of the 
frequency cross-correlation show relative consistent decrease of the highest eigenvalue along with an increase of the rest 

of the spectrum. Frequency cross-correlation is decreased significantly in most channels. (Further observations can be 
found in the text body above.) 
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3.3 Discussion 
In this chapter, we described the seizure extraction method and compared the feature values from 

the interictal and ictal ECoG epoch sets to analyse the features’ properties and potential for 

detecting seizures. The general idea is that feature values that change significantly during seizures, 

and more specifically during seizure onset, will be useful in discriminating between interictal and ictal 

segments by our classifier later on. For all features that show significant differences between the ictal 

and pre-ictal epochs, it is important to realise that this does not directly translate to predictive power 

of the features. As the primary focus is on the behaviour and discriminative power of the features, 

each feature type is shortly discussed below.  

Simple (statistical) features 
None of the mean features was ever significant. This can be attributed to the used AC 
amplifier and pre-processing steps, such as the bipolar montage. As it is never 
significant, it is unlikely to be of any added value in a classifier. 
The similar behaviour of variance and MAD could be expected, as both are measures 
of dispersion of the time series. Variance and MAD increased during seizures in several 
channels, which represents the volatile nature of the ictal ECoG. However, in several 
channels these dispersion measures actually decreased. Although this might be due to 
low-amplitude characteristics of certain seizure onset types, it is more likely caused by 
the bipolar montage. Using bipolar channels cancels out synchronous activity with 
similar amplitudes in certain electrode combination. This accounts for some of the 
decreased variance levels. 
For skewness, it is actually not relevant to consider increases distinct from decreases, 
as this simply depends on the polarity of the montage. Although skewness and kurtosis 
were never in the top 15 features, they do seem to provide information in some 
channels on the shape of the distribution that may contribute to the discrimination 
between ictal and non-ictal epochs. Most notably, skewness was differed significantly 
in all SO-SO channels, except for one patient (621).  

 

 

 

Line length feature 
Line-length is expected to increase, both when the data sequence magnitude and/or 
frequency increase. The general increase of the line-length in most channels indicates 
it is a strong candidate for classification. The increase was not expected in channels 
selected to not be involved in seizure onset (NSO-NSO), but it appears the gamma 
power increase in those channels is strong enough within the first 20 seconds of 
electrographic onset. Line-length features scored consistently among the top 15 
features, and are expected to give an important contribution to classifier performance.  
Channels where line-length did not work well, such as the SO-SO channels of patient 
545, had a lot of interictal spiking in the onset channels. As such, line-length is less 
capable of discriminating between ictal an non-ictal epochs.  

 

 

Autocorrelation feature 
The autocorrelation feature is among the hardest to interpret. As it is based on the 
assumption that the seizure onset pattern is different from the baseline ECoG14, it is 
conceivable that autocorrelation only drops significantly in a few epochs at the start of 
a seizure, and otherwise has rather constant values. It shows this drop mainly in SO-
NSO channels. As it takes only the minimum value within an epoch, information on the 
actual autocorrelation characteristics get lost during feature extraction. This may 
account for the varying behaviour. Nevertheless, it does seem to provide some 
information for all patients, and may be of added value in a classifier. 
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Band powers and ratio 
All frequency band power features generally showed a convincing increase. It is likely 
that higher frequencies were relatively unaffected by the bipolar montage, as lower 
frequencies are more likely to achieve phase synchrony during seizures. It was 
suggested that the combination of bipolar channels and power ratio could adequately 
discriminate between ictal and non-ictal epochs based on amplitude similarity and 
phase synchrony43. 
The extracted features used pre-defined frequency bandwidths to compute band 
power. It is possible that for some patients band power features would perform even 
better if the bandwidths were adjusted to their seizure type. Still, many features based 
on these fixed bands rank among the top 15 features for most patients. As such, they 
show a strong discriminating potential between ictal and non-ictal epochs. 

 
 

 

Cross-correlation features 
The cross-correlation in the time-series did not perform very consistently across 
patients. It was suggested that zero-lag cross-correlation may only really increase 
towards the end of the seizure57, which may explain the lack of changes in cross-
correlation coefficients for many channels. We should also note that due to the bipolar 
montage, our channels already represent the difference in potential between two 
cortical electrodes. As electrodes become more synchronous, the bipolar signal will 
drop close to zero and so will their cross-correlations with other signals. In the time 
domain, there is no distinction between increases and decreases of the cross-
correlation, as negative correlations simply depend on the polarity of the montage. 
In the frequency domain, however, feature values tend to be positive, and this feature 
shows a clear behaviour across all patients. The widespread strong decrease of cross-
correlation coefficients in the frequency domain between these bipolar channels is 
remarkable. It implies that during seizures the distribution of power across 1Hz 
buckets becomes less similar in nearly all bipolar channels. 
This is also adequately captured by the eigenvalues of the correlation matrix. Each 
eigenvalue reflects the correlations between all six ECoG channels, but the largest 
amount of correlation is represented by the highest eigenvalue. The increase in the 
rest of the spectrum also contains information about the changing correlations. As 
such, the spectrum indeed allows for a compact assessment of the evolving correlation 
structure. 

 

 

Lacunarity 
Lacunarity is among the lowest ranking features for most patients. The poor 
performance may be due to the computation of the feature during which the detail 
coefficients is shifted to positive values. As this shift depends on the minimum value of 
in the epoch, the resulting feature value may depend more on this minimum than on 
the actual lacunarity. Extracting the feature using a fixed offset, would require prior 
knowledge of the range that each detail coefficient may have, which would it less 
applicable in an online detector.  
With its limitations, however, it does seem to capture some information for a subset of 
patients, mostly in the detail coefficient representing the higher (16-32Hz) band. 
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Fluctuation index 
Although the fluctuation index can be thought of as a decomposition of the line-length 
feature in three frequency bands, it does not seem to capture the same information as 
the line-length feature. Whereas line-length has a significant increase in most 
channels, the fluctuation index shows a lot more decreases. This can be attributed to 
effects of the DWT that precede the extraction of the fluctuation indices: of the 
decomposition, only the coefficients that represent 4 to 32Hz are used to compute the 
fluctuation index. Thus, fluctuations in the gamma band are largely excluded. The 16-
32Hz fluctuation index behaves similarly to Beta power, so the two are likely to contain 
the same information. 

 
 

 

Limitations 
The selection of bipolar channels is inherently subjective and patient-dependent. Although a careful 

selection took place to ensure the use of artefact-free channels that capture different combinations 

of involvement in ictal activity (i.e. both involved in seizure onset, neither involved in seizure onset, 

and only one involved in seizure onset), this still does not guarantee comparable channels across 

different patients. The goal of including these different combinations of involvement, was to strive 

for capturing as much information in the bipolar channels as possible. The variation in feature 

behaviour among channels in each patient seems to confirm that this was successful to some extent. 

In choosing electrode positions, we did not discriminate between underlying cortical areas, nor did 

we take into account in which areas would be stimulated if the patient would actually receive a 

closed-loop CES device. In an actual CES implant, these factors might constrain electrode locations. 

For some patients, several features did not perform as good as for other patients. Several factors can 

play a role in these differences. Besides the mentioned limitations in channel selection, different 

patients also produce different onset patterns (Table 2). The amount of seizures and variability 

between ECoG characteristics between seizures for the same patient, can also reduce significance of 

the differences between ictal and pre-ictal activity. Lastly, the baseline ECoG before each seizure may 

be in a specific sleep state that is harder to distinguish from seizure onset. 

In creating ictal and pre-ictal epoch sets, stages of ictal activity may be included in the ictal epoch set 

that go beyond what can be considered seizure onset. However, reducing the amount of epochs even 

further would impede the possibility of achieving significant results. The use of pre-ictal epochs as 

opposed to inter-ictal epochs not closely preceding a seizure, may give a non-representative view of 

the baseline ECoG, as there is increasing evidence of the existence of a pre-ictal state58,59. For the 

application of a responsive CES device, distinguishing between ictal and pre-ictal seems the most 

relevant, when targeting seizure onset specifically. 

Comparing interictal ECoG with early ictal ECoG epochs using a statistical test like the Mann-Whitney 

nonparametric test involves certain assumptions about the distribution of the feature values, and 

thus the underlying data. As ECoG signals are nonlinear and non-stationary in nature, the assumption 

of independent and identically distributed observations does not apply. Incorporating multiple 

seizures and different interictal segments does provide a moderate compensation for the correlated 

and non-stationary data. When using these features in a machine learning classifier, more complex 

decision boundaries will emerge that do not necessarily require this assumption to hold true. 

Especially not when using classifiers that apply a bootstrap aggregating (bagging) technique60.  
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Perspectives for classification 
The used 138-feature set, including sixteen types of local features and four global features, have a 

potential for discriminating between ictal and pre-ictal epochs. Variance, line-length, gamma power, 

beta power, power ratio, fluctuation index, time-series cross-correlation, frequency cross-

correlation, and eigenvalue of the frequency cross correlation are the most promising feature types 

in this set. The combination of the line-length feature with power band features and global features 

could be a promising basis for classification. Other included features may complement these by 

adding some additional discriminative power.  

Although multiple features may have very significant differences between ictal and pre-ictal epochs, 

a classifier may only use one of them, if the actual information the features are based on is the same. 

The most obvious example is the variance and mean average deviation, which both represent the 

dispersion. Less explicit confounders are conceivable, as e.g. delta power and line-length both 

increase when fluctuations in the delta band increase. 
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4. Classification and validation 

The features from the preceding chapter are used to implement a detector based on a RF classifier. 

The patient-specific classifier is trained and tested on patients’ data and compared with a method 

similar to one of the methods used by the only medically approved responsive neurostimulator 

(Neuropace RNS). 

4.1 Methods 
The early seizure detection algorithm is trained and tested on retrospective ECoG data from ten 

patients with sensorimotor epilepsy. We used the same set of seizures from the ten patients as 

described in Chapter 3 (Table 2) as a starting point for the training set for training each patient-

specific classifier. ECoG recordings containing seizures are split in blocks, each containing at least one 

seizure and a varying amount of pre-ictal and post-ictal data. Blocks with multiple seizures are split so 

that in every block there is one seizure. Post-ictal data is excluded for 20 minutes after the seizure 

offset.  

To obtain the chance of early detection without the use of overlapping windows, which would 

introduce extra computational demands, feature sets are computed using non-overlapping 1s 

epochs, as described in Chapter 3.2. Subclinical seizures are removed from the training dataset. As in 

chapter 3, epochs are either labelled ictal or non-ictal.  

It is important that the classifier can distinguish between ictal activity and different sleep stages. 

Early NREM, late NREM and REM stages each have their own characteristics reflected in ECoG, which 

might resemble ictal activity in some regards. As we are dealing with sensorimotor cortex, a sudden 

change in mu-rhythms may also resemble ictal activity. Therefore, additional interictal blocks are 

included in the training set for each patient and labelled as non-seizure: at least 10 minutes of non-

REM or early sleep, 10 minutes of REM sleep or late sleep, and 10 minutes of performing a controlled 

motor task or other dexterous activity. 

Cross-validation 
Because the number of seizures is low in some of the included patients, seizure-level leave-one-out 

cross validation is performed while training the classifier for each patient. In this process, one seizure 

and its preceding pre-ictal data is left out for testing and the classifier is trained using the remaining 

seizures, complemented with the additional interictal blocks. This is repeated with each seizure left 

out once for testing. 

From the cross-validation, the sensitivity for early detection is determined by whether each seizure 

was detected within the first 10 second using the classifier. The end time of the first epoch to be 

detected successfully is considered the detection delay for that seizure. The median detection delay 

and delay range are used as performance indicators. The cross-validation also provides an estimate 

of the FDR for all the detections occurring in the left out pre-ictal data. In the end, the classifier with 

the best performance over the entire data is selected. 

Testing dataset 
The available literature rarely performs additional testing and often accepts relatively FDRs (see 

Chapter 2). In order to give a good estimate of the performance of the detector, we choose to 

perform an additional false positive test with a held out testing set. For the testing dataset, around 

24 hours of interictal data from each patient is used as a testing dataset. The testing set is used to get 

a FDR for each patient-specific algorithm. 
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Random Forest Classifier 
The number of trees is set to 100. Higher numbers of trees were tested but did not increase the 

accuracy of classification significantly. The number of features randomly selected at each node is set 

to √𝑁features rounded up, i.e. twelve features at each node. The Gini coefficient61 is used as 

branching index in growing each decision tree of the RF. The importance of each feature is computed 

based on the decrease of this Gini coefficient, eliciting which features are more active.  

Reference algorithm: comparison with existing neurostimulator detector 
The Neuropace RNS system uses any (up to two) of three detection tools operating on 1 or 2 

channels to detect seizure onset62: the half-wave tool segments the electrographic signal at local 

minima and maxima resulting in half-waves representing frequency components; the area tool 

measures the overall power of the signal; and the line-length tool employs the sum of distances 

between successive points to identify changes in both amplitude and frequency.63 Since precise 

assessment of the Neuropace RNS system is not possible64, the line-length based thresholding 

classifier as estimated by Manzouri et al.38 is implemented as a reference algorithm to compare 

performance with our algorithm. 

For this approximation of the algorithm, the line-length feature as described in Chapter 3.1 is 

normalised by z-scoring, and a threshold is set that optimises sensitivity and FDR. A logical ‘or’-

function was used to combine the results of the two SO-SO detection channels. The same cross-

validation is used for the line length algorithm, as was used for the RF classifier to assess the 

sensitivity and obtain an estimation of the FDR, and the testing set is used to get a realistic FDR.  

Performance indicators 
Sensitivity, defined as the ratio of correctly detected seizures to the total number of seizures, is used 

as measure for the ability of the classifier to detect seizures. Early seizure detection (<10 s) sensitivity 

is used to measure the ability to actually detect seizure onset. 

FDR as a tool for measuring the ability of the classifier to avoid false positive detections, defined as 

the number of false detections made by the classifier in an hour of testing data. Both the FDR from 

cross-validation and from the held out testing set are used to evaluate the performance. 
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4.2 Results 
The top five dominant features for each patient were of the feature types beta power, gamma 

power, power ratio, line-length, variance, MAD, fluctuation index (8-16Hz, 16-32Hz), time series 

cross-correlation, frequency bucket cross-correlation, and eigenvalue of the frequency cross-

correlation. The properties of classifiers in cross-validation generally agreed based on gini-indices 

from each iteration of the cross-validation (shown for one patient in Figure 7) 

 
Figure 7 | Relative importance of features grouped per feature type for patient 295. In this example patient, line-

length, power ratio, gamma, fluctuation index (8-16Hz), and eigenvalues of the frequency cross-correlation were 
dominant feature types in the classifiers during cross-validation. The gini-index of the combined classifier is shown as a 

circle, and shows the same top 5 dominant features. 

The RF classifier achieved a sensitivity of 100% and a mean early sensitivity (<10s) of 98%. FDR in 

both the cross-validation and the testing set was 1.45/h and 1.53/h respectively; being under 2.5/h 

for most patients, except for patient 294 and 677. The performance of the detectors is given in table 

3. The line length algorithm had a sensitivity of 98% mean early sensitivity of 81%. It is possible to 

increase this sensitivity by lowering the threshold, but it would drastically worsen the FDR which has 

an average of 4.43/h in the testing sets. The mean delay was 3.9s for the RF classifer as compared to 

6.1s in the line length algorithm. 

Table 3 | Performance of random forest classifier, compared with the line-length algorithm.. 
FDR: False Detection rate; CV: Cross-Validation; Test: Testing set; RESP: references for the RESPect database. 

Patient 
(RESP) 

Full feature set + Random Forrest Classifier Reference algorithm 

Sensitivity 
(<10s) 

 FDRcv 

(/h) 
FDRtest 

(/h) 
Median delay 
(min-max) 

Sensitivity 
(<10s) 

FDRcv 

(/h) 
FDRtest 

(/h) 
Median delay 
(min-max) (s) 

295 0.92 2.1 1.8 7 (3-18) 0.89 4.31 7.15 8 (4-17) 

529 1.00 0.30  0.40 4 (2-8) 0.88 3.82 4.21 6 (2-16) 

545 1.00 0.26 0.34 2 (1-6) 0.25 4.1 3.21 11 (4-18) 

733 1.00 0.09  0.38 1 (1-3) 1.00 2.23 5.21 1 (1-3) 

294 1.00 3.01  2.53 5 (1-8) .83 2.11 3.66 7 (2-12) 

621 0.93 1.83 2.18 7 (4-15) .88 3.32 5.21 9 (4-15) 

677 1.00 4.01  5.21 3 (2-6) .94 4.32 9.31 4 (2-11) 

561 1.00 1.32 1.12 3 (1-7) 0.73 1.29 2.5 6 (2-13)  

608 1.00 0.69 0.23 3 (1-8) 0.83 0.71 0.81 5 (1-11) 

699 .95 0.93 1.05 4 (2-11) 0.90 1.35 3.03 4 (3-12) 

Mean 0.98 1.45 1.53 3.9 0.813 2.76 4.43 6.1 
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4.3 Discussion 
The aim of this chapter was to implement a patient-specific detector using a broad set of local and 

global features (chapter 3) in a RF classifier. The detector was compared with a reference algorithm 

on clinical data from 10 patients with sensorimotor epilepsy. Performance of the RF classifier was 

generally better than that of the line-length algorithm. With an early detection (<10) sensitivity of 

0.98, and an FDR around the 1.5 /h, the RF algorithm shows a great improvement over the use of the 

line-length algorithm with an early detection sensitivity (<10s) around 0.82 and FDR in the order of 

4.4/h. The detection delay of the RF classifier had an average of 3.9 s, which is competitive with other 

on-line seizure onset detection methods that do not employ post-processing techniques to reduce 

the detection delay14,65.  

Using the Random Forest classifier 
The RF classifier was used, because of its few required parameter optimizations, the ability to 

efficiently work with large data sets, its resistance to overspecialisation and the lack of need for 

feature normalisation. Parameters, such as the amount of trees, could easily be set to a satisfying 

number. After trying some higher numbers without significant improvements, 100 trees were 

enough to get a stable classification result. The suggested50 amount of randomly sampled predictors 

to consider at each split set at √𝑁features requires no fine-tuning either. 

Not all features in the feature space were relevant. Although it is expected that some features may 

be interchanged for one another by the classifier if they are based on the same characteristics, it is 

likely that the results would have been similar without including the mean and lacunarity features. A 

feature reduction step could be added, to create a lighter and perhaps more efficient classifier. 

However, doing feature reduction properly requires a rather slow iterative process as ideally one 

should only remove a single feature from the space at a time, to see how it impacts the others.  

Comparison with line-length algorithm 
The implementation of line-length algorithm does not mimic the workings of the Neuropace RNS 

device completely. The Neuropace RNS can use up to two detectors in two channels, which can also 

be set to use the half-waves tool or the area tool66. Of these three, the line-length tool is considered 

the most effective, because it sensitive for both low-amplitude fast and high-amplitude slow 

activities during the course of a seizure28. For one patient (545), the line-length algorithm was 

performing remarkably worse than for the others, which could have been predicted based on the 

insignificance of the line-length feature in the SO-SO channels as described in Chapter 3.2. It is 

possible that the Neuropace half-wave detector would have been more suitable for these channels, 

as e.g. the power ratio had a strong impact in the RF classifier for this patient. 

The line-length feature plays an important role in the RF classifier. However, the addition of PSD 

features, variance, fluctuation index and global features, in combination with the light yet versatile 

RF classifier have shown to be a good seizure onset detection algorithm, possibly bringing the field 

closer to a true closed-loop intervention strategy. 
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5. General discussion 
This thesis set out to find improved approaches for highly specific and fast seizure onset detection for 

a new generation of intelligent implantable responsive CES devices, which may become an effective 

alternative to epilepsy surgery in the near future. It aimed at finding algorithms that have promising 

characteristics for seizure onset detection, and combining the best aspects of those algorithms, to 

ultimately test the performance of a combined algorithm on clinical ECoG data from patients with 

sensorimotor epilepsy.  

Machine learning approaches have been on the rise in the last decades, providing plenty of tools to 

classify data such as ECoG signals based on many more extracted features. Finding the most 

promising directions to take is no straightforward task, as outlined in chapter 2 of this thesis. The 

methodologies used in the reviewed articles had a rather wide variety in source data, and validation 

and testing sets. It became clear that performance indicators of the evaluated papers could not be 

directly compared. During the writing of this thesis, M. Dümpelmann published an extensive topical 

review on early seizure detection for closed loop direct neuro-stimulation devices in epilepsy67. In 

this review, he goes as far as to only name the performance metrics in the literature overview, 

without providing the achieved numbers, simply because there is no consensus on what should be 

counted as a true positive when calculating the sensitivity and other metrics. 

Our approach 
In the end, we decided on a set of features by critically evaluating the literature, not only looking at 

the used features and classifiers, but also at the used methodology: as to patient inclusion criteria 

and the potential application in actual on-line seizure detection. We picked out a feature set that 

could combine the proven strong performance in seizure onset detection for a variety of seizure 

onset patterns14,38, with the benefits of global features with excellent performance in a benchmarked 

competition37,56.   

Extracting these features from clinical ECoG data of patients with sensorimotor epilepsy, and 

analysing the change of the feature values during seizure onset, showed that patient-specific 

algorithms are indeed required to possibly achieve a performance good enough for a true closed loop 

system. The variability between patients can only partly be explained by their differing seizure onset 

patterns. The selection of channels is a crucial step in the process, which can also be approached 

more analytically. Truong et al.68 incorporated an automatic channel selection engine as a pre-

processing stage to a seizure detection procedure, achieving state-of-the art performance with such 

an automated detection step. 

In our case, pairing the selected 138 features with an RF classifier, yielded promising results. Our 

performance metrics cannot be directly compared to other studies, because of the same major 

limitation of definitions, used data and methodology. However, the comparison with the (sometimes 

considered gold standard36) line-length algorithm does show a significant improvement on our data. 

While our dataset was newly created for this research, it could be the starting point of a 

benchmarking set used especially for seizure onset in the sensorimotor cortex, which is a highly 

relevant target group for responsive CES, due to their often inoperable focal epilepsy. 

Before the dataset can be used as a true benchmarking set, some important aspects of the data still 

have to be validated. There is an inherent subjectivity in the marking of seizure earliest 

electrographic change. A benchmarking set would preferably have these onsets annotated by at least 

two epileptologists with a systematic approach. The same applies for the channels involved in seizure 

onset. If channels are to be manually selected, the highest care should be given to mark these 
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channels as objectively as possible. Eventually, more patients can be added to the benchmarking set, 

as part of the RESPect database, which can help to draw stronger conclusions as to the external 

validity of the used performance metrics. 

Now the testing and validation yielded promising results, steps from algorithm development to its 

implementation in low-power hardware can be considered. The application of seizure onset 

detection for responsive CES will have to be realised in a hardware device with certain restrictions 

related to power consumption, memory, and runtime. The first step towards this will be a proof of 

concept of the algorithm in an on-line application during epilepsy monitoring with implanted 

subdural electrodes in September 2019. 

Outlook 
Researchers of the University Medical Center Utrecht epilepsy group are planning to carry out an 

analysis of the electrographic characteristics of sensorimotor epilepsy. This could potentially give 

direction to further development of seizure onset detection algorithms, as their findings could be 

taken into account to identify prevalent seizure onset patterns in the target population, as well as 

predicting potential challenges in automated sensorimotor seizure onset detection. This could 

possibly help to make more tailored decisions in setting up a feature set. 

The choice for an RF classifier remains unchallenged for now, as no other classifier has been shown 

to have superior performance67. However it is conceivable that with the rise of convolutional neural 

networks, along with the rise of implants that can collect large amounts of ECoG data, these deep 

learning approaches may take over. Hügle et al.69 already made a proof of concept for an implantable 

CNN-driven CES device. 

The closely related field of seizure prediction may provide new opportunities. In this thesis, 

prediction algorithms, which try to detect changes minutes before the actual clinical seizure 

occurrence, were disregarded, because sensitivity and specificity values are in an entirely lower 

order58. However, the incorporation of features likely to represent the pre-ictal state, could be an 

interesting addition to the feature space in a seizure onset detector, as they may indicate the 

probability that a certain change in other feature values actually represents a seizure onset. 

With the continuing expansion of the field, exemplified by the start of a clinical trial in the University 

Medical Center Utrecht (REC2Stim), the availability of data and interest in the field are expected to 

increase, moving the field of online seizure onset detection for responsive stimulation forward.  
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Mijn afstudeerstage loopt langzaam maar zeker richting een afsluiting. Een jaar van vele kleine maar 

ook enkele grote uitdagingen, waarin ik veel heb geleerd en in mijn persoonlijke ontwikkeling verder 

ben gegroeid. Ik voel mij inmiddels een echte Technisch Geneeskundige, maar tegelijkertijd besef ik 

maar al te goed hoe veel meer er nog te leren valt. De kennis die ik heb opgedaan het afgelopen jaar 

is wellicht domein-specifiek, maar de inzichten en vaardigheden zullen mij ook breder van pas 

komen. 

In dit verslag zal ik ingaan op de persoonlijke leerdoelen die ik in de beginfase van mijn stage heb 

opgesteld en hoe ik me met deze leerdoelen heb beziggehouden. Ook zal ik de activiteiten noemen 

welke niet direct gerelateerd zijn aan mijn leerdoelen of hebben bijgedragen aan mijn 

onderzoeksverslag, maar welke desalniettemin hebben bijgedragen aan mijn persoonlijke 

ontwikkeling. 

Medisch handelen en werkterrein 
Mijn eerste leerdoel was om beter bekend te raken met het medisch handelen van de neuroloog en 

klinisch neurofysioloog. Wat ik daarbij wilde bereiken is een inzicht in het handelingsperspectief van 

de specialist, maar ook zeker een duidelijker beeld van het perspectief van de patiënt. Hierbij richtte 

ik mij op een achttal ziektebeelden waarvan ik verwachtte hier in de kliniek een goede kans te 

hebben om er meer over te leren:  

1. Epilepsie en kortdurende wegrakingen 

2. Stoornissen van het bewustzijn / Comateuze patiënt 

3. Stoornissen van de slaap 

4. Cerebrovasculaire ziekten 

5. Corticale functiestoornissen en dementie 

6. Liquorcirculatiestoornissen 

7. Neuromusculaire aandoeningen 

8. Trauma van het centrale en perifere zenuwstelsel 

Uiteraard heb ik hierbij vooral met het eerste ziektebeeld te maken gehad, aangezien ik direct 

betrokken was bij de onderzoeksgroep epilepsie. Epilepsie behoorde tot mijn dagelijkse focusgebied. 

Door mee te lopen op de polikliniek en de first-seizure clinic, heb ik veel kunnen leren van het 

perspectief van de patiënt en het invaliderende karakter die epilepsie kan hebben. Door mee te 

lopen met- en onderwijs te volgen over pre-chirurgische onderzoeken heb ik ook veel kunnen leren 

over hoe artsen de behandeling aanvliegen en de rol die daarin is weggelegd voor voortschrijdende 

technologische ontwikkeling. In combinatie met literatuur over epilepsie en behandeluitkomsten heb 

ik een goed beeld gekregen van dit focusgebied. 

Ook de andere ziektebeelden zijn aan de orde gekomen. Naast dat ze allemaal wel minstens eenmaal 

ter sprake kwamen bij de patiëntendemonstraties, heb ik ook zelf in de kliniek patiënten kunnen 

zien. Tijdens consulten op de afdelingen en op de Intensive Care kwamen traumata, bewustzijns-

stoornissen, slaapstoornissen, cerebrovasculaire ziekten en liquorcirculatiestoornissen allemaal aan 

de orde. Neuromusculaire aandoeningen heb ik nog iets meer mee kunnen doen door mee te lopen 
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met de NMZ-artsen en met hen EMGs uit te voeren. Ook hier heb ik inzicht kunnen krijgen in de rol 

die technologische ontwikkeling kan spelen in bijvoorbeeld de behandeling en diagnose van motore-

neuronziekten zoals ALS. Al met al heb ik een breder beeld ontwikkeld van de gehele neurofysiologie. 

In bredere zin heb ik mij kunnen bekwamen in het uitvoeren van een anamnese, door bijvoorbeeld 

patiënten op te nemen alvorens een klinisch onderzoek. Het klinisch redeneren heb ik kunnen 

trainen in de wekelijkse patiëntendemonstraties, werkgroep-meetings, patiëntenbesprekingen, 

overdrachten, alsook bij het SUMMA onderwijs over anamnese. 

Ik heb mij kunnen bekwamen in (neurologisch) lichamelijk onderzoek, kort neuropsychologisch 

onderzoek en EEG. Dat laatste met name dankzij het wekelijkse onderwijsmomenten van Frans 

(medisch begeleider), waarbij ik elke week enkele EEGs voorbereidde en deze ook presenteerde 

wanneer daar een kans voor was. Daardoor heb ik inmiddels een niveau vergelijkbaar met een AIOS 

neurologie, als het op EEGs lezen aankomt. Daarnaast heb ik veel meegedraaid in de IEMU bij grid-

implantaties en stereo-EEG opnames, waardoor ik goed op de hoogte ben van hoe een epileptische 

focus wordt gelokaliseerd en functionele corticale gebieden worden afgebakend. In de regionale en 

landelijke werkgroepen heb ik geleerd hoe behandelplannen in samenwerking met andere centra 

worden opgesteld en hoe medische professionals zich onderling verhouden in een dergelijke situatie. 

Vanuit mijn opdracht heb ik mij met name beziggehouden met electrocorticografie (ECoG) bij grid-

implantaties. Daarbij heb ik laborantendiensten gedraaid op IEMU, waar ik samen met een 

verpleegkundige verantwoordelijk was voor het in de gaten houden van de patient, voornamelijk 

wanneer deze een aanval krijgt. Hierbij kon ik ook alvast vooruit lopen op de beoordeling door de 

behandelend neuroloog of TG door alvast markers te zeten in de opname. Al deze ervaring heeft me 

een aardig gevoel gegeven voor het ECoG.  

In relatie tot mijn interesse in de gezondheidswetenschap heb ik ook een beter beeld ontwikkeld 

over de rol van de neurologie in de volksgezondheid. Vooral de wekelijkse klinische patiënten-

demonstraties hebben mij laten zien hoe evidence-based medicine te werk gaat in de neurologie. De 

toenemende rol van genetica, en de valkuilen die daarbij komen kijken staan mij het meest bij. Als 

voorbeeld wil ik de impact op de levenskwaliteit van familieleden van patiënten met een erfelijke 

aandoening noemen: door familieleden te screenen voor een dergelijke aandoening kan hun 

levenskwaliteit achteruitgaan, zelfs als ze geen drager zijn van het gen; door iets dat lijkt op 

schuldgevoel. Na deze stage realiseer ik mij nog meer dat bij alle onderzoeken en interventies die we 

doen in de medische praktijk, we stil moeten staan bij de effecten ervan. Soms zijn deze effecten ook 

minder opvallend en niet zo voor de hand liggend.  

Door het frame van een academisch ziekenhuis heb ik wellicht meer bijzondere casussen 

meegemaakt dan dat ik in aanraking ben gekomen met de meest voorkomende casuïstiek, maar 

dankzij de vele onderwijsmomenten waarbij ook specialisten uit perifere ziekenhuizen aan bod 

kwamen, heb ik toch aan aardig beeld gekregen van het hele neurologische werkveld. 

  



 

 

Kennis anatomie, fysiologie, pathologie 
Na een klein jaar hier in de kliniek, alsook met mijn nodige ervaring en kennis van daarvoor, kan ik 

inmiddels stellen dat ik over de nodige bagage beschik aan kennis van anatomie, fysiologie en 

pathologie van het centrale zenuwstelsel. Ook heb ik nu een stuk meer kennis over het perifere 

zenuwstelsel dan ik voorafgaand aan de stage had verwacht.  

Mijn kennis over de anatomie en embryologie heb ik wederom onderwezen tijdens de 

hersendissectie-practica in Nijmegen. Dankzij onderwijsactiviteiten, zoals de IEMU-cursus heb ik ook 

meer kunnen leren over de pathofysiologie van epilepsie. De vele hersenoperaties die ik heb 

bijgewoond hebben mijn kennis verder uitgediept en de theorie voorzien van een praktische 

bekrachtiging. Ook de wekelijkse klinische patiëntendemonstratie heeft mij een breder inzicht in de 

pathologie gegeven. 

Mijn kennis over de pathofysiologie van epilepsie, over epilepsiechirurgie en over corticale stimulatie 

heb ik ook kunnen delen buiten het ziekenhuis.  Zo heb ik met veel plezier een lekenpubliek op 

vermakelijke wijze een inkijk gegeven in mijn stage-activiteiten tijdens de Science Slam in 

Wageningen.  

Onderzoeksvaardigheden 
Een belangrijke pijler aan het begin van mijn stage was het opvijzelen van mijn onderzoeks-

competenties. Ik had mijzelf tot doel gesteld om mij te bekwamen in het uitvoeren van klinisch-

wetenschappelijk onderzoek, mede om mij ook te oriënteren op een eventueel vervolg in het 

onderzoeksveld. 

Veel zaken hebben bijgedragen aan mijn persoonlijke ‘gereedschapskist’ voor klinisch-

wetenschappelijk onderzoek. Een voorname component daarvan is de cursus Basic Course for Clinical 

Investigators (BROK) die ik heb gevolgd, waar ik met de nodige energie en moeite toch een mooi 

resultaat voor heb gehaald. Met dit certificaat op zak ben ik aantoonbaar bevoegd om 

wetenschappelijk onderzoek in de kliniek uit te voeren en mij door de jungle van regelgeving te 

slaan. 

In het werk aan mijn opdracht heb ik steeds getracht het wetenschappelijke karakter te 

benadrukken. Door de opdracht bijvoorbeeld aan te vliegen met een diepgaande literature review, 

heb ik een goede basis gelegd voor onderbouwde keuzes later op de weg. Hoewel het enerzijds 

spijtig is dat in de loop van mijn stage een vergelijkbare review is gepubliceerd vanuit een ander 

centrum, is het anderzijds fijn dat die publicatie niet tot nieuwe inzichten leidde en de bevindingen 

grotendeels overeenkwamen. Een ander voorbeeld is het gebruiken van een nieuwe 

databasestructuur voor mijn onderzoek. Deze database is gedurende mijn stage is ingericht door een 

aantal onderzoekers, waaronder mijn directe begeleider. Door als één van de eersten deze database-

structuur te gebruiken in mijn workflow heb ik de ontwikkeling ervan kunnen aanzwengelen en er 

zelf aan kunnen bijdragen. De data die ik heb geannoteerd en schoongemaakt kan daardoor ook in 

de toekomst verder worden gebruikt voor meer retrospectief onderzoek, iets dat mijns inziens past 

bij een moderne vorm van onderzoek. 

Verder waren er vele momenten waar ik goed kon proeven van de wereld van de wetenschap. 

Uiteraard hadden we onze wekelijkse lab-meetings, waar ikzelf ook een aantal keer een voordracht 

heb gehouden om met andere onderzoekers te sparren over mijn project. Daarnaast heb ik veel 

plezier beleefd aan de Journal Clubs van de epilepsiegroep, alsook een enkele keer met de 



4 

neurochirurgen. Ik heb vooral genoten van het kritisch kijken naar gebruikte methodologie in hoog-

aangeschreven publicaties, waarmee we gezamenlijk onze onderzoeksvaardigeheden bijscherpten.  

Ook buiten het ziekenhuis waren er zeker noemenswaardige activiteiten. Zo heb ik kunnen 

deelnemen aan lezingen over machine learning aan de Universiteit Utrecht, en de SWO midwinter 

meeting van de Nederlandse Liga tegen Epilepsie. Daarnaast heb ik een abstract ingediend voor het 

MHSDE congres in Lausanne in september, waar ik een poster over mijn onderzoek zal presenteren. 

Ik had gehoopt om mee te kunnen draaien met het REC2Stim project van Dorien (directe begeleider). 

Helaas is dit (hoog-risico) onderzoek tegen enkele hobbels aangelopen waardoor het pas in 

september van start gaat. Wel heb ik door het aanschouwen van de uitdagingen waar Dorien zich 

doorheen heeft weten te slaan een goed beeld gekregen van het traject dat een dergelijk 

wetenschappelijk onderzoek moet doorlopen. Door op te treden als onafhankelijke software-tester 

heb ik ook een bijdrage kunnen leveren aan de uiteindelijke goedkeuring. 

Uiteindelijk kan ik nog net aan het einde van mijn stage meehelpen in de daadwerkelijke implantatie 

van een corticale neurostimulator, en kan ik dan meteen (hopelijk) ook het resultaat van mijn project 

valideren in de kliniek! Alles bij elkaar genomen, durf ik te stellen dat ik een aardig beeld heb kunnen 

vormen van het werkterrein van een klinisch onderzoeker, en ik in principe klaar ben voor een 

vervolg in het onderzoek. 

Zelfsturing 
Een grote uitdaging bleek wederom om de regie te hebben in de eigen opdracht. De vaardigheden uit 

de M2, om vooral wel concrete doelen voor mezelf te stellen, heb ik op verschillende momenten 

goed ingezet. Ook bleek het soms nog best een uitdaging, vooral wanneer ik een eenzijdige taak had 

en het niet nodig leek om dat verder op te delen. Wat daarbij goed hielp was het hebben van een 

richtpunt in de week, waarop ik mijn doelen kon afstemmen. Hiervoor gebruikte ik het wekelijkse 

sparren met Dorien, en later ook de wekelijkse lab-meetings. Ook steun aan het thuisfront heeft mij 

geholpen om wat structuur aan te brengen in mijn opdracht. 

Een ander aspect wat er nog bij komt kijken is mijn neiging tot perfectionisme, waardoor ik soms wat 

lang blijf hangen, omdat ik alles tot op de puntjes uitgewerkt wil hebben. Ik heb geleerd dat dit niet 

persé slecht is, maar dat het wel als risico meebrengt dat ik daardoor kansen mis om zaken eerder te 

overleggen en inbreng van anderen hierin mee te nemen. Achteraf ben ik tevreden over de perioden 

waarin ik inderdaad volgens mijn eigen planning heb gewerkt. Vooral in de tweede helft van de stage 

heb ik daar de vruchten van geplukt. Deze stage heeft me wederom laten zien hoe ik ervoor kan 

zorgen dat ik mijzelf effectief aanstuur, en wat ik daarvoor nodig heb. Ik ga daarom met vertrouwen 

een volgende stap tegemoet. 
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Background: In refractory epilepsy patients, large parts of the pericentral gyri are considered 
inoperable without permanent functional deficits, due to their key role in sensorimotor processing. 
Responsive cortical electrical stimulation (CES) may be a promising alternative to surgery [1] due to 
presumed closed-loop early seizure suppression. Improved approaches for specific and fast seizure 
detection, validated on central lobe epilepsy (CLE) patients, are required for the development of a 
next generation of implantable responsive CES devices. This study aims to employ a combination of 
machine learning methods, which have demonstrated sensitive and specific real-time classification of 
the ictal and non-ictal electrocorticogram (ECoG), and compare performance of the combined 
algorithm with algorithms used in existing responsive CES devices. 
Materials & Methods: Recordings of ten CLE patients, who presented at least three seizures with 
similar onset characteristics during invasive presurgical evaluation were used. Six bipolar ECoG 
channels were selected for each patient to represent cortical areas inside and outside the clinically 
identified seizure onset zone. A patient-specific Random Forest (RF) classifier was trained using a 
138-dimensional feature space, consisting of cross-correlation features and a set of per-channel time 
and frequency domain features. For every patient, performances were evaluated based on early 
detection sensitivity using leave-one-out cross-validation, and on false detection rate on a 24h test 
set. 
Results and Conclusion: On our data, the algorithm demonstrates improved performance as 
compared to existing responsive CES device algorithms. The used feature set and patient-specific RF 
classifier may be employed to achieve closed-loop suppression in future responsive CES implants for 
CLE treatment. 
 
1. Vassileva, A., van Blooijs, D., et al. Neocortical electrical stimulation for epilepsy: Closed-loop 

versus open-loop. Epilepsy Res. 141, 95–101 (2018) 
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