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Abstract
Currently, retrospective gating allows for interpolating free-breathing Magnetic Resonance Imaging (MRI),
but in practice it is only used offline and with the patient lying inside the MRI scanner. This paper continues
the work on creating a reconstruction algorithm capable of generating synthetic MR images online both while
the patient is in- & outside the scanner. The ability to construct free-breathing real-time MR images will
be beneficial in both augmenting medical personal and for the development of robotic tools in the medical
field by improving cancer tumor segmentation and tracking. Two retrospective gating approaches capable
of constructing such synthetic MR images were implemented for performance assessment: one using full
MR images as datapoints, Retrospective Image Gating (RIG); and one using k-space lines, Retrospective
K-space Gating (RKG). Input data was acquired by letting five participants perform breathing exercises in the
MRI scanner in order to induce specific Respiratory Motion (RM) patterns. At the same time, sagittal MR
images of the liver were being acquired at 1.27Hz alongside one-dimensional, ultrasound measurements of
the upper right abdomen at 50Hz. The following types of breathing were performed: normal, breath-hold,
shallow, deep and coughing. This information enabled the performance assessment of synthetic MRI
construction algorithms for different types of RM patterns. The algorithms performed better on the regular,
breath-hold and shallow breathing types and considerably worse on the deep and coughing breathing types.
An enhancement based on Locally-Sensitive Hashing (LSH) was implemented in order to reduce execution
time and make the algorithms closer to real-time. LSH reduced computation time by 20% and 50% on
average for RIG and RKG respectively. Post-processing of the MR images was also implemented and
evaluated. Post-processing of the generated images produced significantly better results overall. Both
algorithms perform better as more data is loaded in for training and thereby produce smoother motion of
the liver in the generated video. RKG produced smoother liver motion for the regular breathing type than
RIG indicating a better approximation of the real motion; RIG requires more training data to reach the same
smoothness. RKG also has a higher perceived image quality as measured by with the Perception-based
Image Quality Evaluator (PIQE) metric.
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1. Introduction

Magnetic Resonance Imaging (MRI) is of high interest as
an imaging modality for surgical operations (e.g. biopsy,
ablation, etc.) due to its non-invasiveness, high resolution
and contrast; in particular, when needles and probes are used
to treat small low-volume targets in the liver such as early-
stage cancer tumors [1]. MRI is not only used to diagnose
a patient before and after surgery, but it is also used as an
intra-operative imaging modality to assist medical personnel
during surgery. The non-invasive characteristics of MRI is
especially important for this application, but it also provides
more detail on soft tissues than Computed Tomography
(CT) and Ultrasound (US).

One type of surgical procedures which can utilize the ad-
vantages of MRI is Minimally Invasive Surgery (MIS).
MIS techniques are used to diagnose and treat diseases
locally. An applicator such as a needle or probe is used
to: sample tissue, deliver drugs or apply treatment (e.g.
ablation).

Worldwide 8.2% of cancer caused deaths are caused by liver
cancer in 2018 [2]. MIS techniques have become common
practice when working with focal hepatic lesions due to
the following advantages: less scarring, shorter hospital
stays,lower significant-complication rates and lower cost
[1]. The technical term ”focal hepatic lesions” refers to
low volume lesions/tumors in the liver. These MIS proce-
dures require a high degree of accuracy for which real-time
guidance modalities, like ultrasound, are used. Although ac-
curacy requirements are situationally dependant, generally
an error of up to two millimeter is regarded as satisfac-
tory. However, these modalities depend significantly on the
skill and coordination off the operator [3]. Therefore these
operations could benefit from (partial) automation.

Robotic tools will require constant information about the
patient with minimal delay and MRI has a relatively long
acquisition time. An acquisition time of several seconds
is not uncommon for a 2D image, although this is highly
dependant on the chosen settings. Much research has been
conducted on speeding up the this process. Another core
issue with MRI are Respiratory Motion (RM) artifacts, sim-
ilar to motion blur in photography. RM is the technical term
for breathing motion. Therefore patients who breath freely
during a scan create RM artifacts in MR images which are
problematic for clinical diagnostics. A solution to this prob-
lem is to make the patient hold their breath, however not
every patient is able or willing to do so.

Therefore the aim should be to create the ability of construct-
ing free-breathing real-time MRI. This will be beneficial in
augmenting medical personal and for robotic tools in the
future by reducing the demands on patients and improv-
ing surgery automation through better tumor targeting and
tracking. Currently, there is one prevalent technique to cre-
ate free-breathing MRI in the medical field: retrospective
gating. This enables the reconstruction of synthetic, or artifi-
cially created, MR images by using a surrogate signal which
is acquired at a higher speed than the MR images. Common

surrogates are respiratory belts and navigator echo’s, while
Inertial Measurement Unit (IMU) and ultrasound surrogates
are being under development.

The following sections will explain these concepts and pro-
vide the necessary background.

1.1 Background

1.1.1 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) exploits the Nuclear
Magnetic Resonance (NMR) phenomenon to localize and
distinguish tissues in the x, y and z dimensions as described
in Table 1. Localization is done using magnetic field gradi-
ents and radio pulses at the resonance frequency of protons
at a certain magnetic field strength. This frequency is calcu-
lated with the Larmor frequency equation: ω =−γB, where
γ and B stand for the gyromagnetic ratio and magnetic field
strength respectively. Resonance is used to only excite a
slice of protons in the z dimensions by which the protons in
the slice will precess causing a measurable magnetization.
Then, a burst of magnetic gradient is used to cause a phase
shift along the y-axis, this is called the phase encoding gra-
dient. After which a continuous magnetic field is used as a
frequency encoding gradient to cause a change of frequency
along the x-axis. The signals received by the MRI receiver
coils are parts of the frequency domain representations of
the final image, this is due to the frequency encoding step.
A specific part of the frequency domain can be sampled
by tuning the scanner to a specific phase. This frequency
domain is referred to as the k-space in the medical field and
the whole k-space is sampled by tuning the scanner to all
phase encodings step-by-step. An MR image is formed by
performing an Inverse (Fast) Fourier Transform (IFFT) on
the k-space a seen in figure 1 after which the magnitude
component is commonly calculated for medical diagnosis.
The k-space of an MRI is conjugate symmetric and hence
theoretically only half of the k-space needs to be sampled
to form an MR image [4], however in practice usually at
least 70% of the k-space is required and this does reduce the
Signal to Noise Ratio (SNR). Each pixel in the MR image
is a volume of tissue and is referred to as a voxel.

Table 1. Anatomical-axes and -planes and terminology
Axis: Direction: Technical term:
X Left-to-Right (LR) Dextro-Sinister

Centre-to-Sides Medial-Lateral
Y Front-to-Back Anterior-Posterior (AP)
Z Head-to-Toe Superior-Inferior (SI)

Plane: Axes:
Sagittal Y-Z
Transverse X-Z
Coronal X-Y

The earlier explanation was a textbook description of how
an MR image is formed, however various changes and ex-
tensions have been introduced over the years to improve
MR imaging. Different sequences can be used to measure
different physical properties and different acquisition tech-



MRI & Ultrasound Sensor Fusion — 3/29

Figure 1. Quadrature MRI k-space processing (I: in-phase,
Q: Quadrature)

niques are used to, among others, reduce motion artifacts
and change acquisition speed.

The steps of the sequence can be re-timed to measure dif-
ferent physical properties. The time between radio pulses
is called the repetition time (Tr) and the time between ex-
citation and measuring is called the echo time (Te). These
can be adapted to make a T1 Weighted Image (T1WI), T2
Weighted Image (T2WI) or Proton Density (PD) image.
T1 and T2 are properties of protons and depend on the
surrounding environment/tissue. T1 and T2 are named lon-
gitudinal and transverse relaxation time respectively. A
T1WI is characterized by a short Tr and Te and accentuates
the T1 properties of the tissues. A T2WI is characterizes by
a long Tr and Te and accentuates the T2 properties of the
tissues. Finally, a PD image is characterized by a long Tr
and short Te and is used to get an indication on the proton
density.

Another modification that can be made to formation of an
MRI is the acquisition trajectory of the k-space, several
types are displayed in Figure 2. The trajectory determines
in which way the k-space lines are acquired and in how
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(d) Echo Planar Imaging
Figure 2. Different types of MRI k-space acquisition
trajectories

many cycles an image can be formed. For example, the
spiral trajectory in Figure 2b uses one measurement cycle
compared to the 6 cycles in the cartesian mode seen in
Figure 2a, hence it is faster. However, the spiral trajectory is
more prone to motion artifacts than the cartesian trajectory
and radial is even less prone to these artifacts [4].

This research focuses on the liver area and hence some im-
portant MRI settings for liver imaging have been searched.
”With the current state of the art technology, magnets of 1.5
tesla (T) and 3T field strength are considered the standard
of reference in providing high-quality and consistent MR
images” [5]. A volumetric resolution of two millimeter or
less in each direction with a temporal resolution of three
seconds or less is desirable [6]. Diffusion Weighted Imag-
ing (DWI) is a ”highly sensitive modality for [the] detection
of focal hepatic lesions” [7].

1.1.2 RM Compensation Techniques

There are several techniques used to generate MR images
to compensate for motion. One of these techniques is called
gating of which there are two types: prospective and ret-
rospective. Prospective gating techniques use a surrogate
sensor to start an MRI acquisition when the area of interest
is in a particular state. For example, a respiratory belt or
bellow is used to measure at which phase of the respiratory
cycle a patient is. Prospective gating increases imaging
time significantly and in some cases requires the patient
to perform a specific breathing instruction. This type of
gating is known as a form of triggering. However retro-
spective gating does not start acquisition at a trigger. For
example, an electrocardiogram (ECG) signal is recorded
while continuously imaging the heart with an MRI. The
acquired k-space lines are then grouped per ECG state and a
synthetic MR image is then generated by filling the k-space
with the k-space lines of one state.

Many types of surrogate signals exist for gating of which



MRI & Ultrasound Sensor Fusion — 4/29

many are hardware-based like the respiratory belt/bellow,
ECG and ultrasound. Using navigator echos is another way
gating can be performed, these are measurement of a small
area made by the MRI itself. They can be acquired fast and
therefore support the gating approach.

Other techniques to reduce RM artifacts include pulse se-
quences which specifically compensate for RM. They over-
sample the center of k-space, where the most information is
stored, essentially using it as a surrogate.

This research will focus on using ultrasound as a surro-
gate, hence the following section will provide additional
background for this surrogate.

1.1.3 Medical Ultrasound Imaging

Medical ultrasound (US) imaging uses sound waves to cre-
ate an image of the tissue underneath the skin, these im-
ages are also known as sonograms. Sonograms are created
by recording the reflections/echo of sound waves with a
frequency above 20 kHz which are pulsed into the body.
Different tissues have different reflection properties which
are displayed in the image. A well known use-case of US
imaging is the practice of imaging an unborn baby in the
womb, obstetric ultrasonography.

The sound wave created by a transducer is aimed with a lens
or through the use of beamforming. A method for directing
sound by using multiple sources producing sound at dif-
ferent phases and/or magnitudes. Beam-forming/-steering
is also used to produce 2D images with a 1D sensor by
sweeping the sensor. The measured acoustic reflections
are caused by changes in acoustic impedance at the bor-
der between two regions, this border is also known as the
interface. The intensity and direction of the reflections de-
pend on the difference in material properties at the interface.
Commonly, the intensity of the reflection is displayed on a
sonogram. Common frequencies used for medical imaging
lie between 1 and 18 MHz; Lower frequencies penetrate
deeper, but higher frequencies have shorter/smaller wave-
length and hence reveal more details. The speed of sound
is assumed to be 1540 m/s overall, causing a loss of reso-
lution due to the fact that this assumption does not hold in
the different tissues/environments. Another source of noise
are reverberations, which can be described as reflections of
reflections.

Different modes of medical US imaging exist:

• A-mode: is a 1D US sensor showing the reflections
on a line through the body.

• B-mode: is a 2D US sensor showing the reflections
on a plane through the body.

• C-mode: is a 2D US sensor showing the reflections
on a plane normal to the plane of a B-mode image. A
plane at a fixed depth is chosen and the sensor needs
to be moved to scan the plane.

• M-mode: is a A-/B-mode image taken in rapid suc-
cession creating a video.

• Doppler mode: makes use of the doppler effect to
measure speed of the blood for example.

• Pulse inversion mode: uses two pulses with an op-
posite sign to show contrast between materials and
gasses with linear and non-linear compression prop-
erties.

• Harmonic mode: uses sound at the fundamental fre-
quency of the body after which harmonic overtones
are measured. This reduces noise and artifacts due to
reverberations and aberration.

1.2 Objective

The aim of this research was to continue the work on gener-
ating real-time MRI for target: tracking, segmentation and
visualization. In this case real-time indicates a frame rate
of at least 24 frames per second (FPS) and low latency to
allow for a smooth and direct visualization of the body. This
would allow surgeons and robotic tools to have access to
the MRI modality in- and outside the MRI bore. Inside the
bore MR images can be interpolated and outside the bore
MR images can be extrapolated from the learned data with
the surrogates.

2. Related Work

Giger et al. (2018) introduced the use of 2D US surro-
gates for MRI-surrogate sensor fusion in the abdominal and
compares it to a navigator (slice) based approach [8]. The
algorithm selects the MR slice of which the surrogate signal
is most similar to the new surrogate signal. Notably two
different similarity metrics were used to compare surrogate
signals: an intensity based metric and one comparing the
position of fudicial points in the US image.

Berijanian (2018) focused on finding correlations be-
tween surrogate signals and the respiratory motion of a
hepatic/liver tumors. Two surrogate signals were used: vi-
sual trackers with a camera and an IMU on a needle inserted
into the liver. Linear regressions methods were used to pre-
dict tumor motion. No conclusion was made about which
surrogate signal was better however a combination of the
two lead to better estimation results. However only the raw
IMU output was used, no attempt was made to integrate
the signals in order to calculate a position or displacement.
A finite-element Model (FEM) was created to generate re-
peatable data. The FEM data was used to augment the real
measurements. This caused little change in performance
from which was concluded that the FEM is a good repre-
sentation of the real life scenario.

Fahmi et al. (2018) used visual markers with regression
techniques (multivariate, ridge and lasso) to create a Res-
piratory Motion Estimation (RME) model. This modelled
how a target in the liver moved in the body. Lasso seemed
to be the better regression technique with a Mean Absolute
Error (MAE) below 2mm. ”However, the spatial resolution
of the acquired MRI liver images prevented a more detailed
evaluation of the 3 models”[10], referring to a temporal
resolution of 1 second and spatial resolution of 1.5 by 1.5
in the sagittal plane with a slice thickness of 15mm.
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Abayazid et al. (2018) estimated RM with a second refer-
ence needle as a surrogate alongside the operative needle
[11]. The reference needle included an IMU at its base to
measure motion. A correspondence model was created to
link the surrogate signal to target displacement. RAkELd, a
variant on Random k-Labelset (RAkEL) was used to gen-
erate the model from experimental data produced using
a gelatin based liver phantom that moved in the anterior-
posterior and inferior-superior directions. The estimated
target displacement had a mean error between 0.86 and
1.29mm. This approach using a reference needle was sensi-
tive to needle bending, distorting the correlation found by
the correspondence model.

Preiswerk et al. (2017) introduced a method for interpo-
lating frames between MR images using a surrogate ultra-
sound signal [12]. This allowed for higher framerates and
out-of-bore MR images to be formed synthetically.

This approach is a form of online retrospective image gating.
The algorithm learns from the MRI and ultrasound data as
it comes in. Complications arise in previously unseen situa-
tions like coughing for the first time, but mainly when the
ultrasound sensor is displaced. The displacement of the sen-
sor can cause the correlation between the historical data en
incoming data to be lost and hence compromises the whole
system. Another issue is caused by a historical datapoint
encompassing a whole MR image and its corresponding set
of ultrasound signals. This MR image has been sampled
over a relatively long period of time, around 4 to 5 seconds
[13]. This causes a datapoint to include motion artifact
acquired over a significant part of the breathing cycle which
results in blurred synthetic MR images.

Shokry (2018) added an enhancement to the approach
introduced by Preiswerk et al. [13]. It adapted the original
approach to compensate for the low acquisition speed of an
MRI compared to the respiratory cycle, four to five seconds
or up to a quarter of a respiratory cycle [13].

This approach is a form of online retrospective k-space gat-
ing. The algorithm learns from the MRI k-space lines and
ultrasound data as it comes in. Again, the algorithm is sensi-
tive to surrogate sensor displacement, which causes the loss
of correlation between historical and incoming surrogate
data. Another issue is the case of previously unseen situa-
tions, a user will not know how good the prediction will be.
The research claims to use k-space lines as an input to the
algorithm, however the used dataset only includes MR mag-
nitude images and hence an approximation is not possible.
Supposedly the frequency domain of the magnitude image
is used.

The paper also introduced a machine learning algorithm
named the ”Evolving function” to map the closeness of a
surrogate signal toward a reference signal to the displace-
ment of a target. This algorithm was applied to a visual
surrogate signal using: skin markers, a camera and an EM
trackers to detect a target in the MRI. The evolving works by
picking a minima or maxima of the surrogate signal as a ref-
erence. New surrogate data is compared to the reference and

a closeness value between zero and one ([0,1]) is calculated.
Then during a training phase the evolving graph gets filled
where target displacement is filled in for several closeness
values. The values between acquired closeness values are
linearly interpolated, creating the evolving function.

The evolving function could be sensitive to new minima
and maxima when used as an online algorithm, after which
the evolving graph needs to be recalculated.

3. Problem Statement

3.1 Current Situation

Special ”double doughnut” MRI bores have been developed
to allow surgeons to effectively work inside the bore with
intra-operative MR images [14] since some surgeries re-
quire or benefit from these images. However, the noise
coming off these bores was too loud for the surgeons to
communicate and hence this technique has fallen out of
favour. Another method of supporting intra-operative MRI
is by either moving the patient or the MRI bore from and
to one another, however this only allows surgeons to get a
snapshot of their progress and not a continuous stream of
up-to-date images during surgery.

Another issue with MRI is its overall slow update speed.
Even though the actual speed is highly dependant on the
machine, settings and requirements; MRI machines are
not capable of real-time imaging without using specialized
techniques due to inherent physical properties. In this case
real-time indicates a frame rate of at least 24 FPS and low
latency to allow for a smooth and direct visualization of the
body.

3.2 Future Situation

Current research projects are also working towards robotic
tools to substitute or augment the surgeon for some tasks
in the future [15] . An example of this is the development
of pneumatic needle actuators which can be used inside
the MRI with minimal magnetic interference [16]. These
actuators require a target to navigate to. However, this
target will move due to Respiratory Motion (RM) and target
tracking is not possible with MRI alone due to the trade-
off between resolution and imaging speed when employing
MRI. An MR image of sufficient resolution and contrast
takes up to a quarter of the respiratory cycle causing motion
artifacts due to RM [13].

Common solutions to minimize RM induced artifacts are
breath holding and gating techniques [17] . However, these
techniques suffer from reduced imaging speed, increased
intervention time and inconsistent organ position between
breath holds or gating triggers. Breath holding is also ”in-
convenien[t] especially for those who suffer from respira-
tion difficulties” [18]. These limitations made the develop-
ment of free-breathing MRI important.

Motion robust MRI sequences like 2D magnetization-
prepared rapid gradient-echo (MP-RAGE) are also used
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to counteract motion artifacts, but result in moderate im-
age quality [5]; hence new state-of-the-art techniques arose
which combined the output from the MRI scanner with
surrogate signals such as: A- and B-mode ultrasound; ref-
erence needles; Inertial Measurement Units (IMU); visual
markers; and more [9], [11]–[13], [19]. These techniques
would combine the high resolution and contrast of an MR
image needed to distinguish the target with the update speed
of the surrogate, an approach known as sensor fusion, to do
Respiratory Motion Estimation (RME).

These approaches allow the system to temporally interpo-
late the MR image inside the MRI bore and temporally
extrapolate the MR image outside of the bore with the surro-
gate signal by creating synthetic MR images. Extrapolating
MR images outside of the bore would allow for using non
MRI-safe equipment while retaining some of the benefits
of MRI. The approach by Preiswerk et al. [12] and Shokry
[13] also allow for free-breathing MRI, see section 2 for
more details.

3.3 Challenges

The fusion between MRI and surrogates still has some ob-
stacles to overcome. Approaches using ultrasound (US)
surrogates are critically susceptible to the displacement of
the ultrasound sensor [12], [13], since this will remove the
correlation between historical and newly acquired surrogate
data. Systems based on reference needles are sensitive to
needle bending which distorts the same correlation [11]. It
is also not known how these approaches for generating syn-
thetic MR images proposed by Preiswerk et al. and Shokry
respond to different types of breathing/RM.

Another challenge arises when we take into account that
the system will, in the future, be used in conjunction with
robotic systems. These systems will have to compensate
for RM, however a delay is always present between obser-
vation and action and therefore the robotic system would
benefit from real-time MRI and optimally a prediction of
near-future motion to compensate for this motion in real-
time.

Another issue arises when looking at the work of Shokry
[13], the proposed method is based on textbook Cartesian
MRI formation. However, this is not identical to currently
prevalent and state-of-the-art MRI formation according to
specialists. This work also contains a flaw as the data used
in this research does not contain phase images and hence
would not allow a reconstruction of the k-space, however
the algorithm still has potential.

3.4 Research Questions

This research focused on evaluating the performance of the
synthetic MRI approaches using surrogates under different
types of RM. The synthetic k-space approach needed to
be validated with real k-space data, as the original work
only used the frequency domain of magnitude images. Fur-
ther contributions focused on enhancing the approaches for
better performance.

The following research question was defined:

1. What is the performance of synthetic MR image recon-
struction for different types of respiratory motion?

(a) How can a dataset be created which is suitable for the
performance assessment of MRI-ultrasound sensor fu-
sion, respiratory motion classification and prediction?

(b) Which metrics should be used to asses the perfor-
mance of synthetic MR image reconstruction?

(c) How does pre- and post-processing affect perfor-
mance?

(d) How can synthetic MR image reconstruction be made
real-time?

4. Methodology

This research consisted of three critical components: data
acquisition, algorithm implementation and data analysis.
The implementation of these components are discussed in
this section.

4.1 Synthetic MRI Approaches

4.1.1 Retrospective Image Gating (RIG)

This approach in combination with ultrasound was intro-
duced by Preiswerk et al. [12]. The top row of figure 3
visualizes the algorithm presented in this paper. The method
compares a sliding window of the surrogate signal to his-
torical data. The historical data consist of complete MR
images and their corresponding surrogate signal. Similarity-
weights are given to the historical MR images, where higher
weights are given to MR images that were acquired in a sim-
ilar state compared to the current state as measured by the
surrogate signal. The historical MR images are then multi-
plied by their weight and summed together, this summation
is then divided by the total sum of the weights resulting in
the new synthetic MRI.

The US signals are pre-processed using the Hilbert trans-
form as shown in equation 1.

U = log(abs(hilbert(Uraw))) (1)

The similarity weights (s) are calculated as shown in equa-
tion 2 with the current US signal (Ut) and historical US
signals (UT ). Σ is a vector describing the variance of the US
signal at every depth, Tr is the repetition time of the MRI
sequence, Nx is the number of US depths and NTr is the
number of US acquisitions in the sliding window.

s(Ut ,UT )= ν ·exp −1
2
(Ut −UT )

T
Σ
−1 (Ut −UT ) (2a)

where

ν = (

q
(2π)nkΣ̂k)−1 (2b)
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Figure 3. Synthetic MRI generation approaches: top, Retrospective Image Gating (RIG); bottom, Retrospective K-space
Gating (RKG)

Σ̂ =
Σ

exp(Tr/10)× N̂x ×NTr
2 (2c)

4.1.2 Retrospective K-space Gating (RKG)

This approach in combination with ultrasound was intro-
duced by Shokry [13]. The bottom row of figure 3 visualizes
the algorithms for synthetic MRI presented in this paper. It
is similar to the approach by Preiswerk et al., however a
datapoint is a set of surrogate ultrasound signals with one
k-space line of the MR image. This is done as the combina-
tion of multiple k-space lines acquired at different phases
of the respiratory cycle into one image is a cause of motion
artifacts. A single k-space line is acquired relatively fast and
therefore suffers little from motion artifacts itself. These
datapoints are stored separately by line number. A synthetic
image is formed by calculating the similarity weights of the
historical data on a per line basis. Each line of the synthetic
image is formed by multiplying its corresponding historical
lines by their similarity weight, summing them together and
then dividing them by the sum total of the weights. Another
way to look at this approach is as follows: the surrogate sig-
nals are used to detect the phase of the respiratory cycle and
historical data is collected for a number of phases. The sim-

ilarity weights are calculated and used to select historical
k-space lines that had a similar phase to the phase measured
by a set of newly acquired surrogate signals.

4.1.3 Optimizations & Enhancements

The original implementation of the RIG and RKG algo-
rithms included the following performance optimizations.
Only a subset of the US surrogate signals was stored in the
datapoints as displayed in figure 3. The Nx number of US
depths with the highest variance during the initialization
phase were stored. Next to this only the K closest similarity
matches were used for synthesizing an MR image. During
all experiments Nx was set to 200 and K to 6 as discussed
by Preiswerk et al. and they were not further optimized
[12].

4.2 Data Acquisition

Data acquisition shows the procedures which were followed
in order to create an MRI and ultrasound dataset with (lim-
ited) inter-subject variability (gender, age, length, weight)
and variation in breathing/RM. The dataset also includes
data from a respiratory bellow.



MRI & Ultrasound Sensor Fusion — 8/29

4.2.1 Surrogate Sensors

The following types of sensors were used: 3.5MHz A-mode
ultrasound and respiratory bellow. The ultrasound sensor
was mounted with adhesive to the skin at the upper right ab-
domen near the liver. The respiratory bellow was mounted
right bellow the ribs at the highest point during exhala-
tion when lying down. For more information see section
4.2.4.

4.2.2 Breathing Types

The following types of breathing/RM were included in the
database: regular, normal calm breathing; breath-holding,
intermittent 5 to 10 seconds holds at the end of exhala-
tion; shallow, short in- and exhalations; deep, large in- and
exhalations; and coughing, intermittently induced.

The main restriction for choosing breathing types was that
they need to be consistently artificially inducible by the
participant. Regular breathing was chosen as it is the most
common type of breathing. Breath-holding was chosen as it
is commonly induced in patients who are being scanned in
order to reduce RM during imaging. The breath hold was
executed at the end of exhalation as this would reduce RM
artifacts [20]. Shallow breathing was chosen as it introduces
rapid short motion to the dataset and approximates hyper-
ventilation. Deep breathing was chosen as it introduces a
slow but large motion to the dataset. Coughing was chosen
as it is a common affliction and causes artifacts in MRI
scans, sometimes requiring the restart of an MRI scan. It
also introduces rapid large motion to the dataset.

The choice was made to try and keep the breathing patterns
as naturally as possible, hence the participant were free in
choosing which orifice to use and if to breath through the
chest or abdomen (diaphragmatic). It would also have been
difficult to monitor and confirm that participants followed
those instructions.

4.2.3 Data Collection Procedure

Participants were placed lying inside the bore of the MRI
scanner with the surrogate sensors attached. For every exper-
iment, the participants age, length and weight were recorded.
After which different types of breathing were performed in
the MRI. An instructor standing next to the MRI gave the
following instructions to the participant:

• 2 minutes of regular breathing
• 2 minutes of intermittent breath holding
• 30 seconds of regular breathing for recovery
• 2 minutes of short and shallow breathing
• 30 seconds of regular breathing for recovery
• 2 minutes of deep and heavy breathing
• 30 seconds of regular breathing for recovery
• 30 seconds minute of intermittent coughing

Two minute segments were chosen since it would provide
at least 50 MR images and at least 10 cycles of the different
types of breathing. Intermittent coughing was shortened
since it became highly uncomfortable for some people dur-
ing try-out runs of the protocol. The recovery segments are

used to allow a person to relax and get back to a rested state
after performing an breathing exercise.

The breathing procedure is performed twice in a row; first
with scans made with cartesian scanning pattern, followed
by scans made with the radial scanning pattern.

4.2.4 Materials

Figure 4. Custom ultrasound transducer

The ultrasound transducer was used to pulse sound
waves into the body and receive the echo. Custom ultra-
sound transducers were fabricated for this project by Optel
(Optel Ultrasound Technology, Poland, Wrocław). The
transducers casings were made out of polyoxymethylene
(POM) with a diameter of 7mm and height of 2cm. A 2m
coaxial cable with a BNC connector is permanently attached
to the side of the probes. The transducers had a center fre-
quency of 3.5 and 7.5MHz. The 3.5MHz probe was used in
the experiments as it was found that it gave a better signal
during preparatory experiments.

The transducer support brace was designed to stick the
ultrasound transducer onto a persons skin. Figure 5 shows
the design of the brace which was 3D printed from ABS
filament. Its use is as follows: the transducer is friction
fitted in the center channel; the connector cable is routed
through the slit; and the brace its flat bottom is stuck onto
the skin with adhesive bandage taped over the outer disc.
Due to the friction fit the transducer can be set to slightly
protrude out from the bottom, this improved contact with
the skin.

Figure 5. Transducer support brace design

The ultrasound Pulser/Receiver (PR) is responsible for
exciting the piezoelectric crystal in the US transducer after
which it measures the return signal. Some PRs are also able
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to digitize and store the received waveforms while others
must use a separate digitizer for this application.

This research used the Optel Opbox V2.1 Mini Ultrasonic
Box with Integrated Pulser and Receiver (Optel Ultrasound
Technology, Poland, Wrocław) and was selected over other
equipment by use of a house of quality as seen in Appendix
A. The following requirements were set for the PR with
digitizer:

• Portable
• External triggering
• Minimal PRF of 25Hz
• Capable of saving the waveforms continuously at the

minimum PRF
• Compatible with the ultrasound transducer

The minimum PRF of 25Hz was set as this would allow
synthetic MRI to be generated that would be perceived as a
continuous video.

The following settings were used by the Optel Op-
box:

• Pulse voltage: 240V (level 10)
• Pulse width: 2.8µs
• Sampling frequency: 33.3MHz
• Analog filter: 2-6MHz
• Gain: 24 (pre-amplifier) + 15 (constant) dB
• Delay: 10µs
• (Measurement) Window: 80µs
• Trigger: timer (PRF)
• PRF: 50Hz

No external triggering was used due to limitations of the
MRI, see section 5.1.3.

The Philips 3T Intera MRI from the institute for clini-
cal radiology at the university hospital in Münster, which
has been upgraded to a Achieva 3.0T with ’Quasar Dual’-
Gradients, was used for data collection. The data collected
from the MRI included both the magnitude and phase im-
ages. The scanner used the following setting:

• 3T field strength
• Sagittal imaging plane (of the liver)
• Pulse sequence: balanced Fast Field Echo (FFE)
• Acquisition trajectories: cartesian & radial
• Temporal resolution: 0.79s (cartesian) | 0.81s (radial)
• Echo time (TE): 2.63ms (cartesian) | 2.67ms (radial)
• Repetition time (TR): 5.27ms (cartesian) | 5.33ms (radial)
• Matrix size: 160x160
• Spatial resolution of: 1.875mm by 1.875mm with a slice

thickness of 2mm

Software implementations of the synthetic MR image
reconstruction algorithms were developed in Matlabs. Pix-
elMed DicomeCleaner was used to anonymize the DICOM
image files from the MR scanner. Software provided with
the Optel Opbox was used for ultrasound data acquisi-
tion.

The workstation specifications are as followed: Sam-
sung Ativ Book 8 laptop, Intel i7-3635QM processor, AMD
Radeon HD8870M GPU, 10GB DDR3 RAM and 1TB Sam-
sung 850 EVO SSD.

4.2.5 Synchronisation of Surrogate Sensors

The synchronisation of the auxiliary sensors with the sam-
pling of the MR image is an important component of this
research to create a valid dataset. The US acquisition could
not be triggered by the MRI, see section 5.1.3. Hence
the synchronization accuracy is mostly dependant on the
simultaneous pressing a button of the US and MRI. The res-
piratory bellow was synchronized by the instructor pressing
hard on the bellow after the start signal was given.

4.2.6 Participants & Available data

Table 2 shows the dataset which has been created with the
breathing procedure. The data is stored per experiment
but has also been segmented into per breathing activity
files.

Each participant performed the breathing procedure twice
in one session. The participants which performed the proce-
dure in the MRI were first scanned with the pulse sequence
using a cartesian trajectory. During the second breathing
procedure they were scanned with a pulse sequence using
a radial trajectory. In total five participants, three males
and two females, performed the breathing procedure in the
MRI.

Table 2. Participants and available data
Available data

ID Age Gender BMI MRI US Respiratory Bellow

A 33 Male 27.4 Yes Yes No

B 26 Female 20 Yes Yes Yes

C 26 Male 22.1 Yes Yes Yes

D 33 Male 24.4 Yes Yes Yes

E 25 Female 21.1 Yes Yes Yes

F 26 Male 26.9 No Yes No

G 26 Male 23.3 No Yes No

H 24 Male 21.7 No Yes No

I 27 Male 27.2 No Yes No

J 27 Male 19.7 No Yes No

4.3 Performance Metrics

Several performance metrics were used in order to measure
the performance of the algorithms to generate synthetic
MRI. This section lists these performance metrics that were
used in this research.

Their usage is discussed in relation to other works on
synthetic MRI formation and the end applications: target
tracking and segmentation for automated robot (assisted)
surgery.
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Normalized Mean Squared Error (NMSE)

Normalized Mean Squared Error (NMSE) is a pixel-wise
comparison metric and can be used to measure the closeness
of an estimate to a golden standard. NMSE is widely used,
however it tends to favour smoothness over sharpness and
therefore should not be used on its own [21]. Especially
since target tracking and segmentation benefit from sharp
details in the images. Lower NMSE values indicate better
performance.

The reconstructed image v̂ and reference image v are used to
calculate the NMSE score as shown in equation 3. The sub-
traction is performed entry-wise and the k·k2

2 is the squared
Euclidean norm.

NMSE(v̂,v) =
kv̂− vk2

2

kvk2
2

(3)

Structural Similarity (SSIM)

Structural SIMilarity (SSIM) index is a block-level com-
parison metric where an area of pixels in two images is
compared based on the local mean, standard deviation and
cross-covariance of those pixels. In this research the Mean
SSIM (M-SSIM) of all ”blocks” was used. Target tracking
and image segmentation benefit from this metric as this
metric detects if areas in the image have the same structure.
For example, in contrast to NMSE this metric will detect
blurring [22]. A higher SSIM index indicates better perfor-
mance. SSIM is computed by combining the luminance (l),
contrast (c) and structural (s) terms.

SSIM(v̂,v) = [l(v̂,v)]α · [c(v̂,v)]β · [s(v̂,v)]γ (4a)

where

l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
(4b)

c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C2
(4c)

s(x,y) =
σxy +C3

σxσy +C3
(4d)

µx,µy,σx,σy and σxy are the local means, standard devi-
ations and cross covariance of the input images. In this
research an isotropic Gaussian with a standard deviation
of 1.5 is used to weight the neighbourhood pixels around
a pixel from which to calculate these local statistics. The
constants C1,C2 and C3 are used to prevent instability when
the the local metrics approach zero. In this research they
were calculated using the dynamic range L, being 1 for
the gray-scale images with the range of 0 to 1, as follows:
C1 = 0.01L, C2 = 0.03L and C3 =C2/2.

Perception-based Image Quality Evaluator
(PIQE)

Perception-based Image Quality Evaluator (PIQE) is a no-
reference image quality metric proposed in [23]. This al-
gorithm determines the quality of an image based on the

(a) Original (b) Blurred (c) Noised
Figure 6. Coronal liver-area MR image from the Preiswerk
dataset [12] with different types of artifacts

human perception of distortions without prior knowledge of
the images, hence no training dataset is required to train the
algorithm. This enables evaluation of the image quality of
synthetic MR images generated between samples. Other per-
formance metrics cannot be used because these images do
not have a ground-truth/reference image which is required
for most metrics. Quality is estimated from block level met-
rics, but only for blocks that are found to be perceptually
significant. A quality score (Qscore) is given to an image
from 0 to 100 indicating good to bad quality respectively.
Hence, lower Qscores are better. These scores correlate
well to human subjective scores from several (non-MRI)
image databases [23]. Table 3 shows the Qscore ranges and
perceived quality.

Table 3. PIQE Qscore values and quality indication [24]
Quality Scale Qscore range
Excellent [0, 20]
Good [21, 35]
Fair [36, 50]
Poor [51, 80]
Bad [81, 100]

The metric has been used for MRI image quality evaluation
[25] but was not tested on a dataset containing MR images
with human subjective scores. It’s also not made to detect
MRI specific artifacts. 4 shows that the PIQE Qscores does
indicate image quality lowering for blurred and noisy MR
images as shown in Figure 6.

Table 4. PIQE Qscore average and standard deviation for
sagittal liver-area MR images with added noise or blur
from the open Preiswerk dataset [12]

Gaussian
blur σ

0 0.5 1.0 1.5

Qscore µ 24.7 30.9 65.5 86.7
Qscore σ 1.74 2.57 3.79 5.54

Gaussian
white noise σ2 0 0.0005 0.0010 0.0015

Qscore µ 24.7 38.6 52.2 58.1
Qscore σ 1.74 1.16 0.67 0.58
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Smoothness - Spectral Arc Length (SAL)

The Spectral Arc Length (SAL) is a dimensionless measure
for smoothness (of motion) first introduced by Balasubra-
manian et al. [26]. It measures smoothness by calculating
the arc length of the Fourier magnitude spectrum of a speed
profile. The speed profile contains the speed of an object
over time. The metric operates on the following principal:
more complex and less smooth motion will display a more
complex magnitude spectrum with a longer arc length as
seen in figure 7. The result is a negative number with num-
bers closer to zero indicating more smoothness. The SAL
value for a motion with speed profile v(t), t ∈ [0,T ] and
duration T can be calculated as followed:

SAL ,−
Z

ωc

0

s
1

ωc

2

+
dV̂ (ω)

dω

2

dω (5a)

where

V̂ (ω),
V (ω)

V (0)
(5b)

Figure 7. Operational principle of Spectral Arc Length
(SAL). Left column: the speed profile of a more smooth
(top) and less smooth (bottom) motion. Right column: the
Fourier magnitude spectrum showing the spectral arc, the
thick grey line, being shorter for the smoother (top) than
the less smooth (bottom) motion. [26]

4.4 Pre- & Post-Processing

Several pre- and post-processing methods were applied to
the MR images. This section describes the types which
were applied.

4.4.1 DICOM Pre-Processing

The MR images are stored in the DICOM format which
contains several parameters to pre-process the MR image.
First the raw pixel values need to be rescaled according to
the rescale slope and intercept parameters, see equation 6.
After which the image is thresholded using the windows
center (c) and window width (w) to convert it to display
values, see equation 7. The display values minimum (xmin)
and maximum (xmin) may be chosen arbitrarily.

xscaled = (slope · xraw)+ intercept (6)

xdisplay =


xmin if xscaled <= c−0.5− (w−1)

2

xmax else if xscaled > c−0.5+ (w−1)
2

xnew else

(7a)

where

xnew =(
xscaled − (c−0.5)

(w−1)
+0.5) ·(xmax−xmin)+xmin (7b)

4.4.2 Global Contrast Stretching (GCS)

Global Contrast Stretching (GCS) was used as a post-
processing technique which improves the observed contrast.
Gamma encoding is applied to an image (I) with γ = 0.75 in
order to improve visual detail. Then, the image 0.2% satura-
tion limits are computed and the image is saturated. Finally,
the image is rescaled to the minimum (0.0) and maximum
(1.0). This process can be seen in algorithm 1.

Algorithm 1: Global Contrast Stretching
Data: MR Image (I), saturation percentage (s), number of

histogram bins (nBins)
Result: Global Contrast Stretched Image
/* Gamma encoding */

1 I = I.0.75 // element-wise square

2 I = rescale(I, [0,1]) // rescale to gray-scale [0,1]

/* Find saturation limits */

3 hist = histogram(I,nBins) // histogram

4 cd f = cumsum(hist)/sum(hist) // cdf

5 limitlow = ( f ind(cd f > s)−1)/(nBins−1)
6 limithigh = ( f ind(cd f > 1− s)−1)/(nBins−1)
/* saturate image */

7 I = saturate(I, [limitlow, limithigh]) // saturate &

rescale

8 return I

4.4.3 De-hazing

(a) Original (b) Pre-Processed (c) De-hazed
Figure 8. Coronal MR image of the liver

Without pre-processing the (magnitude) images appear to
be dark and have low-dynamic range. Other research [27]
found that de-hazing techniques can be applied to low-
light/dark images to improve visibility and quality. De-
hazing is normally used to improve images which are hazy
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due to fog or particles in the air. This research uses the de-
hazing technique as described in [28] which uses quad-tree
decomposition to estimate the atmospheric light. Figure 8c
shows this processing step applied on an MR image.

4.5 Enhancements

Next to pre- and post-processing other techniques were ex-
perimented with in order to improve synthetic MR image re-
construction performance. This section lists these proposed
enhancements. The main issue with RIG and especially
RKG is that the computation time for a synthetic MR image
grows exponentially as more data is fed in.

4.5.1 Conjugate Symmetric K-space

This enhancement is only applicable to the RKG approach
to synthetic MR image generation and attempts to exploit
the conjugate symmetry of the k-space. Which would the-
oretically allow the whole k-space to be reconstructed by
calculating the conjugate of half the k-space. Using half
the k-space would allow a reduction in computation time
or doubling the amount of samples per k-space line trajec-
tory.

4.5.2 Locally-Sensitive Hashing (LSH)

Hashing is used to map data from an arbitrary size to a
vector of fixed size which is usually much smaller. Locally-
Sensitive Hashing (LSH) hashes similar data vectors to
similar signature vectors. A similarity function can be used
in order to calculate the similarity between two signatures.
In this research random projection LSH was implemented
as seen in algorithm 2.

LSH can be used as an enhancement for RIG and RKG in
order to reduce computation time by reducing the number
of similarity weights that need to be calculated. This is
done by calculating signatures for all historical datapoints.
Then, LSH is used to obtain the Klsh most similar datapoints,
which are calculated relatively fast, when a synthetic image
needs to be generated. After which the normal similarity
weights for RIG and RKG are calculated, which is relatively
slow, to generate the synthetic image.

4.6 Experiments

Several performance metrics were used in order to mea-
sure the performance of the algorithms to generate synthetic
MRI. This section will discuss how these performance met-
rics were interpreted. The terms RM, breathing and activity
are used interchangeably.

4.6.1 Performance Per Activity

The performance per activity is evaluated for both the retro-
spective image and k-space gating approaches.This analysis
uses the cartesian MR images and US data of one breathing-
type and feeds them to the algorithms generating synthetic
MRI. The algorithms learns from this data and generate a
synthetic output image. The algorithms are implemented

Algorithm 2: Random Projection Locally-Sensitive Hash-
ing
Data: UltrasoundWindow1, UltrasoundWindow2,

hashSize=24, dataSize=10000
Result: SimHash

1 randPro j = getRandomPro jection(hashSize,dataSize)
2 sig1 = getSignature(randPro j,UltrasoundWindow1)
3 sig2 = getSignature(randPro j,UltrasoundWindow2)
4 simhash = getSimHash(sig1,sig2)
5 return simHash

6 Function getRandProjection(sizeOut, sizeIn):
/* Generate matrix of uniform random numbers

ranging from [-1,1] of size [sizeOut,

sizeIn] */

7 return −1+2 ·uni f ormRandom(sizeOut,sizeIn)
8 end

9 Function getSignature(randProj, inputVector):
/* Generate signature of size [sizeOut] bits

from input vector of size [sizeIn] */

10 return (randPro j · inputVector)>= 0
11 end

12 Function getSimHash(N, signature1, signature2):
13 xorVector = xor(signature1,signature2)
14 nnzValue = numberO f NonZerosValues(xorVector)
15 return (N −nnzValue)/N
16 end

online and hence have no prior knowledge of the image
they are trying to approximate. The performance metrics,
except smoothness, are calculated when a reference MR im-
age is available. This is repeated for every breathing-type.
Breathing-type is occasionally referred to as activity in the
statistical analysis.

An repeated measures ANalysis Of VAriance (ANOVA)
using a General Linear Model (GLM) was performed in
order to conclude there is a statistically significant differ-
ence in performance between different activities. The GLM
contained the following terms: breathing-type, participant
identity (id) and the interaction of these terms (breathing-
type*id). Then Tukey’s method is used to generate confi-
dence intervals for the differences in mean performance per
breathing-type. With this information it can be concluded
if the performance between two activities is significantly
different.

The first 15 seconds of the output is not considered in the
statistical analysis. This is done to allow the algorithm
to initialize and start learning. The last 15 seconds are
not considered, except for the coughing breathing-type, to
insure that there is no contamination from another activity
in the data.

4.6.2 Image Versus K-space Gating

Retrospective Image Gating (RIG) is compared to Retro-
spective K-space Gating (RKG). This comparison also looks
at the difference in performance per activity. The cartesian
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MRI subset is used as input for the algorithms.

Interval plots with a confidence interval of 95% of the per-
formance metrics are created to show the difference in per-
formance per algorithm and per activity. Smoothness is
evaluated separately from the other metrics in order to visu-
alize and observe temporal changes better. The SAL metric
is calculated with a sliding window of 10 seconds wide in
order to generate a speed profile that changes over time.
The first window is from 5 to 15 seconds after the start of
the MRI sequence. Optical flow vectors are calculated by
applying Lukas-Kanade optical flow tracking to the area
of liver motion in order to calculate the speed profile [29].
The motion in the Z direction (Head-to-Toe) of the liver
images is used for the speed profile. Smooth liver motion
is expected for the regular breathing type due to the calm
nature of this breathing type.

5. Results & Discussion

5.1 Data Acquisition

Table 2 shows the dataset which has been created with the
breathing procedure. The respiratory bellow data was not
available for participant A and all the participants who did
not perform the experiment in the MRI. Participant E misses
the last 6.5 second of coughing in the US data. Participant
C was breath-holding at the end-of-inhalation instead of at
the end-of-exhalation during the acquisition of the cartesian
MR images.

Several experiments which were conducted in order to try
and find appropriate methods and materials failed to live
up to expectations or requirements. These failures in some
cases delayed the research. This section will discuss the
gained experience as well as the cause and solution to fail-
ures.

5.1.1 Using a digital oscilloscope as a digitizer

Initially two attempts were made to use an oscilloscope as a
digitizer for the ultrasound signal in the setup as shown in
Figure 9 with an Olympus 5077PR for the pulser/receiver.
The first attempt used the Link Instruments DSO-8500 con-
nected to a PC as digitizer. This setup failed due to os-
cilloscope dead time: ”The time between each repetitive
acquisition of the scope when it is processing the previously
acquired waveform” [30]. Dead time caused the oscillo-
scope to miss triggers when the pulse repetition frequency
(PRF) of the ultrasound transducer was set any higher than
1 Hz due to the time that was required to show and store
the ultrasound waveform; this frequency is well below the
required PRF. This problem was initially solved by using
the Rohde & Schwarz RTB2000 oscilloscope. This oscillo-
scope allowed the collection of two minutes of ultrasound
data at 100Hz or 20 minutes at 10Hz by using the segmented
memory function to increase the amount of samples that
can be buffered and the fast segmentation function to reduce
dead time. However, permanently storing the data to USB
takes 5 to 6 hours if the full history buffer is filled and no
other outputs were available with the segmented memory

function. This reduced the practical usage of this setup
when using an MRI; which is considered a limited resource.
This initiated the decision to look for another solution which
resulted in the purchase of the Optel Opbox and transducers
used in this research.

Figure 9. Oscilloscope setup

5.1.2 Ultrasound transducer

Initially, work was to be done with an MR-SAFE Ima-
sonic cdc12239-5 7.5MHz ultrasound transducer. However,
this transducer did not arrive and instead transducer with
metal encasing arrived which is unsuitable as an surrogate
during MRI acquisition. This issue also initiated the de-
cision to look for another solution which resulted in the
purchase of the Optel Opbox and transducers used in this
research.

5.1.3 MRI

It was intended to trigger the US pulser/receiver by a trigger
pulse from the MRI. This trigger pulse was present, however
only once per image instead of once per k-space line or other
higher frequency process. This forced us to set a constant
PRF on the Optel Opbox.

The first day of experiments would require setting up the
MRI, this included finding the right parameters and pulse se-
quence which would meet the requirements. This required
a large portion of the day, more time than expected, and re-
sulted in a second day of experiments with the MRI.

5.1.4 Breathing procedure

Time restraints with the use of the MRI forced the initial
breathing procedure to be shortened. This resulted in shorter
segments for each breathing type and the removal of the re-
covery segment between regular breathing and breath hold-
ing. The latter is not an issue since during try-outs it was
found that people did not require rest after regular breathing
and the fact that some regular breathing was already going
to be present in the breath-hold segment. However, this did
make several ultrasound-only experiments unpractical to
use and hence were discarded after which new ones were
made. Another time constraint was found with the cough-
ing breathing type; participants were regularly not able to
comfortably induce coughing for more than 30 seconds and
hence this section was also shortened.

Breathing instructions needed to be given clearly and repet-
itively, complex instructions were found to result in unreli-
able execution. A surprising observation was made regard-
ing the instruction to start the recovery segment. In try-out
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Figure 10. Interaction plots of performance metrics generated by the RIG and RKG algorithms

experiment the participants reacted more instinctively when
instructed to ”relax” than when the instruction ”recover”,
”normal breathing” or ”regular breathing” was given and
hence it is advisory to use this form.

Another complication arose when it was found that it would
not be possible to give instructions to someone during the
experiment due to the loudness of the MRI. Hence the in-
structions were printed on paper and

Originally it was intended to give the breathing instructions
over a headphone to the participant during the experiment.
However, no such headphone was available and the loudness
of the MRI would also make it hard for the participant to
understand speech. Hence instructions were printed on pa-
per and shown to the participant during the experiment. The
instructor would squeeze the participants leg at the start of a
breathing segment in order to notify the participant.

5.2 Pre- & Post-Processing

This section will compare the RIG and RKG algorithms
with and without DICOM pre-processing (Pre-P) using the
window width and center parameters in the DICOM file,
examples are shown in figure 8a and 8b. Figure 10 shows
an interaction plot between algorithms, breathing type (ac-
tivity) and pre/post-processing.

The RIG algorithm performs worse on the NMSE and PIQE
metrics when pre-processing is enabled. However, the

SSIM metric improves. A side effect of disabling the pre-
processing step is that the generated video has a varying
overall brightness making the video seem to flicker. Human
perception of the generated synthetic MRI video is better
with the pre-processing enabled. Supposedly, the original
algorithm was also developed with DICOM pre-processing.
The effect is caused by the fact that the input images have
different brightnesses and contrasts without pre-processing,
since the algorithm learns from these images it also gen-
erates images with varying brightness. An issue with the
DICOM pre-processing is that this step can only be ap-
plied to the input MR images and cannot be applied to the
generated synthetic images.

Figure 10 also shows the performance metrics for the GCS
(contrast) and de-hazing [27] post-processing techniques.
Only GCS improves the NMSE score for most breathing
types compared to standard RIG and RKG. The SSIM score
is improved by all pre- or post-processing. The objective im-
age quality measured by PIQE of the original MR images is
improved by all post-processing techniques. Pre-processing
reduces PIQE(algorithm output) performance. The same
results are observed for the PIQE score of the synthetic
images (PIQE algorithm).
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5.3 Enhancements

5.3.1 Conjugate Symmetric K-space

The enhancement exploiting the conjugate symmetric prop-
erty of the k-space failed to produce any sensible images
due to the following issues. The k-space center was shifted
in most of the MR images, likely due to inhomogeneity in
the magnetic field of the MR scanner. An attempt was made
to fix this issue by cropping the k-space and shifting it back
to the center, resulting in reduced spatial resolution as some
higher frequencies got thrown away. However, this still
did not allow the exploitation of the conjugate symmetric
property as the k-space was still not conjugate symmetric
possibly due to the center frequency lying between pixels
in the k-space.

5.3.2 Locally-Sensitive Hashing

The performance compared to the other implementations of
the RIG and RKG algorithms can be seen in figure 10. No
large differences in performance between LSH enhanced
implementations and the other post-processed implementa-
tions are observed. Table 5 shows the computation times
for the RIG and RKG algorithms with or without the LSH
enhancement on 2 minutes of MR images and ultrasound
data. The signature size was empirically set to 24 bits and
Klsh was set to 40.

Table 5. Average total execution time (s) of RIG and RKG
with and without LSH on 120 seconds of data

Standard with LSH Improvement
RIG 111 89 20%
RKG 9562 4740 50%

The RIG and RKG implementation both generated synthetic
MR images at 50Hz for 120 seconds of data. The RIG
implementation is able to generate these images in less
than 120 seconds with and without LSH, however the RKG
algorithms requires much more processing time. The LSH
enhancement reduces the computation time by 50% for
RKG however this is still above the 120 seconds of time it
took for the original data to be recorded.

Table 5 shows the total execution time for both algorithms,
however it does not measure the delay between the time a
datapoint, MR image and US, is coming in and the time a
synthetic image is generated. This delay is also growing
as more data is fed into the algorithms. It was observed
that the LSH enhancement pre-selecting Klsh similar histor-
ical datapoints caps the growth in the execution time per
synthetic image depending on the chosen Klsh value.

5.4 Performance Per Activity

5.4.1 Retrospective Image Gating

Appendix B shows several plots and statistical analyzes on
the performance metrics per activity which are discussed
below. The output of the algorithm is post-processed with
the de-hazing algorithm. Table 6 shows the averages of the
performance metrics per breathing type.

Table 6. Average RIG[dehaze] performance
NMSE SSIM PIQE(O) PIQE(RIG) PIQE(RIG-O)

regular 0.25 0.83 37.39 35.54 -1.85
breath hold 0.33 0.77 37.31 35.97 -1.35
shallow 0.30 0.81 36.33 34.81 -1.53
deep 0.49 0.63 38.98 36.12 -2.86
cough 0.53 0.58 40.40 38.64 -1.76
Average 0.38 0.72 38.08 36.21 -1.87

Appendix B.1 shows the histograms of the calculated per-
formance metrics per activity for the RIG algorithm. The
histograms include a normal distribution fitted to the data
for which the parameters are displayed. Appendix B.2
shows the results from the repeated measures ANOVA. The
residuals for SSIM are normally distributed, but the NMSE
and PIQE residuals are skewed. However, ANOVA still
works well if the residuals are not highly skewed [31]. Ap-
pendix B.3 shows if the averages of a performance metric
for two breathing types is statistically different with a 95%
confidence interval.

The NMSE histogram indicates that regular breathing shows
the best performance followed by shallow breathing and
breath-holding. Deep breathing and coughing perform sig-
nificantly worse. Appendix B.3 shows that we cannot proof
that breath-holding and shallow breathing have significantly
different means. All other combinations of breathing have
significantly different performance.

SSIM indicates that regular breathing again shows the best
performance. Followed by shallow and breath-holding.
Again, deep breathing and coughing perform significantly
worse. Appendix B.3 shows that all combinations of breath-
ing type have significantly different performance.

Using appendix B.1 we can compare the difference between
the PIQE Qscores of the original reference image to those
generated by RIG. The images generated by RIG have better
Qscores for all activities than the original images. Appendix
B.4 confirms that the mean Qscores are different with a 95%
confidence interval.

5.4.2 Retrospective K-Space Gating

Appendix C shows several plots and statistical analyzes on
the performance metrics per activity which are discussed
below. The output of the algorithm is post-processed with
the de-hazing algorithm. Table 7 shows the averages of the
performance metrics per breathing type.

Table 7. Average RKG[dehaze] performance
NMSE SSIM PIQE(O) PIQE(RKG) PIQE(RKG-O)

regular 0.31 0.75 37.39 25.92 -11.46
breath hold 0.37 0.70 37.31 27.56 -9.75
shallow 0.40 0.67 36.33 21.21 -15.13
deep 0.59 0.46 38.98 25.43 -13.55
cough 0.60 0.45 40.40 22.39 -18.01
Average 0.45 0.61 38.08 24.50 -13.58

Appendix C.1 shows the histograms of the calculates per-
formance metrics per activity for the RKG algorithm. The
histograms include a normal distribution fitted to the data for
which the parameters are displayed. Appendix C.2 shows
the results from the repeated measures ANOVA. All resid-
uals are seem normally distributed. Appendix C.3 shows
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if the averages of a performance metric for a combination
of two breathing types is statistically different with a 95%
confidence interval.

The NMSE histogram indicates that regular breathing shows
the best performance followed by breath-holding and shal-
low breathing. Coughing and deep breathing seem to per-
form significantly worse. Appendix C.3 shows that there
is statistical evidence to state that all NMSE performances
are significantly different except the difference in means of
coughing and deep breathing.

The SSIM histogram indicates that regular breathing shows
the best performance followed by breath-holding and shal-
low respectively. Deep breathing and coughing follow,
seemingly significantly worse. Appendix C.3 supports
these statements, however a significant difference in per-
formance between deep breathing and coughing is not ob-
served.

While looking at the PIQE Qscores in appendix C.4 it can
be concluded that the RKG algorithm performs significantly
better than the original MR images.

5.5 RIG Versus RKG

Figure 11 shows the output of the RIG and RKG algorithms
after training on two minutes of regular breathing. Visually
it is difficult to see differences between the RIG and RKG
output, but both of them smooth out the noise in the darker
areas when compared to the original MR image.

(a) Original (b) RIG (c) RKG
Figure 11. Original and synthetic MR images after two
minutes of training on regular breathing of participant D

Figure 10 shows that RIG performs significantly better, with
a 95% confidence interval, on the NMSE and SSIM metrics
for all activities. The RKG algorithm performs better on
the PIQE metric. Appendix D.1 interval plots confirm these
observations. Table 8 also shows the differences in average
performances per metric between RIG and RKG.

Table 8. Difference in performance metrics (RKG - RIG).
Red indicates better performance for RIG and green
indicates better performance of RKG.

NMSE SSIM PIQE(algorithm)
regular 0.06 -0.09 -9.61
breath hold 0.04 -0.07 -8.40
shallow 0.10 -0.13 -13.60
deep 0.10 -0.16 -10.69
cough 0.08 -0.13 -16.25
average 0.08 -0.12 -11.71

Figure 12 shows the smoothness metric SAL over time. The
RKG algorithm is overall showing smoother liver motion
than RIG and is getting better smoothness scores faster. The
RIG algorithm could be converging towards a similar value.
Execution time is significantly higher for RKG than for RIG
as shown in table 5.

Figure 12. Spectral Arc Length (SAL) over time for
regular breathing. The mean µ and standard deviation σ

are calculated for participants A to E. A higher SAL value
indicates smoother motion.

6. Limitations

MRI as Gold Standard

The original MR images are used as a gold standard in this
research. However, MR images are subject to several types
of artifacts and therefore is not a perfect reference. In this
research the MR imaging was performed with participants
who were free-breathing, hence causing RM. The pulse
sequence which was used, balanced SSFP, is especially
susceptible to SSFP banding which are also known as ”B0
Banding Artifacts”. These are observed in the dataset as
bands, mostly emanating from the outside corners of the
image.

Figure 13. MR image (left) generated by the MR scanner
and its counterpart synthetic image generated with the RIG
algorithm (right). The liver in the left image appears much
darker than it should be when compared to other images in
the sequence.

Figure 13 shows a situations were the original MR image
does not seem to be a good reference. The reference MR im-
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age is too dark when compared to the rest of the of the MR
images in the sequence. Hence, in this case the synthetic
image is possibly of better quality then the original refer-
ence. This is also an argument for using the non-reference
error metric PIQE.

PIQE Metric for MRI

The PIQE metric tries to quantify the perceived quality by
a person looking at an image. However, this metric does
not take into account the same considerations that medical
personal have when evaluating an MR image. Also, MRI
artifacts are not considered by this metric.

Breathing Procedure - Coughing

Less data for the coughing breathing type is available than
for the other breathing types as participants were regularly
not able to comfortably induce coughing for more than 30
seconds. As the synthetic MR image reconstruction algo-
rithms have less data to learn from performance is inherently
reduced.

MRI & Ultrasound Synchronization

It was not possible to trigger US acquisition with the trigger
from the MR scanner due to the limitations of the scanner.
The scanner was only capable of sending a trigger pulse
once per image instead of once per k-space line, however
this would have resulted in a low acquisition rate for the
US. Hence, a constant PRF of 50 Hz was set, however
therefore the initial start trigger for both the US and MRI
was performed with the push of two buttons by a person. It
was assumed that the difference between the start time of
MRI and US was within a second, however the only way to
check this assumption was by human observation of the data
afterwards. This inaccuracy was reduced by performing all
breathing types in one procedure instead of one by one,
hence requiring only one start trigger for all breathing types
procedure.

7. Conclusions

This research focused on evaluating online synthetic MR im-
age reconstruction techniques for different types of breath-
ing. A data acquisition procedure was developed and exe-
cuted in order to asses MRI and US sensor fusion with the
possibility of evaluating future work focused on respiratory
motion classification and prediction by the labelling of the
data. Five participants performed the procedure inside the
MRI and another five performed the procedure without the
MRI. Performance metrics were chosen based on literature
and practical observation of the issues displayed in the gen-
erated synthetic MR images. The metrics NMSE, SSIM
and PIQE were chosen to represent pixel-wise similarity,
block-level similarity and objective image quality respec-
tively. SAL was added in order to visualize how the online
RIG and RKG algorithms produced smoother motion of the
liver over time as they learned from incoming data.

Both algorithms, RIG and RKG, perform best with regular
breathing followed by breath-holding and shallow. Deep
breathing and coughing perform significantly worse, which
is likely due to the fact that they contain more states of
motion requiring more training data. However, there is also
significantly less coughing data available for the algorithm
to train on. Another factor is that the speed of motion for
deep breathing and coughing is higher and therefore also
generates more artifacts in the input MR images.

Pre- and post-processing increased the performance on the
SSIM and PIQE metrics while reducing it for the NMSE
metric. This indicates that observed quality and block-level
similarity is better however the pixel by pixel differences
between the original MR image and the synthetic one are
larger. A major side effect from the pre- and post-processing
is that the overall brightness in the generated synthetic video
became more stable, where without pre- or post-processing
the overall brightness would seem to flicker.

The LSH enhancement improved computation time by 20%
for RIG and 50% for RKG and hence presents a significant
improvement to especially the RKG algorithm regarding
real-time operation. An important contribution of the LSH
enhancement is that it caps the growth in execution time per
synthetic image as more data is being fed in.

The proposed RIG approach performed better compared
to the RKG approach according to the NMSE and SSIM
metrics. However, the RKG approach performed better on
the PIQE metric indicating that perceived image quality is
higher. This approach also generated a smoother synthetic
video according to the SAL metric. This indicates that
the algorithm learns faster and displays a more accurate
representation of the real motion which is important for
target tracking.

Future work

Future work will need to focus on applying the currently
presented techniques for synthetic MR image creation with
surgical equipment, target segmentation and tracking. A b-
mode ultrasound sensor could be used to scan the area where
a surgical needle or probe is inserted. Then the needle could
be shown at its current location on the generated synthetic
image by using a feature detection algorithm like SIFT to
match the generated MR and ultrasound image.

Computation time has been a significant issue during this
research, with the computation time becoming longer per
synthetic image as the history databases grows. Generating
synthetic images for the whole breathing procedure with the
original RKG implementation has an unknown computation
time as computation was not halfway completed after 12
hours, with computation time per synthetic image still in-
creasing. Another issue with the RIG and RKG approaches
is that they do not reject MR images which contain artifacts
or are otherwise of poor quality. These images contam-
inate the history database presumably resulting in lower
performance.

Different MRI scanning trajectories could be evaluated
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with the RKG approach. MR images measured with a ra-
dial scanning trajectory were acquired in this research, but
were not evaluated. An improved performance expected
as radial scanning measures the k-space center frequencies,
which contain the most information, with every measure-
ment which could be used to compensate for respiratory
motion. However, without any processing this trajectory
suffers from more respiratory motion artifacts as the center
of k-space is sampled over multiple parts of the respiratory
cycle.
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B RIG with De-hazing Results

B.1 Histograms of performance metrics per activity on MR images with cartesian scanning trajectory
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B.2 Residual plots of performance metrics per activity on MR images with cartesian scanning trajectory
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B.3 Difference of means of performance metrics per activity on MR images with cartesian scanning trajectory
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B.4 Interval plot of Qscores on MR images generated with the cartesian scanning trajectory
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C RKG with De-hazing Results

C.1 Histograms of performance metrics per activity on MR images with cartesian scanning trajectory
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C.2 Residual plots of performance metrics per activity on MR images with cartesian scanning trajectory
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Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for NMSE

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Qscore(original)

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for SSIM

Normal Probability Plot Versus Fits

Histogram Versus Order

Residual Plots for Qscore(Algorithm)
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C.3 Difference of means of performance metrics per activity on MR images with cartesian scanning trajectory
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If an interval does not contain zero, the corresponding means are significantly different.

Tukey Simultaneous 95% CIs
Differences of Means for NMSE

If an interval does not contain zero, the corresponding means are significantly different.

Tukey Simultaneous 95% CIs
Differences of Means for Qscore(original)

If an interval does not contain zero, the corresponding means are significantly different.

Tukey Simultaneous 95% CIs
Differences of Means for SSIM

If an interval does not contain zero, the corresponding means are significantly different.

Tukey Simultaneous 95% CIs
Differences of Means for Qscore(Algorithm)
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C.4 Interval plot of Qscores on MR images generated with the cartesian scanning trajectory

Activity

Qsco
re(

Algorit
hm

)

Qsco
re(

orig
inal)

co
ughing

dee
p

sh
all

ow

brea
th

-h
olding

reg
ular

co
ughing

dee
p

sh
all

ow

brea
th

-h
olding

reg
ular

45

40

35

30

25

20

D
at

a
Interval Plot of Qscore(original), Qscore(Algorithm)

95% CI for the Mean

Individual standard deviations were used to calculate the intervals.
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D RIG Versus RKG

D.1 Interval plot of the performance metrics per activity on MR images with cartesian scanning trajectory
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Interval Plot of NMSE

Individual standard deviations were used to calculate the intervals.

95% CI for the Mean (NMSE: lower is better)
Interval Plot of Qscore(original)

Individual standard deviations were used to calculate the intervals.

95% CI for the Mean (PIQE Qscore: lower is better)

Interval Plot of SSIM

Individual standard deviations were used to calculate the intervals.

95% CI for the Mean (SSIM: higher is better)
Interval Plot of Qscore(Algorithm)

Individual standard deviations were used to calculate the intervals.

95% CI for the Mean (PIQE Qscore: lower is better)
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