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Management Summary

ORTEC is a supplier of optimization software. The ability to find efficient routes is in the core
of their DNA. With their services they support esteemed customers to save costs and improve the
delivery process. With larger and more complex business cases arriving, ORTEC always challenges
themselves to find new and better ways to determine efficient routes. Previous research done by
Simons (2017) shows that Adaptive Large Neighbourhood Search is a good improvement heuristic
for complex and large cases. We are asked to investigate how the heuristic should be applied to a
specific customer case. As a result of this, the research question that we answer is:

How can ALNS best be applied to a large Multi-Depot Vehicle Routing Problem with
Heterogeneous Fleet and dynamic sourcing?

The research started with performing a literature review. This literature provides understanding
of the different variants of the VRP that are known to literature. This allows us to better understand
the characteristics of the VRP of our client. The literature review also teaches us different strategies
in which ALNS can be applied.

With the new information of the literature, we analysed the current situation. We identified how
ALNS is currently applied at ORTEC and how our test cases look like. We identified three char-
acteristics to the test cases that combined have not been tested in literature. These characteristics
are:

• Heterogeneous fleet.

• Dynamic Assignment of orders to depot.

• Very large case sizes.

We found convincing evidence that ALNS finds good results for VRPs with heterogeneous fleet,
for multi-depot VRPs and for large VRPs. ALNS has proven in literature that it can successfully
deal with heterogeneous VRPs. We propose to test 5 different solution strategies to deal with the
dynamic assignment of orders to depots. Each of the solution strategies uses a different depot
assignment strategy. Basic ALNS and extended basic ALNS allow dynamic assignment of orders to
depots. ALNS with fixed depot assignment and ALNS-FDATTP use strategies to fix the assignment
of an order to a depot. The hybrid ALNS strategy uses the approach of Salhi et al. (2014)

The solution strategies have been implemented in the optimization software of ORTEC. We
tuned the settings of each ALNS strategy individually before evaluating their performance. By
testing the best performing configuration of each ALNS strategy, we develop a fair comparison.
Based on the outcomes of our tests, we conclude that a combination of the Basic ALNS strategy,
together with the ALNS with fixed depot assignment performs best. This results in an average
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decrease in total costs of 0.22%. This corresponds with yearly savings estimated at in
plan costs.

Moreover, we provide an in depth analysis of the different ALNS methods and their performance
on our case. We see that some methods which are included in the ALNS framework are not effective
in improving the solution. We have analysed the influence of a different initial solution. We have
shown that the final solution is better if the quality of the initial solution is also better. Lastly, we
have shown that the computation time restriction for the retail client is for some cases too strict.
We have shown that if the computation time is not restricted, for almost all cases an improvement
is found.
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Chapter 1

Introduction

Nowadays road trucks are still a crucial transportation mode to move finished goods from production
facilities to customers. Keese (2018) identifies that inefficiency is one of the largest challenges that
the transport sector is facing. ORTEC is one of the companies that provides optimization solutions
for the aforementioned problem. ORTEC, which was started by 5 econometric students in 1981, is
now one of the largest supplier in optimization software and analytic solutions. Their competitive
advantage lies in the combination of Operations Research, IT and enhanced understanding of the
business processes. The company can be divided into two large business units: ”consulting” and
”products”. The products division is responsible for implementation and development of ORTEC’s
main software solutions. For this research we focus only on the Fleet Routing and Dispatch solution.
This software solution allows customers of ORTEC to plan transport routes, a trip executed by a
driver, a truck and a trailer. A transport route always has a start location and an end location
and it contains one or multiple customer orders. Such orders are always connected to at least one
pickup and one delivery task.

Within the Fleet Routing and Dispatch software of ORTEC (ORD), users have the possibility
to create routes manually or to use the automatized planning functionality. Optimizing transport
routes means minimizing the total distance or minimizing the total costs of the transport routes.
This process is done by the optimizer software (CVRS), which finds near optimal solutions to the
vehicle routing problem (VRP). The relationship between ORD and CVRS is as follows. ORD is
the front-end application that is directly visible for the user and it shows the transport routes and
the customer orders. Within ORD, the user can call the functionality of CVRS. If the user selects
the optimization button, the transport routes and customer orders are sent to CVRS. CVRS uses
this information to develop optimized transport routes. Afterwards, CVRS sends these optimized
results back to ORD, which displays them. Appendix A describes the functionality of ORD in more
detail. Chapter 3 explains how CVRS optimizes transport routes.

Readers who are familiar with research on the VRP know that this problem is NP-hard. This
means that the calculation time needed to find an optimal solution increases rapidly as the problem
size grows. ORTEC faces variants of the VRP that are very large and the time available to do all
the calculations is limited. As a result of this, it is not desirable to solve the VRPs using exact
methods. Instead they use (meta)heuristics. A previous research by Simons (2017) has provided
ORTEC with an insight on the latest state-of-the-art metaheuristics. As recommended by this
research, ORTEC has embraced Adaptive Large neighbourhood Search (ALNS) as an improvement
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1.1. CUSTOMER DESCRIPTION

heuristic in large cases. Simons (2017) provides convincing evidence that ALNS is a metaheuristic
that provides high quality solutions for the VRP in small computation time. We explain ALNS in
more detail in Chapter 2. The application of ALNS is in practice not straightforward. As a result
of this, we aim to provide an improved insight in the application of ALNS. To achieve this, we
develop multiple solution strategies based on ALNS. We evaluate these strategies by assessing their
performance on multiple cases from a customer of ORTEC.

This chapter serves as an introduction to the research that we conduct. Section 1.1 contains a
description of the customer whose data we use to test our solution strategies. Section 1.2 briefly
explains the research problem of this thesis. Section 1.3 and Section 1.4 explain the research goal
and research question respectively. Section 1.5 provides the outline of this thesis.

1.1 Customer Description

For this thesis we consider the routing problem of a retail customer of ORTEC. A retail company
is defined by the Cambridge dictionary as:

”a company that sells goods to the public in stores and on the internet, rather than to
stores, other businesses, etc.”

This means that we possibly deal with a routing problem of a shop that sells electronics, clothes,
food or furniture. The exact content of the customer orders is not important for this thesis. It is
more interesting to see how the distribution network of the customer looks like. We first explain
the contents of the distribution network and then provide a graphical representation. To avoid
confusion, we refer to the customer of ORTEC as the retail client. In this research, customers are
final customers who buy products from the retail client.

The distribution of the products starts in the warehouse. From the warehouse, the goods are
distributed to smaller depots in the network by large road-trucks. We leave these routes outside
the scope of our research because they are not determined by the software of ORTEC.

In the smaller depots, the products are loaded from the large trucks into smaller vehicles. Each
of these depots have their own heterogeneous fleet of vehicles. A heterogeneous fleet of vehicles
means that the vehicles have different characteristics in terms of capacity or capabilities. We must
take these constraints into account when finding solutions to the routing problem. Chapter 3 further
explores these constraints. The capacity of the depots is limited. It is restricted by the amount of
products that can be transported by the vehicles that are assigned to that depot. The amount of
products that can be handled on a depot is limited. In the assignment of customers to the depots,
this capacity cannot be violated.

The last mile delivery to the final customer is done from these smaller depots. Each customer
has a time-window in which their products must be delivered. This is an extra restriction in the
generation of routes. An order must always be delivered in once to a customer. This means that
when an order consists of multiple products, all products must be delivered by the same truck
at the same moment. This thesis studies the routes that deliver the products from the smaller
depots to the final customers. The assignment of customers to the depot is not fixed beforehand.
Instead, customers can be delivered from each of the depots within the distribution network. This
phenomenon is known as dynamic sourcing and imposes extra difficulty when developing solutions
for the VRP of the retail client.

Figure 1.1 illustrates a simplified image of the distribution network of the retail client. From the
central warehouse (dark blue), large trucks drive to the smaller depots (orange). From the depots,
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1.2. PROBLEM FORMULATION

Figure 1.1: Example of Multi-Depot VRP with central warehouse(dark blue dot), depots(orange)
and customers(light blue)

the last mile delivery routes are determined. The customers are represented by the light-blue dots
in Figure 1.1. Confidential Appendix B shows an exact overview of the the distribution network of
the retail client.

1.2 Problem Formulation

Simons (2017) provides an overview of solution algorithms for the VRP. She shows that ALNS is
a promising solution algorithm for a variety of cases. ALNS has many different components that
need to be configured. These configurations allow ORTEC to find good solutions to many cases,
but it is challenging in the sense of finding the right configuration for a specific case.

Simons (2017) provides insight on how ALNS could be applied to large customer cases. The
vehicle routing problem of the retail client contains more transport tasks than what has been tested
so far. Keese (2018) mentions that a large growth is expected in the transportation sector resulting
in larger and more complex VRPs. This is also a trend expected by ORTEC. As a result of this,
additional insight is needed on how ALNS can be configured if the case size increases.

The case we are researching presents a number of challenges in the configuration of the ALNS
framework. The first challenge is the large size of the cases. In addition to this, we find the
multi-depot aspect in combination with dynamic sourcing and a heterogeneous fleet. Especially
this heterogeneous fleet forms a challenge that has not been investigated yet. Furthermore, it is
interesting for ORTEC to see what the influence of dynamic sourcing on the performance of ALNS
is.

Finally, ORTEC is interested in knowing if ALNS can be improved further in general. The last
research to ALNS that was conducted for ORTEC included literature until 2014. They believe that
newer methods could be available. If we can find these methods, this could lead to an even further
improved performance for existing customers of ORTEC.

1.3 Research Goal

In the previous sections we have motivated our research by explaining the practical and theoretical
importance of this work. This section describes the research goals and the steps that we take to
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1.4. RESEARCH QUESTIONS

reach the goals.
For ORTEC it is important to provide high quality solutions to its customers. To this extend

they always strive for improved optimization solutions. They find it crucial to have insight in how
ALNS works and why it is successful or not. The first goal of this thesis is therefore to provide
ORTEC with insight in the latest developments of ALNS. We aim to achieve this goal by conducting
a literature study.

The second goal of this thesis is to advice ORTEC on how they can apply the ALNS framework
on the very large multi-depot VRP with dynamic sourcing and a heterogeneous fleet from the retail
client. To reach this goal we first conduct a literature study, which identifies what is already known
on the characteristics of the VRP of the retail client. This way we aim to identify what the influence
of the heterogeneous fleet, dynamic sourcing and multi-depot aspect on the applicability of ALNS
is.

1.4 Research Questions

Corresponding with the previously stated research goals, we define our main research question. To
answer our main research question we develop a set of sub questions. These sub questions guide us
towards providing a complete answer to the research question.

The main question that we answer with this research is the following:

How can Adaptive Large Neighbourhood Search be best applied on a large Multi-Depot
Vehicle Routing Problem with Heterogeneous Fleet and dynamic sourcing?

We believe that this research question sufficiently covers the problem statement and research
goals. The aspect of advising ORTEC on how to configure the ALNS framework is clearly present.
We also have space within this research question to point out new developments of ALNS that can
potentially be used by ORTEC.

As a start of our research, we must create a better understanding of the different variants of
the VRP and the solution techniques that are available. Therefore we investigate what is already
known in literature on the VRP variant of the retail client and how it can be solved. All in all, this
leads to the first set of sub-research questions.

1. What can literature teach us on...

(a) The different variants of the Vehicle Routing Problem?

(b) The latest developments of Large neighbourhood Search techniques and their applicabil-
ity for rich and real-life cases?

(c) Large neighbourhood Search techniques and their applicability for the customer specific
VRP?

With the findings from literature, we investigate the current practices of ORTEC. This second
set of research questions increases our knowledge on how the VRP of the retail client looks
like and how it is currently solved.

2. How does the current situation look like?

(a) How does the software of ORTEC solve VRPs in general?
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1.5. OUTLINE

(b) How does the VRP of the retail client looks like?

(c) Which solution algorithm is currently used to to solve the VRP of the retail client?

(d) How does the current solution algorithm perform?

After answering these first two sets of research questions, we have information from the
literature and our case specific details. The next step would be to combine this information
and develop one or multiple solution strategies. We must asses if we have developed solution
strategies that are successful in providing a good solution for the VRP of the retail client. We
achieve this by answering the third set of research questions.

3. What is a good solution strategy for solving the VRP of the retail client?

(a) Which ALNS based solution strategies can we define to provide a solution to the VRP
of the retail client?

(b) How do we determine the settings of our solution strategies?

(c) How can we compare the performance of the solution strategies?

(d) How do we validate the results that we find?

After testing our solution design we must interpret the results. In this last research question,
we also pay special attention to the usefulness of the outcomes of our research for ORTEC.

4. What insights do we gain after our tests and how can they be used by ORTEC?

(a) What influence do we observe from the heterogeneous fleet on the ALNS performance?

(b) What influence do we observe from the large problem size on the ALNS performance?

(c) What influence do we observe from the dynamic sourcing on the ALNS performance?

Answering these research questions should provide us with all the information that is required
for answering the main research question. This research is structured in such a way that each set
of research questions is answered in a separate chapter. We provide more details on the outline of
the thesis in the next section.

1.5 Outline

Since we conduct our tests with the software of ORTEC, we are naturally restricted in what we
can test. Keeping that in mind we cannot simply extend the current ALNS techniques of ORTEC.
The first research goal is to investigate if there are any new developments of ALNS that can be
useful for ORTEC. We mainly investigate the relevance of these developments for the case of the
retail client. However, they may also be applicable for general problem instances. We do not test
the applicability of these ALNS developments for other cases.

The second research goal is to provide an advice how ALNS can be applied for the VRP of the
retail client. To achieve this, we design multiple solution techniques that we test in our research.
Moreover, we aim to discover a relationship between dynamic sourcing and the application of
ALNS. Based on our findings from literature, we conduct tests to provide evidence on how well
these solution techniques perform for the retail case.
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1.5. OUTLINE

Chapter 2 is an in depth analysis on what is currently known in literature. We describe different
extensions of the VRP and what is known on some important solution methods. Chapter 3 provides
an overview of the current situation. In this chapter we present more details on the retail client and
the specifics of the case that we use for our thesis. Based on the literature study in Chapter 2, and
the information on the current situation we aim to identify promising solution techniques. Chapter
4 describes which solution methods we experiment with. Chapter 5 presents our experiment design.
We present the findings of these experiments in Chapter 6.
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Chapter 2

Literature Review

In Chapter 1, we defined the problem statement of this thesis. In this chapter we answer the first
set of research questions.

1. What can literature teach us on:

(a) the different variants of the Vehicle Routing Problem?

(b) Large Neighbourhood Search techniques and their applicability for the customer specific
VRP.

(c) the latest developments of Large Neighbourhood search Techniques and their applicabil-
ity for rich and real-life cases.

Section 2.1, describes different variants of VRPs that are known in literature and relevant to
this research. We need this information in order to investigate which solution algorithms work good
for which VRP variant. Following to that, in Section 2.2 we provide an in depth analysis on the
most important solution algorithms that are available in literature. This information is used to
design our own solution algorithm for the retail client. The information also allows us to identify
possible new algorithms that can be used by ORTEC. Section 2.3 investigates the application of
Large Neighborhoud Search (LNS) techniques on different variants of the VRP.

2.1 Vehicle Routing Problem

In this section we provide an overview of the different variants of the VRP. We first discuss the basic
VRP, and continue with some of its most important extensions that are relevant for our analysis.
To the best of our knowledge there is no work available that describes all different variants of the
VRP. For an extended overview of different variants of the VRP and their relations, we refer to
Braekers et al. (2016).

2.1.1 Classical VRP

The first work done on the VRP stems from Dantzig and Ramser (1959). They present a generaliza-
tion to the traveling salesman problem, which they call the Truck Dispatching Problem. They aim
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2.1. VEHICLE ROUTING PROBLEM

Figure 2.1: Classical VRP representation

to find a shortest-route along a set of destinations which are served by a fleet of trucks with equal
capacity. Many different methods exist to represent the VRP. Since we exclude any exact solution
methods, we do not present a mathematical model here. Instead, we use the graph representation
as given by Cordeau et al. (2007). They define a graph G = (V,E). Here V is a set of nodes in
which each node i represents a customer such that V = {0, 1, ..., n} and i ∈ V . Node 0 represents
the depot in this case. All customers have a demand which is denoted by qi. E represents a set
of edges such that E = {(i, j), (i, j ∈ V )}. To every edge between node i and j, we assign travel
costs cij . The travel costs cij are often dependent on the length of edge between node i and j (e.g.
distance/time). These costs can be denoted in Figure 2.1 as a number on each line. Figure 2.1
provides an example of a solved instance of the basic VRP. This figure contains a set of 9 customer
nodes. Each of the blue circles represent a customer, and the big orange square in the centre of
Figure 2.1 is the depot.

2.1.2 Heterogeneous Vehicle Routing Problem

The heterogeneous vehicle routing problem (HVRP) is the first extension of the classical VRP that
we discuss. In the previous section we saw the original formulation by Dantzig and Ramser (1959),
who assume that all vehicles are identical. It is obvious that this assumption rarely holds in reality.
In Figure 2.2, we show an example of a VRP with heterogeneous fleet. We see that there are three
sub-tours which are executed by different type of trucks. Tour 1 is served by a container truck,
tour 2 is served by a tanker and tour 3 is served by a cement truck. In the homogeneous vehicle
routing problem, all vehicles are the same for these three routes.

This heterogeneous variant of the VRP was introduced by Golden et al. (1984). The additional
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2.1. VEHICLE ROUTING PROBLEM

Figure 2.2: An example of a Heterogeneous Vehicle Routing Problem

assumptions allow for differentiation of capacity and cost sets over the different vehicles that are
included in the fleet. Golden et al. (1984) assume that there is an unlimited number of vehicles
available of each type. On the other hand, Li et al. (2018) consider a case where only a limited
number of vehicles of each type can be used to solve the VRP. Li et al. (2018) take the number
of vehicles of each type as a fixed input for solving the routing problem. A variant of the HVRP
which does not take the fleet size as a fixed input, is known to literature as the Fleet Size and Mix
Vehicle Routing Problem as described by Salhi et al. (2013); Belloso et al. (2019). Not only the
capacity may be different among the vehicles. There may also be an imposed restriction on which
customers can be assigned to which trucks. Penna et al. (2019), refers to this restriction as site
dependency. They explain that in this situation a customer can only be visited by a subset of all
the vehicles.

2.1.3 Vehicle Routing Problem with Time Windows

So far we have extended the classical vehicle routing problem by including a heterogeneous fleet of
vehicles. This section discusses the vehicle routing problem with time windows (VRPTW). This
means that an order must be delivered or picked-up within a certain time-interval. Figure 2.3 shows
how we extend the classical VRP to include time windows. The green boxes represent in which
hours of the day an order must be delivered. Since ORTEC always works with time windows, this is
an important extension to understand. El-Sherbeny (2010) interprets the time window restriction
as follows: A customer must be visited within the time window provided. The vehicle is allowed
to arrive at the location before the start of time window but must wait service until the opening
of the time window. The driver must leave the node before closing of the time window. When
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2.1. VEHICLE ROUTING PROBLEM

Figure 2.3: VRP with time windows

including the time window restriction in this way the service time of a customer must be stated.
A result of this extension is that a solution is only feasible if every customer is visited within the
designated time window. This formulation of time windows is referred to as the hard formulation.
A soft formulation of the time window restriction is presented by Koskosidi et al. (1992). In this
formulation it is allowed to violate the time window restriction, but this is penalized in the objective
function. Imagine that the driver leaves the customer location after the time window is closed. The
amount of time that the drive violates the window is multiplied with a fixed cost factor. If these
costs are included in the objective function, a soft formulation of the time window restriction is
realized.

2.1.4 Multi-depot Vehicle Routing Problem

In the previous sections, we have discussed VRP variants that contain only 1 depot from which all
the vehicles leave. This section describes the literature concerning the multi-depot vehicle routing
problem(MDVRP). To the best of our knowledge, the first variant of the MDVRP was described
by Kulkarni and Bhave (1985). They assume that the demand at each depot is smaller than the
total capacity of the trucks. In reality the depot may also have restricted capacity. This restriction
is best described by Calvet et al. (2019). They describe a solution method to the MDVRP with
limited capacity at the depots and stochastic demands. An extensive overview of all the variants
of the MDVRP is given by Salhi et al. (2014) and Montoya-Torres et al. (2015). Salhi et al. (2014)
provides a mathematical formulation that includes some practical considerations of the MDVRP.

• Fixed total number of vehicles.
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The number of vehicles of a given type are restricted. There are also variants in which the
number of vehicles to be used is unrestricted.

• Restricted number of vehicles assigned to a depot.
There can be a restriction put on the number of vehicles that are assigned to a depot.

• Not all vehicles can be served by all depots.
We have mentioned before that in the heterogeneous VRP there is a restriction that states
that not all customers can be served by all vehicles. In the multi-depot variant we also find
an extension that puts a restriction on the assignment of the vehicles to depots.

• Vehicles not required to return to start-depot.
We find this variant in the work of Li et al. (2016). The variant where the start and finish
depot of a vehicle is flexible is called the Multi-depot vehicle routing problem under shared
depot resources. An advantage of this relaxation is that the vehicles can drive to the nearest
depot after visiting the last customer in its route. Potentially this could reduce the total
distance travelled.

• Vehicles not required to return to any depot.
Pichka et al. (2014) describe a variant in which the vehicle does not return to a depot, but
stays at the customer who was visited the last. This variant is called the multi-depot open
vehicle routing problem (MDOVRP). A MIP-formulation of this variant of the VRP is given
by Lalla-Ruiz et al. (2016).

2.1.5 2-Echelon Vehicle Routing Problem

The 2-echelon vehicle routing problem (2E-VRP) shows many similarities to the multi-depot variant.
The first work that is known on this variant is written by Perboli et al. (2010). The model considers
2 different types of routes. First level routes which consider the delivery of products from a central
depot, to multiple satellites. The second level of routes considers the distribution of products from
these satellites to final customers. The simultaneous consideration of the first and second level
routes makes it different from the MDVRP variant. Extensions to this model can be found in
Grangier et al. (2016). In this work, a solution approach is presented for the 2E-VRP with satellite
synchronization. This means that trucks for first and second level routes arrive at the same time
at a satellite. This represents a quick transfer of products between the two trucks.

2.1.6 Vehicle Routing Problem with Deliveries and Pick-ups

The last extension of the VRP that we discuss is the Vehicle Routing Problem with Deliveries and
Pickups(VRPDP). Products are always transported between customers and a central depot. Çatay
(2010) identifies 3 different variants of the VRPDP:

1. Delivery first, pickup second
This problem is better known in literature as the VRP with back hauls. In this variants,
vehicles are only allowed to pick-up goods after they have delivered all the goods. The route
often looks as following: the delivery vehicle starts full at a depot. After finishing a tour in
which it delivers all its goods, it starts a second tour. In this tour, the vehicle visits a second
set of customers to pickup their products.
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2. Mixed pickup and delivery
This is a more relaxed formulation of the VRPDP. The order in which the pickup and deliver
tasks are executed does not matter. In this variant it can happen that the vehicle visits a
customer twice in a route in order to execute the pickup and deliver actions.

3. Simultaneous pickup and delivery
To prevent a truck from visiting a customer twice within a route, one can enforce simultaneous
pickup and delivery. Here on a single customer visit, the transport vehicle delivers its products
and also picks up the goods from the customer.

2.2 Solution Algorithms

The variants of the VRP that are discussed in Section 2.1 are all NP-hard problems. As a result,
it is important to develop solution algorithms that find good solutions in short computation time.
El-Sherbeny (2010) classifies solution algorithms for the VRP in exact methods, heuristics, meta-
heuristics and artifical intelligence. For this thesis, we focus on heuristics and metaheuristics. The
classification framework of solution algorithms that we use in this thesis is shown in Figure 2.4.
El-Sherbeny (2010) explains heuristics and metaheuristics as follows. A heuristic is a technique
which aims to find an as good as possible solution without guaranteeing optimality. Heuristics are
problem specific. Metaheuristics are strategies that describe the exploration of the search space.
Metaheuristic often make use of one or multiple heuristics in a intelligent manner. Toth and Vigo
(2001) claim that metaheuristics are enhancements of classical heuristics.

Figure 2.4: Framework for classification of approximation methods following Laporte (2009)

2.2.1 Classical Heuristics

Figure 2.4 shows that classical heuristics are divided in 2 classes. The first class contains heuristics
that build new solutions from scratch. These heuristics are called construction methods. The
second class of heuristics are improvement heuristics. The heuristics in this second class try to
improve an existing solution. We discuss relevant methods in both classes in this section.
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Figure 2.5: Sequential Insertion as illustrated by ORTEC (2019)

Sequential Insertion

The first construction heuristic that we discuss is sequential insertion. Joubert and Claasen (2006)
explain the construction of a route using sequential insertion. Initially, using an initialization
criteria, the first customer to insert in a route is selected. This customer is called the seed customer.
This customer is inserted into a route. In the remainder of the process, customers are inserted into
that same route until no more customers can be inserted. Next a new seed customer is selected and
inserted into a new route. This route is again filled with other customers. This process is repeated
until all customers are inserted into a route. Figure 2.5 illustrates the construction of routes using
sequential insertion.

Parallel Insertion

Parallel Insertion is the second and last construction heuristic that we discuss. We saw that se-
quential insertion inserts customers into a route, one-route at a time. In parallel insertion, as
described by Potvin and Rousseau (1993), routes are build in parallel. The algorithm of Potvin and
Rousseau (1993) starts by selecting the customer furthest away from the depot that is unplanned.
This customer is inserted into a route. Next, a second customer order is selected. This order is
then inserted in the best possible location. This can be either in a new route, or in an existing
route. This process is repeated until no more customers can be inserted into routes. The parallel
insertion method for creating a solution to the VRP is illustrated in Figure 2.6.

K-Opt

The first improvement heuristic that we describe is k-opt. Helsgaun (2009) describes how the k-opt
heuristic works. In each iteration of the heuristic, k edges of a route are replaced by k different
edges. By replacing the edges the heuristic aims to find a better feasible solution. We illustrate this
heuristic in Figure 2.7, where in each iteration 2 edges are replaced. This is also known as 2-opt. In
the left part of the figure the original route is shown. The 2-opt operator selects first the 2 purple
edges. These purple edges are removed and replaced by the green edges. From Figure 2.7 one sees
that the new route is shorter than the original route.
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Figure 2.6: Parallel Insertion as illustrated by ORTEC (2019)

Figure 2.7: Example of a 2-opt improvement iteration as illustrated by ORTEC (2019)
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CROSS-Exchange

Cross-exchange is the second improvement heuristic that we discuss in this section. Its logic is
similar to the k-opt algorithm, which is described in the previous paragraph. Taillard et al. (1997)
explains CROSS-exchange for the VRP. They state that the cross-opt heuristic has the possibility
to select any arbitrary set of edges between customers from any route in the current solution. That
makes it different to the k-opt algorithm, in which only edges inside a route are exchanged. The
principle of CROSS-Exchange illustrated in Figure 2.8.

Figure 2.8: Example of a cross-opt improvement iteration as illustrated by ORTEC (2019)

2.2.2 Metaheuristics

Laporte (2009) classifies metaheuristics in neighbourhood-based algorithms, population-based al-
gorithms and learning methods. This section only discusses some of the most important neighbour-
hood based metaheuristics. Appendix C describes the most important population based algorithms
and learning methods. The classification of metaheuristics according to Laporte (2009) is illustrated
in Figure 2.4.

Simulated Annealing

Kirkpatrick et al. (1983) was the first to describe simulated annealing in the context of combinatorial
optimization problems. The basis of simulated annealing can be found in the field of statistical
mechanics. The method introduces a method for accepting solution which are worse than the
current solution. In each iteration, a worse solution is accepted with probability p. The probability
p decreases as the process continues. The probability of accepting a worse solution is given by:
exp (∆E

T ). Translating this to a combinatorial optimization context, ∆E is the difference between
the newly found solution and the current solution. T, is in this case the cooling parameter. After
finishing a markov chain of simulated annealing, the cooling parameter reduces. T becomes k∗Told.
In simulated annealing k < 1. This means that the value of T reduces in each iteration. A direct
consequence of decreasing acceptance probability p during the process is that in the beginning, many
worse solutions are accepted. At the end of the process, it is unlikely that solutions are accepted
that deteriorate the objective function. Pseudocode for simulated annealing is given in Appendix
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D. Wang et al. (2015) presents a parallel strategy for simulated annealing. In their procedure,
calculations are spread over multiple threads. This allows to arrive faster at better solutions.

Tabu Search

Major work that introduced Tabu Search(TS) to solve VRPs was done by Osman (1993) and
Gendreau et al. (1994). Just like simulated annealing, tabu search allows the acceptance of worse
solutions. In particularly, TS always explores the complete neighbourhood and moves to the best
solution in this neighbourhood. By accepting solutions that deteriorate the objective function, it
is possible to return to solutions that have been visited already. To overcome this, solutions that
have been visited are excluded from being visited again for a number of iterations. The solutions
that cannot be visited again are stored on a tabu-list. To implement tabu search, Osman (1993)
identifies 4 different aspects:

• Forbidding Strategy
This strategy describes what is added to the tabu-list. This can be a complete solution, or a
specific operator.

• Freeing strategy
This strategy describes what is removed from the tabu-list.

• Aspiration Strategy
This strategy describes if, and how, the restrictions of the tabu-search can be violated.

• Stopping criteria
This criteria determines when the tabu-search algorithm is stopped.

Cordeau and Maischberger (2012) apply tabu search for instances of the MDVRP. They run an
iterated tabu search in parallel on multiple CPU cores using different starting solutions. The
algorithms, which run in parallel, exchange information after a pre-defined time. For a large number
of MDVRP instances, the iterated tabu search provides new best found solutions.

Variable Neighbourhood Search

A first metaheuristic in the class of VLNS is Variable neighbourhood Search(VNS). An explanation
of this metaheuristic and its applications can be found in the work of Hansen and Mladenović
(2001). Variable neighbourhood search is a VLNS metaheuristic that changes the neighbourhood
during the search. This means that during the search, neighbourhood search operators are used
in an iterative manner to change the current solution. By changing (randomly) the local search
method in each iteration, a variable neighbourhood is created. In the earlier work on VNS, only
favourable solutions were accepted. In later works, simulated annealing type of acceptance criteria
are applied (see Xiao et al. (2014)).

Very Large Neighbourhood Search

Very Large Neighbourhood Search (VLNS) is a sub-class of neighbourhood based metaheuristics.
This is illustrated by Figure 2.4. Pisinger and Ropke (2010) explain that VLNS is a specific class of
metaheuristics that use very large neighbourhoods. They explain the concept of a neighbourhood
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as follows. Suppose X is the set of all feasible solutions (x) to a given combinatorial optimization
problem. The neighbourhood of this solution is called N(x). N(x) is a subset of X, which can be
reached with a certain algorithm. Thus all solutions that can be created after perturbing solution x
with a (local search) algorithm form N(x). The number of neighbour solutions that can be visited
is dependent on the solution algorithm. The metaheuristics in this section create a large number
of neighbour solutions.

Adaptive Large Neighbourhood Search The second metaheuristic which is part of the VLNS
class is Adaptive Large Neighbourhood Search (ALNS). ALNS was first introduced by Pisinger and
Ropke (2007). The method allows to select multiple methods for perturbing a solution. In VNS
the selection of methods is done at random. ALNS tries to select the different methods a bit
more clever. During the search, the probability of selecting a method is dynamic. Based on the
performance of a perturbation method, the probability of selecting a certain method is increased
or decreased. Stepwise, the method of Pisinger and Ropke (2007) looks as follows. First an initial
solution is created. Pisinger and Ropke (2007) use a regret-2 heuristic in this construction phase.
Next they use different methods to remove customer orders from a solution. Using a roulette wheel
procedure, a combination of removal and recreate method is chosen. At the start of the search
each combination of the removal and recreate method has equal probability of being selected. The
selected combination of removal and recreate method is executed and the performance is evaluated.
If the objective function is improved, the probability of selecting this combination of removal and
recreate method in the next iteration, is increased. The process is repeated for a certain number of
iterations.

Ruin And Recreate Ruin and recreate is the last technique within the VLNS class that we
discuss. The method was first discussed by Schrimpf et al. (2000). Ruin and Recreate is often
used within ALNS of Pisinger and Ropke (2007). Schrimpf et al. (2000) propose a local search
metaheuristics that removes a significant amount of customer orders from an existing solution with
the use of a destroy operator. After destruction, the method tries to repair the solution in a different
way. This is done with the help of a repair methods.

2.3 Application of large neighbourhood search Metaheuris-
tics

In the previous section, we gave a general overview of some of the most important metaheuristics
for this study. This provides general understanding of the solution algorithms which are available
to solve VRP instances. In this section we focus on the application of one class of metaheuristics:
VLNS metaheuristics. More specifically, we look to the application of these metaheuristics to the
VRP of the retail client. More specifically, we pay attention to three major aspects of the VRP of
the retail client. These aspects are: large case size, heterogeneous fleet and multi-depot.

2.3.1 Large neighbourhood search and large Sized Cases

In general the applicability of ALNS for real-life and large sized cases is already proven by Simons
(2017). New solution methods, which are developed in literature, are often tested on small scientific
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cases. Therefore their performance on larger real-life cases may not always be satisfying. To
reduce computation times, metaheuristics often utilize ways of reducing neighbourhood sizes. This
reduction comes at the cost of an increasing probability of missing out promising results. An
interesting way of reducing the neighbourhood size for the MDVRP is found by Salhi et al. (2014).
The authors claim to reduce computation time by 80% while finding better results with their
algorithm. They do this by defining borderline customers which are located somewhere in the
middle between 2 depots. Only the customers located close to these borderline customers are then
considered in the improvement phase. Although the authors use this neighbourhood reduction in
a VNS algorithm, it could be easily modified to apply in ALNS.

2.3.2 Large neighbourhood search MDVRP

A complete literature review on the MDVRP is given by Montoya-Torres et al. (2015). They
mention that most of the available procedures for finding solutions to the MDVRP in literature
consist of Tabu Search, Simulated Annealing and genetic algorithms. For the state-of-the art
genetic algorithms we refer to Vidal et al. (2014) and Vidal et al. (2012). Not much metaheuristic
procedures for the MDVRP make use of LNS until 2014. Also the work done on this topic after
2014 is very limited.

The survey by Karakatič and Podgorelec (2015) compares the performance of different meta-
heuristics. In the survey, the performance of different population search metaheuristics is compared
with the performance of local search metaheuristics. The performance of these metaheuristics is
evaluated agains an exact algorithm. The survey concludes that Iterated Tabu Search (ITS) is the
best performing metaheuristic on 5 out of 6 benchmark cases that are used in the study. The sec-
ond best known metaheuristic is known to be ALNS by Pisinger and Ropke (2007). Both methods
outperform the genetic algorithms developed by Karakatič and Podgorelec (2015) and state-of-the
art ant-colony optimization methods.

Li et al. (2015) claim that the standard ALNS is improved by combining it with a iterated
local search. This claim is based on benchmark cases for single depot VRP. Substantiation for
the MDVRP is not given. That ALNS produces robust and good solutions to the MDVRP is
further substantiated by Mancini (2016). The author has adopted a matheuristic based on ALNS.
The method starts by ruining part of an initial solution. This selects the neighbourhood that is
evaluated. Only a limited number of tasks is selected to be removed from the solution. Since only
a limited number of orders is removed, an exact method can quickly find the (local) optimal way
to repair the solution. The method proofs to be effective in exploring many neighbourhoods very
efficiently. It also proofs to be easily applicable to other instances of the VRP with the assignment
problem. The disadvantage of the proposed matheuristic is that it requires a MILP-formulation
which can be hard to develop for rich and real-world VRPs. Grangier et al. (2016) applies ALNS
to the 2-echelon VRP with time windows. Due to its many restrictions, the problem formulation
shows many similarities with the MDVRP. The authors propose a method of reducing the size of
the neighbourhoods which has a limited impact on the solution quality, but significantly reduces
the computation time.

It is obvious that that the methods for ruin and recreate which are used in ALNS have strong
influence on the solution quality. In the original work by Pisinger and Ropke (2007) 7 different
methods for ruining a solution were presented. These included: random removal, worst removal,
related removal, cluster removal, time oriented removal, historical node-pair removal and historical
request pair removal. Some additional destruction heuristics found by Grangier et al. (2016) are
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trip removal and least-used-vehicle removal. A route destruction operator is advised by Mancini
(2016). This operator selects a defined number of customers from a route which are unplanned from
the solution. The author also mentions that cluster removal is likely to be successful in the start
of the search. Later random removal may be more likely to find improved results. A new removal
algorithm is introduced by Emeç et al. (2016). Their route neighbourhood removal algorithm aims
to select a pair of eligible transports from different routes. These transports are unplanned from
the existing solution. The eligibility constraint works as following. A transport from route 1 and a
transport from route 2 are considered to be removed. This removal is only eligible if it is possible to
plan the transport from route 2 directly after the transport of route 1. In this check, time window
constraint and capacity constraint are taken into account. From the computational study that the
authors execute, this operator has the highest frequency of finding new best solutions.

The most commonly used methods for repairing a method are best insertion and regret insertion.
Literature often pays more attention to removal methods rather than repair methods. Two new
repair methods are introduced by Alinaghian and Shokouhi (2018). These methods use an additional
’noise function’ to the two basic repair methods mentioned above. This noise function allows for
more freedom in selecting the insertion location. Another point of view in repairing a solution stems
from Emeç et al. (2016). The standard ALNS of Pisinger and Ropke (2007) uses a removal and a
insertion phase. Emeç et al. (2016) includes an extra layer in between the removal and insertion
phase. They call this the ”vendor Selection/Allocation phase”. This phase selects a feasible depot
from the list of all possible depots. This selection is done based on a total of 6 operators. For a
description of these operators, we refer to Emeç et al. (2016). This is of course only possible in
a multi-depot variant of the VRP. The authors also propose 2 new insertion methods. The first
insertion method, Regret-k insertion, makes use of a regret factor for selecting a customer to insert.
The regret factor is calculated by the difference in objective function when inserting the transport
in the best route and the kth best route. The second insertion algorithm proposed by the authors
is ‘Greedy Insertion with New Route Openings (GIN)’.

Another aspect of ALNS which has an influence on the solution quality is the adaptive weight
adjustment procedure. This procedure determines how large the probability becomes of an opera-
tor(both ruin and recreate) to be selected in the next iteration. In the original work of Pisinger and
Ropke (2007) the weight updating is done based on the value of the objective function as shown in
equation 2.1.

wi,j+1 = wij(1− r) + r ∗ πi
θi

(2.1)

In equation 2.1, πi denotes the value of the objective function which was achieved by the
operator. θi denotes how often the operator has already been used. wij is a measure for the weight
that is assigned to operator i in iteration j. These weights translate into probability of selecting
operator i in iteration j as: pkj =

wkj∑
i wij

.

2.3.3 Large neighbourhood search and Heterogeneous Fleet

A literature review of the solution methods for the Heterogeneous Fixed Fleet VRP is given by Çağrı
Koç et al. (2016). The authors do not mention any successful applications of large neighbourhood
searches on this variant of the VRP. The lack of ALNS application on HVRP is part of a general
trend. Çağrı Koç et al. (2016) mention that the general trend is to develop highly accurate models
which lack simplicity and short computation times. Some of the best algorithms that are developed
for the HVRP are a threshold accepting metaheuristic by Tarantilis et al. (2004) and a clustering
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based heuristic from Gencer et al. (2006). The current state-of-the art solution algorithm is a
mathematical based heuristic by Naji-Azimi and Salari (2013). This method shows many similarities
to the matheuristic by Mancini (2016), which we discussed earlier.

2.4 Conclusion

With this discussion, we are able to answer the first set of research questions:

1. What can literature teach us on...

(a) The problem specific Vehicle Routing Problem?

(b) Large Neighbourhood Search techniques and their applicability for the customer specific
VRP.

(c) The latest developments of Large Neighbourhood search Techniques and their applica-
bility for rich and real-life cases.

We have mentioned some of the relevant extensions of the classical VRP. Based on the analysis
in Chapter 1, we can conclude that not one single extension is suitable for modelling the routing
problem of the retail client. We conclude that we must extend the classical VRP with the aspects of
the multi-depot VRP. We prefer this extension over the 2-echelon variant, since routes from central
depot to hubs are not considered in this research. Moreover, we saw a variant in which orders must
always be delivered in a certain time window.

An interesting method of reducing the neighbourhood size in a VNS setting was given by Salhi
et al. (2014). We could make use of this method to reduce computation time of the ALNS algorithm
of ORTEC. This could be useful for solving large VRP cases. Moreover, a new type of depot-selectors
is included by Emeç et al. (2016). Including this as a new adaptive layer in the ALNS framework
of ORTEC could be interesting since it has shown promising results on the 2E-VRP. This VRP
variant shows close resemblance to the MDVRP of the retail client. An ALNS based matheuristic
which is able to quickly explore large neighbourhoods is found by Mancini (2016). It has proven to
be successful in solving MDVRPs, but requires a MILP formulation. Also additional methods for
destroying solutions are found. These methods provide better solutions in less computation time
for the MDVRP. Solution methods for the heterogeneous VRP are not much studied. Examples of
LNS algorithms for this variant are even more rare to find.
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Chapter 3

Current Situation

This chapter aims to create better understanding of the vehicle routing problem of the retail client
and the software of ORTEC. First, Section 3.1 provides a description of the software that we use
to find solutions to the VRP of the retail client. Section 3.2 provides a detailed description of the
business case of the retail client. Finally, Section 3.3 defines Key Performance Indicators (KPIs) to
measure the performance of the current solution strategy.

3.1 CVRS Description

To find solutions to the VRP of the retail client, we use the CVRS software of ORTEC. We
explain in this section briefly how the software works. To solve VRPs, CVRS uses a model that
consists of entities and their attributes. The algorithms that are programmed in CVRS transform
the attributes of these entities. By filling these attributes, or connecting the various entities, a
solution to the VRP is created. Thus, to increase the understanding of CVRS and to provide a
formal problem description, we describe the entities that are used as input and the entities that are
used as output in Paragraph 3.1.1 and Paragraph 3.1.2 respectively. Moreover, we provide a short
overview of the algorithms that are used by CVRS to create solutions to VRPs in Paragraph 3.1.3.

3.1.1 Input Entities

The first entity in the model is the depot. The depot is the location from which an order is picked
up. The depot is also the start and end location of a trip. Each depot has 2 attributes.

• Id : Unique identifier by which a depot is characterised

• Capacity : Total amount of products that can be delivered from the depot.

The second entity of our model is the task entity. This entity can be either one of two types:
pickup or delivery. As a result of this, an order always contains 2 tasks. One for pickup and one
for delivery. We introduce the order entity below. Each task has the following attributes.

• Id : Unique identifier by which a task is characterised.

• address Id : This provides the software with the information where the task must be executed.
A pickup task is located at a depot. The delivery task is located at a customer address.
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• Order Id : This connects the tasks to the corresponding order.

• Duration: This contains the information on the duration of the task. A numerical value
denotes how many seconds a task takes to execute.

• Amount : The amount of product that is delivered. Only deliver tasks have an amount
specified.

• Time Window start : Start of the time window from which the task may be executed.

• Time Window end : End of the time window from which the task may be executed.

The third entity in the CVRS model is an order. An order always consist of a pickup and
delivery task. An order forms the connection between the pickup and delivery task. All orders in
the model are placed by an customer. No specific information on customers is modelled in CVRS.
An order has the following attributes.

• Id : Unique identifier by which a order is characterised.

• allowed Depots: The depots from which the pickup task can be executed. If dynamic sourcing
is applied, this attribute is a string that contains all depot Ids.

The next entity in the model is called the resource. The resource the vehicle of a given type
executes a trip. We introduce the trip entity next. A resource has the following attributes.

• Id : Unique identifier by which the resource is characterised.

• Capacity : The capacity denotes the quantity of orders that can be transported by the resource.

• Resource kind : Number value that distinguishes a between driver/vehicle etc.

• Home address Id : Address of the depot at which the resource is located.

• Forbidden addresses: Ids of addresses that cannot be visited by the resource.

• Task Duration: Duration of load tasks for a vehicle. This is a fixed set-up time for loading
the vehicle in addition to the task duration, which we introduced before.

The last input entity that we mention here is the Trip. The trip is used to create a sequence of
tasks that are executed by a resource. As a result of that the trip has the following attributes.

• Start address: Address at which the trip starts.

• End address: Address at which the trip ends. Since a resource is assigned to only 1 depot,
this is the same as the “from address”.

• Earliest Start Time: The earliest moment at which a trip can start. This can be sooner than
the actual start time of a trip.

• Latest Finish Time: The last moment at which a trip must finish. This means the last
moment at which the resource must be back at the “end address”.

• Cost set : Denotes the different costs that are made when the trip is executed. A cost set
contains fixed set-up costs, costs per stop, costs per hour, costs per stop and costs per distance.

• Resource id : Unique id of the resources that are used to execute the trip.

• Priority : Priority of the trip. Trips with priority 1 are more desirable to be used than trips
with priority 3. We explain this in more detail in Section 3.2.

These are the most important entities and attributes that are used to find solutions to the VRP of
the retail client.
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3.1.2 Output Entities

The first entity that is used as output by CVRS is a route. A route contains a list of trips. Each
trip in its turn consist of a list of stops. We explain the stop entity next. Note that a route can
contain one or more trips. As a result, a route is a place holder for one or multiple trips. The trip
entity is explained in Section 3.1.1. A route contains the following attributes:

• id : Unique id of the route.

• number of trips: Denotes the number of trips that are in a single route.

• waiting time in seconds: The total waiting time of the route according to the planning.

• Number of Stops: The number of stops that are included in the route.

• Driving time in seconds: The total driving time of the route.

• Distance: The total distance in kilometers of the route.

• Duration in Seconds: The total duration of the route.

• Finish time: Moment in time at which the route finishes.

• Start time: Moment in time at which the route starts.

The second entity that is used as output by CVRS is a stop. A stop in the software, means a
physical stop in reality. This means that the vehicle stops to execute a task. (e.g. deliver a package)
A stop belongs to exactly one trip inside a route. A stop has the following attributes.

• departureDateTime: Start time of the stop.

• arrival Date Time: End time of the stop. The arrival time plus duration equals the departure
time. The departure time of the previous stop plus the driving time equals the arrival time
of the next stop.

• duration In Sec: Time to execute the task that belongs to the stop.

• waiting Time In Sec: Time in which no task is executed.

• driving Time In Sec: Time to travel to next stop.

• distance: Distance to next stop.

• stop Sequence: Integer value that denotes in which order the stops are executed.

• address Id : Id denoting the address where the stop takes place.

• order Id : Id of the order that belongs to the task that is executed at a stop.

• type: Denotes whether a stop contains a delivery, break, depot or pickup task.

Thus, by creating a sequence of stops which belong to a task, CVRS creates a solution to the
VRP of the retail client.

3.1.3 Algorithms

In most cases, CVRS finds solutions to VRPs in 3 phases. The first phase tries to construct a
feasible solution, the second phase improves this solution using classical heuristics. The last phase
further improves the solution using ALNS. In the construction phase, CVRS uses empty trips, and
a list of tasks as input. Usually based on some greedy method, routes are built up. Two commonly
used methods for building solutions are parallel insertion and sequential insertion. These methods
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are explained in Section 2.2. The first improvement phase uses a number of heuristics to improve
an existing solution. CVRS does this by applying changes to the existing solution. Many classical
heuristics are available in CVRS. Since the main focus on our thesis is on the ALNS phase, we do
not provide details on the classical heuristics.

In the last phase of finding solutions to VRPs, ALNS is applied. Chapter 2 explains how ALNS
works in more detail. In this section we focus on how it is applied at ORTEC. Many configurations
of ALNS at ORTEC are possible. For instance, it is possible to apply different methods for selecting
the removal of customer orders from the solution and methods to repair a partial solution. It is
possible to select the same methods each iteration, but one can also decide to base the selection
of these methods on the roulette wheel of Pisinger and Ropke (2010). The roulette wheel adapts
the likelihood of a method to get chosen based on its performance. Recall from Section 2.2.2 that
ALNS works by selecting methods for destroying part of the solution and repairing it in a different
way. Currently 7 removal and 3 repair methods are programmed in the software of ORTEC. Table
3.1 shows the methods that are currently available in CVRS.

Table 3.1: Removal and Recreate methods that are included for standard ALNS

Removal Method Recreate Method

Random Removal Sequential Cheapest Insertion
Related Removal Parallel Cheapest Insertion
Worst Removal Parallel Regret Insertion
Random Cluster Removal
Worst Cluster Removal
Trip Removal
Multiple Trip Sets removal

Below we briefly explain the 7 removal operators.

Random Removal: This operator randomly removes a number or percentage of tasks from the
solution. Referring back to Section 3.1.1, this means that the stop that belongs to the task,
is no longer connected to a trip.

Related Removal: This operator removes a number of percentage of tasks from the solution
that are related. Tasks are related to each other if they are located close to each other.

Worst Removal: This operator removes the worst number of tasks from the solution. The worst
task is the task that increases the objective function the most.

Random Cluster Removal: This operator removes a random cluster of tasks. A cluster is a
group of tasks that are located closely to each other. It differs from related removal in the
sense that multiple groups can be removed.

Worst Cluster Removal: This operator is a combination of worst removal and random cluster
removal.

Trip Removal: This operator removes all the tasks from a randomly chosen trip.

Multiple Trip Sets removal: This operator removes the tasks from multiple randomly chosen
trips.

Below we describe the methods that are used to repair the solution after the removal operator
is executed.
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Sequential Cheapest Insertion: We refer to Section 2.2 in which we already explain Sequential
insertion.

Parallel Cheapest Insertion:We refer to Section 2.2 in which we already explain Parallel in-
sertion.

Parallel Regret Insertion: Works similar to parallel cheapest insertion, but tasks are inserted
in order of decreasing regret factor. The regret factor is calculated as in equation 3.1.

ObjectiveFuction2ndBestOption −ObjectiveFunctionBestOption (3.1)

ALNS parameters

Each of the aforementioned removal and repair operators have a number of parameters which can
be configured. For the removal operators, the following settings must be configured.

Acceptance Threshold: The software of ORTEC does not accept solutions that deteriorate the
objective function. If one iteration of ALNS finds a solution that is worse than the current
solution, but not worse than the allowed threshold, Local Search is applied. This setting thus
decides when an additional local search phase is initiated. Only if Local Search finds a better
solution, the solution is accepted.

Only do local search if improved: This setting can make the previous setting redundant. If
this setting is set to true, local search is only applied to better solutions.

% of tasks to remove: This determines the percentage of tasks from the total number of tasks
is removed.

Number of tasks to remove: This determines the number of tasks that is removed from the
solution. If this is used in combination with the percentage of tasks to remove, then the
minimum of both is chosen.

Estimator: Estimator that is used to quickly assess if a change in the solution results in an im-
provement or not. This does not necessary have to be the same as the optimization objective.

Re-optimize depot after removal: Re-optimize all depots after a change has been made. Using
this option, increases computation time.

Only re-optimize depots changed trip: Do not change trips that belong to a depot which has
not been changed by the ALNS iteration.

Use heuristic for dynamic sourcing: Use only a limited number of depot options instead of
considering all options.

Always re-evaluate depots: In each step of the local search, all possibilities for depot allocation
are reconsidered.

Depots per heuristic step: Can only be used if the setting: Use heuristic for dynamic sourcing
is set to true. This limits the number of depots that are considered in each ALNS iteration.

Maximum number of depots: This limits the number of depots that are visited in each route.
For our case it is not allowed to visit multiple depots in a single trip.

Number of solutions: If the first considered solution does not lead to an improvement, and this
setting is equal to 2, also the second best solution is considered.
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Not only the removal operators have a number of parameters that must be determined. Also
for the repair operator, several parameters exist. For the repair operators, the following settings
must be configured.

Maximum number of failed insertions per group: This setting reduces the number times
that a task is inserted in a certain group.

Maximum number of failed insertions per trip: This setting reduces the number of times
that tasks are tried to be inserted in a certain trip.

Estimator: Estimator that is used to quickly assess if a change in the solution results in an im-
provement or not. This does not necessary have to be the same as the optimization objective.

Only consider empty trips: Only insert tasks in empty trips.

Maximum number of failed insertions per group in a trip: Maximum number of times
that an unplanned order is tried to be inserted in a certain trip.

Fix ordering load/unload tasks at address: This setting determines in which order the load
and unloading tasks are inserted in a route. If this setting is true, all load tasks are planned
at the start of the trip.

Only consider non-empty trips: For repairing the solution, only non-empty trips are used.
This means that no extra trips are used when repairing a solution.

3.2 Case Description

So far we described how CVRS can be used to find solutions to VRPs. Now we provide more details
on the business case of the retail client, which we introduced in Chapter 1. We explain additional
constraints to possible solutions, the optimization objective that is used for the retail client, and
the cases that we consider.

3.2.1 Restrictions

In Chapter 2, we identified many different variants of the VRP. The case of the retail client has a
combination of these restrictions. We provide a discussion on the constraints that are included in
the VRP of the retail client. This gives us a better understanding of the case of the retail client.
These constraints are taken into account when formulating solution strategies for solving the VRP
of the retail client.

Table 3.2: Fleet composition
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In Section 1.1 we mention that we consider a VRP with a heterogeneous fleet. Table 3.2 shows
the vehicle types that are available and their characteristics. The heterogeneous fleet implies the
following restrictions to the solution of the VRP.

1. Type 1 vehicles must be used as much as possible. This restriction is not a hard restriction.
The utilization level of type 1 vehicles is not quantified by the retail client.

2. Type 1 vehicles must be used for as long as possible. This means that once a type 1 vehicle
is used, the driving time must be as long as possible.

3. Type 1 vehicle cannot be used to serve customers which have a deliver location far away from
the depot at which the vehicle is stationed. No formal definition is given for what distance is
acceptable.

4. After all the type 1 vehicles are used, type 2 vehicles must be used with the same restrictions
as type 1 vehicles. For these type 2 vehicles the same rules apply as for type 1. It is desirable
that the type 2 vehicles are always used and serve customers with a location close to the
depot.

5. The type 3 vehicles are only used on a need basis.

6. Type 3 vehicles are used to drive large distances. This means that they are often used for
trips to customers that cannot be served by type 1 and 2 vehicles.

7. Type 4 vehicles are undesirable to use. These vehicles are used as flexible capacity. It is
very expensive to use these vehicles. As a result, they can only be used if regular capacity is
insufficient to fulfil all demand.

The aforementioned restrictions are merely preferences of the retail client. It is not quantifiable
how often these restrictions must be met. As a result of that, the restrictions are not modelled
in CVRS. Instead, ORTEC attempts to meet these restrictions as much as possible through clever
configuration of the different costs sets for each vehicle. These cost sets are explained in Section
3.2.3.

The second set of restrictions are related to the depots.

1. The capacity of the depots is restricted. We distinguish two types of capacity restrictions.
First the load-capacity of the depot. Second, the capacity of the vehicles which are assigned to
the depot, restricts in some cases the total capacity of the depot. If qk is the loading-capacity
of depot k and clk is the capacity of vehicle l that is assigned to depot k, then the depot
capacity Qk is given in Equation 3.2.

Qk = min(qk,
∑
l

clk),∀k ∈ K (3.2)

2. Co-loading is not allowed. Earlier we mentioned that during a trip, vehicles can visit only
1 depot. This is also known as co-loading at ORTEC. Co-loading at ORTEC means the
following: A vehicle starts at a certain depot. Before visiting customers, the vehicle visits
another depot. This is not allowed for the routing problem of the retail client. We must take
this into account when providing solutions for the VRP of the retail client.
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The fourth set of business rules concerns delivery windows. In the VRP of the retail client, a
restriction is imposed on the delivery window in which the customer site or depot may be visited.

1. Each customer has a time-window in which the customer must be visited. Each customer
must be visited in their preferred time-window when the order is planned on a route. As a
result, a solution to the VRP is not acceptable if a customer is planned to be visited outside
its stated time-window. This means that we cannot make use of the soft formulation of the
time-window constraint. We refer to Section 2.1.3 for the difference between hard en soft
formulation of the time-window constraint.

The previous restrictions impose constraints concerning how the solution for the VRP may look
like. At last we present a restriction to the computation time of the solution algorithms. The
computation time of the algorithm is restricted to 35 minutes. This norm is stated by the retail
client. As a result, the solution strategies that we design must meet this requirement.

3.2.2 Optimization Objective

Each optimization problem must have an objective to optimize. In this section we describe which
optimization objective is used to find a solution to the VRP of the retail client. In the case of the
retail client there are multiple optimization objectives. Below we list the optimization objectives
that are used for the retail client. The objectives are presented in order of decreasing importance.

1. Number of tasks planned
This objective is measured by counting the total number of deliver tasks that are planned in
a transport route. The software aims to maximize the number of tasks planned for the given
resources.

2. Plan costs
This function measures the total costs that result from all planned transport routes. A solution
with the lowest costs is preferable.

3. Duration
This objective measures the total time that all the routes need to visit all customers. The
total duration is measured in hours. It is calculated as the sum of the duration of individual
trips. A solution with smaller duration is preferred over a solution with longer duration.

To optimize according to different objectives works as follows in the software of ORTEC. The
routes are always optimized according to the first optimization objective. In this case that is the
number of tasks planned. In case multiple solutions are found that have an equal number of tasks
planned, they are compared on the second objective: costs. If then still the solutions are equal,
the software looks at the third objective, which is in our case total duration. It is necessary to
maximize the number of tasks planned for the case of the retail client. The second objective is
namely the minimization of the plan costs. If CVRS is not configured to maximize the number
of tasks planned, no tasks are planned at all. This is because a solution with 0 tasks planned is
cheaper than a solution with at least 1 task planned.

3.2.3 Cost sets

In the previous section, we have seen how the objective function of the VRP of the retail client
looks like. We saw that the primary objective is to maximize the number of planned tasks. Next,
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the aim is to minimize the plan costs. To calculate the plan costs, each type of vehicle in the
problem set is assigned a set of costs. In total, we distinguish between 4 types of costs: costs per
hour, costs per trip, costs per distance and costs per stop. As we mentioned before, the retail client
uses a heterogeneous fleet. As a result, the cost settings are different for each vehicle type. For
confidentiality reasons, we do not present the cost figures here. Instead, we refer to confidential
Appendix E for the different cost configurations. These figures show that the costs per trip are by
far the largest for type 3 and 4 vehicles. This is done to ensure that first type 1 and type 2 vehicles
are used.

3.2.4 Test cases

For testing purposes, we use 20 cases that are defined by the retail client. These cases and their
characteristics are described in Table 3.3. We see that each of the cases has a different number
of depots and a different number of orders that need to be delivered. We use these cases to test
the performance of the solution that we design in Chapter 4. Also we use the cases to validate the
results of the solution algorithm that is currently used by ORTEC.

Table 3.3: Overview of 20 test cases
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3.3 Current Solution Algorithm

To find solutions to the VRP of the retail client, currently a two-stage approach is used. This
approach consist of a construction step and a local search step. Since we do not intend to make
large adjustments to this method later in our research, we do not discuss this method here. For
a detailed explanation of the current construction method, we refer the reader to confidential
Appendix F. Instead, here we focus on the performance of this construction method. Later we
compare the outcomes of our solution strategies with this current method. The performance of
these solution techniques is assessed on 20 cases. We introduced these cases in Table 3.3. Table 3.4
shows the key performance indicators for each of the 20 cases. The table shows the total costs, total
driving time, total distance and number of vehicles used of each type. In Section 3.2, we mention
that vehicle type 1 must always be used. From Table 3.4, we see that not every case contains type
1 vehicles. For the cases in which vehicle 1 types are available, (cases 16, 17 and 18) we see that
not all type 1 vehicles are used. The table shows for each case the plan costs, number of tasks
planned and the total duration. Finally, Table 3.4 shows the runtime of the solution algorithm,
that was described in the previous section, for each of the 20 cases. It can be seen that for some
cases the computation time exceeds the 35 minutes threshold, which was set by the retail client.
This is caused by the fact that CVRS completes executing the method it is currently executing
before reporting on the KPIs.

3.4 Conclusion

This section provides more details on the VRP of the retail client for who we develop a solution
strategy. We have discussed the restrictions that are imposed on the solution to the VRP of the
retail client. The section was completed by an explanation on how ORTEC currently solves the
case of the retail client. This gives us enough insight to answer the second set of research questions:

1. How does the current situation look like?

(a) How does the VRP of the retail client looks like?

(b) Which solution algorithm is currently used to to solve the VRP of the retail client?

(c) How does the current solution algorithm perform?

Our discussion of the restrictions pointed out a number of limitations that are imposed to possi-
ble solutions. In the discussion of the restrictions we have seen that we work with a heterogeneous
fleet. Also the calculation time that is available for finding a solution to the VRP is restricted to 35
minutes. Moreover, we have seen that the delivery time window in which customers are visited is
restricted. All these real-life restrictions must be taken into account when finding a solution to the
VRP of the retail client. We have described the characteristics of 20 cases that we use for testing our
solution design. Each of these cases has a different number of depots, orders or routes. In Section
3.3, we present an overview of the performance of the current solution method on 20 benchmark
cases. We expand the performance measures beyond the performance indicators from the objective
function. By including these additional performance indicators, we assess the performance of the
solution algorithm on the business rules of the retail client.
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Chapter 4

Solution Design

This chapter provides a description of the solution strategies that we test. Based on the context
analysis and literature study, we propose five different ALNS based solution strategies. Each of the
strategies addresses the order-to-depot assignment differently. The first strategy is a standard ALNS
application in the software of ORTEC. Section 4.1 describes this strategy. The second strategy
extends this first strategy with additional repair operators. Section 4.2 provides a description of this
strategy. In both strategies, the assignment of orders to depots can still change. Solution strategy
3 does not allow the depot assignment to change during the execution of ALNS. This means that
after the construction phase, the order-to depot assignment does not change. Section 4.3 contains
a description of this solution strategy. The fourth strategy first solves an assignment problem.
The solution to this assignment problem determines the order-to-depot assignment. During the
construction and improvement phase, this depot assignment does not change. Section 4.4 discusses
how this strategy works. The fifth solution strategy is a hybrid combination of the previously
mentioned strategies. In the fifth strategy, the depot-assignment of a subset of all orders is allowed
to change during the solution algorithm. Section 4.5 illustrates this idea. Each of the aforementioned
strategies uses the already existing construction algorithm. We refer to this construction algorithm
that we describe in Section 3.3 as the ORTEC construction algorithm. Table 4.1 presents an
overview of each of the aforementioned strategies, in which sections they can be found and some of
the most important characteristics.

Table 4.1: Overview of Solution Strategies that are included in this thesis

Strategy Construction Method Depot Assignment Fixed Set of ALNS operators Section

Basic ALNS ORTEC Construction Dynamic Assignment Standard ORTEC operators 4.1

Extended Basic ALNS ORTEC Construction Dynamic Assignment
Standard ORTEC operators + New
Route Selector

4.2

ALNS with
Fixed Depot Assignment

ORTEC Construction After Construction Standard ORTEC operators 4.3

ALNS-FDATTP Adjusted ORTEC Construction Before Construction Standard ORTEC operators 4.4
Hybrid Method Adjusted ORTEC Construction Before Construction Standard ORTEC operators 4.5
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4.1 Basic ALNS Strategy

This section describes the first solution strategy. We call this strategy the Basic ALNS Strategy.
This strategy uses ALNS algorithms that are currently available in CVRS. This strategy is based on
the work of Pisinger and Ropke (2010). However, the implementation in CVRS is done differently.
In order to understand how the basic ALNS strategy works, let us introduce the following notation.

R−: Set of all removal operators, R− = {1, 2, ..n}. Table 4.2 shows the removal operators that are
included in the Basic ALNS strategy.

R+: Set of all repair operators, R+ = {1, 2, ..m}. Table 4.2 shows the repair operators that are
included in the basic ALNS strategy.

P−
r : probability with which removal operator r+ is selected.

P+
r : probability with which removal operator r− is selected.

s0: Initial solution. This is the solution that is found by the ORTEC solution algorithm.

sn: Neighbour solution.

s∗: Best found solution.

Algorithm 1 shows the pseudo code for the basic ALNS strategy. In line 1 the probabilities
P−
r and P+

r are initialized. CVRS initializes the probabilities different from the work of Pisinger
and Ropke (2010). Next in Line 2, the best found solution is initialized. Next, ALNS is run for a
number of iterations. In each iteration a removal method r− and a repair method r+ are selected.
Using these removal and repair methods, a new solution is created. This is done in line 4-8 of
Algorithm 1. Lines 9 -20 describe the logic of accepting solutions. We mentioned before that CVRS
does not accept worse solutions. If the new solution sn is better than the best found solution s∗,
a local search is applied to see if further improvements can be achieved. Since the solution was
improved, the probability that the methods r+ and r− are selected increase. If the new solution
sn is worse than s∗, but within the acceptance threshold, local search is applied to improve sn. If
sn is now better than s∗, it is accepted as the new s∗. The probability that the methods r+ and
r− are selected increases. If sn is still not better than s∗, the new solution is not accepted. The
probability that methods r− and r+ are selected decreases.

Table 4.2: List of removal and repair operators that are included in the first ALNS strategy

Removal Operator Repair operator

Worst Removal Cheapest Insertion
Random Removal Parallel Cheapest Insertion
Related Removal Parallel Regret Insertion
Random Cluster Removal
Worst Cluster Removal
Remove Multiple Trips Sets Removal
Trip Removal
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Algorithm 1: Pseudocode of the basic ALNS strategy

1 Initialize: P−
r = P+

r = 1
n∗m∀r;

2 set s∗ = s0;
3 while Maximum number of iterations is not reached do
4 Select a method r− using probabilities P+

r ;
5 Select a method r+ using probabilities P+

r ;
6 According to method r− remove k orders from the solution;
7 According to method r+ re-plan the k orders;
8 Call the newly found neighbour solution sn;
9 if sn better than s∗ then

10 Apply local search to improve sn;
11 Accept neighbour solution as best solution and set s∗=sn;
12 Update p−r , p

+
r ∀r;

13 if sn worse than s∗, but within Acceptance Threshold then
14 Apply local search to improve sn;
15 if sn better than s∗ then
16 Accept neighbour solution and update s∗ = sn;
17 Update p+

r , p
−
r ∀r;

18 else
19 do not accept sn as new solution and go to next iteration;
20 end

21 end

4.2 Extended Basic ALNS

This section describes the second solution strategy that we test. We call this the Extended Basic
ALNS Strategy. This strategy extends the basic ALNS strategy with additional ALNS operators.
Based on the research of Emeç et al. (2016), we have reason to believe that their newly proposed
operators can improve the current ALNS framework of ORTEC. Emeç et al. (2016) propose an
ALNS application, in which they also face the decision of assigning customers, to what they call
satellite facilities. These satellites correspond to the various depots of the retail client. Emeç
et al. (2016) use this aspect of their case to develop an additional set of operators. They refer to
these operators as vendor selection/allocation algorithms. We propose to transform these operators
to route selection/allocation algorithms. We incorporate this into the existing ALNS methods of
ORTEC as follows. The ALNS algorithm first selects a method to remove a number of tasks from
a solution. Afterwards a repair method is chosen to try and plan these tasks at a certain location
in the partial solution. If no route selector is applied, this means that potentially a task can be
planned in a route that belongs to any of the depots. If we now include a route selection method
within the repair operator, this is no longer possible. Instead, the route selector will make sure that
the software only tries to plan a task on a sub-set of all routes. Below we list the route selector
that we propose to add to the first set of ALNS operators, which are shown in Table 4.2. From the
operators that are proposed by Emeç et al. (2016), this is the only operator that we can implement
within the technical possibilities of CVRS.

• Select all routes from the depot that is closest to current task.
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We include this selector to reduce the number of assignments that are tried that do not result
in improvement. Inserting tasks in any routes that do not belong to their closest depot is likely
not to lead to an improvement. This depot selector is based on the Node Neighbourhood Vendor
Selection of Emeç et al. (2016). It only includes the selector that selects the nearest depot. This
operator selects a sub-set of routes that belong to the depot that is closest to the task that was
removed. Then, using any of the aforementioned repair operators, the software only tries to plan
this task on any of these routes. We refer to Algorithm 1 for an explanation of this strategy.

Each of the ALNS operators has a number of settings that we can configure. We already mention
these settings in Section 3.1.3. We describe in Section 5.2 how we determine the best settings for
these ALNS operators.

4.3 ALNS with fixed depot assignment

This section describes the third solution strategy that we include in this research. In the previous 2
solution strategies, the customer to depot assignment can change in the ALNS procedure. Although
we cannot conclude from literature what the influence of this is on the performance of ALNS, it
is likely to have an effect. This third strategy completely forbids any changes in the customer to
depot assignment during the ALNS algorithm. This means that we need to provide CVRS with a
order to depot assignment as input before it runs the ALNS algorithm. It is crucial that we provide
a good depot assignment during the construction phase. The depot-assignment strategy that we
propose uses the ORTEC construction method to determine the customer to depot assignment. The
strategy starts by applying the algorithm that ORTEC currently uses on the complete problem.
This step results in a feasible solution to the MDVRP of the retail client. Next, the case is split
into single depot problems. This is done in the following way. The solution algorithm from ORTEC
provides a set of trips on which tasks are planned. Each of these routes has a start and end location
at one of the depots of the case. Thus we create sub-sets that contain all trips (and planned tasks)
that are assigned to the depot. This is the second step in this strategy. Afterwards, we apply the
basic ALNS strategy on each of these single depot problems. We refer to Algorithm 1 for the pseudo
code of this strategy. In the ALNS step, we take the planned trips, which were determined earlier,
as input for the ALNS algorithm. This means that sn is now the solution to each of the single
depot problems. This means that we do not execute a construction algorithm on each of the single
depot problems. Lalla-Ruiz and Voß (2019) show competitive results of such a partial optimization
approach for the multi-depot cumulative capacitated vehicle routing problem.

4.4 Depot Assignment by solving the Transport Problem

The fourth ALNS strategy that we propose is based on the work of Tansini et al. (2002). They
show that a two-stage approach for solving the MDVRP, in which first an assignment problem is
solved to determine the order to depot assignment, obtains high quality results. The assignment
problem that is described by Tansini et al. (2002), is called the transport problem. Section 4.4.1
provides the formal definition of this problem. For further reference, we call this strategy ALNS-
FDATTP. This ALNS based strategy starts by solving the transport problem. The transport
problem determines how much goods are shipped between a depot and a customer. The solution
to the transport problem results in a order to depot assignment. We formulate a mathematical
model for the transport problem in Section 4.4.1. With the solutions to the transport problem, we
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divide the case into multiple single depot VRPs. For each of these single depot VRPs we apply
the Construction algorithm that is currently used by ORTEC. After this step, we have a feasible
solution for each individual depot. Per depot, we apply an ALNS algorithm in order to further
improve the current solution. We apply the basic ALNS strategy, which is described in Algorithm
1. Afterwards, we combine the single depot VRPs into one MDVRP. We evaluate the final solution
by summing the objective functions of the single depot problems. For testing purposes, we propose
to include the removal and repair operators that are mentioned in Table 4.2.

4.4.1 Transport Problem

According to Tansini et al. (2002) the transport problem aims to identify how many items are
supplied to a customer from a certain depot. We have seen in Chapter 3 that a customer can only
be supplied from a single depot. Inspired by Tansini et al. (2002) we describe a mathematical model
of the transport problem. The objective function in Equation 4.1 shows that we aim to minimize
the total costs of distributing goods from depots to customers. Here xi,j is a binary variable that
is equal to 1 if customer i is assigned to depot j. ci,j denote the costs of delivering customer i from
depot j. Since it is not straightforward to assign delivery costs for this problem, we take ci,j as the
distance between customer i and depot j. Constraint 4.2 and 4.4 together ensure that every order
is assigned to exactly one depot. Constraint 4.3 ensures that the capacity constraint of the depot is
not violated. The total quantity of goods that are delivered to customers from a certain depot may
not be larger than the capacity at the depot. Here di denotes the demand of order i. qj denotes
the total capacity of depot j.

min
∑
i

∑
j

xi,j · ci,j (4.1)

∑
j

xij = 1,∀i (4.2)

∑
i

xij · di ≤ qj ,∀j (4.3)

xij ∈ {0, 1} (4.4)

4.5 Hybrid Approach

The fifth ALNS based strategy, is a hybrid form between the previous four strategies. This hybrid
strategy is based on the work of Salhi et al. (2014). Instead of fixing the depot assignment for all
customers, we only fix the depot assignment for so-called non-borderline customers. The notations
needed to illustrate this idea, which follow from Salhi et al. (2014), are mentioned below.

I: Set of all customers, where I = {1, 2, ..., n}

D: Distance

pi: Nearest depot to customer i

p
′

i: Second nearest depot to customer i

B: the set of borderline customers
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η: Parameter that is used to distinguish between borderline customers and non borderline cus-
tomers. (0 < η < 1)

To determine which customers belong in set B, we take the following steps.

1. For each customer i, find pi and p
′

i. Set B = ∅.

2. For each customer i, compute ρ =
Dipi

D
ip
′
i

. If ρ ≤ η, allocate customer i to its nearest depot. If

ρ > η, assign customer i to set B.

After following these steps for all customers, all i /∈ B are assigned to their nearest depot. For the
i ∈ B, no depot assignment is fixed yet. These are the so-called border line customers. Following
the work of Salhi et al. (2014) we assign these border line customers to the nearest and second
nearest depot. This means that in the ALNS phase a task can be removed from a route on its
nearest depot, and placed in a route that belongs to the second nearest depot during the repair
phase. Using the aforementioned order to depot assignment, we run the ORTEC construction
method. This provides us with an initial solution. Afterwards the basic ALNS strategy is applied
to this solution. We refer to Algorithm 1 for a description of the basic ALNS strategy.

4.6 Conclusion

In this chapter, we described 5 different strategies for applying ALNS on the VRP of the retail
client. This description provides us with enough insight to answer research question 3a, Which
solution strategies can be defined to provide a solution to the VRP of the retail client? This chapter
describes 5 different solution strategies. We summarize these strategies below in Table 4.3. Each of
these strategies uses a different amount of freedom in the assignment of tasks to depots. Including
these strategies in our tests should provide us with enough insight in the influence of dynamic
sourcing on ALNS. This tackles the most difficult aspect of our case. Moreover, by including new
ALNS operators, we believe that the proposed strategies are able to tackle all other aspects of the
VRP of the retail client sufficiently.
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Table 4.3: Summary of Solution Strategies

# Strategy Summary

1 Basic ALNS This strategy uses current techniques and practices of OR-
TEC.

2 Improved Basic ALNS This strategy extends the Basic ALNS strategy by including
new repair operators.

3 ALNS with fixed depot as-
signment

This strategy uses the current solution algorithm to de-
termine depot assignment. ALNS is then applied on each
depot individually while using pre-determined routes.

4 ALNS-FDATTP This strategy solves the transport problem to determine the
depot assignment. Per depot the current construction and
local search finds an initial solution. Next, ALNS is applied
for each depot

5 Hybrid ALNS strategy The hybrid approach uses the approach of Salhi et al. (2014)
to determine the depot assignment. Afterwards ALNS is
applied per depot and for the complete case iteratively
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Chapter 5

Computational Experiments

In the previous section, we defined five different solution strategies. As explained in Chapter 1, the
aim of this thesis is to apply ALNS in such a way that it produces good solutions for the VRP cases
of the retail client. This chapter explains how we arrive at the best possible configuration for each
of the solution strategies that are defined in Chapter 4. Section 5.1 explains the test approach that
we employ in this thesis. Afterwards, Section 5.2 describes the parameter tuning process that we
follow to define the settings for each of the solution strategies. Section 5.3 analyses the operators
that ALNS uses. Finally, Section 5.4 provides an analysis of the number of iterations needed in the
various ALNS strategies. We devote a separate chapter to the comparison of the solution strategy.
This allows us to better evaluate and explain the results.

5.1 Test Approach

In this section, we describe the test approach that we use in this research. The process that we
follow to test the 5 solution strategies can be divided into 2 steps. The first step is to determine the
parameter settings for each of the strategies. Section 5.2 explains in more detail how we determine
the parameter values for each of the strategies. The second step of the test approach is to compare
the performance of the different solution strategies. We use the outcomes of the parameter tuning
step to evaluate the performance of the solution strategies.

5.1.1 Test Data

In total we have access to 20 VRP cases of the retail client. Chapter 3 introduces these cases, but for
completeness we list them below in Table 5.1. For our test approach, we divide these 20 cases in two
sets. The parameter tuning part uses the first set, consisting of 4 cases. This set consists of cases
5,7,10 and 18. These cases are selected at random. We are aware that it is desirable to use more
cases to perform the parameter tuning approach. The parameter tuning process requires running
many configurations. Since each test run takes between 15-30 minutes, we choose to perform the
parameter tuning on only 4 cases. Moreover, by choosing a limited amount of cases to perform the
parameter tuning, we prevent over fitting of the solution strategies to the cases. To test the ALNS
strategies, we use the algorithms that are available in CVRS. These algorithms are programmed in
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C + +. The tests are performed on a Windows 10 PC with eight-core Intel I7 processor and 8gb of
RAM.

Table 5.1: Overview of 20 test cases

5.1.2 Incorporating Depot Assignment Strategies

Three of the solution strategies, which we propose in Chapter 4, cannot be implemented directly in
CVRS. As a result of that, we design our own tools that allow us to test the proposed strategies.
First of all, we design a tool that allows us to solve the transport problem before starting an
optimization run in CVRS. To understand the data-structure of CVRS, we refer to Section 3.1.
From this it can be seen that CVRS uses a number of entities as input. We see that an order has
an attribute that is called ”allowed depots”. For the retail case, this attribute takes on the value
of all depots in the problem set. To translate the outcome of the transport problem to CVRS, we
manipulate this attribute. We choose to model the transport problem in Excel since it contains
good solvers that can quickly find good solutions for the transport problem. More importantly,
Excel is a tool that is readily available in many companies. Moreover, the outcomes can easily be
analysed afterwards. To import and transform all the data in order to solve the transport problem,
we make use of VBA. After running the application, the orders have only 1 allowed depot from
which they can be delivered. This information is used by CVRS to find a solution to the VRP.
We use the opensolver of Excel with CBC engine by Lougee-Heimer (2005), to solve the transport
problem. We refer to Appendix G for an explanation of the code that is used to solve the transport
problem and the code used for changing the depot assignment in the input files of CVRS.
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5.2 Parameter Tuning

This section describes how to determine the parameter settings for each of the solution strategies.
First, Subsection 5.2.1 introduces the parameter tuning process that is followed. Next, Subsections
5.2.2 to 5.2.6 show the results of the parameter tuning process for each solution strategy.

5.2.1 Parameter Tuning Process

In Section 3.1.3, we mention all parameters that can be configured for the ALNS algorithms.
However, not all settings are relevant for the VRP of the retail client.Table 5.2 presents the relevant
parameters.

Table 5.2: The different settings, which are determined for all ALNS strategies, shown with range
of possible values.

Setting Possible values Step-size

% of tasks to remove 1, 2, 3, 4, 5, 10, 15, ..40
Acceptance Threshold 1.01-1.05 0.01

Estimator “Costs”, “drivingtime”, “Waittimeandcosts”
Maximum Number of

Failed Insertions in a trip 50-100 10
Maximum Number of

Failed Insertions per group in a trip 10-25 5

Figure 5.1, illustrates the process that we follow to determine the optimal values for the param-
eters in Table 5.2. To tune the settings, we first set each of them to the highest possible value. This
allows the strategies to potentially explore the largest neighbourhoods possible. Moreover, since we
assume no interaction effects exist the estimator can be set to a random value from the set. As a
result, we expect ALNS to find very good solutions, but at the cost of a large computation time.
Next we reduce each of the parameters one by one. Figure 5.1 better illustrates this process. We
first reduce the % of tasks to remove. This parameter is likely to have the largest impact on the
solution quality. The original work of Pisinger and Ropke (2007) shows that it is best to remove
40% of tasks. Simons (2017) shows that it is more desirable to remove 15% of tasks for large cases.
As a result, we decrease the % of tasks to remove in steps of 5% from 40%, down to 5%. This gives
an indication for interesting area to explore further. With this setting, we investigate promising
values for acceptance threshold. Next, we reduce the value for Maximum number of failed insertions
per trip. After fixing this setting to the best performing value, we reduce the Maximum number of
failed insertions per group in a trip. Lastly, we fix all previously determined parameters and test
different values for the estimator. We repeat this process for each of the five solution strategies.
Subsections 5.2.2 to 5.2.6 contain the results of the parameter tuning process for each of the five
solution strategies. Ideally, we would also investigate interaction effects between the various param-
eters. However, running each configuration takes on average 20 minutes (including construction).
As a result, investigating interaction effects is computationally too intensive for this research.
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Figure 5.1: Illustration of the process that is followed to determine the parameter values
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5.2.2 Parameters Basic ALNS strategy

In this section, we determine the parameter settings for the Basic ALNS strategy. Following the
parameter tuning approach, which we describe in Section 5.2, we first determine the % of tasks to
remove. To determine this, we test values of 5% to 40%, in steps of 5%. The remaining settings
are configured as explained in Figure 5.1.

Figure 5.2 shows the relationship between the average improvement in costs, the computation
time and the % of tasks removed from a solution. We observe that only an improved solution is
found if 5% of all tasks in the solution is removed or less. Destroying a larger part of the solution
does only lead to an increase in computation time. We conclude that it is desirable to remove 2%
of tasks in the Basic ALNS strategy. Before proceeding to determine the values for the remaining
parameters, we fix the % of tasks to remove at 2% for all upcoming tests with this strategy. This
is in line with the strategy that we describe in Section 5.2. Comparing this with the findings of
Simons (2017), then we find contradictory results. Simons (2017) indicates that ALNS performs
best if approximately 15% of tasks is removed. Although the percentage of the solution to be
destroyed is smaller, the number of tasks is similar. This is due to the smaller case sizes used by
Simons (2017)
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Figure 5.2: Average costs decrease and computation time shown for different values of % of tasks
to remove.
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At this point, the percentage of tasks to remove is determined. Next we perform tests to find
the best value for Acceptance Threshold. Figure 5.3 illustrates the results of these tests. We see that
the solution quality is not affected by the range of values that we test. Moreover, the computation
time increases if we increase the value of the threshold. This is explained by the increased number
of times that local search is tried. We conclude that it is possible to find the same solutions in less
computation time, if we fix the Acceptance Threshold to 1.01.
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Figure 5.3: Average cost decrease and computation time shown for different values of acceptance
threshold
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Next, we fix the % of tasks to remove at 2% and the Acceptance Threshold at 1.01. With these
values, we determine the Failed insertions in a trip and following the failed insertions per group in
a trip. Figure 5.4 and Figure 5.5 show the results of these tests. First we change the number of
failed insertions in a trip. Figure 5.4 shows that reducing the maximum number of failed insertions
in a trip below 60 leads to a decrease in the quality of the solution. Furthermore, the setting does
not affect the calculation time too much. For the maximum number of failed insertions per group
in a trip, we see that the solution quality and computation time remains constant, for the different
values that we tested.
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Figure 5.4: Cost decrease and computation time for different values of failed insertions in a trip
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Figure 5.5: Cost decrease and computation time for different values of Failed Insertions per group
in a trip

Lastly, we decide which estimator needs to be used. After fixing the aforementioned parameters
to their best possible values, we compare the three different estimators. Based on the results, which
are shown in Figure 5.6, we conclude that driving time is the best estimator to use. The best
performing configuration for the basic ALNS strategy is shown in Table 5.3.
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Figure 5.6: Average cost decrease and computation time shown for different values of acceptance
threshold

Table 5.3: Best performing configuration for the basic ALNS strategy

%Tasks
To Remove

Estimator
Acceptance
Threshold

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Costs Decrease
(in %)

Computation
Time
(in minutes)

2 DrivingTime 1.01 60 10 0.13 14.21

5.2.3 Parameter Tuning Extended Basic ALNS Strategy

In this section we describe how we derive the parameter values for the Extended Basic ALNS
strategy. This strategy includes an additional route selector. We follow the same approach to
determine the values for the parameters as we did for the basic ALNS strategy. Based on the
outcomes in the previous section, we conclude that removing more than 5% of tasks increases
the computation time largely, while the solution is not improved much. Since we include a more
powerful recreate method, we believe that it is possible to remove a larger part of the solution. As
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a result, we perform tests with % of tasks to remove between 1 and 7(step-size of 1). Based on
the average results, we conclude that it remains desirable to remove 1% of tasks from the solution.
Following the same approach as for the Basic ALNS strategy, we tune the remaining parameters.
We refer to Appendix H for all the results of the parameter tuning process. Table 5.4 shows the
best performing configuration.

Table 5.4: Best performing configuration for the extended ALNS strategy

%Tasks
To Remove

Estimator
Acceptance
Threshold

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Costs Decrease
(in %)

Computation
Time
(in minutes)

1 DrivingTime 1.01 50 15 0.23 9.34

5.2.4 Parameter Tuning ALNS with fixed depot assignment

This section describes how we tune the parameters for the extended basic ALNS strategy. We
follow the same parameter tuning approach that we explained in Section 5.2.1. As a result, we first
tune the % of tasks to remove from a solution. Appendix H shows the outcomes of these tests.
The results show that the best solution is found if 4% of tasks is removed when using the driving
time estimator. This is 4% of the tasks that are included in a single depot problem. Compared
with the previous strategies, we must remove a larger % of the tasks from the solution. This is
due to the fact that the cases are smaller when using this third strategy. Using the best values
for the aforementioned parameters, we determine the acceptance threshold. Based on the results
in Appendix H, we conclude that the best results are achieved for an acceptance threshold of 1.01.
Accepting a lower number of worse solutions, does not result in a worse final solution, but the
computation time decreases. Lastly, we can reduce the computation time of the algorithm together
with a small improvement in the costs by setting values for number of failed insertions in a trip
and number of failed insertions per group in a trip. Appendix H contains the results of all these
tests. Table 5.5 shows the best performing strategy.

Table 5.5: Test results to determine the % of tasks to remove for the ALNS strategy with fixed
depot assignment

%Tasks
To Remove

Estimator
Acceptance
Threshold

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Costs Decrease
(in %)

Computation
Time
(in minutes)

4 DrivingTime 1.01 50 5 0.29 8.75

5.2.5 Parameter Tuning Fixed depot assignment through Transportation
Problem

This section describes how we determine the parameters for the fourth strategy. To find good
parameter settings, we use the OFAT approach. Based on the experience from the parameter
tuning process of the aforementioned 3 strategies, we believe that removing large number of tasks
from a solution does not lead to improvements. As a result, we only test with values for % of tasks
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to remove that is less than 5%. Appendix H shows the results of all other tests that we conducted
to determine the parameter settings. We see that the best results are achieved when 5% of tasks is
removed. This gives us reason to believe that removing larger parts of the solution can be beneficial.
After performing extra tests, we conclude that destroying 6% of a solution in each iteration gives
the best results. Appendix H contains the results of all tests. The best performing configuration
is shown in Table 5.6 This configuration improves the solution the most, within the least amount
of time. In the calculation of the computation time we neglect the time needed for solving the
transport problem. Additional tests show that the transport problem can be solved using in less
than 1 second for some of the largest cases. This is so small compared to the allowed computation
time of 35 minutes that we neglect it here. Since the depot assignment is strict in this strategy, on
average only 93.5% of the tasks are planned. It is likely that the time-windows of the orders are
too strict and as a result it is not possible to find a complete schedule. As a result, for the test
cases, this strategy is not guaranteed to find a feasible solution.

Table 5.6: Test results to determine the % of tasks to remove for the ALNS strategy with fixed
depot assignment

%Tasks
To Remove

Estimator
Acceptance
Threshold

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Costs Decrease
(in %)

Computation
Time
(in minutes)

6 Costs 1.04 80 15 0.37 10.38

5.2.6 Parameter Tuning hybrid ALNS strategy

This section describes the parameter tuning of the hybrid ALNS strategy. Appendix H shows the
results of the tests that we conduct to determine the parameters for this strategy. Based on the
outcomes of these tests, we conclude that the best solutions are achieved when 1% of the solution
is destroyed. Next, the threshold of accepting worse solutions should be set to 1.03. We conclude
that lowering this threshold further increases the computation time, while the total costs of the
solution do not change. Next, we further reduce the computation time by reducing the maximum
number of iterations in a trip and the maximum number of iterations per group in a trip. We
refer to Appendix H for the outcomes of the remaining tests. Table 5.7 shows the best performing
strategy.

Table 5.7: Test results to determine the % of tasks to remove for the ALNS strategy with fixed
depot assignment

%Tasks
To Remove

Estimator
Acceptance
Threshold

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Costs Decrease
(in %)

Computation
Time
(in minutes)

1 DrivingTime 1.03 90 15 0.57 12.58
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5.3 Analysis of ALNS Components

In this section, we analyse the different components of the strategies. We aim to identify which
combination of operators work well in combination with what solution strategy. In this section we
dive into the performance of the methods that ALNS uses to destroy and repair a solution. We
focus on identifying which methods are successful and which are less successful. Moreover, we try
to explain why certain methods are effective and others not. Figure 5.7 and Figure 5.8 together
with Appendix I show the performance of the ALNS methods for each strategy for the 4 parameter
tuning cases. Based on these results, we conclude that some methods contribute more to improving
the solution than others. In general we see that the removal methods which remove tasks according
to some relationship function, for example cluster removal, related removal or trip removal, are
generally successful. Moreover, we conclude that for the basic strategy and extended basic strategy,
worst removal and random removal are not effective. We argue that this is caused by the size of the
cases. If two tasks are removed from the solution at random, it is likely that these tasks are located
far away from each other. As a result, not much improvement in the solution can be achieved
during the repair phase. As a result, it may be more effective to destroy a localized part of the
solution for large sized cases. We base these conclusions on Figure 5.7 and Figure I.

Appendix I concludes that related removal is by far responsible for the largest amount of im-
provements to the solution. However, the improvements that are found are generally relatively
small. As a result, the total decrease in transport costs is similar to the random removal opera-
tor. It is reasonable to assume that if a localized part of the solution is destroyed, the possible
improvement found is also small. The figures in Appendix I show the performance of the ALNS
methods for the hybrid strategy. We find that the most improvement in transport costs is found
by the trip removal method. Trip removal methods also find these improvements in less iterations.
Thus, for the hybrid ALNS strategy the trip removal method is most effective. We argue that
this method removes multiple trips from different depots. If this happens, the depot assignment of
the borderline customer can change. This results in better solutions that are not found with the
other operators. In this strategy, small improvements are found by random removal methods. This
method accounts for 21% of total number of improvements, but only improves the solution with
2%. We argue that the large size of the cases is the cause of the ineffectiveness of random removal.
Randomly removing tasks from the solution that lay in different parts of the distribution network,
limits the number of feasible repair options. Resulting, randomly removing tasks is less effective.
With concerns to the repair operators, we see that a large part of the improvements is found by the
regret insertion methods. This method is especially successful in combination with related removal,
cluster removal and trip removal. We argue that this observation makes sense. The aforementioned
destroy methods remove tasks from a solution that are usually located closely together. During the
repair phase, the insertion options of these tasks are often overlapping. Thus the regret factor is of
influence on the solution quality. If tasks are removed in a random fashion, these tasks are often
located far away from each other. This means that the repair options for these tasks are usually
non-overlapping. As a result, the order in which the tasks are inserted is not so important. Hence,
regret insertion is not necessarily better in combination with aforementioned removal method.
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Figure 5.7: Analysis of effectiveness of destroy and recreate methods for the standard ALNS strat-
egy. Expressed in the % of times that a method improved the solution as part of total number of
improvements.
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Figure 5.8: Analysis of effectiveness of destroy and recreate methods. Measured in % of costs
decrease as part of total costs decrease found by ALNS.

5.4 Analysis of the number of iterations needed for ALNS

In this section we analyse the total number of iterations for each of the proposed solution strategies.
Figure 5.9 and Figure 5.10 show the relationship between the number of iterations, the Computation
Time and the costs decrease. Figure 5.10 shows that after 250 iterations, ALNS finds hardly any
improvements. We see that the computation time for 3 of the solution strategies is approximately
5 minutes. For most of the cases, this will be feasible. For the extended basic ALNS strategy
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and the hybrid ALNS strategy, the computation time exceeds 20 minutes. Since for a large part
of the cases the construction heuristic already takes close to 35 minutes, it is not possible to run
so many iterations within the available computation time. To overcome the problem, we advice
ORTEC to do the following. We set the number of iterations to 400. This far exceeds the number of
iterations that is usually used by ORTEC. Although for the test cases, no more than 250 iterations
are needed for each strategy, future unknown cases may require more iterations. As long as the
maximum computation time is not exceeded, this is allowed. We present the results of tests with
this setting in Chapter 6. For practical implications, we advice ORTEC to use a setting that stops
the ALNS algorithms as soon as the maximum computation time is reached.
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Figure 5.9: Development of the average computation time for the number of iterations
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Figure 5.10: Development of the average transport costs for the number of iterations

5.5 Conclusion

In this section, we presented the results of the computational experiments for each of the five
solution strategies. Section 5.1 showed the test approach described how we incorporate the depot
assignment strategies in CVRS. The test approach allows us to compare the performance of the
different solution strategies.

To compare the solution strategies, we must determine the best possible configuration for each
of the solution strategies. Section 5.2 describes which steps are followed to determine the best
performing configuration for each solution strategy. To prevent over fitting of the strategies on the
individual cases, we separated the test cases in two groups. For each of the strategies, we found their
best performing configuration. Table 7.1 shos the best performing configuration for each strategy.

Table 5.8: Overview of best performing configuraitons for each solution strategies

Strategy
% of tasks
to remove

Estimator
Threshold
Acceptance

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Basic ALNS 2 DrivingTime 1.01 60 10
Extended Basic ALNS 1 DrivingTime 1.00 50 15
ALNS With Fixed
Depot Assignment

4 DrivingTime 1.01 50 5

ALNS-FDATTP 6 Costs 1.04 80 15
Hybrid ALNS 1 DrivingTime 1.03 90 15
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Furthermore, Section 5.3 analysed the performance of the different ALNS components. We
found that the effectiveness of the ALNS methods is different for each of the solution strategies.
For the large cases, the ALNS methods that destroy tasks which are located close to each other are
more effective.

Finally, Section 5.4 provides a description of the number of iterations needed for each of the
solution strategies. With the experiments that are conducted in this section, we found for each of
the solution strategies the best performing configuration. The configurations that are found in this
chapter are used in Chapter 6 to compare the performance of the different solution strategies.
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Chapter 6

Strategy Comparison

With the information of the previous chapter, we know the best performing configuration for each
of the solution strategies. This chapter compares the outcomes of the different solution strategies.
Section 6.1 discusses the outcomes of the solution strategies on the 16 cases of the retail client.
Section 6.2 discusses for each solution strategy how the results are substantiated and how our
findings relate to existing research. We identify the influence of the computation time restriction to
the effectiveness of ALNS. Section 6.3 provides this discussion. Lastly, Section 6.4 discusses what
the influence of the initial solution is on the effectiveness of ALNS.

6.1 Results Compared

This section describes the performance comparison of the different ALNS strategies. Table 6.1
shows the performance of the five solution strategies on the 16 cases of the retail client. For each
strategy the computation time and improvement in costs is shown. Equation 6.1 shows how the
costs improvement is calculated.

Costs Improvement =
Costsafterconstruction − Costsnew

Costsafterconstruction
∗ 100% (6.1)

Ranking the solution strategies based only on costs improvement is not fair. Equation 6.1
shows that the cost improvement is a difference between the solution after construction and the
final solution. The hybrid ALNS strategy and the ALNS-FDATTP strategy have a different initial
solution than the remaining 3 solution strategies. Due to stricter depot assignment strategies, the
number of planned tasks is much lower for the hybrid ALNS and the ALNS-FDATTP. Table 6.2
shows how many tasks are planned for the aforementioned solution strategies. We see that the
ALNS-FDATTP strategy plans on average 93.5% of the tasks. The Hybrid ALNS strategy plans
on average only 81.9% of the tasks. We conclude that this is the cause for the higher efficiency of
the ALNS strategies. If less tasks are planned, vehicles have a lower occupation. This allows ALNS
to find changes to the solution that cannot be found when more tasks are planned. The remaining
3 solution strategies all use the same initial solution. As a result of this, the improvements, which
are found by ALNS, are measured in similar ways. We conclude that the Basic ALNS strategy is on
average the best performing strategy, followed by the ALNS strategy with fixed depot assignment
and the extended Basic ALNS strategy.

Page 55



6.1. RESULTS COMPARED

T
a
b

le
6
.1

:
A

vera
g
e

C
o
sts

d
ecrease(%

)
an

d
co

m
p

u
ta

tio
n

tim
e(m

in
u

tes)
fo

r
th

e
5

so
lu

tio
n

stra
teg

ies
over

th
e

rem
ain

in
g

16
cases.

S
o
lu

tion
S
trateg

y

B
asic

A
L

N
S

E
x
ten

d
ed

B
a
sic

A
L

N
S

A
L

N
S

W
ith

F
ix

ed
D

ep
ot

A
ssign

m
en

t

A
L

N
S

w
ith

F
ix

ed
D

ep
ot

A
ssign

m
en

t
T

h
rou

g
h

T
P

H
y
b
rid

A
L

N
S

C
a
se

C
osts

D
ecrea

se
C

om
p
u
tation

T
im

e
C

osts
D

ecrea
se

C
om

p
u
tatio

n
T

im
e

C
osts

D
ecrease

C
om

p
u
tatio

n
T

im
e

C
o
sts

D
ecrease

C
o
m

p
u
ta

tion
T

im
e

C
osts

D
ecrea

se
C

om
p
u
tatio

n
T

im
e

1
0
,0

0
15,23

0
,0

0
67

5,25
0,11

19,86
0
,00

3
8,51

0
,0

0
9,22

2
0
,0

0
6,88

0
,0

1
28

2,09
0,13

8
,37

0
,06

9
,3

4
0
,0

1
6,09

3
0
,0

0
16,92

0
,0

0
1
049,1

3
0,30

21,14
0
,06

1
8,88

0
,8

5
1
1
,2

5
4

0
,0

0
16,06

0
,0

1
60

2,07
0,01

14,87
0
,14

1
7,59

0
,0

0
9,57

6
0
,1

2
24,01

0
,0

8
25

6,37
0,02

27,73
0
,00

6
4,78

0
,0

7
2
2
,4

6
8

0
,0

1
22,64

0
,0

1
29

4,95
0,00

30,71
0
,00

3
5,16

0
,0

0
2
1
,5

1
9

0
,0

4
17,94

0
,0

0
11

5,51
0,01

27,59
0
,01

2
8,05

0
,0

0
1
5
,5

1
10

0,00
23

,9
3

0
,0

0
526

,93
0,02

27,50
0,0

1
4
6
,0

2
0
,0

0
23

,5
8

12
0,46

18
,3

9
0
,5

4
66,10

0,09
5,2

5
0,0

0
1
4
,1

3
0
,7

9
3
,9

3
13

0,00
11

,8
2

0
,3

9
902

,15
0,01

23,16
0,1

8
2
3
,5

0
1
,1

0
18

,3
4

14
0,99

16
,2

7
0
,5

6
301

,07
0,04

15,90
0,7

7
1
6
,1

7
1
,2

0
9
,0

8
15

0,02
13

,3
1

0
,0

4
794

,41
0,05

21,17
0,5

8
1
7
,8

4
0
,0

0
11

,9
7

16
0,99

11
,7

2
0
,0

1
199

,34
0,49

26,09
0,1

2
2
3
,2

2
0
,0

1
11

,6
4

17
0,85

19
,5

5
0
,0

0
363

,35
0,03

10,86
0,0

2
2
6
,2

8
0
,7

7
6
,5

8
19

0,00
14

,1
5

0
,0

0
281

,32
0,48

12,82
0,4

2
2
0
,2

8
0
,3

3
10

,3
9

20
0,01

25
,0

6
0
,0

0
397

,97
0,04

18,88
0,0

4
1
9
,6

4
0
,0

0
7
,8

3

A
vera

ge
0,22

1
6,95

0,10
4
44,25

0,1
1

19
,49

0,15
2
6,21

0
,3

2
1
2
,4

4

V
a
rian

ce
0
,1

4
0
,04

0
,03

0
,0

5
0,20

Page 56



6.1. RESULTS COMPARED

Table 6.2: Percentage of tasks planned for the Hybrid ALNS strategy and ALNS-FDATTP strategy

Case
ALNS with

Fixed Depot Assignment
Through TP

Hybrid ALNS

1 95.12 87.1
2 99.3 93.8
3 88.0 58.3
4 97.2 70.0
6 96.5 95.5
8 94.0 97.1
9 98.4 97.2
10 94.6 96.2
12 95.3 87.6
13 79.5 75.3
14 97.7 81.8
15 78.3 65.3
16 90.8 81.4
17 99.0 62.1
19 100 78.3
20 97.6 83.9

Average 93.5 81.9

Variance 49.7 1.7
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6.2 Results Explained per Strategy

We are now familiar with the average performance of each of the solution strategies. In this section
we elaborate in detail on the performance of each strategy. We substantiate the results for each
solution strategy for the individual cases.

6.2.1 Results explained for the Basic ALNS strategy

Table 6.3 shows the results that are obtained by the basic ALNS strategy. The numbers in Table 6.3
represent reductions in respectively number of trips, total distance, total duration and total costs.
A positive number means a reduction, and a negative number means an increase in the respective
KPI. The results show that the largest costs reductions are obtained for cases 12, 14, 16 and 17.
We immediately observe that these large improvements are found by reduction in the number of
trips. The results show for only case 6 a visible cost reduction that is not caused by a reduction of
the number of trips. For this case, the total distance and total duration is reduced after applying
ALNS. We refer back to Section 3.2.3 where we explain how the costs are substantiated. From here
it can be seen that the costs per hour, distance and stop are much smaller compared to the costs
per trip. As a result of this, reductions in each of the objectives does not count equally.

Table 6.3: Difference in distance, total duration, number of trips and costs that are realized by the
basic ALNS strategy.

Case
Reduction
In Trips

Reduction
In Distance
(in KM.)

Difference In
Total Duration

(in hours)
Cost Reduction in %

1 0 0.24 0.00 0.00
2 0 0.03 0.00 0.00
3 0 0.00 0.00 0.00
4 0 0.25 -0.16 0.00
6 0 19.47 2.15 0.12
8 0 -1.45 0.11 0.01
9 0 -17.27 0.9 0.04
10 0 0.00 0.00 0.00
12 1 -137.89 -4.45 0.46
13 0 2.03 -0.02 0.00
14 2 -55.18 -2.99 0.99
15 0 45.62 -0.2 0.02
16 2 -97.91 -3.11 0.99
17 1 22.46 -2.06 0.85
19 0 3.54 -0.36 0.00
20 0 4.90 0.16 0.01

We include Table 6.4 to explain why in some cases the total number of trips can be reduced and
why in others not. We see that the utilization is the highest for cases 6-10. With the exception of
case 6, the basic ALNS strategy hardly improves the solution for these cases. For cases 12, 14, 16
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and 17, the utilization of the vehicles is 94.5% and less. Based on this analysis it is expected that
the basic ALNS strategy is also effective for cases 1 until 4. However, the structure of these cases
is significantly different. We refer to confidential Appendix B for an overview of the distribution
network per case. The appendix shows that the distance between depots is much larger for cases 1
until 4, than for cases 12,14,16 and 17. As a result, the basic ALNS strategy attempts to re-assign
orders to another depot. If the distance between the depots is large, these changes do not result in
improvements.

Table 6.4: Additional characteristic of the cases, which are needed to better understand the effec-
tiveness of the ALNS strategies.

6.2.2 Results Explained for the Extended Basic ALNS strategy

This section explains the results of the extended basic ALNS strategy. This strategy extends the
aforementioned strategy with a new route selector. As a result, it is interesting to compare the
outcomes of this strategy to the basic ALNS strategy. Table 6.5 shows the reductions in total
number of trips, total distance, total duration and total costs. The basic ALNS strategy finds
negligible improvements for cases 1 until 4. The improvements found by the extended basic ALNS
strategy are a little better. For instance, the reduction in distance for case 4 is 10 times larger with
the additional route selector, while the total duration does not become worse. For cases 6 until
10, the additional route selector is not beneficial. Table 6.4 shows that these cases have a high
utilization of vehicles. As a result of this it is infeasible to assign orders to the closest depot. Only
for case 13, the improvement found by the extra route selector is significantly beneficial. It manages
to find a solution with 1 route less. This solution is not found by the Basic ALNS strategy.
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6.2. RESULTS EXPLAINED PER STRATEGY

Table 6.5: Difference in distance, total duration, number of trips and costs that are realized by the
extended basic ALNS strategy.

Case
Reduction
In Trips

Reduction
In Distance
(in KM.)

Difference In
Total Duration

(in hours)
Cost Reduction in %

1 0 0.71 0.03 0.00
2 0 -1.59 0.14 0.01
3 0 0.00 0.00 0.00
4 0 24.37 0.00 0.01
6 0 -12.48 1.99 0.08
8 0 -2.21 0.21 0.01
9 0 0.00 0.00 0.00
10 0 0.00 0.00 0.00
12 1 -118.17 -3.95 0.54
13 1 12.78 -1.3 0.39
14 1 9.71 -0.27 0.56
15 0 30.31 0.67 0.04
16 0 -16.59 0.27 0.01
17 0 0.00 0.00 0.00
19 0 0.47 0.05 0.00
20 0 0.00 0.00 0.00

6.2.3 Results Explained for the ALNS strategy with fixed depot assign-
ment

Table 6.6 shows the change in number of trips used, change in duration and change in total distance.
Corresponding with the outcomes shown in Section 6.2.1, the largest improvements are found when
the number of trips can be reduced. This is the case for cases 3, 16 and 19. Unlike the previous
2 strategies, we observe that this strategy finds significant reductions in total distance and total
duration. Especially for cases 1 until 4. We saw earlier that the Basic ALNS strategy is unable to
find improvements for these cases. This strategy finds reductions in total distance and total duration
for cases 1,2 and 4 and finds a reduction in the number of trips for case 3. This is explained by the
structure of the cases. Appendix B shows that the distance between depots is much larger for cases
1 until 4. As a result, it is not efficient to change the depot assignment after construction. This
results in improvements found by the strategy that forbids any depot assignment changes during
the ALNS phase. Also for the remainder of the cases, this strategy is generally better in finding
improvements in distance and total duration than the previously 2 discussed strategies.
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Table 6.6: Difference in distance, total duration, number of trips and costs that are realized by the
ALNS strategy with fixed depot assignment.

Case
Difference
In Trips

Difference
In Distance

Difference In
Total Duration

Cost Reduction in %

1 0 6.92 1.81 0.11
2 0 38.69 1.69 0.13
3 1 -62.33 -3.30 0.30
4 0 -5.19 0.18 0.01
6 0 -1.17 0.36 0.02
8 0 0.16 0.01 0.00
9 0 0.20 0.17 0.01
10 0 9.04 0.49 0.02
12 0 -14.4 1.56 0.09
13 0 3.88 0.3 0.01
14 0 9.60 0.19 0.04
15 0 -5.71 1.26 0.05
16 1 -29.06 -1.55 0.49
17 0 3.14 0.73 0.03
19 1 -19.48 -0.98 0.48
20 0 -9.37 0.98 0.04

6.2.4 Results Explained for the ALNS-FDATTP strategy

This section discusses the results that are obtained by the ALNS-FDATTP strategy. This strategy
has a different initial solution compared to the strategies that are discussed so far. This is caused
by a stricter depot assignment. As a result of this, it is difficult to compare the results with the
aforementioned solution strategies. The results show that the largest improvements are obtained
for the cases in which the number of trips is reduced. This is in line with the previous findings. The
results also show that large improvements are obtained in terms of distance and total duration. In
the previous section, we show that the reductions in distance and total duration are larger when
ALNS is applied per depot. The results from this strategy confirm these findings. The magnitude
of improvements with this strategy is a little higher. This is caused by the fact that less orders are
planned in this strategy.

Page 61



6.2. RESULTS EXPLAINED PER STRATEGY

Table 6.7: Difference in distance, total duration, number of trips and costs that are realized by the
ALNS-FDATTP strategy.

Case
Difference
In Trips

Difference
In Distance

Difference In
Total Duration

Cost Reduction in %

1 0 0.00 0.00 0.00
2 0 20.94 0.7 0.06
3 0 59.34 0.53 0.06
4 0 105.71 1.81 0.14
6 0 0.00 0.00 0.00
8 0 1.35 0.01 0.00
9 0 13.27 0.17 0.01
10 0 5.07 0.19 0.01
12 0 0.00 0.00 0.00
13 0 42.31 2.84 0.18
14 1 69.46 2.52 0.77
15 1 20.4 1.25 0.58
16 0 38.55 1.58 0.12
17 0 6.18 -0.07 0.02
19 1 -82.55 -1.59 0.42
20 0 7.12 0.7 0.04

6.2.5 Results Explained for the Hybrid ALNS strategy

This section discusses the outcomes of the hybrid ALNS strategy. Table 6.8 shows the difference in
number of trips used, the difference in total distance and the difference in total duration. In line
with the previous observations, we see that the largest improvements are found when the number of
trips is reduced. The number of planned tasks is different from the aforementioned strategies. As a
result of this, it is difficult to compare this strategy with the aforementioned strategies. However,
we can say something about the differences in performance on each case. The results show that for
cases 4,8,9 and 10 the costs improvement is negligible. We see that cases 8,9 and 10 have both a
high utilization and a low number of depots. The low number of depots, together with the small
distance between the depots reduce the effectiveness of the hybrid strategy. If the distance between
the depots is small, the separation between borderline customers and non-borderline customers is
too strict. The hybrid strategy in this case forbids too many changes. As a result of this, the
effectiveness of ALNS is reduced.
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Table 6.8: Difference in distance, total duration, number of trips and costs that are realized by the
hybrid ALNS strategy.

Case
Difference
In Trips

Difference
In Distance

Difference In
Total Duration

Cost Reduction in %

1 0 0.39 0.01 0.00
2 0 0.60 0.26 0.01
3 1 -9.05 -0.32 0.85
4 0 0.00 0.00 0.00
6 0 -2.19 1.4 0.07
8 0 0.12 0.00 0.00
9 0 0.00 0.00 0.00
10 0 0.19 0.00 0.00
12 1 -7.91 -1.77 0.79
13 2 -30.36 -0.92 1.10
14 2 -62.17 -2.29 1.20
15 0 0.00 0.00 0.00
16 0 5.58 0.04 0.01
17 2 19.38 1.28 0.77
19 1 -87.62 -4.63 0.33
20 0 0.00 0.00 0.00

6.3 Results after restricted computation time

Thus far we have ignored the computation time restriction. This way have better shown the
potential of the ALNS strategies. This section presents the results if we include the computation
time restriction. Table 6.9 shows the results that each strategy obtains when the computation time
is limited to 35 minutes. Based on this, we see that the hybrid strategy is on average no longer the
best strategy. Moreover, we see that this strategy does not find any improvement within the allowed
computation time of 35 minutes. This is due to the fact that the ORTEC construction heuristic in
combination with this strategy already takes the full 35 minutes. This is due to a construction in
the software of ORTEC. Also the extended basic ALNS strategy no longer finds any improvements
within the limited computation time. This is caused by the large computation time needed for
the proposed route selector. To make this selector work in the current capabilities of ORTEC, a
sorting action is executed. Since the cases are large and sorting orders is a computationally intensive
operation, this requires a lot of time. One of the main benefits of the ALNS strategies with fixed
depot assignment, is that the construction heuristic can be applied for each depot individually.
Each single depot problem is smaller than the combined multi-depot problem. As a result, the
time needed for the construction heuristic can decrease for many cases. Although the basic ALNS
strategy performs worse when the computation time is restricted to 35 minutes, on average it is
still best. The results show that on cases 1-4, the ALNS strategy with fixed depot assignment is
best. On cases 6-10, hardly any improvements are found by any of the strategies. Recall that the
utilization of these cases were higher than 96%. We recommend to use the basic ALNS strategy for
the cases 12-18. Case 19 and 20 can best be optimized using the ALNS strategy with fixed depot
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assignment.

Table 6.9: Overview of performance of ALNS strategies with restricted computation time

Case Basic ALNS
Extended

Basic ALNS
ALNS With

Fixed Depot Assignment
ALNS-

FDATTP
Hybrid ALNS

1 0.00 0.00 0.11 0.00 0.00
2 0.00 0.00 0.13 0.06 0.00
3 0.00 0.00 0.30 0.06 0.00
4 0.00 0.00 0.01 0.14 0.00
6 0.00 0.00 0.02 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00
9 0.04 0.00 0.01 0.01 0.00
10 0.00 0.00 0.02 0.01 0.00
12 0.46 0.00 0.00 0.00 0.00
13 0.00 0.00 0.00 0.18 0.00
14 0.99 0.00 0.00 0.77 0.00
15 0.00 0.00 0.00 0.58 0.00
16 0.58 0.00 0.49 0.12 0.00
17 0.85 0.00 0.03 0.02 0.00
19 0.00 0.00 0.48 0.42 0.00
20 0.01 0.00 0.04 0.04 0.00

Average 0.18 0.00 0.10 0.15 0.00

Variance 0.12 0.00 0.03 0.05 0.00

6.4 Impact of initial solution

This section discusses the impact of the initial solution to the effectiveness of ALNS. Simons (2017)
indicates that ALNS at ORTEC works better if the initial solution is already very good. To assess if
this is valid for the VRP of the retail client, we test the basic ALNS strategy with a different initial
solution. Chapter 3 shows that in the ORTEC includes a local search phase in its Construction
Heuristic. The tests in this section use the ORTEC construction heuristic, but without the local
search phase. As a result, the total costs of the initial solution will be higher.

We only perform this test for the Basic ALNS strategy for the following reason. This Basic ALNS
strategy guarantees to find an initial solution for all cases and shows the best average performance.
The extended ALNS strategy and the ALNS strategy with fixed depot assignment show on average
a worse performance. As a result, we exclude the latter two strategies from these tests. The hybrid
ALNS strategy and the ALNS-FDATTP do not find feasible solutions. These strategies require
tailored new construction heuristics to find feasible solutions. This is outside the scope of this
research. As a result, these strategies are also not included in these tests.

Table 6.10 shows the best performing configuration for the basic ALNS strategy. We follow the
procedure that is described in Section 5.2 to determine the best values of the parameters. If we
compare the configuration in Table 6.10 with the configuration of Table 5.3, then we conclude that
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Table 6.10: Test results to determine the % of tasks to remove for the basic ALNS strategy with
worse initial solution

%Tasks
To Remove

Estimator
Acceptance
Threshold

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Costs
Decrease
(in %)

Computation
Time
(in Minutes)

15
WaitTime-
AndCosts

1.01 50 5 0.26 65

after a worse initial solution, a larger part of the solution must be removed. Table 6.11 contains the
results of the basic ALNS strategy after a worse initial solution. The results show that the strategy
remains effective on only a subset of all cases. However, we do see that the improvement that is
found increases. When we start with a worse initial solution, we see that the average improvement
is 0.63%. For a better initial solution, this improvement was only 0.25% on average. However,
since we destroy a much larger part of the solution, the computation time is also much larger. We
must make clear that, although the improvement compared to the initial solution is larger, the final
solution quality is worse. Thus, if a worse initial solution is used, the final solution is also worse.

Table 6.12 shows how the results of the Basic ALNS strategy are obtained after a different initial
solution. The results show that not for each case the solution can be improved by ALNS. This is in
line with the findings of Simons (2017). She shows that the initial solution is globally so bad, that
even ALNS cannot find an improvement. For the cases that do find an improvement, we see that
this is caused by differences in distance and total duration. These improvements are much larger
than those obtained when the original initial solution is used. This indicates that the solution found
by the ORTEC construction heuristic is stuck in a local optimum. Normally, ALNS should be able
to escape from such a local optimum. However, due to the unique design of the cost sets and the
high utilization of the vehicles ALNS only finds small improvements to the total distance and total
duration.

6.5 Conclusion

This chapter compares the performance of the five solution strategies. The results show that there
is not a unique solution strategy that is suitable for all cases. In particular, the results show that
the basic ALNS strategy is most effective for the cases where the distance between the depots is
not too large. If the distance between the various depots is very large, it is most effective to apply
the ALNS strategy with fixed depot assignment. We have also shown that the computation time
currently is too restrictive for many cases. As a result of this, ALNS does not find improvements for
the cases where the construction heuristic already takes 35 minutes. Lastly, we have shown what
the influence is from the initial solution on the quality of the final solution. The tests show that if
the initial solution is worse, ALNS is more effective. On the contrary, the final solution is better
when the initial solution is already very good.
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Table 6.11: Results of the Basic ALNS strategy that are achieved after a worse initial solution

Case Costs Decrease Computation Time (minutes)

1 0.00 131.46
2 0.89 45.36
3 0.00 140.39
4 0.00 124.71
6 0.00 149.37
8 0.00 291.83
9 0.00 200.12
10 0.00 318.04
12 2.67 52.44
13 0.00 178.00
14 3.97 132.52
15 0.00 300.94
16 0.00 104.58
17 0.26 88.00
19 2.21 60.90
20 0.00 140.93

Average 0.63

Variance 1.49

Table 6.12: Difference in distance, total duration, number of trips and costs that are realized by
the Basic ALNS strategy after a different initial solution.

Case
Difference
In Trips

Difference
In Distance

Difference In
Total Duration

Cost Reduction in %

1 0 0.00 0.00 0.00
2 1 142.47 3.42 0.89
3 0 0.00 0.00 0.00
4 0 0.00 0.00 0.00
6 0 0.00 0.00 0.00
8 0 0.00 0.00 0.00
9 0 0.00 0.00 0.00
10 0 0.00 0.00 0.00
12 0 1461.18 25.33 2.67
13 0 0.00 0.00 0.00
14 1 2053.52 44.64 3.97
15 0 0.00 0.00 0.00
16 0 0.00 0.00 0.00
17 2 156.33 5.59 0.26
19 2 563.91 28.14 2.21
20 0 0.00 0.00 0.00
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Chapter 7

Conclusions and Recommendations

This last chapter presents the most important outcomes of this research. To achieve this, Section
7.1 presents the conclusions of our research. Moreover, Section 7.2 provides recommendations for
ORTEC. This chapter concludes by providing suggestions for further research and limitations of
the research in Section 7.3.

7.1 Conclusion

The VRP of the retail client contains many characteristics that make it interesting to investigate
the application of ALNS. In Chapter 3 we have seen that in this research we face a vehicle routing
problem with a heterogeneous fleet, in which each vehicle type has a different cost set. Moreover,
we have seen that the delivery time window in which customers are visited is restricted. All these
real-life restrictions must be taken into account when finding a solution to the VRP of the retail
client. We also saw that the depot assignment of the orders is a planning decision that is not
predetermined. Finally, we saw that the computation time is restricted to 35 minutes.

With this information in mind, we conducted a literature review. Based on the outcomes of the
literature review, we proposed to test 5 different solution strategies. The basic ALNS strategy
tests the current ALNS framework of ORTEC. Emeç et al. (2016) show that including an addi-
tional ALNS method is beneficial for multi-depot VRP. Moreover, a partial optimization approach,
which is developed by Lalla-Ruiz and Voß (2019), finds good solutions to the multi-depot VRP.
We test two different partial optimization approaches. Lastly, we test the hybrid approach of Salhi
et al. (2014). Their neighbourhood reduction technique is specifically designed to work well on
multi-depot vehicle routing problems.

• Basic ALNS strategy

• Extended Basic ALNS strategy

• ALNS with fixed depot assignment

• ALNS with fixed depot assignment through solving the transport problem

• Hybrid ALNS strategy
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Table 7.1: Overview of best performing configuraitons for each solution strategies

Strategy
% of tasks
to remove

Estimator
Threshold
Acceptance

Failed
Insertions
In A Trip

Failed Insertions
Per Group
In A Trip

Basic ALNS 2 DrivingTime 1.01 60 10
Extended Basic ALNS 1 DrivingTime 1.00 50 15
ALNS With Fixed
Depot Assignment

4 DrivingTime 1.01 50 5

ALNS-FDATTP 6 Costs 1.04 80 15
Hybrid ALNS 1 DrivingTime 1.03 90 15

To determine the settings for each of the solution strategies, we developed a parameter tuning
process. After following this approach, we found the following optimal settings for each of the
solution strategies.

In order to compare the performance of the different solution strategies, we designed a test
approach. This test approach consists two steps. First, we found the best parameter settings
for each of the strategies. Afterwards, by using the best performing settings of each strategy, we
produce the results for the cases of the retail client. The performance of each of the solution
strategies is summarized in Table 7.2. Based on our research, we conclude that by looking at
the average performance the basic ALNS strategy performs best. However, many differences are
observed between the different cases. The results in Table 7.2 are obtained within the allowed
computation time of 35 minutes.

The case of the retail client, has 3 big aspects whose influence on ALNS has not been studied
together before. With the outcomes of our tests, we shed a light on the relationship between the
performance of ALNS and these aspects.

1. Heterogeneous fleet

2. Dynamic order-to-depot assignment

3. Large case-size

We described that the different vehicles have different cost sets. We saw that the costs per trip
are very large compared to the costs per distance, or duration. This cost structure makes it more
difficult for ALNS to find improvements to the solution. Namely, it is desirable to have occupation
of vehicles. If the vehicles are highly occupied the feasible options of planning an order are limited.

Moreover, we discovered a relationship between the dynamic order-to-depot assignment and the
effectiveness of ALNS. That the performance of the basic ALNS strategy is inversely proportional
to the distance between the depots. If the distance between depots increases, the improvements
found by the basic ALNS decrease. In this case a partial optimization approach is more effective.
Our research shows that the order-to-depot assignment is crucial. If the assignment is done to strict
it is possible that no feasible solution is found.

Lastly, we provided new insight with regards to the application of ALNS on very large cases.
Previous research by Simons (2017), shows that it is desirable to remove approximately 15% of
tasks from the solution. We found that for the retail client it is more desirable to remove 2% of

Page 68



7.1. CONCLUSION

Table 7.2: Overview of performance of ALNS strategies with restricted computation time

Case Basic ALNS
Extended

Basic ALNS
ALNS With

Fixed Depot Assignment
ALNS-

FDATTP
Hybrid ALNS

1 0,00 0,00 0,11 0,00 0,00
2 0,00 0,00 0,13 0,06 0,00
3 0,00 0,00 0,30 0,06 0,00
4 0,00 0,00 0,01 0,14 0,00
6 0,00 0,00 0,02 0,00 0,00
8 0,00 0,00 0,00 0,00 0,00
9 0,04 0,00 0,01 0,01 0,00
10 0,00 0,00 0,02 0,01 0,00
12 0,46 0,00 0,00 0,00 0,00
13 0,00 0,00 0,00 0,18 0,00
14 0,99 0,00 0,00 0,77 0,00
15 0,00 0,00 0,00 0,58 0,00
16 0,58 0,00 0,49 0,12 0,00
17 0,85 0,00 0,03 0,02 0,00
19 0,00 0,00 0,48 0,42 0,00
20 0,01 0,00 0,04 0,04 0,00

Average 0,18 0,00 0,10 0,15 0,00

Variance 0,12 0,00 0,03 0,05 0,00
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tasks. The average case size is equal to 2100 orders. This means that on average we remove 41
tasks from the solution. This is in line with the original work of Pisinger and Ropke (2007).

7.2 Recommendations

Following the results that we have shown in the previous section, we recommend ORTEC to imple-
ment two ALNS based strategies. For cases 1 until 4, and 19, the ALNS strategy with fixed depot
assignment is best. This strategy is very well able to reduce the total distance and duration of the
trips, and can improve the solution effectively within 35 minutes. For cases 12-17, we recommend
ORTEC to implement the basic ALNS strategy. The Basic ALNS strategy is able to reduce the
number of trips used and reduce the total costs significantly for the aforementioned cases. Each of
the cases represents a specific part of the distribution network, on a specific day. Assuming each
of the cases is representable for its future occurrence, ORTEC can implement the aforementioned
recommendations for each case individually. Before implementing the ALNS strategies, we recom-
mend ORTEC to negotiate on this with the retail client. The savings that can be realized on a
yearly basis are significant for the retail client. However, we have not looked at the benefits for
ORTEC yet. The development costs of implementing these strategies must at least be covered by
the retail client. Although our research does not show that, the development costs for ORTEC,
which are paid for by the retail client, reduce the benefits of the retail client.

Moreover, we recommend ORTEC to develop software that is able to split cases in multiple sub-
problems. If larger cases arise in the future, which is very likely, they can be solved more effectively.
We have shown that it is effective for some cases of the retail client, dividing a multi-depot VRP
in multiple single-depot VRPs. In our research we used an external tool to divide the cases into
sub-cases. For practical applications, this is not desirable. The data set that needs to be imported
in order to separate the case is very large. The optimization is currently done in CVRS, which also
loads all the data. As a result of this, it would be most efficient if the capabilities of splitting a case
were programmed within the existing framework of CVRS.

At last we recommend ORTEC to challenge the retail client with concerns to the restricted com-
putation time. In our research, we have shown that running ALNS for 400 iterations, takes longer
than the available 35 minutes. However, the results of these tests also show that the total costs of
the retail client can be reduced further. The results presented in this thesis can be used to show
the retail client the benefits of allowing longer computation time.

7.3 Limitations and Further Research

In this research we briefly investigated the impact of initial solution to the effectiveness of ALNS.
Our findings were in line with the work of Simons (2017). Our research found that the improvement
found by ALNS is larger when the initial solution is worse. However, the final solution is not better
compared to those obtained after a good initial solution. Both the work by Simons (2017) and our
research are conclusive on this matter. Although we give reasons why this may be, no evidential
proof for the cause is given. Future research at ORTEC could be devoted to the relationship between
the initial solution and the effectiveness of ALNS.

Generally literature on ALNS includes many different type of methods which should in their
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own way be capable of improving the solution. In this research, we have shown which methods are
successful in improving the solution and which methods are less successful. If the less successful
methods are excluded, this could increase the effectiveness of ALNS. This is in line with a current
working paper by Christiaens and Berghe (2018). The paper advocates to use only one powerful
recreate and repair method. The paper shows high quality results for rich vehicle routing problems.
However, computation times are not explicitly mentioned. A first step to investigate this would be
to test ALNS with only ruin and repair methods that are generally successfully in improving the
solution.

Our literature review pointed out a number of metaheuristics besides ALNS. Since the purpose
of this research was to investigate the applicability of ALNS on the VRP of the retail client, we have
not included a comparison to other metaheuristics. Our literature research shows that some of the
most recent developed genetic algorithms are able to outperform ALNS in most benchmark cases. A
known disadvantage of genetic algorithms is that they are difficult to program. Implementing these
algorithms in CVRS where they need to be reusable for all sorts of cases can therefore be difficult.
Future research may investigate the applicability of genetic algorithms for rich and real-world cases
and how ORTEC can use them.

We have tested a partial optimization method that first solves the transport problem in order to
determine the initial depot assignment. The current construction method of ORTEC did not find
a feasible solution. As a result, it can be interesting to investigate different construction methods
that do find a feasible initial solution. The work of Lalla-Ruiz and Voß (2019) indicates that a
partial optimization approach is effective in solving multi depot VRPs. This can be validated for
the cases of the retail client.
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Karakatič, S. and Podgorelec, V. (2015). A survey of genetic algorithms for solving multi depot
vehicle routing problem. Applied Soft Computing, 27:519 – 532.

Keese, S. (2018). Shifting up a gear. Roland Berger Focus.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598):671–680.

Koskosidi, Y. A., Powell, W. B., and Solomon, M. M. (1992). An optimization-based heuristic
for vehicle routing and scheduling with soft time window constraints. Transportation Science,
26(2):69–85.

Kulkarni, R. and Bhave, P. (1985). Integer programming formulations of vehicle routing problems.
European Journal of Operational Research, 20(1):58 – 67.

Lalla-Ruiz, E., Expósito-Izquierdo, C., Taheripour, S., and Voß, S. (2016). An improved formulation
for the multi-depot open vehicle routing problem. OR Spectrum, 38(1):175–187.

Lalla-Ruiz, E. and Voß, S. (2019). A popmusic approach for the multi-depot cumulative capacitated
vehicle routing problem. Optimization Letters.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4):408–416.

Page 73



BIBLIOGRAPHY

Li, J., Li, Y., and Pardalos, P. M. (2016). Multi-depot vehicle routing problem with time windows
under shared depot resources. Journal of Combinatorial Optimization, 31(2):515–532.

Li, J., Pardalos, P. M., Sun, H., Pei, J., and Zhang, Y. (2015). Iterated local search embed-
ded adaptive neighborhood selection approach for the multi-depot vehicle routing problem with
simultaneous deliveries and pickups. Expert Systems with Applications, 42(7):3551 – 3561.

Li, J., Wang, D., and Zhang, J. (2018). Heterogeneous fixed fleet vehicle routing problem based on
fuel and carbon emissions. Journal of Cleaner Production, 201:896 – 908.

Lougee-Heimer, R. (2005). Coin branch and cut solver cbc. Technical report.

Mancini, S. (2016). A real-life multi depot multi period vehicle routing problem with a heterogeneous
fleet: Formulation and adaptive large neighborhood search based matheuristic. Transportation
Research Part C: Emerging Technologies, 70:100–112. cited By 28.

Montoya-Torres, J. R., Franco, J. L., Isaza, S. N., Jiménez, H. F., and Herazo-Padilla, N. (2015). A
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Appendix C

Extra Metaheuristics

C.1 Population search metaheuristics

An important class of population search algorithms is the genetic algorithms. Goldberg (1989)
provides an explanation of this type of algorithms. Genetic algorithms are usually improvement
algorithms which make use of mechanisms from natural genetics to improve a solution. In its most
simple form, a genetic algorithm consist of 3 aspects:

1. Reproduction

2. Crossover

3. Mutation

Based on a population of solutions, one solution is selected. This process is known as reproduction.
The probability of selecting a method is done based on the fitness function. Solutions with a higher
fitness score have a higher probability of getting selected(survival of the fittest). From the pool of
reproduction solutions, pairs are selected. These pairs are used to perform crossover. We illustrate
crossover with a simple example. Consider two sequences consisting of 3 numbers:

• 1234

• 7890

Crossover is done by selecting a range within the items of the solution are swapped. If we apply
crossover for only the last item in the solutions, we find the following new solutions:

• 1230

• 7894

Then with a certain probability, mutation is applied to any of the solutions in the solution pool.
Although the basis of genetic algorithms is fairly straightforwards, it turned out to be effective in
solving complex VRP’s.
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C.2 Learning Mechanisms

The learning model which is mentioned explicitly by Laporte (2009) is called Ant-Colony Optimiza-
tion (ACO). Ant colony is a metaheuristic in the field of swarm optimization. The metaheuristics
are based on the natural behaviour of swarms of insects Bell and McMullen (2004). Ant colony
optimization is a metaheuristic which uses ’ants’ to find a shortest path between locations. To
communicate with each other, ants use a chemical which is called pheromone. In their quest for
food, ants leave a trail of this chemical. When an Ant encounters such trail, it decides to follow
the trail only if the chemical is strong enough. Short trails between a food source and the nest are
travelled faster, which makes the chemical trail stronger. As a result, more ants will follow this
shorter trail. The metaheuristic tries to apply this behaviour to find solutions to the VRP. Bell
and McMullen (2004) explains the construction of routes with the use of ant colony optimization
in the following way. A vehicle is represented by a predefined number of Ants. The first of these
ants starts constructing a route until the capacity of the vehicle is reached. Next, the second ant
also constructs a tour for the same vehicle. Due to the random behaviour of the ants at the start,
this route is probably different than the route determined by the first ant. As more ants have
constructed routes, the probability of an ant following an already travelled path increases. This
probability increases based on the success of the path in question. After all ants for this vehicle
have constructed a tour, the process is repeated for all other vehicles.
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Pseudo Code For simulated
Annealing

Below we present a pseudo code for a parallel application of Simulated Annealing.

Algorithm 2: Pseudocode of a simulated annealing procedure

1 Set decrease factor β < 1;
2 Set initial value for cooling parameter α;
3 Determine number of iterations i;
4 Determine stopping value γ;
5 Determine initial Solution and set it as current solution and best found solution so far;
6 while Cooling parameter α > γ do
7 for i iterations do
8 Select a neighbour solution;
9 if Neighbour solution better than current solution then

10 Accept neighbour solution as current solution;
11 if Neighbour solution better than best found solution so far then
12 Accept neighbour solution as best found solution so far;
13 if neighbour solution worse than current solution then

14 Accept solution with acceptance probability e
Neighbour−Current

T ;

15 end
16 Recalculate cooling parameter: α = β ∗ α
17 end
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Current Solution Method
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Appendix G

Technical details for changing
depot assignment strategies
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Figures used for component
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