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Abstract

In this paper, different statistical methods for detecting parameter change in dy-
namical systems have been analysed. First, using the equations describing the system,
different cases of errors have been identified. Using a t-test on the mean and a chi
square test on the variance, we could detect these errors with a certain probability.
The power on both of these tests is calculated to better these results. Furthermore,
the time it takes for the system to reach a new steady state is analysed as well. Fi-
nally, the report gives an overview on the probabilities of detecting the right error in
a dynamical system using statistical tests.
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1 Introduction

The world is getting more and more autonomous. Machines are being used more often
and more efficient in factories, and vehicles are also getting more and more ‘self-conscious’.
Unfortunately, machines intend to break down after a certain period. Measurements by
sensors may start to get unreliable and they should be replaced before they start to have
an impact. An example of this can be seen when looking at the Boeing 737-MAX: during
two of its flights over the past few months a sensor didn’t work as intended, thus caus-
ing the plane to behave in the wrong way, which in these cases caused both planes to crash.

The detection and isolation of faults in dynamical systems by now is a popular subject of
research. Many methods have already been developed for detecting these changes, but the
demand for better performance is getting higher, such that systems are getting more reli-
able and more safe [3]. For this, two main factors on the detection of faults are optimised,
namely the speed with which the error can be discovered (detection) and the determina-
tion of the location where the error takes place (isolation). This paper focuses on the latter.

Although different dynamical systems could vary a lot in how they behave, there still are
systems that could often (partially) be described as a linear system [7]. This makes it
easier to analyse for mistakes. For these systems, methods like the (adaptive) Kalman
Filter have already been used and analysed multiple times [4, 6] to analyse and detect the
mistake in a system, but there has not been much research done from a statistical point
of view on the detection of faults in dynamical systems. Nevertheless, it seems interesting
to determine an error with a certainty, such that it could be more reliable to detect what
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sensor in a system failed.

The purpose of this paper is to analyse a linear dynamical system from a statistical point
of view using statistical tests, as well as a combination of existing error detection methods
in combination with statistical methods.

2 Constructing a first order motor

To start, we want to create equations describing a simple motor, which we can use to
investigate its behaviour as several parameters change, in the following sections. We in-
troduce a constant current (I) and a motor torque constant (K) as a tool of transforming
this current into a force (F ). In reality, this could be done by a gyrator. The resulting
equation can be found in equation 1 [1].

F = KI (1)

Using Newton’s second law, we can then derive the following equation [1]:

F = J
dv

dt
+Dv (2)

Where v denotes the (rotational) velocity, J the moment of inertia of the motor and D
denotes the friction on the motor. When combining equation 1 and 2, this results in the
first order differential that we will be using in the following sections, given in equation 3.

dv

dt
=
K

J
I − D

J
v (3)

The chosen values for each of these constants can be found in appendix A. The system
is monitored on it’s velocity, i.e. y = v. To get an idea of how the system behaves, the
machine is run for one second. This gives the image shown in figure 1.

Figure 1: Continuous first order motor, reaching a steady state

As can be seen from figure 1, when under the influence of a constant current, the velocity
slowly builds up until it reaches a certain (maximum) speed, which is a steady state. The
system shown in figure 1 is a continuous system. This system should be discretised such

2



that it is representable for our problem. To do this to our system, we assume that each
step must be linear, thus creating the following equation:

ak =
K

J
I − D

J
vk

vk+1 = vk + ak · T
(4)

Here, T represents the duration of one time step, which is a constant value. Note that
there are better ways to discretise the system, but since the system is simple the equations
are discretised like this to more easily elaborate on system behaviour. Now, this system is
submitted to both a dynamical error (Vk ∼ N(0, P )), as well as an observer based error
(Wk ∼ N(0, Q)), both of which are assumed to be additive white Gaussian noise. The
variance of each of these errors are denoted by P and Q respectively. Both errors, Vk and
Wk, are assumed to be independent (for each k). Adding these errors to equation 4, we
get the following final equations that describe our system:

vk+1 = vk +

(
K

J
I − D

J
vk

)
T + Vk+1

yk = vk +Wk

(5)

As can be seen from equation 5, the error Vk is added at the end of the equation, instead
of being multiplied by the time constant. This is done so that Vk is not influenced by the
size of the time constant. Finally, the system is again surveyed on its velocity. As can be
seen in figure 2, the result shown in figure 1 can still be recognised.

Figure 2: Discrete first order motor, subject to multiple errors
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3 Introducing parameter change

Now that we have a simple first order motor, we analyse its behaviour as several compo-
nents ‘break down’. First, we do this by simulating several parameter changes. Throughout
this paper, we do this by changing the value of a parameter in our system after one third
of our run, which in this case (see figure 3) corresponds to 0.33 seconds. In figure 3, the
effects of several components failing have been shown.

(a) Change in friction (D2 = 2D) (b) Change in torque (K2 = K/2)

(c) Change in inertia (J2 = 2J)

Figure 3: Effect of changes in several components, using 100 observations

When the results from figure 3 are compared to the observed velocity in figure 2, two
characteristics stand out in particular. First, it can be seen that the faulty parameter of
the moment of inertia of the system seems to have no influence on the mean of the steady
state. This could be reasonable. Keeping equation 3 in mind, at the moment the system
is in a steady state, a change in the moment of inertia has (almost) no influence on the
change in velocity.

Another thing that stands out is that the adjusted value of both the friction as well as
the torque shows a similar behaviour: both functions settle to a new steady state value:
around half of the original value. However, it seems like the new steady state for the
adjusted friction settles faster than the new steady state for the adjusted motor torque,
which we will analyse in detail in section 4.2.

Now that we have an idea of what happens when changing certain parameters, we want to
solidify these presumptions theoretically by analysing the equations describing the system.
Since we notice a change in steady state, we analyse the value of yk at a certain point,
where the function has reached its steady state. We do this by looking at the expected
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value the function has taken. This can be found in equations 6 and 7.

E[yk] = E[vk +Wk] = E[vk] + E[Wk] = E[vk]

= E

[
vk−1 −

D

J
Tvk−1 +

K

J
IT + Vk

]
= E

[(
1− D

J
T

)
vk−1

]
+ E

[
K

J
IT

]
+ E [Vk]

(6)

For simplicity, we define a = 1− D
J T and b = K

J IT .

E[yk] = E [avk−1] + E [b] + E [Vk]

= aE [vk−1] + b

= aE [avk−2 + b+ Vk−1] + b

= a2E[vk−2] + ab+ b

...

= akE[v0] + ak−1b+ ...+ ab+ b

=
(
ak−1 + ...+ a+ 1

)
b

= b
k−1∑
i=0

ai

= b

(
1− ak−1

1− a

)

(7)

Note that this can only be done for |a|< 1. Since a = 1 − D
J T , we can choose our time

step size T such that this is indeed the case. Furthermore, we notice that if our system
has reached steady state, k has to be of a large enough value such that ak−1 goes to zero.
Using this we see that our expected yk is approximately equal to the following:

E[yk] =
b

1− a
=

K
J IT

1−
(
1− D

J T
) =

KI

D
(8)

Indeed, we see that our steady state is dependant on three factors: K, I and D. This is
in line with the results found in figure 3, as we see that the steady state adjusts for both
a change in motor torque K and friction D, but not for a change in inertia J . We also
see that for a motor torque that gets twice as low, the steady state is the same as if the
friction gets twice as high, which is also in line with the result found in equation 8.

Now, having found an expected value for yk, we could oppose a statistical test which we
could use to test our system. Seeing that we want to test on the mean of our system, we
now now that this mean should be equal to KI

D for non-adjusted parameters. Using the
values from appendix A, we find that our mean µ equals 0.01, which is in line with our
previously found results in figures 1 and 2.

To detect whether our system has indeed a mean of 0.01, we need a statistical test to
find out if this is a valuable hypothesis for our system. The two most common known
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statistical tests on the mean are the z-test and the t-test[5]. Both of these tests assume
that the sample data is normally distributed. Thus we need to check for that first. It is
known that the system described has two errors, one dynamical as well as one observer
based error. Since both errors are additive, white Gaussian noise, it follows that the noises
are distributed via a normal distribution. Since the addition of two normally distributed
random independent variables is still normally distributed, we can assume our system is
normally distributed at steady state.

Now, we have two tests which are suitable: the z-test and the t-test. The major difference
is that the z-test assumes variance is known and the sample size is large, while the t-test
assumes variance is unknown and the sample size is not that large. Since the sample size
can be chosen to be any value, we first mainly focus on whether we can find the variance
of our system. Since vk and Wk are independent of each other, we notice that equation 9
holds.

Var(yk) = Var(vk +Wk)

= Var(vk) + 2Cov(vk,Wk) + Var(Wk)

= E[v2
k]− E[vk]

2 + Var(Wk)

(9)

From equation 9, we see that the variance of our system is dependant on the squared
expected value of vk. To make this equation more easy, we shift our function, such that
our steady state is equal to zero. This way, we not only get that E[vk]

2 = 0, but our
system could also be described by a more simple equation, which can be found in equation
10. In this equation we use that a = 1− D

J T .

vk = avk−1 + Vk

= a2vk−2 + aVk−1 + Vk
...

= akv0 + ak−1V1 + ...+ aVk−1 + Vk

= ak−1V1 + ...+ aVk−1 + Vk

(10)

Now, all that is left to do, is to square this equation and to find its expected value. This
is given in equation 11.

E[v2
k] = E

[(
ak−1V1 + ...+ aVk−1 + Vk

)2
]

= E

[
ak−1V1

(
ak−1V1 + ak−2V2 + ...+ Vk

)
+ ak−2V2

(
ak−1V1 + ...+ Vk

)
+

...+ aVk−1

(
ak−1V1 + ...+ Vk

)
+ Vk

(
ak−1V1 + ...+ Vk

)]
= ak−1E

[
V1

k−1∑
i=0

aiVk−i

]
+ ak−2E

[
V2

k−1∑
i=0

aiVk−i

]
+ ...+ E

[
Vk

k−1∑
i=0

aiVk−i

]
(11)

The expected values found in equation 11 seem very complicated. However, since the
dynamical errors Vi are independent of each other, many terms can be removed, leaving
only the few terms that can be found in equation 12. Here, the fact is used that the
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variance of each dynamical error Vi is the same and that for big values of k, which we have
in steady state, a2k gets very small.

E[v2
k] = (ak−1)2E

[
V 2

1

]
+ (ak−2)2E

[
V 2

2

]
+ ...+ E

[
V 2
k

]
= a2k−2Var(V1) + a2k−4Var(V2) + ...+ Var(Vk)

= Var(Vk)
(
a2k−2 + a2k−4 + ...+ a2 + 1

)
= Var(Vk)

k−1∑
i=0

(a2)i = Var(Vk)
1− a2(k−1)

1− a2

≈ Var(Vk)
1

1− a2
= Var(Vk)

1

1−
(
1− D

J T
)2

(12)

From equation 12 we can indeed conclude that a variance can be found. However, it seems
that our variance is dependent on some of our parameters as well. Both the friction D and
the inertia J have an influence on it. From figure 3, it seems that these parameters do not
have a big influence on the variance, although that could be explained by the fact that
the variance of the observer based error Wk is ten times bigger than that of the dynamical
error Vk, which makes a change in that harder to detect. Nevertheless, we can possibly use
a change in variance to measure what parameter has changed.

One final thing that stands out from equation 12 is that the time step size T has an in-
fluence on the variance as well, which seems peculiar, as it seems illogical that the time
step size should have any influence on the behaviour of our system. However, looking at
equations 4 and 5, it is indeed logical to say that the time step size has a similar influence
as the inertia on the behaviour of our system.

Coming back to a statistical test on the mean, we can say that we can calculate both a
mean as well as a variance for our system. Therefore, we can still choose to use both a
t-test as well as a z-test on the mean. Since we want our system to detect quickly if an
error has occurred, the t-test is the preferred statistical test, as we want our sample size
to be low. Using this we hopefully can detect a change in friction D and motor torque K.

Now that we know that our variance changes as well, we want to oppose a statistical test
for that as well. Since our system has only one variance, there is only one preferred test,
which is the chi-squared test on a single variance. Using this we hopefully can detect a
change in friction D and inertia J .

Finally, using the equations we found for the mean and variance in this section, we can
make an overview on how to detect what exact parameter has changed in our system,
looking only at the mean and the variance in the steady state of our system.

Faulty parameter Change in mean Change in variance
Friction (D) Yes Yes
Motor torque (K) Yes No
Inertia (J) No Yes

Table 1: Influence of parameter change on the mean and the variance of the
system
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4 Testing on the mean

Now we want to use a t-test on the mean of our system. From section 3, we know that we
want to test on the hypothesis H0, whether our mean µ is equal to 0.01. For this test, we
first need to find a T value for our test, where T = Ȳ−µ

s/
√
N
. In this equation, N denotes the

amount of measurements used.

Since we know our system is normally distributed, we can find a distribution Ȳ using
measurements. First, we take a sample using a few values y1, y2, ..., yn and find a mean
value ȳ using our samples. The value of this can be calculated like shown in equation 13
[5].

ȳ =
1

n

n∑
i=1

yi (13)

Using this, we can find a mean for our distribution Y . Furthermore, from equation 8, we
found an expected value of y of the steady state for different values of D,K and J . Now,
we try to find out whether our null hypothesis, H0 : µ = 0.01 should be accepted against
H1 : µ 6= 0.01. Since it is unknown what the exact value of the variance σ2 is, we could
not simply see whether our measured values are normally distributed with certain mean µ
and variance σ2. However, we could still find a sample variance using equation 14.

s2 =
1

n− 1

n∑
i=1

(yi − ȳ)2 (14)

We try to find out how trustworthy the tests are by first using it on a system that does
not break down, compared to the steady state value µ of the normal continuous model.
The system is being run for 5 seconds, the measurements used for the test are the ones at
the end of the observations from the system, since the system has reached its steady state
by then (see figure 4). This means the total amount of observations is twice as big as the
ones used for the test. From each of these sample sets, a distribution Yi is created. These
distributions are used for the t-test. The results of the t-tests for data from 1000 runs are
shown in table 2. Each run has a confidence level of 95%.

Total observations # Samples #H0 rejected
500 25 174
100 10 82
50 5 88
25 5 74

Table 2: Amount of times H0 was rejected, over 1000 runs

As can be seen, the amount of times H0 gets rejected is higher than expected, as we would
expect the test to be rejected 5% of the time. This can be explained by examining the
variance of our system. Looking back at section 3, we discovered that the variance of our
system should be equal to V ar(Vk) 1

1−(1−D
J
T)

2 (see equation 12). In case of the first test

in table 2, we would have a friction D of 0.1, an inertia J of 0.01 and a time step size
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T of 5
500 = 0.01. That would mean the variance of vk should approximately be equal to

5.26× 10−7. However, if we ignore the observer based error Wk for now, and calculate the
variance of our system using the last 25 observations, we find that the variance is equal to
4.96× 10−7, which is much lower. This shows that the data from our system suffers from
dependency: due to the fact that the variance in each state is dependent of the variance of
each previous state, the total system variance is lower than it should be. The fact that for
less total observations used in table 2 the number of times H0 gets rejected is less supports
this idea: the bigger the distance between each measuring point, the less its variance is
influenced by its previous states. We could play around the dependency a little by sam-
pling only a few observations out of the total amount of observations, thus making the
dependency between two measurements less. We try this by sampling uniformly from the
total amount of observations used, which is again the second half of all of the observations,
see figure 4. Results of this test can be found in table 3.

(a) Sampling method used in table 2 (b) Sampling method used in table 3

Figure 4: Different sampling methods

Total observations # Samples #H0 rejected
500 50 170
500 40 84
500 10 48
500 5 52

Table 3: Amount of times H0 was rejected, over 1000 runs

Indeed, it stands out that for a smaller amount of measurements used, the test rejects H0

not as often and gives the expected results, which would mean that the dependency is little
to negligible. For the following tests, we will use only 10 measurements, since it gives good
results that are also quite trustworthy.

Another test is being conducted, this time by changing the steady state value of the
continuous model to a wrong value (in this case 1.1 times too big), to get a grasp on how
accurate the test is. This yields the following results:

Total observations # Samples #H0 rejected
500 10 446
100 10 634

Table 4: Amount of times H0 was rejected, over 1000 runs

Indeed, the test gives expected results by rejecting H0 more often, although the null hy-
pothesis is still often accepted. We could make sure H0 gets rejected more often by making
our confidence level smaller, or by using more measurements. These options will be ex-
plored more in section 4.1. Now, we should be able to check if we can detect a fault by
looking at different cases of errors in our system.
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We start again at H0 : µ = 0.01 in case the system friction is twice as big as the friction of
a normal working system. In this case, the steady state of the broken system is expected
to be unequal to 0.01. We try again using a 95% confidence interval to see how often H0

gets rejected.

Total observations # Samples #H0 rejected
500 10 1000
100 10 1000

Table 5: Amount of times H0 was rejected for a disturbed friction, over 1000 runs

The results shown in table 5 are great results, as this means that H0 would (almost) always
get rejected if the new steady state reached by the system is twice as small by a friction
that is twice as high.

Now, we test the same, but for an adjusted motor torque. As can be seen in table 6, we
again get the desired results, as H0 is always rejected in case the steady state value is twice
as small as it would be normally, due to the motor torque being twice as small as normal.

Total observations # Samples #H0 rejected
500 10 1000
100 10 1000

Table 6: Amount of times H0 was rejected, over 1000 runs

4.1 Power of the test

Now, we want our test to give the most trustworthy results as possible. This means that
we want the test on H0 : µ = 0.01 to be accepted as often as possible when the system is
behaving like intended, but also that the test is rejected as often as possible if the system is
not behaving like intended. For the latter, we check the power of the test. The power of the
test indicates the probability that H0 gets rejected in the case the alternative hypothesis,
H1, is true. In this case, H0 is assumed to be the hypothesis that the mean value of the
system is equal to that of a system without failure (e.g. µ = 0.01). H1 is assumed to be
the hypothesis that the steady state of the system is that of a continuous system with a
friction that is twice as high or a motor torque that is twice as small (e.g. µ = 0.005). In
total, there are four decisions that can be made depending on the reality of two situations.
These four cases can be found in figure 5. Using the power we try to find out how often a
type II error takes place. A type II error is the error takes place if H1 is true, but H0 won’t
get rejected by the test. The probability of that happening corresponds to one minus the
power (see figure 5).

To calculate the power of the test, we have to find the probability that H0 is rejected in
the case H1 is true, i.e. P(H0 is rejected|H1 is true). To calculate this chance, we first
need to know what the boundaries are wherein H0 would be accepted for a confidence level
of 95%. We know that under H0, we have a mean µ of 0.01. Furthermore, from 3, we
can calculate the variance in this case, which is equal to 1.1 × 10−6 in the case T = 0.1.
Furthermore, using our confidence level, as well as the degrees of freedom of our function,
we can find a value t from our student test. In this case we use a value of α = 0.05 and 10
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Figure 5: Possible errors in a statistical test [2]

measurements, giving 9 degrees of freedom.

Now, we can find boundaries for a 95% confidence interval of µ0, using equation 15 [2]. In
this equation, σx̄ denotes the standard error [5], given by equation 16.

Upper Bound = µ0 + t · σx̄
Lower Bound = µ0 − t · σx̄

(15)

σx̄ =
√
σ2/n (16)

Using the previously found numbers, we find that our region of acceptance of H0 is
[0.0092, 0.0108]. Thus, if a mean lies inside this interval, the test will accept the null
hypothesis, while it would be rejected outside of this interval. Now, we need to find the
probability that if we know the size of the error, how big the chance is that the measured
mean falls inside that region. For that, we can simply look at the expected mean µ1 and
variance σ1 under H1, the alternative hypothesis, and measure the chance that a measure-
ment in that normal distribution lies inside the region of acceptance of H0. The equation
describing this can be found in 17. In this equation, UB and LB describe the upper and
lower bound of the region of acceptance, respectively.

Power = P

(
LB− µ1

σ1/
√
n

)
+ 1− P

(
UB− µ1

σ1/
√
n

)
(17)

For example, if we take H1 : µ = 0.02, we get the result shown in table 7.

#Samples (n) α T Power
10 0.05 0.01 1

Table 7: Power of the test with µ1 = 0.02

As expected, table 7 shows that for a large change in mean, the power is one, which means
the chance of a type two error is equal to zero. Another example with H1 : µ = 0.0108 can
be found in table 8.
From table 8 we again see an expected result: since we measure the test at µ1 = 0.0108,
which is approximately equal to the value of the upper boundary of the region of accep-
tance under H0, we see that about half of the tests are being accepted and half are being
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#Samples (n) α T Power
10 0.05 0.01 0.56

Table 8: Power of the test with µ1 = 0.0108

rejected, giving a power of approximately a half.

Now, we can test what can make our power even better for values in between the ones
shown in tables 7 and 8. First, the amount of samples has been changed to different values,
to see if that has any influence on the power of our test. The result can be found in figure
6.

Figure 6: Power versus different numbers of samples, for α = 0.05

Using more samples has a significant increase on the power of the system. For 50 samples,
the power increases very rapidly, reaching a value of 1 for just a small change in mean.
However, the calculation of this power can also be very time consuming, taking 10 times
longer compared to using only 5 samples. Still, in case of a first order dynamical system,
that does not take a lot of time. However, for a system that would be a lot more compli-
cated, using a lot of samples is already getting quite time consuming. Especially since we
need to simulate independency, it is useful to only get one sample per second, which would
already mean that the system has to run for 50 seconds just so a more precise analysis can
be given about the system.

Furthermore, for a large change in mean, the amount of sample does not yield a big dif-
ference in result: for example, 10 samples already have a power close to 1 for a µ smaller
than 0.0085, which thus means that increasing the amount of samples would not better
the results.

One other thing that is interesting to look at, is to see the influence on the power by
changing the value of α to ensure a smaller region of acceptance, thus increasing the power
as well. These results can be found in figure 7.

A bigger value of α does indeed have an impact on the power of the system, although it
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Figure 7: Power versus different values of α, for #samples = 25

seems to have less impact than increasing the number of samples. Other than that, the
downside of increasing the value of α is that the chance of a type I error increases, which
means that the test has a higher risk of rejecting the null hypothesis while it is actually true.

Choosing an optimal strategy based on the findings in figures 6 and 7 is heavily dependent
on how big the error is. For a big error, the power of the test is often one, even for a small
sample size. Next to that, still in case the error is big, the value for α could easily be
decreased, such that the null hypothesis will less often get falsely rejected. For a smaller
error however, it is probably more advisable to increase the sample size than to decrease
the value of α, as increasing sample size has a bigger impact on the power.

An option for detecting an error in a dynamical system is to first test the system using a
test with a low power and find out if there has been a big error, and increase the power if
that does not yield any results, to detect smaller changes.

4.2 Analysis on breaking down speed

One other thing that we want to look at, is the speed with which the system adjusts to
a new steady state. This may contain some clues as to whether the friction or the motor
torque is failing. If we look at the formula of the continuous first order motor (equation
3), at steady state we have the following equation:

0 =
K

J
I − D

J
v

Thus, at steady state we know that the two factors are in balance. From this we can see
that if we were to make the friction twice as big, the speed will go down twice as fast as if
we were to make the motor torque twice as small.

If we assume it is known when exactly the machine breaks, we can look at the speed with
which it reaches a new steady state, and maybe we can conclude something out of that.
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Thus we measure the distance between the last point where the system is still behaving
normal and the first point after the system broke down. Again, we run the system over 5
seconds, using 100 measuring points. Over 1000 runs, this gives the results shown in table 9.

Faulty parameter ∆y(×10−3)

Friction (D) -4.91
Motor torque (K) -2.49

Table 9: ∆y directly after a parameter changed in value

Indeed, the results match our expectations, the failing friction has a higher impact on the
speed of the system than the motor torque does, close to twice as high.

Now, we could use this information to create a control system, where we could increase
our current to something higher than I = 0.1, to detect at any given moment which of
either the friction or the motor torque is failing in the same way we did for table 9. Note
however, is that it is currently not possible with our system. As was stated in section
2, our system is described by an equation with a constant current. Thus, the system
should first be changed to a second order system such that our current is variable and
could thus be adjusted at any given moment. However, since we notice that adjusting
our equation doesn’t change the behaviour of our system [1], we let our system stay as
a first order system, and say that we can just adjust our current. We do however want
to raise attention that it is important to know that we would normally have to introduce
more components to our system for it to be actually able to have a variable current (see [1]).

The plus side of being able to change our current is that we do not need the information
of when exactly the system broke down. Thus, after a parameter has changed value and
the system has settled to a new steady state, we increase our current to see how quickly
it will change to another new steady state. The current is changed after two third of our
simulation. So, again, we measure the distance between the first point where the system
is acting according to a current I = 0.1 and the first point after it has been increased.
Over 1000 runs for a system that runs 5 seconds using 100 measuring points, this gives the
results shown in table 10.

Faulty parameter New current (I) ∆y(×10−3)

Friction (D) 0.2 4.93
Motor torque (K) 0.2 2.51
Friction (D) 0.15 2.48
Motor torque (K) 0.15 1.25

Table 10: ∆y directly after the current is increased

From table 10 we can conclude that it is possible to see what value changed looking at the
difference between several observations. Nevertheless, we cannot use a statistical test over
this, since we only use one measurement after changing the current. If we would want to
use a statistical test, we could let our current constantly change, for example by making it
a sine wave, and measure multiple times the difference between observations, and possibly
using a test to determine if either the motor torque or friction changed.
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5 Testing on the variance

Now that we know we can check for a change in mean, we want to do the same for the
variance, as we want to use that to detect a change in inertia J , as well as detecting a
change in friction D.

From section 3, we know that the variance of our system at a certain moment k in steady
state is equal to the following:

V ar(yk) =
1

1−
(
1− D

J T
)2Var(Vk) + Var(Wk) (18)

From equation 18, we can see that both the friction as well as the inertia do have an
influence on the variance of the system. Furthermore, what stands out, is that the size
of each time step has an influence on the variance as well. Thus if we were to choose
this bigger, we suspect that we could more clearly see a difference in variance. We test
this first for an adjusted friction D versus a normal friction. In this case, we choose the
adjusted friction to be twice as high (thus D = 0.2). We check the difference in variance
by measuring the sample variances over 1000 runs with different values for the time step
size. The total run time of the measurement is 5 seconds. The results are given in table
11.

Time step size (T ) #Samples Adjusted Parameter Variance (s2)
0.05 10 None 1.13 · 10−6

0.05 10 Friction (D) 1.10 · 10−6

0.1 10 None 1.09 · 10−6

0.1 10 Friction (D) 3.33 · 10−5

Table 11: Measured sample variance for system with and without adjusted fric-
tion, measured over 1000 runs

From table 11, we can see that a change in parameter value does indeed change the variance
of the system. It does seem like for a time step size of 0.1, the change in variance is more
noticeable than it is for a time step size of 0.05. This makes sense looking at equation
18: all numbers are the same as if we were to calculate them theoretically. The most
interesting case is the one where the time step size T is equal to 0.1 and the friction D is
adjusted. Using equation 18, we would get that

(
1− D

J T
)

= −1. Thus, we would have a
denominator of zero, meaning our variance would become gigantic. Indeed, the measured
variance is of order 10 times as high as we got from other measurements.

Another two interesting measurements are for T = 0.05 together with an adjusted friction,
as well as T = 0.1 without one. Both of these have a variance of about 1.10× 10−6. If we
were to use equation 18, we would also see that

(
1− D

J T
)

= 0 for both of these cases. This
means that the parameters are at such a state that they have no influence on the variance
of the system, which would mean that the variance of the system would be exactly equal
to the sum of the dynamical error and the observer based error. Furthermore, this means
that if any parameter would be adjusted in this case, we would get a variance that is higher.

Therefore, we can say that the test we use on the sample variance of the system could be
both a two-sided test, as well as a one-sided test in case we choose our values such that in
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a standard case, our variance is equal to the minimum of 1.1× 10−6. For this, we want to
use T = 0.1 (see table 11). Thus, we get our null hypothesis to be H0 : σ2 = 1.1 × 10−6

against the hypothesis H1 : σ2 > 1.1× 10−6. Like said in section 3, this is possible using a
chi-square test on variance. We first test to see whether it works for our normal working
system. We do this by running our system 1000 times, generating 100 measurements over
10 seconds (thus having T = 0.1), for normal values of friction. The samples used are
again chosen uniformly from the second half of the observations. The results of these runs
with a confidence level of 95% can be found in table 12.

Friction (D) # Samples #H0 rejected
0.1 10 47

Table 12: Amount of times H0 was rejected, over 1000 runs

Indeed, we notice that H0 is rejected about 5% of the time, thus we can say with confidence
that we have the right null hypothesis. Now we can test how often H0 gets rejected for a
friction that is higher. Using the same specifications as in the previous test, we get, with
a confidence level of 95%, the results shown in table 13.

Friction # Samples #H0 rejected
0.2 10 1000
0.19 10 247
0.18 10 121
0.15 10 75

Table 13: Amount of times H0 was rejected, over 1000 runs

From table 13 we can see that indeed H0 gets rejected always in the case the friction is
twice as high. However, if the friction value is between 0.1 and 0.2, we get a lot of type
two errors, seeing that H0 gets rejected much less than it should be. Most likely, this
is due to the fact that the change in variance is too little for our test to pick up. One
thing that makes a big contribution to this, is the observer based error Wk. Since it is 10
times bigger compared to the dynamical error Vk, a small change in Vk does not have a big
influence on the total variance of the system. Therefore, we try the test once more, but
this time we subtract the observer based variance from our total variance. This means our
null hypothesis changes to H0 : σ2 = 10−7 against H1 : σ2 > 10−7. The results are shown
in table 14.

Friction # Samples Average variance #H0 rejected
0.19 10 6.6× 10−7 954
0.18 10 3.0× 10−7 748
0.15 10 1.4× 10−7 198
0.12 10 1.0× 10−7 70

Table 14: Amount of times H0 was rejected, over 1000 runs

From table 14, we do notice an improvement in detecting a change in variance when there
is no observer based error Wk. Nevertheless, for a small change in friction, H0 still gets
rejected many more times than it should be. Again, we could use trade offs like used in
section 4.1 to hopefully get better results in this case.
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5.1 Power of the test

Just like the t-test used on the mean of the system, a power can be calculated for the chi
square test as well. To do so, we start again by calculating an interval for our region of
acceptance for H0 : σ2 = σ2

0. In this case, σ2
0 denotes our theoretical variance. At first,

we again look at σ2
0 = 1.1 × 10−6, the theoretical variance in case are parameter values

are normal and our time step size T = 0.1. We again decide to use a one-sided test, i.e.
H1 : σ2 > σ2

0. To find a region of acceptance, we use an inverse chi square test to find a
critical value, with α = 0.05 and 9 degrees of freedom. This gives a critical value xcrit of
16.92. Using this critical value, we can find a value for a boundary like shown in equation
19 [5].

Upper Bound =
xcrit
n− 1

σ2
0 (19)

Using equation 19, we find that our upper bound lies at 2.07 × 10−6. This explains why
the results found in table 13 were bad. Since the upper bound of the variance test lies so
high, the test still often decides to accept the null hypothesis. If we would not have an
observer based error Wk, we would get an upper bound of 1.88 × 10−7, which is already
way better, but since a change in parameter has no big influence on the variance of the
system, it would still often be rejected for small changes in variance, as can be seen from
table 14 as well.

Now, to calculate the power of the chi square test, we define δ as the ratio between the
two (theoretical) variances for both hypotheses, i.e., δ = σ2

0/σ
2
1. Using this ratio, we find

that the power can be calculated by using the formula given in equation 20[8].

Power = 1− χ2(xcrit · δ, n− 1) (20)

Using this, we can again look at the influence of changing the confidence interval or the
amount of samples used for the test. We do this on a system where σ2

0 = 1.1×10−6 Results
of this can be found in figure 8.

As can be seen from figure 8, for a very low change in variance, the power is very low.
Increasing the amount of samples does not help: only for a high change in variance it
proves to be helpful. Increasing α to a very high number does help, but it also largely
increases the chance of a type I error.

As said before, the main problem in measuring the variance is that the observer based
error Wk is way higher than the dynamical error Vk. We can again subtract the observer
based error from the measured variance as well as the theoretical variance, to get rid of
that problem a bit. If we were to try to find the power for this system, we get the results
shown in figure 9.

From figure 9, we can already see better results: the power reaches 1 pretty fast for 50
samples. The value of α in this case does not really make a big difference: as soon as the
σ2

1 is 3 times bigger than σ2
0, the power is approximately one.
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(a) Power versus different numbers of samples, for α = 0.05

(b) Power versus different values of α, for #samples = 50

Figure 8: Power over different values of σ2
1, with σ2

0 = 1.1× 10−6

6 Probability of detecting the right error

Now that we know how well the results of both the tests on the mean and variance of the
system are, we can find a final overview of the chance of detecting an error in our system.
We know, using the power of the system, what exactly those are, and how they could be
improved. Therefore, we can give a total overview with probabilities on detecting an error.
Like stated before, the probability of detecting an error does depend on the size of the
error. Thus, we will analyse two situation: one where the error is relatively big and one
where the error is relatively small. The values for the sample size and α are based on
our previously found findings from figures 6, 7, 8 and 9. Furthermore, we will translate
these errors in mean and variance into parameter values, using our findings in section 3,
concluded in table 1.
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(a) Power versus different numbers of samples, for α = 0.05

(b) Power versus different values of α, for #samples = 50

Figure 9: Power over different values of σ2
1, with σ2

0 = 10−7

6.1 Big error

For a big change in system behaviour, our main concern is detecting an error in the vari-
ance, as it has been shown that detecting a big change in mean is very likely to go right.
We assume that in this case our alternative mean µ1 is twice as low as µ0, while our al-
ternative variance σ2

1 is twice as high as σ2
0. Furthermore, we use T = 0.1, giving again

a variance σ2
0 of 1.1 × 10−6 in case the parameter values are chosen such as in appendix

A. As we have discovered that testing with variance is very difficult if the observer based
variance Wk is not subtracted from the total variance, we again use that to change our
test to only reflect the dynamical error, i.e., σ2

0 = 1× 10−7.

Next to that, we again have µ0 = 0.01. From section 4.1, we discovered that the power
for this test is approximately one, even for a low value of α and a low amount of samples.
Thus, we choose our α to be 0.01, making the probability of both a type I and type II
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error 0.01 as well. On the other hand, from our test on the variance and figure 9, we find
that if we use 25 samples, together with a value of α = 0.12, we get a power of 0.88. Thus,
we get a probability of a type I and type II error to be 0.12. In total, we can say with the
probabilities found in table 15 that the outcome of the tests is indeed the right one.

No adjustments in µ
µ = 0.01

Adjusted µ
µ 6= 0.01

No adjustments in σ2

σ2 = 1× 10−7 0.87 0.87

Adjusted σ2

σ2 > 1× 10−7 0.87 0.87

Table 15: Probability of detecting the right error for big adjustments

From table 15, we can conclude that big adjustments in our system give trustworthy results.
Translating this into parameter values, this would mean that the motor torque K would
be twice as low than normal and the friction D would be twice as high, looking at the
mean of the system. Looking at the variance, using equation 18 we see that that these
measurements of variance are possible if our inertia J would be approximately 3.4 times
as high, or our friction D would be 3.4 times as low. All of these adjustments are pretty
large, but the measurements are quite certain than as well.

6.2 Small error

To see if our system is able to pick up small changes almost as reliably, we look at a cer-
tain case for that as well. In this case, under the alternative hypotheses, both the mean
and variance are shifted only slightly of their original value. Here, we use that under the
alternative hypothesis on the mean, µ = 0.009 and that under the alternative hypothesis
on the variance, σ2 = 1.3× 10−7 (once again subtracting the observer based variance Wk

first). If we again want similar results to table 15, that is, having an equal probability on
detecting each kind of mistake, we need to choose our α and sample size in such a way
that the chance on getting a type I and type II error is equal for both tests.

For the t-test on the mean, we can see from figure 6 that for a sample size of again at least
25, we again have a very high power approximately equal to 1. Thus, we choose to lower
the value of α as well, making it 0.02, making the chance of both a type I and type II error
to be 0.02. However, for the variance, we can see from figure 9 that the power is not that
high for a sigma2

1 = 1.3× 10−7. Since we use a sample size of 25, we discover that a value
of α = 0.33 gives an equal probability on a type I and type II error, which is then equal to
0.33 as well. This gives the final probabilities that can be found in table 16.

No adjustments in µ
µ = 0.01

Adjusted µ
µ 6= 0.01

No adjustments in σ2

σ2 = 1× 10−7 0.66 0.66

Adjusted σ2

σ2 > 1× 10−7 0.66 0.66

Table 16: Probability of detecting the right error for small adjustments

From table 16, we can notice that detecting an error with small adjustments in mean and
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variance is still able to be picked up, although approximately 2 out of 3 times the tests will
find the right error. In terms of parameter adjustments, a mean of 0.009 can be reached by
decreasing the motor torque K by 0.001 or by increasing the friction D by the same value.
In terms of variance, a variance of 1.3 × 10−7 still needs high adjustments to be reached:
either the inertia J is doubled or the friction D is halved. This means that both of these
values still need to change a lot to be able to detect them, with still a probability of only
67% to be certain.

7 Discussion

The results show that it is possible to detect a parameter change in a simple dynamical
system using statistical methods. For a big change in parameter value this was easily
measurable with a high certainty, but for a smaller change, especially a small change in
variance, the test can quickly become less reliable. A possible idea to get better results is
to amplify the variance in some way.

Furthermore, the power of the test was analysed and used to decrease the probability on
getting a type I or type II error. We also touched upon the trade-off in changing the value
of α, as well as the value of the sample size.

Analysis on the speed with which the system adjusts to a new steady state does help con-
firm what parameter value has been adjusted. No statistical analysis has been done on
this, but that is definitely worth considering looking into in the future.

Finally it is worth saying that the statistical analysis on our system could be done on
higher order systems as well, though it needs to be verified if this shows similar results.
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8 Conclusion

In this paper we have discussed a number of methods to statistically check a change in pa-
rameter value in a simple linear dynamical system. Using basic tests on the mean and the
variance of the system we could establish a difference between multiple cases of a broken
system: one where the mean value changes, one where the variance changes and one where
both change.

Using a two-sided t-test we could test on the mean of our system, results of which were
pretty reliable. Using a chi square test we could test on the variance of our system. By
utilising our time step size T , we could improve the reliability of these results, changing
our two-sided test into a one-sided.

The power of the tests have been calculated and analysed. The power of the test is very
high for a relatively small adjustment on the mean, which means it is easier to detect with
certainty what error has occurred. However, on small adjustments in variance, it could
still use improvement.

Finally, an analysis was done on the speed with which the system broke down to establish a
difference between the fault a friction causes as oppose to the fault the motor torque causes.
Here, we could see a clear difference in speed for the first time step after a parameter
changed value. Using this information, we could build a control system to check at any
given moment if either the motor torque or friction has changed value, by increasing the
current in our system.
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Appendix

Appendix A: Parameter values

Parameter Value
Motor torque constant (K) 0.01
Moment of inertia (J) 0.01
Friction (D) 0.1
Variance process noise (P) 10−7

Variance observation noise (Q) 10−6

Initial velocity (v) 0
Input current (I) 0.1
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