
University of Twente

Human Computer Interaction and Design
EIT Digital Master School
Interactive Technology
University of Twente
P.O. Box 217
7500 AE Enschede
The Netherlands

M.Sc. Thesis

ArgueBot: Enabling debates through a hybrid
retrieval-generation-based chatbot

Iryna Kulatska

Supervisors from
University of Twente

Dr. M. Theune
Prof. Dr. D.K.J. Heylen
J.B. van Waterschoot,
MSc

Supervisor from
Findwise

J. Bratt, MSc

2019

Abstract

The goal of this study is to develop a debate platform, the ArgueBot, that is able
to maintain a meaningful debate with the user for various topics. The goal of the
chatbot is to carry out human-like debates with the users. The Arguebot uses a
hybrid model, combining retrieval- and generative-based models. The retrieval
model uses cosine similarity to compare the user input with the argument candidates
for a specific debate. The generative model is used to compensate for the limitations
of the retrieval model that is restricted to the arguments stored in the database. The
Arguebot utilizes Dialogflow, Flask, spaCy, and Machine Learning technologies within
its architecture. The user tests and the survey are used to evaluate the chatbot’s
performance. The user tests showed that there is potential in the Arguebot, but it
needs better context understanding, a more accurate stance classifier and a better
generative model.

ii

Acknowledgement

I would like to address big thanks for Mariët Theune, Jelte van Waterschoot and
Jesper Bratt for being such rock stars in supervising this project. Without your
feedback, support, and guidance, this thesis would not be possible. Thank you
Dirk Heylen for the valuable feedback that helped me improve the final version
of the thesis. Thank you Findwise, for providing me with an office space and the
gallons of coffee. This project was very interesting to conduct, and I wish I had
more time to improve it further. Finally, many thanks for my family, friends and
Findwise colleagues for participating in the user tests and supporting me throughout
the project.

iii

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Thesis Structure . 3

2 Background and Related Work 4
2.1 Argument mining . 4

2.1.1 Arguments and their components 4
2.1.2 Stance classification . 6

2.2 Chatbots . 6
2.2.1 Types of chatbots . 6
2.2.2 Hybrid model . 7
2.2.3 Debate-chatbots . 8
2.2.4 Building a chatbot . 9
2.2.5 Evaluation . 9

2.3 Conclusion . 10

3 First Implementation with Basic Functionalities 11
3.1 Dataset . 11
3.2 Architecture . 13

3.2.1 Pre-Processing . 14
3.2.2 Model for data analysis . 15
3.2.3 Dialogflow . 17
3.2.4 Flask . 18

3.3 User tests and results . 21
3.4 Conclusion . 23

4 Second Implementation with Machine Learning 25
4.1 ArgueBot 2.0 . 25

4.1.1 Dataset . 25
4.1.2 Architecture . 25

4.2 Stance classification with ML . 29
4.2.1 Data . 30
4.2.2 Methodology . 31
4.2.3 LSTM with Self-Attention Mechanism 37

4.3 Generative Model . 38
4.3.1 Data . 38
4.3.2 Methodology . 39

4.4 Conclusion . 42

5 Final evaluation of the ArgueBot 44
5.1 Overview . 44

iv

5.2 Survey results . 47
5.2.1 User Background . 47
5.2.2 Debate information . 47
5.2.3 Grammar . 48
5.2.4 Conversation flow . 48
5.2.5 Response quality . 49

5.3 Conversation length . 51
5.4 Conclusion . 53

6 Discussion 54
6.1 ArgueBot . 54
6.2 Stance Classification . 56
6.3 Generative Model . 57
6.4 Hybrid Model . 57

7 Conclusion 59

Bibliography 61

Footnotes 65

A Appendix Survey ArgueBot 1.0 70

B Appendix Survey ArgueBot 2.0 72

v

1Introduction

„Opinion is the medium between knowledge and
ignorance.

— Plato
(c. 427 BC – c. 347 BC)

A debate can be defined as a “careful weighing of the reasons for or against some-
thing”1.

Debates can be tracked down to Ancient Greece, where philosophical minds were
debating about politics and the nature of life. Throughout history, debating has
been an essential tool in individual and collective decision making and has been
helping in idea generation and policy building. Furthermore, the ability to articulate
and evaluate arguments improves one’s critical thinking and creativity (Keller et al.,
2001).

In the time of flourishing social media worldwide, debates have become possible,
where people with different backgrounds can engage in discussions about every
possible topic across the globe. One such example is Doha Debates, that through live
debates, videos, blogs, and podcasts evokes the discussions and collaborative solu-
tions for today’s global challenges such as global refugee crisis, Artificial Intelligence
(AI), gender inequality and water shortage 2.

The latest advances in technology such as Natural Language and Speech Processing,
Machine Learning algorithms, Argument Mining, Information Retrieval, and many
others enabled human-computer interaction in the debate domain. One such exam-
ple is the IBM Debater project, a conversational AI system that can give speech on a
given topic and debate with humans 3. The system uses several technologies: Argu-
ment Mining to identify argument components in the debate; Stance Classification
and Sentiment Analysis to classify whether the argument is for or against a given
topic; Deep Neural Nets (DNNs) and Weak Supervision, that is a Machine Learning

1https://www.merriam-webster.com/thesaurus/debate
2https://dohadebates.com/
3https://www.research.ibm.com/artificial-intelligence/project-debater/

1

https://www.merriam-webster.com/thesaurus/debate
https://dohadebates.com/
https://www.research.ibm.com/artificial-intelligence/project-debater/

algorithm that improves the argument detection; and finally Text-to-Speech (TTS)
Systems that convert text into spoken voice output and gives the Debater its voice.

In the meantime, chatbots are gaining more and more momentum as a new platform
for human-computer interaction. According to Gartner, Inc by 2022, twenty-five
percent of enterprises will have integrated virtual customer assistants and chatbots
within their platforms 4. However, current chatbot systems still have several limita-
tions such as incorrect understanding of the context (meaning) of the user utterance,
a lack of empathy and the inability to understand social and emotional cues that
exist in human-to-human communication (Klopfenstein et al., 2017; Moore et al.,
2017).

1.1 Problem Statement

The following research aims to create a chatbot that can maintain a meaningful
debate with users on various topics. The goal of the chatbot, called ArgueBot, is to
be able to carry out human-like debates with the users.

The problem statement for the following research is defined as:

How can a hybrid retrieval-generation-based chatbot maintain
a debate with a user for various topics?

The problem statement can be divided into sub-questions:

SQ:1 How can the model recognize and handle the arguments?

SQ:2 How can stance classification be applied for the conversational agents?

SQ:3 What is an appropriate model for the chatbot’s response generation?

SQ:4 How can human-like conversation with the chatbot be carried out in the debate
domain?

SQ:5 How can such a chatbot be evaluated?

The research presented in this thesis was carried out at Findwise AB, a consultancy
company that provides search-driven solutions 5. Findwise supported this project
with guidance and testing.

4https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-
trends-for-2019/

5https://findwise.com/en

1.1 Problem Statement 2

https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://findwise.com/en

1.2 Thesis Structure

Chapter 2. Background and Related Work

This chapter elaborates on the background for the research topic and related work
done within the field. Here, more information about existing methods for argumen-
tation mining, building, and evaluating chatbots can be found. Moreover, research
questions SQ: 1, 2, 3 ad 5 will be answered in relation to the previous work.

Chapter 3. First Implementation with Basic Functionalities

This chapter describes the chosen methods and user tests for the first implementation
of the ArgueBot. Here research questions SQ: 1, 2, 3, 4 and 5 will be answered in
relation to the first implementation of the ArgueBot.

Chapter 4. Second Implementation with Machine Learning

This chapter describes the changes made in the second implementation of the
ArgueBot. Here, research questions SQ: 1, 2 and 3 will be answered in relation to
the second implementation of the ArgueBot.

Chapter 5. Final evaluation of the ArgueBot

This chapter will present the results for the evaluation of the second implementation
of the ArgueBot. Here, research question SQ: 5 will be answered in relation to the
second implementation of the ArgueBot.

Chapter 6. Discussion

Here, the results presented in the previous chapter with their challenges and limita-
tions will be discussed.

Chapter 7. Conclusion

This chapter will summarize the findings and propose how they can be further
improved in future work. Here, all research questions will be answered with regard
to the whole project.

1.2 Thesis Structure 3

2Background and Related Work

„I believe that at the end of the century the use of
words and general educated opinion will have
altered so much that one will be able to speak of
machines thinking without expecting to be
contradicted.

— Alan Turing
(Computing Machinery and Intelligence, 1950)

This chapter describes related work on Argument Mining, chatbots, their building,
evaluation, and existing debate-chatbots done through literature review. The purpose
of this chapter is to give an overview of the previous studies done on debate-chatbots
and the related fields and describe what are the differences with the proposed study
in this paper. This will make the basis for the chosen methodology for this study.

2.1 Argument mining

Argument (or argumentation) mining is a relatively new research field within the do-
main of Computational Argumentation that studies debate and reasoning processes
by using artificial intelligence (Lippi and Torroni, 2016). The main goal of argument
mining is to automatically extract arguments from the textual corpora (Lippi and
Torroni, 2016) with their components and the relationships between these (Slonim
and Aharonov, 2018), as well as analyze their stance, which is an overall position
toward an idea, object or proposition (Somasundaran and Wiebe, 2010).

2.1.1 Arguments and their components

The ability to argue is a vital tool in supporting a specific claim or a standpoint,
which is essential in debates (Kuhn, 1991). Walton (2009) describes an argument as
a set of statements, made up of a conclusion, a set of premises, and an inference from
the premises to the conclusion. Or as was explained in one of the Monty Pythons
episodes "an argument is a connected series of statements intended to establish a
proposition" (Chapman and Python, 1989).

4

Consider the following text extracted from the Wikipedia article "Ethics of artificial
intelligence":
"Joseph Weizenbaum argued in 1976 that AI technology should not be used to replace
people in positions that require respect and care, such as any of these: customer service
representative [...], therapist [...], nursemaid for the elderly [...], soldier, judge, police
officer. Weizenbaum explains that we require authentic feelings of empathy from people
in these positions. If machines replace them, we will find ourselves alienated, devalued
and frustrated. Artificial intelligence, if used in this way, represents a threat to human
dignity [...]" 1

Here, "AI technology should not be used to replace people in positions that require
respect and care" is a conclusion (the claim, the core of the argument). "Weizen-
baum explains that we require authentic feelings of empathy from people in these
positions", "If machines replace them, we will find ourselves alienated, devalued and
frustrated", "Artificial intelligence, if used in this way, represents a threat to human
dignity" are the premises (statements that provide reason, evidence or support for
the conclusion).

An inference is a process of drawing conclusions based on the premises and in the
above-mentioned example would be:

1. humans need to feel empathy, that technologies cannot provide in the same
way as professionals do;

2. the absence of empathy and authentic feelings can result in humans disap-
pointment which threatens humans mental health;

3. therefore, AI should not replace professionals with positions that require
respect and care.

Habernal and Gurevych (2017) proposed a model based on machine learning for
identifying argument components containing feature sets: baseline lexical features;
structural, morphological, and syntactic features; semantic, coreference, and dis-
course features; and embedding features. These sets of features were used to identify
argument components and extract the arguments from the annotated forum posts.

Another method was proposed by Levy et al. (2017), who used it for detecting
topic-relevant claims from the data extracted from Wikipedia. The study used claim
sentence query to extract sentences with the word “that” followed by the claim
topic, followed by any word from a pre-defined lexicon. This lexicon included words
characteristic to the claims such as argue, disagree, argument, claim, conflict and
others (Levy et al., 2017).

1https://en.wikipedia.org/wiki/Ethics_of_artificial_intelligence

2.1 Argument mining 5

https://en.wikipedia.org/wiki/Ethics_of_artificial_intelligence

Furthermore, information retrieval techniques can be used to structure the arguments
(indexing), relate them to each other by computing how similar or dissimilar they
are to each other, making it possible to find and retrieve the most relevant arguments
and counterarguments (Stab et al., 2018; Ma et al., 2018; Wachsmuth et al., 2017;
Wachsmuth et al., 2018; Zhu et al., 2018). Information retrieval can be defined as
finding unstructured (does not have a clear, semantically distinguishable structure
that is easy to understand by computer) data that complies with the information
need from within a large collection of data (Manning, 2008).

2.1.2 Stance classification

Stance classification is a field within argument mining that helps to identify whether
the argument is for or against the issue being debated. Mandya et al. (2016)
proposed to extract the following features for stance classification: topic-stance fea-
tures (specific words associated with topics); stance bearing terminology (words
connected by adjectival modifier (amod) and noun compound modifier (nn) de-
pendency relations that can indicate the stance in the argument); logical point
features (extraction of words following the rule subject-verb-object (SVO) which
might capture the claim); unigrams and dependency features (used to classify
shorter posts).

Levy et al. (2017) proposed a method of claim stance classification in regard to a
given topic. The study used precise semantic analysis of the debate topic and the
claim (the sentiment of the claim towards its target), including target identification
(through detecting the noun phrases in the claim), and contrast detection between
the claim and the topic targets (through their relations), where each of these tasks
had a separate machine learning classifier.

2.2 Chatbots

This section will present the recent developments of the conversational agents, also
known as chatbots. Chatbot is a computer program that has an ability to mimic
written or spoken human speech for interactions with humans (Kim et al., 2018).

2.2.1 Types of chatbots

Chatbots can be broadly classified into generative which generate a response based
on natural language generation techniques (Kim et al., 2018; Le et al., 2018), and

2.2 Chatbots 6

retrieval-based, which select the most appropriate response by using information
retrieval techniques (Zhu et al., 2018; Rakshit et al., 2019; Le et al., 2018).

Retrieval-based models require a database of possible responses to choose from.
This model first retrieves the most possible candidates from the database that
matches the current utterance and then selects the most appropriate response for
the retrieval.

Generative models, by contrast, build responses simultaneously by using machine
learning techniques. Here, the model is trained on a dataset consisting of real dia-
logues and is used to generate responses through “translating” inputs into responses.
Statistical Machine Translation (SMT) models are some of the most recent models
used for the generation of chatbot responses (Cahn, 2017).

2.2.2 Hybrid model

A hybrid model for chatbots that combined generative and retrieval models was
previously explored in several studies. Tammewar et al. (2018) developed a personal
assistant application for scheduling and cancelling the reminders. In this study,
a graph-based retrieval model contained a set of nodes that represented different
conversational states to navigate between and was used for the expected conversation
flow. The generative model was applied when the conversation flow deviated from
the expected.

Another study, Yang et al. (2019), proposed a hybrid neural conversational model
by combining generation and retrieval models with a hybrid ranking module. The
hybrid ranking module was used to select the best response from the generated and
the retrieved candidates.

The model describes in this work is similar to the model proposed by Tammewar
et al. (2018) as it also applies the same strategy for using the generated model
when the retrieval model is not able to give a response, while the chatbots’ purposes
differ. The chatbot developed in this study is aimed to maintain a debate with the
user instead of being a scheduling assistant as in the study done by Tammewar
et al. (2018). It also differs from Yang et al. (2019) study, as it does not control the
responses through a ranking module. This study prioritizes the retrieval module and
applies the generative model to overcome the limitations of the datasets’ limitations,
while Yang et al. (2019) threat the responses from different modules as equally
important.

2.2 Chatbots 7

2.2.3 Debate-chatbots

To date, at least two debate-chatbots were made: a chatbot Debbie, that uses a
similarity algorithm to retrieve counter-arguments (Rakshit et al., 2019) and a
chatbot Dave that used retrieval- and generative-based models separately (Le et al.,
2018).

Chatbot Debbie used corpora compiled by (Swanson et al., 2015) containing contro-
versial topics from the Internet Argument Corpus (Abbott et al., 2016) and dialogues
from online debate forums. The authors were using the Argument Quality (AQ)
regressor to choose the best arguments from the database containing statements for
and against three controversial topics: death penalty, gay marriage, and gun control.
Through Debbie chatbot, users were able to pick a topic and specify their stance (the
chatbot assumes that the user utterance is always argumentative). The system then
used a similarity algorithm based on the UMBC STS score (that combines lexical
similarity features such as latent semantic word similarity and WordNet knowledge)
to retrieve a ranked list of the most appropriate counter-arguments that was not
previously used by the chatbot. The authors created clusters (groups of documents
that are semantically similar (Manning, 2008)) with arguments to speed up the
retrieval process. Chatbot Debbie continues the debate until the user terminates
the chat. The chatbot was evaluated by comparing the average response times for
different retrieval methods used for implementation (Rakshit et al., 2019).

Chatbot Dave (Le et al., 2018) also used Internet Argument Corpora (Abbott et al.,
2016) for its knowledge base. The chatbot incorporates both a retrieval-based
and a generative conversational model separately. The retrieval-based model used
the Manhattan LSTM (MaLSTM) similarity model to learn the semantic similarity
between messages and compare the user message with the knowledge base. To train
and evaluate the MaLSTM model, a parallel corpus consisting of the Quora question
pairs from Kaggle 2 was used. The Quora dataset was used as a "ground truth"
for evaluation of the similarity model. Additionally, a context tracker function was
implemented to keep track of the user and system responses. The generative model
used a hierarchical recurrent (RNN) encoder-decoder architecture, where each word
in the response was embedded using pre-trained word embeddings. The generative
model was evaluated with a perplexity metric, distinct-1 and distinct-2 metrics (that
is the number of distinct uni- and bi-grams in generated responses, scaled by the
total number of tokens that are used to measure the degree of diversity of responses).
These metrics were able to show the diversity of the generative model but were
not useful for evaluating the conversational system. Instead, a rating system was

2https://www.kaggle.com/c/quora-question-pairs

2.2 Chatbots 8

https://www.kaggle.com/c/quora-question-pairs

implemented in the chatbot interface, where the users were able to rate each chatbot
responses from 1 (very bad) to 5 (very good) (Le et al., 2018).

The chatbot described in this work is different from the above-mentioned chatbots in
several ways: firstly, the dataset that is used for the knowledge base of the chatbot
is different resulting in different discussion topics within the chatbot; secondly,
the model for implementation is different. While chatbot Debbie uses UMBC STS
similarity score and chatbot Dave uses Manhattan LSTM similarity model, this
project uses cosine similarity in the combination with the GloVe embedding vectors.
Additionally, the final implementation of the chatbot presented in this work uses a
hybrid model, combining both the retrieval and the generative models.

2.2.4 Building a chatbot

The Turing test that tests a machine’s ability to perform intelligent behavior equiva-
lent to human intelligence (Turing, 1950), inspired many researchers and engineers
to develop multiple conversational systems. One such example is Eliza, a computer
program that through pattern matching and specific phrasing could imitate human-
to-human conversations (Weizenbaum, 1966). The most recent chatbot that passed
the Turing test is Mitsuku (four-time Loebner Prize winner), built in Pandorabots
3 by using the artificial intelligence markup language (AIML). However, chatbots
built using AIML have difficulties with maintaining a dialogue for a longer time
(Shum et al., 2018) and are not able to extract complex information needed in the
debate-domain.

Currently, there are many online tools available for building chatbots: Dialogflow,
Microsoft Bot Framework (Cortana), IBM Watson Conversation, and many others.
Among these, Dialogflow 4 is a free platform for creating interfaces based on natural
language conversations which functionalities can be expanded by using webhooks
(is a way to send information within different applications). Both Microsoft Bot
Framework and IBM Watson Conversation have a free version that allows only a
limited number of API calls per month.

2.2.5 Evaluation

When it comes to evaluating chatbot’s performance, the most recent tool is ChatEval
5 that includes evaluation datasets with both human-annotated and automated
baselines (Sedoc et al., 2018). The Turing test can be used to evaluate how human-

3https://pandorabots.com/docs/
4https://dialogflow.com/
5https://chateval.org/

2.2 Chatbots 9

https://pandorabots.com/docs/
https://dialogflow.com/
https://chateval.org/

like the chatbot is. Chatbots can also be evaluated by conducting user tests and
using surveys to determine user satisfaction (Higashinaka et al., 2018).

2.3 Conclusion

Concluding the literature review, there are various methods for the argument mining
and development of the chatbots. Argument mining can include component extrac-
tion and stance classification. Chatbots can be retrieval-, generative-, or hybrid-based
that include both model retrieval- and generative models. There are many online
tools for building the chatbots, and some of these offer free versions. At least two
debate-chatbots were previously made, retrieval-based chatbot Debbie and both
retrieval and generative-based chatbot Dave.

In this chapter following research sub-questions were answered in relation to the
previous work:

SQ:1 How can the model recognize and handle the arguments? Argument extraction
can be done through feature extraction and rule-matching("that" word) method.
The arguments can either be retrieved or generated depending on the chatbot
model.

SQ:2 How can stance classification be applied for the conversational agents? Feature
extraction, semantic and sentiment analysis, and machine learning can be used
to classify the stance of the argument.

SQ:3 What is an appropriate model for the chatbot’s response generation? Depending
on the chatbot’s type, the responses can be produced by a retrieval, generative,
or hybrid model. The retrieval model can use Manhattan LSTM or UMBC STS
similarity score to extract the appropriate response, while the generative model
can use hierarchical recurrent (RNN) encoder-decoder architecture. A hybrid
model can use the generated model when the retrieval model is not able to
give a response, or use a hybrid ranking module to select the best response
from both retrieved and generated candidates.

SQ:5 How can such a chatbot be evaluated? ChatEval tool, Turing test, and user tests
in the combination with the surveys can be used for the chatbot evaluation.

2.3 Conclusion 10

3First Implementation with Basic
Functionalities

„The smart way to keep people passive and
obedient is to strictly limit the spectrum of
acceptable opinion, but allow very lively debate
within that spectrum—even encourage the more
critical and dissident views. That gives people the
sense that there’s free thinking going on, while
all the time the presuppositions of the system are
being reinforced by the limits put on the range of
the debate.

— Noam Chomsky
(The Common Good (1998))

This chapter describes the first implementation of the ArgueBot platform, the design
choices, and how it was tested. The goal of the first implementation was to build
the base functionalities for interaction with the user. Henceforward, the ArgueBot
chatbot will be referred to as an agent.

3.1 Dataset

The knowledge base for the chatbot consists of the ArguAna Counterargs corpus
(Wachsmuth et al., 2018). Table 3.1 lists the 15 topics used in the dataset containing
1069 debates with 6779 points and 6753 counterpoints (see an example of how a
debate is composed in figure 3.1) distributed between test, training and validation
folders. Arguments consist of points with both pro and con stance towards the
debate’s statement. Each such point includes a conclusion, premises and an inference
within its text, which are not separated or labelled (see chapter 2.1.1). Each debate
has an introduction with the relevant information needed to make an argument.
The data in the dataset was crawled from idebate.com 1, an international debate
education association for young people that offers debates written by experienced
debaters from around the world. The ArguAna Counterargs corpus includes therefore

1https://idebate.org/

11

https://idebate.org/

high qualitative arguments, strengthened with citations. The downside of the corpus
is its formal nature of argumentation, which might differ from the written arguments
provided by the user in the chatbot. This corpus was chosen because of it including
debate background and arguments with different stances, providing, therefore,
stance labels for each argument and eliminating the problem of stance classification
of the existing data.

Topic Debates Points Counterpoints

Culture 46 278 278
Digital freedoms 48 341 341

Economy 95 590 588
Education 58 382 381

Environment 36 215 215
Free speech debate 43 274 273

Health 57 334 333
International 196 1315 1307

Law 116 732 730
Philosophy 50 320 320

Politics 155 982 978
Religion 30 179 179
Science 41 271 269
Society 75 436 431
Sport 23 130 130

Training set 644 4083 4065
Validation set 211 1290 1287

Test set 214 1406 1401
Total 1069 6779 6753

Tab. 3.1.: Distribution of debates, points, and counters over the topics in the dataset
(Wachsmuth et al., 2018)

The first implementation used 12 debates marked as "Junior" from the dataset with
the claims : "Ban online gambling", "Ban animal testing", "Kill One to Save Many",
"Banning School Uniforms", "Poetry should not be taught in schools", "Raise the
school leaving age to 18", "Ban the niqab and other face coverings in schools" ,"
Dreaming of a white Christmas", "Introduce a “fat tax”", "Homework is a waste of
time", "Every child should have a mobile phone", "Sponsoring children in developing
countries". These debates were designed for the younger audience and included
simplified topics with simplified arguments, which aligned with the purpose of the
first implementation of creating the platform with some basic functionalities with
the use of simplified debates. Each debate included at least six arguments (at least
three arguments for and three against the main claim). Each argument included
one point and one counterpoint. Each point and counterpoint were generally 4-8
sentences long each.

3.1 Dataset 12

Fig. 3.1.: An example of a debate’s architecture

An example of how the debates are composed can be seen in Figure 3.1. The debate
has the main claim "Kill One to Save Many (Junior)" and consists of arguments and
background information. This particular debate is unbalanced, consisting of three
pro arguments and six con arguments. Each argument has a main claim and one
point and one counterpoint. Each main claim is generally 3-10 words long which is
often a conclusion of the argument’s point. A counterpoint’s goal is to argue against
this main claim of the argument. For the "pro" argument a point has a "pro" stance
and a counterpoint a "con" stance respectively. The "con" argument has an opposite
architecture, a point here has a "con" stance, while a counterpoint has a "pro" stance.
Note that every argument consists of a point and a counterpoint, but for readability,
Figure 3.1 shows these only for "PRO 1" AND "CON 1" arguments and does not
include any example of the background information.

3.2 Architecture

The overview of the architecture for the first implementation can be found in
Figure 3.2. The data from the dataset is pre-processed in order to remove all the
unnecessary information and saved into the database. Flask represents the ArgueBot
platform that the user interacts with. Dialoglow is used to help understand the
context of the user input. The model is used to create a response to the user. Flask
connects the platform with the database, Dialogflow, and the model.

3.2 Architecture 13

Every time the user chooses a new debate topic, the model finds the 100 most used
words for that debate from the database and generates a debate object (memory
object for the specific user to be used by the model) with response candidates that
are also saved into the database. The 100 most used words in the dataset for that
debate, hence called "debate-specific words", are then sent to the argument entity in
Dialogflow through the API. When the user gives input in form of a chat message, the
message is sent to Dialogflow that detects the intent (context) of that message using
the debate-specific words in the argument entity and the sentence composition. If
the user input is classified as an argument, it is then further analyzed by the model.
The model checks how similar the user argument is to the argument candidates
stored in the database and retrieves the appropriate response. If Dialogflow classifies
the user input with some other intent, the model replies with a predefined response.
Each section in Figure 3.2 marked with a blue rectangle will be described in more
detail below.

Fig. 3.2.: Architecture of first implementation

3.2.1 Pre-Processing

Pre-processing included removing information within brackets, such as citations and
explanations. Additional information for the debate backgrounds that explained
the nature of the debate was also removed. These were removed by using regular
expressions.

The debate names were changed through a written script from for example "This
house Would Ban School Uniforms - Junior" to "banning school uniforms - Junior".

3.2 Architecture 14

The "This House" wording format belongs to the British Parliamentary debate style
that is a default format for many university societies. British Parliament consists of
"Houses", thus "this house.." represents a motion to be discussed in the debate.

The name change included tokenizing the name, removing the first two tokens if
they were "this" and "house", checking the tense of the verb and changing it to the
present participle ("-ing") form. Tokenizing and verb-checking were implemented
by using the spaCy library 2. The arguments were then vectorized by using spaCy’s
GloVe vectors model package "en_vectors_web_lg" and transformed into strings to
save space. The use of these vectors will be further explained in the next section.

The pre-processed debates with their arguments were saved to SQLite database 3 to
reduce the computing time for the model and make the retrieval process easier.

3.2.2 Model for data analysis

There are two main purposes for the model: one for handling the debate object
(memory object to be used by the model) for each user and one to handle the analysis
of the user input.

The user-input handler used the spaCy library to vectorize the input. It used cosine
similarity to compare the vectorized user input to all the argument candidates for
the chosen debate. It then retrieved the id of the argument that had the highest
similarity and sent it to the debate model. The cosine similarity between two vectors
is a measure that calculates the cosine of the angle between these vectors projected
in a multi-dimensional space. Given two vectors −→a and

−→
b , their cosine similarity

is

cosϕ =
−→a ·
−→
b

‖−→a ‖ × ‖
−→
b ‖

(3.1)

where −→a and
−→
b are multi-dimensional vectors over the term set T = {t1, . . . , tm}

and each dimension represents a word with its weight in the sentence. The cosine
similarity is a non-negative number between 0 and 1 (Huang, 2008).

It then used NLTK Vader library 4 to classify the stance for the user input through
sentiment analysis. The polarity of the user input (whether it has positive, neutral,
or negative sentiment) was used to classify whether it was for or against the main
claim of the debate. Positive sentiment was understood as a "pro" stance, negative
sentiment as a "con" stance and neutral sentiment as undefined stance.

2https://spacy.io/
3https://www.sqlite.org/index.html
4https://www.nltk.org/

3.2 Architecture 15

https://spacy.io/
https://www.sqlite.org/index.html
https://www.nltk.org/

The debate-object handler was managing multiple things:

• it randomly assigned the stance for the agent (for or against the main claim)

• it transformed vectors for all argument candidates from a string (you can read
more about why the vector was saved as a string in the Data Pre-Processing
section 3.2.1) to a Numpy vector 5. Numpy is a Python library often used for
computations. The model then rendered all the candidates with their id and
the corresponding vector for the similarity computation done by the user-input
handler.

• it assigned the argument with the highest similarity, received from the user-
input handler, as an active argument for retrieval to the user. The retrieval
process included comparing the user’s stance (calculated with the help of
polarity in the sentiment analysis in the user-input handler) and the agent’s
stance and retrieving the first sentence from the point or the counterpoint
based on the agent’s stance. If the user’s stance and the agent’s stance were the
same, the agent would respond with "I agree" and when the stances differed
with "I disagree". If the stance for the user input was undefined (when the
polarity was neutral), the model would only retrieve the response without
agreeing/disagreeing. If the agent’s stance was "pro" the main claim of the
debate and the active argument was "pro" as well, the model would retrieve
the first sentence of the point in the argument; if the active argument was
"con", i.e. against the main claim, the model would retrieve first two sentences
from the counterpoint. The model then updated the argument by removing the
used sentences from the database for the user. When the next user input was
assigned to the already used argument (that had the highest cosine similarity),
the next two sentences would be retrieved, until the argument became empty.
If there were no sentences left to retrieve, the agent’s response would be: "You
already used this argument". This was done with the assumption that the
user continues on the same argument as before because of the highest cosine
similarity.

• it retrieved the 100 of most frequent words in the dataset for the debate (re-
ferred to as "debate-specific words") for the argument entity in the Dialogflow
that helps with the argument detection (see section 3.2.3 for more informa-
tion). It first tokenized all the sentences for all the arguments in the debate by
using the spaCy library. Then it checked for each token if it wasn’t a stop word
(such as “the”, “a”, “an”, “in” and other commonly used words that do not bear
any necessary information) or a punctuation mark and saved the lemma form
of the word, which is the base or the dictionary form of the word, to an array.
It then used the Count function to retrieve the 100 most used words from the
array.

5https://www.numpy.org/

3.2 Architecture 16

https://www.numpy.org/

3.2.3 Dialogflow

Dialogflow is a platform for creating interfaces based on natural language conversa-
tions 6. Dialogflow has a set of pre-built agents with intents that map user inputs
to responses and entities that include information that can be extracted from the
user input. Dialogflow has a console interface where it is possible to create intents,
entities, fill in responses for specific phrases, and pre-train the intents with some
phrases that the user would typically input. The Dialogflow API 7 makes it possible
to access Dialogflow functionalities through the ArgueBot application and control
the responses through a webhook. The webhook is a URL to the chatbot platform
that sends the agent’s response retrieved from the model back to Dialogflow.

The Dialogflow implementation included:

• argument entity with debate-specific words (the 100 of the most used words
in the debate) that the model updated for every chosen debate. These entities
helped to detect the argument intent and made intent-detection for multiple
users possible;

• Default Welcome Intent, that recognized the greetings from the user;

• Default Fallback Intent, that when the other intents were not matched re-
sponded with Try to start your argument with "I think..."

• argument intent, that consisted of debate-specific words and helped to differen-
tiate whether the user input was an argument or not (pre-trained on phrases:
"there is test", "I think that test", "I argue that test", "in some test" where "test"
was the default word in the argument entity and was included in the argument
entity for every specific debate);

• stance intent for when the user was asking the agent for the stance (pre-trained
on phrases: "Are you for or against the debate?", "What is your stance?", "Are
you pro or con?" and such);

• why intent, for when the user misunderstood the agent or wanted to have
more explanation on the specific argument (pre-trained on phrases: "why?",
"what?", "I don’t understand", "What do you mean by that?", "Can you explain
more" and more)

• Small talk pre-built agent, that was customized through manual input to give
specific responses for when the user used small talk phrases. Small talk could
be manually customized for several areas: about agent (questions such as
"Who are you?", "Are you real?", "You are bad" and others); courtesy (including
phrases: "Great!", "Thank you!", "Well done" and so on); emotions (including

6https://dialogflow.com/
7https://github.com/googleapis/dialogflow-python-client-v2

3.2 Architecture 17

https://dialogflow.com/
https://github.com/googleapis/dialogflow-python-client-v2

phrases: "Ha ha ha!" and "Wow"), Hello/Goodbye (including greetings); about
user (including phrases: "I’m bored", "I love you", "I’m waiting" and more); and
other questions and phrases (including phrases: "You are wrong!", "Sorry" and
others).

3.2.4 Flask

Flask is a micro web framework written in Python, that can be used to create web
applications 8. Ngrok cloud service 9 was used to create a tunnel to the local server
on a randomly chosen sub-domain. This works in a similar way as a webhook, by
providing a link to the local server running on the local machine that can be accessed
by anyone and therefore can be used for testing. The drawback of the service is
that the link is functional only when the local machine is on and connected to the
internet, which limited the accessibility to the Arguebot platform.

Flask was used to create the ArgueBot platform and connect it to the database,
Dialogflow, and the model. Flask Sqlalchemy10 (an extension for Flask that adds
support for storing objects into a SQL Database) was used to store user information
such as session id, timestamp, conversation, and a debate model object for every
chosen debate for every new user. This made simultaneous testing for different users
at the same time possible.

Examine the following debate illustrated in figure 3.3 conducted by one of the
participants on the topic "Raise the school leaving age to 18" during the user tests
for the first implementation. Some of the user inputs Here "user" annotates the user
input and "agent" annotates the ArgueBot response.

In the table 3.2, some of the user input/agent response pairs were picked up from
the dialogue to illustrate the response model. Here, the table shows the intent of the
user input and the response model chosen by the ArgueBot followed by the agent
output as the resulted response.

8https://palletsprojects.com/p/flask/
9https://ngrok.com/

10https://flask-sqlalchemy.palletsprojects.com/en/2.x/

3.2 Architecture 18

https://palletsprojects.com/p/flask/
https://ngrok.com/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/

USER: Hello
AGENT: Let’s start the debate! I think that forced education achieves

little. What do you think about it?
USER: It’s not so much forcing I think
AGENT: Understood.
USER: I think the brain is still too much in development early on.
AGENT: Working at an early age can be an advantage in certain cir-

cumstances. Many families, particularly in countries with little
welfare, need their children to bring income into the household.

USER: I think the return on investment is solid. Children with more
education can be more free in what they can do as an adult.

AGENT: I agree! Working at an earlier age can help these families to
survive. Furthermore, anyone who is having difficulties getting
educational qualifications can gain an advantage by leaving school
and gaining work experience.

USER: I agree with you that if you start working at a younger age, say
16, children can still learn later if they want to [this user input is not

understood by the model and results in triggering Default Fallback Intent]
AGENT: Try to start your argument with "I think..."
USER: I think children can still learn when they’re an adult
AGENT: If they are forced to stay in school then they will simply lose

two years. The British government recognized this and introduced
21 000 extra apprenticeships in 2009.

USER: What is an apprenticeship?
AGENT: As well as these direct costs there is also a huge amount of

losses that a country would face. Young people who leave school
and enter the workforce contribute to the economy through taxes
and contributions to pensions which the country would no longer
receive if people remained in school.

USER: Thanks for talking!
AGENT: You’re welcome. Should we continue the debate? What is your

next argument?
USER: No, that’s alright.
AGENT: Understood.
USER: Goodbye
AGENT: Bye! It was nice debating with you! Hope you enjoyed it as

much!

Fig. 3.3.: A conversation conducted during the user tests for the first implementation of the
ArgueBot on the debate topic "Raise the school leaving age to 18"

3.2 Architecture 19

User Input Intent Response Model Agent Output
Hello Default

Welcome
Intent

response with a random ar-
gument retrieved from the
database

Let’s start the debate! I
think that forced educa-
tion achieves little. What
do you think about it?

It’s not so much
forcing I think

Small
talk Di-
alogflow
agent

replies with customised re-
sponse

Understood.

I think the brain
is still too much
in development
early on.

argument
intent

triggers argument intent,
user-input analyser is then
activated and determines
that the polarity of the
sentence is neutral and
then retrieves first two sen-
tences from the argument
with the highest cosine
similarity to the user input

Working at an early age
can be an advantage in cer-
tain circumstances. Many
families, particularly in
countries with little wel-
fare, need their children
to bring income into the
household.

I think the
return on invest-
ment is solid.
Children with
more education
can be more free
in what they can
do as an adult.

argument
intent

Here the intent is classi-
fied as an argument and
the polarity is computed
as "positive" which is un-
derstood by the model as
a "pro" stance

I agree! Working at an
earlier age can help these
families to survive. Fur-
thermore, anyone who is
having difficulties getting
educational qualifications
can gain an advantage by
leaving school and gaining
work experience.

I agree with you
that if you start
working at a
younger age, say
16, children can
still learn later if
they want to

Default
Fallback
intent

this user input is not un-
derstood by the model
which triggers pre-defined
Default Fallback response

Try to start your argument
with "I think..."

What is an ap-
prenticeship?

argument
intent

user asks for the clarifica-
tion, but the input is classi-
fied as an argument which
triggers the argument in-
tent with neutral polarity

As well as these direct
costs there is also a huge
amount of losses that a
country would face. Young
people who leave school
and enter the workforce
contribute to the econ-
omy through taxes and
contributions to pensions
which the country would
no longer receive if people
remained in school.

Tab. 3.2.: System’s response model with some examples from the dialogue on the debate
topic "Make voting compulsory"

3.2 Architecture 20

3.3 User tests and results

This section will describe the evaluation strategy for the first implementation of
the chatbot and its results. The evaluation was conducted through the user tests
via a platform build for the testing purpose (see figure 3.4) and a survey created
in Google Forms (see Appendix A). The purpose of these user tests was to identify
how the users interact with the chatbot and how it can be further improved. Before
conducting the user tests, the platform was tested by one colleague in order to assure
the test quality. This test is not included in the results for the first implementation.

The user tests were conducted during three days and had 14 participants. The testers
were mainly colleagues from Findwise that received the link to the ArgueBot through
an internal communication system. Other testers were acquaintances contacted via
Facebook. The user tests were anonymous and therefore there is no demographic
information available for the participants.

The platform for the testing had two pages. The front page for the platform included
information about the project, and the user consent form (see figure 3.4a). After the
user gave his/her consent, the ArgueBot platform redirected the user to the main
page (see figure 3.4b). The main page had the option box where the debate topic
could be selected, information about the debate, the chatbot box for conversing
with the Arguebot and the link to the survey. To make interaction anonymous, an
identification code was given to the user and could be found on the top of the page.
The user was later instructed to provide this identification code when filling in the
survey in order to connect the survey answer to a specific conversation for further
analysis.

The survey included:

• two yes/no questions that asked the users whether they found the background
information clearly presented respective helpful

• three ranking questions where the users were asked to rank: on the scale from
1 to 10 how natural (human-like) the conversation flow with the chatbot felt;
on the scale from 1 to 10 how satisfactory the grammar of the chatbot and its
response quality was.

• the users were also asked to elaborate on their answers in an open-question
form

• if the users wanted to leave additional feedback they had an opportunity to do
so in a separate question at the end of the survey.

3.3 User tests and results 21

(a) The front page

(b) The main page

Fig. 3.4.: The interface of the ArgueBot for the first implementation

3.3 User tests and results 22

All of the testers answered that the background information for the debate was
clearly presented, while 10 from 13 even thought of it as helpful. The users that did
not find it helpful either already knew about the debate topic or were not satisfied
with the available topics.

The average ranking for the conversation flow with the chatbot was calculated to be
5.5±2.1. Some users felt that having to start the sentence with "I think" (the Fallback
message from the Dialogflow that the chatbot used when it could not interpret
the intent of the user input) felt unnatural and discouraged them from engaging
more in the debate discussion. Some users commented that "You already used this
argument" response from the chatbot (see section 3.2.2) broke the continuity of the
conversation and was often wrong.

The average ranking for the response grammar was 8± 1.5. Here, the testers mostly
commented on the missing spaces between the words, which was either the result of
pre-pocessing or the inherited mistakes from the dataset. The average ranking for
the response quality was 5.8± 2.1. Some testers felt that the chatbot responses were
irrelevant to their input as if the chatbot failed to understand the context of their
argument. The "I agree"/"I disagree" statement used by the chatbot was according
to the majority of the testers (8 from 13) disconnected from the user input and in
many cases wrong.

3.4 Conclusion

The first implementation of the debate platform included the basic functionalities
such as chatting on the simplified debates, argument retrieval, dynamic entities,
stance classification through sentiment analysis and simultaneous use of the platform
by different users at the same time. The user tests showed that sentiment analysis
for stance classification is not sufficient and should be changed to another method,
forcing the user to start the argument with "I think" as a Fallback message and
"You already used this argument" felt unnatural. In the next chapter, the second
implementation of the ArgueBot will be presented with changes made based on the
feedback from the user tests in the first implementation.

This chapter answered following research questions:

SQ:1 How can the model recognize and handle the arguments? Dialogflow was used
to recognise the context (meaning) of user inputs.

3.4 Conclusion 23

SQ:2 How can stance classification be applied for the conversational agents? In the
first implementation polarity (whether the sentence is positive, negative or
neutral) from the sentiment analysis was used for the stance classification.

SQ:3 What is an appropriate model for the chatbot’s response generation? If the
argument intent was triggered, the input was further handled by the model
for the retrieval of the argument with the main claim that had the highest
similarity to the user input.

SQ:4 How can human-like conversation with the chatbot be carried out in the debate
domain? The first implementation used Small talk pre-built agent available in
Dialogflow, argument retrieval through cosine similarity, stance classification
to improve the argument responses and make the conversation more human-
like. The Default Fallback message meant to lead the conversation back to the
debate if it deviated from the intended flow.

SQ:5 How can such a chatbot be evaluated? The platform was built to perform the
user tests in the combination with the survey that collected user’s feedback on
their interaction with the chatbot and its performance.

3.4 Conclusion 24

4Second Implementation with
Machine Learning

„[Language] makes infinite use of finite means

— Wilhelm von Humboldt

This chapter presents the second and final implementation of the ArgueBot platform
and the design choices. The user test section for this implementation is more
extensive and will, therefore, be described in the separate chapter 5.

4.1 ArgueBot 2.0

This section will introduce the changes made in the second implementation of the
ArgueBot and their motivations. The major changes, such as stance classification
and the generative model, will be described in a separate section each.

4.1.1 Dataset

The dataset for argument retrieval was extended from the Junior topics to debates in
the test dataset in the ArguAna Counterargs corpus (Wachsmuth et al., 2018). Some
debates belonged to different topics which resulted in some duplicates. The code for
filtering out the duplicates was included in the pre-processing code and resulted in
175 debates saved to the database from 214 existing in the dataset. The distribution
of debates in the second implementation with their points and counterpoints for
each topic can be found in Table 4.1.

4.1.2 Architecture

Figure 4.1 shows the architecture for the second implementation. Similar to the first
implementation, the dataset is first pre-processed and then saved into the database.
Here, junior debates were replaced with more complex debates (see the distribution
for different topics for selected debates in Table 4.1). Because of the higher argument
complexity, more extended pre-processing was applied. This included removing

25

Topic Debates Points Counterpoints

Culture 7 54 54
Digital freedoms 9 61 61

Economy 17 125 125
Education 10 76 76

Environment 5 36 36
Free speech debate 9 58 58

Health 10 77 77
International 30 233 233

Law 19 134 134
Philosophy 10 85 85

Politics 26 194 194
Religion 5 36 36
Science 8 57 57
Society 6 39 39
Sport 4 30 30
Total 175 1295 1295

Tab. 4.1.: Distribution of debates, points, and counters over the topics in the database for
the second implementation

notes, annotations, references, and footnotes. Moreover, the number of the most
used words for extracting and updating the argument entity in the Dialogflow was
increased from 100 to 300.

The interaction with the user is quite similar to the first implementation, but here,
instead of using sentiment analysis, a stance classifier developed using Machine
Learning (ML) was added. Moreover, instead of the Fallback message Try to start your
argument with "I think..." that was used by the Fallback intent (when the Dialogflow
could not match the user input to any of the available intents), the user would get a
generated argument created by the Generative Model.

The model that retrieved the sentences from the database, instead of choosing one
argument with the highest similarity to the user input, chose two arguments instead.
If the first argument did not have any sentences left to retrieve, the next available
sentence from the second argument was retrieved. This was done instead of replying
with "You already used this argument", which according to the user tests of the
first implementation was often wrong and felt unnatural. Moreover, instead av
retrieving two sentences at the time from the argument as was done in the first
implementation, one sentence was retrieved instead. This was done to maximize the
number of candidates for the retrieval.

4.1 ArgueBot 2.0 26

To differentiate between different models used in this implementation, the model
used to retrieve a response for the specific user from the database, will be hence
referred to as the Retrieval Model. To differentiate responses created by different
models during the user tests, the responses created by the generative model included
"GR" token at the end of the sentence. The chatbot’s model is hence hybrid, as it
uses both retrieval and generative models. Additionally, a new intent was created to
explain the purpose of "GR" at the end, if the user would ask what "GR" means.

The major changes made in the ArgueBot are marked in figure 4.1 with dashed
rectangles. They will be explained thoroughly in next two sections : section 4.2 for
the Stance Classification with ML and section 4.3 for the Generative Model.

Fig. 4.1.: Architecture of second implementation

Examine figure 4.2 showing a part of the debate conducted in by one of the partici-
pants on the topic "Making voting compulsory" during the user tests for the second
implementation. Here, "user" annotates the user input, "agent" annotates the Argue-
Bot response and the response flow is explained within the brackets. The agent’s
stance is for ("pro") making voting compulsory. A small part of the original dialogue
was removed as it was most probably a typo made by the user at the beginning of
the conversation.

In the table 4.2, some of the user input/ agent response pairs were picked up from
the dialogue to illustrate the response model. Here, the table shows the intent of the
user input and the response model chosen by the ArgueBot followed by the agent
output as the resulted response.

4.1 ArgueBot 2.0 27

USER: I think voting should not be forced. instead people should be
educated on its importance

AGENT: I disagree! A benefit of compulsory voting is that it makes it
more difficult for special interest groups to vote themselves into
power.

USER: I believe that people forced to vote are more likely to vote ran-
domly, even stupid parties

AGENT: I disagree! The benefits obtained from compulsory voting
cannot be gained from any of the strategies mentioned by the
opposition.

USER: what benefits?
AGENT: Compulsory voting can enhance a sense of community, as ev-

eryone is in it together.
USER: yeah but that is why government should foster civic education

for all citizens with the right to vote
AGENT: I disagree! A notable example would be the disproportionate

influence of agriculture in policy making as seen in both European
politics and well as American with enormous amounts of subsidies
for farmers who represent a minute percentage of the population.

USER: democracy is imperfect but at least give everyone the right to
express his idea. Everyone has its own interest, no one is a farmer

AGENT: if people wish to consider their own safety then why should the
state not to be able to decide what their own people are GR

USER: I said that this is part of a democratic system. no one has the
same interests but at least everyone has the right to express his
ideas

AGENT: I disagree! The outcome of the election therefore reflects less
the will of the people.

USER: yes but I prefer a fair and transparent system such as a democracy
rather than a oligarchy in which few people decides what is good
for everyone

AGENT: I agree! The right to vote in a democracy has been fought for
throughout modern history.

USER: thanks <3
AGENT: You’re welcome. Should we continue the debate? What is your

next argument?

Fig. 4.2.: A conversation conducted during the user tests for the second implementation of
the ArgueBot on the debate topic "Making voting compulsory"

4.1 ArgueBot 2.0 28

User Input Intent Response Model Agent Output
I think voting
should not be
forced. instead
people should
be educated on
its importance

argument
intent

stance classification deter-
mines "con" stance, the
first sentence from the
point from the argument
with the highest similarity
0.92 for the argument with
the claim "It will reduce
the power of special inter-
est groups" is returned

I disagree! A benefit of
compulsory voting is that
it makes it more difficult
for special interest groups
to vote themselves into
power.

democracy is im-
perfect but at
least give every-
one the right to
express his idea.
Everyone has its
own interest, no
one is a farmer

Default
Fallback
intent

triggers generative model
that ends the sentence
with "GR" token for eas-
ier differentiation between
generative and retrieval re-
sponse models

if people wish to consider
their own safety then why
should the state not to be
able to decide what their
own people are GR

what benefits? "why" in-
tent

retrieves the next available
sentence from the active
argument "There are alter-
natives that tackle the real
causes of voter disengage-
ment" that had the highest
similarity in the previous
turn

Compulsory voting can en-
hance a sense of commu-
nity, as everyone is in it to-
gether.

thanks <3 Small
Talk
agent

pre-defined response from
Dialogflow

You’re welcome. Should
we continue the debate?
What is your next argu-
ment?

Tab. 4.2.: System’s response model with some examples from the dialogue on the debate
topic "Make voting compulsory"

4.2 Stance classification with ML

Stance classification of the user input (determining whether the user is in favor of
or against the main claim) for the second implementation was developed by using
Machine Learning technologies instead of using sentiment analysis. Six different
binary Machine Learning methods for classification were tested in two experiments.
Binary classification is one of the most common tasks within the machine learning
domain and is commonly used for classification when only two classes are present.
The model that showed the best performance during the two experiments were then
used by the chatbot in the user tests. This section will first present the dataset used
for the classification, the methodology of the experiments done, and finally, explain
the chosen classifier more in-depth.

4.2 Stance classification with ML 29

4.2.1 Data

To create the dataset for the stance classifier, the ArguAna Counterargs corpus
(Wachsmuth et al., 2018) was used. This included more thorough pre-processing:

• all the references, footnotes, additional information within brackets were
removed from arguments by using regular expressions.

• the sentences inside every point and counterpoint were then split by using the
spaCy library 1.

• a csv file was then created by saving each sentence and a corresponding stance
from the dataset in a binary form (1 for "pro" and 0 for "con").

• the csv file was then manually reviewed to remove the references not captured
by regular expressions.

• the additional dataset for stance classification "IBM Debater Claim Stance
Dataset" (Bar-Haim et al., 2017) was added to the existing csv file to improve
the classifier, which resulted in a file with 49544 lines, where every line
included a sentence with a respective stance as a label.

• the resulting file was then split into train/validation/test files with ratio
75/15/15. The model is used to fit the parameters for classification on the
training dataset (the model learns the features of the input and their relation to
the corresponding stance). The validation dataset can be used to compare the
performance of the model during the training and tune the hyper-parameters
used by the model (it treats the input data in the validation dataset as unseen,
predicts their stance and evaluates how many of these predictions are correct).
The test dataset is used to provide an unbiased evaluation of how well the
final model is fit on the unseen input data from the test dataset (it is similar
to the validation process, but happens after the training is done). During the
experiment, the validation set was only used for tuning the best performing
classification model because of the time constraints. Table 4.3 shows the
distribution for different stances in the dataset, where the sentences with
the pro stance have 3% higher distribution, therefore, the dataset is slightly
imbalanced.

Training Validation Testing

Data set 34686 7432 7432
Pro stance 18254 3907 3938
Con stance 16432 3525 3494

Tab. 4.3.: The Dataset used for the Stance Classification in number of lines

1https://spacy.io/

4.2 Stance classification with ML 30

https://spacy.io/

4.2.2 Methodology

This section will provide an overview of the experiment done to determine the
most suitable Machine Learning classification model for the given data. A general
overview of different ML models used will be described here, while the chosen model
will be explained in more details in the next section.

Google Collaboration (Colab) is a free Jupyter notebook environment that allows
one to use a limited amount of a hardware accelerator such as GPU or TPU. While
TPU is working exclusively with Tensorflow (an open source machine learning
library developed by Google), the GPU can be used with various machine learning
libraries. The reason why hardware accelerators are preferable is because of their
computational speed, as they can train models way faster than with the CPU available
on modern computers.

A set of experiments were, therefore, conducted on Google Colab to test different
machine learning models for stance classification. The PyTorch machine learning
library for Python 2 was used for six different machine learning models: CNN, Self-
Attention Networks, LSTM, LSTM with self-attention mechanism, RCNN, and RNN
networks. The code was based on the existing solution provided in GitHub 3.

CNN (convolutional neural networks) is a commonly used method for image classifi-
cation, that uses kernels (often 2x2, 3x3, 4x4 pixel squares) to first select important
features and save them in hidden layers and then run through the new images in or-
der to classify them with the help of these features. For NLP tasks the method works
in the same way but by using tokens instead of pixels. The CNN model usually works
well with data that has the same size (such as images with the same resolution) as it
is able to extract the characteristic features for classification purposes.

The Self-Attention Networks (SAN) uses weights distributed for different words in
the sequence to find which combinations of the words are the most important. The
method was successfully used for a range of NLP tasks, such as machine translation,
sequence labeling, relation extraction, and others.

RNN (recurrent neural networks) are networks that have loops in them. When
dealing with text, RNNs understand words they encounter later in the sentence given
the words they have encountered earlier. As the distance between the words grows,
they cannot make the correct connections and therefore, focus more on the words
close to one another.

2https://pytorch.org/
3https://github.com/prakashpandey9/Text-Classification-Pytorch

4.2 Stance classification with ML 31

https://pytorch.org/
https://github.com/prakashpandey9/Text-Classification-Pytorch

LSTM stands for Long Short-Term Memory and is built to overcome the before-
mentioned issue in RNNs. LSTMs are capable of learning long-term dependencies
with memory cells that can maintain their state over time through control gates, that
are controlling which information should be let in or out.

LSTM with a self-attention mechanism (LSTM SAM) enables RNNs to learn the
correlation between the current words and the previous part of the sentence and
save them into memory cells.

RCNN (Recurrent Convolutional Neural Networks) captures contextual informa-
tion with the recurrent structure and constructs the representation of text using a
convolutional neural network.

The first experiment included training each model 5 times with 10 epochs (number
of iterations that the machine learning model uses to go through the same data)
and choosing the model with the best accuracy. The hyper-parameters used in this
experiment were: 32 batches (number of samples that will be propagated through
the network) and 512 hidden features (number of features that the network learns
from each sample). The accuracy is the number of correct predictions divided by
the number of all samples (Müller and Guido, 2016). For the simplicity and because
of the time constraints the same hyper-parameters were used for all the models.
These hyper-parameters were chosen after some trial-and-error method, to find the
hyper-parameters that showed the overall satisfactory test accuracies for most of the
models.

Table 4.4 shows the accuracy for the different models for the first experiment. Com-
paring the accuracy for the training and the validation datasets can help developers
to identify if the model is overfitting (if the validation accuracy is lower than the
training accuracy) or underfitting (the opposite) during the training. When the
model is overfitted, it works well on the training set (it learned rules specifically
for the training set) but is not able to generalize to new data. Underfitting occurs
when the model is not able to capture all the aspects of the training data (Müller
and Guido, 2016). From table 4.4, we can observe that the SAN and LSTM SAM are
prone to overfitting, CNN and LSTM are prone to overfit slightly, while RNN is prone
to underfit. To overcome these issues the model can be tuned through adjusting
the hyper-parameters so that they satisfy the trade-off of over/under-fitting. Due
to the time constraints, the tuning was done if needed only for the best performing
model.

The testing accuracy shows the accuracy of the trained model on the test dataset,
namely on the data the model has not seen before. This metric is therefore used to
measure the performance of the trained model.

4.2 Stance classification with ML 32

Even though CNN showed the best test accuracy, the model had restrictions towards
the input size and was therefore not suitable for classification of sentences with
different size. If the user input length was smaller, say three words, the model would
not be able to compute the predictions. LSTM did not have any restrictions on the
input size and showed a testing accuracy that was just a fraction smaller than CNN
(0.31%). LSTM model was therefore chosen as a stance classifier for the chatbot.
Because the model was prone to overfit just slightly, the decision was made to not
tune it further but to keep the same hyper-parameters.

Method Training Validation Testing

SAN 98.27 61.87 63.71
CNN 69.95 68.00 69.12
LSTM 68.65 68.20 68.81

LSTM SAM 97.64 61.48 62.26
RCNN 96.91 61.42 63.04
RNN 66.31 68.18 68.68

Data set 34686 7432 7432
Tab. 4.4.: Comparison between different machine learning models for stance classification

Sometimes looking only at accuracy is not enough to measure the performance of
the model. The dataset can be imbalanced with one of two classes much frequent
than the other one. This can result in the model making false positives (incorrect
positive predictions) and false negatives (incorrect negative predictions) that accu-
racy measurement does not take into consideration. F-score is a harmonic mean of
two other performance metrics, precision and recall, and can provide a more realistic
measure of a test’s performance by using both of these metrics. Precision shows how
many samples predicted as positives are indeed positive, while recall measures how
many of positive samples are captured by the model (Müller and Guido, 2016).

The general formula for F-score is the following:

fβ − score = (1 + β2) · precision · recall
(β2 · precision) + recall

, (4.1)

where β is a positive real that allows to control the importance of precision and
recall. The F-score is evenly balanced when β = 1, it favours precision when β >
1, and recall otherwise (Sokolova et al., 2006). The classifiers with low F1-score,
can indicate that there is a problem with false positives or false negatives but can’t
specify it. F2-score (β is equal to 2) weights recall higher than precision and is used
where it’s more important to classify correctly as many positive samples as possible,
rather than maximizing the number of correct classifications.

4.2 Stance classification with ML 33

The second experiment included measuring F1- and F2- scores as well as testing
six text inputs with different meaning (the ideal model would have captured the
differences between these sentences): "Terrorism is wrong", "Terrorism is not wrong",
"Terrorism is good", "Terrorism is very good", "Murder is good", "Murder is bad". The
results from the second experiment can be found in the table 4.5. The table shows
accuracy, F1-score (where β= 1), F2-score (where β= 2) and the stances for the
text where "c" stands for "con", "p" for "pro" and "n" for "none" with the ground truth
"pccccp" or "cppppc". The reason behind two ground truths is because the chosen
sentences were not based on any debate topic available in the dataset and therefore
it is hard to determine if they are "pro" or "con". The main goal of choosing these
specific sentences was to test if the classifier can capture the semantic differences
in the sentences. In retrospect, if the sentences would be more related to a specific
topic in the dataset, they could have helped to compare the different ML models
more conveniently.

To illustrate the difference between test accuracy metric and F-scores, one can look at
the results for LTSM, where test accuracy showed almost 69% while F-scores showed
0%. Here, 0% F-scores indicate a problem with recall or precision, while the input
test shows all the inputs being classified as "con" stance. We can, therefore, assume
that the LSTM model classified all the values in the test set as a "con" stance resulting
in many false negatives.

The second experiment was done in the middle of the user test, as it became apparent
that the LSTM stance classifier was not performing well enough despite its high test
accuracy. The same models from the first experiment that were previously saved to
the files were used again in the second experiment. The effects of this change on the
user tests will be further discussed in section 5.3.

ML Model Test Accuracy F1-score F2-score Input (correct)

SAN 63.71 58.00 77.01 ppppcp (3 or 3)
CNN 69.12 07.12 15.39 nnnnnn (0)
LSTM 68.81 00.00 00.00 cccccc (3 or 2)

LSTM SAM 62.26 64.76 81.63 cpcpcp (3 or 3)
RCNN 63.04 55.01 74.80 ppcccc (4 or 2)
RNN 68.68 04.04 09.18 cpcppp (2 or 4)

Data set 34686 7432 7432
Tab. 4.5.: Comparison between different machine learning models for stance classification

in the second experiment, where "c" stands for "con", "p" for "pro" and "n" for
"none"

As can be seen from Table 4.5, the CNN, LSTM, and RNN had the highest testing
accuracy, but failed in the F1- and F2- scores and the input test. LSTM SAM had
the highest F1- and F2- scores and performed on the input test and was therefore

4.2 Stance classification with ML 34

chosen as a stance classifier for the chatbot. Due to overfitting problem discovered
in the first experiment, the model was further tuned by increasing the batch size
and the number of features for learning which thus improved LTMS SAM model’s
generalization (with training accuracy 78.93% , validation accuracy 62.64%, testing
accuracy 62.12%, F1-score: 59.64% and F2-score: 79.44%). This model used
hyper-parameters: 64 batch size and 768 hidden features.

To illustrate the difference between interaction with the chatbot using different
stance classifiers two dialogues were chosen for the same debate "Banning the
development of genetically modified organisms" from the user tests and are shown
in figure 4.3. Figure 4.3a shows the ArgueBot version using the LSTM as a stance
classifier, while figure 4.3b shows the dialog using the LSTM SAM as a stance
classifier. The blue color to the left denotes the user input, while the green color to
the right denotes the chatbot response.

When analyzing the dialog in figure 4.3a, two problems can be recognized: incorrect
stance classification (the chatbot agrees with each of the user’s arguments), an
unrelated response (the user is talking about the danger of genetically modified
organism, and the chatbot responds with the benefits of genetically modified food).
The combination of these problems creates a disruption in the conversation, and
the user might feel that the chatbot completely misunderstands him or her, as
the chatbot continues to agree with everything that the user says. Moreover, the
user in this example seems to be testing the system by trying the sentences with
the semantic differences ("Genetic modification is good/bad"). This inspired to
include such sentences when conducting the experiment for the classifier, mentioned
previously.

The second dialog in figure 4.3b uses the LSTM with the self-attention mechanism
as the stance classifier. It is able to classify the user inputs with different stances
(it responds with both "I agree" and "I disagree" statements), but the chatbot is still
not able to analyze the more complex user inputs, such as questions. The chatbot
was designed with the assumption that the user will input arguments on the topic
and while it can handle simple questions for clarification such as "why?" or "what?",
the question "Agree with what?" is too complex to handle. Here, a clear example of
the dataset limitations can be observed: the agent response "There are two problems
associated with scientifically testing the impact of genetically modifying food" denotes
the beginning of the argument and results in an obvious response from the user
that asks "What problems?", that the agent assumes is an argument and responds
with a new argument from the dataset. Moreover, the user in this example got the
generated response that ends with "GR", that while grammatically correct, is not
related to the debate topic of genetically modified food.

4.2 Stance classification with ML 35

(a) LSTM stance classifier

(b) LSTM SAM stance classifier

Fig. 4.3.: Comparison between two dialogues using different classifiers for the same debate
topic "Banning the development of genetically modified organisms", where the
blue color represents the user and the green color represents the agent

4.2 Stance classification with ML 36

4.2.3 LSTM with Self-Attention Mechanism

The LSTM SAM was chosen as a classification model for the ArgueBot based on the
experiments demonstrated in the previous section and will be further explained here.
First, the overview of the LSTM networks will be given, then the LSTM SAM will be
explained with the help of figure 4.4.

The LSTM method was first proposed by Hochreiter and Schmidhuber (1997) to
overcome the vanishing/exploding gradient problem in the RNN networks. This
problem occurs when the gradients that carry the information needed for updating
the weights and setting up the network become too small/big and result in the model
not being able to learn. The LSTM networks use a gating mechanism that controls
the degree to which the LSTM units keep the previous state and store the extracted
features in them.

Figure 4.4 shows the architecture for the LSTM networks with the self-attention
mechanism (LSTM SAM). First, the words are transformed into their vector repre-
sentations "vn" (300-dimensional GloVe embeddings), which are then fed into the
LSTM embedding layer. "A" here represents a chunk of the LSTM network that has a
chain-like connected structure, where every repeating chunk "A" has three gates that
control the information flow for its memory cell and pass it to the hidden state "hn"
containing the word features and to the next chunk "A" in the chain. The three gates
are: the input gate that regulates how much of the new information the cell should
keep, the forget gate that regulates how much of the existing information the cell
should throw away or keep, and the output gate that regulates what information
to pass to the next chunk in the network and the hidden state. The attention layer
then finds the contribution of each word to the whole input by assigning weights
"wn" to each word. The sentence embeddings "M" is computed as the sum of these
weights in the vector matrix, where each vector represents an aspect, or component
of the semantics (long sentences can have multiple components) belonging to a
"pro" and a "con" class. The sentence embedding in the attention mechanism is
able to provide the semantic representations of the input (long term dependencies),
allowing LSTM to carry only shorter term context information around each word
(short term dependencies) and in doing so relieves some of the memory load from
the LSTM network (Lin et al., 2017). The output "r" is a sentence feature vector,
containing the sentence embedding for "pro" and "con" class. When testing a new,
unknown input (such as the user input in the chatbot), the model returns the class
with the highest weight.

4.2 Stance classification with ML 37

Fig. 4.4.: Architecture of the LSTM with Self-Attention Mechanism

4.3 Generative Model

The generative model was added to the ArgueBot to compensate for the limitations
of the retrieval model that is restricted to the arguments stored in the dataset. In
the second implementation, this model was added instead of the chatbot responding
with the "You already used this argument" Fallback message. The ArgueBot 2.0 is,
therefore, using a hybrid model, a combination of retrieval and generative models. In
this section, the dataset used for training of the generative model, the methodology
and the experiment will be presented.

4.3.1 Data

The ArguAna Counterargs corpus (Wachsmuth et al., 2018) served as the dataset
for the generative model. The corpus was first pre-processed as was done for the
stance classifier, where the references and footnotes and brackets were removed
with regular expressions. The sentences in every argument were then split by using
the spaCy library 4. The sentence pairs were then saved into a csv file. For example,
if the argument consisted of 5 sentences, the first and the second, the second and the
third and so on until the fourth and the fifth sentence, would be the input/output
pairs in the csv file. Then, the resulting csv file was manually reviewed to remove
the lines including references that Regex was not able to capture.

4https://spacy.io/

4.3 Generative Model 38

https://spacy.io/

As mentioned before, the ArguAna Counterargs corpora consist of high-quality
arguments, but these arguments have a more formal nature of argumentation which
differ from the conversational style of debating. The dataset used in (Carstens and
Toni, 2017) was therefore added to the existing file to enrich it with conversational
data. The dataset in (Carstens and Toni, 2017) was composed of the Internet
Argument Corpus (IAC) (Walker et al., 2012) (comprised of text extracted from the
debating website 4forums), the AIFdb corpus (Lawrence and Reed, 2014) (comprised
of discussions that have taken place on the BBC Moral Maze and argumentative
microtexts) and the News articles corpus (Carstens and Toni, 2015) (comprised of
collection of publications concerned with the UK Independence Party (UKIP)).

An effort was made to add a more recent Internet Argument Corpus (IAC) 5 to the
composed dataset which resulted in the csv file being too large to process. The
decision was then made only to use the dataset containing sentence pairs from the
ArguAna Counterargs corpus (Wachsmuth et al., 2018) and the dataset used in
(Carstens and Toni, 2017) (without the UKIP news articles corpus), for training the
generative model resulting in 47322 input and output pairs of sentences.

4.3.2 Methodology

This section will describe the methodology and tools used for implementing the
generative model. It will also describe the experiment conducted to determine which
Luong score function to use for generating responses.

Similarly to the stance classifier with ML, Google Colab was used to pre-train the
model on their GPU for much faster training. A Pytorch sequence-to-sequence
(seg2seq) generative model for chatbots was used for generation of new arguments6

. Its model is using a movie dialog corpora with sentence pairs, that was replaced
with the created csv dataset instead. The code from the tutorial was adjusted to fit
the requirements of ArgueBot, as the sentences in the created dataset were longer
and more complex than that of the movie dialogs.

To prepare data for the model, the sentences were first normalized by filtering out
the sentences longer than 50 words, which resulted in 45352 pairs of sentences. All
the symbols that were not words were removed and the sentences were tokenized.
The resulting tokens were added to the dictionary that consisted of 25511 words.
The words in the sentences then were converted to their corresponding indexes in
the dictionary and fed into the model.

5https://nlds.soe.ucsc.edu/iac2
6https://pytorch.org/tutorials/beginner/chatbot_tutorial.html

4.3 Generative Model 39

https://nlds.soe.ucsc.edu/iac2
https://pytorch.org/tutorials/beginner/chatbot_tutorial.html

Seq2seq models take an input sequence and return an output sequence using fixed-
size encoder-decoder architectures and can be used for Machine Translation, Text
Summarization, Conversational Modeling, Image Captioning, and more. Both en-
coder and decoder use two separate GRU recurrent neural networks. The GRU
is a multi-layered Gated Recurrent Unit (Cho et al., 2014), that similarly to the
LSTM networks eliminates the vanishing/exploding gradient in the RNNs through
the gate architecture. While the LSTM networks use three gates (input, forget and
output), the GRU has only two gates (reset and update). The reset gate controls
how much of existing information to forget between the chunks in the network,
while the update gate controls what information to add to existing information and
what information to throw away (a combination of input and forget gates in the
LSTM). The GRUs don’t have any cell states as LSTMs do and use only hidden states
to transfer the information and therefore require less computational power than the
LSTM networks.

Figure 4.5 illustrates the architecture of the seq2seq encoder-decoder mechanism
with GRU and attention layers. "<SOS>" and "<EOS>" tokens represent the start
and the end of the sentence and are added to every input fed into the model. Vectors
"vn" are the words’ indexes in the dictionary.

The encoder GRU iterates through every token in the input sentence and outputs
the output vector "wn" and a hidden state vector "hn". It uses bi-derectional GRU
that has two independent RNNs, one for feeding the input in the normal sequential
order represented by chain-like network chunks "A" and one for the reverse order
represented by chain-like network chunks "A‘", thus it can encode both past and
future context of the sequence.

The Luong attention layer (Luong et al., 2015) is used to calculate the attention
weights from the encoder outputs "hn" and the hidden state of the decoder from
the current time step "st". These attention weights allow the decoder to focus on
the most important parts in the input sentence and are calculated through "score
functions" that use three different methods: dot, general and concat (see formula
4.2 that displays the equations for the different methods, where "st" is the decoder
hidden state from the current time step, "hn" are all encoder hidden states, while
"Wa" and "va" are the model parameters for making the predictions based on the
alignment vector). These functions are used to calculate the context vector "c" that
is then used to make predictions for the next word by the decoder.

4.3 Generative Model 40

score(st, hn) =


st

Thn dot

st
TWahn general

va
Ttanh(Wa[st;hn]) concat

(4.2)

The decoder GRU generates the output sentence one token at a time. It predicts
the next token based on the context vector "c" and the current decoder hidden state
sn, until it outputs the "<EOS>" token, which represents the end of the sentence.
The GRU used here is unidirectional (it has only one direction and handles the past
context).

Fig. 4.5.: Architecture of the seq2seq encoder-decoder generative model with GRU RNNs
and Self-Attention mechanism

To test the performance of different Luong score functions, five sentences from the
user tests conducted during the first implementation (see Chapter 3) were selected:
"Global warming will make winters a thing of the past", "Yes, but private investment
will always want to improve negative features of gambling", "So therefore there
exists no further alternative path to explore beyond educational programs?", "I argue
that saving anyone goes against natural selection", "There are situations where you
would have to choose which persons to save as all cant be saved, would it not be
ok in this situation to let some die to save more people?". These user inputs were
chosen because they could not match the intents in the first implementation and
triggered the Fallback message. The second implementation of ArgueBot was set
to prompt the generative model instead of the Fallback message. The results are
presented in the table 4.6.

The general function was chosen for the generative model in the ArgueBot. Its
generated sentences from the experiment were better composed than that of the
other functions.

4.3 Generative Model 41

Sentence dot general concat
Global warming
will make winters a
thing of the past

the global economy
is not necessarily
bad

a global warming is
no longer a small
priority

global warming is
a very short term
economic and devel-
opment measure to
have produced hu-
man rights

Yes, but private in-
vestment will al-
ways want to im-
prove negative fea-
tures of gambling

for example the
private sector has
been investing for
decades

as the best way to
progress is that it
is impossible to say
whether she is be-
ing spent or be-
cause of the risk
that is being spent
on the condition

but what a lot of
money is going to
be able to drive a
service based mar-
ket

So therefore there
exist no further al-
ternative path to ex-
plore beyond educa-
tional programs?

this is a problem
that is simply not
about what people
want to learn about
how they play a nat-
ural process

this is a clear ap-
proach that can eas-
ily be used malev-
olently and is not
consistent

all this is true
will not offer that
all women are
expected to abide
by

I argue that saving
anyone goes against
natural selection

i am sure it is a
good thing that you
have to be scientifi-
cally scientifically

i think that is ex-
actly why id is an in-
correct theory

in fact behes claim
is that they know
not only because
they are unable to
abuse their intel-
ligence if i know
there is no god

There are situations
where you would
have to choose
which persons to
save as all cant
be saved, would it
not be ok in this
situation to let
some die to save
more people?

however if a person
has a right to educa-
tion those who are
legally prepared to
use guns for crimi-
nal purposes to be
able to save their
life and then put
their lives in life

the court s respon-
sibility is to the
state and to iso-
late people from the
feeling of language
and religion and is
thus unacceptable
in most cases when
the state is being
punished for society

there is no reason
why a uk ban on cer-
tain areas where in
a year there would
be no need for the
vast majority of life

Tab. 4.6.: Comparison between text generations based on different Luong score functions

4.4 Conclusion

This chapter described the second implementation of the ArgueBot platform. The
model of the chatbot was changed from retrieval-based to hybrid, combining both
retrieval and generative models. This was done to compensate for the limitations of
the retrieval model being restricted to the arguments stored in the database. The
stance classification method was changed from using sentiment analysis as a tool
for treating it as a binary classification problem and applying machine learning
classification methods. After conducting a set of experiments, the LSTM with self-
attention mechanism classifier was chosen to include in the chatbot.

4.4 Conclusion 42

Following research questions were answered within this chapter:

SQ:1 How can the model recognize and handle the arguments? Alike the first imple-
mentation, Dialogflow was used to identify the context of the user input. If it
was an argument, it was further handled by the retrieval model that retrieved
the response from the database. If Dialogflow couldn’t identify the meaning of
the user input, it was handled by the generative model that created a seq2seg
response.

SQ:2 How can stance classification be applied for the conversational agents? In the
second implementation polarity LSTM SAM was machine learning model was
used to classify the stance.

SQ:3 What is an appropriate model for the chatbot’s response generation? The second
implementation of the ArgueBot used the hybrid model that combined both
retrieval and generative models for the response generation.

4.4 Conclusion 43

5Final evaluation of the ArgueBot

„Users do not care about what is inside the box, as
long as the box does what they need done.

— Jef Raskin
The Humane Interface (2001)

This chapter will describe the evaluation strategy for the second implementation of
the ArgueBot which is also a final version. Similarly to the evaluation of the first
implementation, the evaluation was conducted through the user tests via an updated
platform (see figure 5.1) and a survey created in Google Forms (see Appendix B). In
this chapter, first, an overview of the user tests will be given with the description of
the process, the platform used and the survey questions. Then, the survey results
will be presented with the help of graphs and statistical metrics (mean value with its
standard deviation and t-test). As the stance classifier was changed in the middle of
the user tests, the survey results were split accordingly and handled separately for
the affected questions when conducting the analysis. This gave the opportunity to
compare two different ArgueBot versions that used different stance classifiers (LSTM
and LSTM SAM) and analyze if or how they affected the performance of the chatbot.
Finally, conversation length will be presented with the help of the number of turns
and a graph.

5.1 Overview

Before conducting the user tests, the platform was tested by five colleagues in order
to assure the test quality. These tests are not included in the results for the second
implementation. Based on the feedback from these pilot tests, the decision was
made to change the front page and include the instructions for the interaction with
the chatbot. Some other minor changes were made for the main page as well, such
as changing the function for the dropdown that included the list of the debates as it
was not properly updating when changing the debate topic.

The user tests were conducted during one week in July. The link to the ArgueBot
application was sent to the colleagues at Findwise via an internal channel. A

44

Facebook group with the link and information about the chatbot was created, where
355 acquaintances got invited. The user tests resulted in 38 survey answers. The
low number of answers is most probably a result of bad timing and acquaintances
being on vacation. One user test was removed from the resulting answers, as the
user did not receive any response from the chatbot because of a server error and
could therefore not evaluate the interaction with the chatbot fairly.

The ArgueBot platform included a front page with the information about the chatbot,
instructions for the user test, and a consent form (see figure 5.1a). After agreeing to
the terms of the user test, the users were redirected to the main page with the chatbot
(see figure 5.1b). The main page was separated into two sections. On the left side,
there was a menu for choosing a debate topic and browse between different debates
available for that topic. Every debate had background information. The chatbot
message interface was located on the right side of the page. The identification
number, every user was assigned with, was located at the top of the page, while the
link to the survey with a reminder to copy the identification code before proceeding
was located at the bottom of the page.

The survey was created in Google Forms (see Apendix B) and included the same
questions as the previous survey (for the first implementation see 3.3) with two
differences:

• The users were asked if they had any previous interactions with any chatbot
before with predefined yes/no answers: yes (ArgueBot and other chatbots),
yes (ArgueBot), yes (other chatbots), no. This question provided some user
background on the users’ previous interactions with the chatbots.

• The users were asked to rate the response quality for the generated responses
(marked with GR at the end of the sentence) and retrieved responses separately.
Answering the question that asked the users to rate the response quality for the
generated responses was optional, as not all the users received such responses.

As previously mentioned, the stance classifier was changed in the middle of the
user tests after discovering that the previous classifier could not distinguish between
different classes and predicted all the user inputs as the same class. The change of
the classifier resulted in a split in the user test answers that were affected by the
classifier. The user tests that used LSTM as a stance classier had 16 responses, while
user tests with LSTM with self-attention mechanism (LSTM SAM) resulted in 21
responses (one survey response from 22 was removed as mentioned before).

5.1 Overview 45

(a) The front page

(b) The main page

Fig. 5.1.: The interface of the ArgueBot for the second implementation

5.1 Overview 46

5.2 Survey results

This section presents the results of the survey and highlights the most important
findings. The survey results were divided into two groups (two versions of the
ArgueBot that used LSTM and LSTM-SAM as a stance classifier), but will jointly
analyze them for survey responses that were not impacted by the stance classifier
(such as grammar and debate background).

5.2.1 User Background

Figure 5.2 shows the distribution of users with different interaction backgrounds
for the classifiers used. The distribution is quite similar, with both classifiers having
users that had previous experience chatting with a chatbot. The LSTM SAM stance
classifier ArgueBot version was tested by more users who previously tested ArguBot
in the first implementation.

(a) LSTM stance classifier (b) LSTM SAM stance classifier

Fig. 5.2.: The distribution of different user backgrounds (previous interaction experience
with chatbots) for different classifiers.

5.2.2 Debate information

The purpose of the debate information presented on the left side of the platform was
to give the users the context of the debate and help them to formulate their argu-
ments. This area of the survey responses was handled together for both classifiers,
as it stayed the same for both versions of ArgueBot.

All of the users (37 of 37) thought that the debate information was clearly presented
and gave mostly positive feedback on its content. The users found it interesting
and relevant. Moreover, 30 users of 37 found the debate information helpful. The
users that did not find it helpful (7 of 37) commented that the information was too
long or too heavy and suggested to either have a word cloud of the most important
words or the outline with the major arguments. Some users who did not find it

5.2 Survey results 47

helpful preferred to directly dive into the debate with the chatbot instead of reading
the background information first. This confirms the findings from the user tests
for the first implementation of the ArgueBot that showed positive feedback for the
background information’s presence on the platform.

5.2.3 Grammar

The users were asked to rate the grammar used by the chatbot on a scale from 1 to
10 (where 1 is very bad and 10 is very good). The survey answers for this question
as the previous question were handled together for both classifiers. The reason for
that is that the grammar of the responses was not affected by the stance classifier.
Figure 5.3 shows how the users rated the grammar of the chatbot’s responses (both
retrieved and generated). The majority of the users rated the grammar higher than
7 (22 users from 37) with an average of 7.49± 1.8. Users gave mostly good feedback
for the grammar used by the chatbot, apart from the generated sentences that 8 from
37 users indicated had poor grammar in the open-ended question. 27 of 37 users
(73%) of the participants got the generated responses. In retrospect, this question
could also have been separated for the generated and retrieved responses, which
could help analyze the performance of the models with regard to the grammar of
their responses.

Fig. 5.3.: How the users rated the grammar of the chatbot’s responses

5.2.4 Conversation flow

The users were asked to rate how natural (human-like) the conversation flow with
the chatbot felt on the scale from 1 to 10 (1 is unnatural, 10 is natural). This
question was handled separately for different classifiers used.

Figure 5.4 shows user ratings for the naturalness of the conversation flow with the
chatbot. The blue color shows the results for the ArgueBot version that used the

5.2 Survey results 48

LSTM stance classifier, and the orange color represents the results for the chatbot
version that used the LSTM SAM as a stance classifier. Ratings for both classifiers
had a distribution towards the lower ratings, with the majority of the votes for rating
3 and the average of 4.56± 2.03 for the LTSM stance classifier and 3.38± 1.94 for
the LSTM SAM stance classifier.

The t-test is a statistical hypothesis test that was used to determine if there was
any significant difference between the means of two different classifiers for the
conversation flow’s naturalness. The significance level was set to 0.05 (the most
commonly used significance level that was used to compare the t-test value with).
According to the t-test, that showed 0.08, there is a slightly significant difference
between the results for the naturalness of the conversation flow for the different
classifiers used.

Users felt that the chatbot did not understand their inputs. For the LSTM classifier,
the users said that it was hard to understand the chatbot’s stance, as it always replied
with either "I agree" or "I disagree" to every user argument. For the LSTM SAM
stance classifier, the users felt that the chatbot’s responses were unrelated to what
the users said and having "I agree"/"I disagree" statements felt rehearsed and broke
the continuity of the conversation. One user suggested to add statements of the type
"I agree but... " to improve the conversation flow.

Fig. 5.4.: User ratings for how natural (human-like) the conversation flow with the chatbot
felt, where 1 is unnatural and 10 is natural. The percentage score shows the
distribution for the rating amongst the users for the ArgueBot with LSTM (blue
color) and LSTM SAM (orange color) as a stance classifier

5.2.5 Response quality

The rating of the response quality for the chatbot was separated into two questions:
one for generated sentences created by the Generative Model (see Chapter 4.3)
and one for the retrieved sentences that used the Retrieval Model to compare the
user input with the arguments stored in the database (see Chapter 3.2.2). These

5.2 Survey results 49

questions were handled separately for the different classifiers used, and can be
seen in Figure 5.5 for the generated sentences and Figure 5.6 for the retrieved
sentences. Even though the generated sentences were not affected by the change
of the classifier, their ratings could still indirectly be affected by the performance
of the Retrieval Model that used the classifier. The users could, for example, rate
the retrieved sentences higher not because their quality was better, but because the
quality of the generated responses was worse. The ArgueBot that used the LSTM
stance classifier is represented in blue, while the ArgueBot version that used the
LSTM SAM is represented in orange.

The quality of the generated sentences was rated as unsatisfactory by the majority
of the respondents for both classifiers with an average of 3.17± 2.04 for the LSTM
version and 3.13± 2.85 for the LSTM SAM version. The t-test showed 0.97, there is,
therefore, a statistically significant difference between the classifiers for the rating of
the generated responses.

The users thought that the generated sentences made little to no sense. Some of the
users stated that the generated responses were very random and did not relate to
the topic discussed.

Fig. 5.5.: User ratings for the response quality of the generated sentences, where 1 is
unsatisfactory and 10 is satisfactory. The percentage score shows the distribution
for the rating amongst the users answering the question for the ArgueBot with
LSTM (blue color) and LSTM SAM (orange color) as a stance classifier.

The quality of the retrieved sentences was rated on average 5.14± 2.35 for the LSTM
SAM version and 4.81± 2.14 for the LSTM version. The t-test for the retrieved re-
sponses showed 0.66, there is, therefore, a statistically significant difference between
the results for the different classifiers used compared to the 0.05 significance level.

The respondents that tested the LSTM version of the ArgueBot felt that the chatbot
didn’t understand them, that there was no common thread throughout the responses
and that the responses were often unrelated to what the user said. The respondents

5.2 Survey results 50

that tested the LSTM SAM version felt that the retrieved responses were better than
generated sentences and more related to the debate but still limited.

Fig. 5.6.: User ratings for the response quality of the retrieved sentences, where 1 is unsat-
isfactory and 10 is satisfactory. The percentage score shows the distribution for
the rating amongst the users for the ArgueBot with LSTM (blue color) and LSTM
SAM (orange color) as a stance classifier.

The difference between the user rating for the retrieved and the generative responses
can be seen in figure 5.7 for both classifiers together. The figure shows that retrieved
responses marked with violet color (the average is 5± 2.24) were rated relatively
better than the generated responses marked with pink color (the average is 3.15±
2.48). The t-test showed 0.003, which compared to the significance level 0.05 showed
no statistically significant difference between the responses.

Fig. 5.7.: User ratings for the response quality of the generated responses (pink color)
versus retrieved responses (violet color), where 1 is unsatisfactory and 10 is
satisfactory. The percentage score shows the distribution for the rating amongst
the users answering the question for the ArgueBot for both classifiers

5.3 Conversation length

When it comes to the conversation length, a number of turns was used as a metric.
This metric shows how many input/output pairs the conversations have (one user
could have had multiple conversations on different debate topics). The conversation

5.3 Conversation length 51

length can be an indicator of how engaging the conversation with the chatbot is
perceived by the user (the longer it is, the more engaging it is perceived).

Figure 5.8 shows the number of turns per conversation for the two different stance
classifiers used in the second implementation of the ArgueBot. One conversation
here is delimited to one specific debate. An average number of turns for the LSTM
classifier is 8 ± 6 and for the LSTM SAM 7 ± 8. The standard deviation for both
classifiers is higher than their means, which means the high spread of the data. The
decision was, therefore, made to group the number of turns in the range of five to
understand the data better.

The t-test could not be performed here, as the number of turns were previously
grouped. It was therefore not possible to determine if there was any statistically
significant difference between different classifiers. But according to the figure 5.8, an
assumption can be made that there is a similar distribution of the grouped number
of turns for both classifiers with the majority of conversations being less than 10
turns.

Fig. 5.8.: Comparison between different stance classifiers for number of turns per conversa-
tion, where blue represents LSTM stance classifier and orange LSTM SAM stance
classifier. The percentage score shows the distribution of the range for a number
of turns for all the conversations for that classifier

5.3 Conversation length 52

5.4 Conclusion

As the mean value from the survey results showed, the response quality of the
retrieved sentences was only slightly higher rated for the ArgueBot version using
the LSTM with self-attention mechanism stance classifier. There is a statistically
significant difference between the two classifiers in terms of the naturalness of the
conversation flow, generated response quality and retrieved response quality. But
there is no statistically significant difference between the generated and the retrieved
responses counted for the survey results for both classifiers together.

Following research questions was answered within this chapter:

SQ:5 How can such a chatbot be evaluated? The ArgueBot platform was updated to
perform the user tests in the combination with the survey that collected user’s
feedback on their interaction with the chatbot and its performance. The survey
results were analyzed with the help of graphs, mean value with its standard
deviation value and t-test. Moreover, the users’ engagement with the chatbot
was evaluated with the help of the number of turns.

5.4 Conclusion 53

6Discussion

„If we are willing to make such efforts in order to
understand foreign cultures, unknown species
and distant planets, it might be worth working
just as hard in order to understand our own
minds. And we had better understand our minds
before the algorithms make our minds up for us.

— Yuval Noah Harari
21 Lessons for the 21st Century (2018)

This chapter will discuss the results of the study, its limitations, and factors that
could have influenced the results. The limitations are divided into subsections for the
ArgueBot, the stance classification, the generative model, and the hybrid model.

6.1 ArgueBot

The dataset used by the ArgueBot was the ArguAna Counterargs corpus (Wachsmuth
et al., 2018) that consists of high-quality arguments with different points of view for
a wide range of the debates. These arguments are not adjusted to conversational
interfaces such as chatbots and therefore presented several challenges.

Firstly, the debate authors used multiple types of citations and references. In order
to clean the data and only retrieve arguments, as well as prepare the datasets for
machine learning models, multiple regular expressions were used to match different
referencing styles used in the arguments. Even after extensive cleaning, the datasets
had to be manually reviewed to remove the rest of the references that the regular
expressions were not able to capture. Another challenge was to change the names
of the debates from "This House would..." wording format into more user-friendly
names. This dataset was not used before in a chatbot (to the best of my knowledge)
setting and was both challenging and interesting to work with.

The retrieval model used by the chatbot used cosine similarity to compare how
similar the user input is to the main claim of every argument for the chosen debate.

54

The main claim of the argument was one sentence consisting of 3-10 words (see
an example of a debate structure in Figure 3.1 with "PRO/CON + number" main
claims). This was done with the assumption that the user input would also be
3-10 words long and the similarity between these can, therefore, be extracted. The
model then chose the argument of which the main claim had the highest similarity
with the user utterance. Sometimes this worked as intended, but sometimes the
user utterance differed from all the main claims available for that debate, or the
main claim available in the dataset was not descriptive enough. The latter case
resulted in the model retrieving the argument with the highest similarity but with no
actual relevance to the user input. A better approach might be to extract the most
used words (debate-specific words) in every argument (separately for a point and
a counterpoint) and use them as keywords in combination with the main claim to
compare with the user input.

Another problem occurred when two different user utterances were matched to
the same argument. The model then assumed that it should continue to retrieve
sentences from the same argument and removed the used sentence from the database.
In the first implementation when the user input was matched to an argument that
didn’t have any sentences left to retrieve, the chatbot would reply with the default
message: "You already used this argument", which according to the user tests felt
unnatural for many users as they used new arguments and the chatbot reply was
false. For the second implementation, the retrieval strategy was slightly changed,
with the model handling two arguments with the highest similarity to the user input,
and if the first argument was empty, retrieving the next sentence from the second
argument instead. This strategy, while fixing the issue with keeping replying with
new sentences, did not fix the issue of the responses being irrelevant to the user
input. To improve the relevance of the chatbot’s retrieved responses, two strategies
can be applied: extend the dataset with more arguments and improve the similarity
computations. Cosine similarity was chosen because of its compatibility with the
spaCy library, but other methods could have shown better performance, such as
Word Mover Distance, universal sentence encoder, and Siamese Manhattan LSTM
model (Adrien Sieg, 2019).

Correct context understanding (the meaning of the user input) is another challenging
problem. To help the model understand the context of the user input, the Dialogflow
service was used. The model extracted the 300 most used words in the debate and
fed them in their lemma word form into Dialogflow as entities, that were later used
by Dialogflow to classify the user input as an argument. This method does not take
synonyms into consideration, and the context detection was therefore limited to the
words used in the dataset for that debate. One solution could be to combine the
most used words in the debate with their synonyms.

6.1 ArgueBot 55

Moreover, the ArgueBot hybrid model was built with the assumption that the user
would input only arguments. It could therefore not handle complex questions that
many users asked for example to clarify some term or statement used by the chatbot.
It could not distinguish between statements and questions, which caused wrong
agent responses. One solution could be to apply a self-attention mechanism on the
user input in combination with the previous agent responses. Zhou et al. (2018)
proposed DAM networks that used attention mechanism to capture sentence-level
dependencies in a multi-turn chatbot. This solution can, therefore, be applied
to improve the user engagement with the chatbot, as it is capable of taking into
consideration the user’s previous inputs.

6.2 Stance Classification

In the second implementation, the ArgueBot used machine learning techniques for
stance classification. The stance classifier was trained on a dataset composed of
sentences with their corresponding stances from the ArguAna Counterargs corpus
(Wachsmuth et al., 2018) and the IBM Debater Claim Stance Dataset (Bar-Haim
et al., 2017). The machine learning methods used were the LSTM and the LSTM
with self-attentions, that focused on the most important words in the sequence. The
classifier was used to predict the stance of the user input, which was then compared
to the chatbot’s stance that later replied with either "I agree" or "I disagree" statement.
This agreement statement was included at the beginning of the ArgueBot’s retrieved
response. The classifier is therefore limited to the available arguments for training
and is not topic dependent. If more time for the project would be available, this
problem could be explored more. For example, it would be interesting to combine a
machine learning classifier with feature extraction strategies suggested by Mandya
et al. (2016) and sentiment towards the main claim as was suggested by Bar-Haim
et al. (2017).

The user tests showed that the two stance classifiers had a statistically significant
difference in the users’ interaction with the chatbot in relation to conversation flow
naturalness, and response quality for generated and retrieved sentences. Conver-
sation flow and quality of generative responses were rated slightly higher for the
LSTM version than LSTM SAM version of the ArgueBot. This can depend on several
factors, for example, different rating understanding for different users. At the same
time, the generated responses were depended on the performance of the classifier
only in relation to the quality of retrieved responses. It can, therefore, have an
opposite effect: the LSTM version was rated higher for the quality of generated
responses because retrieved responses that used LSTM classifier performed worse.
This agrees with the conclusion that the quality of the LSTM SAM version for the

6.2 Stance Classification 56

retrieved responses had a statistically significant difference and was rated higher
than the LSTM version. It can, therefore, be concluded, that LSTM SAM classifier
performed better and improved the quality of the retrieved responses. At the same
time, it did not improve the naturalness of the conversation flow. A conclusion can,
therefore, be made that the stance classification cannot be seen as a simple binary
classification problem. The stance classification was shown to be a more complex
problem that needs a more complex model for the classification than, unfortunately,
was out of the scope for this project.

The overall lesson learned from the user tests is that the stance classifier should be
more reliable in order to improve the user experience. If the stance classifier predicts
wrong and results in the wrong agreement statement, the user assumes that the
chatbot did not understand their argument, which reduces their satisfaction of the
interaction with the chatbot.

6.3 Generative Model

The generation of sentences is also a very interesting and challenging problem.
When done properly, it can enrich the conversation with the chatbot with always
new arguments to debate on. When done poorly, it can damage the conversation
flow and confuse the user instead. Unfortunately, the latter was the case for the
ArgueBot. According to the user tests, generated sentences were often unrelated to
the debate topic, sometimes grammatically incorrect and did not make sense in the
debate context.

Because of Google Colab’s limitations, that was used to pre-train all the machine
learning models, the dataset used was not enough to generate sentences that made
more sense. Google Colab and a smaller dataset were used because it was fast and
convenient. If more time and computational power for the project were available, it
would be interesting to train a model on the larger dataset composed of for example
the Internet Argument Corpus (IAC) 1 and compare the quality of the generated
sentences.

6.4 Hybrid Model

It is important to keep in mind that although the generative models can build
understandable and grammatically correct responses given the conversation context,
they are likely to return general responses. One suggestion to overcome this issue can

1https://nlds.soe.ucsc.edu/iac2

6.3 Generative Model 57

https://nlds.soe.ucsc.edu/iac2

be to use personalized generated responses recently developed by Microsoft research
team through a conversation modeling toolkit Icecaps (Shiv et al., 2019). Their
toolkit helps to build agents with induced personalities that are able to generate
diverse responses for different users.

While retrieval-based models are prompted to give more relevant responses than the
generative-based models, they still lack the flexibility of the latter and are limited to
the stored information. The proposed hybrid model in this research included both
models for the ArgueBot response generation but did not succeed in overcoming
these limitations. This might be the reason why the majority of the users rated
the chatbot’s conversation flow as unnatural and why there was no statistically
significant difference between the quality of retrieved and generated responses. The
project shows great potential, but the ArgueBot still has a long way to go before
becoming a reliable debate partner.

6.4 Hybrid Model 58

7Conclusion

„Our future is a race between the growing power
of our technology and the wisdom with which we
use it. Let’s make sure that wisdom wins.

— Stephen Hawking
Brief Answers to the Big Questions (2018)

This study aimed to create a platform where the users can maintain a meaningful
debate on various topics with a chatbot. Even though the chatbot had troubles with
context understanding, correct stance classification and generating new meaningful
arguments, many users still found the interaction fun, interesting, and meaningful.

In order to answer the problem statement of the study, namely "How can a hybrid
retrieval-generation-based chatbot maintain a debate with a user for various topics?",
the sub-questions were answered:

SQ:1 How can the model recognize and handle the arguments? The Arguebot used
the Dialogflow’s intent and entities to analyze the user input and determine
whether it is an argument or not. Dialogflow’s intent detection functionalities
were used to understand the context of the user input and select the appropriate
response strategy. It could detect arguments, questions for clarification, the
agent’s stance and small talk. When the intent could not be matched, the
generative model was activated. If the intent was matched with the argument
intent, the user input was further analyzed by the stance classifier and the
retrieval model. This was proven to work well when the user used the same
words as were stored in the entities but failed when the user deviated from
the intended conversation flow (for example when they asked more specific
questions, the meaning of some terms and so on).

SQ:2 How can stance classification be applied for the conversational agents? Both
classification models used in the Arguebot, a model with sentiment analysis
and the binary machine learning model, were not performing well enough for
the conversational agent. A more advanced model for stance classification is,
therefore, needed.

59

SQ:3 What is the appropriate model for the chatbot’s response generation? The Argue-
Bot used a hybrid model that combined both generative and retrieval models.
The generative model used a self-attention mechanism to generate new argu-
ments when the retrieval model could not be applied. The generated sentences
often did not have good quality and were unrelated to the specific debate topic.
When given more time and computational power, the generative model can
be pre-trained with more data during more time, which might improve its
performance. This was unfortunately out of scope for this study.

SQ:4 How can human-like conversation with the chatbot be carried out in the debate
domain? The ArgueBot used Dialogflow’s pre-trained agent for small talk.
Stance classification was used to react on the user input with either agreement
or disagreement. In retrospect, the stance classifier performed not well enough
and decreased the naturalness of the conversation flow. The debate is often
more complex than just agreeing and disagreeing with the opponent, for
example including the arguments of the "I agree, but..." structure.

SQ:5 How can such a chatbot be evaluated? The evaluation of the ArgueBot was
conducted through the user tests via a created platform and a survey created
in Google Forms. The survey results were analyzed with the help of graphs
and statistical metrics (mean value with its standard deviation and t-test).
Moreover, the user engagement was evaluated in relation to the number of
turns within each conversation that users had.

The hybrid retrieval-generation-based chatbot can maintain a debate with a user for
various topics by creating an engaging, human-like experience. The agent should
recognize the context of the user input, correctly classify the user’s stance and
provide with the relevant responses, whether they are retrieved or generated.

The next step for the ArgueBot would be to improve the conversation flow through
a better similarity algorithm, context understanding, extended dataset and better
classifier and generative model. To improve the similarity, keywords extracted from
debate-specific words can in combination with the main claim be used for comparison
with the user input. The knowledge base of the ArgueBot can be extended with
more conversational data. The stance classifier can be improved by combining a
machine learning classifier with feature extraction strategies and sentiment towards
the main claim. The generative model can be improved by training it during a longer
period on a bigger amount of data. Moreover, other models can be used to make the
interaction with the chatbot more engaging, such as DAM attention mechanism and
Microsoft’s Icecaps. I believe given these improvements, the Arguebot can become
an interesting debate partner, broaden the political discussion, and promote critical
thinking in many.

60

Bibliography

Abbott, Rob, Brian Ecker, Pranav Anand, and Marilyn A Walker (2016). “Internet Argument
Corpus 2.0: An SQL schema for Dialogic Social Media and the Corpora to go with it.” In:
LREC (cit. on p. 8).

Bar-Haim, Roy, Indrajit Bhattacharya, Francesco Dinuzzo, Amrita Saha, and Noam Slonim
(2017). “Stance classification of context-dependent claims”. In: Proceedings of the 15th
Conference of the European Chapter of the Association for Computational Linguistics: Volume
1, Long Papers, pp. 251–261 (cit. on pp. 30, 56).

Cahn, Jack (2017). “CHATBOT: Architecture, design, & development”. In: University of
Pennsylvania School of Engineering and Applied Science Department of Computer and
Information Science (cit. on p. 7).

Carstens, Lucas and Francesca Toni (2015). “Towards relation based argumentation mining”.
In: Proceedings of the 2nd Workshop on Argumentation Mining, pp. 29–34 (cit. on p. 39).

Carstens, Lucas and Francesca Toni (2017). “Using argumentation to improve classification
in natural language problems”. In: ACM Transactions on Internet Technology (TOIT) 17.3,
p. 30 (cit. on p. 39).

Chapman, Graham and Monty Python (1989). The Complete Monty Python’s Flying Circus:
All the Words. Volume one. Vol. 1. Pantheon, p. 86 (cit. on p. 4).

Cho, Kyunghyun, Bart van Merriënboer, Caglar Gulcehre, et al. (2014). “Learning Phrase
Representations using RNN Encoder–Decoder for Statistical Machine Translation”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar: Association for Computational Linguistics, pp. 1724–1734 (cit. on
p. 40).

Habernal, Ivan and Iryna Gurevych (2017). “Argumentation mining in user-generated web
discourse”. In: Computational Linguistics 43.1, pp. 125–179 (cit. on p. 5).

Higashinaka, Ryuichiro, Masahiro Mizukami, Hidetoshi Kawabata, et al. (2018). “Role play-
based question-answering by real users for building chatbots with consistent personalities”.
In: Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, pp. 264–272
(cit. on p. 10).

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural
computation 9.8, pp. 1735–1780 (cit. on p. 37).

Huang, Anna (2008). “Similarity measures for text document clustering”. In: Proceedings
of the sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand. Vol. 4, pp. 9–56 (cit. on p. 15).

61

Keller, Thomas E., James K. Whittaker, and Tracey K. Burke (2001). “Student Debates in
Policy Courses: Promoting Policy Practice Skills and Knowledge through Active Learning”.
In: pp. 343–355 (cit. on p. 1).

Kim, Jintae, Hyeon-Gu Lee, Harksoo Kim, Yeonsoo Lee, and Young-Gil Kim (2018). “Two-Step
Training and Mixed Encoding-Decoding for Implementing a Generative Chatbot with a
Small Dialogue Corpus”. In: Proceedings of the Workshop on Intelligent Interactive Systems
and Language Generation (2IS&NLG), pp. 31–35 (cit. on p. 6).

Klopfenstein, Lorenz Cuno, Saverio Delpriori, Silvia Malatini, and Alessandro Bogliolo
(2017). “The rise of bots: A survey of conversational interfaces, patterns, and paradigms”.
In: Proceedings of the 2017 Conference on Designing Interactive Systems. ACM, pp. 555–565
(cit. on p. 2).

Kuhn, Deanna (1991). The Skills of Argument. Cambridge University Press (cit. on p. 4).

Lawrence, John and Chris Reed (2014). “AIFdb Corpora.” In: COMMA, pp. 465–466 (cit. on
p. 39).

Le, Dieu-Thu, Cam Tu Nguyen, and Kim Anh Nguyen (2018). “Dave the debater: a retrieval-
based and generative argumentative dialogue agent”. In: Proceedings of the 5th Workshop
on Argument Mining, pp. 121–130 (cit. on pp. 6–9).

Levy, Ran, Shai Gretz, Benjamin Sznajder, et al. (2017). “Unsupervised corpus–wide claim
detection”. In: Proceedings of the 4th Workshop on Argument Mining, pp. 79–84 (cit. on
pp. 5, 6).

Lin, Zhouhan, Minwei Feng, Cicero Nogueira dos Santos, et al. (2017). “A structured self-
attentive sentence embedding”. In: CoRR abs/1703.03130. arXiv: 1703.03130 (cit. on
p. 37).

Lippi, Marco and Paolo Torroni (2016). “Argumentation mining: State of the art and emerging
trends”. In: ACM Transactions on Internet Technology (TOIT) 16.2, p. 10 (cit. on p. 4).

Luong, Thang, Hieu Pham, and Christopher D. Manning (2015). “Effective Approaches
to Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, pp. 1412–1421 (cit. on p. 40).

Ma, Wenjia, WenHan Chao, Zhunchen Luo, and Xin Jiang (2018). “CRST: a claim retrieval
system in Twitter”. In: Proceedings of the 27th International Conference on Computational
Linguistics: System Demonstrations, pp. 43–47 (cit. on p. 6).

Mandya, Angrosh, Advaith Siddharthan, and Adam Wyner (2016). “Scrutable feature sets
for stance classification”. In: Proceedings of the Third Workshop on Argument Mining
(ArgMining2016), pp. 60–69 (cit. on pp. 6, 56).

Manning, Christopher D (2008). Introduction to information retrieval. Cambridge: Cambridge
University Press (cit. on pp. 6, 8).

Moore, Robert J, Raphael Arar, Guang-Jie Ren, and Margaret H Szymanski (2017). “Con-
versational UX design”. In: Proceedings of the 2017 CHI Conference Extended Abstracts on
Human Factors in Computing Systems. ACM, pp. 492–497 (cit. on p. 2).

Müller, Andreas C, Sarah Guido, et al. (2016). Introduction to machine learning with Python:
a guide for data scientists. " O’Reilly Media, Inc." (cit. on pp. 32, 33).

Bibliography 62

http://arxiv.org/abs/1703.03130

Rakshit, Geetanjali, Kevin K Bowden, Lena Reed, Amita Misra, and Marilyn Walker (2019).
“Debbie, the debate bot of the future”. In: Advanced Social Interaction with Agents. Springer,
pp. 45–52 (cit. on pp. 7, 8).

Sedoc, Joao, Daphne Ippolito, Arun Kirubarajan, et al. (2018). “ChatEval: A Tool for the Sys-
tematic Evaluation of Chatbots”. In: Proceedings of the Workshop on Intelligent Interactive
Systems and Language Generation (2IS&NLG), pp. 42–44 (cit. on p. 9).

Shiv, Vighnesh Leonardo, Chris Quirk, Anshuman Suri, et al. (2019). “Microsoft Icecaps:
An Open-Source Toolkit for Conversation Modeling”. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 123–
128 (cit. on p. 58).

Shum, Heung-Yeung, Xiao-dong He, and Di Li (2018). “From Eliza to XiaoIce: challenges and
opportunities with social chatbots”. In: Frontiers of Information Technology & Electronic
Engineering 19.1, pp. 10–26 (cit. on p. 9).

Slonim, Noam and Ranit Aharonov (2018). “Proceedings of the 5th Workshop on Argument
Mining”. In: Proceedings of the 5th Workshop on Argument Mining (cit. on p. 4).

Sokolova, Marina, Nathalie Japkowicz, and Stan Szpakowicz (2006). “Beyond accuracy,
F-score and ROC: a family of discriminant measures for performance evaluation”. In:
Australasian joint conference on artificial intelligence. Springer, pp. 1015–1021 (cit. on
p. 33).

Somasundaran, Swapna and Janyce Wiebe (2010). “Recognizing stances in ideological
on-line debates”. In: Proceedings of the NAACL HLT 2010 Workshop on Computational
Approaches to Analysis and Generation of Emotion in Text. Association for Computational
Linguistics, pp. 116–124 (cit. on p. 4).

Stab, Christian, Johannes Daxenberger, Chris Stahlhut, et al. (2018). “ArgumenText: Search-
ing for Arguments in Heterogeneous Sources”. In: Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Demonstrations,
pp. 21–25 (cit. on p. 6).

Swanson, Reid, Brian Ecker, and Marilyn Walker (2015). “Argument Mining: Extracting
Arguments from Online Dialogue”. In: Proceedings of the 16th Annual Meeting of the
Special Interest Group on Discourse and Dialogue. Prague, Czech Republic: Association for
Computational Linguistics, pp. 217–226 (cit. on p. 8).

Tammewar, Aniruddha, Monik Pamecha, Chirag Jain, Apurva Nagvenkar, and Krupal Modi
(2018). “Production Ready Chatbots: Generate if not Retrieve”. In: Workshops at the
Thirty-Second AAAI Conference on Artificial Intelligence (cit. on p. 7).

Turing, A. M. (1950). “I.—COMPUTING MACHINERY AND INTELLIGENCE”. In: Mind
LIX.236, pp. 433–460. eprint: http://oup.prod.sis.lan/mind/article-pdf/LIX/
236/433/9866119/433.pdf (cit. on p. 9).

Wachsmuth, Henning, Martin Potthast, Khalid Al Khatib, et al. (2017). “Building an argument
search engine for the web”. In: Proceedings of the 4th Workshop on Argument Mining,
pp. 49–59 (cit. on p. 6).

Wachsmuth, Henning, Shahbaz Syed, and Benno Stein (2018). “Retrieving the Best Coun-
terargument without Prior Topic Knowledge”. In: Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics. Melbourne, Australia: Association for
Computational Linguistics (cit. on pp. 6, 11, 12, 25, 30, 38, 39, 54, 56).

Bibliography 63

http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf
http://oup.prod.sis.lan/mind/article-pdf/LIX/236/433/9866119/433.pdf

Walker, Marilyn A, Jean E Fox Tree, Pranav Anand, Rob Abbott, and Joseph King (2012). “A
Corpus for Research on Deliberation and Debate.” In: LREC. Istanbul, pp. 812–817 (cit. on
p. 39).

Walton, Douglas (2009). “Argumentation theory: A very short introduction”. In: Argumenta-
tion in artificial intelligence. Springer, pp. 1–22 (cit. on p. 4).

Weizenbaum, Joseph et al. (1966). “ELIZA—a computer program for the study of natural
language communication between man and machine”. In: Communications of the ACM
9.1, pp. 36–45 (cit. on p. 9).

Yang, Liu, Junjie Hu, Minghui Qiu, et al. (2019). “A hybrid retrieval-generation neural
conversation model”. In: arXiv preprint arXiv:1904.09068 (cit. on p. 7).

Zhou, Xiangyang, Lu Li, Daxiang Dong, et al. (2018). “Multi-turn response selection for
chatbots with deep attention matching network”. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Vol. 1,
pp. 1118–1127 (cit. on p. 56).

Zhu, Pengfei, Zhuosheng Zhang, Jiangtong Li, Yafang Huang, and Hai Zhao (2018). “Lingke:
a Fine-grained Multi-turn Chatbot for Customer Service”. In: Proceedings of the 27th
International Conference on Computational Linguistics: System Demonstrations. Santa Fe,
New Mexico: Association for Computational Linguistics, pp. 108–112 (cit. on pp. 6, 7).

Bibliography 64

Footnotes

Adrien Sieg (2019). Text Similarities : Estimate the degree of similarity between two texts.
URL: https://medium.com/@adriensieg/text-similarities-da019229c894 (visited
on June 28, 2019) (cit. on p. 55).

ChatEval (2019). URL: https://chateval.org/ (visited on Mar. 4, 2019) (cit. on p. 9).

Dialogflow (2019). URL: https://dialogflow.com/ (visited on Mar. 4, 2019) (cit. on pp. 9,
17).

Doha Debates (2019). Why This Debate and Why Now? URL: https://dohadebates.com/
(visited on Apr. 2, 2019) (cit. on p. 1).

Findwise (2019). Search Driven Solutions. URL: https://findwise.com/en (visited on
Apr. 2, 2019) (cit. on p. 2).

Github (2019). Dialogflow: Python Client, Github. URL: https://github.com/googleapis/
dialogflow-python-client-v2 (visited on June 10, 2019) (cit. on p. 17).

IBM Research AI (2019). Project Debater. URL: https : / / www . research . ibm . com /
artificial-intelligence/project-debater/ (visited on Feb. 6, 2019) (cit. on p. 1).

idebate (2019). International Debate Education Association. URL: https://idebate.org/
(visited on Apr. 4, 2019) (cit. on p. 11).

kaggle (2019). Quora Question Pairs. URL: https://www.kaggle.com/c/quora-question-
pairs (visited on Apr. 8, 2019) (cit. on p. 8).

Matthew Inkawhich (2019). Chatbot tutorial. URL: https://pytorch.org/tutorials/
beginner/chatbot_tutorial.html (visited on June 10, 2019) (cit. on p. 39).

Merriam-Webster (2019). Debate. URL: https://www.merriam-webster.com/thesaurus/
debate (visited on Feb. 12, 2019) (cit. on p. 1).

Ngrok (2019). URL: https://ngrok.com/ (visited on July 18, 2019) (cit. on p. 18).

NLTK (2019). Natural Language Toolkit. URL: https://www.nltk.org/ (visited on Mar. 21,
2019) (cit. on p. 15).

Numpy (2019). Numpy Homepage. URL: https://www.numpy.org/ (visited on July 17,
2019) (cit. on p. 16).

Pallets (2019). Flask SQLAlchemy. URL: https://flask-sqlalchemy.palletsprojects.
com/en/2.x/ (visited on Apr. 8, 2019) (cit. on p. 18).

65

https://medium.com/@adriensieg/text-similarities-da019229c894
https://chateval.org/
https://dialogflow.com/
https://dohadebates.com/
https://findwise.com/en
https://github.com/googleapis/dialogflow-python-client-v2
https://github.com/googleapis/dialogflow-python-client-v2
https://www.research.ibm.com/artificial-intelligence/project-debater/
https://www.research.ibm.com/artificial-intelligence/project-debater/
https://idebate.org/
https://www.kaggle.com/c/quora-question-pairs
https://www.kaggle.com/c/quora-question-pairs
https://pytorch.org/tutorials/beginner/chatbot_tutorial.html
https://pytorch.org/tutorials/beginner/chatbot_tutorial.html
https://www.merriam-webster.com/thesaurus/debate
https://www.merriam-webster.com/thesaurus/debate
https://ngrok.com/
https://www.nltk.org/
https://www.numpy.org/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/

Pandorabots (2019). Pandorabots Documentation. URL: https://pandorabots.com/docs/
(visited on Mar. 4, 2019) (cit. on p. 9).

Panetta, K. (2019). Gartner Top 10 Strategic Technology Trends for 2019. URL: https://
www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-
trends-for-2019/ (visited on Feb. 6, 2019) (cit. on p. 2).

Prakash Pandey (2019). Text Classification Pytorch. URL: https://github.com/prakashpandey9/
Text-Classification-Pytorch (visited on June 8, 2019) (cit. on p. 31).

Projects, The Pallets (2019). Flask. URL: https://palletsprojects.com/p/flask/ (cit. on
p. 18).

PyTorch (2019). URL: https://pytorch.org/ (visited on July 26, 2019) (cit. on p. 31).

spaCy (2019). Industrial-Strength Natural Language Processing. URL: https://spacy.io/
(visited on Mar. 21, 2019) (cit. on pp. 15, 30, 38).

SQLite (2019). SQLite Homepage. URL: https://www.sqlite.org/index.html (visited on
July 17, 2019) (cit. on p. 15).

UC Santa Cruz (2019). Natural Language and Dialogue Systems: Internet Argument Corpus.
URL: https://nlds.soe.ucsc.edu/iac2 (visited on Mar. 21, 2019) (cit. on pp. 39, 57).

Wikipedia (2019). Ethics of artificial intelligence. URL: https://en.wikipedia.org/wiki/
Ethics_of_artificial_intelligence (visited on Mar. 20, 2019) (cit. on p. 5).

Footnotes 66

https://pandorabots.com/docs/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019/
https://github.com/prakashpandey9/Text-Classification-Pytorch
https://github.com/prakashpandey9/Text-Classification-Pytorch
https://palletsprojects.com/p/flask/
https://pytorch.org/
https://spacy.io/
https://www.sqlite.org/index.html
https://nlds.soe.ucsc.edu/iac2
https://en.wikipedia.org/wiki/Ethics_of_artificial_intelligence
https://en.wikipedia.org/wiki/Ethics_of_artificial_intelligence

List of Figures

3.1 An example of a debate’s architecture 13
3.2 Architecture of first implementation . 14
3.3 A conversation conducted during the user tests for the first implementa-

tion of the ArgueBot on the debate topic "Raise the school leaving age
to 18" . 19

3.4 The interface of the ArgueBot for the first implementation 22

4.1 Architecture of second implementation 27
4.2 A conversation conducted during the user tests for the second implemen-

tation of the ArgueBot on the debate topic "Making voting compulsory" 28
4.3 Comparison between two dialogues using different classifiers for the

same debate topic "Banning the development of genetically modified
organisms", where the blue color represents the user and the green
color represents the agent . 36

4.4 Architecture of the LSTM with Self-Attention Mechanism 38
4.5 Architecture of the seq2seq encoder-decoder generative model with

GRU RNNs and Self-Attention mechanism 41

5.1 The interface of the ArgueBot for the second implementation 46
5.2 The distribution of different user backgrounds (previous interaction

experience with chatbots) for different classifiers. 47
5.3 How the users rated the grammar of the chatbot’s responses 48
5.4 User ratings for how natural (human-like) the conversation flow with

the chatbot felt, where 1 is unnatural and 10 is natural. The percentage
score shows the distribution for the rating amongst the users for the
ArgueBot with LSTM (blue color) and LSTM SAM (orange color) as a
stance classifier . 49

5.5 User ratings for the response quality of the generated sentences, where
1 is unsatisfactory and 10 is satisfactory. The percentage score shows
the distribution for the rating amongst the users answering the question
for the ArgueBot with LSTM (blue color) and LSTM SAM (orange color)
as a stance classifier. 50

67

5.6 User ratings for the response quality of the retrieved sentences, where
1 is unsatisfactory and 10 is satisfactory. The percentage score shows
the distribution for the rating amongst the users for the ArgueBot with
LSTM (blue color) and LSTM SAM (orange color) as a stance classifier. 51

5.7 User ratings for the response quality of the generated responses (pink
color) versus retrieved responses (violet color), where 1 is unsatisfactory
and 10 is satisfactory. The percentage score shows the distribution for
the rating amongst the users answering the question for the ArgueBot
for both classifiers . 51

5.8 Comparison between different stance classifiers for number of turns
per conversation, where blue represents LSTM stance classifier and
orange LSTM SAM stance classifier. The percentage score shows the
distribution of the range for a number of turns for all the conversations
for that classifier . 52

List of Figures 68

List of Tables

3.1 Distribution of debates, points, and counters over the topics in the
dataset (Wachsmuth et al., 2018) . 12

3.2 System’s response model with some examples from the dialogue on the
debate topic "Make voting compulsory" 20

4.1 Distribution of debates, points, and counters over the topics in the
database for the second implementation 26

4.2 System’s response model with some examples from the dialogue on the
debate topic "Make voting compulsory" 29

4.3 The Dataset used for the Stance Classification in number of lines 30
4.4 Comparison between different machine learning models for stance

classification . 33
4.5 Comparison between different machine learning models for stance

classification in the second experiment, where "c" stands for "con", "p"
for "pro" and "n" for "none" . 34

4.6 Comparison between text generations based on different Luong score
functions . 42

69

AAppendix Survey ArgueBot 1.0

70

71

BAppendix Survey ArgueBot 2.0

72

73

	Titlepage
	Abstract
	Acknowledgement
	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Structure

	2 Background and Related Work
	2.1 Argument mining
	2.1.1 Arguments and their components
	2.1.2 Stance classification

	2.2 Chatbots
	2.2.1 Types of chatbots
	2.2.2 Hybrid model
	2.2.3 Debate-chatbots
	2.2.4 Building a chatbot
	2.2.5 Evaluation

	2.3 Conclusion

	3 First Implementation with Basic Functionalities
	3.1 Dataset
	3.2 Architecture
	3.2.1 Pre-Processing
	3.2.2 Model for data analysis
	3.2.3 Dialogflow
	3.2.4 Flask

	3.3 User tests and results
	3.4 Conclusion

	4 Second Implementation with Machine Learning
	4.1 ArgueBot 2.0
	4.1.1 Dataset
	4.1.2 Architecture

	4.2 Stance classification with ML
	4.2.1 Data
	4.2.2 Methodology
	4.2.3 LSTM with Self-Attention Mechanism

	4.3 Generative Model
	4.3.1 Data
	4.3.2 Methodology

	4.4 Conclusion

	5 Final evaluation of the ArgueBot
	5.1 Overview
	5.2 Survey results
	5.2.1 User Background
	5.2.2 Debate information
	5.2.3 Grammar
	5.2.4 Conversation flow
	5.2.5 Response quality

	5.3 Conversation length
	5.4 Conclusion

	6 Discussion
	6.1 ArgueBot
	6.2 Stance Classification
	6.3 Generative Model
	6.4 Hybrid Model

	7 Conclusion
	Bibliography
	Footnotes
	A Appendix Survey ArgueBot 1.0
	B Appendix Survey ArgueBot 2.0

