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i

Summary

Mobile robots have attracted intense research interest in recent years due to their numerous
potential applications. The capability of autonomous navigation is critical when performing
a wide range of tasks including search and rescue missions, ballast tanks maintenance, pipe
inspection and activities that are potentially hazardous for humans. Therefore, it is such an
exciting and varied topic in the robotics research community.
In literature, various traditional motion planner approaches do exist to solve the autonomous
navigation problem for mobile robots. However, most of these approaches assume that a highly
precise map of the navigation environment is provided a priori which is not the case, in real
life applications, where the exact locations of the obstacles can be hardly obtained. Thus, the
motivation for this work is to formulate the mobile robot navigation task in unknown environ-
ments as a reinforcement learning problem where (sub)optimal trajectories to desired targets
can be realized through trial and error interaction with the environment. Henceforth, a model-
free deep deterministic policy gradient approach within an off-policy actor-critic framework
is sought that aims at training a motion planner end-to-end to navigate to any random tar-
get within the workspace. The motion planner is designed by taking 10-dimensional sparse
laser range finder readings, the target position with respect to the robot’s coordinate frame and
the previously executed actions as inputs and the continuous linear and angular velocity com-
mands as outputs where the robot has to rely on its on-board sensors to perform the navigation
task.
The main novelty of this work is to shape the reward function based on the online-acquired
knowledge about the environment that the robot gains during training. This knowledge is ob-
tained through a grid mapping with Rao-Blackwellized particle filter approach in such a way
that the robot can learn a (sub)optimal policy in less number of iteration steps by increasing its
awareness about the locations of the surrounding obstacles. To the best of the author’s knowl-
edge, this is the first time grid mapping is combined with reinforcement learning to shape the
reward function for robot navigation. Additionally, the learned planner can generalize to un-
seen virtual environments as well as to a real non-holonomic differential robot platform with-
out any fine-tuning to real-world samples.
In order to validate the effectiveness of the proposed approach, two different virtual simulation
environments are explored. The evaluation indicates that the proposed approach decreases
the number of iteration steps significantly by 35.1% and 23.8% on the first and second envi-
ronments respectively. Other performance evaluation metrics are also introduced that demon-
strate that the proposed approach significantly outperforms the standard reinforcement learn-
ing approach. Furthermore, the generalization capabilities of the learned policy was tested. It
is proven that the proposed algorithm substantially decreases the required learning time after
the first task instance has been solved, which makes it easily adaptable to changing environ-
ments. Finally, it is validated that the learned planner can generalize to a real non-holonomic
differential drive robot platform without any further training.
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1 Introduction

As the robotics field progresses, robots are being employed in increasingly complicated and de-
manding tasks. To accomplish a given task, a robot receives sensory information representing
its external environment and takes actions accordingly based on the collected data. The goal
for mobile robots is to enhance their behaviour over time by empowering them with high au-
tonomous ability based on their incoming experience about the environment. In case a com-
plete knowledge about the environment is known a priori, a feasible path to a goal location
in the environment can be determined using techniques such as potential field methods [1],
graph search [2] and rapidly exploring random trees [3]. Although a lot of progress has been
made by those path planning algorithms, they so often require human assistance during set-
up time for sensory data acquisition [4]. Additionally, a highly precise map of the environment
is required a priori for path planning approaches to work. For this reason, the challenge of au-
tonomous navigation in environments with unknown terrain can be formulated as a reinforce-
ment learning problem where the agent learns the optimal path through a straightforward trial
and error process by interacting with the environment.
In recent years, reinforcement learning has achieved impressive results on a wide variety of
challenging tasks like learning to play Atari video games directly from pixels [5] and learning
policies for complex continuous control problems that involve locomotion and manipulation
[6; 7], etc. In robotics, in particular, deep learning and deep reinforcement learning have sim-
ilarly achieved impressive results. Thanks to it, robots are now capable of learning complex
manipulation tasks like opening a bottle [8], putting cloths on a hanger [9], and precisely fit-
ting small pieces into a larger structures [10]. Because reinforcement learning agents can learn
without expert supervision, the type of problems that are best suited to reinforcement learning
are complex problems where no obvious or easily programmable solution does appear. Re-
inforcement learning enables a robot to autonomously discover an optimal behavior through
trial-and-error interactions with its environment. During this interaction, the robot perceives
the environment through its sensors S and affects the environment through a set of actions A
performed by its actuators. Instead of explicitly detailing the solution to a problem, in rein-
forcement learning, the designer of a control task provides feedback in terms of a scalar objec-
tive function that measures the one-step performance of the robot. In other words, by applying
an action at ∈A, the agent is able to change its own state st ∈ S and the state of the environ-
ment and consequently it receives a reward rt ∈R for being in the new state. The reward is the
way of teaching the agent whether the action taken in that state is good or bad. Accordingly,
the optimal mapping from states to actions, called optimal policy π∗(a|s), can be discovered by
maximizing a predefined accumulated reward that reflects the quality of the trajectory taken
by the robot.
In reinforcement learning context, the reward function is one of the most essential and effec-
tive parts since it is the only way by which the agent can evaluate its performance. Hence, a
good reward often makes a difference between a tractable learning problem and an intractable
one as will be discussed in section 5.2. For this reason, a novel idea to condition the reward
signal on the knowledge of the environment is presented in this thesis.
The aim of this thesis is twofold. Firstly, it is aimed to design and apply a deep determinis-
tic policy gradient learning based approach through an off-policy actor-critic framework. This
approach is aimed at training a motion planner to accomplish autonomous navigation tasks
where the planner can output continuous linear and angular velocities. Secondly, in an at-
tempt to improve the learning rate, the reward function is shaped based on the knowledge
gained about the environment that the robot acquires online during training to increase its
awareness about the surrounding obstacles. The learned navigation policy is validated on both
virtual and real-world environments

Robotics and Mechatronics Khaled A. A. Mustafa
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1.1 Related Work

In literature, lots of proposed learning approaches do exist that enable a robot to learn naviga-
tion actions using on-board sensory information in environments with known and unknown
flat terrain. Benefiting from the improvement of high-performance computational hardware,
these methods are mainly based on deep reinforcement learning. In [11], a successor feature
deep Q-Network (DQN) based reinforcement learning is proposed to solve the navigation prob-
lem when a map of the environment is known a priori. The main focus is to transfer the knowl-
edge from one environment to another where the input is depth images obtained through a
kinetic sensor and the output is discrete actions including standing still, turning 90◦ right or
left or going straight for 1m. The trained controller was transferred to a new environment on
a physical mobile robot, and additional training was conducted. Experiments in the same en-
vironment showed that the number of additional training is less than having to train a new
network from scratch. In [12], Asynchronous Advantage Actor-Critic (A3C) approach was pro-
posed to help a robot moving out of a random maze for which a map is given. The input to the
system includes 2D map of the environment, the robot’s heading and the previous estimated
pose whereas the output is the navigation actions such as move (forward, backward, left, right)
and rotate (left, right) to a given target location. Furthermore, in [13], an external memory act-
ing as an internal representation of the environment for the agent is fed as an input to a deep
reinforcement learning algorithm. In this way, the agent is guided to make informative plan-
ning decisions to effectively explore new environments.
Although the aforementioned literature shows the feasibility of using deep reinforcement
learning to learn navigation policies using high dimensional sensory inputs from the environ-
ment, they suffer from two main problems. The first one is that their navigation actions are
simply discrete like move forward, turn left and turn right which may lead to rough navigation
behaviors. Moreover, in all these methods, the map of the environment was provided to the
robot a priori where the robot is trained to navigate through this map without human assis-
tance. However, there are two issues regarding providing a map a priori for a training method.
The first problem is regarding the time-consumption needed for building the obstacle map,
whereas the second one is the high dependency of these approaches on the preciseness of the
built map. Hence, in this thesis, it is aimed to design a learned motion planner that produces
continuous control actions to navigate a mobile robot to a desired target. The contribution of
this work is that no map is provided to the robot beforehand. However, instead, the robot builds
a probabilistic map of the environment online during training and uses this map to shape its
reward function. In this way, the robot gets more awareness about the surrounding obstacles
which enables it to figure out a navigation policy in less iteration steps.

1.2 Problem Formulation and Challenges

Although deep reinforcement learning has achieved tremendous results where a key represen-
tative of this advancement is the application of reinforcement learning to the Go game [14] that
was once considered the most challenging problem in the artificial intelligence community
[15], robotics hold several unique challenges for learning algorithms compared to other fields.
Accordingly, a naïve application of reinforcement learning techniques in robotics is likely to be
doomed to failure. Hence, it is instructive to emphasize on some challenges faced in robotics
learning. The following points give more insight regarding the main challenges that can be
encountered while applying reinforcement learning algorithms in robotics.

(i) Many tasks of interest in robotics have continuous and high dimensional action spaces
which limits the application of deep Q-Networks 1 to such problems since they rely on
finding the action that maximizes the action-value function which would be computa-

1Discussed in detail in section 3.2
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tionally exhaustive in continuous control tasks. A direct solution to this problem is to
discretize the action space, however this has many limitations among them is the curse
of dimensionality. In 1957, Bellman coined the term Curse of Dimensionality when he
faced an exponential explosion of the number of actions with the number of degrees
of freedom in discrete high dimensional spaces. For instance, a 7 degree-of-freedom
robotic arm with a coarsest discretization ai ∈ {−k,0,k} for each joint leads to an action
space with dimensionality: 37 = 2187. The problem becomes even worse when a finer
discretization is required. This exponential growth in the number of states leads to very
slow convergence rates of the reinforcement learning algorithm.
Hence, to tackle this problem, in this thesis, it is focused on the navigation problem
of non-holonomic mobile robots with continuous control through deep reinforcement
learning, which is an essential ability for the most widely used robots. This is achieved by
adapting a policy search based learning approach that is discussed in section 3.4.

(ii) Another problem for learning in robotics is that it is often unrealistic to implement the
training procedure in the real world. The reason is that the trial-and-error process may
lead to a serious damage to real systems. Furthermore, obtaining real data from robotic
systems can be extremely difficult and time-consuming. Thus, applying reinforcement
learning in robotics demands safe exploration which becomes a key issue of the learning
process, a problem often neglected in the general reinforcement learning community,
due to the use of simulated environments. Additionally, the dynamics of the robot can
change, during learning, due to several external factors including wear and tear of phys-
ical components and thereby the learning process may never converge.
Fortunately, simulation with accurate models could potentially be used to offset the cost
of real-world interaction. One of the most powerful simulation platforms in robotics
community is Gazebo in the sense that it is more realistic with respect to the underlying
physics and the sensor noise compared to other simulated environments [16]. In an ideal
setting, this approach would allow to learn the behavior in simulation and subsequently
transfer it to the real robot.

(iii) The reward function can be considered the most important component within the rein-
forcement learning framework since it is the only way by which the agent can evaluate its
performance while training. In contrast to traditional reinforcement learning algorithms,
it is challenging to define a good reward function for the robot task since sparse reward
can barely succeed in robotics applications. Therefore, it is necessary to design a proper
reward function that takes into account the features of the space in which the agent robot
operates and the available knowledge of the environment. Adjusting the reward function
based on the task at hand is called, in literature, reward shaping which is considered as
the main contribution of this thesis.

Based on the aforementioned reasons, in this thesis, it is aimed to train a motion planner to
continuously navigate a mobile robot to any desired target within the environment by using
only low-dimensional laser range findings. Accordingly, an actor-critic deep deterministic pol-
icy gradient algorithm is adopted for learning a navigation policy that can generate continuous
control actions. Furthermore, the reward function is adjusted by incorporating the knowledge
gained about the environment during training to improve the learning rate. This knowledge is
provided in the form of a probabilistic occupancy grid map. To get this map, a simultaneous lo-
calization and mapping, also known as SLAM, based approach is introduced that makes use of
Rao-Blackwellized particle filters. Moreover, the simulated experiments within the framework
of this research are conducted on Gazebo simulation platform since simulations are frequently
faster than real-time and safer for both the robot and its environment. Afterwards, the learned
policy on the simulation is deployed on a real-world differential drive mobile robot to continu-
ously control its navigation actions.
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1.3 Proposed Method

As mentioned beforehand, the main purpose of this research is to design a deep reinforcement
learning algorithm that uses raw sensory data from the robot’s on-board sensors to determine
a series of primitive navigation actions for the robot to execute in order to traverse to a goal
location in an environment with unknown flat terrain. The advantage of deep reinforcement
learning is that it can directly use raw sensory data to determine robot navigation actions with-
out the need for pre-labeled data. In section 1.2, it was discussed that policy search methods are
more suitable for physical control tasks. For that reason, a model-free off-policy1 actor-critic al-
gorithm based on deep deterministic policy gradient is presented within the framework of this
thesis to solve the navigation problem for non-holonomic mobile robots. To achieve this goal,
two neural networks are introduced where one of them works as the actor whereas the other is
the critic. The aim of the actor network is to determine the optimal deterministic policy that
maps the states, which are given as raw laser range findings data and the target’s position in
the robot’s frame to navigation actions in the form of continuous linear and angular velocities.
Here, it should be pointed out that the deep-RL algorithm represents the high-level controller of
the robot. Once the robot’s navigation actions are determined, the robot’s low-level controller
executes each action by sending the appropriate commands to the actuators. The critic net-
work then evaluates the quality of taking a particular action from a certain state by computing
an action-value function. Afterwards, the parameters of the actor network are then adjusted in
the direction of the gradient of the action-value function which is discussed in section 3.4. This
process continues iteratively until an optimal policy is realized.

Figure 1.1: Proposed architecture for continuous control navigation in unknown environment. The
motion planner is trained through a deep-RL within an off-policy actor-critic framework that

represents the high level controller of the robot using only sparse laser data. The robot’s low level
controller executes the navigation actions determined by the motion planner. The occupancy grid map

is built online by the robot and used to shape the reward function.

As a matter of fact, since the reward function has a direct impact on the learning rate of the re-
inforcement learning algorithm, the available knowledge of the environment is incorporated

1These concepts are discussed in chapter 2
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in the reward function. This knowledge is represented by the online-acquired occupancy-
grid map that the robot gets while learning through adopting a grid-mapping with Rao-
Blackwellized particle filters. This SLAM technique is used due to its computational efficiency
which is a key factor in deep reinforcement learning algorithms along with the fact that it can
be simply integrated in robot operating system ”ROS”; the main middleware framework on
which the proposed algorithm is implemented. A comparison is then made to evaluate the dif-
ference in performance between the standard reinforcement learning technique and the one
combined with SLAM. Here, it should be pointed out that SLAM is not the main concern of
this research, however instead, it is just used as a tool to improve the learning algorithm. The
architecture of the proposed framework is depicted in Figure 1.1 where the main modules are
discussed in detail throughout this thesis.
Moreover, a major challenge of learning in continuous action space is exploration especially
since the algorithm adopted learns a deterministic policy. However, an advantage of the off-
policy algorithm is that the exploration problem can be treated independently from the prob-
lem of learning. In other words, it is possible to learn a deterministic policy while following a
stochastic behavioral policy for exploration purposes. Therefore, different exploration policies
are introduced including action and parameter space policies.

1.4 Research Questions

To fulfill the required tasks discussed in the previous section, the following two main research
questions are formulated:
RQ1. How the navigation problem of non-holonomic mobile robots can be formulated as
a reinforcement learning problem that could be solved by using deep deterministic policy
gradient (DDPG) actor-critic algorithm?
RQ2. To what extent does the incorporation of the partial map obtained about the environment
via the SLAM algorithm improve the learning algorithm?
From these main research questions, further sub-questions arise which can be articulated as
follows:
RQ3. How to determine a proper reward function that can reflect the quality of the learned
trajectory?
RQ4. How applicable is it to generalize the learned policy on one environment to another
environment through transfer learning?
RQ5. What is the effect of different exploration noise on the quality of the learned trajectory
and the learning rate?
RQ6. Is it possible to transfer the learned policy on the virtual environment directly to the real
robot?

The rest of this thesis is dedicated to answer these research questions.

1.5 Report Layout

The remainder of this thesis is structured as follows. In chapter 2, a formal introduction to
reinforcement learning problem is provided by explaining the mathematical preliminaries as-
sociated with it. This chapter also discusses traditional reinforcement learning approaches;
model-free and model-based RL which forms the basis of most deep reinforcement learning
methods. Chapter 3 introduces deep neural networks and explains its different components.
The chapter also discusses the modifications that should be done to neural networks in order
to be used as function approximators in learning algorithms. Additionally, few deep reinforce-
ment learning algorithms are introduced and a motivation is provided for choosing a particu-
lar method for this thesis. A brief discussion of grid-mapping Rao-Blackwellized particle filter
based SLAM approach is provided in chapter 4. Furthermore, chapter 5 focuses on the design
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of the motion planner and how DDPG algorithm is applied to the autonomous mobile naviga-
tion in environments with unknown flat terrain problem. The reward shaping and the way in
which the acquired map is incorporated in the reward function are discussed in this chapter as
well. Moreover, a comparison between action and parameter space exploration noise is made.
In chapter 6, the experimental setup settings along with the environments on which the learn-
ing algorithms take place to answer the research questions are described. In addition to that,
a proposed difference model learning algorithm that captures the mismatch between the real
system and the simulated model is explained. In chapter 7 the performance of the proposed
algorithm on different experimental setups is evaluated and the results are discussed. Eventu-
ally, chapter 8 draws a conclusion about this research and provides possible recommendations
for future work.
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2 The Reinforcement Learning Problem

This chapter provides an overview of the reinforcement learning problem, presenting the
mathematical background behind the solution of the decision making problem, and explain-
ing the methods upon which this research is built.
In general, machine learning techniques can be typically classified into three broad cate-
gories: supervised learning, unsupervised learning and reinforcement learning. These three
approaches differ by the type of feedback they receive to learn. In supervised learning, the
learning agent is provided with a data-set of labeled examples, each contains a description of a
situation as well as the correct classification of this situation or action to take when confronted
by it. The objective of the learning is then to extrapolate this training data-set and be able
to determine the correct classification or action to take for unseen situations. Unsupervised
learning algorithms, in contrast to supervised learning, have no access to output values and
therefore try to find hidden parameters and structures within the data by creating clusters that
can group the given data. On the other hand, reinforcement learning is different from both
previously described categories.
Reinforcement learning is a branch of machine learning that deals with sequential decision
making. RL is a problem in which the agent, also called a decision maker, interacts with the
environment. In the context of robotics, in this interaction, the agent senses the environment
through its on-board sensors and responds to the environment through actions performed by
its actuators. Based on these actions, the agent receives a scalar reward which is a way of letting
the agent know how good or bad it was to take that action from this particular state. The fun-
damental idea of reinforcement learning is to learn an optimal policy, which is a mapping from
states to a probability distribution over actions, that maximizes the expected sum of rewards in
an attempt to achieve a desired goal. RL is different from supervised learning in the sense that
in RL the agent does not know a priori what the right action is at the particular instant. How-
ever, instead, it must figure that out based on a trial and error interaction with the environment
[17]. In episodic settings, where the task is restarted after each time the episode is over, the goal
of the agent is to maximize the total reward per episode. However, if the task is on-going, there
is no clear beginning and end, the aim is either to maximize the average reward of the whole
life-time or a weighted average reward where the distant rewards have less influence.

The interaction model between the agent and the environment can be modelled as a Markov
Decision Process (MDP) [18] which is described in detail in the next section.

2.1 Markov Decision Process

In the robotics context, the agent can be considered as the high level controller of the robot
which is responsible for decision making [19], i.e. the required velocity that should be re-
quested from the motors. The aim of reinforcement learning is to control this agent by finding
an optimal policy by which the agent’s can determine its optimal actions. The thing that the
agent interacts with, comprising everything else outside the agent, is called the environment.
This includes even the robot’s sensors and actuators. The agent and the environment interact
continually where the agent selects actions and the environment responds to these actions and
presents new situation to the agent. This interaction process between the agent and the envi-
ronment is modelled as a Markov decision process.
A Markov decision process is a discrete mathematical framework for sequential decision mak-
ing which consists of five components that can be formally represented by a tuple [18]

M= (
S ,A,P(st+1|st , at ),R(st , at ),γ

)
(2.1)
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where: S is a finite set of states which contains the information about the environment that
is available to the agent at a discrete time-step t ; an example would be the current position
of a robot in a navigation task. A = {a1, ..., ak } is a set of actions the agent can perform on the
environment; an example could be the linear and angular velocities of a robot. Not to mention
that both the states and actions can be either discrete or continuous sets. The probability of
ending up in state st+1 when performing an action at in the state st is restricted to satisfy the
Markov property given by

P(st+1|st , at ) =P(st+1|s1, a1, ..., st , at ) (2.2)

In other words, the Markov property states that the transition from st to st+1 depends exclu-
sively on the previous state st and action at and not on additional information about the past
states or actions. Moreover, the transition probability captures the dynamics of the environ-
ment. R(st , at ) is the reward function that gives the agent a feedback from the environment.
This feedback is given in terms of a scalar signal R(st , at ) ∈R after the agent performs an action
at from the state st and is assumed to be a function of the state. This gives a rise to a sequence
(s0, a0,r1, s1, a1,r2, ...) that is rolled out by the agent in the environment. As a matter of fact, the
reward function specifies the goal of the reinforcement learning problem. The last component
of the Markov Decision Process is the discount factor γ ∈ [0,1] which is used to determine how
much the future rewards should influence the accumulated reward, also called as the return.
If γ is close to 0, the return evaluation will be myopic and may result in poor performance,
whereas, it will be ”far-sighted” when γ is close to 1, i.e., the closer γ is to 1, the more effect
future rewards would have on the return. Here it should be pointed out that in some reference,
the discount factor γ is considered as a part of the MDP [19; 20; 21] while in other definitions
it is regarded as an additional parameter where both conventions are widely used in literature.
The Markov Decision Process in the context of robotics is depicted in Figure 2.1:

Figure 2.1: The reinforcement learning loop in the context of robotics. At time t , the agent receives a
state st from the environment. The agent uses its policy to choose an action at . Once the action is

executed, the environment transitions a step, providing the next state st+1 as well as feedback in the
form of a reward rt+1. The agent uses knowledge of state transitions, of the form (st , at , st+1,rt+1) in

order to learn and improve its policy.
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Figure 2.1 can be related to Figure 1.1 in the sense that the brain of the robot, the agent, can
be resembled by the DRL algorithm depicted in Figure 1.1 while everything else represents the
environment that the agent interacts with.

2.2 Reinforcement Learning Bricks

In this section, the fundamental background for reinforcement learning is discussed that is
essential for understanding this thesis.

Definition 2.2.1. Let Rt be the immediate reward at time step t , and γ ∈ [0,1] be the discount
factor. The return Gt , is then defined as

Gt =
T∑

k=0
γt Rt+k+1 (2.3)

where T is the last time step in the interaction between the agent and the environment. The
planning horizon can be finite, as the case in episodic tasks [19], or infinite, as in continuing
tasks where T = ∞. γ < 1 prevents an infinite sum of rewards from being accumulated. The
reward defined in 2.3 represents the reward over a single sample across the environment, and
thus, no expectation is required at this stage.
In Markov decision process, the goal is to find a policy, denoted by π, that maximizes the cu-
mulative return. The policy describes the agent’s way of behaving in the environment since it
determines the next action the agent should take from any given state. The policy can be either
deterministicπ(s) or stochasticπ(a|s). A deterministic policy always returns the exact same ac-
tion from a given state in the form of a =π(s), whereas a stochastic policy models a conditional
probability distribution over actions and then draws an action according to this distribution
a ∼π(a, s) = p(A= a|S).

Definition 2.2.2. A deterministic policy is a function π(s) that maps states into actions S →A,
whereas a stochastic policy π(a, s) : S → p(A = a|S) is a mapping from a state to a probability
of taking a specific action.

Another important concept in RL is the state-value function V π(s). This function represents
the assessment of how good it is for the agent to be in a given state in terms of how much future
reward can be accumulated from this state [18]. The state-value function can be calculated by
the expected amount of reward the agent can expect to get from state s when following policy
π.

Definition 2.2.3. The state-value function V π(s) of a state s, under the policy π can be defined
as:

V π(s) = Eπ [Gt |st = s] = Eπ
[ ∞∑

k=0
γk Rt+k+1|st = s

]
,∀s ∈S (2.4)

where Eπ [.] is the expectation operator for policy π that the agent follows..

The value function of state st can be expressed in terms of the immediate reward and a dis-
counted value of the successor state st+1. This recursive relationship between V π(st ) and
V π(st+1) is known as Bellman’s expectation equation [22] that can be derived starting from the
definition of the state-value function given in (2.4).

V π(st ) = E [Gt |st = s]

= E[
Rt+1 +γRt+2 +γ2Rt+3 + ...|st = s

]
= E[

Rt+1 +γ
(
Rt+2 +γRt+3 + ...

) |st = s
]= E[

Rt+1 +γGt+1|st = s
]

= E[
Rt+1 +γV π(st+1)|st = s

]=∑
a
π(a|s)

(
Rt+1 +γ

∑
st+1

p(st+1|s, a)V π(st+1)

)
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The reason why an expectation does exist in the state-value function is due to the fact that the
underlying policy is stochastic. Thus, it is required to average over all possible actions that can
be taken from this state. Furthermore, since the transition from one state to another after tak-
ing a certain action is not deterministic as it is conditioned by the transition model imposed
by the dynamics of the environment, it is also obliged to average over the state-value function
of all successive states. Here it is worth mentioning that a state might have a high value de-
spite having a low immediate reward, because it regularly leads to other states that yield high
rewards.
Similarly, it is possible to define the value of taking an action a from a state s and following a
policy π thereafter. This is called the action-value function or quality function and is denoted
as Qπ(s, a). The action-value function is closely related to the state-value function but it is also
conditioned by the action a. In other words, instead of measuring the value of being in a par-
ticular state, it measures the quality of taking an action a from a state s. As will be shown later,
the advantage of using action-value function over state-value function is that no model of the
environment is needed to figure out the optimal policy which makes it suitable for model-free
approaches.

Definition 2.2.4. The action-value function Qπ(s, a) for a given state-action pair (s, a) under
policy π is defined as:

Qπ(s, a) = Eπ [Gt |st = s, at = a] = Eπ
[ ∞∑

k=0
γk Rt+k+1|st = s, at = a

]
(2.5)

where Eπ [.] is the expectation operator for policy π that the agent follows.

As mentioned previously, the goal of an agent is to learn a policy π (find a sequence of actions
through an MDP) that maximizes the expected return of a state V π(s). A policy π is said to be
better than or equal to a policy π′ if the expected return it generates is greater than or equal to
that of π′ for all states, such as:

π≥π′ ⇐⇒V π(s) ≥V π′
(s),∀s ∈S

For all MDPs, there exists at least one policy that is better than or equal to all other policies. This
is called the optimal policy π∗. Accordingly, the optimal state-value function is the function
that corresponds to the optimal policy and can be defined as:

V ∗(s) = max
π

V π(s), ∀s ∈S (2.6)

Similarly, the optimal action-value function is defined as

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈S ,∀a ∈A (2.7)

The Bellman equation for the optimal state-value function V ∗(s) results in the Bellman opti-
mality equation. The interpretation of the Bellman optimality equation is that the value of a
state evaluated for an optimal policy must be equal to the expected return when in state s and
picking the best action from this state.

V ∗(s) = max
a∈A(s)

Qπ∗(s, a)

= max
a∈A(s)

Eπ∗

( ∞∑
k=0

γk Rt+k+1|st = s, at = a

)
= max

a∈A(s)

(
Rt+1 +γ

∑
st+1

p(st+1|st , a)V (st+1)

)

This means that for reinforcement learning methods that use a value function to find optimal
policies, such an optimal policy can be derived from an optimal value function, by picking
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the best action from each state, where best means the action that maximizes the value of the
next state in each state. This also applies to the action-value function resulting in Bellman
optimality equation for Q∗

Q∗(s, a) = ∑
st+1

p(st+1|s, a)

(
Rt+1 +γmax

at+1
Q(st+1, at+1)

)
(2.8)

In case the transition probabilities and the reward functions are known, the Bellman opti-
mality equation can be solved in an iterative fashion. This approach is known as Dynamic
programming-based optimal control approach such as policy iteration or value iteration. The
algorithms which assume these probabilities to be known or estimate them online are collec-
tively known as model-based algorithms. But for most other algorithms, they assume the prob-
abilities are not known and they estimate the policy and value functions by performing rollouts
on the system. These methods are known as model-free algorithms. Monte Carlo, temporal dif-
ference and policy search methods are the most common model-free algorithms used. In most
of practical scenarios, an explicit model of the environment is not given a priori and it also
requires high computational time to build this model. Thus, in the robotics context, it is pre-
ferred to use model-free learning approaches [19]. For this reason, model free algorithms are
discussed in the next section. The reader who is interested in model-based algorithms can refer
to Appendix A where they are discussed briefly.

2.3 Model-free Methods

Model-free methods can be applied to any reinforcement learning problem since they do not
require an explicit model of the environment. Model-free methods can be generally classified
into two categories, mainly value function based approaches and policy search methods. In
value function based approaches, the agent tries to learn a value function and infer an optimal
policy from it. On the other hand, in policy search methods, the agent directly searches in the
space of the policy parameters in an attempt to find an optimal policy. There is also a hybrid,
actor-critic approach, which employs both value functions and policy search [19].
Model-free approaches can also be classified as being either on-policy or off-policy. On-policy
methods use the same policy for both generating actions and updating the current policy. How-
ever, on the other side, off-policy methods use a different exploratory policy to generate actions
as compared to the policy which is being updated. The following subsections look at various
model-free algorithms used as well as both value function and policy search based methods.

2.3.1 Value function based Methods

2.3.1.1 Monte Carlo Methods

Unlike dynamic programming discussed in Appendix A, Monte Carlo methods do not assume
a complete knowledge of the environment’s dynamics. However, instead, they require sample
sequences of states, actions, and rewards obtained through interactions with the environment
[18]. Monte Carlo methods estimate action-value functions Qπ(s, a) by averaging the returns
observed after visiting these states in the previous episodes. Thus, in order to ensure that
well-defined returns are available, learning is only possible in episodic tasks. Furthermore,
the problem is non-stationary; since the return of a state upon taking an action depends on the
sequence of actions taken in post-states and the selection of the actions is undergoing learn-
ing. To handle this issue, Monte Carlo methods adopt the same idea of general policy iteration
discussed in Appendix A, however, they differ from dynamic programming in the sense that
they are based on a sample of experienced sequences rather than on a complete distribution
of all possible scenarios. The value functions and corresponding policies interact to obtain an
optimal policy:

π0
PE−−→Qπ0 I−→π1

PE−−→Qπ1 I−→π2...
I−→π∗ PE−−→Qπ∗
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Alternating between evaluation and improvement happens on an episode-by-episode basis.
The observed returns of an episode are used for policy evaluation, and then the policy is im-
proved at all the states visited in the episode. These methods converge to the optimal policy
Qπ∗

as the number of visits to each action-state pair approaches infinity. The corresponding
greedy policy for any action-value function Q, is the one that for each s ∈ S , chooses an action
deterministically with maximal action-value:

π∗(s) = argmax
a∈A

Q(s, a)

There are two main Monte Carlo methods that differ in the way in which the average return is
calculated:

1. First Visit MC method: estimates the action-value function as the average of the returns
following the first visit to the state-action pair in every episode.

2. Every Visit MC method: estimates the action-value function as the average of the returns
after every visit of the state-action pair in every episode.

To summarize, Monte Carlo methods differ from dynamic programming methods in two major
ways. Firstly, they can be used for direct learning without a model of the environment. Sec-
ondly, they do not bootstrap, which means they do not update their value estimates based on
the value estimates of the successive state. Though Monte Carlo methods are straightforward
in their implementation, they require a large number of iterations for their convergence and
suffer from a large variance in their value function estimation since they use the actual return
from every visited state till the end of the episode where this return suffers from noise. For this
reason, temporal difference learning is discussed in the next section.

2.3.1.2 Temporal Difference (TD) Learning

Temporal difference methods combine ideas from both dynamic programming and Monte
Carlo methods [23]. Like dynamic programming methods, TD methods execute bootstrapping
which means that they update their estimates partly based on previous estimates, however,
they use samples as Monte Carlo methods. While Monte Carlo methods need to wait until the
end of the episode to determine the increment in the value function, one step TD method waits
only until the next time step to execute the updates. Accordingly, instead of using the total ac-
cumulated reward, TD methods calculate a temporal error, which is the difference between the
new and old estimates of the value function, by considering the reward received at the current
time step and use it to update the value function. This kind of update reduces the variance but
increases the bias in the estimate of the value function since it doesn’t use the actual return in
updating the value function estimates. The update equation for the value function is given by:

Q(st , at ) =Q(st , at )+α

rt+1 +γQ(st+1, at+1)︸ ︷︷ ︸
TD-target

−Q(st , at )

 (2.9)

where α ∈ [0,1] is the step-size parameter that determines how much the Q-value is updated,
rt+1 is the reward received at the current time step, st+1 is the new state and st is the old state.
The algorithm keep repeating until the loss function (TD error) reaches a small value. Two TD
algorithms which have been widely used to solve reinforcement learning problems are SARSA
(acronym for State- Action-Reward-State-Action) and Q-Learning.
SARSA is an on-policy temporal difference algorithm that tries to learn an action-value function
instead of a state-value function. In SARSA, the temporal difference error is used for the update
of the action-value function. SARSA algorithm is summarized below:
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Algorithm 1 SARSA

Initialize Q(s, a) ∈R randomly, ∀s ∈S , ∀a ∈A.
repeat

Initialize s1

Select an action a1 using a policy derived from Q(s, a), (e.g. ε-greedy)
for t = 1 : T do

Take action at , observe reward rt+1 and new state st+1.
Choose next action at+1 using policy derived from Q(s, a), (e.g. ε-greedy)
Update Q using

Q(st , at ) ←Q(st , at )+α(
rt+1 +γQ(st+1, at+1)−Q(st , at )

)
end for

until terminated

It is clear that SARSA is an on-policy algorithm since the behavioral policy for exploring the
environment is the same as the update policy. Hence, this method is not preferred in case a
deterministic policy is used for updating the Q-values since in this case it is not guaranteed to
explore the entire workspace sufficiently. Therefore, in [24], an off-policy temporal difference
algorithm known as Q-learning is introduced. In Q-learning, the post-action at+1 is selected by
maximizing the Q-value of the next state Q(st+1, at+1) instead of following the current policy.
Thus, Q-learning belongs to the off-policy category. The Q-learning algorithm is summarized
below:

Algorithm 2 Q-learning

Initialize Q(s, a) ∈R randomly, ∀s ∈S , ∀a ∈A.
for all episode do

Initialize s1

Choose action a1 using policy π(s) derived from Q(s, a), (e.g., ε-greedy)
repeat

for each step t in an episode do
Take action at , observe reward rt+1 and new state st+1.
Choose next action at+1 using policy π(st+1).
Update Q using

Q(st , at ) ←Q(st , at )+α
(
rt+1 +γmax

at+1
Q(st+1, at+1)−Q(st , at )

)
end for

until terminated
end for

In contrast to dynamic programming where the solution methods sweep through the whole
state space for each iteration, in Q-learning, each Q-value is only updated when the agent dis-
covers the state. This means that some of the states might be updated more than the others.
Thus, extracting a greedy policy could then lead to too much exploitation of the knowledge the
agent has learned. To tackle this problem, a popular choice for a policy that can be used to
encourage exploration during sampling is the ε-greedy policy. The parameter ε ∈ [0,1] specifies
the probability of selecting a completely random action. In all other cases, the assumed best
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Figure 2.2: Two dimensions of RL algorithms, based on the backups used to learn or construct a policy.
At the extremes of these dimensions are (a) dynamic programming, (b) exhaustive search, (c) one-step
TD learning and (d) pure Monte Carlo approaches. Bootstrapping extends from (c) 1-step TD learning,
with (d) pure Monte Carlo approaches not relying on bootstrapping at all. Another possible dimension

of variation is choosing to (c, d) sample actions versus (a, b) taking the expectation over all choices.
Recreated from [18].

action will be executed:

at =
random action, with ε- probability

argmax
a

Q(st , at ), otherwise
(2.10)

This is used to let the agent discover states that might not be visited a lot of times in order to
update the Q-value for these states, which could eventually lead to better policies. In most of
the cases, it is preferred to start by a large number of ε to encourage the robot to explore most
of the environment and then decrease this value by a decay rate to exploit the best obtained
trajectories. This is known as Exploration-Exploitation trade off.
As a recap for value-function based approaches, Figure 2.2 depicts the main differences be-
tween dynamic programming, Monte Carlo methods and temporal difference learning.

2.3.1.3 Function Approximators

Function approximation is a family of mathematical and statistical techniques used to rep-
resent a function of interest when it is computationally intractable to represent the function
exactly or explicitly. The easiest way to save the values of a value function for different states
is in a tabular form. However, if the state space of the problem is large, it becomes impossible
to store all the values in a tabular format. The reason is not only due to the fact that storing
this data would require extremely huge amount of memory but also looking up some value for
a particular state will require an entire sweep of the table which is computationally expensive.
In addition, if the state space is continuous, a tabular format will become impossible. Here it is
worth mentioning that the problem is not limited only to the large amount of memory required
to store the table, but also to the large number of data and time required to estimate each state-
action pair accurately. In other words, it is required to generalize the experience gained on a
subset of state-action pairs to approximate a broader set.
To overcome this problem, function approximators are used to store a value function. Instead
of a table, the value function can be parameterzied by a vector θ = [θ1,θ2, ...,θn]T that approxi-
mates the value function for a given input and is denoted as V (s,θ). The function approxima-
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tor can be thought of as a mapping from a vector θ in Rn to the space of the value function.
Nowadays, artificial neural networks (ANN) are widely used as function approximators. The
advantage of using neural networks is due to their capability to represent complex value func-
tions with lesser number of parameters. This reduces training time for reinforcement learning
algorithms for high dimensional systems and is less memory extensive. However, despite the
advantages of neural networks as function approximatros, applying them directly to reinforce-
ment learning problem results in unstable performance. Thus, additional modifications are
required to enable them to be applied effectively as discussed in section 3.2. Before describing
the techniques in deep reinforcement learning, some theory of deep learning is needed which
is introduced in section 3.1.

2.3.2 Policy Search Methods

In previous sections, it was shown that it is possible to derive reasonable performing policies
from good estimates of value functions. However, because policies derived from value func-
tions search over a discrete number of Q-values, it is not possible to directly obtain policies
that output continuous actions using one of these methods described before. For this reason,
policy search methods are analyzed in this section.
Policy search methods are another class of reinforcement learning algorithms that use param-
eterized policies πθπ that can be completely described by the parameter θπ and thus pro-
vide maximal freedom to learn any action-generating function. To evaluate different poli-
cies, the expected return following π over all trajectories conditioned by the policy, formally
τ∼ pπ(τ) = p(τ|θπ), is used where p(τ|θπ) is the probability distribution over sampled trajecto-
ries. The return over a single trajectory r (τ) is given by

R(τ) =
T−1∑
t=1

γt−1rt+1 (2.11)

The term rt+1 is the reward given to action at executed in state st of the respective trajectory.
The probability distribution over trajectories p(τ|θ) is decomposed as follows:

p(τ|θ) = p(s1)
T−1∏
t=1

p(st+1|st , at )πθ(at |st ) (2.12)

where p(st+1|st , at ) is given by the system dynamics of the robot and its environment. Since,
the ultimate goal of the agent is to find an optimal policy π∗

θ
that maximizes the expected ac-

cumulated reward that is defined as

Jπ =
∫

R(τ)p(τ|θ)dτ= Eπ (R(τ)|π)

= Eπ
(

T−1∑
t=1

γt−1rt+1

) (2.13)

This can be achieved by updating the parameters of the policy in the direction of increasing the
expected return using gradient ascent. The update rule for the parameters of the policy can be
written in terms of the expected return, Jπ, as

θπt+1 = θπt +α∇θπ Jπ, Jπ = Eπ
(

T−1∑
t=1

γt−1rt+1

)
(2.14)

According to [25], following the policy gradient to solve reinforcement learning tasks only
slightly modifies the parameters of the policy in contrast to value based methods, where large
jumps between two estimated policies are possible. This property arguably improves training
stability and convergence towards an optimal policy. As shown in equation (2.14), in order to
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update the parameters of the policy, it is required to derive an appropriate estimate of the gra-
dient of the expected return ∇θπ Jπ with respect to the parameters of the policy. Analytically
calculating the gradient is impossible, as it would be necessary to sum over possibly infinitely
many trajectories. In addition, the dynamics of the environment p(st+1|st , at ) might also be
unknown and not differentiable anyway. For this purpose a likelihood-ratio trick is introduced
by [26] to evaluate the gradient of the expected return which is discussed in the next section.

2.3.2.1 Likelihood-Ratio Policy Gradient

Likelihood-ratio methods make use of the so called ’likelihood ratio trick’ that is given by the
identity ∇θπp(τ|θ) = p(τ|θ)∇θπ logp(τ|θ). This identity can be easily confirmed by using the
chain rule to calculate the derivative of logp(τ|θ) which is given by

∇θπ logp(τ|θ) = ∇θπp(τ|θ)

p(τ|θ)
(2.15)

Thus, the gradient of the expected return defined in equation (2.13) can be written as

∇θπ Jπ =
∫

R(τ)∇θπp(τ|θ)dτ=
∫

R(τ)p(τ|θ)∇θπ logp(τ|θ)dτ (2.16)

= Ep(τ|θ)
(
R(τ)∇θπ logp(τ|θ)

)
(2.17)

The expectation in equation (2.17) is useful for estimating the gradient of Jπ while avoiding
integrating over all trajectories which is intractable. However, the inner term R(τ)∇θπ logp(τ|θ)
still depends on the possibly unknown or not differentiable system’s dynamics. This problem
can be solved by making use of equation (2.12)

∇πθ logp(τ|θ) =∇θπ logp(s1)+
T−1∑
t=1

∇θπ logπθ(at |st )+
T−1∑
t=1

∇θπ logp(st+1|st , at ) (2.18)

=
T−1∑
t=1

∇θπ logπθ(at |st ) (2.19)

As shown in equation (2.19), the system dynamics can be excluded since they do not depend on
the parameter θπ. This means that all the knowledge about the dynamics of the environment
can be easily discarded to form a model-free estimate of the parameter gradient. Thus, finally,
the gradient of the expected return can be formulated as

∇θπ Jπ = Eτ∼p(τ|θ)

(
R(τ)

T−1∑
t=1

∇θπ logπθ(at |st )

)
(2.20)

2.3.2.2 Exploration Strategies in Policy Search Methods

The exploration strategy is essential for efficient model-free policy search, since variability in
the generated trajectories to determine the policy update is required. The main purpose of
exploration strategies is to ensure that the agent’s behavior does not converge prematurely to
a local optimum. Most model-free policy search methods use a stochastic policy for explo-
ration. Exploration strategies can be categorized into step-based and episode-based explo-
ration strategies. While step-based exploration uses an exploratory action in each time step,
episode-based exploration directly changes the parameter vector θπ of the policy only at the
start of the episode. Step-based exploration strategies can be problematic as they might pro-
duce action sequences which are not reproducible by the noise-free control law, and, hence,
might affect the quality of the policy updates. Additionally, a step-based exploration strategy
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causes a large parameter variance which grows with the number of time steps. Such explo-
ration strategies may even damage the robot as random exploration in every time step leads to
large jumps in the controls of the robot.
The exploration strategy is used to generate new trajectory samples τi which are subsequently
evaluated by policy evaluation strategies and used for policy update. Thus, an efficient explo-
ration strategy is crucial for improving the performance of policy search algorithms. The ex-
ploration strategy can also be categorized based on whether the exploration noise is applied in
the action space or the parameter space. Exploration in action space is implemented by adding
an exploration noise εu directly to the executed actions; at = µ(x, t )+εu where the exploration
noise is sampled independently for each time step. As a matter of fact, the action noise can be
either uncorrelated as Gaussian noise εu ∼N (0,σ2I ) or correlated as the Ornstein-Uhlenbeck
process εu ∼ OU(0,σ2). On the other hand, parameter space noise injects randomness directly
into the parameters θ of the policy, altering the types of decisions it makes such that they al-
ways fully depend on what the agent currently senses. This exploration noise can either only
be added at the beginning of an episode, or, a different perturbation of the parameter vector
can be used at each time step.

2.4 Summary

This chapter introduced the basics of reinforcement learning by explaining many important
concepts associated with it that will be used throughout this thesis. Various popular ap-
proaches within traditional RL were also discussed. In general, model-free methods are pre-
ferred for simulated environments since they do not require any information about the en-
vironment. Furthermore, for robotics applications, policy search methods are preferred over
value function methods since they are suitable for continuous state and action spaces.
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3 Deep Reinforcement Learning

In this chapter, deep learning and reinforcement learning are combined into what is called
Deep Reinforcement Learning (DRL).The value-based methods discussed previously can be
represented in a tabular format which is only feasible for state and action spaces with a limited
number of states and actions. In cases where both S and A are big sets, these methods are in-
feasible not only due to memory requirements for storing the big value function tables, but also
due to the data needed to fill out these tables accurately and the time needed for acquiring that
amount of data. Instead of a table representation of the value function, one can use a function
that approximates the desired value function. This function approximator is then trained using
interactions between agent and environment. Deep reinforcement learning has received a lot
of interest among the AI community in the last couple of years where it refers to the use of deep
neural networks as function approximators for value functions or policy in an RL framework
[19]. The fact that deep reinforcement learning can handle high dimensional state and action
space makes it extremely suitable for the purpose of controlling the motion of a mobile robot,
the problem under study.

3.1 Artificial Neural Networks

In order to understand neural networks, one first needs to be familiar with the computational
units they consist of which are artificial neurons. An artificial neuron is a simple mathematical
model that mimics the way biological neurons in the human brain process information [27].

inputs weights

activation
function

Figure 3.1: Illustration of how an artificial neuron
transforms its inputs x0, x1, ..., xn to its output y .

A neuron is a computational unit that takes
as an input a number of n signals, x0, x1, ..., xn

and combine them together into a scalar out-
put, thus it can be thought of as a mapping
function. Each of the input signals are multi-
plied by their own weights w0, w1, ..., wn that
determine how much the individual input
signal affects the output of the neuron. These
weighted inputs are summed together and a
bias b is added before it passes through an
activation function, φ that has the effect of
applying non-linearity to v . Formally, the
output is expressed by the two equations:

v =
n∑

j=0
w j x j +b

y =φ(v) = h(x0, x1, ..., xn)

(3.1)

There are different activation functions that
can be used, where the sigmoid function, hy-
perbolic tangent (tanh) function, and recti-
fied linear unit function, often called ReLU, are the most popular choices. Activation functions
are sometimes also called squashing functions as they limit the output values of the neuron
[27]. The sigmoid function, given in equation (3.2), is an example of a squashing function that
limits the output of the neuron in the range of y = [0,1]. The ReLU function, expressed in equa-
tion (3.3), does not set an upper bound of the output and does not allow negative outputs as
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well.

φ(v) = 1

1+e−v (3.2)

φ(v) = max(0, v) (3.3)

An important property of activation functions is that they introduce non-linearity to their in-
puts allowing the network to learn any arbitrary functional mappings. In addition, activation
functions are differentiable which allow for gradient-based learning methods. Neurons are
used to construct networks of connected neurons also known as neural networks. The neu-
rons are organized in different layers and these layers are then stacked to build larger networks.
There are different types of neural networks for which fully-connected and convolutional neu-
ral network are two common types. However, since throughout this thesis, only fully-connected
neural networks are discussed, convolutional neural networks are discarded.

3.1.1 Feed-Forward Neural Networks

Feed forward neural networks, also called multilayer perceptrons, are the typical deep learn-
ing models. A feed forward network is a function that maps an input x to an output y us-
ing parameters θ, such as y = f (x;θ). The architecture of a feed-forward neural network
usually has three kinds of layers: an input layer, a few hidden layers and an output layer.

Figure 3.2: A fully connected
feed-forward neural network with two
hidden layers. The information flows

from bottom to top.

The information flows through the network from the
input layer to the output layer which computes the fi-
nal output through the hidden layers. Unlike recurrent
neural networks, there are no feedback connections in
which outputs of the model are fed back into itself. A
typical fully connected neural network is shown in Fig-
ure 3.2.
Training algorithms for deep neural networks are usu-
ally iterative, therefore an initial point should be spec-
ified to start the training. This starting point affects the
number of iterations required for the learning process
to be done and the ability of the network to generalize
at the end of the training. To update the parameters
θi of the network, a loss function L(θ) is defined that
represents the error between the desired output y∗ of
the input x and the actual output y obtained by per-
forming a forward path through the network using the
current parameters. The gradient of the loss function
∇θL(θ) is computed and the parameters are readjusted
in the opposite direction of the gradient by propagat-
ing backward in the network. This algorithm is refer-
eed to as backpropagation algorithm that applies re-
cursively the chain rule to compute the gradients, starting from the output layer all the way
back to the input layer. In the recent years, stochastic gradient descent has been a popular
choice for training the weights of a neural network. A few improved variants of stochastic gra-
dient descent has also been proposed, like ADAM [28]. The advantage of using ADAM method
over standard stochastic gradient descent is that it can vary the learning rates based on the dis-
tribution of the training data. This reduces the need for careful choice of a learning rate which
in turn allows the algorithm to converge faster.
The deployment of neural networks as a function approximator in a value-function based re-
inforcement learning problem can be done in two ways as shown in Figure 3.3; Firstly, it is
possible to pass the current state and the intended action to the network and then the network
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evaluates the quality of taking this certain action from that state in the form of an action value
function. The second way is to pass only the state as the input to the network and then evaluate
the quality of taking any of the all feasible actions from this state. In this case, the output of the
network is composed of as many neurons as the number of actions. Based on the estimated
action value-functions, the algorithm selects one of the actions based on the deployed policy,
i.e, in case of an ε-greedy policy, the algorithm is going to select the action with highest value
function with a probability of (1−ε)%. Here it is worth mentioning that the second way is only
possible in case there is a discrete number of actions since the Q-value is estimated for every
action.

(a) The action and state are used as inputs to the
network and the quality of taking this action from

that state is determined in form of a Q-value.

(b) The state represents the input of the network
and the Q-values are estimated for all feasible

actions from this state.

Figure 3.3: A graphical representation of neural networks as function approximators in reinforcement
learning context [29].

As a matter of fact, neural networks can also serve as a function approximator for a parametric
policy in case of a policy search based reinforcement learning as will be discussed later in this
chapter where the input of the network is the current state of the robot and the output is the
mapped action.
In the next section, it is shown how to use neural networks as function approximators for Q-
values in reinforcement learning context.

3.2 Deep Q-Networks

Q-Learning, discussed in section 2.3.1.2, has been a widely used algorithm for model-free re-
inforcement learning. However, it was shown that utilizing neural networks as function ap-
proximators, to approximate the optimal action value function Q(s, a;θQ ) ≈ Q∗(s, a), directly
to Q-learning algorithms without further modifications leads to an unstable behavior and the
convergence is no longer guaranteed [30] and thus, most applications of Q-learning were lim-
ited to tasks with small state spaces. The main cause of this issue is that when using neural net-
works for reinforcement learning, it is assumed that the samples are independently distributed.
However, this is not the case when the samples are generated sequentially since they are tem-
porally correlated which results in high variance in the estimation. To tackle this problem an
experience replay is introduced to break the temporal correlation between the consecutive tran-
sitions where the agent’s experience at each time step et = 〈st , at ,rt , st+1〉 is stored in a replay
buffer D = {e1,e2, ...,eN } with a finite size N . At each time step, a fixed number of samples, a
mini-batch, is extracted randomly from the replay buffer and used to train the network. When
the replay buffer is full, the oldest samples were discarded meaning that the replay buffer D
does not have to start with e1 since it is shifted every time a new sample is added after getting
full. This way, gradient descent methods from the supervised learning literature can be safely
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used to minimize the TD-error squared. The learning of the value-function in deep reinforce-
ment learning is based on the adjustment of the neural network weights by minimizing the loss
function, which corresponds to the mean squared error between the TD target and the current
value function

Li

(
θ

Q
i

)
= Es∼ρπ(.),a∼π(.)


Q

(
st , at ;θQ

i

)
− yi︸ ︷︷ ︸

TD error


2 (3.4)

where yi = r (st , at )+γmax
at+1

Q
(
st+1, at+1;θQ

i

)
is the target at iteration i , π(a|s) is the behaviour

policy and ρπ(.) is the distribution of states under policy π(a|s). To minimize the loss function,
the gradient of the loss function is computed with respect to the weights and is given by

∇
θ

Q
i

L
(
θ

Q
i

)
= Es∼ρπ(.),a∼π(.)

[(
Q

(
s, a;θQ

i

)
− r (st , at )−γmax

at+1
Q

(
st+1, at+1;θQ))∇

θ
Q
i

Q
(
st , at ;θQ

i

)]
(3.5)

The parameters θ are updated using the stochastic gradient descent of the loss function such
that

θi+1 = θi −α∇θQ
i

L
(
θ

Q
i

)
(3.6)

As a matter of fact, DQN is is an off-policy model-free algorithm where the agent learns the Q-
value function, while following a different behavior policy that provides sufficient exploration
of the domain space. In practice, the behaviour policy is generally selected by an ε-greedy
strategy. In [5], it is shown that implementing equation (3.4) directly results in divergence in
many cases. The reason is that the updated Q(s, a|θQ ) is also used with the same weights in
calculating the TD target yt which makes the optimization appears to be chasing its own tail
resulting in instability. One possible solution is to introduce a second network called target
neural network that is proposed in [31] to calculate target Q-values Q ′(s, a|θQ ′

) where the
target network parameters θ′ are only updated with the Q-network parameters θ every certain
number of steps. The target-network and the Q-network share the same network architecture,
but only the weights of the Q-network are learned and updated. A graphical representation of
the DQN approach is shown in Figure 3.4

arg max

Figure 3.4: Architecture of DQN where the Q-Network outputs an estimate of the action-value function
for each action. Subsequently, the policy π chooses the action with the highest value.

The complete algorithm of deep Q-Network (DQN) is given below:
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Algorithm 3 Deep Q-Network

Initialize action value function Q(s, a;θQ ) with random weights.
Initialize a replay buffer D with size N .
Initialize target action value function Q ′(s, a;θQ ′

) with θQ ′ = θQ .
for all episode do

Initialize s1

repeat
for each step t in an episode do

Choose an action at ∈A using ε-greedy strategy.
Execute action at , observe reward rt+1 and new state st+1.
Store transition 〈st , at ,rt , st+1〉 in replay buffer D.
Sample random mini-batch of transitions 〈si , ai ,ri , si+1〉 from D.
if si+1 is terminal then

yi = ri

else
yi = ri +γmax

at+1
Q ′(st+1, at+1;θQ ′

)

end if
Train the Q-network on (yi −Q(si , ai ;θQ ))2 using (3.5).

end for
until terminated

end for

The one major drawback of the above algorithm is the need to calculate the maximum over
actions and this prohibits the use of of the above algorithm for tasks with continuous actions
spaces. To deal with continuous action spaces, an actor critic algorithm was developed which
uses the Q-function as the critic and updates the policy using the Deterministic Policy Gradient
discussed in the following sections.

3.3 Actor-Critic Algorithms

It is possible to combine value functions with an explicit representation of the policy, resulting
in actor-critic methods. Actor-critic methods are TD methods which store the policy explicitly.
The policy is known as the actor since it predicts the action in a given state. The value function
acts as the critic since it evaluates the policy based on the temporal difference error. The policy
is updated based on this critic. The actor critic method is mostly on-policy, but off-policy actor
critic have been introduced in the literature [32]. Actor critic algorithms can either store the
actor and critic in a tabular form or can use function approximators, which is the case with
most robotic applications. When using function approximators, the policy is updated similar
to policy search methods, except that the critic decides the direction of gradient ascent instead
of the expected return. The stochastic policy gradient theorem [33] defines the gradient of
the expected return, ∇θπ J (πθ), using the likelihood-ratio trick explained beforehand in section
2.3.2.1, as

∇θπ J (πθ) =
∫
S
ρπ(s)

∫
A
∇θππθ

(
a|s;θπ

)
Qπ(s, a;θQ )dads

=
∫
S
ρπ(s)

∫
A
πθ

(
a|s;θπ

)∇θπ logπθ
(
a|s;θπ

)
Qπ(s, a;θQ )dads

= Es∼ρπ,a∼πθ
[∇θlogπθ

(
a|s;θπ

)
Qπ(s, a;θQ )

] (3.7)

where ρπ(s) is the state distribution under policy π, θπ is the parameter vector for the policy
π and θQ is the parameter vector for Q-function. The parameters of the action value function,
Q(s, a;θQ ), are updated using temporal difference learning. The types of algorithms that use
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the definition of gradient given in (3.7) are known as stochastic actor-critic algorithms.
Equation (3.7) shows that the gradient is an expectation of both states and actions. Therefore, a
large number of samples from both action and state space is required, in principle, in order to
evaluate a good estimate of the gradient. However, by utilizing a deterministic policy instead,
the mapping from state space to action space becomes fixed and accordingly there is no need
to integrate over the whole action space and the thus the objective function can be rewritten as

J (πθ) =
∫
S
ρπ(s)Q(s,π(s;θπ))ds (3.8)

where π(s;θπ) = a represents the deterministic policy. In [34], a deterministic policy gradient
algorithm that defines the gradient of the expected return subjected to deterministic policy
is introduced. This is achieved by applying the chain rule to the gradient of the action-value
function in 3.8 which results in its decomposition into its gradient with respect to actions, and
the gradient of the policy with respect to the policy parameters

∇θπ J (πθ) =
∫
S
ρπ(s)∇θππ

(
s;θπ

)∇aQ
(
s, a;θQ)

ds

= Es∼ρπ
[∇θππ(

s;θπ
)∇aQ

(
s, a;θQ) |a=π(s;θπ)

] (3.9)

In this way, the critic network uses Q-learning in updating its parameters in the direction of the
gradient of the loss function with respect to the critic network’s parameters

δt = rt +γQ(st+1,π(st+1;θπ);θQ ′
)−Q(st , at ;θQ )

θ
Q
t+1 = θQ

t +αθQδt∇θQ Q(st , at ;θQ )
(3.10)

where δt is the temporal difference error and αθQ is the learning rate for the critic network. On
the other hand, the actor network updates its parameters in the direction of the gradient of the
Q-value with respect to the policy parameters

θπt+1 = θπt +αθπ∇θππ(st |θπ)∇aQ(st , at |θQ )|a=π(s) (3.11)

where αθπ is the learning rate for the actor network.
The deterministic policy gradients can be computed more efficiently than the stochastic case
and these algorithms show significantly better performance than their stochastic counterpart
[34] since they require fewer data samples to converge. A variant of the off-policy algorithm
which uses neural networks as function approximators for the actor and critic, known as Deep
Deterministic Policy Gradient (DDPG), the framework of this study, is discussed in the next
section.

3.4 Deep Deterministic Policy Gradient

Deep deterministic policy gradient is an actor-critic algorithm that provides an improvement
to DQN discussed before by making it more tractable to continuous actions where both the ac-
tor and critic functions can be approximated by two separate neural networks with parameter
vectors θπ and θQ respectively. As the name suggests, the algorithm updates the parameters of
the actor network using deterministic policy gradient theorem [34]. Each training step modi-
fies the policy in such a way that its outputs are pushed in the direction of the positive gradient
of the action-value function. Especially for continuous actions, this strategy is very effective,
as it directly pushes the generated actions towards the assumed best action with respect to the
action-value estimations.

∇θπ J (πθ) = Es∼ρπ
[∇θππ(

s|θπ)∇aQ
(
s, a|θQ) |a=π(s|θπ)

]
(3.12)

Like DQN, it was observed that directly updating the parameters of the actor and critic net-
works using temporal difference as in equation (3.5), leads to divergence of the learning al-
gorithm. Thus, same concepts of target networks with parameter vectors θπ

′
and θQ ′

for both
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the actor and the critic respectively and experience replay are used in DDPG algorithms as well.
However, in contrast to DQN, the target networks are updated after each gradient step to slowly
replicate the changes made to the trained networks.

θQ ′ = τθQ + (1−τ)θQ ′

θπ
′ = τθπ+ (1−τ)θπ

′ (3.13)

This improves the stability of the learning algorithm [6]. The parameter τ determines how
quickly θQ ′

and θπ
′

track θQ and θπ. Values of τ close to one result in fast yet unstable learn-
ing, whereas small values of τ result in slow yet stable learning. To encourage exploration,
a stochastic policy is still used as behavioural policy to generate the training samples, which
yields an off-policy training algorithm.
The complete DDPG algorithm is shown below

Algorithm 4 Deep Deterministic Policy Gradient

Initialize a replay buffer D with size N .
Initialize critic network Q(s, a;θQ ) and actor network π(s, a;θπ) with random weights θQ and
θπ respectively.
Initialize target networks Q ′(s, a;θQ ′

) and π′(s, a;θπ
′
) with θQ ′ = θQ , θπ

′ = θπ
for all episode do

Initialize s1

Initialize random process N
repeat

for each step t in an episode do
Select an action at ∈A through at =π(st ;θπ)+N .
Execute action at , observe reward rt+1 and new state st+1.
Store transition 〈st , at ,rt , st+1〉 in replay buffer D.
Sample random mini-batch of transitions 〈si , ai ,ri , si+1〉 from D.
Update the critic network by performing a gradient descent on (yi −Q(si , ai |θQ ))2.
Update actor network using (3.12).
Update the target networks using

θQ ′ = τθQ + (1−τ)θQ ′

θπ
′ = τθπ+ (1−τ)θπ

′

end for
until terminated

end for

Here it should be pointed out that the noise used in the previous algorithm is action space noise
since the noise is added directly to the output of the actor network.

Figure 3.5: Architecture of DDPG where the policy π is trained by backpropagating the q-gradient with
respect to action a
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3.5 Summary

In this chapter, it was discussed how to apply deep learning to reinforcement learning problems
while guaranteeing training stability. This is done by introducing experience replay and target
network concepts. Additionally, the deep deterministic policy gradient algorithm within the
off-policy actor-critic framework is discussed upon which the proposed approach in this thesis
is built.
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4 Grid Mapping with Rao-Blackwellized Particle Filters

In this chapter, a grid-based SLAM with Rao-Blackwellized particle filters introduced in [35] is
discussed in order to provide an accurate estimate of the robot’s pose and a partial map of the
environment that can be utilized later in the reward shaping of the reinforcement learning in
an attempt to speed-up the learning rate.

4.1 A Brief Introduction to SLAM Problem

Building maps is one of the fundamental tasks of mobile robots. In literature, the mobile robot
mapping problem is often referred to as the simultaneous localization and mapping (SLAM)
problem [36]. SLAM depicts the process of a robot creating a map of an unknown environment
while simultaneously estimating its own position within the self-created map. The main chal-
lenge of the SLAM problem is the cyclic dependency between both tasks, namely, localization
and mapping, i.e., for localization, a consistent map of the environment is required and for
acquiring the map, a robot needs a good estimate of its location. SLAM is considered to be
one of the most important functionalities a mobile robot must posses in order to become
truly autonomous [37]. In order to introduce the basic concepts and notations, the classical
probabilistic framework will be used.
The pose of the robot which is to be estimated at a certain time instance is represented by the
state vector xt where the dimension of xt is problem dependent. In case of a planar mobile
robot, the robot under study, xt ∈R3 since it consists of the 2D coordinates and the heading of
the robot xt = (x, y,θ)T . The second variable to be estimated is the map of the environment
m that can take different forms depending on the chosen map representation which can be
feature-based, grid-based, volumetric or topological. It is often assumed that the map is static
and, therefore, does not evolve with time. Additionally, the robot is equipped with multiple
information sources which provide the required perception inputs. The information that
is provided to the robot can be classified into two classes, namely idiothetic and allothetic
[38]. Idiothetic information is related to internal cues and is regarded as the control input ut .
This internal information can be retrieved from velocity commands, wheel encoders, inertial
measurement unit (IMU), etc. On the other hand, the allothetic information is related to the
external cues which can be represented as a landmark in the environment that the robot can
observe and deduce its pose relative to it. These measurements are denoted by vector zt .

The robot then seeks to calculate the conditional probability given in equation (4.1) that esti-
mates the trajectory of the robot x1:t and the map m based on both idiothetic and allothetic
information given by u1:t−1 and z1:t respectively.

p(x1:t ,m|z1:t ,u1:t−1) (4.1)

There are different methods to solve the conditional probability which are, in general, based on
Bayes filters that is considered the classical and popular technique used for SLAM.

4.2 Rao-Blackwellized particle filter

The main principle of Rao-Blackwellized particle filter (RBPF) is to estimate the joint posterior
p (x1:t ,m|z1:t ,u1:t−1) about the trajectory of the robot, that is the sequence of its poses, x1:t =
x1, ..., xt and the map m given the odometry measurements u1:t−1 = u1, ...,ut−1 and a set of
observations z1:t = z1, ..., zt obtained by the mobile robot. Thus, it incrementally processes
the odometry readings and sensor observations as they are available. The key idea of a Rao-
Blackwellized particle filter for SLAM is to separate the estimate of the trajectory x1:t of the
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(a) The robot initializes its pose and landmarks
along with the corresponding uncertainties

(b) The robot executes a motion resulting in an
increase in its uncertainty

(c) The robot re-observes the landmark
(d) The robot corrects its pose along with the belief

of the landmark

Figure 4.1: A graphical representation of the SLAM process using the classical filtering approach.

robot from the map m of the environment. This is done by the following factorization:

p(x1:t ,m|z1:t ,u1:t−1) = p(m|x1:t , z1:t )p(x1:t |z1:t ,ut−1), (4.2)

The advantage of this factorization is the fact that the estimation of the joint posterior can
be divided into two separate steps. It is possible to estimate firstly the trajectory of the robot
using a particle filter where every particle represents a potential trajectory of the robot as will
be shown later in the next subsection. Then, it uses this trajectory in order to estimate the
posterior of the map p(m|x1:t , z1:t ) using ”mapping with known poses” [39] since z1:t and x1:t

are known from the previous step as discussed in section 4.2.2.

4.2.1 Particle Filter Estimator

The purpose of particle filters is to estimate the posterior of the robot given the control actions
and measurements. Particle filters are one of the tractable implementations of the Bayes filter
for continuous space. Thus, it is worth giving a very brief introduction to Bayes filters firstly. By
applying Bayes rule to the posterior of the robot, p(x1:t |z1:t ,u1:t−1), the conditional probability
can be broken down into the following product

p(x1:t |z1:t ,u1:t ) = ηp(x1:t |z1:t−1,u1:t )p(zt |x1:t , z1:t−1,u1:t ) (4.3)
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where η= 1/p(zt |z1:t−1,u1:t ) is a normalization factor.
By applying Markov assumption and the law of total probability, equation (4.3) can be formu-
lated in a recursive form

p (x1:t | z1:t ,u1:t ) = ηp (zt | x1:t )︸ ︷︷ ︸
correction

∫
x1:t−1

p (x1:t | x1:t−1,ut )︸ ︷︷ ︸
prediction

p (x1:t−1 | z1:t−1,u1:t )︸ ︷︷ ︸
recursive term

dx1:t−1 (4.4)

Equation (4.4) is considered to be the general expression of the recursive Bayes filter where
the prediction estimate encodes the motion and propagate the probability density function
through a motion model. In addition, the correction step takes into account the allothetic in-
formation and correct the prediction estimate based on the measurement model. A graphical
representation of the SLAM process using the classical filtering approach is shown in Figure
4.1.
The complete Bayes filter algorithm is shown below

Algorithm 5 Bayes filter

for all xt do
bel (xt ) = ∫

p(xt |ut , xt−1)bel (xt−1)dx
bel (xt ) = ηp(zt |xt )bel (xt )

end for

where bel (xt ) is the belief which reflects the robot’s internal knowledge about its state and is
given by the posterior described in equation (4.4) and bel (xt ) represents the belief before the
correction step.
Particle filters are a type of non-parametric filters meaning that they do not rely on a fixed
function for the posterior, such as a Gaussian function used by Extended Kalman Filter (EKF)
parametric filter, for example. Instead, particle filters approximate the belief of the robot’s base
bel (xt ) by a set of finite particles Xt .

Xt = x(1)
t , x(2)

t , ..., x(N )
t (4.5)

where each particle x(n)
t with (1 ≤ n ≤ N ) represents a hypothesis of what the true state may be

at time t and N denotes the number of particles in the particle set Xt . Accordingly, the likeli-
hood of a state hypothesis x(n)

t to be included in the particle set Xt is proportional to its belief
bel (x(n)

t ); x(n)
t ∼ p(xt |z1:t ,u1:t ). This means that the denser a sub-region in the state-space is

populated with samples, the more likely the true state lies into this region [36]. Here it should
also be pointed out that an individual map is associated with each particle.
Since a particle filter is an implementation of the Bayes filter, it constructs its current belief
bel (xt ) recursively from the previous belief bel (xt−1) as discussed before. Moreover, since the
belief of the robot is represented by a particle set Xt , this means that the next generation of
particles Xt is obtained recursively from the previous generation Xt−1 by sampling from a pro-
posal distribution, i.e. the probabilistic odometry motion model p(x(n)

t |x(n)
t−1,ut−1). Then, by

incorporating the probabilistic observation model p(zt |x(n)
t ), an individual importance weight

w (n)
t is assigned to each particle. After that, particles are drawn with a replacement propor-

tional to their assigned importance weight. This step is called a resampling step. As a matter
of fact, after resampling, all particles have the same weight. By incorporating the importance
weights into the resampling process, the distribution of the particles changes; whereas before
the resampling step, they were distributed according to bel (xt ), after resampling, they are dis-
tributed according to the posterior bel (xt ) = ηp(zt |x(n)

t )bel (xt ) where the particles with lower
importance weights are depleted. The complete particle filter algorithm is given below
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Algorithm 6 Particle filter [36]

Xt =Xt =φ
for n = 1 to N do

sample x(n)
t ∼ p(xt |x(n)

t−1,ut )

w (n)
t = p(zt |x(n)

t )

Xt =Xt +〈x(n)
t , w (n)

t 〉
end for
for n = 1 to N do

draw n with probability ∝ w (n)
t

add x(n)
t to Xt

end for

where X t is a temporary particle set before the resampling step. One drawback of this algo-
rithm is that whenever a new observation is available, it is required to evaluate the weights of
the trajectories again from scratch which is not computationally efficient. In [40], a recursive
formulation to compute the importance weights is represented under the restriction that the
proposal distribution should fulfill the following assumption

π(x1:t |z1:t ,u1:t−1) =π(xt |x1:t−1, z1:t ,u1:t−1)π(x1:t−1|z1:t−1,u1:t−2) (4.6)

Based on that

w (n)
t =

p
(
x(n)

1:t

∣∣∣ z1:t ,u1:t−1

)
π

(
x(n)

1:t

∣∣∣ z1:t ,u1:t−1

)
=
ηp

(
zt

∣∣∣ x(n)
1:t , z1:t−1

)
p

(
x(n)

t

∣∣∣ x(n)
t−1,ut−1

)
π(xt |x1:t−1, z1:t ,u1:t−1)

p
(
x(n)

1:t−1

∣∣∣ z1:t−1,u1:t−2

)
π(x1:t−1|z1:t−1,u1:t−2)︸ ︷︷ ︸

w (n)
t−1

∝
p

(
zt

∣∣∣ x(n)
t ,mt−1

)
p

(
x(n)

t

∣∣∣ x(n)
t−1,ut−1

)
π(xt |x1:t−1, z1:t ,u1:t−1)

w (n)
t−1

(4.7)

Thus, using this recursive structure results in a computationally efficient algorithm. Here it is
worth mentioning that the general expression of the sample weight is the one given in equation

(4.7) where it is the ratio of the target distribution p
(
x(n)

1:t

∣∣∣ z1:t ,u1:t−1

)
and the proposal distri-

bution π
(
x(n)

1:t

∣∣∣ z1:t ,u1:t−1

)
as defined in [41]. However, if the odometry model is used as the

proposal distribution, the particle weight will be given as the observation model as defined in
Algorithm 6 which can be easily derived from equation (4.7).
Although the particle filter algorithm described in Algorithm 6 achieved good results as shown
in [42; 43], in [41], it is shown that choosing the odometry motion model p(xt |xt−1,ut−1) as
the proposal distribution could lead to sub-optimal solutions when the observation model is
significantly more precise than the odometry motion model which is the case if the robot is
equipped with a laser range finder. The reason is that the meaningful area of the observation
likelihood is substantially smaller than that of the motion model. Thus, by using the odome-
try motion model as the proposal model, the importance weight of the individual particle will
differ significantly from one another since only a fraction of the samples cover the meaningful
area, the area in which an overlap occurs between the probability likelihood of the odometry
motion model and observation model. As a result, a comparably high number of particles is
required to sufficiently cover the meaningful area of the distribution in this case. According to
[44], to overcome this problem, the most recent observation zt is incorporated when generat-
ing the next generation of particles. Based on that, the optimal proposal distribution can be
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given as

p
(
x(n)

t

∣∣∣ x(n)
t−1,ut−1, zt ,m(n)

t−1

)
=

p
(
x(n)

t

∣∣∣ x(n)
t−1,ut−1

)
p

(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
∫

xt
p

(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
p

(
x(n)

t

∣∣∣ x(n)
t−1,ut−1

)
dxt

(4.8)

In [45], it is claimed that the target distribution, in most of the cases, has only a single peak.
Thus, it is possible to sample poses in the surrounding of this peak while ignoring the less
meaningful areas of distributions which saves a significant amount of computational resources
since it requires less number of samples. This leads us to the computation of an improved
proposal distribution introduced in [41] that can be approximated by a Gaussian function. The
mathematical derivation of this Gaussian distribution is discussed in Appendix B. By following
this proposal distribution, the number of particles reduced dramatically as claimed in [41].

4.2.1.1 Selective Resampling

Another aspect that has a major influence on the performance of the particle filter is the resam-
pling step. During the resampling step, particles with low importance weights w (n) are typically
replaced by particles with high weights. Although, the resampling step is important due to the
fact that only a finite number of samples are used to approximate the target distribution, the
resampling step can delete good samples from the sample set resulting in particle depletion.
Additionally, although a recursive relation is formulated to calculate the importance weights
of the particles after every resampling step, it is still computationally expensive to calculate
the importance weights every time-step. For these reasons, resampling makes sense if particle
weights differ significantly. In [46], an empirical criterion to specify the necessity of applying
the resampling step is introduced based on how well the current particle set represents the true
posterior. This is done by introducing the so-called effective number of particles ne f f which is
given by

ne f f =
1∑N

n=1

(
w̃ (n)

)2 (4.9)

where w̃ (n) is the normalized importance weight of particle n. Here, to avoid confusion, it
should be pointed out that the term ”normalized” in this context is different from the one
used in reinforcement learning context. Here, the normalized importance weight is given by

w̃ (n) = w (n)∑N
n=1 w (n) . According to this, the resampling step takes place only when the variance of

the importance weights is high which results in a bad approximation of the target distribution.
The high variance can be triggered if the effective number of particles ne f f drops below a pre-
defined threshold which is, according to [44], given by N /2 where N is the total number of
particles in the particle set X . By following this strategy, it was proved that it reduces the risk of
particle depletion since the resampling step is carried out only when needed [45].

4.2.2 Occupancy Grid Mapping

As stated previously, the advantage of using Rao-Blackwellized particle filter is to separate the
estimate of the robot’s trajectory x1:t from the estimated of the environment’s map m. As shown
in the previous section, the trajectory of the robot is estimated using a particle filter. Thus, in
this section, the trajectory is used to estimate the posterior of the map using ”mapping with
known poses”. This will be done using occupancy grid mapping as a way to model the environ-
ment. Occupancy grid maps are often favored over feature-based maps as they do not require
an explicit definition of the landmarks and could offer a more informative representation of the
environment [45].
Occupancy grid maps address the problem of generating consistent maps from noisy and un-
certain measurement data, under the assumption that the robot pose is known [36]. In contrast
to landmark-based mapping where a gaussian distribution to estimate the location of the land-
mark is required, grid-mapping has no parametric model. Instead, the occupancy grid map
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divides the worksapce into evenly spaced cells where a probability distribution is assigned to
each cell in the grid indicating whether it is occupied or free. As a matter of fact, the resolution
of the grid cells should be compatible with the smallest feature of the environment that should
be considered as an obstacle. The posterior over maps given the trajectory of the robot x1:t and
all the observations z1:t up to time t is given as p(m|x1:t , z1:t ) where the controls u1:t play no
role since the path of the robot is already known. In occupancy grid maps, it is assumed that
the probability of every grid cell, whether it is occupied or not, is independent of each other. By
making advantage of this assumption, the certainty of the estimation of the entire map can be
broken down into the problem of estimating the posterior of every grid cell mi in the map and
then the posterior over the entire map can be approximately estimated by:

p(m|z1:t , x1:t ) =
M∏

i=0
p(mi |z1:t , x1:t ) (4.10)

where M represents the number of grid cells in the map. The probability of every grid cell
p(mi |z1:t , x1:t ) can be easily derived from Bayes rule where the full derivation can be found in
[36]. Equation (4.10) plays an important role in this thesis since it is used to reshape the reward
function as discussed in chapter 5.

4.3 Summary

This chapter gave a brief introduction to the grid mapping with Rao-Blackwellized particle fil-
ter method that will be used for shaping the reward function in the motion planner design as
described in the next chapter. The advantage of using this approach is that it depends on the
lidar data points and the odometry readings which are already part of the reinforcement learn-
ing algorithm, thus no additional hardware is required. Furthermore, the number of particles
required to build the map and estimate robot’s pose is reduced significantly which makes this
approach efficient from the computational complexity point of view.
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5 Motion Planner Design

In this chapter, the theoretical background discussed beforehand is applied to the problem of
mobile robot navigation in an unknown environment while avoiding obstacle collisions. As
discussed previously, the purpose of this study is twofold. Firstly, it is aimed to develop a deep
deterministic policy gradient (DDPG) based approach within an off-policy actor-critic frame-
work to navigate a non-holonomic mobile robot continuously to randomly distributed targets.
This is done by taking into account only sparse low-dimensional laser ranger finder readings.
In that sense, firstly, the structure of both the actor and critic neural networks are discussed in
detail in section 5.1. The second purpose is to integrate the ”partial” knowledge of the map,
obtained by the SLAM algorithm to assess how much it speeds up the convergence rate and
improves the optimality of the trajectories. To achieve the second purpose, the way in which
the online-acquired map during training is incorporated in the reward function based on a
grid-based Rao-Blackwellized particle filter to improve the learning rate is introduced in sec-
tion 5.2. Finally, since the adopted algorithm is an off-policy learning approach, it is possible
to use a behavioural policy which is different from the learned one. For that purpose, different
stochastic exploration policy methods are discussed in section 5.3.

5.1 Actor-Critic Networks’ Structure

To achieve the first purpose, two neural networks are constructed to represent the the actor
and the critic respectively. The actor network represents the policy and thus it is responsible
for mapping the states into actions at = π(st ). The main framework that represents the pro-
cessed gathered information is shown in Figure 5.1. The states (S ∈ R14) are selected to be the
observation from the laser range finder that can be represented as 10-dimensional laser beams
with 180° field of view (FOV) xt , the relative distance between the target and the agent repre-
sented in polar coordinates pt and finally the last action executed by the agent vt−1 whereas,
the output actions are the continuous angular and linear velocities:

vt =π(st ) =π(xt , pt , vt−1) (5.1)

Figure 5.1: The agent is trained based on 10-dimensional sparse laser sensor xt , last executed action
vt−1 and the relative distance between the agent and the target in polar coordinates pt−1. The output

actions are continuous linear and angular velocities vt .

The actor’s neural network is composed of three fully-connected hidden layers with 512 nodes
each which are activated by a rectified linear unit (ReLU) activation function. The output of the
actor’s network is a 2-dimensional vector representing the linear and angular velocities of the
robot respectively (A ∈R2). For this purpose, a sigmoid activation function is used to constrain
the linear motion of the robot in the range between [0,1]. There are two reasons for restrict-
ing the backward motion of the robot. Firstly, the chattering behaviour of the robot observed at
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the preliminary experiments due to the stochasticity of the behavioral policy. In addition, since
the field of view of the laser sensor is selected to be 180°, it does not make much sense to allow
backward motion of the robot since that could result in a collision with the obstacles. Further-
more, to constrain the angular velocity of the robot within [-1,1], a hyperbolic tangent function
”tanh” is employed. Moreover, the output of the actor network is further multiplied by hyper-
parameters to limit the maximum linear velocity of the robot to 0.25m/s and the maximum
angular velocity to 1rad/s. The actor outputs, thus the actions, are then sent to the low-level
controller to control the motion of the robot’s actuators. The layout of the actor neural network
is depicted in Figure 5.2a.
On the other hand, the critic network estimates the Q-value of a state-action pair and thus it
takes both the state and the action as inputs. Similarly to the architecture described by [6], the
action are not included until the second layer in the critic network to force the network to learn
representations from states alone first. The output of the critic is an estimation of the reward.
Based on the output of the critic network, the weights of both the actor and critic are updated
accordingly. Like the actor network, the hidden layers of the critic network are activated by a
ReLU function. The Q-value is finally activated through a linear activation function:

y = w x +b, (5.2)

where x is the input of the last layer, y is the predicted Q-value, w and b are the trained weights
and bias of the last layer. Figure 5.2b shows the architecture of the critic network.

(a) Layout of the actor network for DDPG.

st
a
te

 |
 1

4

(b) Layout of the critic network for DDPG.

Figure 5.2: A graphical representation of the actor-critic neural networks in the context of mobile robot
navigation problem.

5.1.1 Batch Normalization

The training of deep network is troublesome due to the fact that the inputs of a layer are af-
fected by the parameters of all preceding layers so that small variations to the parameters of
the network are amplified as the network becomes deeper. This results in the change in the dis-
tribution of the inputs to the inner nodes within the network. This change in the distribution
of inputs to layers in the network is referred to as ”internal covariate shift” [47]. As mentioned
previously in section 3.1.1, in backpropagation, the model is updated layer-by-layer backward
from the output to the input assuming that the weights of the layer prior to the current layer
are fixed [48]. However, this is not the case since the weights of the entire network are up-
dated simultaneously resulting in a change of the distribution after the weights of the previous
layers are updated. For this purpose, batch normalization is proposed [47]. The basic idea
behind batch normalization is to normalize the scalar features ”neurons” independently over
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each mini-batch B = {x1,...,m}, by making it have a mean of zero and a unit variance.

x̂k = xk −µB
σB

(5.3)

where the mean and variance are computed over the mini-batch B. In that sense, normaliz-
ing the activations of the prior layers makes it possible to assume that the distribution of the
inputs during the weight updates will not change, at least not dramatically as the case before
normalization takes place. However, normalizing every input of a layer may change what the
layer represents. Accordingly, the authors of [47] recommend to scale and shift the normalized
value,

yk = γx̂i +β (5.4)

where the parameters γ and β are learned along with the model weights and biases. An advan-
tage of this scale and shift is that it allows the network to recover its value before normalization
if it decides that this is the optimal solution by setting γ=σB and β=µB.

Algorithm 7 Batch Normalization

Inputs: Values of x over a mini-batch: B = {
x1,...,m

}
;

µB ← 1
m

∑m
k=1 xk mini-batch mean

σ2
B ← 1

m

∑m
k=1

(
xk −µB

)2 mini-batch variance

x̂k ← xk−µB√
σ2
B+ε

normalize

yk ← γx̂k +β scale and shift

In algorithm 7, ε is a small constant added to avoid zero division and thus guarantees numerical
stability.

5.2 Reward Function Definition

The reward function is the most important aspect in a reinforcement learning problem since
the actions are selected in such a way that the cumulative reward is maximized. The reward
signal is the mean by which the goal of the learning is specified for the agent. It is a de-
signed task-specific function that, given the action of the agent and the state of the system,
returns a single real number indicating how good or bad that action was. The reward signal
corresponds to pleasure and pain in biological systems. Designing a good reward signal for
a robotic reinforcement learning task can be challenging in different ways. This area of rein-
forcement learning, known as reward designing or shaping, is considered an art rather than a
well-established science [18]. Not to mention that the reward function purpose is not to tell
the learning algorithm how to achieve a certain goal but rather what to achieve. Accordingly,
the learning algorithm should then use this reward to discover the necessary actions to execute
in order to achieve the ultimate goal without being hard-coded. For the navigation problem,
reward functions can be a simple bonus when the agent reaches a target and, consequently, a
penalty in case it hits an obstacle. This sparse reward is assigned to prioritize actions that make
the agent reach the goal and penalize actions that make the agent colliding. On the other hand,
the reward can be more sophisticated and depend on the distance between the agent and the
target. This is called dense reward. In the autonomous navigation problem, the advantage of
using a dense reward over a sparse reward can be intuitively formulated as follows. In case of
a dense reward, if a sequence of robot’s actions results in a positive reward, the parameters
of the policy network are updated so that the probability of taking that set of actions is more
often in the future. However, in case of a sparse reward, the robot continues taking random
actions until, by chance, it gets some non-zero reward. The disadvantage of this is that since
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the non-zero rewards are seen so rarely as it happens only when the robot reaches the target,
the sequence of actions that resulted in the reward might be very long. More importantly, it is
not clear which of the these actions were really useful in getting the reward. In reinforcement
learning context, this problem is known as credit assignment.

This section first discusses how a reward function is designed for the autonomous navigation
problem for mobile robots. It then presents a novel idea to shape reward functions. The idea
is based on shaping the reward function based on the online-acquired knowledge about the
environment which is provided in a form of an occupancy grid map that the robot builds during
training.

5.2.1 Designing the Reward Function

In this section, two different reward functions are defined to assess the quality of the perfor-
mance of the robot while interacting with its environment.

5.2.1.1 Exponential Euclidean Distance

The goal is to move the robot towards a defined goal position. The agent receives a penalty
proportional to the exponent of the euclidean distance between its current position and the
goal position. The euclidean distance between the robot and the target is simply evaluated by

d = ∥∥px,y
t − g

∥∥
2 =

√(
py

t − g y
)2 + (

px
t − g x

)2 (5.5)

where pt represents the current position of the robot at time t with respect to the inertial frame.
Then, the reward based on the exponential function of the euclidean distance is evaluated as
follows

rexp = 1−eγd (5.6)

where γ represents the decay rate of the exponent. In this perspective, all the states closed to
the goal would receive much higher rewards than the ones far away. In addition, a sparse re-
ward is added if the agent reaches the target position within the interval of a predefined toler-
ance. On the other hand, the agent would receive a high negative reward ”penalty” when it gets
too close to an obstacle. Here it should be pointed out that the episode is terminated in three
different scenarios; i) the agent reaches the goal with some tolerance dmi n , ii) the agent gets
closer to an obstacle with a minimum threshold, iii) the agent exceeds the maximum number
of allowed time-steps T in every episode without either reaching the target or hitting an obsta-
cle. The maximum number of iterations per episode is a hyperparameter that is tuned based
on the average number of actions required by the agent to reach the goal observed during the
preliminary experiments. The reward r (st , at ) is given after executing every navigation action
at and can be, mathematically, formulated as:

r (st , at ) =


rreached, d < dmi n ,

rcrashed, st s ,

1−eγd , otherwise.

(5.7)

where d is the euclidean distance between the agent and the target, γ is a hyper-parameter that
can be tuned and st s represents an undesirable terminal state including getting too close to an
obstacle or exceeding the maximum number of steps allowed in an episode.

5.2.1.2 Difference in Distance in two consecutive time-steps

The second reward function can be given as

rdiff = r (st , at )+λωrωt (5.8)

Robotics and Mechatronics Khaled A. A. Mustafa



36
Towards Continuous Control for Mobile Robot Navigation: A Reinforcement Learning and

SLAM Based Approach

where r (st , at ) is the reward based on the difference in the distance between the agent and the
target in two consecutive time steps dt−1−dt . This means that the reward would be positive in
case the agent is moving towards the target and negative otherwise. To motivate the robot to
move towards the target, this term is multiplied by a hyperparameter ”scaling factor” λg . This
distance-based reward can be formulated as

r (st , at ) =


rreached, d < dmi n ,

rcrashed, st s ,

λg
(∥∥px,y

t−1 − g
∥∥

2 −
∥∥px,y

t − g
∥∥

2

)
, otherwise.

(5.9)

In addition, an orientation-based reward rωt is added to motivate the robot to correct its head-
ing with respect to the target. This term is defined as

rωt = ∥∥atan2
(
py

t − g y ,px
t − g x)−pωt

∥∥
1 (5.10)

5.2.2 Shaping the Reward Function

In this subsection, the reward function is shaped based on the available knowledge about the
environment gained throughout the robot’s experience. For this purpose, a 2D occupancy grid
map of the surrounding built by the SLAM algorithm discussed in chapter 4 is generated while
the robot is exploring the unknown environment, using data extracted from laser range finder
and the robot’s odometry information. Every cell inside the occupancy grid is classified as (oc-
cupied, free, unknown) based on a predefined threshold value that determines the occupation
probability of each cell. Furthermore, the occupation probability of every cell is being updated
while the robot keeps exploring the environment. In that sense, the reward function does not
only depend on how far the agent is from the target but on the distance to the multi-obstacles
inside the workspace as well. The incorporation of the environment’s knowledge should be
weighted by the level of certainty of the map’s posterior p(m|z1:t , x1:t ) = ∏M

i=0 p(mi |z1:t , x1:t ).
Moreover, since every obstacle inside the environment is represented by a number of occupied
grid cells, this part of the reward is normalized by the total number of occupied grid cells in the
field of view (FOV) of the robot. This can be formulated as follows:

r (st , at ) = 1

k

M∏
i=0

p(mi |z1:t , x1:t )
k∑

i=0
e−cmi n ,︸ ︷︷ ︸

map-dependent term

(5.11)

where M is the total number of grid cells in the constructed map, k is the total number of oc-
cupied cells in the field of view of the robot and cmi n is the distance between the robot and the
occupied cell. As a matter of fact, since the reward function evolves with time due to the incor-
poration of the uncertainty, the reward function does not follow the MDP framework anymore.
Here it should be pointed out that the map-dependent term defined in equation (5.11) is added
to both rewards defined in equations (5.6) and (5.8) and a comparison between these four re-
wards is made in chapter 7.

5.3 Exploration Noise

The exploration vs. exploitation dilemma is a long standing issue in reinforcement learning.
Since the agent has no knowledge about its environment initially, it has to explore. Once
the agent finds states of high rewards, it should learn to exploit behaviors that lead towards
these high rewards. However, it still remains important to explore since there may still be
strategies that are more optimal that have not yet been discovered. In practice, most rein-
forcement learning agents rely on action space noise where the noise is introduced in addi-
tive manner to the output of the actor neural network and thus does not affect its training;
π̃(a|s) = πθ(a|s)+N (0,σ2I ). As mentioned previously, this additive noise can be represented
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by either Gaussian noise or the temporarily correlated Ornstein-Uhlenbeck process. Although
these approaches could work properly, one drawback of the action space noise is that the noise
is not conditioned on the current state. In other words, whenever a certain state s occurs, the
actual action that the policy selects will be vastly different. However, at the same time, a deter-
ministic policy cannot be simply used since it always outputs the same action given the same
state. In this way, the agent would not explore at all. For this purpose, parameter space noise
introduced in [49] is discussed in this section.
The central idea of parameter space noise is to move the noise process from the actions to the
parameters of the policy πθ where θ is the parameter vector. Thus, instead of adding noise
to the actions, parameter space noise perturbs the parameters θ̃ = θ+N (0,σ2I ). By doing so,
the produced action is now fully conditioned on the state s through the perturbed behavioural
policy. Figure 5.3 depicts the difference between traditional action space noise and parameter
space noise. Although the idea of the parameter space noise is very simple, the naïve imple-
mentation of it may cause the learning algorithm to diverge. This, in principle, is due to the
following reasons:

(i) Different layers within the neural network may exhibit different sensitivity to the para-
metric perturbations.

(ii) The effect of the perturbation in parameter space noise cannot be intuitively understood
and thus, it is hard to reason about in contrast to the actions space noise. Accordingly,
picking the right scale of the noise σ would be difficult.

To tackle the first problem, layer normalization [50] is applied to each fully-connected layer
to guarantee that the output of all the layers has approximately zero mean and unit variance.
Layer normalization differs from batch normalization discussed in section 5.1.1 in the sense
that the statistics are computed over all the hidden neurons in the same layer and not across
the batches.

µ= 1

H

H∑
i=1

ai , σ=
√√√√ 1

H

H∑
i=1

(ai −µ)2 (5.12)

where H denotes the number of hidden neurons in a layer, ai is the projection of the input x
using the weight wi . Accordingly the output of every neuron of the hidden layer can be given
as

hi = f

[
1

σ
(ai −µi )+b

]
(5.13)

where f [.] denotes the non-linearity (e.g. a ReLU) and b is the learnable bias. An advantage
of layer normalization over batch normalization is that it does not depend on the size of the
current batch. Furthermore, it can be applied to recurrent neural networks, however, this is not
the scope of the presented work. Thus, it can be concluded that, layer normalization is crucial
for parameter space noise since it allows using the same perturbation scale across all layers. In
this way, the first issue is resolved. The main difference between layer normalization and batch
normalization is better visualized in Figure 5.4.
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(a) Action space noise (b) Parameter space noise

Figure 5.3: Comparison between action space noise (left) and parameter space noise (right). Depicted
in red are the parts subjected to noise. Recreated from [49].

Figure 5.4: Difference between batch normalization and layer normalization. In layer normalization,
statistics are computed across the neurons of each layer in contrast to batch normalization where

statistics are computed across the mini-batch.

Another issue of parameter space noise is concerned with determining an appropriate value
for the variance σ2 of the additive Gaussian noise. In contrast to action space noise where the
effect of the perturbation on the executed actions can be easily understood, this problem is
non-trivial in case of parameter space noise. The reason is that, in deep neural networks, there
are hundreds of thousands of parameters, and thus it is quite difficult to intuitively understand
what effect the additive perturbations can cause. This occurs, particularly, when the sensitivity
to the perturbations is going to change as the network is trained since the parameters of the
network are moving away from the random initialization around zero to a quite complicated
and non-linear mapping from states to (sub)optimal actions. In [49], a trick is applied to deal
with this issue by transferring the problem form the parameter space to the action space. This
is done by introducing a function d(., .) that calculates the difference between the predicted
action by a perturbed policy π̃ and a non-perturbed policy π which is represented by a scalar
number. In the context of the navigation problem, this is the difference between the predicted
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velocities by both policies. In this way, it becomes possible to measure the effect of the of the
parameter perturbation and, subsequently, the scale of the variance of the additive noise can
be adjusted. This idea can be mathematically formalized as follows

σk+1 =
{
ασk , d(π(a|s), π̃(a|s)) ≤ δ,
1
ασk , otherwise.

(5.14)

where d(., .) ∈ R defines a distance measure between the perturbed policy π̃ and the non-
perturbed policy π, δ ∈ R>0 is a positive threshold value, and α ∈ R>0 is a positive parameter
that is introduced to adjust the current value σk . In other words, the scale of the parameter
perturbations is increased if the effect of the current scale as measured in the action space is
below a desired threshold and decreased otherwise.
The application of parameter space noise to a DDPG algorithm is not troublesome since the
DDPG defines an explicit policy networkπ. Thus, all what is required is only two forward passes
for each sample through both networks (π, π̃).

d(π, π̃) = 1

A

√√√√ A∑
i=1

Es
[
(π(a|s)i − π̃(a|s)i )2

]
(5.15)

where Es[.] is estimated using a mini-batch of states from the replay buffer, A denotes the num-
ber of continuous actions, and π(a|s)i denotes the i -th action selected by the policy π. The
parameter space noise with adaptive scaling is summarized in algorithm 8.

Algorithm 8 Parameter Space Noise with Adaptive Scaling

Initialize an RL algorithmA and in particular π=πθ,
Initialize an adaptive scale α ∈ R>0, a threshold δ ∈ R>0, and an interval for adaptive scaling
Tadapt ∈R>0

Initialize π̃=πθ̃ for exploration
Initialize π̄=πθ̄ for noise adaption
for all episodes do

Perturb θ̃← θ+N (0,σ2
k I ) and obtain π̃=πθ̃

for each step t in an episode do
Sample an action at using the perturbed policy π̃
Execute action at and observe a new state st+1

Execute a training step ofA
if t mod Tadapt = 0 then

Perturb θ̄← θ+N (0,σ2
k I ) and obtain π̄=πθ̄

Estimate dk ← 1
A

√∑A
i=1Es

[
(π(a|s)i − π̃(a|s)i )2

]
Adapt σk+1 =

{
ασk , d(π(a|s), π̃(a|s)) ≤ δ,
1
αδk , otherwise.

k ← k +1
end if

end for
end for
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6 Experiments

In this chapter, a variety set of experiments that are conducted to validate the effectiveness of
the proposed approach are highlighted. The chapter starts by introducing the experimental
setup settings in section 6.1 in which the simulation platform, computational hardware and
learning parameters are all defined. Afterwards, in section 6.2, the environments on which the
learning algorithms take place are described. In this same section, the different experiments
that are done to answer the research questions are briefly discussed. Finally, the real-hardware
setup is introduced and a proposed difference model learning algorithm that captures the mis-
match between the real system and the simulated model is explained in section 6.3.

6.1 Experimental Setup

The main objective of the proposed RL&SLAM approach is to find a (sub)optimal trajectory
from the current location of the robot to the target with minimum executed actions. The virtual
environment is built on gazebo simulator 1 representing the 3D environment. The experiments
were conducted on an Ubuntu 16.04 machine with an Intel Core i7-8550 CPU and an NVIDIA
Jetson TX2 GPU. There was no speed gains observed when using a GPU. The algorithm is im-
plemented using OpenAI package provided by the Robot Operating System (ROS) middleware.
OpenAI is open source and publicly available 2. The simulated environment contains cuboid
objects representing the obstacles and a target for the agent to reach, rendered as red & white
circle, as shown in Figure 6.1. The simulated platform is a Husarion mobile robot with skid-
steering model. The actor and critic networks are initialized with two neural networks having
three hidden layers with 512 hidden neurons that are activated by ReLU activation function,
as described in section 5.1. For training the model, stochastic policy gradient with ADAM [28]
optimizer is employed to train both the actor and the critic networks. However, for the actor
network, a learning rate of 10−4 is used whereas the critic is updated using a learning rate of
10−3. Furthermore, L2 regularization is included with a coefficient of 10−2 when training the
critic network to avoid overfitting. A discount factor of γ= 0.99 and target update, τ= 0.001 is
used. The initial weights and biases of the hidden neurons are chosen from a uniform distri-
bution [− 1p

f
, 1p

f
] where f is the number of inputs to the layer. The weights and biases for the

output layer are taken from a uniform distribution [−3×10−3,3×10−3] to ensure that the out-
puts at the start of training are close to zero. The exploration noise is modeled as an Ornstein-
Uhlenbeck process with parameters, σ= 0.2 and θ = 0.15. The outputs of the policy are clipped
to lie between the actuator limits after the addition of noise. In all experiments, a standard re-
play buffer that hold ups to 100,000 transitions is used, which means that, in the worst case,
the buffer can store 100 episodes since the maximum number of iterations in every episode is
limited to 103 time-steps. The update of the weights of the networks are executed with a mini-
batch of dimension 64. It is worth mentioning that a small batch size could lead the algorithm
to get stuck into specific portion of the environment (local minima) whereas large batch-size
can make the training period much longer since the network would be trained for more data.
Thus, a good trade-off of 64 is selected so as not to elongate the training period and to ensure
training on larger areas of the environment. The hyperparameters are selected based on the
ones used in the original paper for the DDPG [6]. In this work, the robot is trained in a 4×6m2

area with multiple obstacles. In order to simultaneously map the environment and estimate
the robot pose, the ROS gmapping 3 SLAM package is used. The inputs for mapping included
wheel odometry, laser range finder data and a 2D occupancy grid map representing the envi-

1http://gazebosim.org
2http://wiki.ros.org/openai_ros
3http://wiki.ros.org/gmapping
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Figure 6.1: The virtual training environment simulated in gazebo. A Husarion robot is used as the
platform.

ronment. The grid size of every cell is 1cm×1cm resulting in 400×600 cells. A probability value
is assigned to each cell based on whether it is occupied or free according to the laser sensor
and odometry readings. An occupancy threshold is assigned a value of 0.65 which means if the
probability value of the cell is greater than this value, this cell is occupied and, consequently,
free otherwise. Besides that, to avoid higher computational complexity of the calculations, the
map is only updated after certain change occurs to the probability of the posterior of the map
p(m|z1:t , x1:t ) within a threshold of 0.25. All hyperparameters are conveniently summarized in
Table 6.1. The robot subscribes to laser readings with a scanning range from 0.2m to 2m. The
position of the robot is evaluated through Rao-Blackwellized particle filter, instead of using raw
odometry data, in order to calculate the polar coordinates from the target position that is fed as
an input to the policy network. The agent is free to select any angular and linear velocities from
a continuous space as long as they are feasible by the physical constraints of the robot. These
velocity commands are directly sent to the low-level controller where the algorithm waits until

Table 6.1: Hyperparameters for DDPG experiments.

Hyperparameter Value

Target network update parameter τ τ= 10−3

Batch size 64
Optimizer Adam [28]
Actor learning rate 10−2

Critic learning rate 10−3

Critic L2 regularization 10−2

Replay buffer size 105

Discount factor γ 0.99
Training steps 103

Correlated noise σ σ= 0.2
Correlated noise θ θ = 0.15
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the command gets executed. This feedback is provided by estimating the robot’s velocity from
the odometry encoder’s reading.
After the termination of every episode, the environment is reset and the robot returns back to
its initial configuration.

6.2 Training Environments

To validate the effectiveness of the proposed approach, two different training environments
are introduced on which the learning algorithms are implemented. These two virtual environ-
ments are shown in Figure 6.2.

(a) Training environment ”Env-1” (4m x 6m). (b) Training environment ”Env-2” (4m x 6m).

Figure 6.2: The agent is trained on two different training environments with a variety of cuboid and
cylindrical obstacles. Env-2 is used also for the capability of transferring the learned policy on Env-1.

Although, the training environments are not that much complicated, the challenging part lies
in the fact that the agent has to figure out a (sub)optimal trajectory to every single target within
the workspace. Here it should be pointed out, to answer the research questions, four main
experiments on the virtual simulation environments are conducted.

6.2.1 Experiment 1

This first experiment is done in order to get a better intuition about in what way the proposed
algorithm enhances the standard reinforcement learning by making use of the available knowl-
edge of the environment provided by the occupancy grid mapping SLAM based technique with
Rao-Blackwellized particle filters. By using this knowledge about the map which is built online
by the robot while training, the reward function is shaped in an attempt to improve the con-
vergence rate, escape local optima and reduce the number of collision samples with obstacles.
This experiment will be conducted only on a single target where the main purpose of the ex-
periment is to train the robot to navigate to this pre-defined single target within the worksapce.
In that sense, a comparison is made between a reward function based on the map provided by
the SLAM algorithm and a reward function when no knowledge of the map is available, This
comparison is made with respect to the number of episodes required for the agent to learn an
optimal policy to navigate to this single target as well as the number of collision samples en-
countered by the robot. The results of this experiment are presented and discussed in section
7.1.
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6.2.2 Experiment 2

As explained in section 5.2, there are four different reward functions proposed. Thus, the aim of
the second experiment is to make a comparison between these four reward functions and draw
a conclusion about the most efficient one for the autonomous navigation problem of mobile
robots. The first function is the exponential euclidean distance to the target based reward with
no knowledge about the map. The second one is the difference in the distance to the desired
target in two consecutive time-steps based reward and also with no knowledge about the map.
Finally, the third and fourth experiments are where the map-dependent term obtained by the
SLAM algorithm is added to the aforementioned two reward functions. In this experiment,
to generalize the learning algorithm to any target inside the workspace, the desired target is
randomly sampled from a uniform distribution at the beginning of every episode. In this way,
an answer to the second and third research questions ”RQ2, RQ3” can be obtained. The results
of this experiment are discussed in section 7.2.
To get a better insight in understanding how the map-depended term estimated by the SLAM
algorithm affects the reward function, a graphical representation of the reward without the
SLAM term is visualized in Figure 6.3.

Figure 6.3: A graphical representation for the reward function given in equation 5.6.

From Figure 6.3, it is shown that the reward increases exponentially towards the desired target
which is in this case at (-1.6,0.65). Thus, at this point, the algorithm has no awareness of the
locations of the obstacles. Not to mention that this manifold is the same for both the first and
second training environments shown in Figures 6.2a and 6.2b respectively since it takes into
account only the exponential euclidean distance to the desired target.
To visualize how the reward function evolves with the change of the posterior of the map
p(m|z1:t , x1:t ) that increases gradually as the robot becomes more confident about the map,
the reward function including the map-dependent term is plotted at four different instants as
shown in Figure 6.4. In Figure 6.4, it is shown that there are three obstacles corresponding to
the ones shown in the first evaluation environment depicted in Figure 6.2a. Thus, the values of
the reward signals decrease exponentially as the robot comes closer to any of these obstacles.
Based on that the robot not only learns the locations of the desired targets but also the static
positions of the obstacles and try to avoid them by learning a good policy. Here, it should be
pointed out that the manifold shown in Figures 6.3 and 6.4 is just depicted for a single target
which means that it is going to change as the desired targets are changed randomly according
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to a uniform distribution. At this point, it is worth mentioning that for the reward function
manifold shown in Figure 6.4d, it is observed that the point at (-2,2) has a higher reward value
than the target point at (-1.6,0.65). The reason for this issue is that the reward value for each
point within the infinite state-space is a trade-off between how far it is from both the desired
target and the surrounding obstacles. Thus, if the target point is in the vicinity of any of the
obstacles, there is a high probability that other points on the manifold do have higher reward
values. This problem can be easily solved by tuning the hyperparameters in equation 5.6 in
such a way it is guaranteed that the desired target point has the highest reward value. However,
since randomly distributed targets are considered in this study, this tuning approach is not go-
ing to work. Instead, a sparse reward is added when the robot reaches the target which would
compensate for this small difference in the reward values.
Here it should be pointed out that although the manifolds described in Figures 6.3 and 6.4 are
described for the exponential euclidean distance to the desired target based reward function,
the same concept can be applied to the difference in the distance to the desired target in two
consecutive time-steps based reward without loss of generality. However, the manifold of this
plot cannot be drawn since it does not only depend on the absolute position of the target in the
robot’s coordinate frame at this instance, but also it takes into account the previous time-step.

(a) The reward function at p(m|z1:t , x1:t )=0.25. (b) The reward function at p(m|z1:t , x1:t )=0.5.

(c) The reward function at p(m|z1:t , x1:t )=0.75. (d) The reward function at p(m|z1:t , x1:t )=1.0.

Figure 6.4: The evolution of the effect of the map-dependent term on the reward function.

To depict how the map-dependent term reshapes the reward manifold of the second environ-
ment 6.2b, Figure 6.5 is plotted. As can be seen from there, the value of the reward function
decreases as the robot moves towards any of the obstacles shown in Figure 6.2b.
The reason why two different environments are considered is that it is desired to make sure
that the proposed algorithm can outperform the standard algorithm regardless off the obsta-
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cles’ shapes, orientation and the way in which they are distributed throughout the training
workspace.

Figure 6.5: A graphical representation for the reward function on Env2.

6.2.3 Experiment 3

In this experiment, the applicability of generalizing the trained policy to other unseen virtual
environments through transfer learning is discussed. In this way, the learned policy on the
first environment is transferred to the second environment. The results of this experiment are
explained in section 7.3.1. In this experiment, it is shown that to get better results, the ini-
tial configuration of the robot should be sampled from a uniform distribution probability at
the beginning of every episode. In that sense, the learned policy does not get biased to the
environment on which it is trained and thus can be generalized successfully to other unseen
virtual environment. Since every experiment takes nearly 3 days on average to converge to a
(sub)optimal policy due to the limited computational resources available, in this experiment,
only the reward function that achieved the best performance from experiment 2 is tested for
generalization to the new environment. Additionally, a comparison is made to highlight the sig-
nificant improvement achieved by transferring the learned policy to new environments rather
than starting training from scratch. This gives an answer to the fourth research question ”RQ4”.

6.2.4 Experiment 4

In the fourth experiment, it is aimed to assess how much different exploration noises affect the
performance of the agent while being trained on the first environment. In that sense, two dif-
ferent exploration noise are considered. The first exploration noise is the traditional correlated
Ornstein-Uhlenbeck action space noise which is added to the actions predicted by the policy
network. On the other hand, the parameter space noise discussed in section 5.3 is assessed
where the executed actions by the low-level controller are conditioned by the states. The re-
sults of this experiment is clarified in section 7.4.1 which give an answer to the fifth research
question ”RQ5”.

6.3 Real-world Experiments

For the real-world experiments, a Clearpath Jackal differential drive mobile robot available at
the Robotics and Mechatronics lab at the University of Twente is used as the mobile ground
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platform. The robot subscribes to the laser range findings perceived from a YDLIDAR X4 which
has a field of view (FOV) of 360◦ and an angular resolution of 0.33◦. This lidar is selected due to
its compatibility with ROS and its simple hardware interface since it only requires a micro-USB
cable. The scanning range of the lidar is from 0.12m to 10m, however, to exceed the number
of episodes in which a map of the environment can be built online, the maximum range is
constrained to 2m when implemented on the real world. Additionally, the field of view is lim-
ited to 180◦ such that the proposed algorithm can be extended to low-cost range sensors with
distance information from only 10 directions. Since the model is different from the Husartion
robot used in the simulation platform, the experiments will be conducted again on the new
robot. However, it should be pointed out that no additional tuning of the hyperparameters is
required since the proposed algorithm is model-free.

Figure 6.6: Clearpath Jackal differential drive mobile robot used in the real-world experiments at
University of Twente.

Obtaining real-data from robotic systems can be extremely difficult and time-consuming. For
instance, for deep reinforcement learning algorithms that require huge number of samples for
their convergence, e.g. 105 samples as in the navigation problem under study, obtaining those
number of samples on a real robot is almost impossible. As mentioned previously, in the intro-
duction section, simulation with accurate models could potentially be used to offset the cost
of real-world interactions. Thus , in this section, the learned policy on the simulation platform
will be firstly transferred to the real robot directly without tuning any of the hyperparameters
and its performance will be evaluated. Secondly, a model that captures the mismatch between
the learned trajectory on the simulation platform and the real environment is learned and then
this model is used to learn a new policy iteratively. This is called a difference model [51] which
is discussed in the next section.

6.3.1 Learning a Difference Model

The main idea behind this algorithm is to learn a difference model that captures the mismatch
between the real system and the simulated model and use this difference model to learn a new
policy. The mismatch could come from model uncertainties such as friction, measurement
noise, etc.
This is done in the following way; the algorithm starts by learning an initial policy on the sim-
ulated model. This policy is expected to behave sub-optimally when applied on the real sys-
tem. The learned policy is then applied on the real system to obtain data from a few trajecto-
ries {τi }N

i=1. These trajectories are composed of a tuple of the sequence of states and actions

{s1, a1, s2, a2, ...}. The transitions obtained from these trajectories {(sreal, j
1:T , areal, j

1:T , sreal, j
2:T+1)}N

i=1 are
then saved.
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To obtain the same transitions on the simulated model, the state-action pairs {(sreal, j
1:T , areal, j

1:T )}N
i=1

are executed on the simulated model and the next states {(ssim, j
2:T )}N

i=1 are observed. The differ-
ence model is then trained using the collected data in a supervised learning manner through a
feed-forward deep neural network. This neural network takes as an input the current state and
action and predicts the difference in next states between the simulated model and real system.
The network is trained using stochastic gradient descent with samples obtained from the real
system. The difference model compensates for the mismatch between the simulated model
and the real system. Thus, the new policy obtained form the difference model is likely to per-
form better with respect to the real system. This process is repeated iteratively to enable the
algorithm to converge to an optimal policy on the real system. Here it should be pointed out
that the training of the new policy will have the actor and critic being bootstrapped from the
previous policy and thus, the learning algorithm seeks to find an optimal policy in the neigh-
bourhood of the previous one. The structure of the algorithm is summarized in Algorithm 9.

Learn a policy on the simulated
model

i ≤ I stop

Run the learned policy on the real system
to collect transitions D

Learn (update) the difference
model d(st , at )

Learn a new policy

no

yes

Figure 6.7: Flow chart illustrating the difference model learning.

As a matter of fact, in the ideal scenario, if d(st , at ) = sreal
t+1 − ssim

t+1, the next state st+1 would be
the state corresponding to the real system.

6.3.1.1 Difference Model Experimental Setup

The training data for learning the difference model is collected by applying the learned policy
on the virtual environment on the real robot. Before each model update, 2000 data-points are
collected and saved. The training data is split into training and validation sets in a 3:1 ratio. The
model is trained using a deep neural network having three hidden layers with 300 neurons in
each layer. The activation function for each of the hidden layers is taken to be ReLU while the
output layer has a linear activation function. The input layer of the deep neural network has 16
inputs (14 states and 2 actions) whereas the output has 14 states. The results of this experiment
is discussed in section 7.5.
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Algorithm 9 Learning a Difference Model

Initialize training data buffer D,
Initialize critic and actor networks with random weights θQ and θπ respectively,
Initialize target networks with weights θQ ′ ← θQ , θπ

′ ← θπ,
Initialize a deep neural network d ,
Learn a policy using the DDPG algorithm on the simulated model and obtain the final
learned parameters θQ

0 , θπ0 .
for i = 1 : M do

Execute policy π(s;θπi−1) on the real system and get the transitions (sreal
t , areal

t , sreal
t+1).

for each (sreal
t , areal

t ) pair do
Determine ssim

t+1 = fideal(sreal
t , areal

t )
end for
Append training data to D.
Update d using D.
Initialize actor and critic networks with weights θπi−1, θQ

i−1 respectively.
Learn a new policy and Q-function where

st+1 ← ssim
t+1 +d(st , at ).

end for

Figure 6.8: The framework for learning a difference model that captures the mismatch between the real
system and the simulated model.
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7 Results and Discussion

In this chapter, a comparison of the performance of both the standard deep deterministic pol-
icy gradient (DDPG) algorithm and the combined DDPG and SLAM algorithm is conducted on
a large variety of settings. Different assessment criteria are introduced in evaluating the quality
of the learned agent’s behaviour including the number of iterations required for determining
the optimal policy, the optimality of the generated trajectories and the evolution of the success
ratio during both training and evaluation phases. In these experiments, the noise is modeled
as an Ornstein-Uhlenbeck process except in the last experiment in which the parameter space
noise is also introduced. At this point, it should be pointed out that, in the coming sections,
the RL and RL&SLAM algorithms will be referred to as the standard and combined approaches
respectively.

7.1 Preliminary Results for Experiment 1

To evaluate the performance of the proposed RL&SLAM combined approach, the agent is firstly
trained to reach only a single desired target and then, in the next experiment, this method is en-
hanced and generalized such that the robot has the capability to reach any random goal inside
the workspace. This training experiment is conducted on Env-1 shown in Figure 6.2a where
the target is selected to be 0.5m behind the frontal obstacle. In this experiment, the exponen-
tial euclidean distance to the target reward defined in equation 5.6 is used. The comparison is
made with respect to the number of episodes required for the agent to figure out a (sub)optimal
policy and the number of collision samples collected during training.
As shown in Figure 7.1, the proposed RL&SLAM combined approach starts with higher crash
ratio until 250 episodes of training has elapsed. However, after that the crash ratio starts to
decrease significantly to 20% after 460 episodes before it starts to increase again. The reason
why the crash ratio increases again could be due to the fact that, at this point, the network is
not robust enough against the exploration noise and thus the robot continues exploring in an
attempt to figure out a better trajectory to the target. Then, after almost 700 episodes, the crash
rate decreases dramatically from 80% to less than 4% in nearly 150 episodes. After this point,
the robot manages to reach the target in most of the consecutive episodes. This is because
the robot becomes more confident about the built map and it has more awareness about the
surrounding obstacles.

Figure 7.1: Evolution of the collision ratio with the number of training episodes. The rate in which the
collision samples of the proposed approach (green) decreases is much higher than the standard

approach (red).
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On the other hand, the standard RL approach can achieve 6% crash ratio after almost 1700
episodes. This indicates that the number of episodes required for the robot to converge to a
(sub)optimal policy is 560 and 1700 episodes for the proposed RL&SLAM combined approach
and standard RL approach respectively. Furthermore, Figure 7.2 shows a 61.3% reduction in the
number of failed episodes which is recorded during training in case the proposed approach is
adopted.

Figure 7.2: RL&SLAM combined approach has a 61.3% reduction in the collision samples.

Although this experiment proved that shaping the reward function based on the online-
acquired knowledge of the environment during training improves drastically the convergence
speed and decreases the number of collisions with surrounding obstacles, it is not of a great
value from the practical point of view. This is due to the following reasons:

(i) The efficiency of the proposed approach has been proven for only a single target, thus
there is no guarantee that it is going to generalize to other targets.

(ii) Training for a single target is not beneficial because this means that if the location of the
target is changed, even a little bit, the algorithm is not going to work anymore since it
gets biased to the trajectory to this single target on which it is trained and thus the whole
training should start from scratch.

For these reasons, in the next section, the agent is trained to reach any randomly generated
target within the workspace. To meet this purpose, in all experiments, at the beginning of each
episode, the target position g is randomly chosen in such a way a collision-free path is guar-
anteed to exist between the robot and the desired target. These random positions of the target
g are sampled from a uniform normal distribution function to ensure that the targets are well
distributed all over the workspace. In this way, it is guaranteed that the robot will not get biased
to some trajectories at the expense of other optimal ones.

In the next experiment, the assessment of the proposed RL&SLAM combined approach and RL
standard approach on randomly distributed targets is done in two phases; training and evalu-
ation phases. In this experiment, in the evaluation phase, the quality of the learned policy is
evaluated on the same training environment.

7.2 Results for Experiment 2

In this section , the results for experiment 2 defined in 6.2.2 are discussed. To recall, it is aimed
to evaluate the performance of the reward functions introduced in section 5.2 on the training
environment Env-1 where the agent is trained on randomly distributed targets.
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7.2.1 Training Phase

In this section, a comparison between the performance of the standard reinforcement learning
approach and the one in which the occupancy grid map is incorporated in the reward function
is made. For the sake of a fair comparison, different assessment criteria are introduced to eval-
uate the learning performance during the training phase. These performance metrics can be
summarized in the following points:

(i) The value of the estimated return to which the algorithm converges. This is obtained by
firstly evaluating the mean of the Q-values in every mini-batch. Then, these mean values
are appended together and can be shown as the shaded area in Figure 7.3. In order to
make the results readable, the mean of these appended values are evaluated every 1000
training steps which is illustrated as the solid line in Figure 7.3.

(ii) The convergence speed which is characterized by the total number of executed actions
required to converge to an optimal policy.

(iii) The success ratio which is computed by comparing the number of episodes in which the
agent reaches the desired target to the total number of elapsed episodes. The success
ratio is evaluated every 200 episodes.

The comparison between the standard and combined approaches is done based on both the
exponential euclidean distance reward function defined in equation 5.6 and the difference in
the distance to the desired target between two consecutive time-steps reward function given in
equation 5.8.

7.2.1.1 Results for the Exponential Euclidean Distance Based Reward on Env-1

To realize the effect of the map-dependent term added to the reward function on the per-
formance of the training phase, the Q-values for both algorithms are plotted. As noticeable
from Figure 7.3, both approaches start with decreasing Q-values which is reasonable since the
weights of the neural networks are randomly initialized and thus large number of collision sam-
ples are taking place. Additionally, it can be clearly noticed that the RL&SLAM combined ap-
proach has higher negative Q-values as opposed to the RL standard algorithm at the beginning
of the training. The reason behind this behavior is that because of the map-dependent term
added to the reward function, the agent is gaining more negative rewards when it comes closer
to any of the obstacles inside the workspace. This is, for sure, in addition to the sparse neg-
ative reward given to the agent when it hits an obstacle. However, on the other hand, for the
standard approach, it only gets a sparse negative reward after hitting an obstacle. The advan-
tage of shaping the reward function based on the acquired knowledge of the environment is
that it increases the awareness of the robot about the locations of the obstacles and, conse-
quently, the number of collision samples can be decreased from 1189 to 718 samples as shown
in Figure 7.4a. Because of the reduction in the number of collision samples, the Q-values of the
combined approach increases much faster until it exceeds the ones obtained by the standard
approach after almost 36000 training steps.. Additionally, at the end of the training period, the
combined approach reaches a higher Q-value as opposed to the standard one (38.4 compared
to 8.6). This means that the agent trained with the proposed approach can figure out more
optimal trajectories to the desired targets. This is validated during the evaluation phase as dis-
cussed in section 7.2.2.1.
Furthermore, both algorithms were trained for 2000 episodes. However, as depicted in Figure
7.4b, the combined approach executes almost 149011 training steps compared to 229558 train-
ing steps taken by the standard approach. These results show that incorporating the knowledge
of the environment obtained by the SLAM algorithm in the reward function dramatically out-
performs the standard algorithm by performing much less number of actions to figure out a
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(sub)optimal policy where there is 35.1% reduction in the number of required training steps
for convergence.

Figure 7.3: The mean Q-value of the training batch in every training step for both algorithms. This
result is for the reward in equation 5.6

Moreover, the success ratio for both algorithms is recorded in Table 7.1 where it is evaluated
every 200 episodes. From Table 7.1, it is clear that the combined approach has less collision
samples and the success ratio increases much faster until it reaches 97% by the end of the
training period compared to 82% achieved by the standard case where the maximum value
is recorded at 84.5% after 1600 episodes. Here, it is worth mentioning that this value is reached
by the combined approach after only 1400 episodes. Again, the reason is that, in the standard
algorithm, there is a single sparse penalty imposed when the robot hits an obstacle. Thereby,
the robot needs to hit the obstacles many times before executing a turning maneuver since it
can only realize its location after hitting it due to the fact that the distance to the obstacles are
represented only in the robot’s states. However, on the other hand, this is not the case with
the combined approach where the agent receives an exponential negative reward when getting
closer to any of the obstacles. In this way, the agent does not have to hit the obstacle to detect its
position and, accordingly, it can realize the optimal paths to the randomly distributed targets
much faster. The evolution of the collision ratio during training can also be better visualized in
Figure 7.5.

Table 7.1: Assessment of the success ratio RL and RL&SLAM combined approach during the training
phase using exponential euclidean distance reward.

no. episodes
success ratio %

no. episodes
success ratio %

RL RL&SLAM RL RL&SLAM
200 3% 1.5% 1200 68 % 78 %
400 13% 21.5% 1400 79 % 82 %
600 45% 45% 1600 84.5 % 94 %
800 40% 62% 1800 84 % 95%
1000 46% 65% 2000 82 % 97%
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(a) The combined RL&SLAM proposed approach
achieves a 39.6% reduction in the number of

collected collision samples.

(b) The combined RL&SLAM proposed approach
achieves a 35.1% reduction in the number of

training steps for convergence.

Figure 7.4: A comparison between the RL&SLAM combined approach (green) and the standard RL
approach (red) in terms of the number iterations required before convergence and number of collision

samples collected during training.

Figure 7.5: Evolution of the collision ratio with the number of training episodes. The proposed
approach (green) can achieve lower collision ratio in less number of episodes compared to the

standard approach (red).

7.2.1.2 Results for the Difference in the Distance to the Target in Two Consecutive Time-
steps Based Reward on Env-1

The same comparison is made using the reward function defined in equation 5.8 and the re-
sults are shown in both Figure 7.6, 7.7 and Table 7.2. It is also observed that the collision ratio
decreases in a higher rate by using the proposed approach compared to the standard one indi-
cating that it has higher awareness about the surrounding obstacles. From Table 7.2, it is clear
that the combined approach starts with higher collision samples, however, after 600 episodes,
its success ratio starts to increase significantly until it achieves 97% by the end of the training
phase compared to the standard algorithm that only reaches 74%.
Based on the aforementioned discussed results, it can be argued that, no matter which reward
function is used, the RL&SLAM combined approach outperforms the standard RL algorithm
significantly. For both reward functions, the combined approach reduces the number of col-
lision samples by 39.6% and 22.67% respectively. In addition to that the number of iteration
steps required for convergence is reduced by 35.1% and 17.4% respectively.
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Figure 7.6: Evolution of the collision ratio with the number of training episodes. The rate in which the
collision samples of the proposed approach (green) decreases is much higher than the standard

approach (red).

(a) The combined RL&SLAM proposed approach
has a 22.67% reduction in the number of collision

samples.

(b) The combined RL&SLAM proposed approach
achieves a 17.4% reduction in the number of

training steps for convergence.

Figure 7.7: A comparison between the RL&SLAM combined approach (green) and the standard RL
approach (red) in terms of the number iterations required before convergence and number of collision

samples collected during training based on the reward defined in 5.8.

Table 7.2: Assessment of the success ratio RL and RL&SLAM combined approach during the training
phase using difference in the distance to the target between two consecutive time-steps.

no. episodes
success ratio %

no. episodes
success ratio %

RL RL&SLAM RL RL&SLAM
200 19% 2% 1200 61 % 76.5 %
400 30.5% 22% 1400 68 % 85.5 %
600 24% 25% 1600 59.5 % 87 %
800 35% 48.5% 1800 70 % 95.5%
1000 38.5% 58.5% 2000 74 % 97%

At this point, it can also be inferred that, the RL&SLAM combined approach with exponential
euclidean distance to the desired targets reward function achieves the best results with respect
to convergence rate and the evolution of the success ratio compared to the difference in the
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distance to the target in two consecutive time-steps reward. This is the case due to two different
reasons.

(i) Firstly, the second reward function does not differentiate between getting too closer to
the target or being far away. In other words, if the robot is moving towards the target it
will get a positive reward, however this reward will be the same whether, for example, it is
0.5m or 3m away from the target. However, in case of the exponential euclidean distance
reward, the reward value will differ substantially based on how far the robot is from the
target.

(ii) The second reason is that since the map-dependent term added to the reward function
also depends on the exponential euclidean distance to the obstacle, it is consistent with
the reward defined in 5.6, and thus no tuning for the hyperparameters are required in
this case in contrast to the reward defined in 5.8.

Thereby, in the coming sections, the reward based on the exponential euclidean distance to the
target is considered while discarding the other reward function.

7.2.1.3 Results for Training on Env-2 using Exponential Euclidean Distance Based Reward

Since the reward function defined in 5.6 achieved the best results as concluded form section
7.2.1, it is going to be applied for the experiments on Env-2. To validate that the proposed ap-
proach still achieves better results on new environments, a policy is trained from scratch on
Env-2 using also both combined RL&SLAM combined approach and RL standard approach.
Since it has been already discussed in detail why the proposed approach outperforms the stan-
dard RL approach, in this section, only the results will be displayed where the logic behind
achieving better results is the same as discussed in previous sections.

(a) The combined RL&SLAM proposed approach
has a 15.8% reduction in the number of collision

samples.

(b) The combined RL&SLAM proposed approach
achieves a 31.3% reduction in the number of

training steps for convergence.

Figure 7.8: A comparison between the RL&SLAM combined approach (green) and the standard RL
approach (red) in terms of the number iterations required before convergence and number of collision

samples collected during training based on the reward defined in 5.11 on Env-2

As shown in Figure 7.8, the combined approach sill achieves much better results on the new
environment with different obstacle shapes and orientations. In terms of the number of colli-
sion samples, the combined approach achieved a 15.8% reduction compared to the standard
one. Not to mention, like the case on Env-2, the proposed approach converges to the optimal
policy in less number of training steps (171463 compared to 249648 steps). It is also clear that
the training on Env-2 has higher collision samples compared to the training on Env-1 which
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is reasonable since Env2 has more obstacles. The success ratio during the training phase on
Env-2 is shown in Table 7.3.

Figure 7.9: Evolution of the collision ratio with the number of training episodes. The proposed
approach (green) can achieve lower collision ratio in less number of episodes compared to the

standard approach (red) on Env-2.

Table 7.3: Assessment of the success ratio RL and RL&SLAM combined approach during the training
phase using exponential euclidean distance reward on Env-2

no. episodes
success ratio %

no. episodes
success ratio %

RL RL&SLAM RL RL&SLAM
200 3.5% 3.5% 1200 56 % 68 %
400 13% 11.5% 1400 59 % 79 %
600 45% 28.5% 1600 65 % 84.5 %
800 40% 54% 1800 76 % 88%
1000 45.5% 58.5% 2000 78 % 88%

From Table 7.3, it is shown that the combined approach has achieved a 10% higher success ra-
tio during training on Env-2.
Thus, it can be concluded that, after training both algorithms on two different environments
with different reward function definitions, it has been proven that the proposed RL&SLAM ap-
proach with exponential euclidean distance based reward has achieved the best results during
the training phase. The comparison was done in terms of the number of iteration steps required
by the algorithms for convergence, the number of collision samples, the Q-value to which the
algorithm converges and the success ratio. With respect to all these performance metrics, the
proposed approach significantly outperformed the standard method.
In the next section, the quality of the generated trajectories is compared along with the number
of actions required for both approaches to reach pre-determined targets during the evaluation
phase. Firstly, the learned policy is tested on the same training environment and then it will be
generalized to an unseen virtual environment.

7.2.2 Evaluation Phase

In this section, the learned policies obtained from both the proposed RL&SLAM combined ap-
proach and the standard RL approach with the reward function defined in 5.6 on Env-1 are
evaluated on the same training environment.
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7.2.2.1 Evaluation Phase on the same Environment

After each training phase, the trained model for both approaches was evaluated on the same
set of 100 random targets to guarantee a fair comparison and the percentage of the success-
fully solved episodes was monitored. An episode is considered to be successful, when the robot
reaches the target without either hitting any of the obstacles or exceeding the maximum num-
ber of allowed iterations per episode which is set to 400 steps during the evaluation phase.
Additionally, different evaluation metrics are introduced in this section to evaluate the qual-
ity of the learned policy for both the standard reinforcement learning algorithm and the one
combined with SLAM. Here it should be pointed out that, during the evaluation phase, the
Ornstein-Uhlenbeck random noise added to the action space for exploration purposes is dis-
abled. Figure 7.10 illustrates that the combined RL&SLAM approach achieved a higher success
ratio, 96%, compared to the standard approach that reaches only 82%. Furthermore, to investi-
gate the effect of incorporating knowledge of the environment into the training process on the
optimality of the generated trajectories, the average number of actions required to reach these
targets is recorded in Table 7.4.

(a) The standard RL approach reaches an 82 %
success ratio with respect to 100 randomly

generated targets during the evaluation phase.

(b) The combined RL&SLAM approach achieves a
success ratio of 96% with respect to 100 randomly

generated targets during the evaluation phase.

Figure 7.10: A comparison between the RL&SLAM combined approach (right) and the standard RL
approach (left) in terms of the success ratio during evaluation phase. The green circles represent the

reached target whereas the red ones indicate that the robot either hits an obstacle or exceeds the
maximum number of allowable iteration steps per episode.

Table 7.4: Assessment of RL and RL&SLAM combined approach on the same training environment.

success ratio number of actions
% (mean ± std)

RL 82 % 71.7 ± 75.34
RL&SLAM 96 % 52.86 ± 54.73

As reported in Table 7.4, it can be seen that the combined RL&SLAM not only achieves a higher
success ratio but also tends to execute much less number of actions, on average, to reach the
desired targets since there is 26.7% reduction in the number of executed actions. This can
be speculated as, because of the dense reward, the combined approach has more awareness
about the locations of the obstacles and thus, it can figure out more optimal trajectories to the
desired targets. However, for the standard approach, since the agent learns the positions of the
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obstacles only when it comes into its vicinity due to the sparse reward, there is nothing that
motivates the robot to move away from the obstacles and thus it cannot escape local optima of
the policy resulting in a higher number of actions to reach the targets.
To get a better insight regarding the difference in the generated trajectories, the generated tra-
jectories for four different desired targets can be visualized in Figure 7.11. As shown in Figure
7.11, the travelled distance from the initial pose of the robot to the desired target is less in case
of the combined approach resulting in more optimal trajectories.

(a) The total distance travelled by the combined
approach is 2.47m compared to 2.53m by the

standard approach.

(b) The total distance travelled by the combined
approach is 2.19m compared to 2.58m by the

standard approach.

(c) The total distance travelled by the combined
approach is 2.88m compared to 3.32m by the

standard approach.

(d) The total distance travelled by the combined
approach is 3.24m compared to 3.55m by the

standard approach.

Figure 7.11: A comparison of the generated trajectories by both the RL&SLAM combined approach
(visualized in red) and the RL standard approach (visualized in green). The target is depicted by the

black circle.

7.3 Results for Experiment 3

7.3.1 A generalization of the Learned Policy to Unseen Virtual Environments

In this section, the generalization of the learned policy to unseen virtual environments is dis-
cussed in more details. It has been observed that if the learned policy, based on the settings
discussed in the previous sections, is transferred directly to an unseen environment different
from the one it was trained on, it will have a poor performance with a success ratio of 34%.
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It can be speculated that the reason for this behaviour is because after the termination of ev-
ery episode, the robot returns back to its initial pose. As a result, the robot gets biased to the
environment on which it is trained since every episode it perceives the same structure of the
environment. Thus, in order to tackle this issue, every time the episode terminates, the robot
starts the new episode with a random pose. In this way, it is guaranteed that the robot does
not get biased to the structure of the environment it is trained on since every time it is going to
perceive a different perspective of the environment and consequently its new policy is trained
using different variety of input states perceived by the lidar.
After doing so, the learned policy on Env-1 is transferred to and tested on Env-2 which was
unseen to the robot during training. By applying this adjustment, the new learned policy is
transferred directly to the new environment and a success ratio of 74% was recorded which is
much better than the previous policy. Moreover, when the agent gets trained on the new en-
vironment for just 300 episodes, it can achieve 89% success ratio. This can be seen as a major
advantage over starting training the policy network from scratch when switching from one en-
vironment to another. The randomly distributed targets on the evaluation environment are
depicted in Figure 7.12 where the green circles represent the reached targets and the red ones
indicate that the robot either crashes or exceeds the maximum number of allowable training
steps (400 steps during evaluation phase) on its way to these targets.

Figure 7.12: The trained policy on the training environment achieved 89% success ratio after being
transferred and trained for 300 episodes on the evaluation environment.

To get a better insight in how much improvement has been made by transferring the policy
learned on Env-1 to Env-2, the obtained results are compared with the results achieved by
training the robot from scratch on Env-2 that has been already discussed in section 7.2.1.3.
From Table 7.3, it is recorded that a 74% success ratio is obtained after nearly 1300 training
episodes from scratch where this same success ratio was achieved by transferring the learned
policy directly from Env-1 to Env-2 indicating that the proposed algorithm is easily adaptable
to changing environments and makes tremendous improvement in the number of required
training episodes for convergence.
Additionally, since the robot starts every episode at different poses, it is not necessary to re-
turn back to (0,0) to navigate to the desired target.In other words, the learning algorithm is
independent of the initial pose of the robot and the position of the desired target. To validate
this argument, 10 target positions are set for the motion planner. In that sense, the motion
planner should navigate the robot to the target positions along the sequence number. The tra-
jectory taking by the robot while navigating from one point to another is shown in Figure 7.13a.
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As shown in Figure 7.13a, the robot manages to complete the navigation task even in narrow
places. On the other hand, the standard RL approach was not able to complete the navigation
task and the simulation had to be interrupted at the black lines depicted in Figure 7.13b since
the robot collides with the obstacles close to targets 4 and 5. Here it should be pointed out that
the target points in Figure 7.13b are slightly different from the ones in Figure 7.13a. This is due
to the tolerance added in the vicinity of the desired target which is 0.2m. Moreover, there is
7.3% reduction in the total travelled distance achieved by using the proposed RL&SLAM com-
bined approach. This indicates that adopting the proposed approach motivates the robot to
learn more efficient planning strategies.
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(a) Proposed RL&SLAM combined approach. The
total travelled distance is 29.85m
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(b) RL standard approach. The total travelled
distance is 32.16m

Figure 7.13: Trajectory tracking in a virtual test environment. The motion planner based on the
standard RL approach was not able to finish the navigation task.

7.4 Results for Experiment 4

7.4.1 Evaluation of Different Exploration Noise in Training Phase

In this section, different exploration noises discussed in section 5.3 are applied to the learn-
ing agent and the quality of training is assessed. For that purpose, two different exploration
methods are considered:

(i) Exploration with correlated additive Gaussian noise; in this configuration, correlated ad-
ditive Gaussian noise is included using Ornstein-Uhlenbeck process before executing an
action: at = π(s)+OU(σ,θ). A standard deviation of σ= 0.2 and θ = 0.15 are considered
in this case.

(ii) Exploration with parameter space noise; in this configuration, adaptive parameter space
noise is used in the same way as described in section 5.3: at = π̃(s) where the adaption
interval is chosen to be Tadapt = 50.

The same performance evaluation metrics introduced in the previous sections are used here.
Thus, the collision rate plot for the trained agent with parameter space and action space noise is
illustrated in Figure 7.14. As expected, from this Figure, it is clear that the rate in which the colli-
sion ratio decreases for the agent with parameter space noise is higher than the one with action
noise. This is due to the fact that the noise is conditioned on the state and not just randomly
added to the output actions. By doing so, the algorithm can figure out the (sub)optimal paths
to certain targets faster. However, on the other hand, with action space noise, even if the algo-
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rithm figures out a (sub)optimal trajectory to a certain target in one iteration, when this same
target is repeated in another iteration, there is no guarantee that an optimal trajectory can be
determined in this case since a random noise is added to the actions predicted by the policy.
This, of course, occurs at the early iteration steps, before an optimal policy is learned. How-
ever, once the algorithm converges to an optimal policy, both algorithms can achieve nearly
the same success ratio which is shown in Table 7.5. Hence, it can be concluded that the pa-
rameter space noise can converge to the optimal policy with less number of collision samples
compared to the action space noise and also less training steps. This can be shown clearly in
Figure 7.15 where there is a 32.03% reduction in the collision samples. At the same time, at the
end of the training phase, both algorithms can achieve almost the same success ratio.

Figure 7.14: Evolution of the collision ratio with the number of training episodes. The rate in which the
collision samples of an agent with parameter space noise (green) decreases is higher than the one with

action space noise (red). Both agents converge to the same crash ratio at the end of the training

Figure 7.15: Exploration using parameter space noise has a 32.03% reduction in the collision samples.
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Table 7.5: Assessment of the success ratio using parameter space noise and correlated OU noise during
the training phase using exponential euclidean distance reward.

no. episodes
success ratio %

no. episodes
success ratio %

parameter action parameter action
200 14% 1.5% 1200 86 % 78 %
400 56% 21.5% 1400 86 % 82 %
600 72.5% 45% 1600 92.5 % 94 %
800 77% 62% 1800 95.5 % 95%
1000 78.5% 65% 2000 98 % 97%

7.5 Results for Real-world Experiments

In this section, it is aimed to transfer the learned policy on the virtual environment to the real
robot. Different target positions are set for the robot and a comparison is made between the
travelled trajectory on the real and virtual environments. At this point, it should be pointed
out that the learned policy is transferred directly without any tuning of the hyperparameters
or further training on the real robot. The efficiency of transferring the learned policy has been
validated on different targets where four of them are depicted in Figure 7.16. Figure 7.16 shows
the generated trajectories for both the simulated robot and the real robot after transferring
the learned policy on the virtual environment. It can be interpreted that the learned policy is
transferred successfully in the sense that the robot manages to avoid the obstacles and steers
itself towards the desired target. On the other hand, it can also be noticed that the real robot
does not follow exactly the same trajectory learned on the virtual environment. This could be
due to different reasons including model inaccuracies in mass, inertia or lengths of links, model
uncertainties such as friction and measurement noise. However, this cannot be considered as
a drawback since the learned policy is robust enough to adapt itself to these changes.
At this point, in case it is required to follow exactly the same trajectory as the one learned on the
virtual environment, it is still possible to learn a difference model that captures the mismatch
between the real system and the simulated model as discussed in section 6.3.1. The evolution
of the loss during training on both the training and validation sets is shown in Figure 7.17.

Figure 7.17: The evolution of the loss function during training on train and validation data.

After the difference model is trained, it is used to compensate for the mismatch between the
real system and the simulated model during state transition and a new policy is obtained.
Based on that the new policy is applied to the real robot and the travelled trajectories are
recorded in Figure 7.18. As can be noticed from Figure 7.18, the generated trajectories by the

Khaled A. A. Mustafa University of Twente



CHAPTER 7. RESULTS AND DISCUSSION 63

(a) The desired target is chosen to be at
(2.8m,-1.5m).

(b) The desired target is chosen to be at
(2.3m,1.0m).

(c) The desired target is chosen to be at
(3.0m,0.0m).

(d) The desired target is chosen to be at
(0.9m,-1.6m).

Figure 7.16: A comparison of the generated trajectories by the simulated robot in gazebo (visualized in
red) and the real robot after transferring the learned policy (visualized in green). The target is depicted

by the black circle.

real robot are almost the same as the one generated on the virtual environment where a sig-
nificant improvement is realized compared to the results shown in Figure 7.16. The number of
iterative policy updates required to achieve these results is three.
Here it should be pointed out that since the model used for the robot in the simulation is a ROS
compatible robot which means that the model of the robot already exists by the manufacturer,
there is no much difference in the model between the simulated model and the real one. This
is one of the reasons why the learned policy on the virtual environment worked pretty well af-
ter being transferred to the real system even before learning a difference model. However, for
this problem, the difference model is only used to generate real-time trajectories that mimic
the same trajectories obtained on the virtual environment. In cases where the developer has to
create a model of the robot on the virtual environment, there is a high probability that model
inaccuracies would occur. In these situations, learning a difference model would be crucial
to employ the learned policy on the real robot instead of starting the training from scratch on
real-time which may result in the drawbacks that were described beforehand in section 1.2.
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(a) The desired target is chosen to be at
(2.0m,1.1m).

(b) The desired target is chosen to be at
(1.8m,-1.8m).

(c) The desired target is chosen to be at
(2.8m,-1.0m).

(d) The desired target is chosen to be at
(3.0m,0.0m).

Figure 7.18: A comparison of the generated trajectories by the simulated robot in gazebo (visualized in
red) and the real robot after transferring the learned policy (visualized in green). The target is depicted

by the black circle.

7.6 Critical Appraisal

In this section, a critical appraisal is reported focusing on the points of strength and weakness
of the proposed navigation approach.

Strengths

(i) No accurate model is required for the environment: Since the proposed learning ap-
proach is model-free, there is no need for an accurate model of the environment where
the optimal policy is learned through interactions between the robot and the environ-
ment.

(ii) Adaptability: The implemented algorithm is easily adaptable to unseen environments
that it has never trained on before. In other words, if transfer learning is employed, it
allows a robot to learn similar environment layout quickly.
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(iii) Low-cost solution: The proposed approach only requires odometry data that can be ac-
quired from rotary encoders and sparse laser data. Although, a lidar has been used in this
research for the perception of the environment, it can be extended to low-cost 1D range
sensors with distance information from only 20 directions.

(iv) High repeatability: Some of the experiments presented in this thesis have been con-
ducted more than once to check the repeatability of the proposed approach. It has been
observed that the overall performance of the learned policy does not change from one
experiment to another. As a matter of fact, not exact same results are obtained because
of the stochastic behavioral policy used for exploration.

(v) Reliability: An advantage of using a lidar over a visual system for perceiving the environ-
ment is that the learned algorithm does not depend on the light conditions which makes
it reliable for navigation tasks in ballast tanks and pipes.

(vi) Real-world Experiment: The learned policy on the virtual environment can be trans-
ferred successfully to a real robot without the need for tuning any of the hyperparameters
or any extra training on the real robot. This is can be considered as a major advantage
due to the fact that obtaining real data from robotic systems is extremely difficult and
time consuming. Moreover, it could result in serious damages to real robots since the
training depend on a trial-and-error process. Transferring the policy to the real system
was possible since lidar data was used to perceive the environment. This is in contrast to
visual systems where significant discrepancies do exist between rendered color images
and real camera readings.

(vii) Continuous control navigation: Since the proposed learning approach is policy search
based, the motion planner can output continuous linear and angular velocities directly
resulting in smooth maneuvers of the robot. Additionally, since a policy gradient algo-
rithm is used to update the parameters of the policy network, the parameters of the pol-
icy are slightly modified which guarantees smooth transition between states in contrast
to value-based methods where large jumps between estimated polices are possible.

(viii) Less number of required samples: The advantage of learning a deterministic policy is
that he mapping from states to actions becomes fixed and accordingly there is no need
to integrate over the whole action space. Furthermore, since it is an off-policy algorithm,
it is possible to learn a deterministic policy while the agent is following a stochastic be-
havioral policy to guarantee adequate exploration of the environment.

(ix) Reduction in training steps: Shaping the reward function based on the knowledge of
the environment that robot acquires during training decreases the number of collision
samples significantly and thus the training steps required for convergence are decreased
as well.

Weaknesses

(i) Long training time: One of the drawbacks of learning continuous control actions for
systems with high-dimensional state and action spaces is the training time. For the nav-
igation problem, it takes from 3 to 4 days to learn a (sub)optimal policy. This imposed a
restriction on running different preliminary experiments to tune the hyperparameters.

(ii) Pose correction: It has been observed that if the robot missed the target with few cen-
timeters, it becomes difficult for it to correct its pose and return back to it. The reason for
this behavior could be due to restricting the backward action. Thus, it is challenging for
the robot to rotate on the spot especially in narrow places.
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(iii) Simulation crashing: Although gazebo is a powerful simulation platform for robotics
applications, it is not learning-friendly since it crashes a lot during training. Thus, it can
be recommended to consider other robotic simulation platform such as v-rep which is
used a lot in robotics learning literature.
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8 Conclusion

This research started with the following question

” How the navigation problem of non-holonomic mobile robots can be formulated as a
reinforcement learning problem that could be solved by using deep deterministic policy

gradient (DDPG) actor-critic algorithm?”

This is achieved by designing a motion planner that takes 10-dimensional sparse laser range
findings, the target position relative to the mobile robot coordinate frame and the last executed
action as inputs where the proposed motion planner can output continuous linear and angular
velocities directly. Then, from this question, two other research question arose. The first one is

”How to determine a proper reward function that can reflect the quality of the learned
trajectory?”

This is done by using the exponential euclidean distance to the target as the basic reward. Then
this reward was shaped based on a probabilistic occupancy grid-map that the robot builds dur-
ing training to increase its awareness about the obstacles inside the environment. This leaded
to the third research question which is

”To what extent does the incorporation of the partial map obtained about the environment via
the SLAM algorithm help the learning algorithm?”

To answer this question, two virtual simulation environments were constructed using Gazebo
simulation platform and the robot was trained on these environments using both the standard
RL algorithm and the proposed combined RL&SLAM based approach. Accordingly, the results
were assessed during both the training phase and evaluation phase. For the first environment,
during the training phase, it has been observed that the number of executed actions required
to converge to a (sub)optimal policy is reduced dramatically by about 35.1% by adopting the
proposed approach. The reason behind this reduction is that the robot learned the positions of
the obstacles much faster and thus the number of collision samples were also reduced signif-
icantly by 21.19% resulting in a convergence to a higher Q-value. This result is interesting be-
cause the added map-depended term to the reward function is a negative dense reward. Thus,
logically, the Q-values obtained by the combined RL&SLAM approach should be less than the
ones achieved by the standard RL algorithm. This means that the proposed approach has a
higher success ratio than the standard one and also the learned policy can figure out more op-
timal trajectories to the desired targets using less number of control actions. This claim was
also validated by evaluating both algorithms on the same environment using the same set of
100 random targets. It was shown that the proposed approach achieved a success ratio of 96%
compared to 82% achieved by the standard algorithm. Moreover, the number of executed ac-
tions to reach these targets were dropped by 35.3% indicating that the learned policy by the
proposed approach is more optimal. To validate that the proposed approach still has better re-
sults on different environments, a second training environment was constructed with different
obstacles’ shapes and orientations. It was also noticed that the proposed approach converges
to higher Q-values and has a 15.9% reduction in the number of collision samples as opposed to
the standard approach.
The fourth research question was

”How applicable is it to generalize the learned policy on one environment to another
environment through transfer learning?”
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To check the applicability of the generalization of the learned policy to different environments,
the learned policy on the first environment was transferred to the second environment. The
preliminary results show that the transferred policy had a poor performance and achieved only
34% success ratio after being transferred. It was speculated that the cause of this behaviour is
that after the termination of each episode, the robot returns back to its initial pose from where it
starts the new episode. Thereby, the robot gets biased to the environment on which it is trained
since it perceives the same structure of the environment at the beginning of every episode.
Thus, it was proposed that the initial pose of the robot is randomized according to a random
normal distribution. In this way, it is guaranteed that the robot will get trained on a large variety
of input states perceived by the lidar. The same experiment was repeated on the first environ-
ment and the learned policy was transferred again to the second environment. As expected,
there was a significant improvement since the success ration increases to 74%. In addition to
that, an 89% success ratio was realized when the robot got trained for 300 episodes on the new
environment. To get a better insight in how good these results are, it was compared with the
results obtained when the robot started learning from scratch on the new environment. It was
shown that this 74% success ratio can be obtained after almost 1300 training episodes from
scratch. Thus, a 77% reduction in the number of training episodes can be achieved by transfer-
ring the policy which is prominent. Hence, these results highlight the generalization capability
of the learned policy through transfer learning.
The success of reinforcement learning hinges on the agent’s capabilities to effectively explore
its environment. This is necessary because, initially, the agent has no knowledge about its en-
vironment and has to try different strategies in order to find successful ones. This results in the
following research question

”What is the effect of different exploration noise on the quality of the learned trajectory and
the learning rate?”

Most of today’s state of the art algorithms still rely on traditional action space noise due to its
implementation simplicity. In literature, it was proven that parameter space noise in which the
perturbation is added to the network’s parameters instead of the predicted actions achieves
better results than the action space noise. By applying this exploration technique to the au-
tonomous navigation problem, better performance in terms of the obtained Q-value and the
reduction in collision sample by 32.03% is achieved. This improvement occurs due to the fact
that the executed actions by the low level controller of the robot are conditioned on the cur-
rent state. Thus, there’s no much deviation in the trajectory to the same target point from one
step to another. This is in contrast to the action space noise where the random perturbation
is added to the predicted actions of the policy networks and thus the executed actions are not
conditioned on the states.
Finally, the last research question was

”Is it possible to transfer the learned policy on the virtual environment directly to the real
robot?”

The learned policy on the virtual environment has been transferred successfully to the real-
robot where the robot managed to figure out an obstacle-free path to random desired targets
without tuning any of the hyperparameters or conducting further training on the real-robot.
Additionally, by learning a difference model that captures the mismatch between the real sys-
tem and the simulated model and using this model to update the learned policy iteratively, it
becomes possible to mimic exactly the learned trajectory on the virtual environment on the
real robot.
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8.1 Directions for Future Work

The presented research can be extended in different directions as detailed below.

Asynchronous Advantage Actor Critic (A3C)
Although the used deep deterministic policy gradient approach has achieved good learning re-
sults, it is still possible to improve these results by integrating A3C proposed in [52] with DDPG.
The key idea of A3C is that learning can be parallelized using different threads that indepen-
dently collect experience. The independent execution of multiple different environments may
reduce the variance of the trained estimators since it provides the learning algorithm with
many decorrelated training examples at one time. In this way, the robot can learn a more
efficient policy to finish a navigation task.

Combining Reinforcement Learning with Imitation Learning
As mentioned in the critical appraisal in the previous chapter, the training time for learning
continuous actions in a high-dimensional state-space is pretty long. One possible solution to
this problem is to combine reinforcement learning with imitation learning. In that sense, it is
possible to pre-train the navigation policy using expert demonstrations that can be generated
through a path planning approach, i.e. Move Base in ROS. This can reduce the training time and
the number of samples significantly compared to starting training by a random initialization
of the weights and biases.

Curiosity-driven Exploration
To improve the exploration capability of the robot, especially for environments that impose
considerable challenges, curiosity-driven exploration approach proposed in [53] can be used
to urge the robot to explore states that it never or rarely visited before. This could motivate
the agent to better explore the current environment, and make use of the structures of the
environment for more efficient planning strategies.

Formulating the Navigation Problem as POMDP
In literature, the navigation problem is formulated as either a Markov decision process (MDP)
or partially observable Markov decision process (POMDP). This is due to the fact that the state
of the robot xt can hardly capture all the necessary information for the agent to make deci-
sions in the future since the state of the robot differs from the state of the environment st .
Thus, the Markov property is not satisfied anymore, in which case the underlying procedure
is called POMDP. This can be dealt with by either stacking several consecutive observations
{xt−N+1, ..., xt−1, xt } to represent st as done in [11] or by feeding xt into a recurrent neural net-
work such that the past information is naturally taken into consideration. Hence, it is worth
investigating if this would improve the efficiency of the learned policy.
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A Appendix 1

A.1 Model-based Methods

A.1.1 Dynamic Programming

Dynamic programming is a class of approaches that can be used to find an optimal policy
for a Markov decision process with the assumption that the transition probabilities that en-
tail the dynamics of the environment is known. The model of the environment is not neces-
sarily to be predetermined, but can rather be learned from data incrementally. Thus, given(
S ,A, p(st+1|st , at ),r (st , at ),γ

)
, it is required to find the optimal behavior by calculating an op-

timal value function and extracting an optimal policy π∗ from it. Since a model is utilized in or-
der to find the optimal policy π∗, this approach of solving a Markov decision process, is called a
model-based approach. Optimal value functions and optimal policies are usually reached with
iterative methods. Two of the most common algorithms in dynamic programming are called
policy iteration and value iteration that can be used to find an exact solution for an MDP.

A.1.1.1 Value Iteration

The value iteration approach, also called backward induction, is first proposed by Bellman in
1957 [22]. This iterative algorithm calculates the expected value of each state using the value
of the adjacent states until convergence to the real estimated value. The algorithm is shown in
the following pseudo-code:

Algorithm 10 Value Iteration

Initialize value function V (s), e.g. by V (s) = 0 for all states s ∈ S .
Initialize δ← 0 and ε> 0 indicating the precision in estimation.
repeat

for all s ∈ S do
v ←V (s)
V (s) = max

a∈A

∑
st+1,r p (st+1,r |s, a)

(
Rt+1 +γV (st+1)

)
δ= max(δ, |v −V (s)|)

end for
until δ< ε

Here it should be pointed out that value iteration combines the steps of policy evaluation and
policy improvement that are discussed in the next section by updating the value function every
time a state is updated.

A.1.1.2 Policy Iteration

As discussed in the previous subsection, value iteration algorithm keeps improving the value
function at each iteration until the value function converges. However, the main goal of the
agent is to find the optimal policy , therefore, another algorithm called policy iteration was
proposed [54]. Instead of improving the value-function estimate repeatedly, it will redefine
the policy at each step and compute the value function according to this new policy until the
policy converges. Policy iteration alternates between two phases, policy evaluation and policy
improvement that are discussed in this subsection.

Policy Evaluation
In dynamic programming, policy evaluation is a way of computing the state-value function
V π(s) for an arbitrary policy π. This algorithm can be used to evaluate an arbitrary policy for all
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states in the state space s → S and update them iteratively by applying Bellman’s expectation
equation introduced in the previous section. This is done by means of synchronous backups
where each state is visited and its value is updated based on the current value estimates of all
its possible successor states, weighed by the associated transition probabilities as well as the
policy. The update rule is given by

Vk+1(st ) =∑
a
π(a|s)

∑
st+1,r

p(st+1,r |s, a)
(
Rt+1 +γV π(st+1)

)
(A.1)

For iterative policy evaluation, a natural question is when does the algorithm converge to V π(s)
and the iteration can be stopped. For a given threshold ε > 0, the algorithm can be stopped
when the difference between one iteration to the other is below this threshold. Mathematically,
this can be expressed as

max
s∈S

|Vk+1(s)−Vk (s)| < ε (A.2)

At this point, it is guaranteed that the value function converges to its true value. After policy π
has been evaluated, one wants to improve π by finding a new policy π′ that is at least as good
as the old policy π or even better. This approach is called policy improvement.
Policy Improvement
The second phase of policy iteration is policy improvement which makes the policy greedy with
respect to the current value function [18]. As stated before, firstly, an initial policy is chosen.
Then, the policy is evaluated until the iterative policy evaluation converges to a predefined de-
sired accuracy of estimation.

Figure A.1: Illustration of how policy iteration
converges to the optimal policy and value function.

By maximizing over the new value function, a
new better policy π′ can be extracted, which
will be again evaluated and improved to an
even better policy π′′ until this process con-
verges to the optimal policy π∗.

π0
PE−−→V π0 I−→π1

PE−−→V π1 I−→π2...
I−→π∗ PE−−→V π∗

where
PE−−→ denotes policy evaluation and

I−→
denotes policy improvement. The algorithm
terminates when the policy stabilizes and an
optimal policy is obtained. The process of
alternating between policy evaluation and
policy improvement is called generalized
policy iteration (GPI) which is depicted in
Figure A.1. The policy iteration algorithm is described in Algorithm 11.
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Algorithm 11 Policy Iteration (using iterative policy evaluation) for estimating π≈π∗

Initialize V (s) ∈R and π(s) ∈ A(s) randomly for all s ∈ S
Initialize δ← 0 and stable ← Tr ue
while stable = Tr ue do

Phase 1 – Iterative Policy Evaluation, for estimating V ≈V π

repeat
for each states ∈ S do

v ←V (s)
V (s) =∑

a π(a|s)
∑

st+1,r p(st+1,r |s, a)
(
Ra

s +γV (st+1)
)

δ= max(δ, |v −V (s)|)
end for

until δ< ε
Phase 2 – Policy Improvement

for each state s ∈ S do
a =π(s)
π(s) = argmax

a∈A(s)

∑
st+1,r p(st+1,r |s, a)

(
Rt+1 +γV π(st+1)

)
if a 6=π(s) then

stable ← F al se
end if

end for
end while
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B Appendix 2

B.1 Improved Proposal Distribution

As shown in (4.8), since the product p(x(n)
t |x(n)

t−1,ut−1)p(zt |x(n)
t ,m(n)

t−1) is dominated by the ob-

servation likelihood function p(zt |x(n)
t ,m(n)

t−1), the odometry motion model p(x(n)
t |x(n)

t−1,ut−1) is
approximated by a constant k within the meaningful area L(n) given by

L(n) =
{

x(n)
t

∣∣∣ p(zt |x(n)
t ,m(n)

t−1) > ε
}

(B.1)

where ε is a user-defined threshold. Under this approximation, equation (4.8) can be reformu-
lated as

p
(
x(n)

t

∣∣∣ x(n)
t−1,ut−1, zt ,m(n)

t−1

)
≈

p
(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
∫

xt∈L(n) p
(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
dxt

, (B.2)

In [55], it is argued that equation (B.2) is still not suitable for efficient sampling. However, since
in most of the cases the observation model is a uni-modal distribution, thus, it is possible to
approximate the optimal proposal by a Gaussian function:

p
(
x(n)

t

∣∣∣ x(n)
t−1,ut , zt ,m(n)

t−1

)
≈N

(
µ(n)

t ,Σ(n)
t

)
(B.3)

where µ(n)
t and Σ(n)

t represent the mean and covariance matrices for the Gaussian distribution
respectively and given by

µ(n)
t = 1

η

K∑
j=1

x j p
(
zt

∣∣∣ m(n)
t−1, x j

)
, (B.4)

Σ(n)
t = 1

η

K∑
j=1

x j p
(
zt

∣∣∣ m(n)
t−1, x j

)(
x j −µ(n)

t

)(
x j −µ(n)

t

)T
. (B.5)

where the normalizer η is given by
∑K

j=1 p(zt |m(n)
t−1, x j ). In this way, a closed form approxima-

tion of the optimal proposal distribution is obtained which is suitable for sampling. Addition-
ally, by substituting the improved proposal in equation (4.7), the weights can be computed as

w (n)
t = w (n)

t−1

ηp
(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
p

(
x(n)

t

∣∣∣ x(n)
t−1,ut−1

)
p

(
xt

∣∣∣ m(n)
t−1, x(n)

t−1, zt ,ut−1

)
= w (n)

t−1

p
(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
p

(
x(n)

t

∣∣∣ x(n)
t−1,ut−1

)
p

(
x(n)

t

∣∣ x(n)
t−1,ut

)
p

(
zt

∣∣ x(n)
t ,m(n)

t−1

)∫
xt

p
(
zt

∣∣ x(n)
t ,m(n)

t−1

)
p

(
x(n)

t

∣∣ x(n)
t−1,ut−1

)
dxt

= w (n)
t−1

∫
xt

p
(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
p

(
x(n)

t

∣∣∣ x(n)
t−1,ut−1

)
dxt = w (n)

t−1k
∫

xt∈L(n)
p

(
zt

∣∣∣ x(n)
t ,m(n)

t−1

)
dxt

= w (n)
t−1k

K∑
j=1

p(zt |m(n)
t−1, x j ) = w (n)

t−1kη(n)

(B.6)
where η(n) is the same normalization factor that is used in the computation of the Gaussian
approximation of the proposal in equation (B.5).
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