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Abstract

Optical tomography is used for noninvasive imaging of biological samples in microscopy. Light
propagation in complex media is a difficult process to analyze and control. A key challenge is to
identify a significant parameter which describes the inhomogeneous scattering in tissue, called the
refractive index.

In literature it has been shown numerically that one can reconstruct the refractive index distribution
via a beam propagation model and convex optimization. Major obstacles for accurate reconstruc-
tion are an increasing sample depth and a limited field of view. Hence, it is essential to tackle the
ill-posedness and nonlinear dependence in the refractive index estimation.

This thesis introduces regularized variational methods for the non-convex refractive index estima-
tion problem. To achieve accurate reconstructions, state-of-the-art stochastic and non-convex splitting
methods are introduced for this problem and compared in realistic numerical simulations.
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Chapter 1

Introduction

In microscopy, the main task is to observe, study and control microscopic objects and systems. The
type of microscope used to do this depends on the object or the system in question mainly because of
its nature. In biomedical applications, for example, low frequency light is used for illumination since
it is less scattering. For imaging purposes, the scattering process through the medium needs to be
understood in terms of a model if one is interested in reconstructing the scattering object. Further, the
propagation of light in scattering medium is itself an interesting topic of study.

The propagation of light can be described by the composition of the medium. A homogeneous
medium is a medium with constant density. In the simple setting where a light wave propagates from
one homogeneous medium to another with a different refractive index, it experiences a change in its
path and in its speed. Figure 1.11 gives a geometrical interpretation of the phenomenon. To this end
let the speed of light in vacuum be c and the speed in the given medium (with an uniform density
distribution) be vmedium. The ratio by represented by n, is given by

n =
c

vmedium
(1.1)

is called the refractive index of the medium with respect to vacuum. Thus, an inhomogeneous
medium can be considered to be a distribution of refractive indexes. When light propagates through
such a medium the varying distribution of refractive index causes multiple scattering of the light wave.
In the latter case when the knowledge of refractive index distribution is absent one can use wavefront
shaping to focus light through the medium [1][2]. By focusing light inside the medium one can derive
many applications such as imaging, focusing and the propagation of light in inhomogeneous medium
is itself interesting in its own right.

1Image taken from Wikipedia. See Appendix for link.
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Figure 1.1 Refractive index.As light encounters a new medium with there is change in its and speed
given by the relation in Eq.(1.1).

1.1 Overview of the problem

The goal of this study is to reconstruct the refractive index distribution of a given sample by illuminat-
ing it with light. We discuss step by step the necessary elements that are required to explain the setup
and describe the process of reconstruction.

Tomography

In the field of imaging science, tomography is the process of reconstructing a 3D object by looking
at 2D images from various directions. The process of acquiring such 2D images can be done by
allowing some wave to penetrate through the object and measuring the response. The reconstruction is
done using the response to recover the essential characteristics of the object which cannot be directly
identified. For example, in computed tomography, which is widely used in medical applications, the
X-ray source and the detector are moved about the object collecting 2D images. Using these 2D images
a volumetric image is computed. In our work we use plane waves2(here and after, treated as scalar
waves) for illumination. More specifically we use light waves of near-infrared3 wavelength for the
illumination. The sample medium, which is illuminated, is assumed to represent an inhomogeneous
medium, such as a biological tissue.

Diffraction

In microscopy, since objects are of the order 10−6m, the wave property of light cannot be ignored and
we have to take in account the behavior of light at this scale. The bending of a wave around the edge
of an obstacle as it passes around it, is called diffraction. Diffraction is exhibited by all waves. Figure

2See Chapter 2 for definition.
3Near-infrared wavelength: 700nm - 2500nm.
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1.24 shows the diffraction effect observed when a scalar wave passes through a wavelength-sized
slit. It is very interesting to see how the slit acts like a point source for the resulting diffracted wave.
Thus, for microscopic objects, when illuminated with light of near-infrared, diffraction effects become
prominent.

Figure 1.2 Diffraction of a scalar plane wave passing through a small slit.

Motivation

The motivation for approaching the problem of reconstructing refractive index distributions arises
mainly for biomedical applications. Here, one usually uses Diffraction tomography with Born or
Rytov Approximation, which is based on the Fourier Diffraction Theorem. A detailed treatment can
be found in [3]. In this study we take a completely different approach, based on a work recently done
in [4].

In [4] the authors use the Beam propagation method (BPM) for simulating propagation of light
with a given 3D refractive index distribution. The method lies in the simplicity of the model, where
one ignores the absorption and the reflection, considering only the forward propagation. Further, one
can split the propagation step of the input wave field and perform an equivalent backpropagation step
(the adjoint) to the output wave field. The details of the front propagation and back propagation are
described in Chapter 2.

In our work we aim to improve upon the method, particularly involving the optimization methods.
In [4] the authors assume that the objective function that is being optimized is convex in the refractive
index. We drop this assumption and apply a recently developed non-convex optimization method [5]
to optical phase tomography (using BPM) for the first time.

4Image taken from Wikipedia. https://commons.wikimedia.org/wiki/File:One_wave_slit_diffraction_
dirichlet_bw.gif.

 https://commons.wikimedia.org/wiki/File:One_wave_slit_diffraction_dirichlet_bw.gif 
 https://commons.wikimedia.org/wiki/File:One_wave_slit_diffraction_dirichlet_bw.gif 
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1.2 Research Goals

Figure 1.3 Setup showing light wave propagating through a medium containing small beads having
different refractive index.

From the given wave propagation of light, we use convex and non-convex optimization methods
to compare the reconstruction accuracy. It is expected that the non-convex optimization methods are
better than the convex techniques, in the sense of accurate structural reconstruction. Further, we want
to answer the following research questions;

1. : What is the relation between thickness of the sample and the quality of reconstruction?

2. : Which optimization model shows promise for the best reconstruction?

1.3 Organization

The organization of the document is as follows; in Chapter 2 we discuss the necessary theory, proper-
ties of the model and derive tools which will be used later in the chapters In Chapter 3 we discuss
convex optimization methods, namely Gradient descent and Stochastic Gradient descent. Next, in
Chapter 4 we see non-convex optimization methods and note down important definitions and concepts
which will be required. In Chapter 5 we compare the results of all the optimization methods and
discuss their behavior. Finally, we conclude by an outlook on the results and what can be done in the
future.

In the Appendix one can find definitions of convex, Fourier transform and subdifferential, which
are used.



Chapter 2

Model

To approach the problem reconstructing the refractive index we need a model. The model should have
explicit dependence on the refractive index. Further, we also want the model to produce the correct
output given an input. In the theory of inverse problems, there are two major classifications; forward
problem and inverse problem. The forward problem consists of determining the mapping which gives
the correct output. The inverse problem consists of determining the causal factors of a given output.

To begin with, we look at the forward model, the Beam Propagation Method (BPM). Then, we
move to the Inverse problem and derive necessary tools used in later chapters. Finally, we discuss the
problem setup and an overlook of the reconstruction procedure.

2.1 Forward model

Given a process which is defined by a specific set of parameters and takes in some input, which is
assumed to be in the user’s control, the problem of getting the desired output from this process is called
the forward problem, see figure 2.1. In the context of this work, the process here is light propagation
through complex media. Therefore, if we can find a model which describes the propagation of light
through any medium then we have solved the forward problem.

Figure 2.1 Forward Problem
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Figure 2.2 Angular Spectrum Method

Now suppose we want to model the propagation of light through an inhomogeneous medium
which is described a refractive index distribution in space. For this we need to calculate how the
light behaves at each of these points in space. This is accomplished by BPM which uses the angular
spectrum method (ASM). Given any plane wave field (scalar), ASM allows one to propagate it through
a homogeneous medium.

Angular Spectrum Method

Planes waves can be thought of as the field generated by a point source located at infinity. Thus, field
points in the plane perpendicular to the direction of propagation will correspond to the same phase.
Hence, one can denote a plane wave as,

Eplane = ei(k·r)

Here, k is the wave vector and r is the position vector. The wave vector is related to the wave number
by, k2

x + k2
y + k2

z = k2
0 and k0 =

2π

λ
.

The Angular spectrum method by which one can propagate a plane wave through a homogeneous
medium (described below). The process can be mathematically written as follows:

1. Given Ein, Fourier transform it,

Ẽin = FEin (2.1)

Ẽin(kx,ky,z0) =
∫ ∫

Ein(x,y,z0)eikxx+ikyydxdy (2.2)

where F is the 2D Fourier transform.
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2. Propagate in the z direction by z1 amount,

Ẽ(kx,ky,z1) = eikzz1Ẽin(kx,ky,z0) (2.3)

kz is computed through the relation kz =
√

k2
0n2

avg − k2
x − k2

y . Here, navg is the average refractive
index of that phase screen.

3. Apply inverse Fourier transform,

E(x,y,z1) = F−1Ẽ(kx,ky,z1) (2.4)

From here on we will denote the above steps by P.

Beam Propagation Method

When the waves enter the complex media they experience scattering. These scattered waves become
more disordered as we go deeper in the medium. To model this scattering we can represent these
particles by their refractive index. Since the media is continuous and disordered, to apply ASM we
discretize the media into a finite number of thin slices representing the distribution of refractive index
in that plane. To represent the scattering process in a single slice of thickness dz, we first propagate
half way ( dz

2 ), apply scattering and the propagate the rest of the half distance dz
2 . The process can be

represented as follows,

1. Propagate half way by a distance dz
2 ,

E(x,y,z0 +dz/2) = P 1
2
Ein(x,y,z0)

where P 1
2

denotes the half way propagation.

2. Apply scattering, eiϕ(x,y),

Escat(x,y,z0 +dz/2) = eiϕ(x,y)E(x,y,z0 +dz/2) (2.5)

where ϕ(x,y) = k0dz(navg −n(x,y)). Here, navg is the average refractive index of that slice and
n(x,y) is the refractive index distribution for that slice.

3. Propagate remaining half way,

Eout(x,y,z1) = P 1
2
Escat(x,y,z0 +dz/2)

Therefore, by assuming paraxial approximation (neglecting the reflected field) one can think of a
complex media being composed of M number of slices. Denoting each of the scattering processes
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described above by Bm, where the index m denotes the mth−slice, we have,

Bm(·) = P 1
2
eiϕmP 1

2
(·) (2.6)

We can assume that each of these M slices are of thickness dz, then the above process can be repeated
M times. Thus, the propagation through this media can be written as the following composition,

T(n; ·) :=BM · ...Bm · ...B1 (2.7)

Eout = T(n;Ein) (2.8)

Here, Eout denotes the model’s output field.

It is important to note all the assumptions that have been made about the model and see the
limitations which follow. This will enable us to carefully model the inverse problem.

Assumptions:

1. Paraxial approximation: The BPM model is obtained by assuming paraxial approximation
when solving the Helmholtz equation. A detailed derivation of the BPM model is given in [6].
To simulate the propagation of a wave through a media exactly (analytically) one uses the Born
or the Rytov approximation.

2. Another effect that is neglected is absorption by the media. In the case of biological tissues the
absorbed light maybe released as vibrations.

3. The refractive index values should not change abruptly in consecutive slices.

Consequences:

1. Assumption 1 implies we ignore the reflections and consider only the forward propagation.

2. Assumption 2 tells us there is no absorption, hence there is only scattering. This makes the
model unitary, that is, TT† = T†T = I.

3. Assumption 3 implies the number of slices due to discretization has a lower limit. A detailed
analysis on this can be found in [6].

Now, the important properties of the BPM model will be listed out.. Here the model is denoted by
T(n;E).
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Figure 2.3 Inverse Problem

Properties:

1. T(n;E) is linear in E for fixed n.

2. For a fixed E T(n;E) is non linear in n

3. The consequence 2, that is by neglecting the absorption factor, T(n; ·) becomes unitary. This
can be seen in the description given in Eq.(2.7).

Before we proceed further lets summarize the effect of change in the refractive index when a
plane wave propagates through it. Eq.(2.5) tells us that each voxel of refractive index causes a phase
delay in the plane wave’s phase. Thus, given a plane wave and a 3D refractive index distribution, as
the plane wave propagates through this distribution it undergoes a series of phase delays.

2.2 Inverse scattering problem

Inverse problems can be categorized into two classes of problems; inverse source problem(ISP) and
the inverse scattering problem. In the first one, ISP, when one is given the observations and the model,
the problem is to find the source, which is the causal factor of the observations. While in the inverse
scattering problem one deals with problem of finding the parameters that describe the model.

In the problem of reconstructing refractive index distributions, one usually uses diffraction tomog-
raphy, which involves solving the Helmholtz equation using Born or the Rytov approximation. But it
has been shown in [4], that using the BPM and error reduction method one can reconstruct refractive
index distributions. Thus, our inverse scattering problem is to use BPM and reconstruct the refractive
index distribution from observed complex field values.

The simplest way to approach is by minimizing the error between the measured field and the
computed field from the model. Thus, we aim to minimize the following over the refractive index
distribution,

min
n
{E :=

1
J

J

∑
j=1

∥∥T(n;Ein. j)−Emeas. j
∥∥2

2} (2.9)
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where T(n;Ein) is the model’s output, Emeas is the measured field. The term in Eq.(2.11) is called the
data fidelity term. Therefore, the goal of the inverse scattering problem is to reconstruct the T map
from the field measurements.

Ill-posedness

In the study and the application of inverse problems, the concept of regularization plays a major
role. It allows one to use the prior knowledge about the problem, such as constraints on the problem
which do not explicitly occur in the data fidelity. Before we discuss regularization we first look at
the ill-posedness of a problem. A problem is said to be well-posed if it satisfies the following three
conditions;
The problem

1. has a solution (Existence)

2. has a unique solution (Uniqueness)

3. has a small change in the solution when there is a small change in the initial condition (Stability)

Thus, a problem is said to be ill-posed if it fails to satisfy any one of the above following criteria. In
practice most inverse problems are ill-posed. One can also define the degree of ill-posedness of a
given problem and make appropriate assumptions for the reconstruction. A good introduction and
detail can be found in the work, [7]. We will not discuss the degree of ill-posedness of the BPM model.

Clearly, our problem is ill-posed. First, propagation of light is described by the Helmholtz equation
and since the BPM model is an approximation, an unique solution does not exist. That is, one can
make a small change in the refractive index and still get the same outcome. Next, in tomography one
usually faces the problem of field of view. Here, one is limited by the amount of measurements one
can make. For example, in microscopy, for an noninvasive procedure one can only make observations
from the surface. Thus, for a perfect reconstruction one would ideally require a complete set of
observations from all the possible angles.

Regularization

The cause of ill-posedness can be due to many reasons such as; restriction in measurement parameters,
availability of limited data, noise, etc. To tackle the general problem of reconstruction one uses some
known information about the system, which is not explicitly present in the reconstruction process, and
tries to optimize along the main reconstruction problem, see Eq.(2.11). This additional term which
is added to the data fidelity is called the Regularization term and the coefficient of it is called the
regularization parameter.

In our study we only use the total variation regularizer, since the phantoms we simulate have
smooth edges.
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Figure 2.4 Discretization of sample into M slices.

Total Variation (TV)

The main idea of applying a total variation regularizer is to resolve the sharp boundaries. If one
has the knowledge that the original system has objects with sharp boundaries (assuming that the
reconstruction is done for imaging), then it makes sense to minimize the total variation in the image
(reconstruction). Mathematically,

R(n) =
∫

|∇n| (2.10)

In this work, we will use an approximation of the gradient of TV since it is not well-defined.

With the above the addition the problem to be optimized becomes,

min
n
{E :=

1
J

J

∑
j=1

∥∥T(n;Ein. j)−Emeas. j
∥∥2

2 +αR(n)} (2.11)

2.3 Problem setup

To realize this problem we describe the setup of acquiring the output leaving out the experimental
details. That is, all the components of the process which have mathematical significance for the
optimization procedures. In similar scenarios where the analysis can be done the without the explicit
need for the instruments and devices, the methods are called device-independent methods.

Here we describe the how we assign the refractive index in the slices, a collection of these slices
represent a physical sample with the refractive index distribution of a given thickness, see Figure 2.4.
In Figure 2.5 ∆n(x,y,z) denotes the difference between the refractive index at the position and the
background. In the BPM model, this is calculated as the difference between the refractive index at that
position and the average of the whole slice. Therefore, by continuing this for all the slices we have a
refractive index distribution. Figure 2.6 shows the schematic of the whole optimization process.

The parameters that we have control on are :
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Figure 2.5 Figure showing the realization of refractive index distribution in the BPM model.

1. Input plane wave

2. Beam propagation method, here the input plane wave can be propagated forward through a
specified refractive index map. One can backpropagate the wave, which is mathematically the
adjoint of the forward operation.

3. Refractive index distribution of the object which is updated at iteration step of the optimization
procedure.

2.4 Tools

Dependence on n

The BPM model explicitly depends on the refractive index distribution. In our study we use gradient
based methods, so it will be useful to calculate the gradient of the fidelity which will be used in the
later chapters. To begin with, let the media be discretized in to M number of slices with each slices
containing L×L entries (2D array), see Figure 2.4 and fig:rimap. Expressing it in the vector form, we
have, nm = (nm,1.....nm,L×L) we can write,

∂E1

∂nm
=



∂E1
∂nm,1

.

.
∂E1

∂nm,l

.

.
∂E1

∂nm,L×L


(2.12)
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The above entries, where m ∈ {M} and l ∈ {L×L}, are given by,

∂E1

∂nm,l
=

1
J

J

∑
j
[
∂E†

out, j

∂nm,l
(Eout, j −Emeas, j)+(Ēout, j − Ēmeas, j)

∂Eout, j

∂nm,l
] (2.13)

=
1
J

J

∑
j

[
2Re

{
(Ēout, j − Ēmeas, j)

∂Eout, j

∂nm,l

}]
(2.14)

Re denotes the real part, ·̄ denotes complex conjugate.

Recall that Eout. j is the jth output of the BPM and Emeas. j is the jth measured field. Then the
differential of the output field of the BPM w.r.t the lth component of the jth observation, i.e. ∂Eout, j

∂nm,l
is

∂Eout, j

∂nm,l
=

∂

∂nm,l
(AkP 1

2
eiϕmP 1

2
Cm−1Ein, j) (2.15)

=AmP 1
2
(
∂eiϕm

∂nm,l
)P 1

2
Cm−1Ein, j (2.16)

=AmP 1
2
(ieiϕ l

m)P 1
2
Cm−1Ein, j (2.17)

where c is a constant, which is ignored from here on, and with

Am =
M

∏
m
Bm

Cm =
m

∏
1
Bm

where Bm is defined as earlier in Eq.(2.6).

Now following from Eq.(2.14), the lth component is given by,

∂E1

∂nm,l
=

1
J

J

∑
j

[
2Re

{
(Ēout, j − Ēmeas, j)AmP 1

2
(ieiϕ l

m)P 1
2
Cm−1Ein, j

}]
(2.18)

The term in the real part above can be written in the inner product form as

(Ēout, j − Ēmeas, j)AmP 1
2
(ieiϕ l

m)P 1
2
Cm−1Ein, j = ⟨AmP 1

2
(ieiϕ l

m)P 1
2
Cm−1Ein, j , Eout, j −Emeas, j⟩

= ⟨AmP 1
2
(ieiϕ l

m)P 1
2
Cm−1Ein, j , AmCm−1Ein. j − (AmA

†
m)Emeas. j⟩

= ⟨P 1
2
(ieiϕ l

m)P 1
2
Cm−1Ein, j , Cm−1Ein. j − (A†

m)Emeas. j⟩
(2.19)
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Thus, Eq.(2.18) becomes,

∂E

∂nm,l
=

1
J

J

∑
j

[
2Re

{
⟨P 1

2
(ieiϕ l

m)P 1
2
Cm−1Ein, j , Cm−1Ein. j − (A†

m)Emeas. j⟩
}]

(2.20)

The above term should be equal to zero for all m ∈ {M} and l ∈ {L×} for optimality. Here, A†
m is

the Hermitian adjoint of the forward propagation, which represents the backpropagation part of the
model.

TV approximation

The TV regularizer is not differentiable a function. Further, for the BPM model it is not possible to
derive a primal-dual formulation, hence we need to use an approximation of the TV regularizer. We
can do the approximation by adding a small positive number, ε > 0 to the TV term.

Rε(n) =
∫ √

|∇n|2 + ε

To calculate the gradient, we treat each slice as a 2D image, then use the in-built MATLAB function
imgradient()1. The differential of the TV approximation is then given by,

∂Rε(n)
∂n

= ∇· ∇n
|∇n|+ ε

1https://nl.mathworks.com/help/images/ref/imgradient.html

https://nl.mathworks.com/help/images/ref/imgradient.html
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Figure 2.6 Schematic for reconstructing the refractive index distribution using BPM.





Chapter 3

Convex Optimization

The most common optimization approaches are done in the convex setting. This is primarily because
the convexity of a continuous (at least piecewise) functions guarantees the convergence to an optimal
solution. In this chapter we first assume that the given objective function is convex, this is called
convex relaxation. Next, we use the gradient derived in Chapter 2 to perform iterative gradient based
algorithm. We are well aware, that the problem of reconstructing the refractive index distributions is a
non-convex problem. Nevertheless, it is quite possible we get a solution which gives out a distribution
of the refractive index with some structural information. To begin with, motivated by [4], we perform
standard Gradient descent approach.

In this chapter we provide necessary elements for implementing convex optimization techniques,
namely Gradient Descent (GD) and Stochastic Gradient Descent (SDG). We start with the optimality
conditions required for the GD method. Then we formally state the GD method and the algorithm.
Next, we follow a similar procedure for SGD.

3.1 Optimality condition

By assuming the convex relaxation of the problem, Eq.(2.11), we use the following Lemma to arrive
at the optimality condition for applying gradient based methods.

Lemma 1 (Optimality Condition) Let f : R → R be a convex and differentiable function. Let
Ω ⊂ Rd be convex. Then x is an optimal solution for the convex problem,

min f (x) such that x ∈ Ω

if and only if x ∈ Ω and

∇ f (x)T (y− x)≥ 0 ,∀y ∈ Ω
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Therefore, for x ∈ Ω and is an optimal solution, then we must have ∇ f (x) = 0. Then the condition for
optimality can be deriveds by setting the gradient of the objective, Eq.(2.11), w.r.t the refractive index
to zero.

∂E(n)
∂n

= 0

To this end, as per the model, the discretization of the medium is done such that each of the slice is
further discretized into a 2D array representing the refractive index distribution of that slice. Thus, the
gradient for that entry is given by the following steps:

3.2 Gradient descent

We want minimize the objective function eq.(2.11),

min
n≥1

{E(n) :=
1
J ∑

j

∥∥T(n)Ein. j −Emeas. j
∥∥2

+αRε(n)} (3.1)

where R(n) is the regularization term.
With the optimality condition, the gradient descent for the pth iteration can be formulated as follows,

np+1 = np − γ
∂E

∂np
(3.2)

where γ is a constant and denotes the step-size.

Assuming that the gradient approaches zero, it is also necessary that the step sizes are optimal.
This can be controlled by choosing the step-size. One way to choose the step-size at every iteration is
by calculating the Lipschitz constant of the gradient.

Definition 3.2.1 (Lipschitz continuity) Let X ,Y be two real vector spaces. A function f : X → Y is
called Lipschitz continuous if there exists a constant K > 0 such that the following holds,

|| f (x1)− f (x2)|| ≤ K||x1 − x2|| ∀x1,x2 ∈ X

K is called the Lipschitz constant.

Theorem 1 Let f : Rd → R a convex and differentiable function with its gradient being Lipschitz
continuous, K > 0. Then if we run the gradient descent for p iterations with a fixed step size γ such
that γ ≤ 1

K , it will converge to a solution f (p) satisfying,

f (x(p))− f (x∗)≤
∥∥x(0)− x∗

∥∥2
2

2γ p
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where f (x∗) is the optimal solution.

Proof: For proof one can see [8].

From the above definition and the explicit expression of the gradient we can calculate the Lipschitz
constant of the gradient as follows:
The gradient is taken with respect to each (scalar) n1m,l and n2m,l . For the sake of simplicity lets
denote them as n1 and n2. So for a fixed jth single plane wave and from eq.(??) we have,∥∥∥∥∂E1

∂n1
− ∂E1

∂n2

∥∥∥∥= ||Re{⟨P1
2
(i(eiϕ1 − eiϕ2)P1

2
Cm−1Ein, j , (Cm−1Ein, j − (A†

m)Emeas, j)⟩}|| (3.3)

where ϕ1 = k0dz(n1avg−n1) and ϕ2 = k0dz(n2avg−n2). Note that the inner product is taken w.r.t each
of the component (m, l), so the exponentials can be treated as scalars for each of the inner product.∥∥∥∥∂E1

∂n1
− ∂E1

∂n2

∥∥∥∥= ||Re
{
(i(eiϕ1 − eiϕ2)⟨P1

2
Cm−1Ein, j , P†

1
2
(Cm−1Ein, j − (A†

m)Emeas, j)⟩
}
|| (3.4)

Now to simplify calculations further denote,

Cm−1Ein, j = zm−1

P1
2
Cm−1Ein, j = zm− 1

2

P†
1
2
(A†

m)Emeas, j = wm+ 1
2

∥∥∥∥∂E1

∂n1
− ∂E1

∂n2

∥∥∥∥= ||Re
{

i(eiϕ1 − eiϕ2)[|zm−1|2 −⟨zm− 1
2
,wm+ 1

2
⟩]
}
|| (3.5)

≤ K · |ϕ1 −ϕ2| (3.6)

where K =
∣∣∣Re

{
⟨zm− 1

2
,wm+ 1

2
⟩
}∣∣∣+ ∣∣∣Im{

⟨zm− 1
2
,wm+ 1

2
⟩
}∣∣∣+ ∣∣|zm−1|2

∣∣ is calculated for each gradient
step. The above can be proved simple but tedious inequalities involving complex numbers. Thus, if
one chooses a step size such that γp = min{1, β

K}, where β is a constant, then the convergence to a
critical point is optimal.

The Gradient descent can be written in the pseudocode as follows:
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Algorithm 1 GD
1: procedure GRADIENT DESCENT

2: Initialize n = n0, tolerancelevel = tol
3: while error > tol do
4: for j=1 : J do
5: Choose γ j = min{ 1

K ,1}
6: Calculate γ j

∂E(n;E j)
∂n )

7: Update n = n− 1
J ∑

J
j=1 γ j

∂E(n;E j)
∂n )

8: Calculate Error between measured and computed field.

9: return n and error

where K is the Lipschitz constant calculated for each of the observation.

3.3 Stochastic gradient

The stochastic gradient method can be viewed as an approximation to the standard gradient descent
method. The basic idea is to randomly choose the gradient of different observations (called batches)
and perform the gradient descent method. This is done in the view that the total gradient of all
observations contains redundancies and by choosing small subset of those one can approximate the
gradient. Suppose we choose a batch of size |G| from J observations the minimization problem
becomes,

min
n≥1

{E2(n) :=
1
G ∑

j=1
||T(n)Ein. j −Emeas. j||2 +αRε(n)} (3.7)

Then the update is given by

np+1 = np − γ
∂E2

∂np
(3.8)

This procedure, although similar, has a different convergence behavior than the standard gradient
descent. Further, in terms of converging speed to the optimal solution, we will see how it affects the
convergence.
Similar to the previous section we adopt the Lipschitz constant for the adaptive step size.
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Algorithm 2 SGD
1: procedure STOCHASTIC GRADIENT DESCENT

2: Initialize n = n0, tolerancelevel = tol
3: while error > tol do
4: Randomly choose G ⊂ J
5: for j=1 : G do
6: Choose γ j = min{ 1

K ,1}
7: Calculate γ j

∂E(n;E j)
∂n )

8: Update n = n− 1
G ∑

G
j=1 γ j

∂E(n;E j)
∂n )

9: Calculate Error between measured and computed field.

10: return n and error





Chapter 4

Non-convex Optimization

Most application based problems where optimization techniques are used assume convexity at some
level. This leads the optimization problem to get stuck in a local minima. There are however methods
to avoid getting stuck in local minima, such as the Heavy-ball method [9]. But, even there methods
do not guarantee convergence to the optimal solution.

Before we proceed further it is important to note the nature of non-convexity which is used to
design the optimization techniques for a given problem. The nature of non-convexity of a problem
can be explicit or implicit. More specifically, it would be a good step if one can identify the variables
responsible for the non-convex behavior. Then one can split up the problem in those variables and
solve the problem. In the case that the nature of non-convexity is implicit, one is aware of the
non-convexity of the problem but finds it difficult to identify similar variables responsible for the
non-convexity. Then, one requires a different approach to such problems. Recently there have been
developments in the methods for optimization of non-convex and nonsmooth functions [5].

Organization: We will first note the basic and the most important definition used in formulating
the PALM technique [5], the proximal mapping. Then, we go on to an important property which
covers the class of those non-convex-nonsmooth functions over which the PALM technique can be
applied so as to get an optimal solution. This is namely the KL property. Moving on, we state the
PALM algorithm and note the minimal assumptions satisfied by the objective function.

4.1 Non-convex approach

We first begin with addressing the explicit non-convexity part. From the model it is clear that the
relationship between the model and the refractive index is nonlinear and its dependence is non-convex.
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We address our original problem by stating it in a different way, that is,

min
n(J)≥1

{.... min
n(1)≥1

{τ

∥∥∥T(n(·),Ein. j)−Emeas. j

∥∥∥2
+αRε(n)}....} (4.1)

It is very important to notice the difference between Eq.(4.1) and Eq.(3.1). In the latter one, which is
the standard gradient descent over all the observations, the update for the new refractive index in the
iterative procedure is the average of all the gradients. While in Eq.(4.1), we are trying to solve the
minimization problem for each observation. That is, we solve a sequence of optimization problem
where each optimization problem depends on the previous update.

Writing down the pseudocode

Algorithm 3 NC
1: procedure NON-CONVEX APPROACH

2: Initialize n = n0, tolerancelevel = tol
3: while error > tol do
4: for j=1 : J do
5: for m=1 : M do
6: Choose γ j = min{ 1

K ,1}
7: Calculate γ j

∂E(n;E j)
∂nm

)

8: Update n = n− γ j
∂E(n;E j)

∂nm
)

9: Calculate Error between measured and computed field.

10: return n and error

4.2 Proximal alternating linearized minimization (PALM)

In order to apply PALM we need to identify a auxiliary variable, other than the refractive index,
which can be used to minimize the objective function. First we make the observation from the convex
method that for each slice the gradient of the objective is dependent on the complex field which has
propagated through the previous layers. Therefore, for a correct update of the refractive index one
has an implicit assumption that the above mentioned complex field is correct. The argument for the
correction of the complex field thus applies to all the slices. The motivation for this comes from an
approach used in [10]. In [10], the authors use a method similar to BPM, called multislice approach
[11], to model the propagation of light. Thus, they make use of the multislice approach to correct for
the abberations in the field in between the slices.

Further we note the similarity between the of blind deconvolution and the BPM model. This
is mainly because of the scattering effect. Thus, each propagation and scattering operation can be
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thought of as blurring of the input wave.
Following [12], we restate our problem.

min
n≥1,u

H(n,u) := f1(n)+ f2(u)+ ||T(n;u)−umeas||2 +κ1Rε(n), n ∈ RN×N×N
+ ,u ∈ R2(N×N)×R

(4.2)

such that the initial incident plane wave u(x,y,0) = Ein. Further, we take f1(n)≡ 0 and f2(u)≡ 0.

Next, there are two important properties that the objective function, H(n,u), must satisfy in order
for the PALM method to be applicable; H(n,u) must be (partial) Lipschitz continuous and should
satisfy the Kurdyka-Lojasiewicz (KL) property. We note the definition of these.

Proximal operator

We begin the section by introducing the proximal operator. Many gradient based optimization methods
rely on the concept of projecting the gradient update onto a set which has certain desired properties
based on the optimization problem. This set can be defined by a function, called the proximal operator.

Definition 4.2.1 (Proximal Operator) The proximal operator of a convex function, σ : X → R, is
defined as the map,

proxσ
t : X → X , proxσ

t (w) = argmin
x

{σ(x)+
1
2t
∥w− x∥2} (4.3)

where t > 0.

This operator can be seen as a generalization of the projection operator. Note that for σ ≡ 0 the
proxt(np − ∂E

∂n ) we get our standard gradient descent method.

We follow [12] to define the KL property.

Kurdyka-Lojasiewicz(KL) property:
For η ∈ (0,∞] define the class of desingularizing functions as,

Φη ≡

ϕ ∈C[[0,η),R+] such that


ϕ(0) = 0

ϕ ∈C1 on (0,η)

ϕ ′(s)> 0 ∀s ∈ (0,η)

(4.4)
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A function g is said to satisfy the KL property at ū ∈dom ∂g if there exist η ∈ (0,∞], a neighborhood
U of ū and a function ϕ ∈ Φη , such that,

∀u ∈U ∩ [g(ū)< g(u)< (g(ū)+η)]

the following holds

ϕ(g(u)−g(ū))dist(0,∂g(u)≥ 1) (4.5)

where for any subset S ⊂ Rd and any point x ∈ Rd

dist(x,S) := inf ||x− y|| : y ∈ S

We assume that our objective function, eq.(2.11), satisfies the KL property.

Assumption A :

i f1 : RN×N → (−∞,∞] and f2 : R2(N×N) → (−∞,∞] are proper and lower semi-continuous
functions such that infRN×N f1 >−∞ and infR(N×N) f2 >−∞

ii Let H(n,u) = ∥T(n,u;Ein)−umeas∥2 +αR(n). Then, H(n,u) is differentiable and inf{H}>
−∞.

iii For fixed u the function n 7→H(n,u) has its partial gradient to be Lipschitz continuous. That is,

||∇nH(a,u)−∇nH(b,u)|| ≤ K1(u)||a−b||, ∀a,b ∈ RN×N (4.6)

Similarly, for fixed n the function u 7→H(n,u) has its partial gradient to be Lipschitz continuous.

iv For j = 1,2 there exists σ
−
j ,σ

+
j > 0 such that

inf{K1(u) : u ∈ B2} ≥ σ
−
1 and inf{K2(n) : n ∈ B1} ≥ σ

−
2 (4.7)

sup{K1(n) : u ∈ B2} ≥ σ
+
1 and sup{K2(n) : n ∈ B1} ≥ σ

+
2 (4.8)

for any compact set B1 ⊆ RN×N and B2 ⊆ R2(N×N).

v ∇H is Lipschitz continuous on bounded subsets of Ω1 ×Ω2. (Ω1 ⊂ R(N×N), Ω2 ⊂ R2(N×N))

We further assume that the objective function satisfies the above assumptions. Now we calculate the
partial Lipschitz constant with respect to the field.
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Let uin the incident plane wave and um be the field after scattering through the mth slice,

∇umH = ∇um∥T(n,uin)−umeas∥2

= ∇um∥CMuin −umeas∥2

= ∇um∥Am+1um −umeas∥2

=A†
m+1(Am+1um −umeas)

where we used the derivative as in Wirtinger calculus, [13]. Let u(1)in and u(2)in be two incident wave
which have only a small phase difference and, u(1)m and u(2)m be the two wave after scattering through
the mth slice, then we can assume that measured complex fields are quite close. Let the difference be
u(2)meas −u(1)meas = δ . Then we have,∥∥∥∇

u(1)m
H−∇

u(2)m
H
∥∥∥=

∥∥∥A†
m+1(Am+1u(1)m −Am+1u(2)m +δ )

∥∥∥
≤
∥∥∥A†

m+1(Am+1u(1)m −Am+1u(2)m )
∥∥∥+∥∥∥A†

m+1δ

∥∥∥
Since ∥·∥2 is unitary invariant and the operator norm of an unitary operator is 1 we have,∥∥∥∇

u(1)m
H−∇

u(2)m
H
∥∥∥≤ c

∥∥∥u(2)m −u(1)m

∥∥∥ (4.9)

where c > 1. Since u lies in the complex field, we can assume it to be in the 2D real space (since C and
R2 are isomorphic). Thus, the gradient is equivalent to taking the gradient with respect its components
(real and imaginary). We explicitly calculated the gradient w.r.t the refractive index in Chapter 2 along
with its Lipschitz constant. And it is easy to see that the other assumptions are satisfied as well.
We now state the PALM algorithm

Algorithm 4 Proximal Alternating Linearized Minimization

1: procedure PALM
2: Initialize n = n0, u = uin, tolerancelevel = tol
3: while error > tol do
4: t = t +1
5: for j=1 : J do
6: for m=1:M do
7: Choose γ1 > 1,τt = γ1K1(ut

j)

8: nt+1
m ∈ prox f1

τt {nt
m − 1

τt

∂H(zt
1,u

t)
∂n }

9: Choose γ2 > 1,ω1 = γ2K2(nt+1
m )

10: ut+1
j ∈ prox f2

ωt{ut
j − 1

ωt

∂H(nt+1
m ,ut

j)

∂u }

11: Calculate Error between measured and computed field.

12: return n and error
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The algorithm basically does two things; update the refractive index and correct the field. To
update the refractive index we calculate the gradient as we did in Chapter 2. And now to update the
field as we do as follows; since the incident wave is a plane wave, it can be represented by a single
point in the frequency plane. See figure . As this plane wave passes through a sample with varying
refractive index, one can see the amount of scattering that occurs by looking at the scattered wave in
the frequency plane. We write the update steps 8 as follows,

nt+1
m = nt

m − 1
τt

∂H(zt
1,u

t)

∂nm

for the refractive index of the mth slice. Then, step 10 is given by,

y = F(ut
j)−F(

1
ωt

∂H(nt+1
m ,ut

j)

∂u j
)

ut+1
j = F−1(y)

for the jth observation after scattering through the mth slice.

4.3 Remarks

We would like to highlight the resemblance between the PALM method and the non-convex approach.
The PALM method is based on two elements; by breaking the problem into blocks and using proximal
steps to make the updates. While, the non-convex approach was introduced on the basis of the nature
of minimization. But, the non-convex approach can be seen in the PALM formulation as follows.
Every set of two consecutive slices in the BPM model which represent the refractive index distribution,
can be considered to be two blocks. These two blocks are updated such that the update for the second
block depends on the update for the first block. This is basically the PALM method.



Chapter 5

Results and Discussion

We start this chapter by describing the phantom data and its details. Then, we present the main results
of this study. With the given results we analyze them by addressing our research questions. Finally,
we draw conclusions based on the analysis.

Phantom Data and Parameters

In all our simulations we use phantom data created in MATLAB. The phantom data represents a
collection of small beads of diameter 4-20 µm. These beads are supposed to represent biological
cell suspended in a medium of refractive index of 1.36. So the background index is about 1.36. The
beads themselves have two parts; a core and a shell (refractive index 1.385-1.41). The choice of
the refractive index in the range 1.385-1.41 is motivated from [14]. Next, we use plane waves of
wavelength 0.6328 µm. We take 64 observations with angles in the z-direction ranging from −45°
to 45° and 0°−360° in the xy-plane. The thickness of the sample is chosen from 30 µm to 85 µm.
Further, the spacing between the slices, that is the size of discretization of the sample, is 0.20 µm. In
all our simulations we use the TV regularization with α = 0.0003.

5.1 Research Goals

Recalling our research goals, from Section 1.2, we address the following questions:

Q1 : What is the relation between thickness of the sample and the quality of reconstruction?

Q2 : Which optimization model shows promise for the best reconstruction?

First, we need a systematic way to address Q1. There are two approaches through which we can
analyze the relationship between sample thickness and the quality of reconstruction. In both the
method we use the residual between the original phantom and the reconstructions. In the following
section we describe a metric to assess the quality of the reconstruction.
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Residual

Our phantom data and the reconstructions are 3D dimensional data sets. Then, the residual for such
a data set can be defined as follows; let noriginal be the original phantom data and the nrecon be the
reconstructed data. The residual between noriginal and nrecon can be defined as

rres =
∑

∣∣noriginal −nrecon
∣∣

M×L×L

where the sum is taken over all the elements of the 3D array. M represents the number of slices and
the L×L represents the number of pixels for each slice.

As mentioned there are two ways we use the residual to analyze the quality of the reconstruction:

A1 : Residual of the refractive index distribution vs. increasing the thickness of the sample.

A2 : Residual of the refractive index distribution vs. the optimization method for different thickness.

We explore the above two methods in Section 5.2. In the following section we show some typical
results of our reconstructions.

Sample Reconstruction

In the following figure we show the reconstruction of a 50 µm thick phantom sample containing small
beads of 5-10 µm in diameter. The refractive index of the beads and the medium can been seen in the
values corresponding to the scale values. The pixel size is 256×256 and the dimensions of the cross
section of the sample are 100µm×100µm. The iterations were stopped at 40.

Figure 5.1(a) shows the original phantom data, while Figures 5.1(b)-(d) show the reconstruc-
tions. In Figure 5.1(b) it is interesting to see that using the standard gradient descent method, where
one takes the average of all the observations, the diffraction artifacts add up to produce a blurred image.

Figure 5.1(c) shows the reconstruction result by the non-convex approach. Compared to the
Gradient descent, the non-convex approach produces a far better reconstruction in terms of the
structure. Especially, the reconstruction around the edges is quite accurate. In terms of the refractive
index values, the approach has less effect in the background. Moreover, due to the padded boundaries
one can notice the diffraction artifacts caused by the edges. But since we know that the background
is smooth and have sharp boundaries for the beads, by applying the TV regularizer, we have an
improvement in the reconstruction for the background as well as the refractive index values.
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Figure 5.1 Images of original and reconstructed slices. The scale in the x-y directions show pixels. The size
of each reconstruction is 50 µm×50 µm. (a) Original Phantom. (b) Reconstruction using Gradient descent:
rres = 2.7× 10−3. (c) Reconstruction using non-convex approach. (d) Reconstruction using non-convex
approach and TV regularizer: rres = 1.3×10−3.
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5.2 Analysis

In this section the main goal is to address the quality of reconstruction, which is done in two ways, A1
and A2. To have a fair comparison we began all the reconstruction with same settings, that is, same
initial conditions and parameters. We also note that for a given sample to achieve a reconstruction of
optimal quality one needs to adjust the parameters and have good initial guess. In our comparison we
only take one data set for each thickness. This is mainly due to the computational time required for
the reconstructions. For a more accurate representation of the results one would require averaging
over many different structures. To begin with, we see the convergence behavior of the non-convex
approach and the Gradient descent.

5.2.1 Convergence Behavior

The following plot show the convergence and the difference between consecutive updates for a 50 µm
thick sample. The iterations are stopped at 15 iterations because the non-convex method becomes
parallel to x-axis.

The quality of reconstruction gives an idea about how well the reconstruction algorithms perform.
But, it is also necessary to see the convergence of total energy of the objective function. Figure 5.2
shows the energy w.r.t the number of iterations. The non-convex method’s energy quickly drops in
about 7 iterations, while the gradient is quite slow in terms of convergence. Apart from the decrease
in energy it is also fruitful to see the difference between consecutive updates. This difference in
consecutive updates would reflect gradient value. One would expect that at a critical point the gradient
is zero. Therefore, if the difference in the updates goes to zero, it suggests that the algorithm is near a
critical point.

From the Figure 5.3 one can see that the non-convex method has decreasing difference in updates
with the increase in number of iterations. Whereas, Gradient descent has almost no change in the
difference in the updates. This suggests that the non-convex method reaches a critical point quickly as
compared to the Gradient descent. This is an important point to note, since in the next section we
will discuss the sensitivity of the method to initial conditions, where the a good initial conditions is
required for the minimization problem to reach an optimum.
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Figure 5.2 Plot showing the drop in energy of the objective functions for non-convex approach (with TV
regularizer) and Gradient Descent method.
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Figure 5.3 Plot showing difference between consecutive updates after each iteration for non-convex approach
and Gradient Descent method.
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5.2.2 Residual Comparison

Before we proceed, it is important to mention few notes about the sample points plotted in the Figure
5.5. The reconstruction obtained through the non-convex approach results in some frames being
inverted. This is because of the non-convexity of the problem. To analyze this non-convex behavior
we look at the reconstructions with different initialization, i.e. with a different guess for the refractive
index map.

Sensitivity to initial conditions

Figure shows the result of reconstruction with different initialization. Here, it is quite interesting to see
that when periodic boundary conditions are applied the non-convex behavior is clearly visible. While,
the results in the previous section, where padded boundaries were applied, the resulting solution
was clearly better. But, with the padded boundaries induced lot of diffraction artifacts. The BPM
model requires the refractive index distribution for the simulation of light propagation. The iterative
procedure of reconstruction relies on the assumption that, at every step you get closer to the correct
value by updating the refractive index values. So, given a set of measurements one must have good
initial guess of the refractive index of the medium to begin with. Figure 5.4 shows the reconstruction
of a 50 µm thick sample with different initial guess for the background after a few iterations. In
the reconstructions Figure 5.4(a) and 5.4(d) , the reconstructions is not correct since the direction of
the update is wrong. While in Figure 5.4(c), the reconstruction is accurate in terms of the structure
and the direction of the updates. We also see some artifacts because of the limitation of number of
observations one can take.



5.2 Analysis 35

Figure 5.4 Reconstruction of a 50µm thick sample with different initialization of the background. The size of
the sample is 230 µm×230 µm (500 pixels) in the x-y plane. The axis show number of pixels. (a) Original. (b)
non-convex with initialization at 1.365. (c) Gradient descent with initialization at 1.365. (d) non-convex with
initialization at 1.36
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Residual vs. Sample Thickness

Figure 5.5 shows the graphs of residue between the original phantom and the reconstructions. The
first graph 5.5a shows the when one takes all the observation into account in every iteration, called
full batch. In the following we note the observation from the graphs.
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Figure 5.5 Graph showing the residuals for different optimization methods with increasing thickness.
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Residual vs Optimization method
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Figure 5.6
Graph showing the residual between the reconstructions and the original phantoms for different optimization

methods

In the graph, from Figure 5.6, we see that the residue for Gradient descent has the highest value.
And for the non-convex approach it is approximately 20% lower. This is also evident from the
reconstruction result, Figure 5.1. Further, by tuning the parameters we expect that it is possible to
achieve a lower residual.

Observations:

1. In Figure 5.5a, there is a drop in the residue from 70 µm to 85 µm. This is could be due to the
initial conditions and parameters settings as mentioned earlier. The non-convex optimization
has a lower residue for all the corresponding thickness.

2. In Figure 5.5b, we observe that the residues increases with increasing sample thickness.

3. There is almost no difference between the non-convex approach and non-convex with phase
correction. This is could be because of small step size of the phase correction term, which
results in having no visible change. Moreover, the if the step size is kept at zero the method is
same as the non-convex approach

Interpretation:

1. The quality of the reconstructions seems to decrease as the sample thickness increases.
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2. A solution for a better reconstruction could be by adapting both convex and non-convex method.
Here, one can begin the reconstruction with the Gradient descent and then use the initial step as
an initialization for the non-convex method.

3. Another solution could be by using clipping, that is, with some knowledge of the refractive
index one could restrict the refractive index to be contained in bracket.



Chapter 6

Conclusion

In this study we used the Beam Propagation Model to simulate light propagation through a given
refractive index distributions. Using this model we derived and implemented an algorithm for recon-
structing refractive index distributions from the measured complex field, obtained by shining light
through the sample.

We started this thesis by introducing the necessary motivation for studying the problem of recon-
structing the refractive index distribution and why we use the BPM model to solve it. We also note
that in practice one uses diffraction tomography based on the Born or the Rytov approximation. Then,
we discussed the necessary elements of the BPM model which was required for modeling the inverse
problem. It was mainly important in calculating the gradient, which was the main tool in all of our
reconstruction methods.

We introduced two methods for reconstructions; Convex Optimization and Non-convex Opti-
mization method. The Convex Optimization method was based on assumption that the objective
function that is being optimized is a convex one. But, as we saw in the results section the Convex
algorithm produces a blurred image. Whereas, by using the non-convex approach for formulating and
optimizing the functional, we achieved a better reconstruction.

Finally, in Chapter 5, we answered our research questions; the relationship between quality of
reconstruction and the sample thickness. To quantify the quality we introduced a metric, which
is the residual between the original phantom and the reconstruction. We saw that the quality of
reconstruction gets worse with increase in sample thickness. Further, we noted that in some slices of
the reconstruction the refractive index was inverted. This was because of the non-convex nature of the
problem. Then, we noted the importance of initial guess which is a crucial factor in the non-convex
optimization method and proposed a solution which could be useful in a better reconstruction.
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There are quite a few things that can be improved. By increasing the number of observations one
can improve the quality of reconstruction. To better establish the relationship between the sample
thickness and the reconstruction, averaging over more sample could be helpful. One can combine the
reconstruction algorithms studied in this thesis with wavefront shaping to achieve a faster and a better
reconstruction. By doing so one achieve many applications involving focusing of light and imaging
through the sample.
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Appendix A

Definition A.0.1 (Convex/Concave) Let C be a convex set, such that C ⊆ X where X is vector space.
A function f : C → R is called convex on C if,

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)

for all x,y ∈C and 0 ≤ λ ≤ 1.
If − f is convex, then f is concave.

Definition A.0.2 (Linear Map) Let V,W be two vector spaces of finite dimension. For L : V →W, L
is called linear if ∀v1,v2 ∈V we have,

L(av1 +bv2) = aL(v1)+bL(v2)

Definition A.0.3 (Fourier Transform) Let f : X → C such that f ∈ L2. Then the Fourier transform
of f , denoted F( f ) = f̂ , is given by,

F( f (x)) = f̂ (η) =
∫

∞

∞

f (x)e−iηxdx

We will usually deal with 2D-Fourier transform where the transform is taken in 2 dimensions and the
exponent, eiηx, is replaced by the dot product, eiη ·x.

Definition A.0.4 (Subderivative) Let V be real vector space. The subderivative of a convex func-
tional, f : V → R, at a point x0 ∈V is the vector w such that,

f (x)≥ f (x0)+ ⟨w,x− x0⟩ (A.1)

Definition A.0.5 (Subdifferential) The set of all subderivatives of a convex functional, f as defined
above, is called the subdifferential of the function f , denoted by ∂ f .

Figure 1.1 link : https://upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Refraction_at_interface.
svg/669px-Refraction_at_interface.svg.png.

https://upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Refraction_at_interface.svg/669px-Refraction_at_interface.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/3/3f/Refraction_at_interface.svg/669px-Refraction_at_interface.svg.png
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