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Preface 

This report is the result of the master’s assignment of the specialization of 

Neurotechnology and Biomechatronics of Electrical Engineering in the University of 

Twente. The project has been developed during 7 months approximately in the 

Biomedical Signals and Systems which is part of the Faculty of electrical engineering, 

mathematics and computer science. The thesis is about the development of a 

computational model of the cortico-basal ganglia-thalamocoritcal loop to see its response 

when action selection tasks are performed, and later evaluation in Parkinson’s disease 

simulation. Finally, response of the network when treatment with deep brain stimulation 

is applied is also analyzed. 

I would like to express my gratitude to dr.ir. Ciska Heida for its guidance and 

supervision during the whole project. 
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Abstract 

Parkinson’s disease is a neurodegenerative disease characterized by the loss of 

dopaminergic neurons in the brain which cause tremor, bradykinesia, rigidity, postural 

instability, and cognitive impairment, among others. This symptomology is present in 

several tasks, e.g., action selection tasks. These tasks consist in sending a cue to the 

subject which indicates him to perform a task or withhold its response and do not perform 

the task. With these tasks what is attempted is to understand the aspects of the disease and 

work for more efficient treatments, which is also done by means of computational model 

which try unravel the theoretical aspects of the disease. 

In the current thesis, a model of the cortico-basal ganglia-thalamocortical loop is 

developed to try to reproduce the effects of action selection tasks in Parkinson’s disease 

conditions. The model is based in the Hodgkin-Huxley description of ion channels 

dynamics of the different populations of neurons that conform this loop with exception 

of the cortex, which is modeled by means of input/output functions to the other 

populations. The representation of action selection tasks in the model is used to study if 

the increase of the β-band (13-30Hz) in the subthalamic nucleus that is seen when these 

tasks are performed in parkinsonian cases is reduced when proper deep brain stimulation 

(DBS) is applied and then, to see if this frequency band can be used as biomarker for 

DBS. 

The model shows a good approximation of the network, obtaining the expected 

behavior of the network in resting conditions and the increase of the β-band as the severity 

of the disease is increased. With respect to the application of DBS, high frequency and 

low frequency DBS are applied, showing a decay of the β-band for high frequency DBS 

and a large increase for low frequency DBS. The results are an indicator that high 

frequency is an optimal treatment that eliminates the erratic oscillations and it the gives 

possibility of using the β-band as biomarker for treatment as the decay is noticeable. On 

the other hand, the increase of the β-band for low frequency DBS might be an indicator 

of the bad outcome obtained when this treatment has been applied. 
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Abbreviations 

Anterior cingulate cortex (ACC) 

Deep brain stimulation (DBS) 

Dopamine (DA) 

Dorsolateral prefrontal cortex (DLPFC) 

Fast spiking interneuron (FSI) 

Frontal eye fields (FEF) 

γ-aminobutyric acid (GABA) 

Globus pallidus externus (GPe) 
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Local field potential (LFP) 
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1. Introduction 

Parkinson’s disease (PD) is the second most common neurodegenerative disease 

which is estimated to affect more than 2-3% of people over 65 years of age, rare to see in 

people below 50 years of age and with a global incidence of 5 to more than 35 new 

diagnosed cases per 100000 people yearly, estimating a worldwide affected population 

of 7 to 10 million.[1][2][3] PD has 1.5-2 times more incidence in men than women, despite 

some studies have shown that in certain populations no difference is observed, and it has 

no effect in the mortality during the initial decade of the disease, but afterward it doubles 

its values in comparison to healthy people.[1][4][5] 

PD is characterized by the loss of dopaminergic neurons and the accumulation of 

intracellular proteins, which is a common problem in other neurodegenerative diseases 

besides PD. Loss of dopaminergic neurons starts in the substantia nigra (located in the 

basal ganglia) and near regions of the midbrain, spreading to other regions of the brain at 

more advanced stages of the disease.[6][7] The accumulated protein is α-synuclein, a 

nuclear protein which forms aggregates like the Lewy bodies in the cytoplasm of neurons 

in different brain regions.[8] Main symptoms of PD are tremor, bradykinesia, rigidity and 

postural instability. Besides these, other common symptoms in PD subjects are cognitive 

impairment, disorders of mood, disorders of sleep-wake cycle regulation and pain.[9][10] 

Functions related to difficulties in the movement are generated by malfunction of the 

thalamo-cortico-basal ganglia circuits (Figure 1), which are responsible for the control of 

actions and goal-directed behavior. These circuits build a loop structure that receives 

 

Figure 1. Scheme of the different components of a thalamo-cortico-basal ganglia circuit and how 

their connections’ instensity are affected due to PD. Blue arrows indicate the excitatory 

connections and red arrows represent the inhibitory connections. Thicker arrows indicate 

stronger connections with respect to healthy conditions and narrower show decreased intensity 

of the connections. The three different pathways are indicated for clearer visual differentiation.[1] 
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signals from the cortex regions of the brain and they converge in a few subcortical regions 

to give back a response to the cortex.[1][11][12] 

As aforementioned, PD results from the reduction of dopaminergic transmission from 

the substantia nigra pars compacta (SNc), to the striatum, which results in higher 

inhibition of the thalamus and then, lower activation of the cortex. This inhibition is 

produced following a set of connections or pathways, having three pathways that can be 

differentiated: the direct pathway, the indirect pathway, and the hyperdirect pathway. 

The direct pathway is a neural pathway in the basal ganglia which involves the cortex, 

the striatum, the substantia nigra, the globus pallidus internus (GPi) and the thalamus. 

This pathway facilitates desired movements avoiding the inhibition of the corresponding 

zones of the GPi and then of the thalamus.[13][14][15] The striatum receives input signals 

from the cortex which cause its activation together with the SNc, which sends dopamine 

(DA) to the neurons of the striatum received by the dopamine receptor 1.[16] These 

activated neurons of the striatum, later on, act on the GPi and the substantia nigra pars 

reticulata (SNr) inhibiting its activity mainly by means of γ-aminobutyric acid (GABA), 

what causes that this GPi-SNr complex cannot prolong this inhibition to the thalamus, 

allowing the proper activation of specific zones of the subject’s thalamus and cortex.[16] 

The death of DA neurons of the SNc causes that less activation of striatum neurons occurs 

and, subsequently, GPi and SNr have not enough inhibition. GPi and SNr disinhibition 

lead to higher inhibition of the thalamus, avoiding proper movement in those subjects 

which have a non-functional direct pathway.[15] 

The indirect pathway works complementary to the direct pathway by suppressing the 

activity of those thalamic regions that are not involved in the corresponding 

movement.[13][14][15] It has a longer route than the direct pathway, including the cortex, the 

striatum, the substantia nigra, the globus pallidus externus (GPe), the subthalamic nucleus 

(STN), the GPi and the thalamus. Equally as in the direct pathway, striatum receives input 

signals from the cortex and SNc, but in this case, the last one sends inhibitory 

dopaminergic signals to those neurons as they have the dopamine receptor 2 as target 

protein. The striatum inhibits the GPe by means of mainly GABAergic transmissions, 

which also inhibits the STN. The STN acts again on the GPi-SNr causing its activation 

which can be used to inhibit the regions of the thalamus that do not participate in the 

action. When there is a loss of dopaminergic neurons in the SNc, a higher activation of 

the striatum is produced, which triggers a cascade of inappropriate signals, causing a 

higher inhibition of the GPe and generating higher activation of the STN and also the 

GPi-SNr. This higher activation of the last complex is converted into more inhibition than 

the one which corresponds to the thalamus, what can cause the impaired movement 

symptoms seen in PD.[15] 

The final pathway of the thalamo-cortico-basal ganglia circuit is the hyperdirect 

pathway, which was the last one to be identified and it is a rapid way to send an overall 

inhibition to the thalamus, supporting the indirect pathway in the inhibition of the 

thalamic regions which do not have to be activated, and giving more time to the other 

pathways to resolve conflicts of neural activation.[1][13][14][15][17] This path is constituted 

by the cortex, the STN, the GPi-SNr and the thalamus. The cortex activates directly the 

STN, giving a faster response than the one seen in the two previous pathways; and from 
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the STN on, the route that the signals follow is the same as in the indirect pathway, giving 

extra time to the other pathways to solve activation conflicts.[13] 

 However, malfunction of the firing rates of these three pathways is not enough to 

explain the whole effects of Parkinson. Beta power band (13-30 Hz) has been shown to 

be the main factor in the problems of bradykinesia observed in Parkinson’s subjects.[1] 

Abnormal synchronization occurs in this frequency band, which leads to hypokinesia as 

synchronization in the β-band suppresses movement and decrease of this synchronization 

is seen in healthy subjects prior and during movement.[18] To find the origin of this 

enhanced β-band activity has become a major goal in the PD study and different sources 

have been proposed like the cortex, the cerebellum or the basal ganglia.[19][20] STN-GP 

circuits’ ability to generate different patterns of activity under different conditions 

converted them into important candidates for the origin of this synchronization, or at least 

showed that they are critically involved.[21] 

To the mostly known motor impairment that cause the tremor and bradykinesia 

problems that cause problems of movement, the cognitive impairment deficiencies are 

also present in PD and have a big incidence in life of patients. These cognitive problems 

are seen visible in Gauggel et al. 2004, where scores in tests of several cognitive features 

like vocabulary or spatial thinking are decreased for PD patients and reaction times to 

execute or inhibit certain actions are increased.[22] The increase in reaction time could be 

confused with motor deficits, but subjects show that they are capable to perform the task, 

implying that problems are more related to cognitive problems to fully understand the 

task they are demanded in the moment, or solve internal conflicts of the brain for 

inhibition or activation of certain zones. These problems are supported with papers like 

Cooper et al. 1994, Pasquearau et al. 2017 and Benis et al. 2014, where all show the 

increase of reaction times in PD.[23][24][25] 

A. Computational models 
To prove or find how malfunction works in PD, i.e., where is it generated or how 

abnormal firing rate of one region affects the others, basal ganglia models appeared as a 

key tool to understand the mechanisms behind the disease. These models are 

mathematical descriptions of the different parts of a complex system to study its behavior 

and usually try to explain the results obtained in experimental work. In PD, these models 

are designed accordingly to what is wanted to study, from simple models of just some 

basal ganglia’s nuclei or the whole cortico-basal ganglia-thalamocortical complex. 

Besides the nuclei involved in the different models, parameters included in these models 

also play a crucial role depending on if they might have an influence or not in a specific 

situation. 

An example of a relatively simple model in terms of the number of neuronal 

populations modeled is the one developed by Otsuka et al. 2004. In this model, the STN 

is the only modeled nucleus as it is done to observe how STN generates plateau potentials 

and to study the influence of the different ion channels dynamics in the generation of the 

plateau potentials.[26] Another model that could be considered simply in the same terms is 

the one developed by Terman et al. 2002. This model consists of the generation of 

Hodgkin-Huxley potentials to represent the STN-GPe loop and study how different 
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architectures of connection influence the firing patterns, together with which are relevant 

parameters of the mentioned populations for these patterns.[27] It is stated that the results 

can be useful to explain the irregularity or rhythmicity of the neurons, which cause the 

common symptom of tremor visible in PD. Despite the model does not include more 

compartments than the STN and the GPe, the importance of this loop has caused the 

replication of this model in several papers where different aspects were studied. In 

Sungwoo et al. 2016, the model is used to study if β-band synchronization is originated 

in the STN-GPe loop by applying different conditions and evaluating the response.[21] 

Another example is seen in Park et al. 2011, where this same model is used to analyze 

the temporal structure of the phase-locking and to show that synchronous oscillations are 

highly influenced by the coupling strength.[28] A similar model to the one designed by 

Terman et al. 2002 is the one developed by Nevado-Holgado et al. 2014. They modeled 

the same loop, but unlike the previous, it is a single neuron model which breaks down the 

GPe in two different kinds of neurons to find if any type of the GPe neuron has different 

connectivity parameters with the STN, proving the different populations of neurons 

present in the GPe as the best results were reflected when the populations were 

unbalanced and had different autonomous firing rates.[29] All these models of the GPe-

STN loop have high relevance in the study of PD as the STN is as a relevant actor in PD, 

being one of the targets for PD treatments, and GPe is one of the main regulators of its 

activity.[19][30][31] 

Another model containing a small loop consisting of by just a few population of 

neurons is the one of Corbit et al. 2016. In this model, the pallidostriatal loop is developed 

between the GPe and the striatum, which divided into fast-spiking interneurons (FSI) and 

medium spiny neurons (MSNs), to better describe its behavior during healthy and DA-

depleted conditions, showing that the last promotes synchronization and rhythmicity.[32] 

The relevance of this loop is found in the generation of synchronicity and rhythmicity of 

the basal ganglia under DA-depleted conditions, becoming an important factor for the 

problems caused in PD. 

Other models with higher number of modeled nuclei also attempted to capture the 

overall behavior of the whole system, like the one developed by Rubin et al. 2004. This 

is a more complex model of Terman et al. 2002 model, developed by the same authors 

but this model contains the direct and indirect pathways, which go from the striatum to 

the thalamus to try to unravel the mechanisms of deep brain stimulation (DBS) in 

Parkinson’s subjects when applied to the STN, increasing the firing rates and 

desynchronizing the spikes.[27][33] Finally, several models include the whole 

compartments in the thalamo-cortico-basal ganglia loop to describe the whole behavior 

of the system as seen in Pavlides et al. 2015 and Baston et al. 2015. The first model 

attempts to reproduce the behavior of the whole system and how the variation of the 

different parameters and connections lead to the behavior seen in PD, to find which 

pathways or connections are essential for the β-band oscillations.[34] In the second one, 

the model is designed to analyze how action selection is made in populations of neurons 

that are part of the cortico-basal ganglia-thalamocoritcal loop, unraveling the role and 

performance of each of the pathways during this action selection to withhold the 
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responses while the conflict is solved, along with the behavior of the system during PD 

and plasticity of the network due to previous solved conflicts.[14] 

B. Action selection tasks 
These models have contributed to the study of PD and have allowed the understanding 

of certain aspects of the disease, like the relevance of certain connections or parameters 

in the generation of the synchronization patterns of the spikes. However, to further 

understand the pathophysiology of the disease, action selection tasks are designed and 

performed on subjects (Go/No-Go or Stop tasks), which are useful to evaluate the reaction 

times and the ability to inhibit signals in PD patients, evaluating not only their motor 

functions but also their cognitive impairement. 

Go/No-Go tasks consist in experiments where the subject receives some kind of 

stimulus (usually visual or auditory) which has different possible outputs. Subjects are 

taught to have a certain response in some of the outputs, for example pressing a button, 

which constitute the Go task, and do not perform the action or withhold its response in 

the other stimuli, constituting the No-Go task. The procedure followed in these tasks is 

seen in Figure 2, alternating one kind of response with the other. This kind of task is used 

in Cooper et al. 1994, where healthy and PD patients received a different kind of stimuli 

of increased complexity to evaluate the differences in reaction time and cognitive 

function, showing a significantly worse result in PD for both factors.[23] Other examples 

of Go/No-Go tasks are also used in Kuhn et al. 2004 and Pasquearau et al. 2017, looking 

at the synchronization of neural activity and reaction times respectively.[18][24] 

Another common task used in PD for evaluating reaction tasks and inhibitory ability 

of subjects is the Stop task. It is similar to the Go/No-Go but a continuous stimulus is 

usually presented to the participants which have to perform an action while it is presented, 

until a certain trigger appears and informing the participant to stop doing the task. 

Gauggel et al. 2004 uses a Stop task to evaluate the reaction time of Parkinson’s patients 

and their ability of inhibition, obtaining also a worse performance in patients.[22] A more 

complex Stop task is presented in Benis et al. 2014, combining stop signals with warnings 

that give certain information to the user and the researchers use this study to evaluate not 

only reaction times, but also β-band amplitude to see how the different warnings have an 

influence on brain signals.[25] 

Computational models and reaction tasks unraveled some questions related with PD 

and offered a better understanding of the disease. However, the final goal of both of these 

 

Figure 2. Example of a Go/No-Go task. Go and No-Go stimuli are alternated randomly and the 

subject has to respond or not according to the stimulus it is receiving in the specific moment. 
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studies is to find a possible treatment to cure patients or fight its symptoms. Treatment 

with dopaminergic targets like levodopa is the leading treatment for PD, but the 

breakthrough of DBS as possible treatment of PD when applied in the STN became a 

prominent discovery.[1][35] DBS consists in high-frequency electrical stimulation of 

specific brain targets without destroying brain tissue, but the exact reason of why 

physiological spike firing patterns are suppressed in the brain is unclear.[31] Moreover, 

DBS also has a repairing ability in Go/No-Go tasks for PD subjects, avoiding errors in 

No-Go tasks or freezing episodes in Go tasks, returning the motor and cognitive control 

to the subjects. 

In this thesis, a model of the cortico-basal ganglia-thalamocortical loop is developed 

to see if changes in terms of synchronization and firing occur in the β-band while a 

Go/No-Go task is performed by Parkinson’s patients. Furthermore, the effect of DBS is 

studied in patients while the task is performed to find if the STN’s β-band can be used as 

a biomarker during DBS treatment of Parkinson’s patients for adaptive control of DBS. 
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2. Methods 

The goal of the thesis was to find out if STN’s β-band during performance of action 

selection tasks like Go/No-Go tasks can be used as biomarker for DBS in PD subjects. 

To do so, a computational model of the basal ganglia was developed following the 

Hodgkin-Huxley model of neurons, PD conditions were simulated by modifying the 

electrophysiological parameters of the different neuronal populations, and the model was 

analyzed by looking at the response of the neuronal populations. Implementation of the 

model and the necessary processing steps were both performed in MATLAB (Mathworks, 

Inc., R2018b). The final statistical analysis of the data was performed in SPSS v23 (SPSS 

Inc. Chicago, IL, USA). 

A. Computational model 
As the goal of the assignment was to study the behavior of the brain in PD, the designed 

regions of the brain were those that are part of the pathways involved in action selection 

tasks and affected by the characteristic loss of DA produced in PD. This resulted in 

modeling the following parts: thalamus, GPi, GPe, STN, and Go and No-Go parts of the 

striatum. 

The Hodgkin-Huxley model used in the thesis consists in a set of nonlinear differential 

equations which describe the electrical features of cell membranes and how the action 

potentials generated by them are initiated and propagated. The membrane is modeled as 

a capacitance (𝐶m) and the ions entering through the different pumps as currents (𝐼X) as 

shown in Figure 3. In the current model, the currents used were those which are relevant 

on each population and allow their firing according to their behavior. 

Modifications occurred with respect to the initial model developed by Hodgkin and 

Huxley in 1952 as new discoveries were performed in the field, describing the behavior 

of other currents in addition to the leakage, K+ and Na+ and the influence of each type of 

neurons to the other type of populations that are connected. This more complex 

 

Figure 3. Schematic of the basic Hodgkin-Huxley model of a neuron. Subindex L states for the 

leakage current and subindex n states for the different ions used in the model of the neuron. As 

more ions used, more branches corresponding to each ion must be included.  
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description of the behavior of the neurons is well shown in Terman et al. 2002 and Rubin 

et al. 2004, which described the loop formed by the STN and GPe in the first article and 

added the GPi and the thalamus in the second.[27][33] Because of the similarity between the 

goal of the articles and the goal of the assignment, the same model was used to design the 

neurons in this assignment (this kind of model has also been used in other models, proving 

its validity). 

The Hodgkin-Huxley model consists in describing the electrical features of cell 

membranes to see the propagation of their action potentials. The membrane, represented 

by the 𝐶m, was used to determine the currents going through it and the variation of the 

currents were used to finally obtain the variation of potential through the membrane. A 

general description of the modeled neurons is given in Eq. (1), but some variations were 

applied to each population if necessary. 

𝐶m
𝑑𝑉

𝑑𝑡
= −(𝐼L + 𝐼K + 𝐼Na + 𝐼Ca + 𝐼T + 𝐼AHP + 𝐼A→B) + 𝐼App (1) 

where 𝑑𝑉 𝑑𝑡⁄  is the variation of the membrane potential over time, 𝐼L is the leakage 

current, 𝐼K is the K+ current, 𝐼Na is the Na+ current, 𝐼Ca is the high threshold Ca2+ current, 

𝐼T is the low threshold T-type Ca2+ current, 𝐼AHP is the afterhyperpolarization (AHP) 

current, 𝐼A→B is the current coming from other neuronal populations, and 𝐼App is the 

current coming from other external sources applied to the neuronal population. Not all 

the currents were used for all the populations as the firing pattern of the different neurons 

were different. Which currents were used for each neuron is explained in the following 

pages in detail. 

Each of the currents have their own intrinsic properties, so they were developed 

according to their characteristics and the number of gating variables and the dependence 

of them changed on each current. The leakage current was the only current independent 

of time and voltage, with no gating variables and defined by: 

𝐼L = 𝑔L(𝑉 − 𝐸L) 
(2) 

where 𝑔L is the leakage conductivity and 𝐸L is the rest potential of the leakage current. 

The remaining currents had gating variables which changed their state according to the 

membrane potential (time independent) and in some cases also time. This was the case 

for the K+ current, the inactivating gating variable of the Na+ current and the inactivating 

gating variable of the low threshold T-type Ca2+ current, which are considered slow 

activating gating variables and their activation is not instantaneous. The gating variables 

lead to the following ionic current equations: 

𝐼K = 𝑔K𝑛
4(𝑉 − 𝐸K) 

(3) 

𝐼Na = 𝑔Na𝑚∞
3 ℎ(𝑉 − 𝐸Na) 

(4) 

𝐼Ca = 𝑔Ca𝑠∞
2 (𝑉 − 𝐸Ca) 

(5) 
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𝐼T = 𝑔T𝑎∞
3 𝑟(𝑉 − 𝐸T) 

(6) 

where 𝑔X is the conductivity and 𝐸X is the rest potential of the different ions. The different 

letters state for the gating variables of each ionic current. Those letters with the infinite 

subindex indicate the gating variables that did not change as a function of time, but only 

as a function of the membrane voltage, representing the steady-state of the gates. This 

steady-state was computed according to: 

𝑋∞ =
1

1 + 𝑒−(𝑉−𝜃𝑋) 𝜎𝑋⁄
 (7) 

where 𝑋∞ is the steady-state of the gate, 𝜃𝑋 is the half activation (or inactivation) potential 

of the corresponding gating variable, and 𝜎𝑋 is the slope factor of the gating variable. This 

steady-state was computed for all the gating variables, being used in the mentioned cases 

as the gate and in the time dependent to calculate the state of the gate at each moment in 

time. 

To the gating variables 𝑛, ℎ and 𝑟 that also depend on time, first-order kinetics 

functions were defined which captured the variation of the state of the gate over time. 

Their behavior was described by: 

𝑑𝑋

𝑑𝑡
= 𝛷X

𝑋∞ − 𝑋

𝜏X
 (8) 

where 𝑑𝑋 𝑑𝑡⁄  is the variation of the gating variable over time, 𝛷X is the time scaling 

constant which captures the velocity of (in)activation of the gates, 𝑋∞ is the steady-state 

of the gate, 𝑋 is the actual state of the gate, and 𝜏X is the time constant of the gate. The 

time constants of the gates were neither constant and their behavior changed according to 

the voltage following: 

𝜏X = 𝜏0
𝜏1

1 + 𝑒−(𝑉−𝜃X
𝜏) 𝜎X

𝜏⁄
 (9) 

where 𝜏0 and 𝜏1 are the minimum and maximum time constant respectively, 𝜃X
𝜏 is the 

potential at which the time constant is the half between minimum and maximum, and 𝜎X
𝜏 

is the slope factor for the time constant. 

The final intrinsic current of Eq. (1) was not governed by the same kind of equation. 

This 𝐼AHP is a calcium-dependent current that is activated when the Ca2+ concentration 

inside the neuron increases. Then, the neurons try to compensate the hyperpolarization of 

the membrane by opening the K+ channels. The behavior of such current is: 

𝐼AHP = 𝑔AHP(𝑉 − 𝐸AHP) (
[Ca]

[Ca] + 𝑘1
) (10) 

where 𝑔AHP is the conductivity of the AHP current, 𝐸AHP is the rest potential of the AHP, 

[Ca] is the intracellular concentration of Ca2+, and 𝑘1 is the dissociation constant of the 

calcium involved in the AHP current. [Ca] is changing in time according to: 

𝑑[Ca]

𝑑𝑡
= 𝜖(−𝐼Ca − 𝐼𝑇 − 𝑘Ca[Ca]) 

(11) 
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where 𝜖 is a combination of buffers, cell volume and the molar charge of Ca2+, and 𝑘Ca 

is the Ca2+ pump rate constant. 

The final current implemented in the model due to the network built was the synaptic 

current. This synaptic current is an extrinsic input to the cell coming from other 

populations of neurons, which can activate (glutamatergic activation) or inhibit 

(GABAergic inhibition) the receiving population. The synaptic current was introduced 

as: 

𝐼A→B = 𝑔A→B(𝑉 − 𝐸A→B)∑𝑠j 
(12) 

where 𝑔A→B is the conductivity from population A to B, 𝐸A→B is the rest potential from 

population A to B, and 𝑠j is the synaptic variable indicating the influence of every 

presynaptic neuron from population A to the corresponding postsynaptic neuron of 

population B. These synaptic variables are governed by first-order differential equations: 

𝑑𝑠j

𝑑𝑡
= 𝛼𝐻∞(1 − 𝑠j) − 𝛽𝑠j 

(13) 

where 𝑑𝑠j 𝑑𝑡⁄  is the synaptic variable variation over time, 𝐻∞ is an approximation of the 

Heaviside step function, and 𝛼 and 𝛽 are time constants of the release and decay of 

neurotransmitters. The approximation of the Heaviside step function was made according 

to: 

 

Figure 4. Scheme of the structure of the modeled network with the corresponding connections 

between the different regions of populations and the number of cells for each population. The 

blue lines indicate the excitatory connections and the red lines indicate the inhibitory 

connections. 
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𝐻∞ =
1

1 + 𝑒−(
(𝑉𝑔j−𝜃g)−𝜃g

H) 𝜎g
H⁄

 (14) 

where 𝑉𝑔j is the potential of the presynaptic neuron j, 𝜃g is the is the half activation (or 

inactivation) potential of the corresponding neuron type, 𝜃g
H is the half activation voltage 

of the Heaviside step function and 𝜎g
H the slope factor. 

Finally, the last current included in Eq. (1) was the 𝐼App which refers to external 

currents that do not come from other populations of neurons. It was the case for the DBS, 

which is an external input applied to the STN and did not come from the network. 

The different populations of neurons were implemented with their own characteristics, 

resulting in variations of some of the equations and currents included on each population. 

Besides, different connections were implemented for each population and number of cells 

were adjusted for the necessary connections. The structure included in this model is 

shown in Figure 4, as well as the number of neurons that conformed each population in 

the model. 

i. Globus Pallidus 

Beginning with the globus pallidus, both GPe and GPi were modelled in a similar way. 

As shown in the paper of Rubin et al. 2004, only some differences are present in those 

two populations as they are formed by the same type of neurons.[33] The most relevant 

differences in the implemented variables for these two populations were the synaptic 

currents as they have different inputs and outputs. 

GPe received inhibition from the No-Go part of the striatum, inhibition from the other 

GPe cells and activation from STN cells. The first connection was made in a ratio 5:1, 

making a random structure (Figure 5B) of connections with the condition that five 

medium spiny neurons (MSNs) inhibit one GPe cell. The second connection was based 

in the principle of “winner-take-all”, as neurons from the same population fight for their 

activation and when one is able to fire it inhibits the others. In this model, the neurons 

from GPe inhibited the two nearest neighbors, allowing other neurons from the same 

population to fire, but not those that are more proximal, known as “soft winner take-all” 

(Figure 5A). The activation coming from the STN was due to the loop formed by these 

two structures, in which each of the neurons of the STN activated one random GPe cell. 

Two conditions were imposed: all GPe cells should get at least one connection coming 

from the STN and the number of STN neurons was the same as the number of GPe 

neurons. It resulted in all the GPe neurons receiving one excitatory input from the STN. 

With respect to the GPi population, the connections were similar to those shown in the 

GPe. The STN was also activating the GPi with the same structure that it did on the GPe 

and there was inhibition coming from the striatum. The difference was that the inhibition 

of the GPi came from the Go part of the striatum, but keeping the same ratio of 

connections and structure of the connections from the striatum to the GPe (Figure 5B). 

ii. Subthalamic nucleus 

To obtain a realistic model, a different approximation had to be applied to the low 

threshold Ca2+ current of the STN neurons. This modification was made to capture the 

difference of more prominent bursting in STN neurons caused by the effects of a 
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hyperpolarization-activated inward current to the T current.[27] This modification was 

seen in the corresponding T-type current: 

𝐼T = 𝑔T𝑎∞
3 𝑏∞

2 (𝑉 − 𝐸T) (15) 

where 𝑏∞ is the steady-state of the inactivation gating variable 𝑏, which captures the 

inward current besides the T-type current. This variable, instead of directly being a 

function of the voltage, it is a function of the gating variable 𝑟 (which does depend on the 

voltage): 

𝑏∞ =
1

1 + 𝑒(𝑟−𝜃𝑏) 𝜎𝑏⁄
−

1

1 + 𝑒−𝜃𝑏 𝜎𝑏⁄
 (16) 

where 𝜃𝑏 is the half inactivation potential of the variable 𝑏 and 𝜎𝑏 is its slope factor. 

With respect to the network inputs into the STN one input was added to the model. 

This input consisted in an inhibitory input from the GPe into the STN. This connection 

was arranged so each GPe inhibited three different STN neurons, which were the three 

nearest to each GPe (Figure 5A). The input from the cortex to the STN was not included 

in the model as it conforms the hyperdirect pathway which activity and relevance has 

been demonstrated, but its activity occurs before the activity of the indirect pathway, not 

affecting it but masking its activity in the subsequent β-band analysis as it was seen in the 

initial simulations where it was included, so it was finally kept out of the model. 

iii. Striatum 

Go part 

The final compartment of the basal ganglia was the striatum. This compartment was 

modeled in two parts, the Go part and the No-Go part. The Go part of the striatum is the 

one that is part of the direct pathway, being part of the final activation of the thalamus. 

This compartment was modeled as it has been commented previously, with a ratio 5:1 

with respect to the GPi, GPe or STN neurons in terms of number of neurons. The neurons 

modeled in the Go part were MSNs as more than 90% of this nuclei consists of MSNs, 

 

Figure 5. Different kind of connections used to communicate between populations of neurons. 

The upper row of each image represents the neurons of one population and the lower row 

represents neurons from a second population. Figure 5A is an example of the connections of one 

cell with the neighbors of the same population and the nearest neighbors of a second population 

in case that acts in two of the same population and three of the other population. Figure 5B is 

the example of random connections with the same and other populations, acting on the two in 

the same population and on three in the other population. In the modeled network, the number 

of cells that each population acts on does not have to be the same, but they can coincide with 

the ones of the picture, it is to give an idea of the differences between structured and random 

connections. 
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which had a slightly different approach to the ones of the globus pallidus and STN, not 

including the 𝐼T and 𝐼AHP.[32][36][37] 𝐼T influence on the activity of MSNs is low enough to 

be negligible, so this current was not included in the model, reducing the necessary 

computational power to run the model. 𝐼AHP was not included in these neurons as the 

recuperation from the 𝐼AHP is slow and did not use the fast recuperation obtained with this 

current. Then, MSNs were modeled only with the following intrinsic currents: 𝐼K, 𝐼Na and  

𝐼Ca. 

With respect to the connections, the only synaptic connection modeled for the neurons 

of the Go part were the inhibitory connection of MSNs to other MSNs. The connection 

implemented was the same as for the GPe, so every MSN was inhibiting his two nearer 

neighbors (Figure 5A). The input for the Go part was coming from the cortex, and then 

the input was modeled with an approximation of a sinusoidal signal explained later. 

No-Go part 

The other modeled part of the striatum was the No-Go part. This part of the striatum 

is the origin of the indirect pathway which tries to inhibit the parts of interest of the 

thalamus. Unlike the Go part of the striatum, the No-Go part was modeled of two types 

of neurons, the fast spiking interneurons (FSIs) and the MSNs, being a total number of 

neurons for each type of 8 and 40, respectively. The MSNs intrinsic currents were 

modeled the same way as in the No-Go part, but for the FSIs only the 𝐼K and 𝐼Na were 

used, as the neurons were expected to fire at very high frequencies in the order of 40Hz, 

with no bursting and a fast firing that did not need 𝐼AHP. However, the number of FSIs 

was the same as in most of the compartments modeled, instead of the 5:1 ratio of the 

MSNs.[32][37] 

The connections of this No-Go part were structured as an inhibitory loop with the GPe. 

Beginning with the FSIs, they received an inhibitory input from the GPe where each FSI 

was inhibited randomly by one GPe neuron (Figure 5B). Furthermore, every FSI inhibited 

his two nearest neighbors (Figure 5A). Inputs for the MSNs were similar to those of the 

Go part, but they received an inhibitory input from the FSI, which acted as intermediaries 

between the GPe neurons, each FSI inhibiting five MSNs with a random structure of 

connections (Figure 5B). These three populations built a small loop between the GPe and 

the No-Go part region of the striatum, known as the pallidostriatal loop. MSNs also 

received inhibition from their neighbors (Figure 5A) and an input from the cortex 

modeled similarly to that of the Go part. 

iv. Thalamus 

The final modeled compartment of the network was the thalamus. Only one neuron of 

the thalamus was done because it needed inhibition from 8 GPi cells each time, which 

would result in a high increase of the computational power needed as it would finally 

affect also the number of cells of the other populations. The neuron of the thalamus again 

contained the 𝐼T, but not the 𝐼AHP. For this compartment, the variables were reduced by 

one implementing a dependency 𝐼K in function of ℎ instead of 𝑛, reducing the 

computational power necessary for the system. Referring to the connections, the thalamus 

had two inputs, one coming from GPi and another simulating the input from the cortex. 

GPi was the common point for all pathways of the basal ganglia before reaching the 
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thalamus, where a connection with an inhibition ratio of 8:1 was implemented. It implied 

that eight GPi neurons acted on one thalamic neuron. The input from the cortex was a low 

frequency signal of 10Hz which was an approximation of a sinusoid. This approximation 

was made with a Heavisde step function, obtaining a pattern which is more similar to the 

neurons firing than just a sinusoidal signal: 

𝐼Cortex = 𝑖𝐻 (sin (
2𝜋𝑡

𝜌
)) × (1 − 𝐻 (sin (

2𝜋(𝑡 + 𝛿)

𝜌
))) (17) 

where 𝑖 is the amplitude of the stimulation, 𝐻 is the Heaviside step function, 𝜌 is the 

period of stimulation and 𝛿 is the duration of each impulse. Due to the idea was to better 

assimilate the shape of neurons, the value of 𝛿 was set to 2ms by comparing the length of 

the action potentials of other populations of neurons, the 𝜌 was set to 0.1s following the 

most optimal result obtained by Terman et al. 2002, and 𝑖 was also set to a low value as 

the frequency, taking a value 10, so its influence on the thalamus with respect to the GPi 

did not mask the activity of the second one.[27] 

This approximation was made because it was of interest to make the signal have only 

positive values and be equal to zero when the sinusoidal signal should be negative. The 

second part of Eq. (17) allowed to obtain a narrow step function, better assimilating the 

firing of neurons. 

Parameters for the model were taken from several papers which previously worked on 

similar models and if necessary, they were tuned to get the expected response. For 

example, when too much inhibition from one population to another did not allow the 

second to fire the connectivity was modified, or when the contribution of a specific 

current was not visible their parameters were modified to add their contribution. Articles 

used to obtain the parameters were Terman et al. 2002, Rubin et al. 2004, Scheler et al. 

2014, Zitelli et al. 2016, Mahon et al. 2000, Du et al. 2017, Gruber et al. 2003, Biddell et 

al. 2013, and Damodaran et al. 2015.[27][32][33][36][37][38][39][40][41] All values used for the 

simulations were included in Appendix. 

v. Go/No-Go task 

Go and No-Go signals were modeled as approximations of sinusoidal signals to 

simulate the firing of neurons. This approximation was made again by means of a 

Heaviside step function (which depended on a sinusoidal signal). The input signals looked 

again like in Eq. (17). Values set for the Go and No-Go tasks were picked by trying a 

range of values for the amplitude and frequency of the signal. The duration of the impulse 

was set to 2ms again like the one from the cortex as it was supposed to also simulate 

neurons firing from the cortex.  

 

Figure 6. Model of the stimulus applied in the action selection tasks as a simulation of the input 

from the cortex to the striatum. Signal behavior was modeled similar to the behavior of spikes, 

which stay around 2ms depolarized, so this behavior was tried to be copied. 
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Go and No-Go signals were simulated with the same approximation as both come from 

the same brain regions, the prefrontal cortex (PFC) and the anterior cingulate cortex 

(ACC). The main difference of the signals is the region they act on, being stronger for Go 

tasks on the Go part of the striatum and on the No-Go part during the No-Go tasks. The 

signal was manipulated so the amplitude and frequency was adapted to every task 

performed. 

Simulations had a time length of 1500ms, with the tasks performed during 800ms in 

total, between 500ms and 1300ms. These timings to perform the tasks were decided due 

to the experimental data shown in Benis et al. 2014, with respect to the response of the 

subjects in these action selection tasks.[25] The shape of the signal and the length in the 

whole simulation is shown in Figure 6.  

B. Parkinsonian approximation 
To obtain a parkinsonian behavior of the network, some of the parameters were 

changed. The origin of PD comes from the degeneration of dopaminergic neurons of the 

SNc which directly act on the striatum.[1][2] As the SNc was not added to the model and 

the output of it could not be added to the striatum parts, the striatum features were 

modified in the model to simulate the increase or decrease of activity that they suffer from 

the connection with the SNc. 

As shown in Figure 1, SNc connects to the Go part of the striatum by activating it and 

inhibiting the No-Go part. Then, the loss of DA in PD results in lower activation of the 

Go part and lower inhibition of the No-Go, obtaining lower activity in the first and higher 

activity in the second. These differences were reproduced in the model by decreasing the 

conductivity of the Go part of the striatum, resulting in lower activity of the compartment 

and subsequently altering the activity of populations that are part of the direct pathway. 

For the No-Go part, its conductivity was increased resulting in higher activity of this 

population and later modifying the populations that are part of the indirect pathway. 

To find proper values for the conductivity of these two populations in a parkinsonian 

state, a range of values were implemented to the conductivity of each population until 

finding some that reproduced the expected behavior of the network in the same population 

and the thalamus, which was the output of the network. The values of the conductivity 

were modified adding or subtracting a value of 0.1 to the value of the original 

conductivity, e.g., if the original conductivity were set to 0.3 and it had to increase, the 

range of values was increased so they took values of: 0.4, 0.5, 0.6, etc., until the optimal 

outcome was visible. An optimal outcome was decided to be achieved when the thalamus 

firing rate was reduced (Figure 1) around 10Hz, which was considered an important decay 

as it is higher than the firing rate of most populations firing rate in resting conditions. 

Not only the striatum is affected by the loss of DA, but also the STN is affected as 

shown in previous studies from cortex connections.[42][43][44] This fact slightly reduces the 

activity of the STN (less influenced than via the indirect pathway), so the conductivity of 

this compartment was also decreased like in the Go part and the same approach as in the 

previous cases was followed. 

In the model, mild and severe PD were studied to find out if significant differences 

were possible to be found in the different cases. To obtain this difference, severe PD was 
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stated first following the aforementioned procedure, as the answer of the network is more 

exaggerated and easier to be detected. This severe PD was seen as the degeneration 

around the 80-90% of the dopaminergic neurons as it is said in Poewe et al. 2017, which 

reaches these values of degeneration for PD patients which have had the disease over 10 

years.[1] Once severe PD was stated, mild PD was seen as earlier stages of the disease 

when the symptoms are already visible which have a degeneration around 20-30%, so the 

values for mild PD on the changed conductivities were picked at 25% of the difference 

between the severe PD and healthy cases. 

A final feature of the model was included for this approximation which was the DBS 

applied to the STN for treatment. It was modeled with a Heaviside step function for the 

impulse and applied to the model once the Parkinsonian state was simulated. 

𝐼DBS = 𝑖𝐻 (sin (
2𝜋𝑡

𝜌
)) × (1 − 𝐻 (sin (

2𝜋(𝑡 + 𝛿)

𝜌
))) (18) 

where 𝑖 is the amplitude of the stimulation, 𝐻 is the Heaviside step function, 𝜌 is the 

period of stimulation and 𝛿 is the duration of each impulse. For the simulation, high and 

low frequency DBS were analyzed to show the behavior of the network, as high frequency 

stimulation should relieve the symptoms and low frequency do not or even aggravate 

them. The values picked for these simulations were 𝑖 = 200 for both cases, 𝜌 = 0.0067s 

for high frequency DBS and 𝜌 = 0.0333s for low frequency DBS, and 𝛿 = 0.6ms for 

both cases, what mimics the short current pulse. In the model, DBS was applied to half 

of the modeled neurons of the STN as the electrode implanted treatments might not have 

the same intensity on all STN’s neurons. 

C. Model analysis 
Analysis of the model consisted in seeing the evolution of β-band frequency in the 

different simulations and later its response when DBS was applied. In this kind of 

analysis, local field potentials (LFP) are used to analyze the response of STN as shown 

in Benis et al. 2014.[25] The Hodgkin-Huxley model gives the potentials of single neurons, 

so an approximation of the LFP was necessary in the model to be able to analyze the 

activity of the β-band, and the experimental data available to compare the results work 

with LFP. 

Different approximations of the LFP have been used in neuroscience, so it is not a 

unique technique to perform this approximation.[26][44][45] In this model, to approximate 

the LFP of the STN, the synaptic variable computed that represents the input that will go 

from the STN to the GPi was used. It consists of the sum of the synaptic variables of 

every neuron from the population to see how the overall activity has an effect in the GPi, 

which is the one that is calculated in Eq. (13). 

This synaptic variable was later used to analyze the activity of the network in response 

to Go and No-Go tasks. The analysis consisted in studying the activity of the β-band 

(frequencies between 13Hz and 30Hz) to find out if there was a difference in the activity 

in normal and parkinsonian states along the whole length of the Go/No-Go task. To do 

so, Welch’s method was used in the synaptic variables to obtain the spectral density 
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estimation, with a Hanning window of two times the samples inside 2ms (due to the 

different simulations, the number of samples was not constant in the whole study). 

From the estimation, only the frequencies corresponding to the β-band were selected 

and the total amount of activity in this band was computed. The model was run 10 times 

for each scenario with different initial conditions for the membrane potential, gating 

variables, synaptic variables, and rebuild the random connections between populations, 

to obtain multiple examples to allow a statistical analysis. A number of 10 simulations 

was picked as it showed that irregular values way above or below the mean, in a single 

simulation did not have a large influence on the final mean. In the parkinsonian state, the 

model was run three times for the initial conditions: without DBS, with low frequency 

DBS and with high frequency DBS applied to the STN to see if the effect of DBS in the 

model worked as expected, depending on if the DBS is of high or low frequency. 

The statistical comparisons made were: healthy vs parkinsonian simulations, 

parkinsonian without DBS vs parkinsonian with high frequency DBS simulations, and 

parkinsonian without DBS vs parkinsonian with low frequency DBS simulations. The 

comparison of the values for the different simulations was performed by means of a 2-

tailed student’s t-Test when the populations’ distribution was normal and a 2-tailed 

Mann–Whitney U test in those that were not normal to find if there was any significant 

difference between them. 

To visually examine the results and see if it is valid to state that the response was 

caused by the action selection task, spectrograms were finally performed on the cases that 

showed significant differences. The spectrogram was used to see if the increase or 

decrease of the power observed in the analysis was inside the time length in which the 

action selection task, or the increase of β-band is mainly due to the parkinsonian state and 

is also visible outside the timing of the task. 
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3. Results 

The main goal of the thesis was to build a computational model of the basal ganglia 

able to reproduce the effects of PD during Go and No-Go tasks and evaluate if the β-band 

of the STN can be used as biomarker of DBS. 

A. Model validation 
The model of the neurons is made following the Hodgkin-Huxley description of ion 

channels dynamics, obtaining the firing of the single neurons. Figure 7 shows the firing 

pattern of all the modeled populations of neurons which are part of the basal ganglia and 

the thalamus in a healthy state. It is seen in this Figure 7 that neurons are able to fire 

regularly without any external stimuli, but external stimuli are able to change the firing 

 

 

Figure 7. General response of the model when no external input is added to the network on a 

healthy simulation. From top to bottom, the graphs show the firing pattern of: MSNs of the No-

Go part of the striatum, MSNs of the Go part of the striatum, FSIs of the No-Go part of the 

striatum, GPe neurons, STN neurons, GPi neurons, and thalamic neurons. Times for plots are 

reduced to 600ms to be able to have a clearer look on the graphs and are centered at times when 

the tasks are performed. It is the representation of the resting state, which would correspond to 

the time between 0 and 500ms of Figure 6. Each color is the representation of a different neuron, 

but for the Go part and the No-Go part the colors are repeated as there are 40 neurons on each 

case. 
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pattern as shown in Figure 8 and Figure 9. This initial simulation was used to evaluate 

the network and ensure that the response of the populations was according to experimental 

data and already proven models. For this evaluation, firing rates and patterns were 

evaluated from the different plots, calculating the mean firing of each population of 

 

Figure 9. Response of a healthy simulation when the No-Go task is included in the model. From 

top to the bottom, the graphs represent the firing pattern of MSNs of the No-Go part of the 

striatum, GPe neurons, STN neurons, GPi neurons, and thalamic neurons. The activity of the 

GPe is mostly due to the activation of the STN, as it is inhibited due to the high activity of the 

No-Go part. The original inhibition causes the high activity of the STN, which acts on the GPi 

and finally increases its inhibition to the thalamus. Again, time limit is done like in Figure 8. 

 

 

 

 

Figure 8. Response of a healthy simulation when a Go task is included in the model. The top 

graphs represent the firing pattern of the Go-part of the striatum, the middle one the response of 

the GPi, and the bottom the response of the thalamus. The Go-part becomes highly active, then 

GPi is inhibited with respect to the resting state, what leads to the disinhibition of the thalamus, 

which one becomes more active. The simulation is limited to the time of a Go-task is produced 

to show more clearly the neuronal response and 0ms would correspond to 500ms of Figure 6. 
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neurons and visually inspecting if the firing pattern corresponds to the one observed in 

papers.  

Beginning with the initial population shown in Figure 7, to check the viability of MSNs 

of the No-Go part the model developed by Corbit et al. 2016 was used as it already 

explained the behavior of a normal network without any external stimulus, together with 

the experimental data collected by Lee et al. 2016. It is shown that MSNs of the No-Go 

part fire at a frequency smaller than 10Hz, around 6Hz, which assimilate to the frequency 

obtained in the model of this thesis as it can be seen in Figure 7, as in 600ms each neuron 

fires between 3 and 4 times, obtaining a mean firing rate of 5.69Hz±0.57. FSIs, which are 

part of the same loop and described also in the same paper, should have a firing frequency 

between 20 and 30 Hz, which is also accomplished in this model as each neuron fires 

between 2 and 3 times per each 100ms, obtaining a mean firing frequency of 

25.79Hz±3.11.[32][47] For the MSNs of the Go-part of the striatum, the frequency of firing 

was not stated in the Corbit et al. 2016 but there is experimental data of the firing rate of 

MSNs in Lee et al. 2016. This paper shows that the firing frequency is slightly lower than 

 

Figure 11. Response of a parkinsonian simulation when the No-Go task is included in the model. 

From top to the bottom, the graphs represent the firing pattern of GPe neurons, STN neurons, 

GPi neurons, and thalamic neurons. The No-Go part of the striatum is not included for same 

reason explained in Figure 10 for the Go-part. The GPe becomes more inhibited than in healthy 

cases like Figure 9. 

 

Figure 10. Response of a parkinsonian simulation when the Go task is included in the model. 

The top graph represents the firing pattern of the GPi and the bottom the firing pattern of the 

thalamus. The Go part of the striatum is not included as the compartments that show the most 

information about the final behavior of the model are the two shown. The activity of the GPi is 

increased with respect to the one in Figure 8 as the Go-part is not able to inhibit it, allowing a 

higher inhibition of the thalamus instead of its disinhibition as it should happen in Go tasks. 
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in the No-Go part, near 4Hz. In Figure 7, the number of times the neurons fire during the 

600ms is between 2 and 3, being more common the first one, obtaining also a realistic 

network as the firing frequency is 4.48Hz±0.75.[47] It might not be clearly visible in the 

figure, but individual inspection was made to ensure the realistic firing was satisfied in 

all populations. In all cases, firing patterns are similar to those of Corbit et al. 2016, with 

the MSNs trying to fire in between successful action potentials but getting inhibition from 

other cells, while FSIs fire at high frequency, recovering from previous repolarizations to 

rapidly fire again.[32] 

With respect to the remaining GPe, STN, GPi and thalamus, they were mainly modeled 

from Terman et al. 2002 and Rubin et al. 2004. Parameters chosen for the model were 

those that in the article were described as irregular or weakly clustered firing, to avoid 

obtaining the synchronization of neurons in the healthy simulation, as it would be 

considered more common in parkinsonian simulations. Terman et al. 2002 obtains 

frequencies around 4-6 Hz, which was slightly increased in the model purposed to 8-10Hz 

because the activity of the thalamus did not receive enough influence from the previous 

populations of neurons, so parameters of the network were tuned to obtain a slightly 

different output.[27] The mean firing frequency for the GPe was 9.14Hz±0.76 and for the 

STN was 8.87Hz±0.83. Besides, in Rubin et al. 2004, neurons fire also at lower 

frequencies than the one expected in the model, so tuning was also applied in GPi and 

thalamus, obtaining mean firing rates of 8.57Hz±0.73 for the GPi and 20.81Hz±1.13 for 

the thalamus. However, firing pattern of the neurons in the model were similar to the 

originals but with higher frequencies, obtaining what can be considered a realistic 

behavior.[33] Bursting did not appear in the model as inhibition from the other connections 

avoided the neurons from repeatedly firing. 

B. Model sensitivity 
Modification of several parameters of the networks was also performed to see how 

erratic it behaves with little variations around 10% of its usual value, trying to find for 

which parameters the model is most sensitive. Biggest differences are found in resting 

potentials of the different ions, half activation voltages and slope factors. For three 

different kinds of parameters the network becomes highly erratic and in most cases the 

network is unable to fire, especially in the resting potentials. 

Changes in slope factor what mainly differs from the final network is the duration of 

the action potentials, which need more or less time to complete the depolarization 

depending if its value was increased or decreased. However, in some cases like variations 

of the slope factor of the gating variable of K+ and both gating variables of Na+, the 

network became unable to fire, even for small changes. With respect to voltage dependent 

parameters (resting potential and half activation voltage), the network is the most sensible 

to changes and this small changes of 10% cause important errors in the network, which 

becomes unable to fire, getting a flat line as a result of the neurons action potentials. 

Other parameters like conductivity and activation time constants variations do not have 

a large influence with respect to their standard values. The 10% change in values in these 

parameters mainly resulted in changes in the firing rate. The conductivities make them 

more likely or not to have an influence in the action potential, so neurons become more 
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excitable when conductivities are increased. Activation time constants also affect 

excitability, but they work inversely. Neurons become more excitable with lower time 

constants as less time is needed to be active after firing previously. 

C. Action selection tasks and parkinsonian simulations 
The goal of the model was to see its response when action selection tasks are applied 

and this is what happens in Figure 8, when a Go task is included in the model. A Go task 

stimulates mostly the Go part of the striatum. Figure 8 shows this behavior by increasing 

 

 

 

Figure 12. Power spectral density plots of the different simulations run. A) PSD of the healthy 

simulation, B) PSD of a severe parkinsonian simulation during a No-Go task, C) PSD of the 

high frequency DBS, and D) PSD of the low frequency DBS. Limits of the β-band are indicated 

by the dashed lines and it is visible how the density on the parkinsonian plot increases with 

respect to the healthy simulations. Furthermore, when looking at the β-band in high frequency 

DBS, these frequencies almost disappear, while in in low frequency DBS significantly increases. 

 

 

A) 

B) 

C) 
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the firing frequency of this population and due to their connections, it inhibits the GPi, 

which activity is seen reduced and the GPi finally cannot inhibit the thalamus, which 

becomes more active. 

The response when a No-Go task is executed appears in Figure 9. This kind of task 

activates mostly the other part of the striatum, causing a cascade of activations and 

inhibitions of the populations of neurons of the indirect pathway, beginning with a higher 

activity of the No-Go part of the striatum and finally partially inhibits the thalamus as 

seen in Figure 9. Activity is slightly decreased with respect to the non-stimulated 

simulation as more activity of the No-Go part of the striatum leads to higher inhibition of 

the GPe, which cannot inhibit the STN (only when the same STN activates the GPe and 

it avoids the same neuron from the STN to fire rapidly again) and this increases the 

activity of the GPi, which finally inhibit more the thalamus, avoiding its activation. 

Comparison of the thalamus activity in Figure 7 and Figure 9 shows how in the first one, 

the thalamus is able to fire 12 times while in the second 9, in the same length of time. 

When PD conditions were added to the model, certain differences appeared in the 

behavior of the system, being them visible in the firing patterns of the different 

populations of the network. For the Go-task, it has been already mentioned that the 

activity of the Go part of the striatum is decreased due to the loss of DA from the SNc, 

what leads to lower inhibition of the subsequent population of neurons which is the GPi 

(Figure 1). It is shown in Figure 10, when compared with the previous GPi firing pattern 

when a Go task is performed in healthy subjects, that the activity of this population is 

increased. This leads to the decrease of activity of the thalamus as it receives more 

inhibition from the GPi. 

On the other hand, the No-Go task mainly affects the indirect pathway and the loss of 

DA characteristic of PD leads to higher activation of the No-Go part of the striatum, what 

turns into higher inhibition of GPe. It is seen in Figure 11 how the GPe fires less than in 

healthy cases and it is mainly able to fire when the STN activates it. Colors of the GPe 

and STN in the figures are shared for those of one population that correspond to the same 

of the other. GPe neurons are most of times activated few ms later than the same of the 

STN, showing the commented activation due to the connection between these populations 

from the STN to the GPe. The STN is also more active due to the reduced activity of the 

GPe, activating the GPi and finally inhibiting the thalamus. The final inhibition of the 

thalamus is higher than in the healthy case, becoming a possible reason of the problems 

that PD patients show when they try to perform a No-Go task. 

D. β-band and DBS analysis 
The model was designed to find the differences in activity of STN’s β-band in healthy 

and PD simulations, and finally see if DBS changes this frequency, so STN’s β-band 

could be used as biomarker. The results of differences of β-band power were made with 

populations of 10 simulations per each case (healthy Go, healthy No-Go, parkinsonian 

Go, parkinsonian No-Go, parkinsonian Go with DBS, and parkinsonian No-Go with 

DBS). This repetition of each case was made to obtain more than one case and be able to 

perform a more trustful study. Figure 12 shows the power spectral density (PSD) of the 
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different simulations during a No-Go task and it gives an initial idea of how the β-band 

actually increases in parkinsonian simulations with respect to the healthy ones. 

Results showed that significant differences in the β-band were not possible to be found 

between healthy and mild parkinsonian simulations when performing a Go task (two-

tailed Student’s t-test gave a p-value=0.976). As shown in Figure 13, differences between 

healthy and mild parkinsonian have very similar values, so it is expectable not to find 

significant differences. When No-Go tasks were performed, significant differences in the 

β-band neither were possible to be found between healthy and mild parkinsonian (p-

value=0.085). The difference with respect to the Go task is that the p-value is almost in 

the limit, and in Figure 13 is visible how a little increase in the power of the β-band is 

appreciable. 

When the conditions of PD were set as severe, the analysis showed that significant 

differences in the β-band were not possible to be found between healthy and severe 

parkinsonian cases when performing a Go task (p-value=0.6). Like in the case of mild, 

Figure 13 shows how the differences in power were minimum and differences were not 

possible to be found. On the other hand, when a No-Go task was performed the same test 

gave significant differences in the β-band between healthy and severe parkinsonian cases 

(p-value=0.0). These differences are visually presented in Figure 13, where the mean with 

its standard deviation are shown . 

When comparing if mild and severe parkinsonian states had significant differences, 

results showed that in Go tasks significant differences in the β-band were not possible to 

be found between mild and severe parkinsonian cases (p-value=0.557). Again, the 

differences are almost inappreciable and this was reflected in the result of the test. 

However, when the simulations were of a No-Go task the increase is again visible and 

this time significant differences in the β-band were possible to be found between mild 

and severe parkinsonian cases (p-value=0.04). 

 

Figure 13. Bar graphs of STN’s β-band power of the different simulated cases for the Go task 

(left graph) and No-Go task (right graph. It is noticeable the continuous increase of β-band power 

in the No-Go task as PD aggravates and the drop of the β-band power in high frequency DBS 

cases for both tasks, while for low frequency DBS the β-band increases a lot. For the Go task, 

the difference in β-band is less significant as PD aggravates and the same response the network 

has for the No-Go task also when DBS is applied. 
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In addition, the response of STN’s β-band when this same region received high 

frequency DBS for parkinsonian patients showed that the differences in both tasks were 

significant (p-value=0.0, for both cases). Figure 13 includes the response of the β-band 

when DBS is applied on the right bar of both graphs, showing a decrease of the power as 

expected. When the low frequency DBS stimulation was also applied, the increase of β-

band showed that the differences in both tasks were significant (p-value=0.0, also for both 

cases). A huge increase in the β-band was visible, having values over 10dB/Hz in both 

cases, doubling the values of severe conditions. 

Evaluation over time was also visually inspected by means of the spectrogram which 

is seen in Figure 14, where the comparison of a No-Go task is made between a healthy 

and severe PD simulation. The second case showed higher power in the frequencies of 

the β-band (around 20Hz specially) within the time in which the No-Go task was 

performed, which in both cases was from 500ms to 1300ms. Furthermore, when looking 

at the frequencies before the task is performed, it is visible how the activity in the β-band 

was significantly smaller, but some can still be observed. 

  

 

Figure 14. Spectrograms of the modeled during a No-Go task performed between 500ms until 

1300ms. The spectrogram of the left is a healthy simulation and the spectrogram of the right is 

a severe PD simulation. It is visible how the frequency in the β-band is enhanced in the 

parkinsonian simulation, as seen in the previous Figure 13. 
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4. Discussion 

The main goals of the thesis were: 1) design a model of the basal ganglia able to 

reproduce PD symptoms in the different neural populations that take part in the cortico-

basal ganglia-thalamocortical during action selection tasks (Go and No-G tasks), and 2) 

study if β-band can be used as biomarker for DBS on PD cases. 

The designed model was initially a version of the model developed by Wiecki et al. 

2013, where a model for inhibitory control of the cortico-basal ganglia-thalamocortical 

loop is done.[48] In this paper, the model consisted of multiple neurons grouped together 

into layers to obtain a system level model where the mean firing rate in a period was used 

to calculate the level of activation of each group, taking into account inhibitory, excitatory 

and leakage currents as one group each one. On the other hand, in the model presented in 

this thesis the firing of single neurons along time was calculated and they were not 

grouped to compute just the activation of a certain group, taking also into account the 

properties of the individual contribution of different ions to produce the action potentials. 

The main idea to use the purposed model by Wiecki et al. 2013 was due to the relevance 

of the striatum they show in the paper when action selection processes take part, like in 

Go/No-Go tasks.[48] 

If the response of the network is observed in healthy simulations, both Go and No-Go 

tasks show the expected responses. In the first case, Go tasks are those that require the 

movement of subjects to be performed, what implies that certain signals must be sent 

from the cortex and higher activation of this zone is necessary. This higher activation of 

the thalamus is acquired by means of its disinhibition, as the GPi gets less active and 

cannot send the inhibitory signals to the thalamus. It is shown in papers like Wiecki et al. 

2013 or Frank 2006 the main role of the thalamus for the activation of the cortex in motor 

tasks, so the higher activity obtained in the thalamic neurons during the Go tasks becomes 

a proper outcome for the network.[48][49] 

In the case of the No-Go tasks, movement has to be avoided, what would cause to have 

less activation of the thalamus and cortex with respect to the Go tasks. The model is able 

to reproduce this behavior as the firing frequency of the thalamus is reduced, but not 

completely eliminated. It makes sense as a complete inhibition of the thalamus signal 

would not allow the activation of the motor cortex at all, and then would not allow a 

minimum voluntary motor control. This kind of response is again seen in Wiecki et al. 

2013, where the activation of the thalamic cells in inhibitory tasks is reduced with respect 

to Go tasks but certain activity is still present in these populations of neurons.[48] 

If moving to parkinsonian simulations, alterations on the behavior of such population 

is seen and they became actually visible also in the developed model. The common output 

in PD was already shown in Figure 1, where the thalamic activity is reduced as the 

inhibition coming from GPi is generally increased because of receiving higher activation 

or smaller inhibition. This is supported in several papers which show that the cortical 

activity is reduced in PD, which activity is influenced by the activity of the thalamus that 

also decays.[50][51][52] 

In the Go tasks for the model, the activity of the thalamus is reduced with respect to 

the healthy simulations due to the higher activity of the GPi. This higher activity of the 
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GPi was possible due to the loss of DA in the SNc, which activates the Go-part of the 

striatum. The loss of DA in the model was introduced in the model by reducing the 

conductivity of the neurons of the Go-part of the striatum what resulted in the 

disinhibition of the GPi with respect to the healthy cases, as the first population was 

unable to inhibit the second one. 

 No-Go tasks also showed the decay of activity in the thalamus, having a similar 

behavior to the Go tasks but more exaggerated, as the decay of the frequency is larger. 

This could be an explanation for the problems that PD patients tend to show on inhibitory 

control, which is seen in Benis et al. 2014, where patients are unable to successfully 

perform the inhibitory actions.[25] The huge decrease of the activity in the thalamus could 

be an explanation for the freezing episodes seen in these kind of tasks of PD patient, 

causing the unsuccessful inhibition. Also, this could be an explanation of why the reaction 

times in inhibitory tasks have also larger delays in PD than Go tasks in some papers, as 

maybe the larger decrease of activity could increase the difficulty of performing the 

tasks.[22][25] 

With respect to the study of the β-band in the STN and the application of DBS, the 

results obtained in the model could be an indication that β-band power could be used as 

biomarker for the application in PD patients, meaning that DBS is switched on when β-

band is above certain threshold. Results of the β-band showed an increase of the β-band 

power for No-Go tasks in severe PD simulations with respect to healthy, which partially 

coincide with the findings of Kuhn et al. 2004.[18] In this article, the β-band power 

increased in No-Go tasks for severe PD subjects as shown in this model, but the Go task 

took the opposite effect and decreased, while in this model it kept a similar value as in 

healthy simulations, not having significant differences according to the performed tests. 

This could be due to the lower participation of the STN in the Go task, and as the model 

does not contain the cortex or the hyperdirect pathway, its activity might not be influenced 

as much as in the mentioned paper, obtaining this different result. 

For mild PD, differences in the β-band were not significant in any task. For the Go 

task the difference was minimum, while for the No-Go task it increased (but not 

significantly) coinciding again with Kuhn et al. 2004 in the second case but not in the 

magnitude of the difference.[18] What might indicate the results is that the increase of β-

band within the progress of PD is caused by the decrease of inhibition of the STN by the 

GPe, showing that the β-band oscillations are due to the lack of inhibition of the STN. 

This could imply that the normal state of STN without the physiological connections of 

healthy cases oscillates at the typical frequency of PD, and as less connections it has due 

to the progress of PD, it becomes abler to oscillate at the β-band frequency. 

When looking at the β-band power when high frequency DBS is applied, the results 

showed the expected decrease of β-band that appears when PD patients receive this 

treatment as explained in Brown 2007, as high frequency DBS is supposed to suppress 

these oscillations.[19] In the model these oscillations were significantly reduced, obtaining 

a mean value below the healthy conditions but some activity at the frequency band is still 

present (which would be necessary to perform the tasks), and in both Go and No-Go tasks 

significant differences were possible to be found between with and without DBS 

simulations. The difference between healthy and high frequency DBS might be caused 
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by the limitations of the model, and a complete model maybe could result in very similar 

values. On the other hand, low frequency DBS has the opposite effect, enhancing the β-

band power and being a possible explanation of why low frequency is not only ineffective 

to deal with PD, but it can aggravate the symptoms, as the β-band oscillations are more 

prominent than in parkinsonian simulations. With these results, it seems feasible to use 

β-band power in the STN to know if DBS application is working properly as the 

simulation showed a clear decrease or increase on its power when applied. 

However, the decrease of β-band present in high frequency DBS might also become a 

problem for task execution as some β-band is necessary for inhibition tasks as shown in 

healthy simulation of Figure 13 and several papers.[18][22][25][30] Subjects might become 

unable to perform the No-Go task correctly as the thalamus could not be activated enough 

due to the high activity of the STN, which finally causes the inhibition of the thalamus. 

Besides, the application of DBS can cause impulsivity as stated in Frank et al. 2007, 

where the subjects show problems to withhold their response in conflict situations like 

action selection tasks.[17] The results obtained in this model could indicate that the visible 

decrease of β-band when high frequency DBS is used might be a reason for this 

impulsivity, and then imply that higher levels of β-band might be still necessary to avoid 

this impulsivity, as some activity in this frequency band is still visible in healthy cases. 

Response of the spectrograms showed a similar response to that of Benis et al. 2014, 

where the change of the β-band for stop tasks in healthy cases was more discrete than in 

parkinsonian cases with respect to the previous time.[25] Moreover, the response in healthy 

cases is more visible a few milliseconds after the start of the No-Go task, while in the 

parkinsonian cases the increase of the β-band is more abrupt and this increase is more 

sustained in time than in the healthy cases like shown in Figure 14, indicating that the 

approximation of the action selection task is appropriate. 

These results could be used to answer the initial question to see if β-band could be 

used as biomarker for treatment of patients with DBS. When high frequency DBS is used 

the model showed that the power of the β-band should diminish to values slightly lower 

than in healthy conditions and for low frequency application the increase should be large. 

Then, β-band at the STN during the application could be considered a good option for 

such task. 

The model could be considered a good approximation of the physiology of the cortico-

basal ganglia-thalamocortical loop as the firing patterns and rates of the populations of 

the network were the expected, and then it exhibited the relevance of the striatum for 

action selection tasks, modulating the activity of the thalamus depending on which part 

of the striatum is activated. This outcome might lead to examination of other processes 

to see if the results would also coincide with experimental data and prove that the model 

could be used to completely describe the role of the different parts of the loop. 

Nevertheless, before exploration of other processes the limitations of the model that are 

commented later should be fixed to make sure that the effect that they might have in the 

model is taken into account. 

Regarding PD, this model also displayed the importance of the striatum in PD and why 

PD patients tend to show more difficulties in executing No-Go tasks than Go tasks. In 

both cases the activity of the thalamus was overinhibited and in both cases the changes 
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were mainly produced in the striatum to simulate the degeneration of DA paths from the 

SNc. The inhibited thalamus seems a reasonable explanation for the key role that has the 

striatum in the malfunction of PD subjects, as the thalamus is the region connected back 

to the cortex and its inhibition may lead to motor and cognitive problems. With respect 

to the difficulties shown in the tasks, the differences of the β-band in the STN for No-Go 

tasks seem a proper explanation to recognize one source of malfunction in PD. No-Go 

tasks are usually worse executed in parkinsonian cases and they are the tasks that showed 

alterations in the β-band, while Go tasks barely did. Then, the model showed how the 

degeneration of DA pathways to the striatum are the source of PD and how the cascade 

that follows the striatum alter the activity of the patients, causing significant differences 

in the STN for the most problematic tasks. 

The application of DBS showed why its effects can be beneficial for PD patients as it 

reduced the increase of β-band they suffer. However, it also showed some differences 

with respect to healthy subjects which might be the explanation for the problems of 

impulsivity that appear in some cases when DBS is applied. As the behavior of the model 

could be considered optimal, this model could then be used to see if stimulation of other 

regions of the brain could also lead to most optimal results, not only decreasing the 

activity of the β-band, but also obtaining values more similar to the ones obtained in 

healthy simulations. 

Model limitations and future work 
Despite the results obtained in the model looked promising and similar as what was 

expected, some more features should be included in the model as they could not be 

included and their inclusion might change some of the results, as it is known that they 

take a role in the cortico-basal ganglia-thalamocortical loop. 

One of the main differences between the presented model and the one from Wiecki et 

al. 2013 is the inclusion of the cortex. It is clear that cortex may take an important role in 

the action selection process and the feedback it gives to the basal ganglia after the stimuli 

is processed until the thalamus as it closes the loop, but several parts of the cortex would 

have to be modeled and they were not possible due to lack of experimental data and lack 

of models of the necessary neurons.[48] 

The ACC is known to have a role in the process of action selection but it was not 

possible to be modeled as it is mostly composed of spindle cells, which data was not 

possible to be found. So to model them, corresponding experimentation would be 

necessary to be able to model this region. Moreover, frontal eye fields (FEF), dorsolateral 

prefrontal cortex (DLPFC), supplementary eye fields (SEF), and pre-sensorimotor area 

(pre-SMA) are known to also have a role in the process, but specific parameters about 

their populations of neurons were neither possible to be found, due to lack of time and 

the high amount of compartments that had to be modeled, and all regions’ pathways are 

supposed to go through the ACC in this kind of activities, so their signals would not be 

able to be integrated to the network. It caused that the cortex was introduced in the model 

as approximations by means of input-output functions, which do not completely copy the 

behavior of this brain region. 
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Another limitation of the model was the non-inclusion of the SNc. This region is 

known to be one of the origins of PD due to the deterioration of its dopaminergic neurons 

and their connection with the striatum might have large importance in action selection 

tasks. In the model their effect in populations are already included in the healthy 

simulations and its deterioration is seen as modifications in the conductivities of the 

affected populations because of the lack of the original signal, so their modeling is not 

fully accurate. 
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5. Conclusions 

In this thesis, a model of the cortico-basal ganglia-thalamocortical loop was 

successfully developed to test its response in PD. The behavior of the model in healthy 

resting state was compared with experimental data and previously developed models to 

validate the network and ensure a realistic response. The lack of the model was that it 

could not include all the compartments of the loop, and their activity had to be 

compensated with input/output functions simulating their signals to other parts of the 

neurons. 

With respect to the action selection tasks, they were successfully modeled to the 

striatum to show their importance in the loop for this kind of tasks. The activation of the 

direct pathway caused the activation of the thalamus due to its disinhibition, which is 

expected for Go tasks, and the activation of the indirect pathway increased the inhibition 

of the thalamus, which is expected in No-Go tasks to avoid the movement. Furthermore, 

when the conditions of the network were adapted to those that should appear in a 

parkinsonian state (both mild and severe), the outcome was the expected, showing the 

increase of the β-band that has been observed in previous experimental studies as PD 

progresses, and how the activity of the thalamus decreased in both cases, being a probable 

reason for the freezing episodes seen in these action selection task experiments. 

Finally, the application of low and high frequency DBS was used to see if the β-band 

increases in the first case, what could be an explanation for the worsen of the PD patients 

which receive these frequencies, and decreases in the second, what could show the 

improvement of the patients. Results showed the expected behavior, increasing 

significantly the β-band for low frequency DBS (around 6 times) and decreasing for high 

frequency (smaller but near healthy values), indicating that β-band could be considered a 

good option to be used as biomarker for proper high frequency DBS treatment. 
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Appendix 

This appendix includes the values of the parameters used for the different populations 

of neurons in the simulations. Also, values corresponding to the parkinsonian states and 

the parameters of the simulated functions that are not mentioned in the report are included. 

Table 1. Values of the electrophysiological parameters of the different populations of neurons. 

Parameter MSN Go part MSN No-Go part FSI GPe STN GPi Thalamus 

𝒈𝐋 0.075 0.04 0.25 0.1 2.25 0.1 0.05 

𝒈𝐊 6 6 112.5 30 45 30 30 

𝒈𝐍𝐚 35 35 56.25 120 37.5 120 120 

𝒈𝐂𝐚 0.1 0.1 - 0.15 0.5 0.15 - 

𝒈𝐓 - - - 0.5 0.5 0.5 0.5 

𝒈𝐀𝐇𝐏 - - - 30 9 30 - 

𝑬𝐋 -65 -65 -70 -55 -60 -55 -60 

𝑬𝐊 -90 -90 -90 -80 -80 -80 -90 

𝑬𝐍𝐚 55 55 50 55 55 55 50 

𝑬𝐂𝐚 140 140 - 120 140 120 0 

𝝉𝐡
𝟎 0.5 0.5 0.5 0.05 1 0.05 - 

𝝉𝐡
𝟏 110.1 30.1 25 0.27 500 0.27 - 

𝝉𝐧
𝟎 0.5 0.5 0.5 0.05 1 0.05 - 

𝝉𝐧
𝟏 110 30 25.4 0.27 100 0.27 - 

𝝉𝐫
𝟎 - - - 30 7.1 30 - 

𝝉𝐫
𝟏 - - - 0 17.5 0 - 

𝜱𝐡 1 1 1 0.05 0.75 0.05 - 

𝜱𝐧 1 1 1 0.1 0.75 0.1 - 

𝜱𝐫 - - - 1 0.5 1 - 

𝒌𝐥 - - - 30 15 30 - 

𝒌𝐂𝐚 - - - 15 22.5 15 - 

𝝐 - - - 5e-4 5e-5 5e-4 - 

𝜽𝐦 -38 -38 -44 -37 -30 -37 -37 

𝜽𝐡 -58 -58 -58.3 -58 -39 -58 -41 

𝜽𝐧 -47 -47 -42.4 -50 -32 -50 - 

𝜽𝐫 - - - -70 -67 -70 -84 

𝜽𝐚 - - - -57 -63 -57 -60 

𝜽𝐛 - - - - 0.25 - - 

𝜽𝐬 -37 -37 - -35 -39 -35 - 

𝜽𝐡
𝝉  -43.5 -43.5 -12 -40 -57 -40 - 

𝜽𝐧
𝝉  -37.4 -37.4 -8.6 -40 -80 -40 - 

𝜽𝐫
𝝉 - - - - 68 - - 

𝜽𝐠
𝐇 -57.8 -57.8 -57.8 -57 -39 -57 - 

𝜽𝐠 52 52 57 20 8 20 - 

𝝈𝐦 10 10 11.5 10 15 10 7 

𝝈𝐡 -20 -20 -6.7 -12 -3.1 -12 -6 

𝝈𝐧 14 14 6.8 14 8 14 - 

𝝈𝐫 - - - -2 -2 -2 4 

𝝈𝐚 - - - 2 7.8 2 6.2 

𝝈𝐛 - - - - -0.07 - - 

𝝈𝐬 2 2 - 2 8 2 - 

𝝈𝐡
𝝉  -12.63 -12.63 -60  -12.1 -3  -12.1 - 

𝝈𝐧
𝝉  -12.3 -12.3 -14.6 -12 -26 -12 - 

𝝈𝐫
𝝉 - - - - -2.2 - - 

𝝈𝐠
𝐇 2 2 2 2 8 2 - 
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𝜶 2 2 2 2 5 2 - 

𝜷 0.1 0.1 0.2 0.08 1 0.08 - 

 

With respect to the conductivities and resting potential of the different connections 

between networks, the values are defined as: 

Table 2. Values of the parameters of connectivity 

between the different populations.  

Connection 𝒈𝐀→𝐁 𝑬𝐀→𝐁 

MSN  MSN (No-Go part) 0.5 -80 

MSN  GPe (healthy) 0.3 -80 

FSI  MSN 0.1 -80 

MSN  MSN (Go part) 0.14 -80 

MSN  GPi (healthy) 0.6 -80 

FSI  FSI 0.3 -80 

GPe  FSI 0.12 -80 

GPe  GPe 0.01 -100 

STN  GPe 0.3 0 

GPe  STN 0.4 -100 

STN  GPi 0.3 0 

GPi  Thalamus 0.05 -85 

MSN  GPe (mild PD) 0.55 -80 

MSN  GPi (mild PD) 0.455 -80 

STN  GPe (mild PD) 0.275 0 

STN  GPi (mild PD) 0.275 0 

MSN  GPe (severe PD) 1.3 -80 

MSN  GPi (severe PD) 0.02 -80 

STN  GPe (severe PD) 0.2 0 

STN  GPi (severe PD) 0.2 0 

 

Finally, with respect to the input signals used for the action selection task, the most 

optimal outcome as stated in Methods was for frequency of 80Hz and amplitude of 200, 

in both cases. 


