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Abstract 
Hot Mixed Asphalt (HMA) is one of the most used materials in road construction. To 
receive a longer lifespan of asphalt and lower maintenance cost, quality control during 
asphalt paving is crucial. The temperature of the asphalt mixture is considered a key factor 
that impacts the final performance of the pavement. The temperature of the asphalt mix is 
changing continuously during the compaction. If the asphalt is not compacted within a 
suitable temperature window, it will reduce cracking toughness and raise the chances of 
crack propagation. Researchers are currently using thermal sensors to monitor the 
temperature both in paving and compaction process. Also, Global Positioning Systems 
(GPS) is used to monitor the movement of road construction equipment (i.e., pavers and 
rollers). In these systems, the geo-referenced temperature data are displayed to operators, 
so that they can develop their strategies during the paving process. However, the current 
monitoring system has several limitations: (1) the system requires a high initial investment, 
(2) instruments need to be mounted on every machine, setup and adjustment of these 
instruments are time-consuming, and (3) high density of buildings and tall trees disturb or 
even block GPS signals in some construction environments. On the other hand, Unmanned 
Aerial Vehicles (UAVs) offer a potential solution to the three limitations. UAVs are 
becoming increasingly more mature and available and they started to be used in the civil 
engineering industry as a data acquisition platform and an instrument for surveying 
purposes. This research aims to investigate the applicability of UAV-based monitoring 
systems for paving operations. To this end, a UAV-based method for monitoring the 
movement of the paving machinery during road construction is developed. In this method, 
markers are placed on (1) static known locations on the site, and (2) moving equipment. 
Computer vision and photogrammetry methods are used to localize moving equipment in 
each frame of the video based on location of known markers. The performance of the 
proposed method is tested in several case studies. The UAV based solution is found to be 
a promising method for tracking road construction machinery. The solution can reduce 
initial investment and at the same time ensure adequate accuracy of tracking targets. In 
addition, UAVs allow adding or replacing several components based on demand. For 
example, onboard computer for real-time data processing and thermal camera for 
temperature monitoring. Thus, the UAV based solution can be extended to both monitor 
paving operations and temperature during road construction in the future.  
 
Keywords: Global positioning system (GPS), Unmanned aerial vehicle (UAV), Asphalt 
paving, Monitoring, Quality 
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1 Introduction 
The growth of the economy is accompanied by increasing travel demand. As a vital 
component of any transportation system, there is a need for continuous construction and 
maintenance of road infrastructure. Stability and durability are two features of asphalt 
pavement that made it one of the most used material in paved road infrastructure [1]. But 
many efforts are still put in maintaining the asphalt pavement every year. To receive a 
longer lifespan of asphalt and lower maintenance cost, quality control is important during 
asphalt paving process.  
 
In a paving process, the asphalt is first transported from the plant to the construction site. 
Then, two kinds of construction machinery are used. A paver spread the asphalt to a certain 
layer thickness and finally rollers compact the asphalt mixture to a certain density and 
quality level. In the past, asphalt paving process was heavily relied on the skills and 
experiences of the asphalt team working on the construction site and often without any 
instruments to monitor the crucial parameters during construction [2]. This is not 
ineffective because the number of parameters that need to be considered for a quality 
paving operation is too overwhelming to be left to the intuition or expertise of an operator. 
One such key parameter is the temperature of the asphalt. Temperature segregation occurs 
because of differential cooling of portions of the mixture on the surface of the mixture in 
the haul truck, along with the side of the truck box, and in the wings of the paver [4,5]. 
Temperature segregation of asphalt mixture can result in density differentials in asphalt 
layer, which will impact the lifespan of the pavement [5,6]. For example, operational 
discontinuities, which occurs when the paver stops during the paving process, can cause 
extensive variability in temperature homogeneity and can directly affect the final quality 
of the pavement [7]. In addition, temperature of the asphalt mixture is changing 
continuously during the compaction [8]. The heat affects not only the difficulty of 
compaction but also the time available for the compaction. The asphalt mixture should be 
compacted before the temperature of asphalt falls below the lowest bound of ideal 
compaction temperature, otherwise density progression is hardly reached. Also, the 
temperature of the pavement cannot be too high. Otherwise, it will damage the asphalt 
binder. If compaction is outside the compaction window, it will reduce cracking toughness 
and raise the chances of increasing the crack propagation, although the target density is 
reached [8]. Therefore, it can be stated that, overall, if asphalt is not compacted within a 
suitable temperature window, there is a high risk of getting a lower quality pavement. 
 
To enhance process control, researchers has focused on using new technologies to monitor 
the key parameters and presenting that information to the asphalt team [3]. Researchers are 
using a set of technologies to professionalize process control on the construction site. To 
monitor the temperature/density differential and to visualize the collected data 
systematically, a methodology called Process Quality Improvement (PQi) is developed [3]. 
Three technologies are used in this framework: (1) Global Positioning System (GPS) receivers 
mounted on construction equipment to track the movements of construction machinery 
(paver and roller), (2) laser linescanners mounted at the back of the asphalt paver, (3) infrared 
cameras placed at fixed positions along the site, (4) thermocouples placed in the middle of 
asphalt layer to monitor surface and core temperature of the asphalt, and (5) a density gauge 
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to monitor density differential by measuring density after every roller pass. An example of 
the GPS and linescanner set up on a paver is shown in Figure 1. Data derived from different 
equipment are downloaded to a processing center and analyzed in real-time. The data 
provide the asphalt team with the relevant information via appropriate visualizations.  
 
The GPS coordinates of machinery can be integrated with surface/core temperature data 
from thermal sensors to draw the temperature contour plot, as shown in Figure 2. This geo-
referenced temperature information can be used both in real time, i.e., to help compactor 
operators develop compaction strategies, or post-mortem, i.e., to identify the potential areas 
of early defect in the asphalt layer.  
 

 
Figure 1: Linescanner mounted behind the paver and a GPS receiver equipped to the 

paver[9]	
 

 
Figure 2: Typical Temperature Contour Plot [9]	

 
GPS data can also be used to determine and visualize the amount of compaction force 
applied to different parts of the asphalt in form of compaction contour plots, as shown 
Figure 3. The compaction contour plot shows the number of passes on different areas of the 
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paved layer and the compaction coverage of each roller. It helps to conduct a more detailed 
analysis of the compaction process. With GPS, the continuity of the asphalt paving process 
can also be analyzed by calculating the speed of paver. Companies can use the PQI 
measurements to analyze the strategies of the different operators and the consistency of their 
strategies. 
 

 
Figure 3: Typical Compaction Contour Plot derived from the GPS data [9]	

 
As shown above, GPS is a central instrument in PQI methodology to localize and track 
rollers and pavers. Differential GPS (DGPS) is an enhancement to GPS that can improve the 
positioning accuracy up to 10 cm [10]. DGPS uses base reference station; i.e., station placed 
on a known location, to determine the systematic errors of GPS in its vicinity and 
calculate/transmit the required corrections to the surrounding rovers. In recent years, 
researchers also started to use more accurate variant of GPS, i.e., Real-time Kinematic 
(RTK), that works based on carrier phase measurements [11]. RTK GPS can localize 
objects with the accuracy of 5 cm [11]. Nevertheless, regardless of the variant of GPS used 
for localization, GPS-based PQI measurements have a number of limitations: (1) the price 
of GPS instruments is high. As mentioned before, a DGPS configuration setup requires a base 
station and several rovers. On large projects that many pavers and rollers work together, the 
initial investment of the system will be high since every equipment on the field should be 
equipped with a rover; (2) installation, setup, and adjustment of the PQI instruments are time-
consuming; (3) GPS requires a clear line of view to the sky. However, in highly urbanized 
settings with a high density of buildings and tall trees, GPS signals are blocked. Although 
signal processing methods, e.g., Kalman filter, can be applied to improve the performance 
of GPS [12], the accuracy of GPS in urban settings remains significantly low, rendering it 
impractical for application in PQI measurements.  
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In recent decades, and with the advent of remote sensing technologies, Unmanned Arial 
Vehicles (UAVs) has found its way in monitoring civil engineering operations. Two 
characteristics of UAVs are particularly striking: (1) UAVs are capable of reaching areas or 
spaces that are difficult to reach otherwise, (2) on top of normal high-resolution cameras, 
UAVs can be installed with different imagery technologies, e.g., infrared cameras and 
Light Detection and Ranging (LiDAR), to collect different types of data all through the 
same platform [13]. This makes UAV a highly versatile platform for monitoring 
construction activities. In the past few years, the application of UAV for such domains as 
terrain mapping [14], 3D building reconstruction [15], bridge monitoring [16] and 
structural health monitoring [17], has been studied. For example, an UAV-based method 
is developed to build a 3D model of road surface and evaluate its condition [18]. Also, 
UAVs are used to autonomously monitor linear structures (such as pipelines, roads, bridges, 
canals) [19].  
 
The researchers found that there are several advantages of UAV monitoring. First, UAVs 
are flexible and capable of reaching the area or space that a man cannot reach. Second, the 
data are suitable for post-flight analysis since they are always equipped with high-
resolution cameras and capable of doing stationary flight above the target. Third, UAVs 
are easy to operate and there is a vast number of low cost UAVs available. Although UAVs 
have proven very efficient for monitoring purposes, there are relatively rare examples of 
applying UAVs for monitoring of paving operations. Therefore, given the above-
mentioned limitations with the current GPS-based monitoring systems of paving operations 
and the potentials of the UAV-based tracking and monitoring, it will be worthy to research 
if UAVs can be used in monitoring of paving operations. 

1.1 Research Objective 

The main objective of this research is to investigate the applicability of UAV-based 
monitoring systems for paving operations, in particular for PQI measurements. To this end, 
a marker-based tracking method will be developed, tested, and analyzed to identify the 
potentials, advantages and limitations of UAVs as a substitute for GPS in the current PQI 
measurements. Also, by applying the proposed method in several case studies, the 
functional requirements of UAV-based system for PQI measurements will be elucidated. 
This research will contribute to the body of knowledge by providing an insight into the 
possibilities and requirements of UAV-based system for PQI measurements.  
 

1.2 Research Methodology 

To reach the research objective, a research methodology (Figure 4) is formulated and 
designed. The methodology has 4 phases, namely literature review, method development, 
implementation and prototyping, and case study and validation. In the first phase, the 
research problem and potential solution is identified through a literature review, as 
presented above. In addition, the research objective is formulated, as presented in Section 
1.1. 
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According to the research objective, a new UAV-based monitoring method is proposed in 
phase 2 of the research. The method is developed by building on the camera pose estimation 
and marker-based tracking of the object of interest. The method has three main stages: (1) 
camera calibration, (2) marker detection, (3) position estimation. Based on the findings 
from the literature review and traits of the UAV-based monitoring, the key factors of the 
monitoring method are identified. These factors are later used in phase 4 to validate the 
proposed method.  
 
Once the proposed method is developed, it is implemented in a prototype in phase 3 of the 
research. To investigate the feasibility of the proposed method, the prototype is applied in 
an indoor test. The result of the test is presented to the researcher to verify if the prototype 
meets the basic functional requirement. 
 
In the phase 4 of the research, the method is then applied in a case study for validation. The 
researcher conducted a UAV field test to research the impact of the identified key factors. 
During the validation phase, the result derived from the current monitoring method, which 
is elucidated in Section 1, is compared to the result derived from the new method utilizing 
UAV. Base on the result of the validation, the optimization of the new method is 
undertaken, if needed. In addition, the data derived from the UAV field test is recorded and 
archived. In the future, the data will help the researchers and UAV pilots to accumulate 
knowledge of flying strategy and plan a flight before start monitoring.  

 
Figure 4: Research Methodology 

 
2 Proposed Method 
Figure 5 schematically presents the concept of marker-based tracking of paving equipment. 
In this concept, there are two types of markers: (1) target markers that are placed on 
pavers/rollers; and (2) feature markers that are placed on several known locations on the 
construction site. In a nutshell, the goal is to use UAVs, to capture aerial videos of the 
operations and then localize each target markers in each frame of the video based on the 
location of feature markers. More precisely, each pixel in the frame can be translated to the 
coordinate on the Earth based on transformation matrices. For any given frame, the goal is 
to find these transformation matrices based on the known coordinates of the feature 
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markers and then apply the matrices to the target markers. A main advantage of this concept 
is that a monitoring device from the sky has less possibility of either disturbing paving and 
compaction activities or to be obstructed by the asphalt team or the surrounding objects.  

 
 

Figure 5: Schematic Representation of the Proposed Concept 
 

2.1 Overview of the proposed method 

Figure 6 shows the flowchart of the proposed method. As shown in this figure, the proposed 
method has three main stages, namely, camera calibration, marker detection, and position 
estimation. While the calibration is done once for the entire operation, latter two stages are 
applied on every frame of the video captured from the paving operation.  
 

2.1.1 Camera Calibration  

If the focal length of camera is too small, it will introduce a degree of distortion to images, 
it is necessary to first calibrate the camera. The camera calibration method is explained in 
the literature [20]. According to the literature, there are two major distortions, namely radial 
distortion and tangential distortion. Radial distortion makes straight lines appear curved, 
while tangential distortion makes some areas of the image appear closer than expected. In 
OpenCV, radial distortions are characterized by coefficients k1, k2, k3 and tangential 
distortion is characterized by coefficients p1, p2. These coefficients are typically bundled 
into a distortion coefficients vector, which is a 5×1 matrix containing k1, k2, p1, p2, and 
k3 [21]. If the images are not distorted significantly, the distortion coefficients can be set 
as zero. Beside distortion coefficients, intrinsic matrix [K] of the camera can also be 
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calculated by camera calibration. It is shown that the classic black and white chessboard, 
see Figure 7, can produce accurate calibration results due to its graphics [20]. By inputting 
checkerboard images from different angles and finding their intersections, the distortion 
coefficients and intrinsic matrix [K] can be calculated. It is assumed that these parameters 
are fixed. Thus, the camera zoom is not allowed during the recording of the camera in order 
to preserve the same parameters during all the procedure. In addition, to ensure that results 
are close to the real value, the checkerboard should fill the whole frame during the 
calibration. 
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Figure 6: Design of the algorithm 
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Figure 7: Chessboard for calibration	

2.1.2 Marker detection 

Different visual markers are used in many situations for tracking the object of interest. 
Given the context of PQI measurement, the 2D tracking of the target object is sufficient. 
In other words, in the current state of the PQI measurements, the elevation (i.e., Z value) 
of the paving equipment is not of interest. There are several 2D squared fiducial marker 
systems such as AR Tag [22] and ARToolkit [23], which were primarily developed for 
augmented reality (AR) applications. These square markers consist of an external pixel 
thick black border and an internal area that encodes a binary pattern. The binary pattern is 
unique for each marker, which means the unique binary pattern encoding the marker 
identifier will not be created by the rotation of other patterns in the same environment. An 
example of the 2D squared fiducial marker is shown in Figure 8.  
 

 
Figure 8: Pattern of a 2D marker 

 
In marker detection process, the goal is to identify the markers and then analyze the binary 
code inside them. For the code extracted, identification of the internal code is done to check 
if the type of markers, i.e., target or feature markers. In general, the 2D marker detection 
process includes 4 steps: (1) applying threshold for image segmentation: in this step, as 
shown in Figure 9(a), an adaptive threshold is applied to make the detection of markers 
easier; (2) finding contour of the marker; (3) identifying the type of marker: at the end of 
the previous step, many unwanted contours that do not belong to markers are also identified. 
Therefore, it is important to remove these noises to identify the markers. To this end, 
unwanted contours (too small or too large, too close to each other, etc.) are removed, as 
shown in Figure 9(b).  Next, as shown in Figure 9(c), polygonal approximation is applied 
to identify the four corners of the rectangular contours. Then, the corners are sorted 
counter-clockwise and rectangles that are close to one other are removed. This is necessary 
because adaptive thresholds typically detect the internal and external parts of the marker 
boundaries. At this stage, as shown in Figure 9(d), the external borders of the marker are 
retained. Finally, as shown in Figure 9(e), homography is applied to the detected contours 
to remove the projection perspective from the detected marker. At this point, the marker is 
detected and the code inside the marker can be retrieved; and (4) finding the pixel 
coordinates of markers.  
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(a) (b) 

   
(c) (d) (e) 

Figure 9: Marker detection process 
 

2.1.3 Position Estimation 
After the markers are successfully detected, it comes to the next function, which is the position 
estimation. The proposed method aims to locate pixel point of the center of the target 
marker in the 2D image and then calculate the corresponding coordinate on the Earth. 
Therefore, it is vital to get the corresponding relationship between 2D and 3D (Figure 10), 
which is represented in certain matrices. To better explain the remainder of the method, it 
is crucial to establish some of the basic terms in coordinate project calculation:   
 
World coordinate (xw, yw, zw): It is also known as the measurement coordinate system. This 
is a three-dimensional rectangular coordinate system, which is used to describe the spatial 
position of the camera and the object to be measured. The position of the world coordinate 
system can be determined freely according to the actual situation. 
 
Camera coordinate (xc, yc, zc): It is also a three-dimensional rectangular coordinate system. 
The origin is located at the optical center of the lens. The x and y axes are parallel to both 
sides of the phase plane respectively, z axis is the optical axis of the lens, perpendicular to 
the image plane. 
 
The pixel coordinate system (u, o, v): It is a two-dimensional rectangular coordinate 
system, which reflects the arrangement of pixels in the camera CCD/CMOS chip. The 
origin o is located in the upper left corner of the image, and the u and v axes are parallel to 
both sides of the image plane. Pixel coordinates are in pixels (integers). 
 
Imaging plane coordinate system (x, y): the pixel coordinate system is not conducive to 
coordinate transformation, so it is necessary to establish an image coordinate system XOY. 
The unit of its coordinate axis is usually mm, and the origin is the intersection point of 
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camera optical axis and phase plane (called the main point), that is, the center point of the 
image. X axis and Y axis are parallel to u axis and v axis, respectively. Therefore, the two 
coordinate systems have actually translation relations. Imaging plane coordinate is ideal 
(distortion-free) image coordinate. If the image is distorted (although not observed 
significantly in this research), the distortion can be solved by applying distortion 
coefficients that derived from camera calibration [20]. 

 
Figure 10: Transforming between different coordinate systems (f: focal length) [24] 

As mentioned above, the problem of the relationship between 2D and 3D is actually finding 
the relationship between those different coordinates (Figure 9). Each pixel in the frame can 
be translated to the coordinate on the Earth by using several matrices. The first step is to 
transform from the imaging plane coordinate system (pixel coordinate system) to the 
camera coordinate system, using parameters of physical characteristics of the camera. 
These parameters include information such as focal length (fx, fy) and distance to the optical 
center (cx, cy). These parameters can also be expressed in the camera Intrinsic Matrix [K] 
that derived from camera calibration. [K] is a 3x3 matrix as shown in Equation 1.  
 

K =
f$ 0 c$
0 f' c'
0 0 1

 Equation 1 

 
Where: 
K: Intrinsic Matrix 
fx: The camera focal length in terms of pixel dimension in the x direction 
fy: The camera focal length in terms of pixel dimension in the y direction 
cx: Distance to the optical center in terms of pixel dimension in the x direction 
cy: Distance to the optical center in terms of pixel dimension in the y direction 
 
The second step is to transform from the camera coordinate system to the world coordinate 
system. This step is the Euclidean transformation from 3D point to 3D point, using [R] (the 
rotation matrix that determine orientation of the camera in a 3D space) and t (the translation 
vector that determine the position of the camera in a 3D space) [25]. As presented in 
Equation 2, [R|t] is a 3x4 matrix which is a horizontal concatenation of [R] and t, it is also 
called the extrinsic matrix. 
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[R|t] 	=
R11 R12 R13
R21 R22 R23
R31 R32 R33

			
t1
t2
t3

 Equation 2 

 
 
Where: 
 
Ri,j: The elements contain Euler angles roll, pitch and yaw, which define a rotation 
ti: Distance from camera coordinate origin to world coordinate origin in x,y,z direction 
 
If the intrinsic matrix [K] and extrinsic matrix [R|t] are known, the overall transformation 
matrix (T) can be defined according to Equation 3.  
 

T = [K]	×[R|t]			 Equation 3 
 
Where: 
 
T: Transformation matrix 
 
With the transformation matrix known, the corresponding world 3D coordinate of any 2D 
points in the image can be calculated using Equation 4.  
 
𝑥
𝑦
1
= [T]×

𝑥5
𝑦5
𝑧5
1

			 Equation 4 

 
Where: 
 
x: Position of point in terms of pixel dimension in the x direction 
y: Position of point in terms of pixel dimension in the y direction 
xw: Position of point in terms of real world dimension in the x direction 
yw: Position of point in terms of real world dimension in the y direction 
zw: Position of point in terms of real world dimension in the z direction 
 
As stated before, Intrinsic Matrix [K] is based on parameters of physical characteristics of 
the camera, which is easy to retrieve by doing camera calibration. Given at least four 
feature points (which are geometric center of feature markers in this research) represented 
in a real-world reference frame and their corresponding 2D projection points on the image, 
[R|t] can be retrieved. Real coordinate of any detected target marker can be easily estimated 
using these matrices.  
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2.2 Key factors and parameters: 

There are many factors that affect a successful UAV-based tracking of paving machinery. 
These factors include: (1) applicability of the UAV as a monitoring platform, (2) Update 
rate and accuracy of the estimated position data. 

2.2.1 Applicability of the UAV 
The selection of a UAV system must be based on the traits characteristics of asphalt 
pavement construction. The UAV needs to be able to hover in the sky stably and be robust 
to withstand harsh ambient weather environment, e.g., strong winds. Performance of UAV-
based solution will be impacted if the data derived from UAV are not stable. Thus, 
parameter like max wind resistance, number of rotors, weight and max payload need to be 
considered. Flight height, flight range and max flight time are also crucial parameters in 
UAV-based tracking. 

2.2.2 Update rate and accuracy 
As described above, the proposed method consists of two functions, marker detection and 
position estimation. Real coordinate of the target marker will be estimated as long as the target 
marker and at least four feature makers are detected. Tracking update rate of the target 
position is directly correlated to marker detection ratio. The update rate of UAV-based 
solution is defined by Equation 5. 
 

𝑈 =
𝐶
𝑇:

×𝑅 Equation 5 

 
Where: 
 
U: the tracking update rate 
C: the total amount of calculated position of target within the given time 
Tf: the total frames of the recorded video within the given time 
R: the frame rate of camera  
 
To ensure a better update rate of the data, it is needed to increase the chance of detecting the 
markers. In addition, the main concern of the proposed method is the accuracy. The following 
introduce the factors that might impact marker detection ratio and accuracy of the UAV-based 
solution: 
 

• Type of the markers 
• Margin size of markers 
• Focal length of UAV camera 
• Height of UAV 
• Marker size 
• Resolution of image 
• Flight strategy of the UAV 
• Amount of feature markers 
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Depending on different types, there are markers with more or fewer bits for analyzing the 
binary code inside. The more bits, the smaller the chance of a marker being recognized as 
another marker. However, markers with more bits means that more camera resolution is 
required for correct detection. It will also take a longer time to extract the inner code and 
increase the computational load. 
 
As shown in Figure 11, markers are always printed on a paper or another material. 
Therefore, a wider margin outside the pattern of the marker can make it more distinctive from 
the ambient environment. Thus, contour extraction is enhanced and marker detection ratio is 
increased. 
 

 
Figure 11: Margin of a 2D marker	

Focal length of the UAV camera, flight height and marker size together determine the size of a 
marker in the given image, which is Sm. Sm is the main parameter that determines if the 
marker can be detected or not. Sm can be determined by Equation 6. 
 

𝑆= =
𝐴=
𝐴?

×100% Equation 6 

 
Where: 
 
Am: the area of pixels that the marker occupied 
At: total pixel area of the given image 
 
Resolution of image is directly determined by the resolution of the camera, higher resolution 
helps to find the outline and geometry center of marker accurately and thus increase the 
accuracy of result. However, higher resolution increases the computational load and process 
time of the designed algorithm, which will impact the performance of UAV-based tracking 
in real time.   
 
Flight strategy can also be correlated with the accuracy because the UAV hover stationary 
in the sky or follow the movement of moving target might lead to different quality of the 
captured video.  
 
Placing more markers means higher marker density in a given area. Although it might not 
increase the detection ratio of each single marker, adding more feature markers means more 
redundancy for the method. In other words, it is easier to detect at least four feature markers 
from a frame to get the extrinsic matrix [R|t] and achieve higher update rate of the target 
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position data. However, it is unknown if accuracy will be increased when more feature 
markers are placed in a given area. Also, the disadvantage of adding more feature markers 
is that it will take longer preparation before UAV starts monitoring.  
 
3 Implementation and Case Studies 
A prototype is developed and implemented in a number case studies to investigate the 
feasibility of the proposed method.  
 
 

3.1 Prototype development  

The prototype is developed using Open Source Computer Vision Library (OpenCV) [25]. 
A camera with resolution of 1080x720 pixels is used to test the prototype. ArUco is an 
Open Source library for detecting squared fiducial markers in images [26]. In this research, 
ArUco markers are chosen because they are proved to be very robust and easily detectable 
for a very wide range of applications [27]. The ArUco markers used in the case study are 
7x7 squares array and yield up to 1024 different patterns. An Example of ArUco markers 
used in the research is shown in Figure 12. 
 

 
            Figure 12: Patterns of ArUco marker	

Geometry center of ArUco markers is easily detectable. However, in some situations, there 
are several parameters that refer to detection ratio and detection speed can be fine-tuned 
(See Appendix A).  
In OpenCV, the extrinsic matrix [R|t] is calculated by solving the Perspective N-Point 
problem. The Perspective N-Point problem refers to the problem of obtaining the camera 
or object posture by calculating the projection relation between several feature points in 
the real world and several pixel points in the image. Function solvePnP() was used in this 
research [28]. According to Moreno-Noguer et al. [29], the geometry center of four or more 
detected feature markers with known coordinates in both the real world and camera pixel 
plane are required to find the extrinsic matrix [R|t]. Also, the distortion coefficients and 
intrinsic matrix [K] that derived from camera calibration are used as inputs for solvePnP(). 
However, the distortion coefficients were negligible. As shown in Equation 3, if the image 
is distortion-free, only [K] and [R|t] are needed for position estimation. The real coordinate 
of any detected target marker can be easily estimated using these matrices as long as 
geometry center of the target marker in pixel coordinate system is known.  
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3.1.1 Case study 1: Indoor test 

In the first case study, a pre-defined ArUco library that contains 1024 patterns is used. Five 
markers from this library are chosen and printed in the size of 7x7 cm. Four of the markers 
are placed in four corners with known positions (measured in millimeters) of the test plane, 
see Figure 13, as feature markers. The position of the left top corner is set at (0,0,0), left 
bottom corner at (297,0,0), right top corner at (0,420,0) and so on. A target marker was 
placed in the middle of the two top feature markers. The program was run in real-time, the 
fixed web-camera, which is mounted on a tripod one meter from the test plane, is used to 
capture image stream and detect markers. After all five markers on the plane are detected, 
the contour and unique ID of markers are visualized. Output of the program is the estimated 
position of the target marker.  
 

 
Figure 13: Prototype test plane   

 
The position of the target marker is recalculated in every frame. Therefore, the value of the 
position is calculated and then compared to the known position (0,210,0) of the target 
marker. To testify the accuracy of algorithm, the procedure of test is repeated 5 times. The 
result of the accuracy measurements is presented in Figures 14. After the prototype test, it 
was concluded that the developed program was able to estimate the positions of target 
marker based on four feature markers at certain accuracy.  

 
Figure 14: Errors of the calculated position of target marker 
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3.2 Case study 2: UAV field test 

UAV field test is designed to gain more insight into how the influential practical factors 
affect the performance of the proposed method in terms of the detection ratio, update rate, 
and accuracy. The considered factors are: (1) size of a marker in the given image, i.e., Sm, 
(2) flying altitude of the UAV, (3) density of feature markers in a given area.   

3.2.1 Preparation 

Before the case study, several 50×50 cm ArUco markers are prepared. Then, an eight-meter 
wide road is chosen as the test field and a feature marker is placed every five meters along 
the road, in total ten feature markers are placed, as shown in Figure 15. GPS coordinate 
system is used to find the coordinates of the feature markers. The GPS coordinate of the 
center of each marker is surveyed by a D-GPS equipment (Trimble SPS 851). A trolley is 
used as a target to simulate the movement of a roller during a paving operation. A target 
marker is placed on the top of the trolley along with a D-GPS rover antenna, whose data is 
used as ground truth for accuracy measurements. DJI PHANTOM 4, Figure 16, with a 
gimbal and a built-in high-resolution camera is used to record the video of the simulated 
operation. The specifications of the built-in camera are 1) resolution: 4096×2160 pixels, 2) 
focal length: 20 mm and 3) frame rate: 25p. In addition, distortion coefficients and intrinsic 
matrix [K] of the UAV camera are derived from calibration. In the test, the data derived 
from UAV camera are processed offline by the program.  

 
Figure 15: Test field and feature markers placement 

 

 
Figure 16: DJI PHANTOM 4 with an in-build camera 
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3.2.2 Impact of Flying Altitude 

Since the real size of markers is fixed, the impact of the marker size (Sm) on the performance 
of the proposed method is simulated by modify the flying altitude of UAV. However, the field 
of view is unknown. The UAV pilot first conducted a trial by hovering the UAV over test field 
at different height. It is discovered that all ten feature markers are visible in image at the altitude 
of 13 meters, so the test starts from this altitude. The trolley is pushed from one side of the test 
field to the other while the UAV hovering at a certain altitude and monitoring the movement of 
target. This process is repeated at 8 different altitudes, namely 13 m, 15 m, 17m, 19 m, 21 m, 
23m, 25m and 27m.  
 
Although the solvePnP() function could output [R|t] in two different scenarios: 1) 
stationary camera and feature markers and 2) moving camera and feature markers, the 
impact of UAV movements on the performance is not fully known. It is assumed that the 
movement of UAV camera might reduce the quality of recorded data and thus impact the 
detection ratio. In order to investigate the impact of UAV movements, the same process is 
repeated for the scenario where the UAV follows the movement of target marker on the 
trolley and keep the target in the center of camera’s view instead. This scenario is also tested 
at 8 different altitudes.  

3.2.3 Impact of Marker Density 

Although the developed method only requires four feature markers to calculate [R|t], 
placing more feature markers is expected to enhance the detection rate by providing 
redundancy. In other words, it is envisioned to be easier to detect at least four feature 
markers, and thus achieve higher update rate, when more than 4 feature markers are 
available in the image. However, derived [R|t] might be different if more than four feature 
markers are detected and used as inputs of the program. To investigate the impact of marker 
density on the performance of the method, the test where UAV was hovering at 27m is 
used. When processing the data, it is possible to modify the algorithm and controlled the 
number of detected feature markers manually. Because all ten feature markers are visible at 
altitude of 27m, it is possible to experiment various scenarios where the number of detectable 
feature markers is ranged between 10 to 4. In doing so, the relationship between the number 
of feature markers and the accuracy is investigated. 

3.2.4 Results 

The data derived from UAV are processed offline using a PC. Since the real marker size 
was fixed, the Sm at each flight height is calculated based on Equation 5. Table 1 lists the 
flight altitude and the corresponding Sm. 
 

Table 1: Flight height and correspondent Sm 
Height 13m 15m 17m 19m 21m 23m 25m 
Sm 0.075% 0.068% 0.061% 0.054% 0.047% 0.040% 0.033% 

 
Coordinates from the D-GPS rover is used as ground truth. To estimate the error, the 
distance between (1) the coordinates registered by the D-GPS rover and (2) the coordinates 
estimated by the proposed method is calculated. First the distribution of errors is studied. 
Then, a cumulative distribution of errors is used to estimate confidence intervals of errors. 
In this research, confidence intervals of 95%, 75% and 50% are considered. For example, 
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when the error at confidence interval of 95% is 1 meter, it means 95% of all the calculated 
errors are smaller than 1 meter. The tracking update rate of D-GPS rover is 1 Hz. The 
tracking update rate of UAV based solution is calculated based on Equation 4. 
 
The result of the accuracy measurements is presented in Figures 17 to 19. Figure 17 shows 
the impact of marker size (Sm) on the accuracy when the camera was fixed. From the figure, 
it is clear that the accuracy of the UAV-based tracking is not noticeably impacted by Sm. 
Figure 18 shows the errors when different number of feature markers are used. Again, no 
obvious pattern in the errors is observed. It is evident from the figure that, against 
expectations, the higher marker density does not necessarily result in a higher accuracy. 
For instance, at 95% error confidence interval, the errors of 9, 7, and 5 markers are higher 
than 4 markers. This is because, GPS coordinate of feature marker was surveyed by a D-
GPS equipment manually, which means the accuracy of GPS coordinates of each feature 
markers were different. In the cases of five or more detected feature markers, all the 
detected feature markers with certain survey error are used as input of the program, which 
will impact the accuracy.  
 
Accuracy of two different flight strategy was also compared. Figure 19 shows the accuracy 
at different marker size (Sm) when the camera was moving (UAV followed the movement 
of target). Again, from this experiment, the accuracy of the UAV based solution is not 
impacted by the Sm. However, when compared to Figure 17, the errors for the moving 
camera are generally higher than the errors for the fixed camera.  
 
 

 
Figure 17: Errors at various Sm of 4 feature markers (fixed camera) 
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Figure 18: Errors at various marker density with the flying altitude of 27 m  

 
Figure 19: Errors at various Sm of 4 feature markers (moving camera) 

Although from the experiments, it can be concluded that Sm and the density of feature 
markers have no observable influence on the accuracy of the proposed method, they effect 
the tracking update rate. The results of the update rate experiments are presented in Figures 
20 and 21. Figure 20 shows the influence of the marker density on the update rate of the 
monitoring system. In this experiment, UAV hovered at 27m, so the Sm was fixed at 
0.026%. From the figure, it is clear that the update rate for the UAV solution decreases 
when the number of markers is reduced from 10 to four. However, the update rate at four 
markers is more than 5 Hz, which is still higher than the update rate of D-GPS rover. Figure 
21 shows the relationship between the update rate and Sm. By conducting a regression 
analysis on the data, the two variables seem to have a linear relationship. Based on the 
regression analysis, two more points are predicted. As shown in the figure, the update rate 
is 0.91 Hz when Sm is 0.012%. 
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Figure 20: Update rate at various amount of feature markers on 27m (fixed camera) 

 

 
Figure 21: Update rate at various Sm of 4 feature markers (fixed camera) 

 
 
4 Discussion 
From the UAV field test, it can be concluded that the proposed method can monitor the 
movement of a target equipment on the road by tracking the position accurately. The 
method is shown to have a higher update rate than the current monitoring method in general. 
Base on the findings from the result, to ensure the accuracy of derived data, it is 
recommended that the UAV hover in the sky during monitoring instead of following the 
movements of targets. There are two kinds of target equipment in asphalt paving projects, 
the paver and roller. The paver can move up to 1m/s and the roller can move up to 2.5m/s. 
There are several ways to increase the update rate of the propose method. It can be realized 
by increasing the amount of feature markers or increase size of a marker in the given image, 
which means using bigger markers or flying the UAV at a lower height.  
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There are several steps that need to be taken to ensure a better performance of the proposed 
method. First, camera calibration is necessary, every camera has unique camera calibration 
parameters because of the accuracy deviation of the manufacturing process. In the proposed 
method, camera calibration parameters are fixed as long as the same camera is used. Second, 
the feature markers are required to be placed in the field before monitoring and have a good 
variation on at least 2 axis. Thus, it is not idea to place the feature markers on a line as 
reference points. Third, after placing the feature markers, some errors might be introduced 
when surveying the GPS coordinate of marker center, it is hard to ensure that the position 
of D-GPS antenna and the center of markers are overlapping. These errors are considered 
as random errors, they are always present and cannot be eliminated, however, their impact 
on the result of the measurements can be minimized by conducting redundant surveys. The 
proposed method requires a low initial investment. For example, the DJI Phantom 4 type 
cost 800 euros. Although flight time is limited to approximately 30 minutes, it only takes 
few minutes to replace the batteries on the UAV and it is possible to charge spare batteries 
on-site.  
 
There are several limitations of the UAV based monitoring method. (1) The worldwide use 
of UAVs is regulated by the national government and specific local administrations. The 
use of UAV for research and companies is considered as business use. For safety and 
security reasons, UAV for business use needs to be registered in the aircraft register and 
operated by a registered pilot. In addition, in some countries, UAVs are forbidden in some 
regions. (2) The proposed method has systematic errors that cannot be avoided. The GPS 
coordinates of the feature markers are used as input for the method. All the coordinates of 
the feature markers are surveyed by the D-GPS equipment to about 5-10 cm accuracy for 
the time being. This means that the coordinates always deviate from the true value slightly. 
(3) Similar to the current method, the proposed method is also constrained by obstructions. 
In real asphalt construction environment, the UAV is flexible enough to avoid the 
obstruction of tall trees. However, the monitoring of the UAV will be interrupted if 
equipment makes too much smoke and block the view of camera. In addition, the UAV 
cannot work in some construction situation like in tunnels. 
 
 
 
5 Conclusions and future works 

 
A novel UAV based approach for monitoring of paving equipment was presented in this 
research. The proposed method uses a UAV as a platform for the detection of square 
fiducial marker. The method is found to be promising for the purpose of equipment tracking, 
mainly because it can reduce initial investment without compromising the accuracy of 
tracking equipment significantly. The paper explained the development of a computer 
vision algorithm as well as implementation of the algorithm. The proposed method was 
evaluated in a test and its performance was assessed. Factors that influence the performance 
and the relationship between different key variables are investigated. 
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Future work may address the limitations of this novel UAV based solution. In the next step 
of this research, there are many functions to be optimized; (1) In the UAV field test, only 
one target marker was placed and tracked. The algorithm can be modified to support 
tracking multi targets in a given area. (2) All the data was computed offline for the time 
being. However, by mounting an onboard-PC on the UAV, real-time data processing can 
be realized. It is worthy to mention that the UAV platform should have enough payload. 
(3) Kalman filter is always used to avoid noise in GPS signal tracking. It can also be used 
in the solvePnP() function to optimize the developed algorithm. (4) Many types of UAV 
now support carrying various types of additional sensors, for example, range or thermal 
sensors. UAV can be used in the PQi measurements for both asphalt temperature and 
equipment tracking. By combing temperature and location data, surface temperature at any 
given position can be estimated. 
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Appendix A 
 
Main parameters for ArUco marker detection 
 
In some cases, it is needed to tune several parameters refer to the detection rate and 
detection speed. 

• Aruco-minSize: ArUco marker developed and defines a way to increase detection speed 
by using smaller images. However, the accuracy has not been affected by this fact, only 
the computation time has been reduced. To be generic and adaptable to any image size, the 
minimum marker size is expressed as a standardized value (0,1), which represents the 
minimum area that the tag must occupy in the image to be considered valid. A value of 0 
indicates that all marker is considered valid. When the minimum size is modified to 1, only 
larger markers are detected. 

• Aruco-detectMode:  
 
DM_NORMAL: this is a case where you need to detect the markers in the image and don’t 
care much about the computation time. This is usually the case in batch processing where 
computation time is not an issue. In this case, we adopt a very robust local adaptive 
threshold method. 
 
DM_FAST: in this case, you care about speed. Then, the global threshold method is used 
to search the best threshold randomly. It works in most cases. 
 
DM_VIDEO_FAST: this is specifically designed to work with video sequences. In this 
mode, each frame automatically determines a global threshold and automatically 
determines the minimum markers size to achieve the maximum speed. If the markers you 
see in one image is very large, then search only for similar-sized markers in the next frame. 
 

• Aruco-borderDistThres: It is defined as: Markers with corners at a distance from image 
boundary nearer than (0,1) % of image are ignored. 
To fine tune the parameters for detection, it is allowed to modify all the parameters and 
save the configuration in a YML file, an example configuration is displayed in the figure 
below. 
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Figure 22: ArUco Detection parameter configuration 

Source code of the program 

1. #include <stdio.h>   
2. #include <conio.h>   
3. #include <iostream>   
4. #include <vector>   
5. #include <string>   
6. #include <math.h>   
7. #include <fstream>   
8. #include "opencv2/opencv.hpp"   
9. #include "aruco.h"   
10. #include "opencv2/core.hpp"   
11. #include "opencv2/highgui.hpp"   
12. #include "opencv2/imgproc.hpp"   
13. #include "opencv2/calib3d/calib3d.hpp"   
14.    
15. using namespace std;   
16. using namespace aruco;   
17. using namespace cv;   
18.    
19. struct MARKERS   
20. {   
21. public:   
22.     int id;   
23.     cv::Point3f location;   
24.    
25.    
26.     MARKERS(cv::Point3f location, int id)   
27.     {   
28.         this->id = id;   
29.         this->location = location;   
30.     }   
31. };   
32.    
33. int main()   
34. {   
35.     cout << "Start detecting..." << endl;   
36.     double camD[9] = { 2.3612e+03 , 0, 2.3589e+03 ,   
37.     0, 1.9696e+03 , 1.4421e+03,   
38.     0, 0, 1 };   
39.     double distCoeffD[5] = { 0,0,0,0, 0};   
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40.    
41.     Mat camera_matrix = Mat(3, 3, CV_64FC1, camD);   
42.     Mat rvec = Mat::zeros(3, 1, CV_64FC1);   
43.     Mat tvec = Mat::zeros(3, 1, CV_64FC1);   
44.    
45.     Mat distortion_coefficients = Mat(5, 1, CV_64FC1, distCoeffD);   
46.    
47.     CameraParameters LAPTOPCAMParam;   
48.     LAPTOPCAMParam.CameraMatrix = camera_matrix.clone();   
49.     LAPTOPCAMParam.Distorsion = distortion_coefficients.clone();   
50.    
51.     Mat frame, frameCopy;   
52.     VideoCapture cap(CAP_DSHOW);   
53.     cap.open("C:\\20.mov");   
54.     if (!cap.isOpened())   
55.         return -1;   
56.     cap.set(CAP_PROP_FRAME_WIDTH, 1280);   
57.     cap.set(CAP_PROP_FRAME_HEIGHT, 720);   
58.     cap.set(CAP_PROP_FPS, 30);   
59.     cout << cap.get(CAP_PROP_FRAME_COUNT) << endl;   
60.     cout << "Frame Width: " << cap.get(CAP_PROP_FRAME_WIDTH) << "\tFrameHeigh
t: " << cap.get(CAP_PROP_FRAME_HEIGHT) << "\tFPS: " << cap.get(CAP_PROP_FPS) << endl
;   
61.    
62.     vector<MARKERS> knownMarkers;   
63.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23631, 6.86102, 0), 101)); 
  
64.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23636709, 6.861087939, 0), 
102));   
65.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23622427, 6.860790617, 0), 
103));   
66.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23635059, 6.860912042, 0), 
104));   
67.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23649196, 6.861065725, 0), 
105));   
68.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23618791, 6.860913103, 0), 
229));   
69.     knownMarkers.push_back(MARKERS(cv::Point3f(52.2364, 6.86097, 0), 86));   
70.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23623802, 6.860952194, 0), 
93));   
71.     knownMarkers.push_back(MARKERS(cv::Point3f(52.23627799, 6.860855067, 0), 
177));   
72.    
73.    
74.     MarkerDetector mDetector;   
75.     vector<Marker> mMarkers;   
76.     mDetector.loadParamsFromFile("C:\\para.yml");   
77.     //mDetector.setDictionary("ARUCO", 0.2f); // sets the dictionary to be em
ployed (ARUCO,APRILTAGS,ARTOOLKIT,etc)   
78.     //mDetector.setDetectionMode(DM_FAST, 0.01f);//(15m,0.02f)   
79.     while (true)   
80.     {   
81.         cap >> frame; // get a new frame from camera   
82.    
83.         frame.copyTo(frameCopy);   
84.    
85.         mMarkers = mDetector.detect(frame, LAPTOPCAMParam, 0.5f);   
86.         namedWindow("ThresholdedImage", WINDOW_NORMAL);   
87.         imshow("ThresholdedImage", mDetector.getThresholdedImage());   
88.         vector<int> markerIndexFound;   
89.         vector<cv::Point3f> Points3D;   
90.         int markerMovableFound = -1;   
91.         for (unsigned int i = 0; i < mMarkers.size(); i++)   
92.         {   
93.             mMarkers[i].draw(frameCopy, Scalar(0, 0, 255), 2, true);   
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94.    
95.             if (mMarkers[i].id == 100) //moveable   
96.             {   
97.                 markerMovableFound = i;   
98.             }   
99.             else   
100.             {   
101.                 for (int j = 0; j < knownMarkers.size(); j++)   
102.                 {   
103.                     if (mMarkers[i].id == knownMarkers[j].id)   
104.                     {   
105.                         markerIndexFound.push_back(i);   
106.                         Points3D.push_back(knownMarkers[j].location);   
107.                         break;   
108.                     }   
109.                 }   
110.             }   
111.         }   
112.         if (markerIndexFound.size() >= 4 && markerMovableFound != -1)   
113.         {   
114.             Point2f x = mMarkers[markerMovableFound].getCenter();//use movabl
e marker100 as input;   
115.             vector<Point2f> markerinimage;   
116.    
117.             for (int i = 0; i < markerIndexFound.size(); i++)   
118.             {   
119.                 markerinimage.push_back(mMarkers[markerIndexFound[i]].getCent
er());   
120.                 //cout << markerinimage << endl;   
121.             }   
122.             solvePnP(Points3D, markerinimage, camera_matrix, distortion_coeff
icients, rvec, tvec, false, SOLVEPNP_EPNP);//also try solvePnPRansac. if the camera 
is moving,choose false,SOLVEPnP_EPNP and SolvePNP_P3P have best result   
123.    
124.             double rm[9];   
125.             Mat rotM(3, 3, CV_64FC1, rm);   
126.             Rodrigues(rvec, rotM);   
127.             rotM.ptr<double>(0)[2] = tvec.at<double>(0, 0);   
128.             rotM.ptr<double>(1)[2] = tvec.at<double>(1, 0);   
129.             rotM.ptr<double>(2)[2] = tvec.at<double>(2, 0);   
130.             Mat hu;   
131.             hu = camera_matrix * rotM;   
132.             Mat hu2 = hu.inv();   
133.             double a1, a2, a3, a4, a5, a6, a7, a8, a9;   
134.             a1 = hu2.at<double>(0, 0);   
135.             a2 = hu2.at<double>(0, 1);   
136.             a3 = hu2.at<double>(0, 2);   
137.             a4 = hu2.at<double>(1, 0);   
138.             a5 = hu2.at<double>(1, 1);   
139.             a6 = hu2.at<double>(1, 2);   
140.             a7 = hu2.at<double>(2, 0);   
141.             a8 = hu2.at<double>(2, 1);   
142.             a9 = hu2.at<double>(2, 2);   
143.             Point2f key;   
144.             vector<Point2f>realgps1;   
145.             int xe = x.x;   
146.             int ye = x.y;   
147.             key.x = (a1 * xe + a2 * ye + a3) / (a7 * xe + a8 * ye + a9);//   
148.             key.y = (a4 * xe + a5 * ye + a6) / (a7 * xe + a8 * ye + a9);//   
149.             if (key.x < 54, key.y < 8)   
150.             {   
151.                 realgps1.push_back(key);   
152.             }   
153.             else { continue; }   
154.             cout << realgps1 << endl;   
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155.             ofstream fout1("./DataFiles/Output.csv", ios::app);   
156.             fout1 << realgps1 << "," << endl;   
157.         }   
158.         namedWindow("Marker Detector", WINDOW_NORMAL);   
159.         imshow("Marker Detector", frameCopy);   
160.    
161.         if (waitKey(30) >= 0) break;   
162.     }   
163. }   
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