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1. INTRODUCTION: 

Vanderlande’s conveyor belt-based sorting systems for the warehousing solutions are high-speed sorters,  
typically running at an adjustable speed range of 2-3m/s with a sorting capacity of 15,000-24,000 parcels per hour.  
These systems are complex and rely on a number of sensors to detect, track and direct the parcels to its desired 
destination.  These warehouses are usually highly heterogeneous in nature: different conveyor belt types, colors, 
varying backgrounds, and varying illumination. The parcels can also be very diverse and can occur in all materials, 
colors, and dimensions [1]. It is possible that such parcels can be located very close to each other(0-50mm) to 
attain high sorting capacity. However, there can also be a large number of parcels that are of the same kind. 

 In Vanderlande’s sorting systems, parcels are sorted, by placing them inside a squared shaped material 
called as Transport and Storage Unit (TSU). All TSU’s share the same characteristics as the color and dimension as 
seen from Figure 2b. During sortation, it was observed that these TSUs get stuck in the system leading to blockages 
or jams in the system. Unable to detect such an anomaly leads to undesired effects like flying TSUs as seen from 
Figure 2a. As a result, the sorting capacity decreases due to often system stoppage or halts.  

Solutions like using dedicated traditional photoelectric cells (PEC) and proximity sensors to detect and count 
the number of parcels in the area where jams are more observed are usually employed. Drawbacks such as missing 
the TSU counts and communication overhead in such complex settings exist. Also, they are costly if they are used 
just to detect jams in the system during high-speed sorting. Moreover, another important aspect to consider is the 
positions where these sensors would be placed in the search area. Arriving at an optimal location requires 
thorough testing leading to an increase in the test time. Also, as the number of search areas increases, so does the 
need for dedicated PECs or proximity sensors. 

The solution, we propose is the reusability of the IP surveillance cameras in the warehouses which are 
generally RGB with at least 15FPS. With such RGB cameras, traditional computer vision techniques or deep learning 
techniques could be utilized to detect and track the TSUs in the scene. Additionally, since we reuse the existing 
cameras, the only additional cost would be on the required computing power. Also, testing time would be 
comparatively reduced because of the wide potential jam areas a camera could cover. 

1.1. Overview of the sorter: 

The entire sorting system is made up of a number of components as from Figure 1 below. The component 
level explanation is out of the scope and hence only the required details are described in Table 1 
 

  
a) 

 
b) 

Figure 1- a) System Overview b) Process flow of the system. 

 

Component Abbreviation Responsibility 

Accumulation Tray ACC The area where the parcels are fed into the system 

Infeed Zone  IFZ Parcels are collected from the accumulation tray and is transported 
to the next section. 

Merge zone MGZ All parcels from the IFZ are merged into a single train of parcels. 

Grapper GPX Consists of a number of belts that are of the same length used to 
create the required gap between the parcels. 

Identification & Shoe 
Allocation unit 

- A barcode scanner identifies the parcels and allocates the shoe 
accordingly. 
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Posisorter SPO01 An area where the incoming parcels are sorter using shoe attached 
to the belts. 

Shoe - These are installed on the running sorter and is responsible for 
pushing the parcels into the Outfeed Zones (OFZ) 

Outfeed Zones  OFZ Consists of high-speed rollers and belts which collects the parcels 
from the sorter 

Live Rollers LR Rollers rotating at a certain speed in the OFZ. 

Overflow Zone - Unsorted parcels are sent to this area which again is fed back via 
IFZ. 

Table 1- Component level explanation 

 
Process flow:  

Trains (collection of TSUs) are built in the accumulation zone (ACC) and transported to the infeed zone 
(IFZ). The gap between TSUs is made as small as possible on the IFZ. Trains are then released onto the collector 
belt in the merge zone (MGZ). The gap between trains is minimized to reach capacity while preventing trains to 
crash into each other. Physically alignment of items is needed in the transport zone (TRZ) to correct the orientation 
of trays after the merge. The gap control zone (GPX) is responsible for creating defined gaps between trays. 
Required gaps are determined by the quality of the downstream sorting process. Trays are then separated and 
delivered to the Posisorter zone (SPO01). Before entering the SPO01, on the charged belt the trays are identified 
(barcode, dimensions, exceptions) and synced with the shoes on the sorter. The speed of the charge belt is as same 
as the sorter. Now, the TSU destination is looked up and shoes are allocated for the sortation action. The allocated 
shoes are switched to move it to the outfeed (OFZ). When the sortation is not possible trays will go the overflow 
and fed again into the system via most upstream ACC/IFZ. This process flow can be seen in Figure 1(b). 

 
As mentioned before, the whole system operates on variable speeds. As the incoming parcels increases 

in the ACC, the SPO01 can automatically increase its speed to match the required sorting capacity resulting in the 
decrease of distance between parcels. Here, SPO3 area consists of the SPO01 and OFZ, which is our area of interest, 
where the blockages or jams are prominent. In the entire paper, jams and blockages are used interchangeably. 
Also, to avoid any confusion SPO01 is always referred to as sorter. 
 
Problem: 

It is observed that during a)during the handover of TSUs from the sorter to OFZ  b)during the alignment 
on the live rollers in the OFZ., the parcels get stuck (no motion of parcels relative to the moving belts/rollers) in 
the system creating a blockage due to a few known reasons. If there is no human influence on the system in the 
creation of such blockages, the reasons can be broadly classified into two categories, though not limited to, is 
shown in Table 2. Failing to identify such an anomaly, could result in a catastrophic phenomenon shown in Figure 
2a. Figure 2b gives information about the components in the system. 
 

Failure categories Reasons 

Mechanical Wear and tear, belt slippages, sensor failures. 

Software Bugs, network issues. 

Table 2- Failure categories and reasons 

 

 

    
                                                                       a)     b)  

Figure 2- a) Jam in the system created manually b) Individual component in the region of interest 
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1.2. Current Solution: 

To mitigate this problem, several experiments were carried out within Vanderlande to reuse some of the 
existing PECs like the Chute Full PEC and the Divert Verify PEC seen from Figure 3(b). Chute Full PEC is used to check 
if the OFZ has the maximum number of TSUs and no sortation is carried out until the OFZ is empty. Divert verify 
PEC is used to check if the TSUs are sorted correctly. If Chute Full PEC is triggered no sortation is carried out and 
the divert verify PEC must ideally see the unsorted TSUs on the sorter moving to the overflow zone. 

Using a fixed travel time for the TSUs between the sorter and chute full PEC as a base to detect jams failed 
due to the constraints related to extra communication between the controllers just for jam detection. Also, it was 
observed that the fixed travel time varied as the speed of the live rollers in the OFZ varied and also due to the 
varied timings between load and no-load TSUs. Furthermore, using the divert verify PEC alone provided unreliable 
results. 

  Hence dedicated Photo Electric Cells (PEC) were placed in the OFZ, strategically as shown in Figure 3 
(marked in two red circles). These positions were arrived by experimenting by placing the PECs at different 
positions with a varying speed of the sorter and the rollers in the OFZ. Yet, the experiments were inconclusive if 
the PECs could count the correct number of passing TSUs in the OFZs. 

 PECs detect and counts the number of parcels using an infrared transmitter and a photoelectric receiver. 
Due to very less distance or gap (order of few mm) between the parcels, it was observed that the PECs failed to 
count the parcels when they were close to each other during high-speed sortation. The effect of such false values 
leads to delay in the detection of blockages in the system which brings down the sorting capacity with frequent 
blockages. Also, as the number of OFZ’s increases so does the number of PECs. A risk vs cost analysis was already 
analyzed by the company between the standard PECs vs proximity sensors (RTQ-P4221) and the former was chosen 
due to the latter being expensive per OFZ. 

 

      
a) 

         
b) 

Figure 3- a) PEC placement b)Other PECs on the Sorter(Divert Verify PEC) and in OFZ (PEC EOS Dieback) 

 

1.3. Proposed solution:  

The proposed solution is to reuse an inexpensive RGB camera that would be available in the warehouses, 
placed in such a way that it’s viewing angle covers the SPO3 area as seen in Figure 2. Using one of the cameras, we 
explore classical computer vision and the recent deep learning techniques to detect and track the parcels. With 
tracking, count of TSUs entering and exiting the OFZ would be known and also could detect jams based on the 
location of the parcels. During a jam, a parcel would have almost the same location in certain consecutive frames, 
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which directly depends on the quality of detection. With such techniques, behavior of the TSUs during jams could 
be analyzed, such as, obtaining the angle of rotation of the TSUs (with or without load) when being handed over 
to the OFZ by the shoes, checking for the alignment of TSUs on the sorter with respect to some reference point in 
the image plane. 

With this, we believe that having the cameras in the sorting facility we could replace the PECs solely 
dedicated to detecting jams in the OFZs. One such camera with a good viewing angle could cover at least 2-3 OFZs 
reducing the need for PEC pair per OFZ. This also would bring down the testing time dedicated to finding a sweet 
spot for the PECs in the OFZ to be able to detect all the TSUs. 
 
 
 
 
 

Upcoming sections explore the classical vision techniques and the discussion leans towards deep learning-
based techniques while mentioning the advantages and disadvantages of techniques experimented. Section 2 has 
information on classical vision object detection and tracking techniques. While Section 3 gives an overview of the 
recent State of the Art (SOTA) deep learning object detection techniques which are broadly classified as single-
stage and two-stage detectors. Section 4 deals with related work and section 5 provide information about the 
camera placements in the facility. The discussion about the experiments performed and the corresponding 
observations made both on detection and tracking are mentioned in section 6. 
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2. COMPUTER VISION TECHNIQUES 

2.1.1. Object Tracking 

  The aim of an object tracker is to generate the trajectory of an object or objects over time by locating its 
position in every frame of the video. It is a trajectory estimation problem. This has been an important computer 
vision problem due to its application in both academia and industry with commercial potential. Though tracking is 
a well-studied problem, it remains a challenge in many aspects [5]. Over the years, research in the field of trackers 
applied to specific classes like pedestrians or faces has made great progress. But, trackers for generic objects 
continues to be a difficult area of research since these objects may change their appearance over a period. This is 
due to changes in the light, noise in the image, low visibility, changing motion patterns, occlusions are few 
challenges. 

2.1.2. Classification of trackers 

Tracking can be broadly classified as Single Object Tracking (SOT) and Multiple Object Tracking(MOT). SOT 
is used to track to single objects In the scene though it contains multiple objects and does not account for tracking 
new objects entering the scene. Meanwhile, MOT is largely partitioned to locating multiple objects, maintaining 
their identity, and yielding their individual trajectories given an input video. Both MOT and SOT focuses on 
designing sophisticated appearances models and motion models to deal with factors such as scale changes, out-
of-plane rotations, and illumination variations. Meanwhile, MOT has to deal with two extra tasks: determining the 
number of objects in the scene over time and maintaining their identity[4]. As mentioned earlier, since SOT tracks 
a single object, modeling the tracker to handle occlusions is simpler than that is for MOT due to additional 
challenges. They are frequent occlusions, similar appearance, initialization and termination of tracks and 
interactions among multiple objects [4]. Also, SOT can be employed to track multiple objects by instantiating multi-
single object trackers. By doing so, different trackers may lock onto the same object which has a similar 
appearance.  

MOT trackers solve such problems by modeling the interaction between objects by maintaining a joint 
likelihood or posterior for all the objects. Such a joint space is usually computation heavy and hence the MOT 
problem is transformed into a one-to-one mapping constraint [6]. Now, the objective of MOT trackers is to find an 
optimal sequential state of all the objects, which can be modeled by performing maximal a posterior estimation 
(MAP) from the conditional distribution of the sequential states given all the observation [4]. Generally, finding 
optimal sequential states or estimating MAP falls under two categories. One is by designing a probabilistic model 
in a two-step iterative process, predicting, and updating. Latter is designed by building a Dynamic model and the 
former by building an observation model. Second is by designing a deterministic optimization model which is to 
directly maximize the likelihood function over a set of available observations or minimize an energy function.  

2.1.3. Problems in object detection and tracking 

While designing a robust tracker, either SOT and MOT, common challenges to be solved are as follows 

• Object modeling: One of the major issues in finding a suitable visual description that makes the object 
distinguishable from other objects and the background. 

• Changes in appearances and shape: This is majorly dependent on the camera viewing angle. Also, objects 
tend to change their shapes during tracking, specifically in pedestrian tracking, where humans are 
considered as deformable objects. There is also the perspective effect, wherein objects closer to the 
camera appear to be big and appear to be small as they move farther away from the camera. 

• Illumination changes: This is one of the challenging issues in object tracking in vision wherein an object 
can have a different appearance in different artificial lighting conditions. Lighting conditions also change 
depending on the time of the day, weather condition and seasons making it more challenging in designing 
a powerful tracker. 

• Shadows and reflections: This is a classical vision problem where the shadows and reflections would be 
classified as an object if these are not considered while modeling the background and foreground 
features. Reflections can cause problems when objects are moving on smooth surfaces. 

• Occlusion: Again, as mentioned earlier Section 1, occlusion is strongly dependent on the viewing angle. It 
can be categorized as self-occlusion and inter-object occlusion. Self-occlusion occurs when one part of 
the object is occluded by another part, while inter-object occlusion occurs when two objects being tracked 
are occluded by each other. The trackers must be capable enough to handle such occlusions by 
maintaining the individuality of objects under occlusion. 
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• Information loss:  Caused by projecting the 3D world on a 2D image plane. 

• Drifting problem: Degradation of the appearance model (features of the object to be tracked, color, 
points, etc) caused by the inaccuracy in the estimation of foreground and background leads to the poor 
partitioning of foreground and background. This is mostly seen during object -to-scene occlusion and the 
trackers tend to lock onto the background. This is termed as a Drifting problem[7]. 

• Low resolution: As the area of a ground truth bounding box reduces, detection becomes hard. 

2.1.4. Criteria  

Though there are no universal criteria to differentiate between the methods employed by researchers to create a 
robust MOT tacker, we can still group them under three criteria which are as follows [4] 

1. Initialization methods 
2. Processing mode 
3. Learning or training mode 
4. Type of output  

 

2.1.4.1. Initialization method 

The task of detecting the objects and establishing the correspondence between the object instances across 
frames are either performed separately or jointly [8].  

 
Detection-Based Tracking (DBT) 

Figure 4a represents the DBT, wherein the objects are detected prior to the linking of trajectories in 
consecutive frames. This is commonly termed as “tracking-by-detection”. Most of the MOT trackers are based on 
this framework and is being used very often as a commercial solution. In this strategy, object detection is first 
applied, which is object-specific like pedestrians, vehicles, etc in each frame to obtain the object hypothesis. This 
is usually generated using appearance modeling or motion modeling which will be discussed later. Post the 
detection, the trajectories are generated using the MOT trackers, which links the detection hypothesis to 
trajectories[4]. It must be noted that the performance of such trackers highly depends on the quality of the 
detectors employed. Such object detector models are commonly pre-trained on huge datasets. 

 
Detection-Free Tracking (DFT) 

Figure 4b represents the DFT, where the objects to be tracked are initialized manually in the first frame. 
The object region and correspondence are jointly estimated by iteratively updating object location and region 
information obtained from the previous frame. Localization is done in the subsequent frames [4]. One of the 
advantages is that the strategy is free of pre-trained models. Table 3 briefs about the difference between these 
strategies. 
 

Item DBT DFT 

Initialization Automatic manual 

No. of objects Varying fixed 

Applications A specific type of objects Any type of objects 

Advantages Handles newly added and disappearing objects Free of object detectors 

Drawbacks Performance depends on object detectors Manual initialization 

Table 3 – Difference between DBT & DFT 

 

                    
Figure 4a- DBT            Figure 4b-DFT 

2.1.4.2. Processing mode: 

Based on the way the observations from the frames (past or future) are processed to track the object in 
the current frame, two strategies are employed. 
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Online 

Tracking of objects is done by processing the observation information obtained from the previous frame 
to handle the tracking in the current frame. The frames or sequences are handled in a step-wise manner thus 
online tracking is also named as sequential tracking. Based on the up-to-time observations, trajectories are 
produced on the fly [4]. They will not use future frames to improve the results. These are referred to as recursive 
methods. 
 
Offline 

While online tracking trackers use the previous frame’s observation information to update the current 
frame’s observation information, offline tracking-based trackers make use of past and also the future observation 
to predict the trajectory which improvises the tracking prediction. These are used in tracking objects in a recorded 
stream. Recorded videos of a game where the analysis of opponent team players is necessary for the team’s 
strategy, is one such example. Here the not only frames from the past can be used but also from the future can be 
used to make more accurate tracking predictions. Since they require observation from the future frames, memory 
and computations are high for such trackers. This can be solved by splitting the frames into smaller chunks and 
inferring the results from each chunk. These are sometimes referred to as non-recursive methods. The results of 
such a tracking system are the object’s location and their IDs. 

2.1.4.3. Learning or training mode: 

Online learning trackers 
Online learning trackers are usually manually initialized in the required frames. These are general trackers 

since they learn about the object to be tracked online or during the run time just by utilizing a bounding box around 
the object. These trackers consider the object as a positive example that is inside the bounding box and rest as a 
negative example. 
 
Offline learning trackers 

The trackers need the training to learn about the objects In an offline manner and do not learn anything 
during run time. These trackers are more object-specific like trackers for pedestrians or cars etc. 

2.1.4.4. Type of Output/ Inference 

Based on the output of a tracker, the MOT trackers can be classified into deterministic models and 
probabilistic models 
Deterministic 

These are the trackers in which no randomness is involved in the development of the future states of the 
system. Thus, it produces the same output from a given starting condition or initial state. The object movements 
are assumed to follow some trajectory prototypes [9]. Such prototypes could be learned either in an online or 
offline fashion. But such an approach is more suitable for the task of offline tracking [4] because it requires at least 
a time window of observations for the tracker to associate observation belonging to an identical object into a 
trajectory. Such approaches define the correspondence cost as a combinatorial optimization problem where one 
solution is to use greedy search methods to obtain one-to-one correspondence [5]. The idea is to find the object’s 
associations in different frames optimally. Bipartite graph matching, dynamic programming, etc. are few 
frameworks to mention. 
 
Probabilistic 

Trackers employing this approach rely on the probability of object movements. The object to be tracked is 
represented as either one or many points [9]. The general idea is that such trackers calculate or predict future 
states based on the variety of probabilistic reasoning based on the existing or current observation. Kalman filter 
and its variants (extended Kalman filter) are one such example used in modeling linear and non-linear motion of 
objects, respectively. 

2.1.5. Object tracking taxonomy 

Two major issues to consider while developing a tracker are 
1. Effectively measuring the similarity between the objects in frames & 
2. Based on the above measurement, recovering the identity information. 
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The first one is addressed in modeling the object’s appearance, motion, interaction, exclusion, and occlusion. 
The second one is considered as an inference problem as discussed in section 2.1.4 (4). Mathematically the 
similarity between two observation i and j can be written as 

Sij = G (oi, oj), 
where oi and oj are the visual representation of different observation and function G (.,.) measures the similarity 
between the two of them. 

The object tracking framework falls under two categories: deterministic methods and stochastic methods. 
Deterministic models try to reduce an optimization problem by solving the similarity cost function in an iterative 
way. Functions like Sum of Squared Differences (SSD) and kernel-based cost functions. 

• SSD – Based cost function is defined as the summation of squared differences between the current 
image patch and the template 

• A kernel-based cost function is defined as the distance between two kernel densities. 
Deterministic methods tend to be more computationally efficient by has a drawback of solutions getting 

trapped in local minima. While stochastic methods view the object tracking problem as Bayesian inference 
problem and model the underlying dynamics of tracking as state spaces. Such Bayesian inference models need to 
generate multiple hypotheses to estimate and propagate the posterior distribution of the state. But such 
methods, due to the generation of multiple hypotheses, requires more computation and is subjected to the 
curse of dimensionality in a high-dimensional state space [22]. 
 

 
Figure 5- Object tracking taxonomy [10] 

 
In general, MOT consists of an observation model and a tracking process. Observation models try to 

describe the unique features or descriptors (like HOG, SIFT, SURF) of objects and the tracking process tries to link 
these observations to the object’s trajectory also known as tracklets. Such tracklets can be considered as a 
recursive problem where their current state is estimated only using information from the previous states and as a 
non-recursive problem where the current state is estimated by considering information from both previous frames 
and future frames. 

Based on such a tracking process, the MOT problem can be easily classified as Bayesian-based tracking 
methods and data association-based tracking methods. Upcoming sections briefly will introduce the concepts and 
related work briefly. 
 

2.1.5.1. Observation models 

Observation models represent the distinct feature or characteristics of the objects. The characteristics 
may be, the object’s appearance, velocity, location, etc. Features such as color, shape, gradient, motion, texture 
are conventional features used to describe the objects. Based on the tracking needs, either single appearance 
models are employed, or multiple cues are fused together to make a robust tracking system. Using such different 
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features and representations different observation models can be created. Such features distinguish the objects 
from the background. They are classified as appearance models, motion models, exclusion model and integrated 
models as seen from Figure 5. 

 
Appearance model 

These models are built either discriminatively or generatively. The generative models represent moving 
objects such that the tracking problem is restricted to searching an optimal state that results in an object 
appearance which is most like the appearance model. While determinative models consider the tracking problem 
as a binary classification problem based on an optimal decision boundary that distinguishes the object from the 
background [10]. 

 
Generative models 

These models are created using features like color histogram, Histogram of Gradients (HOG), Gaussian 
Mixture Models (GMM), Hidden Markov random filed models (HMM). In general, the most desirable property of 
a visual feature is its uniqueness so that the objects can be easily distinguished in the feature space [7]. These 
models are used to learn the appearance of objects. Such models are updated online to adapt to its appearance 
changes. Features could be grouped as either local or region based [4]. [7] classifies features as gradient-based, 
texture-based, color-based, spatio-temporal based and mixed multiple fusion-based features. We shall focus more 
on [4]’s classification principles since it gives an easy to understand guide of core concepts involved in tracking.  
Local features such as Kanade-Lucas-Tomashi (KLT) is considered as one such good local feature to search and track 
objects. Motion clustering & estimation of camera motion can be employed to generate short trajectories. 
Solutions from [11], [12] utilize optical flow model to link detection into short tracklets prior to the data association 
[4]. Solutions in [13], [14] encodes the motion information for building similarity scores for data association of the 
same objects having the temporal information. These features are efficient but are sensitive to occlusions and out-
of-plane rotation.  

Region-based features are wider in range compared to the local features. Information from the bounding 
box, segmentation information, etc. are examples. Color histogram, raw pixel template, HOG, region covariance 
matrix, Probabilistic Occupancy Map (POM), gait features fall under this category. Gradient-based features like 
HOG can describe the shape of an object which is robust to illumination changes but sensitive to occlusion and 
deformation. Also, the region-based features are more robust to certain transformations as they carry more 
information but at a cost of more memory and computation. Choosing features to track is the utmost importance 
since the performance of the trackers also depends on it.  
 
Discriminative models 

Based on the above models these models are built using classifiers in the feature space to distinguish 
between the object’s feature and background features are known as discriminative models. Such models can be 
either fed with a single cue or multiple cues. Using a single cue such as in [15] based on color histogram, 
Bhattacharya distance is employed to develop a similarity score or fit a Gaussian distribution between two color 
histograms Also, fusing multiple cues is a non-trivial task and is active research field. By using multiple cues, one 
can develop a robust appearance model. Boosting, concatenation, summation, cascading, etc. are few methods 
being used to fuse information from various features [4]. General methods are using Support Vector Machines 
(SVM), random forest, boosting, etc. 
 
 
Motion models 

Also known as dynamic models, used to describe the movement of objects. This information is of 
importance since it can be used to predict the potential position of objects in the future frames by reducing the 
search space. Such motion modeling is built on an assumption, that is, the objects move smoothly in the real world 
and hence it is the same in the image space. Abrupt motions are not considered while modeling the motion. Based 
on this, the motion models are divided into linear and non-linear motion models. 
 
Linear motion models 

This motion model is based on the constant velocity assumption as in [16]. The velocity of the tracklets is 
estimated using first-order linear regression assuming that the motion is linear over a short time. Based on 
assumptions like velocity smoothness, position smoothness, and acceleration smoothness, these models are built. 
The velocity smoothness model is constructed by constraining the velocity of objects in successive frames to 
change smoothly. [17] implements this as a cost term which is the summation over N frames consisting of M 
objects. Positional smoothness is modeled by knowing the discrepancy between the observed position and the 
estimated position. Here, the smoothness is modeled by fitting the Gaussian distribution of the estimated position 
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with the observed position. Acceleration smoothness is modeled using both velocity and positional smoothness 
models by also considering the acceleration of objects. 

 
Non-linear models 

Real-world objects move around mostly in a non-linear fashion and hence most trackers are modeled 
using non-linear models. Though the linear models establish the dynamics of the object it cannot deal in some 
cases. A more accurate motion affinity between tracklets could be produced using these models. According to 
[4],[18] given two tracklets (t1 and t2) of the same object linear motion models produces low probability to link 
them while non-linear models can introduce another tracklet (t0) which can explain the gap between t1 and t2 when 
the object moves in a non-linear fashion. According to [10], these models can describe in an online approach to 
learn non-linear motion patterns and create robust appearance models for multi-target tracking in a tracklet 
association framework. Also, a Relative Motion Network is constructed by considering the motion context (relative 
movements) between multiple objects. 
 
Interaction models 

These models are designed to capture the influence of an object on the other object. One such scenario 
can be observed in a crowd of people walking. A person’s velocity, destination, and trajectory may change based 
on the other person. Such information is crucial in fields like crowd motion pattern analysis which could improve 
the performance of a tracker. These models are further divided as Individual force and group force which is 
modeled as social force models. These individual forces have their own attributes and assumptions which are 
considered while modeling complex trajectories. 
 
Exclusion models 

These models are designed based on the fact that no two distinct objects occupy the same physical space 
in the real world. This is classified further based on the generated hypothesis either by the detection or multiple 
trajectory generation as detection level exclusion and trajectory level exclusion, respectively. Former one 
hypothesizes that two different detection responses in the same frame cannot be assigned to the same target 
while the latter hypothesizes that two trajectories cannot be infinitely close to each other. Such models penalize 
the cost term in case of a violation of the hypothesis. It’s graph-based modeling where exclusion models are 
constructed as nodes representing the detection responses and each node is connected only to other detection 
nodes that exist at the same time as the node itself. Post the nodes construction, the label assignment task is 
maximized with respect to the exclusion, such that the connected nodes have different labels. According to [10], 
multiple graphs are constructed to model the spatial-temporal, relationship, appearance, exclusion and propagate 
labels in the graphs.  
  Such models belong to detection level exclusion models. Meanwhile, in trajectory level exclusion models, 
two close detection hypotheses having different trajectory labels are penalized in a way to suppress one trajectory 
label. This penalty term varies as per the requirement. In [20] it is inversely proportional to the distance between 
two detection responses with different trajectory labels while in [19] it is proportional to the spatio-temporal 
overlap between two trajectories. 
 

Apart from modeling the strategic mentioned above, different techniques could also be employed to 
model the tracking problem. But the above-mentioned strategies give an overview of methods being used or 
explored by the community. 
 

2.1.5.2. Tracking methods 

DBT is the most commonly used paradigm by the community for tracking objects. This paradigm has two 
common steps: detection, wherein a pre-trained object detector gets the information about the object's locations 
and observation models are built upon it. Secondly, tracking, where these different observation models are linked 
with different targets. Such linking (observation models to targets) process can be categorized as Bayesian theory-
based and data association based. 

Such Bayesian theory-based trackers can be related to dynamic modeling and observation modeling. The 
dynamic models correspond to the tracking strategy while the observation model provides the observation 
measurements related to the object’s states. Such a framework works on the predict-update mechanism. The 
predict step estimates the posterior probability distribution of the current state by integrating into the space of 
the last object state via the dynamic model. In simple words, it estimates the current state of an object based on 
all the previous observations given to it. The update step then updates the posterior probability distribution of 
states based on the obtained measurements under such an observation model. But in practice, computing the 
state distribution is not straight forward and hence some assumptions have to be made. By making such an 
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assumption we can arrive at an approximate solution and not an exact analytical solution. Approximate solutions 
would be a fit in cases where there are multiple objects to be tracked and integrating the sets of states or state 
distributions of every object in a higher dimension is large and makes it difficult to arrive at an exact solution. 
 
Bayesian theory-based 

1. Kalman filter: In a linear system where the object states and noise are represented in terms of Gaussian 
distribution, Kalman filter is proved to an optimal estimator. It is a recursive predictive filter based on the 
state space techniques and recursive algorithm. The predict state of the filter is used to extrapolate the 
position of objects in a new frame based on the constant velocity constraint. Such predictions are 
associated with new measurements or are used to trigger detectors. A correction step uses such detection 
as measurements and updates the filter state.  

This is an efficient way to address MOT problems when the objects to be tracked are smaller in 
number. As the number of objects increases, it is more prone to problems like identity switches which are 
hard to correct due to the recursive nature of this method. Since it’s an unimodal Gaussian assumption 
these filters cannot represent multiple hypotheses simultaneously. Such problems are tackled by Particle 
filters, which is based on Monte Carlo integration methods. Kalman filter fails to operate in a system 
where the object states are non-linear, Extended Kalman filter is used to solve such problem. In [21], 
Kalman filter is used to estimate the background image by modeling the color of each pixel is done by one 
filter but fails to handle the illumination changes since illumination tends to be distributed in a non-
gaussian way, which is against the basic assumption of such filter. 

2. Extended Kalman filter: As mentioned earlier, when the objects in an environment are moving in a non-
linear fashion, such filters could be one of the possible solutions. This filter approximates the non-linear 
states of the objects using the Taylor series expansion. 

3. Particle filter: These filters have an advantage over the other two filters mentioned above in terms of 
finding an approximate solution in a non-linear and multi-model distribution system. These are based on 
the Monte Carlo sampling technique where the underlying principle is representing the required posterior 
density function by a set of random particles or samples with associated weights and propagating multiple 
hypotheses between frames. It is a recursive Monte Carlo statistical computing method, which is used to 
solve a Bayesian estimation problem assuming that the measurement models are corrupted by noise 
which may be non-gaussian and multimodal. Though these filters have achieved considerable success in 
the tracking literature they still face problems due to the suboptimal mechanism while sampling the states 
which leads to the sample degeneracy & impoverishment problem [7]. Sample impoverishment refers to 
a state where the particles with high weights are selected many times statistically. This is observed in the 
case of small process noises and resampling is used to reduce the sample degeneracy. It is also observed 
that these filters do not perform well in the dynamic system with very small noise or if the observation 
noise has a very small variance. Regularized Particle Filter (RPF) and Kernel Particle Filter (KPF) are 
proposed with some success. Although the filters can handle multi-model states, the computational 
complexity increases exponentially as the number of state parameters increases in high dimensional state 
space.  

4. Bayesian Framework: This framework works by estimating the unknown state, St at a time t from 
sequential observations O1:t perturbed by noises. The key idea is to approximate the posterior probability 
distribution (PDF) by a weighted sample set where each sample consists of element S(n) which represents 
the hypothetical state of an object and a corresponding discrete sampling probability ∏(n) such that Its 
summation is one.  

5. PHD filter: The Probability Hypothesis Density (PHD) filter is a multi-target filter for recursive estimating 
the number and state of a set of targets given a set of observations. This is different from the traditional 
multi-target tracking which considers target states and their observation as Random Finite Set (RFS). 
Multiple Hypothesis Tracking (MHT), Joint Probabilistic Data Association Filter (JPDAF) or Probabilistic 
MHT(PMHT) are based on RFS where the individual targets are represented as a set-valued state and 
collection of observation as a set-valued observation. While PHD filters work by propagating in time the 
intensity of targets RFS instead of the full multi-target posterior density. According to [23], the Sequential 
Monte Carlo implementation of (SMC-PHD) filter suffers from high computation cost as it requires a large 
number of particles and relies on the clustering mechanism to provide state estimates. But the main 
drawback is its introduction of inaccuracies in the estimates by the clustering step and complex 
computation. A closed-form solution to such a problem has been alleviated using Gaussian Mixture PHD 
(GM-PHD) wherein the clustering step is completely replaced by Kalman filter equations but is restricted 
to linear-Gaussian targets. Extended Kalman filter (EK-PHD) is an extension for using estimating the target 
states in a non-linear dynamic system. 

 
Data association based 
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Under this framework, tracking is seen as an optimization problem aiming to find the maximum a posteriori (MAP) 
solution to MOT. Such a framework is well suitable for offline tracking where the observations from past and future 
are required. Given such observations, this type of method tries to associate observations belonging to an identical 
object into a trajectory globally using cost functions. This method formulates the tracking problem as selecting and 
clustering detected objects over time. 

1. Local optimization-based data association: Methods which considers only a few frames for solving 
association problem (a couple of past frames) falls under this category. They are bipartite graphs and their 
variants. Hungarian algorithm is one such example that computes the affinity between tracklets and 
detection observations. In [24], Zhong et al consider the target tracking as a bipartite graph matching 
problem, the nodes of the graph correspond to the targets in two neighboring frames and the edges 
correspond to the degree of the similarity measure between the targets in different frames. According to 
[10], an affinity measurement based on the position, size and color are measured and an optimized 
Hungarian algorithm is employed to associate object hypothesis and detection responses in the 
neighboring frames. 

2. Global optimization-based data association: These methods consider a batch of frames for optimization, 
unlike local optimization which considers only a few frames. Dynamic and linear programming are applied 
to solve the optimization problem. Methods to solve data association globally are based on a graph-like 
structure which includes methods like hierarchical data association, quadratic Boolean problem-based 
and binary integer programming-based method. These methods include many more approaches under 
them, for which we direct the readers to [10], [4], [21]. 

 
Most of the core concepts being utilized by the community have been discussed so far. As mentioned earlier 

DBT is the most commonly used tracking paradigm, hence it is necessary to discuss object representation and 
object detection methods on a high level by not getting in-depth about it. By doing so it enables the readers to 
understand better about the core concepts and process of designing an object tracking system. 

2.2. Object representation 

In order to track an object, its visual representation plays a vital role. Such representations motivate the 
choice of object detection and tracking algorithms. Object representation is seen as a combination of shape and 
appearance representation. Though it could be used individually or in combination, based on the external factors 
like application domain, purpose and end goal determine how objects should be represented. Nevertheless, having 
information about different ways of representation is valuable information for developing a good tracking solution. 
Hence, a brief overview or explanation about the shape representation and appearance representation is 
discussed in the following section. 

2.2.1. Shape representation 

Based on the application domain and the purpose of object detection and tracking, the representation of 
the objects is chosen. Such representations carry their own advantages and disadvantages based on the application 
it is being used for. Usually, ways to represent objects are as points, geometric shapes, silhouettes, contour, 
articulated shape models and skeletal models. A short explanation of each representation is discussed. Figure 6 
represents the various shape representations.  
 
Points 

The object of interest in a scene can be either represented as a single point or a collection of points as 
seen from Figure a &b. Representing objects as a cluster of points would cause problems while tracking multiple 
similar objects in the scene. Association of such points in every frame would be a difficult task leading to missed 
detections. 

 
Geometric shapes 

The most common way to represent an object (rigid or non-rigid) and widely used in the community is 
either as a rectangle or an ellipse. This can be seen in Figure c &d. According to [5], using such representation might 
cause tracking problems since a part of the background is also included inside these rectangles or ellipse. 

 
Contour and Silhouette 

Representation of objects with their boundaries separated from the background (background 
subtraction) results in either contours or silhouettes seen in Figure h & i. This is a flexible representation of any 
complex or non-rigid objects. 
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Articulated shapes 
Such representation is employed when different body parts are held together by joints (Figure e). Such 

representations are helpful in scenarios where health monitoring is involved. For example, using such 
representation, the health of cows, pigs, etc. can be monitored based on the behavior of their individual body 
parts. 

 
Skeletal shapes 

Using the silhouette of objects and applying the medial axis transform, it is possible to extract an object 
skeleton (Figure f). Such a representation is being used to estimate human pose for activity recognition. This is 
considered an important problem in understanding human activity in a video and most of the deep learning-based 
techniques employ such representation. 
 

 
Figure 6- Various shape representation [5] 

 

2.2.2. Appearance representation 

Appearance representation is very similar to the shape representation but encodes more information about 
an object’s appearance like histograms, Gaussian distribution, etc. Few ways to represent objects are using 
probability densities, templates, active appearance models and multi-view appearance models [22]. 
 
Probability densities: This represents the probability of some random variables falling in a particular range of 
values. Histograms are examples of this. Such density functions can either be parametric like Gaussian distribution 
or non-parametric like histograms. Such calculations could be made by using above shape models like contours for 
example, which gives the outline or boundary of objects. From the shallow region of such contours, information 
about the pixels could be obtained. A color histogram is unaffected by pose change or motion and used as a reliable 
metric for matching after occlusion. But they do not contain any position information. The color correlogram is 
one variant of the color histogram where geometric information and color information are encoded according to 
predefined geometric configuration. 
 
Templates: Geometric shapes and silhouettes are the best examples for such representation, whose shapes are 
used to form templates. Such templates encode both spatial and appearance information. They aim to represent 
objects with a set of pre-defined models. But using template matching in tracking framework has proven to be 
difficult in cases where the appearance of objects changes drastically either due to viewpoint variation of 
illumination. Hence such representations are more suitable, in tracking framework, where the objects pose does 
not vary.  
 
Active appearance models: These models are formed by representing objects as a set of landmarks either on the 
boundary or inside the object region such as gradients, color, texture, etc. To arrive at such models, usually a 
training phase in required to learn the shape and associated appearance from the given set of examples. These 
models contain statistical models of shape ad grey-level appearance of the object of interest. They can embed 
both shape and texture into their formulation and thus allowing tracking simultaneously the outline of the object 
and its appearance. [25] mentions that Stegmann, using such models was able to successfully track objects by 
applying a deterministic approach and search algorithms to each frame. 
 
Multi-View appearance models: Models encodes different view of objects by generating a subspace from given 
views using Principal Component Analysis and Independent Component Analysis (ICA) [5] 
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2.3. Object Features 

At the low level, an object can be represented simply by the intensity value of its pixels. At the middle level, 
it can be represented by some features like color, texture, etc. At the highest level, it can be represented by a 
global feature vector which can be boosted from many features. In general, a tracking framework exploits a global 
feature vector to measure the similarity between target and candidate objects [25]. Since these features represent 
objects, they must be invariant to certain transforms like illumination, degradation, etc. Features such as edges, 
texture, color, motion features like optical flow, gradient features like Histogram of Gradients (HOG), Local Binary 
Pattern (LBP), are some of the commonly used features to represent the object of interest. The choice of object 
representation strongly influences feature selection. 

Color models are widely being used in the literature since it strongly descriptive nature describes the object 
of interest. RGB (Red-Green-Blue) color spaces are used in general, but this model is not perceptually uniform. 
Hence most of the time HSV (Hue-Saturation-Value) color space is used, which is uniform. While texture models 
also play an important role, which is less sensitive to illumination changes. It measures the intensity variations of 
the surface of objects while representing regular patterns in an image. These are classified as structural and 
statistical. Morphological operations, adjacency graphs belong to structural classification while 1-D grey-level 
histograms, co-occurrence metrics, grey-level differences, and multi-resolution filtering methods [25].  
Motion models such as optical flow measure the displacement of pixels in a region between consecutive frames 
using displacements vectors under the brightness constancy assumption. Lucas-Kanade were the people behind 
the success of optical flow calculation which computes it robustly over multiple scales using a pyramid scheme. 

2.4. Object detection 

Object detection is the first step in the object tracking process, which is used to localize and locate the 
object of interest in the frame or scene. Such detections can either be done in every frame or can be done when 
the object first appears in the scene. Detections can be achieved either by using hand-crafted features like HOG, 
Scale Invariant Feature Transforms (SIFT) features, etc. and then using a classifier like SVM to classify the objects 
based on the application and domain. These were the traditional vision approaches to solving object detection 
problems. HOG+SVM, Haar cascades were vision and machine learning-based object detection frameworks that 
were very popular until the rise of Deep Learning. Deep learning (supervised learning) is a part of machine learning 
which utilizes convolutional neural networks and has solved or trying to solve many vision-related problems easily 
with superior performance compared to vision-based algorithms. But such models are computation and memory 
hungry. But since the evolution of hardware, we have a lot of memory and computation at our disposal to work 
on such models and deploy as either web services or as a mobile phone application. 
The following sections cover a few most popular methods used in Computer Vision. 

2.4.1. Point Detectors  

In this method, interest points in an image are detected. Such interest points must be stable under changes 
in the scene illumination and camera viewpoint. 
Corners of objects are viewed as interest points. The intersection of two edges is a corner in which the direction 
of two edges changes. Corners are important features because these are the regions in which there are variations 
in the large intensity of the gradient in all possible dimensions and direction. It also includes interesting points such 
as ending line, maxima on a curve, minimum or maximum local intensity points. Vision-based detectors used 
majorly such detectors to find such interesting points that could help in locating objects. 

One such method is the Harris detector, which is a 3-step process to find the corners in an image. The 
algorithm determines a window that contains a possible corner by calculating the intensity variation in both X and 
Y direction and is represented as matrices. With each such windows found, a score R is computed. Finally, 
depending on such values, the windows are classified as windows that contain an edge, flat or corner based on a 
threshold. A large value indicates a corner and negative values indicate an edge. Non-Maximum Suppression (NMS) 
is used to select the best or optimal corners. A better version is the Shi-Tomasi Corner detector which is built on 
the Harris corner detector were there a slight change in the criteria for determining a corner. Table 4 explains the 
fundamental difference in selecting the value of R. These are rotation invariant but not scale-invariant. A corner in 
the small image within a small window can be seen as a flat edge/line when it is zoomed in the same window. 
Hence advanced feature detectors like SIFT, SURF (Speeded-Up Robust Features), FAST(Features from Accelerated 
Segment Test), BRIEF(Binary Robust, Independent Elementary Features), ORB (Oriented FAST and BRIEF) are being 
used. Among these, SIFT and SURF are patented algorithms that can be used only for experimental and academic 
purposes. 
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Harris Shi-Tomasi 

R = det(M)-k (trace(M))2  
 
M is intensity over small window 
det(M) = λ1 λ2 

trace(M) =  λ1 + λ2 

where λ1&  λ2 are eigen values of M 

R = min (λ1 λ2) 

Table 4- Harris corner detector vs Shi-Tomasi corner detector criteria 

2.4.2. Background Subtraction 

The key idea of this method is to build a robust background model representing the background of a scene 
for object detection by separating the foreground and background. Such a background model serves as a 
referenced and must be updated continuously and must not contain any moving objects in the scene initially. Then 
each frame is compared to this model and any significant change in an image region w.r.t the background model 
indicates moving object. These are very simple and computation friendly but are very sensitive to the changes in 
the environment. Methods like Frame Differencing Region-based or spatial information, Hidden Markov models 
(HMM) and Eigenspace decomposition are few methods uses background models to detect objects [26].  
There are recursive and non-recursive techniques.  

Recursive techniques base the background model on every frame by recursively updating the background 
model. Thus, the result may get influenced by the input frames processed in the distant past. Kalman filter, Mixture 
of Gaussian (MoG) are a few examples. This requires less memory but are prone to error due to constant model 
updating.  

While non-recursive techniques store a buffer with the last few frames and the model is based on only 
those saved frames in the buffer. They use the sliding window approach for background estimation. The relevance 
of the background model is updated faster and needs more memory as the buffer gets larger [27]. Frame 
differencing, mean and median filters are few examples. 

2.4.3. Segmentation: 

The goal of segmentation methods is to partition the image into perceptually similar regions. Such a process 
helps to locate objects and their boundaries. Segmentation algorithms try to solve two problems, the criteria for a 
good partition and the method for achieving efficient partitioning. Mean shift clustering, graph cuts, active 
contours are few popular algorithms. Graph cut based algorithms consider the segmentation problem as an 
optimization problem where every pixel of the images is represented as a node. The vertices between nodes and 
sources are set to a weight-related to the data where sources represent the labels for each pixel (foreground or 
background). The graph cut method then completely separates the source and sink nodes and leaves the nodes 
connected to either source or sink to indicate that the pixel corresponds to the respective label. Hence this is 
considered an optimization problem in polynomial time. Applications like analysis of moving vehicles are done 
using such a method. 

Active contours, on the other hand, tries to find an object outline in an image. This is also popularly known 
as snakes. A snake is pulled towards image features like lines and edges by the guidance of external constraints 
combined with the influences by image forces. This method especially finds the boundaries or contours with the 
help of user interaction since the knowledge about the required contour shape is needed beforehand [5]. 

2.4.4. Supervised learning: 

Initially, all object detectors relied on mechanisms to align the 2D/3D model of the object on the image 
using handcrafted features such as edges, key points, or templates. But with the machine learning algorithms can 
process such rich hand-crafted visual features using classifiers or regressors such as random forest, SVM, decision 
tree, etc. By training a classifier to learn different object views and appearances using supervised methods, object 
detection can be achieved. Such handcrafted features were diverse as Haar Wavelets [Viola et al], edgelets [Wu 
and Nevatia, 2005], shapelets [Sabzmeydani and Mori, 2007], histograms of oriented gradient [Dalal and Triggs, 
2005], bags-of-visual-words [Lampert et al., 2008], integral histograms [Porikli, 2005], color histograms [Walk et 
al., 2010], covariance descriptors [Tuzel et al., 2008], linear binary patterns by Wang et al. [2009], or their 
combinations [Enzweiler and Gavrila, 2011] [28]. Deformable Part Model (DPM) and its variants were the most 
popular detectors before the rise of Neural nets-based object detectors, which are inspired by the human visual 
cortex. Here instead of hand-engineered features, the neural nets learned itself the filters and used no pre-
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processing, making them independent from prior knowledge and human effort. The authors in [28] observe that, 
in less than five years, the Deep Convolution Neural Networks, a class of deep feedforward artificial neural 
networks has almost wiped out the very rich literature on visual descriptors. 

2.4.5. Optical Flow:  

A technique to find moving objects in video frames. Optical flow is the most widespread depiction of 
motion. Horn and Schunk computed displacement vectors using brightness constraint which assumes brightness 
constancy of corresponding pixels in consecutive frames. This method can get information about object movement 
and thus distinguishes the moving objects from the background. But such detection has prone to errors like 
sensitive to noise and requires more computational power. 

2.4.6. Temporal differencing: 

It is a method employed when the camera is in motion such as in cars. Detection of objects is done by taking 
the differences of consecutive frames pixel by pixel. In cases where a camera is constantly moving, modeling both 
motion of car and objects at the same time is challenging, since they such motions are correlated. [29] proposes 
to model the motion of the camera initially and then apply the background subtraction method. This method does 
not work well when an object moves slowly since no major change can be detected between frames. 

2.5. Object tracking: 

Tracking has been classified into various categories. In [30] it is divided into 5 classes namely feature-based, 
segmentation based, estimation based,appearance-based and learning based, which are self-explanatory and are 
closely related to the discussions made in the above sections. 

But the following classification is widely being used in the community and is referred to in [5],[9],[31] & 
[32]. Most of the state of the art trackers can fall under these categories. The classification is based on the “tracked 
targets” which can be represented as points of interest or as silhouettes. 

Figure 7 – Object tracking classification 

2.5.1. Point tracking: 

This applies to methods where the detected objects are represented as feature points and tracking of such 
points is based on the previous object state which could include their position and motion. Such a tracker tries to 
associate point in one frame to the next frame based on the observation of object state in the previous frame. This 
is considered as a point correspondence problem. The point tracking approach is further divided into Deterministic 
and statistical approaches. The main difference between this two-division is the way the approaches solve the 
problem of minimizing the correspondence cost. Correspondence cost is defined as the process of matching a point 
from the t-1 frame to the t frame. And according to [5], the correspondence/association problem is hard to solve 
in complex situations like occlusions, misdetections and hard to handles cases like entry and exit of objects. General 
rules followed to minimize the correspondence are 

• Assuming the object’s location does not change drastically in consecutive frames. 

• There is always an upper bound constraint on the velocity of the object. 

• Assuming that the object’s velocity does not change drastically in consecutive frames. 

• The velocity of objects in a small neighborhood is constrained to be similar. 

• Objects are rigid. 
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2.5.1.1. Deterministic approaches: 

As discussed in section 2.1.4 (4), these approaches consider a system in which no randomness is involved 
in the development of future states. This produces the same output from a given initial condition or state. This can 
be applied to the object tracking by associating points across frames. Association is based on the previous object 
states. Tracking is enabled under the assumption that object movements follow some trajectory prototypes which 
could be learned offline or online. There are several methods to prototype such trajectories. One such method 
used in tracking people is creating the prototype offline by using the ground truth data. Certain rules or 
assumptions are made for prototyping such trajectories as mentioned above. The main disadvantage lies in such 
assumptions. This method could be problematic if the used rules are incorrect for the object’s behavior in the 
scene. 

In [5], in the case of people tracking, which is done in an offline manner, they define an energy function 
to compute the correctness of people trajectories. They define four rules for prototyping the trajectories based on 
the above general rules and define energy for each assumption. The complete energy is then the weighted 
combination of all such energies.  This energy predicts the pedestrian locations in the next frame in such a way 
that the pedestrian moves to the locations that minimize this energy. The training phase is involved to learn the 
weights that make the predicted pedestrian tracks match corresponding tracks in ground truth data. A loss function 
is involved to compare the quality of prediction with the ground truth. Since they follow certain rules to track the 
pedestrians, they may be incorrect in complex movements like during occlusion and obstacles. Also, the calculated 
velocity is only correct if the pedestrian is always detected. The pedestrian tracking showcased in [5] were the 
experiments done offline using only simple sequences. 

In [33], the authors implement a tracking algorithm based on a HOG descriptor. FAST is used to detect the 
points of interest. Each point is associated with a HOG descriptor. A similarity matrix is constructed using the HOG 
points located in the consecutive frames to determine a couple of matched points. These points are then tracked, 
to determine the object movement. Occlusion Is handled by comparing the object's speed and displacement 
distance of point trajectories of occluded objects with those objects in the previous frame to split the bounding 
box of occluded objects. But HOG descriptor’s reliability decreases significantly if the contrast between the 
considered object and its background is low [9] 

2.5.1.2. Probabilistic Approaches: 

This approach is majorly used in the community to track objects based on the probability of object 
movements using states. Kalman filter is one of the most popular methods. This has been discussed in Section 
2.1.5 under the Bayesian framework. 

 In the paper by K. Robert [34], detects vehicle headlights during night time and track the pair using 
Kalman filter. Detection is done by generating hypotheses of headlights than using traditional template matching 
or using morphological operations. This is done because the authors mention that such operations are not practical 
for traffic scenes and camera exposures. Discussion about blob area changes due to badly oriented headlights is 
discussed. During tracking, they assume that the route taken by the vehicles is linear and when the vehicles deviate 
from the path, they re-initialize the filter. In [35] authors present an algorithm to track mobile objects in different 
scene conditions like cluttered environment, occlusions, etc. The tracker is based on estimation, multi-feature 
similarity measures and trajectory filtering. A rich feature set like distance, area, shape ratio, a color histogram is 
defined for each object to be tracked for matching in consecutive frames. The best matching object and its state 
are estimated using a Kalman filter. These two pieces of information are fused to update the position and size of 
the tracked object. Yet, this is difficult to achieve good performance since the object trajectories are usually 
fragmented due to occlusions and misdetections. Hence, they propose a trajectory filtering which aims at removing 
the noisy trajectories and fusing fragmented trajectories belonging to the same object. 
In cases of non-linear motion, extended Kalman filter or particle filter could be used as discussed in section 2.1.5. 

2.5.2. Appearance/Kernel tracking: 

Kernel tracking or appearance tracking approach is based on computing the motion of objects represented 
by a primitive object region. Usually, motion models are used to tracked objects, but it also depends on the purpose 
of tracking. In case of analyzing only the object behavior motion information is enough for tracking but in the case 
where identification of the object is needed, information about the object’s appearance is also important. This 
approach is divided into two groups: multi-view-based appearance models and template-based models. 
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2.5.2.1. Template-based: 

It is a popular choice in the appearance model and has been used for a long time due to its simplicity. 
They are employed to track both single and multiple objects. 
Features like color or image intensity can be used to form a template. They contain both spatial and appearance 
information. It works on the principle of matching the reference template with the given image. They look for a 
specific pattern in an image where the templates are generated from the previous frame. This is an easy solution 
for single object tracking since it is not necessary to consider the interaction between object and background and 
with other objects. But this is a brute force method that could be time-consuming for complex templates.  

In multiple object tracking, since the interaction between object and background needs to be considered, 
this method is not very efficient. Hence in [36], authors consider an image as a set of layers, where the number of 
objects determines the number of layers in the image including an additional background layer. In each layer, is 
contains models such as layer appearance and a motion model corresponding to the object being represented. 
The background layer is used to compensate for any background motion so that the motion of an object can be 
calculated from the compensated image. Occlusions are handled this way explicitly.  

Another solution is to use a Bayesian decision theory to track movements and detect occlusion [37]. A 
similarity score is calculated using the color intensity and color histograms as a feature representation for each 
detected pair. If this matching score is higher than a certain threshold, it is considered as a matching pair in two 
frames and templates are updated and tracked. If the score is below the threshold, it is further investigated for 
occlusion. In such cases, objects are split into different subparts and the similarity score is calculated for these 
parts. If one object part scores high enough while other scores low an occlusion is detected and the pair is still 
considered to be a match, although the template is not updated. But this fails to work under full occlusion since 
the object would be fully occluded. Also, this method is not reliable in cases of poor illumination, weak contrast. 
Also, this method in [37] is tested on video sequences that are not complex to prove its effectiveness.  
 In [38] authors make use of Haar and LBP combined with online boosting to detect and track humans. 
The image is divided into cells and the Haar-like features are applied in each cell to detect people. Each detected 
person is divided into 2*3 blocks and each block is further divided into 9 sub-regions. For each region, LBP is 
calculated and these features are used to track people. Both Haar and LBP are combined with online boosting. 
Such a mechanism of applying both Haar and LBP is considered a weak classification. Such weak classifiers cluster 
samples by assuming a gaussian distribution of considered features. Such an online boosting scheme can help 
systems to adapt to problems that could occur during an online process like occlusion, lighting changes, etc. But in 
[38] authors fail to clearly state the criteria to train such classifiers.  
 In some cases, the image region to be tracked is represented by histograms. Trackers such as the Mean 
shift uses such histograms to find the area in a video frame which is locally most like a previously initialized model. 
The gradient ascent method is used to shift the tracker to a new location that maximizes a similarity score between 
the model and the given image region. Such histograms are represented in the form of probability density 
functions. The target object is regularized by spatial masking with an asymmetric kernel. 

2.5.2.2. Multi-view approach: 

These are the approaches applied to track objects in a multi-video camera system. Since the template is 
used to represent the object to be tracked, such representation is usually based on the latest observation. Such 
representation models consider the object from one view only. This can cause a problem with more complex 
objects that may appear different from different views. Since we are dealing with a single camera view, we shall 
skip the discussion of such approaches. But we encourage the readers to [39]-[41]. 
 

2.5.3. Silhouette tracking: 

Sometimes representing objects with simple geometric shapes can be inadequate for complex shaped 
objects like hand or shoulders. Similarly, representing humans as skeleton models, cylindrical models may be a bad 
representation. But with silhouette-based methods, it is possible to represent objects accurately. The objects can 
be represented in the form of a color histogram or object contour. They are formed or created using the object 
models from previous frames during tracking. Hence the problem in tracking such contours becomes a matching 
problem.  These are also known as region tracking. This approach is further divided into shape matching and 
contour evolution. While shape matching methods search for the object silhouette in the current frame, contour 
tracking evolves from an initial contour to its new position in the current frame by using either state-space models 
or direct minimization of some energy functions [9]. 
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2.5.3.1. Shape matching: 

In [42], the authors propose a novel method to detect objects using shape similarity between two objects. 
The moving object shape is described by a Gaussian distribution of RGB color of moving pixels and edge points. 
They define a reference smallest circle for a given moving blob. The circle is uniformly sampled into a set of control 
points. For each control point, again a set of concentric circles of various radii are used to define the bins of 
appearance models. Inside such bins, a gaussian color model is computed for modeling the color properties of the 
overlapping pixels between a circle and a detected blob. For a given control point, one-dimensional distribution is 
calculated. The appearance model of the blobs is defined by the normalized combination of distributions obtained 
from control points.  The authors further sample the reference circles with 8 control points. They define a formula 
to describe the 2D shape description by collecting and normalizing corresponding edge points for each bin. This 
model is rotation and translation invariant. But the approach is analyzed where there are only two people in the 
scene. 
 

2.5.3.2. Contour tracking: 

These are also called as boundary tracking wherein a new contour in the current frame is evolved from 
the previous frame contour as an initial contour. This method is also robust to illumination changes since it used 
edge-based features for tracking. This is faster than shape matching since this method requires less information 
i.e., the area of boundaries is less than including the whole object region [5].  
The authors in [42] proposed graph-cut based active contours (GCBAC) for object contour tracking. It is a two-step 
process wherein the first step, candidate contours are produced by taking the difference between the current and 
previous frame and this candidate contour is taken as initialization in the second step by applying GCBAC to the 
current frame directly. A predefined threshold is set and is compared with the amount of difference taken in the 
first step. And if the difference is less than this predefined threshold, authors consider this nonmoving object. 
Information gathered by using frame differencing removes the background pixels from object contour but cannot 
produce good contours when the objects are not moving too quickly between the frames. Hence, this approach 
cannot model occlusions very well. 

In [43] Knag, Cohen & Medioni propose contour tracking by combining the Kalman filter and tracking 
algorithm based on an extended greedy snake technique. Contours of objects are represented by a set of control 
points called Snaxels. Object’s centroid is calculated using the control points. Now, a contour is represented by its 
centroid and the control points represented as vectors relative to the centroid coordinate. Kalman filter is then 
used to estimate the new centroid position in the next frame. New control points are now calculated based on the 
new centroid coordinate. A greedy snake technique is applied to reconstruct the contour of moving objects. They 
define two energies regarding the Snaxels, internal and external. The internal energy determines the shape of the 
contour and external energy prevents contour from shape changes and holds the shape of it intact such that it 
represents target boundaries. Calculated control points get updated with the neighbor point having minimum 
energy. As mentioned, they employ a Kalman filter to update the centroid position. Combining this with energy 
values will result in tracking objects with high speed and large displacement. 

2.6. Shadow removal techniques: 

Shadows cause major problems while using foreground segmentation methods. Since shadows are cast 
from objects, they are hard to eliminate. This is a major problem in vision algorithms like object recognition, object 
segmentation, scene understanding, object tracking, etc. Employing shadow removal techniques improves the 
performance of foreground segmentation and the accuracy of object detection is improved. Sometimes, they are 
even considered objects, due the similar properties between the object and its shadow. This is because shadows 
tend to move along the object being tracked, in similar patterns and directions and thus get detected as a part of 
the object. The shadow areas appear as surface features and corrupt the original object area, resulting in 
misclassification of the object of interest and bias in the estimation of object parameters [25]. When a bounding 
box is used to represent the object inside it, due to shadows, a large portion inside such a box may contain shadows 
and the representation of objects becomes incorrect and as a result, processing of such misclassified information 
may lead to poor or incorrect results in the tracking or detection pipelines.  

Deterministic models are employed to solve such issues and it has been proven that these models 
outperform statistical-based models in a noisy environment. A category of statistical models used to solve this 
issue is statistical nonparametric (SNP), which considers the color consistency of the human eye to detect shadows. 
This is discussed in [21] and is applied to various traffic systems. Shadow removal technique using GMM is 
discussed in [44] where authors instead of using color consistency employ the stability of states in the GMM to 
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determine shadows. A GMM is used for background modeling and follows a multistage approach wherein at each 
stage the pixels are filtered out which cannot be shadow pixels. The stages are initial showdown pixel reduction 
where the pixels having attenuated intensity than the background are considered as shadow candidates. Blue ratio 
test considers the fact that the blue sky is responsible for outdoor shadows and there is a high ratio of blue in the 
picture. Albedo ratio segmentation which is the ratio of the difference between two neighboring pixels and ratios 
of differences between foreground and background pixels. Ambient reflection correction, the difference between 
foreground and background pixels are calculated. Body-color segmentation, The true color of an object is 
calculated using a dichromatic reflection model. Verification, a technique to match the various surfaces with their 
expected body colors and classifies regions lying in shadows. Also, instead of using color consistency, the stability 
of states in the GMM to determine shadows can be used. The assumption is that shadow states are less than 
background states but are more stable than the foreground states. Hence, in [45] authors have used several 
foregrounds and shadow states instead of two group states. Then converged states are copied into a Gaussian 
mixture shadow model to prevent them from being overridden by foreground states [25].  In [46], Cucchiara et all 
presents a method exploiting HSV color space to extract moving objects, ghosts, and shadows. The statistical 
assumptions about the shadow region are that brightness and saturation are reduced while hue properties remain 
the same. The ghost objects are separated using optical flow as they do not have any motion field. In [47], the 
authors used texture analysis for shadow detection with the assumption that textural properties remain the same 
in shadow-regions. Gabor function does the texture analysis. Such methods can be employed only in the indoor 
environment since this method is good only to identify weak shadows. This method is also computationally 
expensive. 

2.7. Occlusion handling techniques 

MOT trackers must be able to associate uniquely between frames while tracking. Establishing such 
association or correspondence is hard for the complex environment where there would be frequent obstacles and 
occlusions. It is even more difficult if the objects in the scene are similar in appearance. The trackers need to 
effectively discriminate such similar-looking objects. There are numbers of literature that classify occlusions in a 
different way, but every occlusion can be grouped under self-occlusion, inter-object occlusion, object to 
background occlusion which is self-explanatory.  

Kalman filter is used as a solution to track multiple objects and the tracking process becomes more difficult 
as the number of objects increases since mistakes in track estimation become more frequent in such scenarios. 
Hence particle filter is used to solve the problem. Lao and Zheng [48] propose a solution to the tracking problem 
where the objects show the same movement pattern and are very similar in appearance. They propose an 
algorithm that explores the correlations among the targets in a statistical online fashion and embeds both the 
correlation and most recent observation into sampling to improve the searching efficiency [25]. Also, another 
strategy employed is built on the assumption that a part of the object is still visible when an occlusion happens 
which holds in most of the cases. Hence, most of the approaches rely on this assumption and utilize the visible part 
to infer the state of the whole object. 

The object being tracked is usually divided into grids uniformly such that it divides into several parts and 
affinity is computed based on the individual parts. The affinity of occluded parts should be less, and the trackers 
would be informed about these affinities and adopt only unconcluded parts for estimation. Also, based on feature 
point clustering is applied to detect the occlusion. This assumes that feature points with similar motion should 
belong to the same object. This works when at least certain parts of the object are still visible [47].  

Strategies like “buffer and recover” are also proposed in the literature wherein the observations are 
buffered when occlusion occurs, and states are remembered before occlusion. Such object states are recovered 
based on the buffered observations and the stored states before occlusion. This strategy is used in [48], where the 
authors keep the trajectory alive for 15 frames when occlusion happens and extrapolates the position to grow the 
dormant trajectory through the occlusion. In case when the object reappears, the track is triggered again, and its 
identity is maintained. 

There is also a “hypothesize and test” strategy where initially an occlusion proposal is hypothesized and 
testing such a proposal is done according to observation models. One such proposal can be seen from [49] where 
authors generate occlusion hypotheses based on occludable pairs of observations, which are close and with a 
similar scale. In [38], the hypothesized observations along with the original ones are given as input to the cost-flow 
framework and MAP is conducted to obtain the optimal solution [4].  

In [50], Ess et al proposed an approach for autonomous navigation and path planning targeting multi-person 
detection and targeting. Occlusion maps are initially generated that contains a region of occluded by both 
pedestrians and static objects. Extended Kalman Filter (EKF) is used to reidentify the object once it becomes visible 
again when occlusion ends. 
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2.8. Tracking pipeline 

The tracking pipeline can be grouped into either a top-down approach or a bottom-up approach. The choice 
of either of the approaches is application and domain-specific. Figure 8 shows elements involved in developing a 
tracking pipeline using a top-down and bottom-up approach. Explanation of individual elements is beyond the 
scope this paper and readers are encouraged to refer to [21] & [25]. Hence following section, briefly touches upon 
the core concepts involved in these two architectures that are or were used by the research community. 
 

     
                 Figure 8 (a)- Top-down approach [21]                                      Figure 8(b) – Bottom-up approach [21] 

2.8.1. Top-down approach: 

In this approach, a statistical model estimates foreground pixel and is grouped together which are then 
classified/. Classification then uses prior information about the object classes to assign a class label. Since the pixels 
are grouped into objects early during the processing, it is referred to as a “top-down” approach. This uses methods 
like foreground subtraction techniques such as background subtraction, frame differencing, Kalman filter, GMM 
or MoG, and graph cuts to group the background and foreground pixels forming contours of objects to be tracked. 
This is followed by clustering and classification of objects, where machine learning techniques are used to generate 
discriminative classifiers from training data and assign class labels to unseen data. Classification of similar-looking 
objects is usually done using distance measures of features by calculating Manhattan distance, Euclidean distance, 
Mahalanobis distance, Bhattacharya distance, etc. [51,52]. Since these feature vectors usually have a higher 
dimension, not all dimensions are necessarily independent. Hence dimensionality reduction is applied to reduce 
the data to a significant dimension and helps in speeding up classification processing. Distance measure and 
dimensionality reduction are used on original training data while clustering would provide more meaning to such 
data by grouping data points together. Clustering techniques groups the training samples into a specified number 
of groups based on the distance between features [21]. Classifiers map the unknown features to a class, or no class 
based on the features the classifiers are trained on. Nearest neighbor, SVM, Bayesian or probabilistic frameworks 
are few examples for classifiers.   

2.8.2. Bottom-up approach: 

This approach involves the detection of parts objects as its first step followed by classification before they 
are grouped into objects. The combination of these objects into valid objects and trajectories is the final step of 
this approach. This is the approach followed in the object recognition task. Features are extracted using interest 
points like Harris corners, SIFT, SURF, HOG, gradient location, and orientation histogram (GLOTH) which form good 
descriptors. This is followed by boosting methods to improve the performance of simple classifiers such as 
AdaBoost classifiers which are weak classifiers. During training weights for weak classifiers are learned and during 
every round of training changes the weights of training images to forces the classifier to be trained on more difficult 
examples. Such weighted weak classifiers result in a strong classifier. This algorithm is robust to overfitting. 
Methods to model the objects are also used such as explicit shape models like k-fans, implicit-shape model (ISM) 
and alphabets. Such techniques directly model the spatial relationship between parts of objects detected. 

2.9. Remarks: 

Initial experiments using the top-down approach such as background subtraction, optical flow, and contour 
tracking of TSU proved to be computationally efficient but with more false positives. These false positives were 
due to poor background modeling (static background subtraction) and severe occlusions in the scene. Also, 
threshold values used for background subtraction varies as the illumination changes and cannot be well 
generalized. The experiments to detect objects were done using feature extractors like SIFT & SURF but proved to 



Report  s199978 

Page 25 of 90 

be not efficient since it was difficult to reason about the certain descriptors it produced as interest points. These 
features don’t work when there are changes in the lighting conditions and blur in the video.  

The fundamental problem with the traditional approach is that it is necessary to choose or hand-pick the 
features that are important in each given image. And as the number of classes increases, feature extraction and 
classification become difficult. Also, it is hard to reason about the features which describe the different classes of 
objects the best. Such decisions are usually made empirically, which are long and cumbersome process whose 
performance would be still sub-optimal. Also, existing hand-engineered features are very designed specific, like 
for pedestrian detection and face detections. Such features and methods were not targeted for generic object 
detection. Since the rise of deep learning, the performance of such hand-crafted features is saturated and now 
research on vision-based object detection has reached a plateau post-2010 (Figure 9b). According to [52], research 
progress in vision-based object detection was slow during 2010-2012 but smaller performance gains were obtained 
by building ensemble systems and minor variants of methods that had some success earlier. This was due to 
techniques like sliding window strategy used to generate candidate bounding boxes that were redundant, 
inefficient, and inaccurate and were not able to bridge the semantic gap by combining manually engineered low-
level descriptors and discriminatively-trained shallow models [56].  A later point in time, R. Girshick and team 
proposed the concept of a Region-based proposal technique based on the features extracted from raw data, 
automatically, using convolution neural networks (CNN), which marked the research progress of CNN based object 
detectors. 
 

Deep learning introduced the concept of end-to-end learning where the machines are shown the good number 
of examples that are annotated with the classes of objects present in each image (Supervised learning problem). 
Since then the research towards CNN based object detection has evolved at an unprecedented speed. Figure 9a 
gives an idea about the performance of deep learning versus the traditional methods. Also, key factors for such 
acceleration in research are  

• Availability of large dataset – Large Scale annotated training data such as ImageNet. 

• Parallel computing power – Graphic Processing Unit (GPU) clusters, more recently Tensor Processing Unit 
(TPU) by Google which is a math library designed to solely work on Google’s TensorFlow deep learning 
framework. 

• Advances in the efficient neural net architecture designs such as VGG, GoogLeNet, ResNets, and ResNeXt 
which has shown significant classification and detection performance in the increasing order, respectively. 

• Introduction of normalization techniques like Batch Normalization, Layer Normalization, Instance 
Normalization and recently Group Normalization by Facebook has proved to increase the efficiency of the 
deep neural nets while keeping the training time low. 

• The introduction of dropouts and data augmentation techniques have relieved overfitting problems. 
 

            
 

 
 
 
 
 
 
 

                                  a)                                                                                                                        b)                                                                          

 

 
 
 
 
 
 
 
 
 

c) 
Figure 9 a) & b)- Amount of data vs performance plot for deep learning and traditional methods, c)Difference between machine learning 

and deep learning approach [59] 

Deep neural nets 

Traditional methods 
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3. DEEP LEARNING TECHNIQUES: 

3.1. Short history 

The term “Deep learning” has gone through various incarnations since its inception in the 1950s which was 
proposed by McColloch and Pitts, as a binary classifier where the weights of the neural networks were updated 
manually. Following that was a Perceptron algorithm from Rosenblatt in 1950 that the neural nets learned to 
update the weights automatically but couldn’t solve the XOR problem as they were linear classifiers. Post this 
event, the research stagnated until the work on the backpropagation algorithm. However other reasons were like 
limited computing power to train even a few layers of the perceptron, lack of large training datasets, overfitting of 
training and insignificant performance compared to other machine learning tools. But now, a vast amount of 
computing power is at our disposal such that deep layers such as Resnet 101 or Inception networks can be trained 
on ImageNet within an hour. 

Deep learning only took off since 1998 when Yann LeCun et al introduced a paper: “Efficient BackProp” 
which is considered as a stepping stone in deep learning, which induced the functionality of “learning” in a 
computational model. But as per [54], 2012 was the actual year of rebirth of the convolutional neural network 
when A. Krizhevsky et al [55] introduced AlexNet, a Deep convolutional Neural Network (DCNN) which achieved 
record-breaking image classification accuracy in the Large-Scale Visual Recognition Challenge (ILSRVC). Since then 
tremendous growth has been observed in research towards object recognition, classification, instance level, and 
semantic level segmentation. This is because a DCNN learns the high-level features in a robust way of an image 
automatically and thus allowing computational models to learn the complex, subtle and abstract representation 
where the hand-crafted features failed to do so. Figure 10(a) shows the amount of research being made on object 
detection since 2012 and these are deep learning-based generic object detection techniques presented. Also, 
authors in [54] divide the object detection progress into two historical periods: traditional object detection period 
(before 2014) and deep learning-based object detection period (after 2014). Milestones in generic object detection 
algorithms from hand-crafted feature representation until the recent deep learning generic object detection 
techniques can be seen from Figure 11. Though deep learning techniques perform very well, they have their own 
limitations or disadvantages which are mentioned in the next section. Since the analysis of its limitations in greater 
detail is out of the scope of this discussion, they are best taken with a grain of salt. 
 
 
  
 
 
 
 
 
 
 
 
Figure 10 (a)- Object detection papers published from 1998-2018 [54]               Figure 10(b) – Road map of object detection techniques [54] 

 
 

 
Figure 11(a)- Milestones in object detection and recognition [54] 
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Figure 11(b) – Milestones in deep learning-based object detection [143] 

 

3.2. Advantages of deep learning over traditional methods: 

• Hidden information in the input data can be disentangled via multi-level nonlinear mapping. 

• Learning hierarchical feature representation by a hierarchical multi-stage structure automatically. 

• Increased performance and expressive capabilities. 

• Some computer vision problems can be recast as higher-dimensional data transform problems 
and can be solved from a different point of view. 

• CNN architectures can be used to jointly optimize several related tasks (regression and 
classification in multi-task learning) 

• Superior performance in image classification, object recognition, segmentation tasks & SLAM. 

• Super flexibility since DCNN models can be re-trained on custom datasets for the given use case 
where traditional vision techniques tend to be more domain-specific. 

• Training time can be reduced by using transfer learning techniques wherein a model already pre-
trained on the huge dataset (ImageNet) can be used to train & fine-tune on custom dataset 
instead of training from scratch which is time-consuming. 

• Data augmentation techniques (e.g., horizontal & vertical flipping, random cropping, etc) can be 
employed to increase the amount of dataset.  

• DCNN models are the translation, scale-invariant but to some extent rotational invariant. 

3.3. Disadvantages of deep learning techniques 

• In general, the amount of labeled dataset required is high. 

• Higher the training dataset, higher memory, and processing power required. 

• Transfer learning can lead to catastrophic forgetting. This is observed when a network is trained 
on a primary task and then trained on a similar secondary task tends to learn the secondary task 
quickly but at the expense of forgetting the first [60] 

• The dependency of CNNs on initial parameter tuning to avoid local minima. 
 

3.4. Definition & current trend: 

The goal of the generic object detection is to not only determine the presence of many predefined object 
categories and its instances in a given image but also to locate those objects and extent of each instance. Since 
there are various rigid and non-rigid bodies in images, the researchers are highly interested in localization of 
structured (e.g., cars) and articulated bodies (e.g., humans, cows) than the unstructured objects (cloud, river, and 
grass). Such an object’s location and extent of instances are coarsely defined using a rectangular bounding box, 
pixel-wise segmentation mask or a closed boundary [56]. Most of the literature contains object detection 
algorithms that use bounding boxes to evaluate such algorithms. Such understanding is only restricted to image-
level and there is a need to understand images on the pixel level. As a result, current research on understanding 
images on a pixel level is gaining more traction and hence future challenges will resolve problems related to the 
pixel level. Such an understanding is termed as instance segmentation and semantic segmentation. Instance 
segmentation aims at differentiating different instances of the same object class while semantic segmentation 
does not differentiate the instances. Figure 12 shows the difference and it is clear that generic object detection is 
like semantic segmentation. Research is also moving towards detecting the key points on the object of interest to 
understand the pose of interesting objects in the scene. Such developed algorithms are mainly targeted to analyze 
the pose of humans but could be extended to any articulated objects such as animals to monitor their behavior 
and health (e.g., pigs). 
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Our main focus is on object detection and not on segmentation. Hence, the explanation of segmentation 
algorithms is beyond the scope of this discussion and for the sake of completeness Table 5 summaries major 
research papers in both the mentioned fields. 

 

  
Figure 12  – a) Image classification, b) object detection, c) semantic segmentation, 

d) instance segmentation, e) Keypoint detection [57,58] 

 

Class Papers 

Object detection Single stage detectors- SSD [61], YOLO [62], RetinaNet [63]  

Two stage Detectors- SPPNet [64], Fast R-CNN [65], Faster R-CNN [66], Feature Pyramid Network 

(FPN) [67], Region- based Fully Convolutional Networks (R-FCN) [68], DetNet [69] 

Instance/Semantic Segmentation Mask RCNN [70], U-Net [71], SegNet [72], DeepLab [73], PANet [74], FPN [67], Fully Convolutional 

Network (FCN) [75], ParseNet [76], Convolutional & Deconvolutional Networks [77]  

Table 5- Various SOTA papers on generic object detection and segmentation 

3.5. Detection framework: 

In this section, we will review a few object detectors referred to in Figure 11b. All the recent object detectors 
are based on one of such baseline detectors, attempting to improve on one or more aspects. The object detectors 
are classified as single-stage and two-stage detectors based on the network architecture and its way of working 
which is summarised in Figure 13. Two-stage detectors include a pre-processing step for region proposal and hence 
the name two-stage. This is termed as a “coarse-to-fine” process[54]. Single state or regional proposal free 
detectors considers object detection problem as regression and classification problem and does not separate 
detection proposal making the pipeline single stage. This is termed as a “complete in one step” process. These two 
approaches are correlated and are bridged by the introduction of a concept called “anchors”, by the Faster RCNN 
paper[66]. 

 
Figure 13 [78]- Object detection framework 

3.5.1. Two-stage detectors 

These detectors have a two-step process: proposing regions & classification+bounding box regression. The 
purpose of the region proposal is to present the classifier with class-agnostic rectangular bounding boxes to locate 
the ground-truth instances. The assigning of a class to each of the proposed regions is done by the classifier while 
the regressor fine-tunes the coordinates of the proposed boxes. This is based on the human’s attention mechanism 
which firstly scans the whole image coarsely and then focuses on the region of interest. Such region proposal 
approach can be seen in Region-based Convolutional Neural Networks(R-CNN), Fast R-CNN, Faster R-CNN, R-FCN 
and Mask R-CNN[70] 

 

(e) Keypoint detection 

(a) Object classification (b) Object detection 

(c) Semantic segmentation (c) Instance segmentation 
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3.5.1.1. Region Proposal 

Several approaches were designed to propose regions such as measuring objectness, Constrained 
Parametric Min-Cuts (CPMC), Selective Search, Prime Object Proposal with Randomized Prim, EdgeBoxes and many 
more. They were also evaluated their effect on the detector’s performance. It was observed that out of all these 
approaches, the best speed and recall were given by Selective Search and EdgeBox. Such approaches had 
fundamental problems with the speed compared to newer detectors being proposed at that time (Fast RCNN). 
Hence it was observed was in the design of the region proposal part in the detection pipeline. Post this, some work 
on deep learning-based approaches such as [Erhan et al., 2014, Szegedy et al, 2014] were designed to propose 
regions but they were not end-to-end trainable for detection. Faster RCNN introduced by Ren et al., 2015 showed 
that using the same backbone architecture as used in Fast RCNN for classification could be used to generate 
proposals as well and they termed it as Region Proposal Network (RPN). The following sections will discuss more 
on the evolution of Faster RCNN with its pros and cons. 
 

3.5.1.2. Evolution of Faster RCNN 

• Region-based Convolutional Neural Networks(R-CNN) 
This was proposed by Girshick et al., 2014 with the main idea of using selective search as its first step to identify 

a manageable number of bounding box object region candidates (RoI, region or interest). Based on these ROIs, 
features are extracted using CNNs from each region independently for classification which can be seen in Figure 
14.  

  
Figure 14 [80] – R-CNN architecture 

Region Proposal: R-CNN adopts a selective search to generate about 2000 region proposals for each image which 
are category-independent and may contain targets objects with different possible sizes. The selective search 
methods rely on bottom-up grouping and saliency cues to propose accurate bounding boxes of various sizes quickly 
reducing the search space in object detection. 
Feature extraction: In this stage, each region proposal is warped and cropped to have a fixed resolution for the 
CNN feature extractor which is of 4096-dimensional feature vector as its final representation. At this point, we can 
employ either transfer learning technique (discussed later) or training from scratch (not recommended sometimes) 
to extract features. Using transfer learning, the pre-trained CNN models can be used as a starting point for training, 
which accelerates the training process by learning quickly compared to training CNN from scratch. These pre-
trained models are usually trained on large datasets like ILSVRC (ImageNet) and can be fine-tuned for specific 
domains.  
CNN model in R-CNN is fine-tuned on warped proposal regions for K+1 classes: K refers to the number of classes 
with an additional background class. During this stage, CNN learns the hierarchical structure, semantic and robust 
feature representation for each proposal of the image.  
Classification and localization: One forward pass through the CNN generates a feature vector for every image 
region and is consumed by a binary SVM trained for each class independently. These linear SVMs are again pre-
trained for a specific category for multiple classes. Difference region proposals are then scored on a set of positive 
regions and negative regions (background). Such scored regions are then adjusted with bounding box regression 
and filtered by a greedy Non-Maximum Suppression (NMS) to output the final bounding boxes for preserved object 
locations. Positive samples are proposed regions with Intersection over Union (IoU) overlap with a pre-determined 
threshold (>=0.3 as per [80]) and negative samples are irrelevant. In order to reduced the localization error, the 
regressor is trained to correct the predicted detection window on bounding box correction offset using CNN 
features. 
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Bottleneck: 
Training an R-CNN model is expensive in space and time since extracted features from 2k regions per 

image has to be stored. The time taken to process even a small dataset with deep networks like VGG16 is very 
long. Also, obtained region proposals from the selective search have high recalls, the proposals are still redundant 
and time-consuming (approximately 2 seconds to extract 2k proposals for an image) leading to slow detection 
speed (14s per image with GPU). Also, since the selective search is a fixed algorithm, it does not learn anything and 
this may lead to the generation of bad candidate region proposals. The whole pipeline involved three models 
separately without shared computation: CNN for image classification and feature extraction; SVM for identifying 
target objects and the regressor for tightening region bounding boxes. Training such models are time-consuming 
and require them to train them separately. R-CNN has a Fully Connect layer (FC), where CNN requires a fixed-size 
input image (244×224 image for AlexNet)leading to the re-computation of the whole CNN for each evaluated 
region, taking a considerable amount of time in the testing period. Later in the same year, SPPNet was proposed 
to overcome these problems. 
 

• Spatial Pyramid Pooling (SPP)-Net: 
He et al. proposed a novel approach called SPPNet. This architecture inspired by the Spatial Pyramid 

Matching (SPM) approach which takes several finer to coarser scales to partition the image into a number of 
divisions. Quantized local features are aggregated and represented as mid-level features. 

Conventionally, at the transition of the conv layer and FC layer, there is one single pooling layer or no 
pooling layer. Authors of SPP-net built multiple pooling layers with different scale as shown in Figure 15a. 
Convolution layers accept input image with variable sizes but the hard requirement of fixed-size images in CNN is 
only due to the Fully Connected (FC) layer. Since FC layers need a fixed-sized input image, R-CNN has to warp and 
crop each region proposal into the same size. If any objects exist partly in the cropped region, unwanted geometric 
distortion may be produced due to warping and results in reducing the classification accuracy and is more prone 
to error when the scales of objects changes. SPP-net solves this issue by resuing feature maps of the 5th 
convolutional layer (conv5) to project region proposals of arbitrary sizes to fixed-length feature vectors. The layer 
post the conv layer is referred to as the SPP layer. This layer enables CNN to generate a fixed-length feature 
representation irrespective of the input image/region of interest without rescaling it as in R-CNN. Thus, when used 
for object detection, the feature maps are computed only once from the entire image and then fixed-length 
arbitrary regions are generated for training the detectors avoiding repeated computing features. SPPnet processes 
the image at conv layers for only one time while the R-CNN process it at conv layers for 2000 times because of 
2000 region proposals. It is 20 times faster than it’s predecessor, R-CNN, without the loss in detection accuracy. 
So, if the number of feature maps in conv5 is 256, then by taking a 3-level pyramid, the final feature vector for 
each region proposal post the SPP layer has a dimension of 5376 [256× (42+22 +12)]. Due to this architecture, SPPNet 
produces a correct estimation of different region proposals in their corresponding scales with significant 
improvement in the detection by sharing computation cost before the SPP layer among different proposals[78]. 

 

   
Figure 15 a)– SPPNet with Pyramid {4×4,2×2,1×1}                                          b) Difference between R-CNN & SPPNet [64,82] 

 

Bottleneck: 
Though the SPPNet improves the detection speed, it has drawbacks like the training is still multi-stage 

and fine-tuning is done only on FC layers while it ignores all previous layers. Also, end-to-end training is still not 
possible due to the presence of SVM and regressor after the FC layer. The conv layers before the SPP layer cannot 
be updated using the fine-tuning algorithm introduced in [64]. In the succeeding year, Fast R-CNN was introduced 
and solved this problem. Since the feature vectors are stored in hard drives, it occupied a large amount of memory 
to train the regressor. An R-CNN with VGG16 as its backbone has a test time of 47s per image using a GPU which 
is slow. 
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• Fast R-CNN 

Girshick [65] proposed Fast R-CNN which solved the problems associated with SPPNet and R-CNN resulting 
in state of the art detection speed and quality in 2015. This architecture unified three independent models into 
one jointly trained framework thus increasing the shared computation and training. This enabled researchers to 
train this network en-to-end and obtain higher performance results than that of SPPNet and R-CNN. It achieved a 
detection speed of 200x faster than R-CNN[54]. Since the conv layers before the SPP layer cannot be updated by 
the fine-tuning algorithms, the accuracy drop was obvious. By the introduction of a multi-task loss on classification 
and bounding box regression, Fast R-CNN was able to increase the detection accuracy and now it was trainable 
end-to-end. 

The network architecture is shown in Figure 16. It is similar to the SPPNet, the whole image is fed to the 
conv layers to out feature maps. Now, instead of the SPP layer, the RoI pooling layer was introduced between the 
last conv layer and the first FC layer to produce a fixed-length feature vector for each region proposal. This can be 
considered as a special case of the SPP layer with only one pyramid level. Each feature vector is further fed into FC 
layers and then branches into two sibling output layers, the softmax classifier, and bounding box regressor. The 
softmax classifier produces softmax probabilities for all K+1 categories and regressor encodes refined bounding 
box coordinates. It was found that Softmax performs better than SVMs. This network is sometimes referred to as 
the detection network in the literature. 
Parameters of these layers are optimized via a multi-task loss except for the generation of region proposals (still 
selective search) in an end-to-end fashion.  

 

   
Figure 16                 a) Fast R-CNN                                                                      b) RoI Pooling layer [65,82] 

 
RoI pooling: 

This is a layer used for object detection where for each proposed RoI from the conv layer, it takes a section 
of the input feature map that corresponds to it and scales it to some pre-defined size (e.g., 2×2, 7×7). The scaling 
is done in 3 steps. It first divides the region proposal into a fixed dimension based on the output size mentioned 
above. Then it finds the largest value in each section. In the last step, the copying of these max values to the output 
buffer. As a result, we can get a list of corresponding feature maps with fixed size from a list of rectangles of 
different sizes. It is important to note that the dimension of the RoI pooling output does not depend on either the 
size of the input feature map nor on the size of region proposals. But, it is solely determined by the number of 
sections the region proposal has to be divided into. It is to be noted that at this point, the feature size reduces and 
increases the depth of such features. An advantage is a gain of processing speed. This is due to the fact that there 
will be multiple object proposals on the frame and one can reuse the same feature map for all of those proposals. 
Thus, the whole system can be trained in an end-to-end manner. This also introduces some error due to 
quantization of the region being divided unequally which was solved by introducing RoI Align in Mask R-CNN[70] 
which is built on top of Faster R-CNN for instance segmentation. 

Example: From Figure 16b, a feature map size is 8×8 with output size after RoI pooling is 2×2 with RoI or 
proposal of 5×7. Now the feature map will be divided according to the equation h/H × w/W, where (w,h) [7×5 in 
our case] is the feature map size and (H, W) [2×2 in our case] is the output of RoI pooling size. The area for each 
pooling area becomes 2×3 or 3×3 after rounding. Max pooling is done within each section. It has to note that the 
RoI’s size doesn’t have to be perfectly divisible by the number of pooling section (2×2 in our case). 

 
Multi-task loss: 

This loss helps the network to train classification and bounding box regression jointly. It is defined in 
equation 1. 

                                                L(𝑝, 𝑢, 𝑡𝑢 , 𝑣) = Lcls(𝑝, 𝑢) + λ[𝑢 ≥ 1]Lloc(𝑡𝑢 , 𝑣)           (1) 
 

Where Lcls(𝑝, 𝑢) = - log pu calculates the log loss for ground truth class u and pu are derived from the discrete 
probability distribution p= (p0 ,….., pc) over K+1 outputs from the last FC layer. Lloc(𝑡𝑢 , 𝑣) is defined over predicted 
offsets  𝑡𝑢 =  (𝑡𝑥

𝑢 , 𝑡𝑦
𝑢 , 𝑡𝑤

𝑢 , 𝑡ℎ
𝑢)  and ground truth bounding box regression targets indicated as 

 𝑣 = (𝑣𝑥, 𝑣𝑦 , 𝑣𝑤 , 𝑣ℎ , ), where (x,y,w,h) denotes the two coordinates of the box center, width and height 

respectively. [𝑢 ≥ 1] is known as the Iverson bracket indicator function employed to omit all background ROIs. A 
smooth L1 loss is employed to provide more robustness against the outliers and to eliminate the exploding 
gradients. It helps to fit the bounding box regressors as      
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                                                      Lloc(tu, v) = ∑ smoothL1(ti

u − vi)iϵx,y,w,h                 (2) 

Where  
 

smoothL1(𝑥) = {
0.5𝑥2      𝑖𝑓|𝑥| < 1

|𝑥| − 0.5   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (3) 

 
In spite of such improvements, the region proposals are done using Selective Search which is external to 

Fast R-CNN and also the FC layers which is a test time bottleneck. Authors have used truncated Single Value 
Decomposition (SVD) to reduce the number of FC connections, in turn, reducing the test time with negligible drop 
inaccuracy. As mentioned earlier, Fast R-CNN is more accurate and faster than R-CNN and SPPNet. VGG 16 based 
Fast R-CNN can be trained 9× times faster than R-CNN which is 213× faster at test time. Compared to SPPNet, this 
network can be trained 3× faster and is 10× faster [65]. The dataset was trained on Nvidia K40 GPUs. Figure 17 
compares the training and testing time of all the three architectures discussed. This Figure is collective information 
taken from [80], [64] & [65] which gives an idea of how fast the Fast R-CNN is compared to its predecessors. 

 

 
Figure 17  – Training & testing time comparison of R-CNN, SPPNet, and Fast R-CNN [83] 

Bottleneck: 
The test time bottleneck is solely because of the region proposals which can be inferred from the above 

Figure, where excluding the region proposals reduced the test time to 0.32 seconds per image to 2.3 seconds 
affecting Its performance. The region proposal approach and the detection network are decoupled which hurts 
the performance if there are false negatives. So, the obvious question was at that time, if the region proposals can 
be achieved using convolutional networks which could be trained. 

 

• Faster R-CNN 
Despite the attempt to improve the accuracy, training and testing time, Fast R-CNN had a testing time 

bottleneck and this was mainly due to the Selective Search used to generate region proposals. This is also a 
performance bottleneck since this cannot be trained. Ren et al.,[66] solved this problem by introducing Region 
Proposal Network (RPN), an efficient fully convolutional approach that learns the “objectness” of all instances and 
accumulates the proposals to be used by the detector part [28].  In simple terms, this is very similar to Fast R-CNN, 
an image is fed to the convolutional layers to produce the feature maps. Now, instead of using selective search, 
RPN is used to get the proposals. The authors introduced the concept of “anchors” (discussed later), which are 
nothing but boxes with various scale and aspect ratio which are translation invariant. These proposals are then 
reshaped using a detector network which includes the RoI pooling layer, softmax classifier, and bounding box 
regressor. This RPN shares the convolutional layers with the detection network (Fast R-CNN) boosting the test time 
and accuracy to the new SOTA performing network. The marginal cost for computing proposals is small (e.g, 10ms 
per image). 

           
 

Figure 18- Faster R-CNN architecture [84,66] 
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Region Proposal Network (RPN): 

The architecture is shown in Figure 19. RPN is a fully convolutional network that employes sliding window 
for each location over the feature map. At each location “k=9” anchor boxes are used having 3 scales (128×128, 
256×256, 512×512) and 3 aspect ratios (1:1, 1:2, 2:1) for generating proposals. The specific conv layer (last layer 
usually) is used by the RPN and the preceding layers are shared with the detection network (Fast R-CNN) as shown 
in Figure 18. Low dimensional vector with specific dimension (varies as per the backbone architecture, 512-d for 
VGG16) is obtained in each sliding window and is further sent to sibling FC layers consisting of classifier and 
regressor which are 1×1 conv layers. The sliding window is of the format n×n and n=3 is chosen by the authors due 
to the receptive fields of the backbone networks used during that time (ZF =171, VGG=228 pixels [66]). The class 
agnostic classifier outputs 2k scores, if there is an object or not for k boxes and regressor outputs 4k coordinates 
(box center and w,h) of k boxes. Hence, the output of the RPN will have WHk anchors in total for a given W×H 
feature map. Rectified Linear Unit (ReLU) is used as an activation function here to increase the non-linearity.  
With these WHk region proposals are fed to the Fast R-CNN network or detection network for further processing 
where RoI pooling and class-specific classification and regression takes place. Since the proposed regions will be 
highly overlapping, NMS is used to reduce this number (6000 to 300 top proposals). The region proposals also 
contain cross-boundary regions which are ignored during training and do not contribute to the loss. If failed to 
ignore such region proposals or anchors (outliers) introduces large, difficult to correct errors and training does not 
converge. But during testing, such proposals are clipped to the image boundaries [66]. Also, since there is feature 
sharing between RPN and detector networks training them independently will modify their convolutional layers in 
different ways. Hence the authors propose a 4 step alternating training scheme that alternates between fine-
tuning for the region proposal task and later fine-tuning for object detection by freezing the proposals. By doing 
so the network converges quickly and creates a unified network with convolutional features that are shared 
between both RPN and detection networks. 
 
 

                
 

Figure 19 – RPN in Faster R-CNN [66] 

 
Regression of true bounding boxes is achieved by comparing proposals relative to the anchors. Hence the 

loss function is defined as  

𝐿(𝑝𝑖 , 𝑡𝑖) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖

∗) + 𝜆𝑖
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖
∗)𝑖       (4) 

 
where pi indicates the predicted probability of the ith anchor being an object.The ground truth label 𝑝𝑖

∗ is 1 if the 
anchor is positive, 0 otherwise.  𝑇𝐼  has 4 parameterized coordinates of the predicted bounding box while 𝑡𝑖

∗ is 
related to the ground truth box overlapping with a positive anchor. 𝐿𝑐𝑙𝑠  is a binary class log loss and 𝐿𝑟𝑒𝑔  is a 

smooth L1 loss. These are normalized by the 𝑁𝑐𝑙𝑠  (mini-batch size = 256) and 𝑁𝑟𝑒𝑔  (number of anchor location 2400) 

The term 𝜆 is the balancing parameter to make 𝐿𝑐𝑙𝑠  and 𝐿𝑟𝑒𝑔  roughly equally weighted. They also show that the 

accuracy remains constant for the values above 10 and a slight decrease in values (negligible) for less than 10. 
Feature sharing is also important since it  
Now, the whole Faster R-CNN network can be trained end-to-end by using backpropagation and Stochastic 
Gradient Descent(SGD) algorithms in an alternating training manner. State-Of-The-Art results were obtained 
improving accuracy, training and testing time with near real-time object detection up to 5 fps using a GPU which 
is very much faster than R-CNN, SPPNet, and Fast R-CNN. The speed is also dependent on the classification network 
or called a backbone network used in Faster R-CNN. Paper has used ZF and VGG 16 to compare the accuracy results 
on various datasets like COCO, VOC PASCAL open-sourced datasets. 
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Bottleneck: 
Faster R-CNN breaks the accuracy and speed bottleneck of the Fast R-CNN but yet there is computation 

redundancy at the detection stage. The FC layers after the RoI pooling layer do not share among ROIs but instead 
applied per RoI which makes it time-consuming and the approach slow also increases the parameters. In order to 
avoid such a costly RoI-wise subnetwork hundreds of times (once per proposal), Dai et al [68] proposed a novel 
approach where the FC layer after RoI pooling is removed completely and almost all computation is shared over 
the entire image which will be discussed in next section. 
Figure 20 summarises the different R-CNN architectures. 
 

 
Figure 20 - R-CNN, Fast R-CNN, and Faster R-CNN architectures [79] 

 
Further improvements like R-FCN and light head RCNN are proposed which are based on Faster R-CNN but will be 
discussed very briefly since we will be employing Faster R-CNN with FPN. 

 

• Region-based Fully Convolutional Network 
RFCN differs from Faster R-CNN only in the RoI subnetwork since the FC layer after the RoI pooling layer 

cannot be shared in Faster R-CNN which can be seen in Figure 21. The novel approach was the introduction of 
position-sensitive score maps as shown in Figure 21b where the network is completely convolutional and no FC 
layers are involved.  

Initial idea was to have to use conv layers to construct a shared RoI subnetwork and to use RoI crops from 
the last layer of conv features before prediction. Later it was found that this design was a flaw and rendered poor 
detection accuracy because deeper conv layers are more sensitive to category semantic and less sensitive to 
translation[56]. But for object detection, localization representations need to respect the translation variance. In 
other words, an object inside an image should be indiscriminative In image classification but a translation of an 
object inside a bounding box must be meaningful to object detection. Hence, the idea of a manual embedding RoI 
pooling layer into a conv layer was discarded due to the possibility of breaking down the translation invariance 
property at an expense of additional unshared region-wise layers [78].  

Based on this experimentation or observations, the authors constructed position-sensitive score maps 
(Figure 21(b)). Before obtaining position-sensitive score maps, convolution is performed according to k2 (C+1)-d 
convolution, where for each class there are k2 feature maps. 
These maps are constructed by using a bank of specialized conv layers which produces a total of k2 (top-left, top-
center,…,bottom-right)position sensitive score maps of objects. These score maps are fixed grid of k×k after which 
position-sensitive RoI pooling layer is appended to accumulate the responses from score maps as seen from Figure 
22. These specialized maps are strongly activated at a specific relative position of an object. So, if a proposed 
bounding box precisely overlaps with a true object most of the k2 bins in the RoI are strongly activated and the 
voting leads to high scores. Also, if the proposed boxes do not overlap precisely with the true object some of the 
k2 bins in the RoI are not activated and it scores less in the voting. 
In the sense, each feature map is responsible for the output score for a specific part in the k×k grid. When RoI 
pooling the (C+1) feature maps with k2  it outputs k2 (C+1). In each RoI, k2 position-sensitive scores are averaged to 
output C+1 d vector and softmax responses are calculated. 4k2 d conv layer is attached to obtain class-agnostic 
bounding boxes. 

The pooling is done based on the same area and color criteria. Final scores are obtained by average voting 
each part of the RoI from the respective filter. It can be also seen from Figure 22 how the positive sensitive maps 
look, RoI pooling, and average voting works when the proposals overlap and do not overlap with objects. By doing 
this, this approach introduces some more translation variance to structures that were translation-invariant by 
construction [28]. This helps the object detection for learning localization representations.  
This can also be trained in an end-to-end fashion similar to Faster R-CNN. The loss during training is the same as 
Fast R-CNN discussed above. Additionally, Online Hard Example Mining (OHEM) is used during training which 
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selects only top RoIs having the highest loss during backpropagation. 4-step alternative training is used to train 
RPN and R-FCN. NMS is used with 0.3 as the IoU threshold for post-processing the proposals (300 top proposals). 
The authors have used RestNet 101 as the backbone, pre-trained on ImageNet (transfer learning).  

In spite of this improvement (removal of FC layers), the pipeline performs slightly worse than the Faster R-
CNN but is much faster during inference speed. Also, position-sensitive RoI pooling prevents the loss of information 
at the RoI pooling stage in Faster R-CNN. 
 
 

                   
Figure 21 - a) R-FCN architecture                                         b) Position sensitive Score maps [68] 

 
 

     
             Figure 22- a) When RoI overlap with object correctly(k=3)                    b) When RoI do not overlap with object correctly [68] 

 
 

• Feature Pyramid Network (FPN): 
In 2017, Lin et al.. proposed Feature Pyramid Network[67] on top of Faster R-CNN. Prior to this, feature 

pyramids built on top of image pyramids (featurized image pyramids) were widely used In object detection systems 
which improved scale invariance [64] seen in Figure 23(a). But by doing so, it requires more training time and 
memory. But most of the techniques considered only a single input scale to represent high-level semantics which 
increased robustness to scale changes, and the image pyramids were built during test time. By doing so, it 
introduced inconsistency between train/test-time inference. Further, conv layers were used to build the feature 
pyramid using feature maps of different spatial resolutions (Figure 23(c)) which introduce large semantic gaps due 
to different depths. Because of this, it couldn’t reuse the higher resolution maps of feature hierarchy resulting in 
missed detection of small objects in the scene. These are usually in single-stage detectors like SSD. 
FPN takes a different approach as seen from Figure 23(d) which has a bottom-up top-down architecture. The 
bottom-up pathway is usually a feed-forward backbone network like ResNets and the top-down pathway is again 
conv layers. Such pathways combine low resolution and semantically strong features with high resolution using 
several lateral connections. This feature pyramid holds rich semantics at all levels and can be built quickly from a 
single scale input image without much-sacrificing speed and memory.  

The bottom-up pathway produces feature maps and downsamples at each layer with a stride of 2. The 
output of the last layer of each stage will be used as a reference set of feature maps. In the top-down pathway, 
the higher resolution features upsampled spatially coarser, but semantically stronger feature maps from higher 
pyramid levels. The spatial resolution is upsampled by a factor of 2 using the nearest neighbor. Each lateral 
connection merges the feature maps of the same spatial size from the bottom-up pathway and the top-down 
pathway. In order to reduce the channel dimension 1×1 convolution layer is appended to the upsampled maps 
after each layer in the bottom-up pathway. The feature maps from both top-down and bottom-up pathways are 
merged by element-wise addition. This process introduces some aliasing in the feature maps and to avoid that a 
3×3 conv layer is appended to each merged map. This is repeated until the finest resolution is generated. This 
depends on the layers of the backbone network. In ResNet has {C2,C3,C4,C5} layers and the corresponding feature 
maps extracted from each top-down pathway is named as {P2,P3,P4,P5} respectively as shown in Figure 24. C1 is 
called the stem of the network and is not considered because the spatial dimension of it is too large and it slows 
down the process too much.  Outputs of all the feature maps (P2 to P5) will have a dimension of 256-d since they 
share the same classifier and regressor. 
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Faster R-CNN [66] is a combination of an RPN network and a Fast R-CNN network where the features 
share the same conv nets. We already know that in traditional Faster R-CNN, the RPN is a small 3x3 conv layer that 
produces different anchor scales with different aspect ratios from the given feature map, scaled to the original 
image size with two 1x1 conv layer for class agnostic classification and bounding box regression. This is called the 
head of the network. Hence, in FPN, the authors have adapted the RPN by replacing the single-scale feature map 
with their FPN. They have attached the same design to all the levels of feature maps but with a single scale assigned 
to each feature pyramid level with different aspect ratios. The authors have observed a similar performance with 
sharing and not sharing of the parameters of the heads across all feature pyramid levels.  

Further, since Fast R-CNN is a region-based object detector that uses RoI pooling to extract the features 
in single-scale feature maps, authors have assigned ROIs of different scales to the different pyramid levels to adapt 
Fast R-CNN network to the FPN. The formula to assign a pyramid level Pk based on the width and height of the RoI 
(w.r.t input image to the network) is discussed below. The authors have also introduced two fully connected (fc) 
Multi-Layer-Perceptron predictor heads of 1,024-d each before the final class-specific classification and bounding 
box regression layers. The authors have proved empirically that this architectural change brings more accuracy 
improvements with little or no computational overheads than the traditional predictor heads in the Fast R-CNN 
which can be seen from Figure 26. Traditionally, in the Faster R-CNN with ResNet (single scale feature extractor) 
based models like in [107], the predictor heads in the Fast R-CNN network is usually the last convolutional layers, 
like conv5 layers which are shared between the RPN and Fast R-CNN network. RoI pooling is performed before 
conv5_1, say C4 (refer appendix Figure 8 where ‘x’ indicates the number of layers) and on this RoI pooled feature, 
all layers above conv5_x, say from C5 onwards, are adopted for each region which plays the role of fc layers as in 
VGG-16. Finally, the final classification layer is replaced by the two sibling layers. 

 
 

         
 

                     Figure 23- a) Different architectures used in detection                            b) FPN architecture [67] 

 
 

 
c) Resolution vs semantic values [85] 

 

 
Figure 24 – ResNet 50 FPN [85] 
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Figure 25 – Faster R-CNN pipeline with FPN [85] 

 

 
Figure 26  – Object detection results using ResNet-50 FPN (c) in Faster R-CNN evaluated on the COCO minival set with traditional ResNet-

50 as backbone (*, a) [67] 

 

Figure 25 shows the FPN pipeline employed in Faster R-CNN, where now instead of generating a single 
feature map, the pyramid of feature maps is generated and fed to the RPN. Since the RoI or proposals can be of 
different size in an image, based on the size of the RoI feature map layer in the most proper scale is used to extract 
the feature patch. This makes sense since we have different scales of features, there is no need to apply different 
scales and aspect ratio of anchors in every point of a feature map in every pyramid. Single anchor scale size will be 
used in each pyramid but with a different aspect ratio (eg. P5 can use only anchor size of 64×64 with three aspect 
ratio as in Faster R-CNN). The authors provide the following equation to choose a pyramid or feature map based 
on the width and height of RoI. 

𝑘 = ⎣𝑘0 + 𝑙𝑜𝑔2((√𝑤/ℎ)/224)⎦ 

where k0 = 4 and k is the Pk layer in FPN used to generate feature patch. 
Authors have performed various ablation studies on the importance of lateral connections, pyramid 
representation, comparisons with single scale baseline, fixed RPN proposals for ResNet based backbone 
architecture and have shown empirically about their importance. More information is available in [67] 
This has shown the SOTA results In the detection accuracy since R-FCN, especially for small objects in the scene, 
while maintaining almost the same speed as Faster R-CNN with VGG16. The work is also extended for segmentation 
and is out of the scope for the discussion. 
 

Further improvements were brought to these pipelines like Li et al., [86] introduced Light Head RCNN which 
increases the speed of detection in RFCN by making smaller detection head and thin feature maps. Dai et al., 2016 
proposed introduced RoI warping based on bilinear interpolation. He et al. introduced RoI Align which addresses 
the problem in RoI pooling’s misalignment. Deformable R-FCN by Dai et al., 2017 improvised the detection accuracy 
by introducing flexibility to the Position sensitive RoI-Pooling. Cornernets by Law et al [87], where object detection 
is purely based on the two corners (top-left and bottom-right) they have eliminated the requirement of anchor 
generation which is common to both Single and Two-stage detectors and have achieved new accuracy level for 
one stage detectors.  
 

3.5.2. Single-stage detectors: 

The region proposal-based object detectors are currently leading in object detection benchmarks since 
Faster R-CNN and accuracy improvements are made over time which is based on such region proposals. Despite 
such progress, these approaches are still computationally expensive for mobile devices with limited computation 
capabilities and limited storage. Hence the research is being made to develop a unified strategy that considers the 
object detection problem as a regression problem.  These detectors predict class probabilities and bounding box 
offsets from full images with a single feed-forward CNN network without region proposal generation or post 
classification [56]. 
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The two most popular approaches are You Only Look Once (YOLO) [62] by Redmon et al., Single Shot Multibook 
Detector (SSD) [61] by Liu et al. Upcoming sections will discuss these detectors briefly.  
 

• Before SSD & YOLO. 
Szegedy et al.,[88] were the very first ones to explore object detection using CNN. They formulated it as 

a DNN based regression [78] named as DetectorNet. They generated a binary mask for the images and extracted 
detections with bounding boxes. The famous at the time AlexNet was used with the softmax classifier layer 
replaced by a regressor. Using this, prediction of background pixels over a coarse grid was done by a network while 
objects bounding box prediction was done by four additional networks. The grouping process was used to convert 
the detected masks into bounding boxes. But it had difficulties in handling occlusion and did not scale up to 
multiple classes. Also, these networks required training per object type and mask type. 
 

Sermanet et al.,[89] proposed modern one-stage detectors which are fully convolutional deep networks 
called OverFeat, which used multi-scale sliding window fashion for detecting objects in a single forward pass 
fashion such that computation was shared by the overlapping regions. OverFeat outputs a grid of feature vectors 
each of which represents a slightly different context view location within an image and therefore predicting the 
presence of an object which is then used to produce bounding boxes. Since they use multiple scales of an image, 
multiple features are extracted and significant improvement in the detection accuracy is observed by providing up 
to six enlarged scales of original image through the network and aggregating them one by one. This resulted in an 
increase in the number of evaluated context views. This network was faster than R-CNN but was less accurate due 
to the difficulty in training a fully conv net during its time. Many more detectors were also proposed like 
AttentionNet [90], Grid-based CNN (G-CNN) [92], MultiBox [91]. But they all had problems dealing with either 
difficulty in training or were not able to scale well with the multiple classes in an image. Due to their way of 
functioning, the pipeline is also termed as Unified Detectors. More information on popular single-stage detectors 
like YOLO, SSD, RetinaNet & CornerNet will be discussed in the upcoming sections. 

 

• You Only Look Once (YOLO) 
It is a single-stage or unified detector which considers the object detection as a regression problem from 

raw image pixels to spatially separated bounding boxes with associated class probabilities. It is different from the 
two-stage detectors where the region proposal layer or network is completely removed, and prediction is made 
using a small set of candidate regions. They do so in a global context, unlike two-stage detectors where predictions 
are based on features from the local region. Hence, YOLO no longer requires the per-region based classification 
network which makes this faster than region-proposal based methods. 
The basic idea of YOLO is to divide a given image into an S×S (S=7) grid such if the center of an object falls into a 
grid cell, that grid cell is responsible for detecting that class of object. Each grid cell predicts B bounding boxes 
(B=2) and associated confidence score for those boxes where each bounding box consists of 5 predictions (x, y, w, 
h, and confidence score). (x, y) is the center of the grid cell relative to the whole grid, (w, h) are the predicted width 
and height values relative to the whole image dimension. The confidence score is the Intersection Over Union 
(IOU) between ground truth box and predicted box. Also, each grid cell predicts the conditional class probabilities. 
It is important to note that the probability of an object being in a grid cell solely depends on if the centroid of the 
object lies in the grid cell, which also eliminates counting objects multiple times in different grids. But by doing this 
initial version of YOLO failed to detect objects that were very close to each other.  
The model was designed using 24 convolutional layers followed by 2 FC layers. Alternating 1×1 was utilized to 
reduce feature space. This was a custom GoogLeNet. Fast YOLO had fewer convolutional layers, 9 instead of 24 
and fewer filters in those layers.  
Figure 26 shows the idea behind YOLO. For simplicity S=4 in Figure a (left one) with predicting three-class (car, 
light, and pedestrian). 
 

  
Figure 26 a) & b)YOLO grid representation [93, 62] 
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Unlike region proposal loss, this introduces new loss functions to be optimized which is Sum of Squared 
Error (SSE) calculation for predicted (x,y,w,h and confidence score) with an additional parameter λ which is a fixed 
value which keeps the model stable by not pushing the gradients towards zero from the grid cells whose confidence 
score tends towards zero. Also, YOLO struggles to localize objects correctly and produces more localization error 
compared to the region proposal based detectors. This was obvious from the grid cell division which was a coarse 
division of bounding box scale, aspect ratio, and location. It struggles to generalize to objects in new aspect ratio 
configurations and due to multiple downsampling of features produces coarse features. But, in spite of problems, 
this network was faster than two-stage detectors, processing at 45FPS and a fast version and Fast YOLO processing 
at 155FPS on VOC datasets. 

To solve these issues further improvements were made YOLO9000 or YOLOv2 [94] where the network 
from YOLO was replaced by a simper network called DarkNet19. Also, newer concepts like batch normalization, 
removal of a fully connected network, used the concept of anchor boxes (borrowed idea from region-based 
detectors), dimension clustering, multi-scale training, direct location prediction, the light-weighted base model 
and using fine-grained features. Due to the availability of newer datasets like COCO and ILSVCR, YOLO9000 was 
trained to predict 9000 classes, hence the name. Further, more design tricks were added on top of YOLOv2 inspired 
by the recent research in object detection known as YOLOv3 [95]. It uses logistic regression instead of SSE for 
confidence score calculation, removal of softmax layer for class prediction, ResNet based DarkNet model, multi-
scale prediction and skip-layer concatenation in the network design. 
These subsequent versions [94,95] have paid more attention to decreasing the localization error for small objects 
by making further improvements over their custom network, DarkNet. [95] is the latest version, YOLOv3 with 
DarkNet-53 as its backbone has achieved new performance levels in both detection and accuracy on a relatively 
newer COCO dataset than VOC dataset are is faster than the SSD variants. 
 

• Single Shot MultiBox Detectors (SSD) 
SSD improvises on YOLO in several aspects such as a) use of default anchor boxes with varying aspect 

ratios for adjusting varying object shapes b) use of anchor offsets for bounding box locations c) small convolution 
filters for predicting categories d) usage of pyramid features to predict at different scales. Observing the intrinsic 
problems of YOLO [62], Liu et al [61] proposed SSD, which is faster than YOLO with competitive accuracy with its 
region-based detector counterparts. This was one of the first attempts at using feature pyramid hierarchy of 
convolution nets for efficient object detection of various sizes of objects. Fast and high-quality detection is 
obtained by combining the ideas from RPN, YOLO, multi-reference, and multi-resolution techniques. The main 
difference between any other detectors and SSD is that former detectors run detections only on their top layers 
while the latter detects objects at different scales on different layers of the network [54]. SSD architecture is shown 
in Figure 27. It is seen as a pyramid representation of images at different scales. Hence, large feature maps at the 
early layer can capture information about the small objects and small coarse-grained feature maps can detect large 
objects as well. This enables the SSD to detect objects at every pyramidal layer targeting objects of different sizes 
in an image. 
Unlike YOLO, SSDs do not divide the image into grid cells but instead predict the offset of predefined anchor boxes 
(default boxes) with different scales and aspect ratios and their confidence score for every location of the feature 
map as seen from Figure 28.  Each box has a fixed size and positive relative to its associated cell. Since feature 
maps at different levels have different receptive field sizes, the corresponding anchor boxes at each level are 
rescaled so only one feature map is responsible for detecting objects in one scale, which can also be seen in Figure 
28. The cat is associated with GT is with a feature map of 8×8 (lower level) while the dog is detected in 4×4(higher 
level) feature map size. The network tries to optimize the weighted sum of localization loss such as Smooth L1 and 
confidence loss such as softmax and the detection results are usually obtained by post-processing step, NMS on 
multi-scale refined bounding box [78]. It uses hard negative mining to construct the negative set of examples or 
anchors by selecting the easily misclassified negative examples. The model picks the top candidates for such that 
the ratio of negative to positive examples is at most 3:1. 
SSD has advantages in both accuracy and detection speed on VOC and COCO and is slightly better than the 
traditional YOLO [62] processing at 59FPS for an input image size of 300×300 (SSD300). This can be only be achieved 
by regressive trial and error method by fine-tuning vast hyperparameters like carefully choosing the default 
anchors, huge dataset, and more data augmentation. The model starts to converge only with a larger dataset and 
carefully chosen data augmentation techniques while the region-based detectors converge quickly for the small 
dataset and by using pre-trained models for training on the custom datasets. Despite this, SSD cannot deal with 
small objects in the image (objects with lesser than 32×32-pixel area). Also, since SSDs must sample from a dense 
set of boxes, their performance is lower in COCO compared to the region-based detectors. This is because latter 
methods perform predictions from a sparse set of proposals.  

Various ablation studies on image resolution, data augmentation techniques are made by the authors and 
have compared the results with Faster R-CNN [66]. Authors conclude that data augmentation is indeed necessary 
to boost the performance of the network and without this, the accuracy drops significantly by 8-9 points (VOC 
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2007 evaluation mAP). More default box shapes lead to slightly better accuracy improvements (2-3 points, VOC 
2007). 
Also, they conclude that Faster R-CNN is more competitive on smaller objects than SSD due to its RPN. 

 
Figure 27 – SSD architecture [96] 

 
                              Figure 28 a) Image with GT boxes            b) 8×8 feature map                   c)4×4 feature [62] 
 
 
 

• RetinaNet:  
Though SSD’s being high speed and simple, they have trailed the accuracy of two-stage detectors for years 

[54]. Lin et al., were the very first to discover that the reason behind such a hinderance is the foreground-
background class imbalance encountered during training. Observing this, they proposed a novel loss function 
calculation which is reshaping of cross-entropy loss function called “focal loss”. This loss assigns more weights on 
hard, misclassified examples and down-weights easy examples during training. This enables the network to train 
on a sparse set of hard examples and prevents the network to be overwhelmed due to the vast number of easy 
negative examples.  
Binary cross-entropy loss is given as for binary classification is given as 
 

𝐶𝐸(𝑝, 𝑦) =  −𝑦 log 𝑝(1 − 𝑦) log(1 − 𝑝)           (5) 
 
Where 𝑦 ∈ {0,1} indicating the ground truth binary label and 𝑝 ∈ [0,1] indicates the confidence score. 
(5) can be modified for convenience as  
 

Let  𝑝𝑡 =  {
𝑝              𝑖𝑓 𝑦 = 1

1 − 𝑝     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        then 𝐶𝐸(𝑝, 𝑦) = 𝐶𝐸(𝑝𝑡) =  − log 𝑝𝑡 

 

Now the Focal loss is defined as 

𝐹𝐿(𝑝
𝑡
) =  −(1 − 𝑝

𝑡
)

𝛾
∗ 𝛼𝑡 ∗ log (𝑝

𝑡
) 

 
Where 𝛾 is called as focusing parameter and 𝛼 is called balancing parameters.  

 
Figure 29 – Focal Loss [63] 
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The term (1 − 𝑝
𝑡
)

𝛾
, with 𝛾≥0 explicitly adds at this weighting factor to each term in CE loss such that the weight 

is small when 𝑝𝑡 is large thereby down weighting easy examples. 
 

The authors have used FPN based architecture for one stage detection with Focal loss in its classification 
subnet and smooth L1 loss to its box regression subnet as shown in Figure 30. Modest changes were made to the 
FPN such as pyramids from P3 to P7. Instead of downsampling, strided convolution was used to compute P6 and 
P7 was additionally included to increase the detection of large objects. Also, anchors of sizes [20, 21/3,22/3] were 
added at each pyramid level with three aspect ratios (like in Faster R-CNN FPN) totaling to 9 anchors per level. 
Anchors were assigned to ground-truth boxes using the IoU threshold of 0.5 and to the background in [0, 0.4). It is 
important to note that each anchor has at most one object box and its corresponding class entry is set to 1 based 
on the IoU. Anchors that do not obey the IoU threshold [0,0.4) are not used during training. 
Classification subnetwork was constructed using 4 Fully Convolutional Network of 3×3 each with C filters followed 
by ReLu activations. These are further followed by another set of 3×3 layers with KA filters where K is the object 
class and A (9) refers to anchors. A class-agnostic bounding box regressor, similar to the classifier but with a 4A 
output layer. During training, the total focal loss is computed as the sum of loss overall anchors which are 
normalized by the number of anchors assigned to ground-truth boxes.  At most 1k top-scoring anchors per FPN 
level are decoded post thresholding. Post-processing like NMS was used to obtain the final detections. 
Ablation study on varies values of 𝛼 and 𝛾 were performed to study the effects of focal loss on AP. It was observed 
that as 𝛾 increased, more weights were concentrated on the hard-negative examples and the majority of the loss 
was dominated from a small fraction of samples. Hence the proposed focal loss discounted the effect of easy 
negatives and focused more on hard negative examples. Studies on OHEM vs FL were also done and authors have 
recorded a 3.2AP gap with OHEM and FL proving the efficiency of FL. 
Speed vs accuracy study was performed by authors using ResNet-50 and ResNet-101 layers with various single-
stage and two-stage networks trained on COCO. They observed a significant improvement in the AP while 
maintaining speed. Especially, the accuracy of RetinaNet-101 with 600-pixel input matched Faster-RCNN[67] which 
ran at 122ms per image compared to 172ms (measured on Nvidia M40GPU). Effects of varying anchor scales and 
their aspect ratios were studied and concluded that even though anchors with single scale and singe aspect ratio 
performed well, using 3 scales and 3 aspect ratios had an accuracy gain of 4 points. And, no further gains were 
observed in the number of anchors was beyond 6-9. Also, for faster inference, they noted that there was only one 
operating point at which RetinaNet with ResNet-50-FPN improved over ResNet-101-FPN at a resolution of 500-
pixel input. 
 

 
Figure 30 – RetinaNet [63] 

• CornerNet 
Hei and Jia introduced CornerNet [97] very recently and was presented in the prestigious CVPR 2019 

conference. They developed this pipeline without any anchor boxes which still makes them single-stage detectors. 
The detector predicts the two corner points of the bounding box by localizing those two pairs. A convolution 
network is used to predict two sets of heatmaps to represent the corner location (top-left and bottom-right) of 
objects of different categories and to predict embedding vector per each detected corner. Hence, embeddings of 
two predicted corners from the same object are small. Using regression tighter bounding boxes are produced. Final 
bounding boxes are obtained by using all the embeddings, heat maps and predicted offsets during regression as 
post-processing. Since the network predicts two sets of heatmaps, each set of heatmap has C channels (categories) 
and of size H×W without background channel. And each channel is a binary mask that indicates the locations of 
the corners for a class. Each corner is associated with one ground-truth value and it is the positive location and all 
other locations are considered negative. The penalty associated with the negative locations is reduced within the 
radius of the positive location during training. This is done because these pairs of false corner detections, which 
are close to their respective ground truth, could still produce bounding boxes that sufficiently overlap with the 
ground-truth. 

This radius is determined by the size of objects by ensuring that a pair of points within a certain radius 
would generate a bounding box with at least t IoU with the ground truth. The authors have set this value to be 0.3 
in their entire experiment. Having the radius information, 2D unnormalized Gaussian is used to calculate the 
amount of penalty reduction to be associated with the predicted corners during training, whose center is at a 
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positive location with the sigma being 1/3rd of the radius. Authors have defined a modified version of focal loss 
(discussed above) with certain other hyperparameters that control the contribution of each point. Since predicted 
heatmaps are often downsampled compared to the ground truth heatmaps they affect the predicted boxes by 
introducing slight offsets. To compensate for that, authors have let the network learn them per spatial location. 
During training, smooth L1 Loss is used at ground truth corner locations. 
Since multiple objects are present images, multiple corners may be detected. The problem is to correctly identify 
a pair of corner points belonging to each other. They have solved this issue by predicting embedding vectors for 
each top-left and bottom-right corner such that the distance between their embeddings should be small. Hence 
grouping is done based on the distances between embeddings of top-left and bottom-right corners. Since only the 
distance between embeddings is considered, the actual values of embeddings are unimportant. They use pull and 
push loss from [98] to train the network to group corners and these are applied only at the ground truth corner 
location.  

Authors notice that there was often no visual evidence for the presence of corners. To determine if a pixel 
is a top-left corner, they max-pool along the corner’s row horizontally and max-pool along column vertically and 
finally sum these values. So, they propose a novel corner pooling approach to better localize the corners. These 
corners are localized explicitly by encoding prior knowledge.  

Inspired from [99], they use the hourglass network and add their modifications to it. Hourglass models/ 
networks first down samples input features by series of conv layers followed by max-pooling. Then upsampling of 
features back to their original resolution is done by series of another set of conv layers. Skip layers are added to 
preserve the lost information during pooling to the upsampled feature. This network captures both local and global 
features in a unified single network. The higher level of feature information can be obtained by stacking such 
hourglass modules. Authors here used two hourglass structures with their own modification as shown in Figure 
31. During training data augmentations and PCA are used with network input resolution as 511×511. Ablation 
studies are conducted showing the importance of corner pooling, location penalty via Gaussians, branch 
importance in the network. With each new addition just mentioned above increased the accuracy but also revealed 
that the prediction of corner heatmap as a bottleneck. They have compared the results with the most modern 
detectors like RetinaNet and newer versions of two-stage detectors and found that this approach beats every other 
detector and its competitor, RetinaNet by 1.4 points but they have not discussed the processing speed of the 
network. 
 

 
Figure 31 a) 

 
Figure 31– b) CornerNet architecture [99] 

 
 
 
Up until now, we have discussed some of the SOTA object detectors, but the datasets and metrics used to evaluate 
such models were just named along in the explanations (PASCAL VOC, COCO dataset). The next section goes 
through the terminologies and metrics used to evaluate such models briefly. 
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3.6. Datasets and evaluation metrics: 

3.6.1. Datasets 

Datasets play a key role in the progress of image analysis such as object recognition, detection, and 
segmentation in the field of vision and deep learning. They have been considered as one of the most important 
factors for the recent considerable progress in the field of deep learning.  This has aided the researchers to build 
complex models that capture the richness and diversity of objects in images that are found in the real world. 
Recently, significant breakthroughs in the field of object recognition have been observed and have shown 
unprecedented performance. This is due to the rise of large-scale datasets with millions of images. Though datasets 
were available to the community since last 10 years, there has been significant growth in the numbers very recently 
due to three main challenges for object recognition task, PASCAL VOC (Visual Object Class), COCO (Common 
Objects in Context) and ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Over the years there has been 
a significant addition of images since the beginning of such challenges. Table 6 gives some information on the 
number of images each challenge has released year wise with the object classes contained in those images. 

 

• PASCAL VOC 
Two versions are used for the evaluation of modern object detectors, VOC07 and VOC12. The former has 

5k training images + 12k annotated objects and the latter has 11k training with 27k annotations with 20 different 
object classes. Due to the emergence of larger datasets like ILSVRC and Microsoft’s COCO, this dataset has become 
a test-bed for new detectors [54]. 

• ILSVRC 
Commonly referred to as ImageNet, is the largest open-source dataset available today which is used by 

most of the generic object detectors to train on and release them as pre-trained models. It has 200 classes of 
objects which contain 517k images with 534k annotated objects [54]. This dataset has been criticized because the 
objects in the images are large and well centered which makes the dataset atypical of real-world scenarios [56]. 
Researchers introduced COCO dataset which contains segmentation annotations, to solve ILSVRC’s problem. 
 

• MS COCO 
Most widely used the dataset for generic object detection which is complex with new challenges such as 

smaller objects, various cluttered environments, heavy occlusions and has 80 classes. This has its own evaluation 
metric which most of the object detector papers discuss the performance on. This has become the de facto 
standard for performing training, validating, and testing. Also, very recently in 2017, the Test-Dev split is the default 
test data and most of the recent papers on object detection report their model’s performance on this dataset for 
a fair comparison.  
 

Challenge Object 
class 

Number of Images Total number of 
annotated objects 

Train Val Test  Train Val 

PASCAL VOC 

VOC07 20 2,501 2,510 4,952 6,301 6,307 

VOC08 20 2,111 2,221 4,133 5,082 5,281 

VOC09 20 3,473 3,581 6,650 8,505 8,713 

VOC10 20 4,998 5,105 9,637 11,577 11,797 

VOC11 20 5,717 5,823 10,994 13,609 13,841 

VOC12 20 5,717 5,823 10,991 13,609 13,841 

ILSVRC  
ILSVRC13 200 395,909 20,121 40,512 345,854 55,502 

ILSVRC14 200 456,567 20,121 40,512 478,807 55,502 

ILSVRC15 200 456,567 20,121 51,294 478,807 55,502 

ILSVRC16 200 456,567 20,121 60,000 478,807 55,502 

ILSVRC17 200 456,567 20,121 65,500 478,807 55,502 

COCO 

COCO15 80 82,783 40,504 81,434 604,907 291,875 

COCO16 80 82,783 40,504 81,434 604,907 291,875 

COCO17 80 118,287 5,000 40,670 860,001 36,781 

COCO18 80 118,287 5,000 40,670 860,001 36,781 
 

Table 6 – Statistics of used datasets for object detection [56] 
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3.6.2. Metrics or evaluation criteria 

Detection speed, precision, and recall are the three fundamental metrics models are evaluated for 
performance. The most commonly used metric is Average Precision (AP) introduced in VOC 2007 which is derived 
based on precision and recall. Precision is the ratio of true object detections to the total number of objects the 
classifier predicts. The recall is the ratio of true object detections to the total number of objects in the dataset. 
Precision-Recall or simply from the PR curve one can observe the performance of models and derive AP. For 
calculating Precision and Recall four values are calculated,  True Positives (TP), False Positives (FP), True 
Negatives(TN) and False Negatives (FN). 

True Positives and False Positives are calculated using the IoU thresholds. For simplicity, if the IoU is set 
to 0.5, then any object detection having the IoU greater than or equal to this value is considered positive and 
everything else is false positive. For calculating Recall, negatives are counted by measuring only False Negatives 
output of models i.e., the objects that the model missed to detect. Since models predict the bounding boxes with 
a certain threshold for every detection, by varying these confidence thresholds, one can change whether a 
predicted box is Positive or Negative. Based on these TP and FP the precision and recall are computed as a  function 
of confidence threshold. Different pairs of (P, R) are obtained by varying the confidence scores making the precision 
to be considered as a function of recall from which AP is calculated [56]. Also, in the context of COCO, there is no 
distinction between AP and mAP (applies the same to AR). Hence, in the literature, one can  
Since the number of objects in a given image is known from the ground truth, we can calculate TP and FP which is 
the calculation of Precision. IoU with the ground truth for every Positive detection of the model is calculated and 
is compared with the predefined set threshold (say, 0.5) and calculate the number of correct detections for each 
class. Precision is calculated as 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
The recall is derived from the above, since we already calculated the correct predictions and missed detections, 
and is calculated as 

Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
So, if the model has a precision close to 1, then whatever the model has predicted is indeed a correct 

prediction. And, if the recall is close to 1, then the model has positively detected all the classes of objects in the 
given dataset. 

AP Is computed for each object category in a category-specific manner. In order to compare the 
performance of models overall object categories, the mean average precision is used (mAP) which is nothing but 
the averaged value overall object categories. This is usually used as the final metric for the evaluation of the 
performance. Localization accuracy is measured by checking the IoU between the predicted boxes with the ground 
truth with certain predefined threshold, say, 0.5. If the overlap is greater than equal to 0.5, the object was detected 
successfully otherwise it is marked as missed. Most of the papers still evaluate performance using this criterion. 
But post the availability of the COCO dataset, it has it’s own metrics which helps to evaluate the models in a more 
precise manner. In VOC evaluation, the threshold was set to 0.5 and evaluations were made based on only this 
one value over 20 categories. But with COCO 2017 metrics pushed this further to evaluate over 10 such threshold 
values on 80 different categories (AP 0.5:0.05:0.95), which is a primary challenge metric. Hence in most of the 
literature, accuracy evaluations would be based on either standalone COCO metrics or combination of VOC and 
COCO. VOC evaluation is declining but is still used as a test-bed to evaluate the models during its initial 
developments. 
MS COCO AP is obtained by averaging APs over multiple IoU thresholds between 0.5 and 0.95 which indicates the 
coarse-to-prefect localization. This depicts the accurate object localization and tends to reward models that 
perform better at precise localization. Alongside the varying threshold, the metric also considers the area of objects 
in the image for better understanding about models’ performance on varying sizes of objects which are given as  
 

• AP : mAP averaged over 10 IoU0.5: 0.05: 0.95 

• APIoU=0.5 : AP at IoU=0.5 

• APIoU=0.75 : AP at IoU=0.75 (strict metric) 

• APsmall : AP for small objects with area<322 

• APmedium : AP for small objects with 322 < area < 962 

• APlarge : AP for small objects with area > 962 

• ARmax=1 : AR given 1 detection per image 

• ARmax=10 : AR given 10 detection per image 

• ARmax=100 : AR given 100 detection per image 
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ARsmall, medium, large is same as APsmall, medium, large 
 
Figure 32 shows the improvements in the AP from generic object detectors. 

 
Figure 32 – Object detector’s accuracy improvements over time  

 
 

3.6.3. Performance evaluation of detectors: 

Since a large variety of deep learning-based object detectors are being released very frequently, it is indeed 
hard to compare the accuracy, speed, and memory performance of all detectors on the standard benchmarks like 
VOC/COCO. This is because these object detectors vary in their functionality, for example- single-stage detectors 
work completely different than the two-stage detectors. Apart from this difference, there are many choices within 
the architecture of these networks which affect their performance. Choosing the right detector with optimized 
hyper-parameters which strikes the balance between accuracy and speed is of utmost importance for the real-life 
application. Choices that impact the performance of detectors are mentioned in Table 7. Amongst them, training 
parameters are most important because a wrong choice of values would lead to longer training time with no luck 
in the model’s convergence towards its global minima.  
It is unwise to compare every detector side-by-side since every experiment in the published papers is carried out 
in not very similar settings. But having information about such a qualitative comparison would enable the 
developers to choose an object detector architecture suitable for the targeted application. There has been very 
less study in such a direction except for the only study by Huang et al., [100] about the tradeoff between accuracy 
and speed of three main families of detectors (Faster R-CNN, R-FCN, and SSD). Also, analysis by Canzaiani & Paszke 
[101] provides deep insights regarding the accuracy, memory footprint, parameters, inference time and power 
consumption of modern backbone networks.  
 
  The authors have integrated publicly available detectors into a common platform (TensorFlow) in a unified 
manner. And they explore the performance of these detectors by varying parameters mentioned in Table 7. One 
example is seen in Figure 33, where the authors provide information about the accuracy of detectors with different 
backbones (discussed in the next section). 
 
 

Architecture or feature extractor selection VGG16/19, ResNet-50/101/152, ResNeXt, Inception, 
MobileNets, FPN, model resolution 

Datasets used VOC, COCO, ImageNet, custom data  

Hyper-parameter choices during training Usage of data augmentation, number of proposals 
during, IoU threshold selection, learning rates, batch 
size, learning decay rate, optimizers, loss functions, 
the requirement of batch normalization, NMS 
threshold configuration 

 
Table 7- Parameters affecting the model’s performance 
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Figure 33– Top-1 accuracy comparison of three object detectors with different backbone trained on COCO. Shown only the results of lower 

resolution models (300×300) [100] 

3.7. CNN architectures for image classification 

This section briefs about the different CNN architectures used in the detection frameworks we discussed earlier. 
Usually, they are termed as engines [54] or backbone network because these are the conv layers that are 
responsible for the feature extraction which is further fed to the other layers in the pipeline of object recognition, 
classification or detection. They are LeNet, AlexNet, VGG, GoogLeNet, ResNet, ResNeXt, DenseNet, SENet, DarkNet 
and many more. The following information gives an overview of these backbones but the goal is not to discuss this 
to a greater extent. 
 

• LeNet: Introduced by the famous, Yann Lecun, LeNet-5 [102] was introduced in 1998 for the handwritten zip 
code recognition. This was the very first model built using convolutional layers built on 3 main ideas: spacial 
subsampling, shared weights, and receptive fields. It has 3 conv layers, 2 pooling layers, and 1 FC layer. Tanh 
sigmoid is used as the activation function through the network. It achieved an error rate of less than 1% on 
the MNIST dataset (handwritten numbers with 32*32 image size)close to the SOTA during the time.  

 

• AlexNet:  Developed by Alex Krizhevsky et al.,[103] in 2012, similar to LeNet-5 achieved considerable accuracy 
in the ILSVRC-2012 challenge with an accuracy of 84.7%. It is 8 layer deep has 5 conv layers with variable 
kernel filter size (11×11, 5×5, 3×3) and 3 FC layers with the Rectified Linear Unit (ReLu) as the activation 
function. This was the first work to prove that by using ReLU nonlinearity, the training of deep CNNs was 
much faster than using the activation functions like sigmoid or tanh. The ILSVRC challenge or commonly 
termed as ImageNet challenge is the de facto benchmark to analyze the performance of image classification 
and object detection networks. In our context in this discussion, we will be referring to the classification 
performance of the network. Also, the top-5 error is defined as the percentage of guesses that the classifier 
did not include the correct class in its top-5 guesses correctly.  

This architecture reduced the top-5 error from 26% to 15.3%. Techniques like data augmentation, the 
introduction of dropout layers to reduce overfitting, using stochastic gradient descent, momentum and 
weight decay were used during training. 

 

• ZFNet: Later ZFNet[104] was introduced on top of AlxeNet which further reduced the error to 14.8% by 
tweaking the hyper-parameters of AlexNet with some additional changes in the first layer like using a smaller 
filter size like a 7×7 instead of 11×11 with decreased stride value. This helped the network retain a lot of 
original pixel information from the input volume since 11×11 skips a lot of relevant information. This further 
reduced the number of trainable parameters. 

 

• VGGNet: This architecture was proposed to solve the problems of AlexNet, reducing the number of 
parameters in the conv layer and to decrease the training time further which in turn makes this network 
deeper than AlexNet. VGGNet[105] has multiple variants, VGG-11, VGG-16, etc. Hence, the overall 
parameters increased but with the decrease in the conv layer parameters by making multiple 3×3 kernels as 
building blocks, unlike AlexNet which has variable conv layer kernels like 11×11, 5×5, 3×3. This architecture 
reduced the number of trainable parameters by approximately 45% leading to faster training time and more 
robust to over-fitting problems. This architecture introduced the idea of shrinking the spatial dimensions of 
input down the network and growing the depth by using more number of filters. This has the top-5 ILSVRC-
2014 error rate of 7.3%.  

 

• GoogLeNet: It is a 22 layer CNN and the winner of ILSVRC-2014 with a top 5 error rate of 6.7% [106]. This 
showed that by increasing the depth of the network, improves the representational power of it. This has a 
structure of network inside a network called inception modules, which embeds a 1×1, 3×3, 5×5 convolution 
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and a max-pooling layer side by side such that their outputs are concatenated at the end by a filter 
concatenation operation. Any feature map from the previous layer fed to this inception module unit 
processes it using the above-mentioned filters parallelly. For each cell, these set of filters learns to extract 
features at different scales from the input. Further improvements were also made to this network and are 
available as v2 and v3 inception network. Hence the authors showed the idea of CNNs being stacked parallelly 
from the traditional way of stacking CNN's sequentially. This architecture dramatically reduced the trainable 
parameters which are 12x lesser than AlexNet.  

 

• ResNet: The Deep Residual Networks (ResNet)[107] was proposed by He et al., in 2015 which is substantially 
deeper than (up to 152 layers) than the previously discussed architectures. This model holds the top position 
in ILSVRC-2015 with the top-5 error rate of just 3.57% exceeding the human level performance(between 5-
10% error rate) In the classification task.  

During the time it was generally accepted that deeper networks were able to learn more complex 
representations and functions which leads to better performance. It is He et al who observed that adding 
more layers had a negative effect on the performance of the network since this behavior was not intuitively 
expected. Prior to this, AlxeNet and GoogLeNet had 19 and 22 layers respectively. However, increasing the 
depth of the network does not necessarily work by simply stacking layers together due to the vanishing 
gradient problem, where, as the gradients are back-propagated to the earlier layers, recursive multiplication 
may cause the gradients to become infinitely small. As a result of this, as a network goes deeper, its 
performance may be saturated or may start degrading quickly. He et al. argued that deeper models stacked 
simply with the identity mappings inside a shallow network must not degrade its performance and must 
perform the same. Simply put, a deeper model must not produce higher training error than its shallower 
counterparts. They observed that this was a wrong assumption since the existing solvers were unable to 
produce solutions comparably good or better than the proposed solutions in a feasible time. This alluded to 
the fact that although with better parameter initialization techniques and batch normalization techniques 
allows a deep network to converge, they do so with a higher error rate than their shallow counterparts. 
Hence, stacking more layers would ultimately degrade the model's performance.  

They proposed a solution to this degradation problem by introducing residual blocks of skip connections or 
identity mappings. This mapping simply takes the output from the previous layers to the layers ahead where 
the addition of features takes place as seen from Figure 34a. The identity mapping (x) is usually multiplied by 
a linear projection, 1×1 to expand the channels of it to match the residual. If the dimensions are the same, 
there is no need for the 1×1 layer. Also, in practice, residual mappings are easy to optimize. The authors[106] 
here noted performance drop when they trained a network with 1202 layers which showed a performance 
drop on a CIFAR 10 dataset. Hence, the addition of skip connections in addition to the standard network flow 
enables the network to simply copy the activations from one ResNet block to another ResNet block or simply 
from layer to layer preserving information as data goes through the layers. Later, it was empirically found 
that by adding ReLU and batch normalization before the conv layers inside a residual unit further increases 
the training speed and offers better performance by allowing gradients to propagate efficiently. This is known 
as the pre-activation variant residual block shown in Figure 34b (rightmost (e)). With this, the authors in [108] 
were able to squeeze performance from the deep layers like 1001 layers deep.  

 

  
                    Figure 34 - a) Residual block                                                               b)pre-acivate residual block [107,108] 

 
This architecture is inspired by the VGGNet as seen in Figure 35. The feature mapping is downsampled 

periodically by the strided convolution along with the increase in the channel depth. Dotted lines indicate the 
residual connections where the input is projected via a 1×1 convolution to match the dimension of a new 
layer or block. Figure 35 b and c, shows the difference between a 34 layer design to a 50 layer design. ResNet-
50 is modeled by replacing two-layer of the residual block with a three-layer bottleneck block which again 
uses 1×1 convolution to reduce and restore the channel depth when calculating 3×3 convolution which 
further relieves the computational complexity. The authors have demonstrated with experiments that we 
can now train a 1001 layer deep ResNet which outperforms its shallower counterparts. 
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 Figure 35– a) VGG, plain and residual connection [107] 

 

 

 

 

  

• ResNext: Xie et al [109] proposed this variant which is built on top of ResNet and called ResNeXt. The 
architecture follows the above mentioned GoogLeNet inception modules where they follow the split-
transform-merge paradigm. But the one notable difference is the addition takes place after different 
paths are merged while inception modules concatenate different outputs depth-wise. Also, the conv 
blocks share the same topology, unlike inception modules. These differences can be seen in Figure 36.  
In this architecture, the introduced a hyper-parameter called cardinality which is the number of branches 
or groups. This provides a new way of tuning the model capacity. They have conducted experiments to 
understand the performance of models with the increase in width, depth, and cardinality and found that 
by varying the cardinality was more efficient and effective and benefitted model performance. They also 
suggested that residual connections were helpful in optimizing the network. 
 

 
                                 Figure 36                  a)ResNet block                                            b)ResNext block [109] 

 

Post these architectures, many more networks are being made public, like NASNet, DenseNet [120], 
DetNet [69], InceptionResNets [122], Squeeze and Excitation (SE) ResNet [123], etc which have reduced the top-5 
error percentage even further. Amongst these Neural Architecture Search Network (NASNet) is interesting 
research where the CNN architecture was designed by a neural network beating all the previous human-
engineered or designed networks. This was done using Google Brain’s AutoML, a reinforcement learning approach 
for the architecture design. Though this requires modest computational capabilities it outperformed other 
discussed hand-engineered architectures in the ILSVRC challenge. Currently, SE ResNet50 based approaches have 
achieved a 2.3% top-5 error leading the ILSVRC 2017, which models the interdependencies between channels 
explicitly such that the network adaptively recalibrates the channel-wise feature responses. Table 8 summarises 
the architectures discussed.  

                                   b) ResNet-34 architecture [107]     c) ResNet-50 architecture [107] 
 

   e) training error-plain network (PN) [107]         c) testing error-PN [107] 
 

            f) training error-residual networks(RN) [107]         g) testing error-RN [107] 
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Network Feature #params (approx) 

(million) 
#layers 

(conv+FC) 
Test Error 

(Top-5) 

AlexNet Deeper network 62 5+2 15.3% 

ZFNet Fixed kernel size 58 5+2 14.8% 

VGGNet Fixed kernel size 138 13+2 6.8% 

GoogLeNet Wider-parallel kernels 6 22 6.7% 

ResNet50 Shortcut connections 23 49 3.6% 

ResNet101 Shortcut connections 42 100 3.6% 

ResNeXT50 ResNet+ cardinality 23 49 3.0% 
Table 8[56]- Comparison of various attributes of different architectures (# = number of) 

 

 

 
Figure 37- Top-5 percentage error with the number of layers in the network 

 
All the diagrams of the object detectors (single and multi-stage) are provided in the appendix for reference. 
It also includes the network architecture of feature extractors discussed earlier with the number of conv 
layers and filters used in the architecture. Readers can refer that to get an overall picture of the detectors 
and different backbone architectures. 

3.8. Platforms/ Frameworks to implement deep learning models 

Since these models are made of mainly CNNs they require more hardware computing power, Graphics 
Processing Unit (GPU) and efficient computing software architectures or packages. The hardware market is 
mostly dominated by Nvidia with its powerful GPUs with CUDA software libraries. But, there is a number of 
key players in the computing software packages like Google’s Tensorflow, Keras built on top of TensorFlow, 
Facebook’s Pytorch and many more which is seen from Figure 38. The individual framework has its own 
added advantage and disadvantage. Some frameworks are easy to understand, some have more community 
support, etc. For example, Pytorch is mainly being used for research purposes since its codebase is pure 
Python and has more community support while Tensorflow or Keras is used in production which is quite 
difficult to understand for a fresh researcher in this field. 

 
Figure 38 – Open source deep learning framework [128] 
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3.9. Applications of object detectors  

Since these object detectors have significantly improved the performance compared to hand-engineered 
feature algorithms, either these detectors with or without modification and new CNN based solutions are proposed 
for applications like pedestrian detection, face detection, text detection, traffic sign-light detection, remote 
sensing target detection, aerial Imagery, etc. Also, deep learning-based solutions are getting traction in the medical 
field to detect the early stages of cancer, Alzheimer’s disease, Vascular lesions and many more, where CNN based 
models have surpassed human-level accuracy in detecting such anomalies. Due to its performance, the medical 
field has become a multi-billion-dollar market for AI technologies.  
In this section, the main goal is not to analyze each new domain-specific CNN based solution but rather give an 
overview of existing solutions to the readers to start with. For more information related to these fields, readers 
are advised to refer [28], [54], [78] and [113]. 
 
Pedestrian Detection: With the success of R-CNN models, traditional methods of detecting the pedestrians such 
as HOG+SVM, DPM, and Integral Channel Features (ICF) has been replaced with the superior performance of deep 
learning models. But yet these models had limited success in detecting pedestrians whose areas were less than 
322 pixels and also due to the low resolution of their features. As a solution, feature fusion, ensemble detection 
on multiple resolutions are proposed in the literature. Also, to boost the hard-negative detection, integration of 
boosted decision tree and semantic segmentation are proposed by Zhang et al. and Tian et al. DeepParts proposed 
by Tian et al make the decision based on an ensemble of extensive part detectors. This has advantages in dealing 
with partial occlusion, low IoU positive proposals [56]. Based on Faster R-CNN, Liu et al have proposed multi-
spectral DNN where complementary information from color and thermal images are combined to detect 
pedestrians [110]. 
Specialized datasets are made public to accelerate the research apart from ImageNet, COCO datasets. These 
include ETH, Daimler DB, TUD-Brussels, Caltech USA, KTTI, GM-ATCI, City Person and EuroCity. 
 
Face Detection: The most famous face detector Viola and Jones trained cascaded classifiers with Haar-like features 
and AdaBoost which achieved real-time efficiency with good performance but had degraded performance in the 
real world due to the large variation in the visual representation of human faces. Thus, DPM for face detection was 
proposed. In order to achieve even a reasonable result, these models required a large number of annotated 
datasets and high computational expenses. Besides these problems, the features were manually designed and had 
shallow architecture. Farfade et al [111] have proposed a novel Deep Dense Face Detector (DDFD) which detects 
faces from multi-view with a wide range of orientations without requiring much pose/landmark annotation. Hung 
et al have proposed a solution that jointly detects faces and performs landmark localization. This is a unified end-
to-end trainable FCN model known as DenseBox [112]. Yang et al [113] proposed ScaleFace, in which the targets 
are split into much smaller subscale range and different sub-networks are constructed on these sub-scales. These 
are then combined as one to conduct end-to-end optimization. Specialized datasets available are Face Detection 
Data Set and Benchmark (FDDB), Annotated Facial Landmarks in the Wild (AFLW), Annotated Face in-the-Wild 
(AFW), PASCAL Faces, Multi-Attribute Labeled Faces (MALF), Wilder Face, IARPA Janus Benchmark, Un-constrained 
Face Detection Dataset (UFDD) and Wildest Faces. 
 

In order to detect targets with different orientation (either in text recognition or in aerial imagery), 
researchers have proposed solutions that are improvements over the existing RoI pooling layer for better rotation 
invariance. Faster R-CNN and SSD based solutions are used to detect traffic signs or light detection. New techniques 
such as attention mechanisms and adversarial training are employed to improve detection performance in a 
complex traffic environment [78]. Logo detection pipelines are constructed using Faster R-CNN. Faster R-CNN is 
used for commercial purposes in Pinterest which has reported improvements in the user engagement rate in their 
item-to-item recommendation [65].  
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4. RELATED WORK 

As mentioned in the earlier sections, tracking of parcels in the distribution hubs are usually done using the 
industry-standard PECs. Its performance depends on the architecture of the sorter, speed of sorting, etc. Solutions 
towards tracking parcels were developed using vision-based techniques like [114], [115] and [116], with certain 
limitations and assumptions. Ever since the rise of deep learning, due to its superior performance both in terms of 
speed and accuracy, research like [117] has proven the success of deep learning-based object detectors in the 
logistic or parcel distribution hub settings. To the best of our knowledge, this is the only work which is related to 
our work but with a very different application. 
 

In [114], Karaca and Akınlar employed Lucas-Kanade-Tomasi (LKT) feature tracking algorithm to track the 
parcels on a conveyor belt to align the parcels in a single line. A parcel’s dimensions are computed using 4 stereo 
cameras which are placed in the entrance of the conveyor belt. A camera is placed above the conveyor belt with a 
top-down viewing angle. Corner points are further fed to the LKT tracker from the previous frame. Camera 
calibration is used to project the known 3D points to the 2D image plane. Authors initially used bare LKT trackers 
to track the corners of the parcels in the scene and concluded that using the corner as a single criterion, tracking 
would fail in most of the cases and was not sufficient for successful tracking. They proposed a five-step process 
which involved back projecting of corner points into 2D image plane, feeding the corner points to LKT corner 
detector to get new coordinates in the current frame, applying feature detection algorithm (Good features to track 
by Shi-Tomasi) to detect better features based on the eigenvalues, compute new 3D coordinates using refined 
corner and using edge mapping algorithm to extract edge information from the images. They hypothesize that the 
center of parcels in x and y directions to be off by certain “mm” which resulted in testing 36 hypotheses for each 
parcel. They also discuss results obtained by running only the edge detection which still gave some good 
performance. Figure 39 (a)-(d) depicts their work.  
 With regard to our work, placing the cameras in a top-down view was not an option but we do believe 
that with such a top-down viewing angle would require extra undesired infrastructure and also cameras must have 
been placed in greater height to cover the required area of interest.  
 

   
Figure 39 – a) Using LKT alone              b) Using feature+LKT                        c) Using LKT+ EdgeMaaping               d)Using Edge Mapping alone 

[114] 

 
 

In [115] authors have employed simple background subtraction techniques to detect the jams in Brussels 
airport’s baggage handling systems. The authors have developed a full-fledged website to check the baggage jams 
in the conveyor system (when two conveyor belts are installed to form a ”T” section)and avoid mistracking of 
baggage shown in Figure 40 (a) and Figure 41 (a). 

The latter problem is very common in the airport baggage handling section and the number of PLCs are 
used in this airport to detect such jams. Authors observe that often reason for such a jam would be unknown and 
since cameras were placed in such junctions, often it was cumbersome to analyze whole video segments to 
understand the cause of such jams. Hence, they have implemented a logic where jam videos were created by 
splitting the hours of surveillance recording into a watchable size to analyze the cause of jams as shown in Figure 
40. 

 
a) 
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b) 

Figure 40 – a) Possible jam scenario b) Possible jam videos split from continuous surveillance videos [115] 

 

The mistracking problem was solved using a rather simple vision-based technique, background 
subtraction. Tracking of baggage in the conveyor based system was done using laser lines attached to the belts. 
Baggage was tracked by calculating the time taken by baggage between each laser line. If baggage would not 
appear on time at a certain laser line, the system was unsure If the baggage being tracked was the same one or 
new baggage had arrived. The former case is illegal and it needed to be checked manually due to security reasons 
which would bring down the system capacity due to frequent halts. 

Authors used background subtraction, shadow removal techniques like Normalized Cross Compilation 
(NCC), edge detection algorithms like LOG and blob extraction using OpenCV functions. They have developed a 
tool where when baggage arrived at one laser line, they applied segmentation, shadow removal, edge detectors 
and were muxed together to be sure that the frame contained baggage. An extraction algorithm was applied in 
the later stage and the best match was found by a scoring algorithm. This scoring algorithm calculated the area of 
blobs and considered the best position of all baggage on the belt (center of the belt) for recognition. A recognition 
software compared to the images of baggage obtained from camera 1 associated with laser scanner 1 with the 
camera 2 associated with laser scanner 2. 

 

 
a) Mistracking 

 

                   
Figure 41 –  b) UML diagram of the developed solution                                              c)Scoring algorithm for matching bags from cam1,2  [116] 

 
The cameras were placed in a top-down viewing angle. The results that they discuss were far from a test 

drive development and were not on an active baggage handling system as they mention it due to security reasons 
in the airport. But according to authors, the developed solution could detect most of the mistracking leading to an 
improvement in the tracking compared to using standalone laser line trackers. Software like .NET, SQL database, 
QT and OPC server-client frameworks were used to develop the functioning web application. 
 In this work, we believe that the cameras installed, had controlled lighting conditions and hence their 
background subtraction worked well which clearly is not the case in our environment. Also, the authors do not 
discuss the scenario where the pieces of luggage could be close to each other (few mm away In our case) and using 
background subtraction could they identify two separate pieces of luggage correctly. In our experiments with 
background subtraction with a custom viewing angle, we have found it hard to detect two TSUs as two, when they 
were really close to each other. 
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In [116] have proposed a multi-object tracker adapted to the conveyor system and have proposed 
methods to handle occlusions. They exploit the ordering of objects on the conveyor to re-establish the association 
of an object’s identity during occlusion. The authors have followed the on-line tracking-by-detection paradigm, 
discussed in 2.1.4 (DBT) using background subtraction for object detection. They discuss solutions for complex 
occlusion management and the detection of stationary objects on the conveyor. 

Complex occlusion management was solved by using an ordering scheme different from the traditional 
appearance scheme where the objects are re-identified using an object’s appearance model such as color and 
shape. This scheme was proposed because the appearance of objects in the logistics scenario has a similar color 
and shape. 

Stationery objects were detected by their novel approach of a feedback loop from tracking to the 
detection module. This was employed based on the fact that the traditional background subtraction methods tend 
to absorb the objects which become motionless. The motionless scenario is generally seen in logistic hubs where 
the objects are stopped for certain periods of time for routing purposes.  

Since this is the DBT framework, the detection was performed first in the pipeline followed by tracking. 
Here, the authors used the background subtraction technique which extracts blobs from the background by 
comparing the input frame with the static background model. The camera was placed in a top-down viewing angle 
or bird-view angle. Morphological operations were performed to remove noise and holes present in the extracted 
blob (foreground mask). Erosion, dilation, and connected component analysis were performed to remove noisy 
pixels, fill holes and to label the connected pixels respectively. Smaller sized blobs were discarded and features 
were extracted from the set of selected blobs. Each blob was represented by its center coordinates, bounding box, 
and color histogram.  

The tracking module is split into two blocks, data association block and a group of other modules 
performing various tasks such as group creation, split handling, updating tracks, detecting new objects to track and 
a tracking management module. The data association block detected the association between the detected blobs 
and tracked objects (Figure 42). Based on the overlapping criteria between objects and blobs, complex associations 
were detected. Objects and blobs which were not associated in the complex association were further matched 
using the Hungarian algorithm based on their centroid. The tracking management block made series of checks like 
block creation, suppression, association, recovery of objects after a split or merge of objects into groups based on 
the detection associations (complex or matching) between the blobs and objects. 
They have defined the complex association based on certain observations explained below and can be seen in 
Figure 42. 

• Merge blob – This corresponds to a blob with a larger bounding box overlapping simultaneously with the 
smaller bounding box of several objects.  

• Split object – This corresponds to an object with a larger bounding box overlapping simultaneously with 
the smaller bounding box of several blobs.  

 

 
Figure 42 – Hungarian algorithm for merge and split [116] 

 
Those detected objects and blobs that do not involve in the above procedure, blobs are assigned separately 

to visible objects based on spatial proximity. Using Euclidean distance, they have defined a cost matrix to define 
the cost of assigning centroids of a blob to an object. They also define a threshold to allow maximum displacement 
of objects between consecutive frames. A Hungarian algorithm is used to obtain the optimal assignment.  
The merge-split approach was proposed by the authors to handle occlusions. During the beginning of occlusion, 
individual objects were grouped together containing objects and this group is tracked as another object. When the 
parcels were split (going into another belt), the re-identification of objects from the group was established using 
the ordering of objects during routing. This ordering relation is derived from the conveyor model. A simple polyline 
was fit on the pathways of the conveyor to order the conveyed objects, which could be either defined manually or 
during the training phase which was unclear from the paper.  

Modified controlled GMM was used noticing the drawbacks of pure blind and conservative update 
schemes followed in background subtraction methods. In general, the GMM used a learning rate that incorporates 
pixel samples and it was tuned to zero for the stationary object pixels. They compared this strategy with a 
conservative update strategy model called ViBe which uses a spatial update scheme to incorporate background 
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information. They control the parameters of this strategy to avoid absorbing the stationary pixels. The stationary 
objects were detected using speed estimation by Kalman filter associated with each tracked object compared with 
a fixed speed threshold. These parameters were adapted via a feed-back loop to update the background models.  
 

In order to measure the improvement from each contribution (GMM and ViBe) different settings were 
evaluated: enabled and disabled for ViBe and GMM in the tracking pipeline. They have evaluated the performance 
of the tracker using the standard metrics such as Multi-Object Tracking Accuracy (MOTA), MOT Precision, FP, 
Missed objects and ID switches. These were tested with the reference to the occlusion handling strategies like the 
traditional appearance modeling and proposed order modeling. With experiments, they observed that the GMM 
was more sensitive to the stationary objects and by their feedback loop approach showed significant 
improvements lowering the missed objects. Using ViBe and with the proposed ordering relation further lowered 
the missed objects and id switches respectively compared to the appearance modeling method. 

The proposed method has been tried out in a controlled setting where the number of parcels in the field 
of view is really less (5). Also, the camera is placed only to see a portion of the conveyor as seen from the Figures 
above. It is also not clear from the paper about its real-time performance when the number of parcels In the scene 
increased.  
 

[117] was the only deep learning-based method to detect and track the parcels in the distribution hubs. 
The developed solution was to help the human operators to recover the lost parcels in such hubs. The authors 
argued that traditional methods like background subtraction used for detection and other tracking methods would 
not be efficient in the parcel hubs due to their heterogeneous environment. Hence, they have used a CNN-based 
solution, specifically Mask R-CNN, a semantic segmentation-based object detector for accurate localization. 

 Mask R-CNN is Faster R-CNN with additional segmentation head as seen from Figure 42. The reason 
behind is this choice is unclear in the discussion. As discussed in the above sections, Mask R-CNN uses RoI Align 
instead of the traditional RoI Pooling proposed in the Faster R-CNN. They also proposed a novel approach for 
tracking based on [118], a Siamese network, also a CNN based network to measure the similarity between two 
features vectors to improvise the tracking performance. They have added the feature improver network as a head 
to the detection pipeline (Figure 43) which could be trained. The authors used pre-trained models trained on the 
COCO dataset and fine-tuned the Mask R-CNN network with their custom dataset which was annotated manually. 
Additional training was done for the proposed feature improving network. Also, the performance analysis of the 
proposed tracker is made with the OpenCV’s inbuilt object trackers and their methodology had an upper hand. 

4 cameras were positioned in an overlapping and non-overlapping viewing angle fashion. In order to track 
the parcels within these viewing angles (inter and intra), authors have used the ArUco marker to calibrate the 
cameras. ArUco markers were placed on each side of a rectangular box, known as calibration parcel, which 
provided at least one calibration target from each viewing direction. They have estimated the surface of the belts 
with the piecewise planar segments. The authors argued that the surface knowledge of belts was important to 
ignore the parcels beside them. As mentioned before, the Mask R-CNN was used as an object detector. 
 
 

 
Figure 43 – Modified version of Mask R-CNN by Clausen et al [117] 

 

Inter-camera and intra-camera tracking were performed by the authors, wherein the intra-camera 
assignment was seen as a weighted bipartite matching problem. Cost matrix was constructed for all the possible 
matchings of detections from one frame to the next frame. The optical flow algorithm[118] was used to improve 
the matching. The similarity score was then calculated using the distance between the predicted and detected 
positions. Occlusion handling was developed to handle missed detections. They have included the unassigned 
contours as additional matching candidates which allowed them to track parcels even when it was not tracked in 
some frames.  
Since in the inter-camera viewing angle, the parcels could have very different poses, they have used the extrinsic 
calibration of each camera to project the parcels from one camera to the other. To obtain the information of height 
or 3D shape of objects, they have used the knowledge of the conveyor belt surface as an intermediate step for 
projection.  

A 4-step process is used to track the parcels when an operator initializes the tracking process. In the first 
step, corner points from the upward surface were selected located in the opposite direction of the parcel. The 
bottom part of the corner points of the detected contour was in-plane with the belt surface. In the second step, 
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estimating the parcel’s base, they have fit a parallelogram. As a third step, this parallelogram was projected onto 
the surface of the belt. And lastly, the quadrangle was projected from the belt surface into the image plane of the 
other camera. In this way, relevant contours from one camera were projected to the next camera and these 
contours were matched with the detected ones. Defining the cost matrix and solving using the Hungarian algorithm 
was done.  

ResNet-101 was used as the backbone (without FPN). The authors proposed their own metrics to analyze 
the detector’s performance, deviating from the traditional COCO matrices. They argue that the AP obtained using 
the COCO metric would lead to misleading because the AP would reach 1 if the objects were detected with higher 
confidence than the false positives. This AP score would not be affected by any low-confidence false-positive 
detections. Hence, they count the true positives, false positives and the ground truth annotation for all validation 
images and they have calculated one global precision, recall and F1 scores which allowed them to select the best 
training result from their tracking algorithm. Results from ResNet-50 were compared with the reference ResNet-
101 and they have observed that the deep network had a slightly better performance but with an increase in 
inference time from 150ms to 170ms approximately. The performance of the proposed tracker was analyzed using 
MOTA scores (a combination of true miss rate and true false-positive rate) with and without optical flow 
predictions for inter-camera and combined (inter and intra camera). They observed that with the proposed 
improved feature vector and with optical flow prediction the percentage of tracked parcels showed slight 
improvements in case of inter-camera tracking while significant improvements were seen in the combined 
scenario. Mismatches were also less with their solution. Further, they compared their results with the baseline 
OpenCV trackers Boosting, Kernelized Correlation Filters, MedianFlow, Tracking Learning Detection (TLD), 
Minimum Output Sum of Squared Error (MOSSE), Channel and Spatial Reliability tracker (CSRT) and GOTURN. They 
observed that these trackers performed well when target parcels did not change the direction but when they did, 
only CSRT managed to track it until 5 frames and lost it eventually.  
 
 
 
 
 



Report  s199978 

Page 56 of 90 

5. CAMERA PLACEMENT 

Camera placements and their respective viewing angles can be seen from Figure 44. 
 

 
a) 

 

 
   b)       c) 

 

 
d) 

Figure 44 a) Schematic of camera positions b) Camera-1 view c) Camera-2 view d) Camera-3 view 

 
All three cameras are high-resolution Bosch security cameras with different technical aspects. Camera 1 

and 3 records at 30 FPS while camera 2 with 60 FPS. In the current project, we had no control over either the 
technical aspects of the positions of the cameras placed. Since it was difficult to annotate the TSUs from camera 3 
viewing angle, we had to choose between camera 1 and 2. The ultimate choice of using camera 1 was purely 
random. But we hypothesize that having trained an object detection model with camera 1 viewing angle, the model 
would have generalized well to detect TSUs with similar viewing angles (E.g. camera 2).  

In our further discussions, all analysis is done on the footages from Camera 1 with certain Region of Interest 
(marked in red) as seen from Figure 44(b) which will only be processed.  
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6. DISCUSSIONS 

As discussed in the very earlier sections, the main aim of the project is to detect the jams caused in the 
sorting system. Extracting each TSUs location and further tracking them could potentially solve this problem. 
Hence, we have employed the famous tracking-by-detection (TBD) paradigm which is followed widely in the 
literature. Since we are using the TBD framework, this problem can be viewed as the unification of subproblems 
like object detection problems and tracking problems. While the main focus of the former problem is to efficiently 
locate TSUs by classification and localization, the latter deals with assigning and maintaining the identity of the 
detected TSUs. Further sections discuss the various vision-based and deep learning-based object detection 
techniques followed by the tracking techniques employed in this project. 
 

6.1. Object detection - Computer Vision techniques 

Initial experiments carried out within Vanderlande [123] to detect the TSUs using traditional computer 
vision techniques such as Background Subtraction and contour extraction proved to be inefficient for detecting 
individual TSUs. This was due to the different lighting conditions, poor background modeling and poor 
segmentation extraction of TSU contours. This was also because the contour extraction depended on the FG-BG 
estimation and the area of pixels to be extracted as the required FG varied due to the camera perspective. This can 
be seen in Figure 44 where the train of TSUs has seen two chunks of blobs. 
 

 
Figure 45– Foreground extraction using Background subtraction  [123] 

 
 
As a next step, the template matching technique experimented with a single template with a single image 

with 5 TSUs on the sorter. Only three out of 6 methods produced the bounding box (Figure 46, bottom-most 
figures) with only one method providing only one bounding box instead of 5. This is expected behavior since the 
template matching technique needs to have a one-to-one correspondence between the templates and the given 
image to get good performance. Since establishing such correspondence needs more manual effort in designing a 
database of every possible template in every scenario is cumbersome. The performance also degrades if there is 
any slight deviation in the new images from the templates in the database. Figure 46 shows the various methods 
used in template matching provided by OpenCV, (Bradski, 2000). Using different mathematical models, the 
matching results are obtained which indicates the region of matching with the bright spots in the queried image. 
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Figure 46 – Template matching using 6 different methods provided in OpenCV 

  

Further, experiments were carried out to detect the TSUs using feature extractors like SIFT, SURF, Harris 
corner detectors as discussed in section 2.4. Using these features extractors, keypoint and their respective 
descriptors were obtained from a reference image. Using FLANN based matching technique, these features were 
matched against the query image which resulted in Figure 47. In Figure 47, the top left corner is the reference 
image and the image to its right Is the query image. It can be observed that most of the features extracted from 
the reference image have matched with the different unimportant features in the queried image. Though such 
outliers could be eliminated using background subtraction, certain features provided by such algorithms were 
unreliable in this situation where the features are almost similar Hence, establishing a clear difference between 
two close-by or occluded TSUs needs detailed analysis and research. This is also similar to the template matching 
technique wherein the careful design of the database of reference images needs to be provided. These techniques 
also fail to handle shadows, abrupt motions causing blur, illumination changes and are not translation and rotation 
invariant. 
 

 
Figure 47- SIFT feature extractor with FLANN matching algorithm 
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Observing that the HoG with linear SVMs needed large datasets to perform detection, this technique was 
dropped from further analysis. Moreover, since the features of the TUSs remain almost the same in the scene, we 
hypothesize that the detector would produce false positives and more overlapping bounding boxes.  The former 
problem could be solved using a good NMS algorithm but might reduce the detection rate, considering two TSUs 
as one for example. Also, though HoG could handle occlusions and illumination changes to some extent, it is not 
scale-invariant.  

6.2. Deep learning-based object detection- Design choices 

• Choice of the object detector 
It is seen from the sections 3.5.1 and 3.5.2 that there are many object detectors under single-stage and 

two-stage detectors at our disposal to be used in the project. We already know from the literature that the 
single-stage detectors are prone to make errors since they struggle to localize the objects under the hood 
making them fast and ready to be employed in real-time. While two-stage detectors have stronger localization 
due to the RPN, making them accurate models but are slower than their single-stage cousins, due to the RoI 
pooling operation which requires large input size. Yet most of the recent object detectors are two-stage 
detectors based on Faster R-CNN which are easier to optimize. Though the single-stage detectors are quite 
fast they produce inferior results and need more data and supervised data augmentation techniques to 
produce better results compared to the two-stage detectors [124]. This hypothesis has also been explored 
which will be discussed in later sections. 

Since the performance of the tracker strictly depends on the performance quality of the object detector, 
we need our detector to produce high-quality detections. This hypothesis is proved in [125] where the authors 
have observed an improvement up to 18.9% In the tracking performance by changing the detector. Hence, 
observing all the advantages, ignoring the real-time requirement, to this end Faster R-CNN is used as the object 
detector in this project. Figure 48 shows the bottom-up pipeline used in this project. We could also observe 
from [100] that this model could be made to work in real-time by carefully tuning the hyperparameters and 
other options which will be discussed in the later sections.  

Since there are myriad CNN architectures to construct the Faster R-CNN, the goal is to choose such an 
architecture and parameters that take lesser training time which in turn means that the model would converge 
well and produces satisfactory accuracy for the given dataset. Hence further sub-sections deal with the 
experiments performed to squeeze the performance of the model from the available dataset. 

 

 
Figure 48 – Jam detection pipeline, a bottom-up approach 

 

• Choice of the backbone 
As seen from section 3.7, there are many backbone architectures that can be used for extracting the 

features from the images. In this project, we utilize the widely used ResNet-50 with the FPN (Figure 25). There 
are two important aspects of this consideration. Firstly, the ResNet-50 network converges well in less time 
compared to the shallower networks (VGG 16/19)as discussed in section 3.7. Secondly, these are thinner and 
deep network meaning they have less channel depth and uses lesser GPU FLOPs per convolution calculations. 
In fact, ResNet-50 with 49 layers deep uses approximately 3.8 Billion FLOPs while the shallower VGG-16/19 
uses 15.3 and 19.6 billion FLOPs, respectively. Also, ResNets trains faster as the gradients flow smoothly during 
backpropagation due to the identity mappings/shortcut connections, Batch normalization layers, in turn, 
converging in less time with fewer errors. Also, this architecture solves the vanishing and exploding gradient 
problems with deep network design. 

 The FPN[67] is used alongside to boost the detection of small objects in the image without any overheads. 
It is to be noted that the FPN based Faster R-CNN model is faster than the standalone ResNet based model. 
This is because the FPN model uses two fully connected (fc) Multi-Layer-Perceptron (MLP) of 1,024-d each as 
the network head in the Faster R-CNN pipeline, which is lighter weight and faster. While the standalone ResNet 
based Faster R-CNN model uses the conv5 layers which are 9 layers deep subnetwork as the head on top of 
the conv4 feature maps which acts as fc layer followed by the class-specific classification and bounding box 
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regression network (please refer to Figure 8 in the appendix, conv5_x has the dimension of 2,048-d for ResNet-
50). 

 
 

• Choice of deep learning framework 
Post these design choices, choosing the right deep learning platform (Pytorch, TensorFlow, Caffe, etc.) to 

implement this also plays an important role. The author in [126] provides a detailed benchmark of accuracies 
of various CNN architectures implemented in Keras and Pytorch. These comparisons serve as a first-hand guide 
to the researchers to choose the best platform to start with new projects. According to the author, ResNet 
models are better implemented in Pytorch and Inception models perform better using Keras. Hence the 
accuracies of them are better in the respective framework. The author also provides some key insights to work 
with Keras when using pre-trained models. More information about transfer learning (using pre-trained 
models) will be discussed in the upcoming sections. Inspired by the observation from [126], the Faster R-CNN 
implementation in Pytorch is considered in this project open-sourced by Facebook[127]. 

 

• Images used 
Two sets of image resolutions are used (Table 9) in the project. Totally 566 images are used with 464 

images as the training set and 102 images are validating set. The dataset also includes the images with 
different lighting conditions, with jam, without jam, and with background only to have a different distribution 
in the dataset as seen from the Figures in 48. 

 

       
a)                                            b) 

Table 9- a) image resolutions in the dataset  b) Dataset split 

  

                        
                  a)                                                     b)                                       c)                                                        d)  

Figure 49- a) No jam with default lighting condition b) Different lighting condition c) with Jam d) background 

 

• Number of classes and annotation format 
TSUs form a single class in this project and since we are interested in only bounding boxes, [127] expects 

it to be in COCO format. Approximately 253 images were annotated manually using [129] and trained the 
model. Also, as the number of TSUs increased in an image, annotation time per image increased linearly. In 
order to increase the dataset further, a semi-automated annotation tool was developed on top of [129]. By 
using this tool 313 more images were annotated with little manual effort comparatively which drastically 
reduced the annotation timing per image irrespective of the number of TSUs in the image. It took 
approximately 3 hours in total to annotate the 250 images while with the semi-automated annotations of the 
remaining 313 were completed (including manual correction if needed and annotating missed TSUs)  within 
approximately 20-30 minutes. 

 

• Training and Hyperparameter details 
Because we have used pre-trained models for faster convergence with reduced training time, default 

values are used which are as follows. Unless specified otherwise, these are values are used in this project. 
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Parameters Values 

Base learning rate 0.0025 

Weight Decay 0.0001 

Linear warm-up factor 1/3 

Optimizer Stochastic Gradient Descent (SGD) 

Momentum 0.9  

Images per batch 4 

Iterations 2000 

Steps 500 

(Min, Max) Image Size (800,1333) 

Layers fine-tuned 13 out of 49 

Classes 2 (TSU and background) 

Table 10 – Default Hyper parameter values 

 
Empirically it has been observed that training deep neural networks with a constant learning rate resulted 

in problems like over-fitting the model, lesser accurate models and mainly the models would not converge to 
the global minima. It was also observed that with a lower learning rate, the training was more reliable and 
stable but with the problems in optimization, which took a lot of time due to the steps towards the minimum 
loss function were tiny. A contrary to this, with higher learning rates the model could not converge or diverge 
because of rapid changes in the weights of the network which made the optimizers to overshoot the minima 
leading to worst loses. This can be seen in Figure 49 for the convex-shaped loss landscape. 

 
Figure 50- Variation of random cost function J(𝜽) w.r.t to 𝜽 [144] 

 
The linear warm-up factor indicates the variation of base learning rate(LR) to the target learning with 

respect to the number of steps indicated. A warmup iteration of 500 with a base learning rate of 0.0025 with 
a target learning rate of 0.00025 (weight decay= 0.0001) indicates that the learning rate must linearly increase 
to 0.0025 until 500 iterations and not instantaneously. Further, the learning rate could still be reduced by 
indicating the number of steps or iterations after which it has to reduce using the weight decay factor (lr*1/10 
after each given step). Such a technique is used to avoid the early overfitting I.e., to reduce the training 
instability in the deeper layers. Also, there are many other techniques like Stochastic Gradient Descent with 
Warmup restarts (SGDR) and cycling learning rates but discussion of such techniques is outside the scope of 
these projects. These methods are widely termed as learning rate annealing.  

Unlike the 4-step alternating training employed in [66], we have trained the model in an approximate 
joint training fashion (end-to-end) which is the recent trend employed by the research community. This is 
because of the ease of training the model and sometimes it has provided similar or greater accuracies than 
the model trained in the 4-step process.  

The shorter edge of the input image is scaled to 800 pixels maximum image input is set to 1333 unless 
specified otherwise during both testing and training. Each mini-batch involves 4 images on a single GPU with 
sampling 512 ROIs with 256 anchors per image for training(losses are calculated). During test time only one 
image is used though the batch inference is possible. 5 scales are used unless specified otherwise both during 
testing and training as seen in [67]. As there are 4 levels in our ResNet-50 FPN (P2, P3, P4 & P5) we fix the top 
2000 proposals during training and 100 for testing per level before applying NMS. Also, post-NMS we retain 
the top 2000 and 100 per level. Finally, from all the FPN levels we sample top 2000 proposals during training 
and 100 during testing. Shortly we will discuss the ablation studies performed by varying these parameters. 
An anchor is considered as a positive sample if the minimum IoU with the ground truth (gt) is greater than or 
equal to 0.7 and is considered negative if its maximum overlap between gt is less than the threshold of 0.3. 
The rest of the anchors are considered as neural and are discarded from the training meaning losses are not 
calculated for those anchors. In order for the samples to be not biased with either FG only or BG only anchors, 

Hyper- parameters 
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a hyperparameter is set to 0.5 to balance the FG-BG ratio of drawn samples or anchors per FPN level. Since 
RoI pooling is attached to the heads of the class-specific classifier, if the IoU threshold of an RoI is greater than 
or equal to 0.5 it is considered as FG and less than that is considered as BG. COCO evaluation metric is used 
entirely discussed in the section 3.6.2 

 

• Hardware used 
Training of the model is done using Microsoft’s Linux based Deep Learning Virtual Machine (DLVM) 

environment available in Microsoft’s Azure cloud solution. We have used one GPU, an Nvidia Tesla K80  with 
56 GB RAM known as the NC6 instance equipped with the Intel E5-2690v3 processor. 

 

• Pre-trained models or network initialization 
Because the deep learning models need more data to generalize well, it is very rare to train a model from 

scratch (initializes the network’s weights with random distribution during training) because it is relatively rare 
to have datasets of sufficient size. Also, initially modern CNN took weeks to train across multiple GPUs on 
ImageNet until the introduction of batch normalization by Ioffe and Szegedy [130] which was used by Goyal 
et al., [131] who trained a model using ImageNet in an hour with 256 GPUs with different other learning 
strategies. Later in the year He et al.,[132] made a deeper comparative analysis on the accuracy and 
convergence rate while training a model on ImageNet with training from scratch (random initialization) and 
training by using pre-trained model. They concluded that using such pre-trained models would only speed up 
the convergence early in the training but would not aid for any accuracy improvements. A revelation 
observation was also made when the authors trained a model from scratch, i.e. the model generalized well 
and were robust even when only 10% of the training data was used for deeper and wider networks on multiple 
tasks and metrics.  

   Pre-trained models are the models that would be trained on a large dataset like ImageNet. It is 
empirically proven that such weights are good enough to be used as initial weights for the new tasks based on 
the similarity of a dataset to the models that were pre-trained on. It is a trend that is seen in the research 
community to use existing pre-trained models to train on new tasks and fine-tune the newly trained model 
further. Fine-tuning is referred to as a technique where the last classification layers of a pre-trained model are 
replaced with the custom classification layer based on the number of classes in the new dataset the model 
would be trained on. This is necessary because the ImageNet pre-trained models have 81 classes which would 
be replaced for the custom classes in the new dataset. Also, during fine-tuning only class-specific layers are 
trained which are the further most layers in CNN because the earlier layers are more generic and have 
rudimentary information of edges, blobs, color, etc. There is a set of strategies on fine-tuning layers based on 
the available dataset which is shown in Figure 50. 

Hence, pre-trained models trained on ImageNet-1k and fine-tuned on COCO 2017 dataset provided by 
[133]. 

 
                        a)                                                b)                                                                                 c) 

Figure 51- a) simple CNN based image classifier b) Similarity matrix for decision map c)decision map for fine-tuning pre-trained 

models [145] 

 
 

• Batch Normalization (BN) 
Since training deeper networks is complicated due to constant change in the distribution of weights in the 

various layers during training. As a result, it would take more training time and needs careful network 
initialization to avoid the gradients to explode. Authors from [130] identify this problem and refer it as an 
internal covariance shift. By the introduction of BN layers, a deep network gains more stability with added 
advantages of using higher learning rates, eliminating the need for other regularization techniques like the 
dropouts. All the recent SOTA deep networks have made this a part of their architecture (ResNet, Inception). 
The correct placement of the BN layers is still being debated since the authors in [130] have placed them after 



Report  s199978 

Page 63 of 90 

the activation unit. It is suggested in recent research that using the BN layers before the activation units has 
more advantages and is logical. Hence architectures like ResNets place them before the non-linear activations. 
In simpler terms, this works because BN calculates the mean and standard deviations (std) of the weights and 
normalizes the inputs of each layer and while training they de-normalizes them using the trainable mean and 
std. Hence while using the pre-trained models the BN layers are frozen and while fine-tuning with the new 
smaller dataset the distribution must not tamper much.  

 Since we are using pre-trained models in our project, the statistics of the BN layers are unchanged in 
ResNets. This is necessary and, in this implementation, the running mean and variance are already merged 
into the bias and weight (learnable parameters) variables in the BN formula given below. The reason behind 
freezing the BN layer’s weights and bias variables (mean and variance) is also to aid the training from multiple 
GPUs because of the unavailability of the library in Pytorch yet, that can accumulate the BN statistics from 
different GPUs to calculate a global mean and variance. This is because, usually when training a deep network, 
images are fed into different GPUs in a mini-batch (group) fashion and hence need to calculate the global 
mean and variance. Figure 51 shows the formulae used to calculate the mean and variance of layers using 
mini-batch of images (usually order of 2n mini-batches where n=1,2,m) during training where the parameter 
𝛾 and 𝛽 are learned. And during test time, batches of images are not used and only one image is used and 
hence a rough estimate of values of mean and variance are used. These are termed as running mean and 
variance or exotically weighted mean and variance values. 

Research on the effect of different mini-batches is analyzed by the authors in [131] while training a neural 
net on the ImageNet dataset and have observed no loss when used a mini-batch size of 8192 on 256 GPUs.  

 The statistics in the BN layers change only if the network is trained from scratch. 

 
Figure 52 – Formula to calculate mean and variance using mini-batches for training 

 

• Data Augmentation 
Unless specified otherwise, data augmentation techniques like horizontal-flipping, shuffling of the dataset 

before loading images to the model for either training or testing is performed.   
 

• Effect of the pre-trained models vs training from scratch  
As discussed earlier, we have used two pre-trained models. One with only the feature extractor (ResNet-

50) by [127] and the one with the end-to-end pre-trained Faster R-CNN model provided by [133]. Using pre-
trained models, as a baseline model, only the last 13 layers were fine-tuned and earlier layers were frozen and 
the rest of the layers in the model were initialized with the He initialization [134] rather than random 
initialization. The initialization is the current trend in deep learning for initializing the networks while using 
ReLu as the activation functions and it proved to eliminate the vanishing and exploding gradient problems that 
were seen during training deep networks. This is a replacement to the Xavier initialization which can still be 
seen in the research but used only when the sigmoid activation function is used in the network. 

 
 

Pre-trained 
model 

Iterati
on 

Training 
time(hh:mm) 

AP0.5:0.05:0.95 

(AP)  
AP0.5 AP0.75 APs APm APl 

Backbone only 2000 1:30 0.64 0.90 0.76 0.41 0.68 0.78 

End-to-end  2000 1:30 0.68 0.94 0.82 0.47 0.71 0.80 

  (from scratch)  2000 1:41 0.58 0.91 0.66 0.43 0.62 0.69 

Table 11-  Validation accuracy results from two pre-trained models and a model trained from scratch 

 
Clearly, it can be seen from Table 11, that using pre-trained models the accuracy obtained was more for 

the considered training time and iteration because of the well-initialized weights which served as starting values 
for the layers being trained on the new dataset. It can be noticed that training the model from scratch produced 
accuracies closely to that of the accuracy of the pre-trained model of the backbone alone. Yet the former performs 
well, indicated by the AP due to the better learning rates and initializations. While in the former case, more 
experiments need to be done for finding the optimal learning rate of the network which is again time-consuming 
and cumbersome. Nevertheless, more experiments were performed to achieve better accuracies.  
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• Effect of Group Normalization (GN) 
Group Normalization[135] is a recent technique where the training is independent of the number of mini-

batch of images used during training. One of the other reasons for the introduction of this technique was 
inspired by the fact that for training a model using large mini-batches needs to have large memory which is 
also a constraint in modern GPUs. The concept was inspired by the traditional methods like HOG/SIFT where 
the normalization (having 0 mean and unit variance) is calculated across the channel dimensions of the feature 
vectors than the batch dimension like in BN.  Since the available pre-trained models were of the ResNet-50 
FPN (backbone), we have used the same and results are shown in Table 12. Because of the way the GN is 
implemented it takes slightly more training time due to the additional calculations.  

 

Pre-trained 
model 

Iterati
on 

Training 
time(hh:mm) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl 

Backbone  2000 1:52 0.62 0.88 0.74 0.37 0.67 0.78 

Table 12- Accuracy results from a pre-trained model using GN with G=32 

 
 

• Training from scratch 
Further, training the model from scratch was continued to another 2000 iterations (4000 iterations in 

total) with a change in the top pre-NMS proposals set to 8000. No significant improvements were observed 
though the proposal numbers were increased. This indicates that while training from scratch one must 
carefully experiment with different learning rates and different step sizes also termed as babysitting the 
model. 

 

Parameters Values 

Iterations 4000 

Post NMS proposals 8000 
Steps 1000 and 3500 

Table a)  

 

Training 
time(hh:mm) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl 

3:23  0.58 0.90 0.66 0.43 0.62 0.69 

Table b) 

Table 13  a)Changes in the hyper-parameter values for training the model from scratch   b) Validation accuracy results of the model trained 

from scratch 

 

• Fine-tuning the backbone pre-trained model 
Since the backbone achieved slightly better performance than the model trained from scratch, further 

experiments to improve the accuracy were performed and the results are shown in Table 14 (b). No further 
improvements were observed with these values indicating that more tuning has to be performed with the 
decay and learning rates to arrive at optimized or more generalized values which are again similar to training 
from scratch. 

 

Parameters Values 
Iterations 3000 

Weight Decay 0.00001 

Steps 1000 and 2000 

Table a)  

 
 

Training 
time(hh:mm) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl 

2:15 0.66 0.92 0.78 0.46 0.70 0.82 

Table b) 

Table 14 a)Changes in the hyper-parameters for fine-tuned pre-trained backbone only b) Validation accuracy results 
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• Fine-tuning the end-to-end pre-trained model 
Since the end-to-end pre-trained model produced good accuracy initially, fine-tuning it was performed 

which includes unfreezing the earlier layers, changing the step size, etc. Information is provided in Table 15. 
 

o Effect of different mini-batch (images per GPU) 
Because the mini-batch size was decreased from 4 to 2, the number of iterations was increased 

and so was the number of weight decay steps which provided bad accuracy compared to the baseline 
results from Table 11. This proves that increasing the number of iterations not necessarily increases 
the accuracy of the model. Also, no significant accuracy improvements can be seen from the baseline 
model from Table 11 for the end-to-end pre-trained model. Hence, a mini-batch of 4 was fixed in 
further experiments.  

  

Parameters Values 

Iterations 4000 

Mini-batch (*) 2 

Mini-batch (#) 4 

Steps 1000, 2000 and 3000 

Table a) 
 

Training 
time(hh:mm) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl 

(*) 1:40 0.62 0.91 0.74 0.37 0.67 0.77 

(#) 3:26 0.69 0.95 0.84 0.51 0.72 0.81 

Table b) 

Table 15 a)Changes in the hyper-parameters with different number of mini-batches per GPU b) Validation accuracy results for 

mini-batch=2(*) and 4(#) respectively 

 
 

o Unfreezing earlier layers 
The model (#) obtained from the above experiment was further fine-tuned by unfreezing the 

earlier layers (3) and training those layers in addition to the earlier trained layers. This makes the top 
layers to train more. Totally 16 last layers were trained including the already trained 13 layers. This 
saw a good +2 points improvement in the overall AP with the same configuration as the baseline 
model from Table 11 but with increased training and tuning the weight steps accordingly. 

 

Parameters Values 

Iterations +4000 

Mini-batch 4 

Steps 1000, 2000 and 3000 

Table a)  

 

Training 
time(hh:mm) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl 

2:30 0.70 0.96 0.83 0.52 0.72 0.82 

Table b) 
Table 16 a)Changes in the hyper-parameters by unfreezing more layer of ResNet-50 b) Validation accuracy results when training 

more number of layers than the baseline model 

 
o Effect of changing proposal number during training 

It can be observed from the above experiments that in order to increase the accuracy of the 
model using a pre-trained model, one of the ways was to carefully fine-tune the model by unfreezing 
the models with the different number of steps and more training. Further experiments answers if 
there is any necessity of unfreezing the earlier layers since they would have learned generic features 
such as edges, blobs, etc. from the large COCO dataset. The main goal is to get the model converged 
with fewer iterations with the fixed proposals, implying less training time on a single GPU. 

Since the number of proposals from each FPN level was set to 2000 in all the experiments, this 
experiment focused on the effect of increasing the number of proposals of each FPN level with the 
default total proposals of 2000 during training and 100 during testing. Also observing that the number 
of iterations is not a vital parameter to be set, in this experiment and in all the other experiments it 
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is set to a lower number of 2000 owing for the lesser training time and quick convergence of the 
model. It can be seen from Table 17 (b) that indeed by just increasing the number of proposals during 
training we can obtain a model that was trained with 8000 and 12000 proposals to obtain almost the 
same results (Table 16 (b)). 

Parameters Values 

Iterations 2000 

Mini-batch 4 

Steps 1000 
Pre NMS top proposals (train) 4000(*) , 8000 (#), 12000 (^) 

Table a)  

 
Training 

time(hh:mm) 
AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl 

(*)1:36 0.69 0.95 0.83 0.50 0.72 0.81 

(#)1:42 0.69 0.95 0.83 0.51 0.72 0.81 

(^)1:38 0.69 0.95 0.84 0.50 0.72 0.81 

Table b) 
Table 17 a)Parameters used during training end-to-end pre-trained model with the different number of proposals before 

applying NMS b) Validation accuracy results with different region proposals used during training the model. 

 

The model # will be considered as the new baseline model for further investigations when specified. 
 

 
o Effect on accuracy and inference time changing the resolution during training 

Since we are using FPN, it needs high-resolution images to provide good accuracy. But choosing 
the right resolution for the model is also important. Table 18 shows the effect of decreasing the 
model’s resolution during training. Now the model would resize the shorter side of an input image to 
600 pixels and the maximum size was set to 1000 pixels. Because no significant difference in the 
accuracy was observed from the above experiment the proposal number was set to 8000 and rest 
were the default hyperparameters. As expected, there is a dip in the accuracy of 2 points from the 
above model with the default model size of (800,1333). This was also the observation in [100] 
wherein reducing the resolution reduced the accuracy on the COCO dataset. Overall accuracy has 
decreased by 3 points compared to Table 17 (b) values though the training time has decreased.    

 

Parameters Values 

Iterations 2000 

Mini-batch 4 

Steps 1000 

Pre NMS top proposals (train) 8000 

Size (min, max) (600,1000), (600,600) 

Table a) 

 

Training 
time(hh:mm) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl Inference 
(s) 

1:00 0.68 0.95 0.82 0.48 0.72 0.80 0.208 

0:40 0.65 0.92 0.77 0.41 0.70 0.80 0.1227 

Table b) 
Table 18 a)Hyper-parameter values changed when training the model with the different model sizes or the resolution of 

images. b) Validation accuracy results for (600,1000) and (600,600) resolution 

 

• Effect of data augmentation 
Data augmentation is a technique to increase the datasets. In our project, only horizontal flipping of 

images was used. This experiment explores the effect of data augmentation techniques on accuracy such as 
vertical flipping and controlled changes in the brightness of the images in the training dataset. Since this is 
being fine-tuned on model #, all hyperparameters follow its values except two values shown in Table 19 (a). 
Indeed, the model has gained some more accuracy due to the increased variation in the distribution of data 
points. 
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Parameters Values 

Iterations +2000 

Vertical flipping 0.5 

Brightness 0.5 

Steps 1000 

Table a) 

 

Training 
time(hh:mm) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl 

1:39 0.69 0.96 0.83 0.51 0.72 0.81 

Table b) 
Table 19 a)hyper-parameters changed while training the model using different data augmentation technique to boost the 

performance of it b) Validation accuracy results 

 
 

• Effect of using region proposals  
Using the above model as the new base model, the region proposals during test time were changed as 

given in Table 20. All the above experiments were conducted by fixing the test time region proposals to 100 
from each FPN level post-NMS and the top 100 proposals were sampled from overall FPN levels and accuracy 
was obtained. We already know that increasing the number of proposals during training does not necessarily 
boost the model’s accuracy. This experiment answers the variation of the model’s accuracy and inference time 
with the changes in the proposals during test time with fixed resolution as seen in Table 10. Inference time is 
defined as the time taken by the model during one forward pass. In this implementation inference time is fully 
image-to-detections including the proposal generation with NMS which runs on the CPU. We show the average 
inference time on 102 images in the validation dataset. During test time no data augmentation techniques are 
used. These timings are reported using a batch size of one inconsistent with [100].  

 

Parameters Values 

Top pre NMS (TpreNMS) 10,30,50,80,100,300,500,1000 

Top post NMS (TpostNMS) 10,30,50,80,100,300,500,1000 

Total proposals (TPr) 10,30,50,80,100,300,500,1000 

Table a) 

 

(TpreNms,TpostNMS, 
TPr) 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl Inference 
(s) 

(10,10,10) 0.47 0.64 0.56 0.25 0.50 0.68 0.3018 

(30,30,30) 0.63 0.87 0.78 0.42 0.68 0.78 0.3019 

(50,50,50) 0.68 0.93 0.82 0.48 0.71 0.81 0.3022 

(80,80,80) 0.69 0.95 0.82 0.51 0.72 0.81 0.3054 

(100,100,100) 0.69 0.96 0.83 0.52 0.72 0.81 0.3063 

(300,300,300) 0.70 0.98 0.83 0.55 0.73 0.81 0.3155 

(500,500,500) 0.70 0.99 0.84 0.55 0.73 0.81 0.3197 

(1000,1000,1000) 0.70 0.98 0.84 0.55 0.73 0.81 0.3132 

Table b) 
Table 20 a)Changes in the pre and post NMS proposal hyper-parameters values b) Variation of validation accuracy and 

inference time of the model tested using different proposal values 

 

• Effect of decreasing resolution during test-time 
As seen from the above Table, no significant inference time variations are observed but the accuracy of 

the model is indeed highly dependent on the number of quality proposals generated by the model. This 
experiment mainly focuses on the variation of accuracy and inference time of the model trained on high 
resolution (800,1333), while fixing the test time resolution to MxM. 
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Parameters Values 

Top pre-NMS 300 

Top post-NMS 300 

Total proposals 300 

Size (M) 600,800 

Table a) 

 

 

 

 

 

Table b) 
Table 21 a)Changes in the hyper-parameters b) Validation accuracy results 

 

 

Experiments Table no. 

Validation accuracy from two different pre-trained models and the model trained from scratch 11 

Accuracy results using pre-trained models with Group Normalization 12 

Accuracy results and hyper-parameter changes to the model trained from scratch with different proposals 13 

Summarizes the accuracy results when backbone pre-trained was fine-tuned with different weight decay 
parameters 

14 

Summarizes the variation of accuracy when an end-to-end pre-trained model was fined tuned with different 
mini-batches 

15 

Results of the validation accuracy of end-to-end pre-trained model when more layers were unfrozen 16 

Model’s accuracy variation upon changing proposal number during training 17 

Accuracy variation when trained on different resolution 18 

Changes in the accuracy with training the model using the data augmentation 19 

Inference and accuracy variation when region proposals were changed during test time 20 

Variation in the model’s inference timing and accuracy with different test-time resolution when the model 
was trained on high resolution 

21 

Table 22 -Summary Table of the different experiments performed and their corresponding Table to refer to. 

 

 

• Results  
Final results from the optimized model are shown in Figures 53 with the confidence score set to 0.9 with a 

number of proposals set to 500.  
 

AP0.5:0.05:0.95  AP0.5 AP0.75 APs APm APl Inference (s) 

0.45 0.76 0.48 0.11 0.48 0.75 0.1228 
0.60 0.94 0.66 0.34 0.63 0.79 0.1907 
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a) 
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b) 

Figure 53 – a)& b) Results from the jam and no jam footages with different lighting conditions with ground truth (left) and 

corresponding prediction (right) 

 
Though our area of focus is the OFZ, we have tried to detect the TSUs in the overflow zone also for future 

work, in case jams need to be detected in the overflow zone also. 
Efforts towards training the SSD model with the same backbone, ResNet 50-FPN was carried out. In the initial 

experiments, it was observed that with the small dataset used in the project it was difficult to train the model with 
the chosen hyper-parameters. The model could not converge quickly without any data augmentation techniques 
in fewer iterations. This also indicates that the model needs more data and carefully chosen data augmentation 
techniques to converge quickly taking less training time. Such an observation is also made by the authors in [124]. 
It was also observed that though it was able to detect large objects it almost failed to detect the smaller objects 
which are in line with the observations from [100]. These experiments were performed using Tensorflow from 
[100]. 
 As discussed in the earlier sections, the intrinsic problem of the SSD is the class imbalance that RetinaNet 
solves. Because [127] has released RetinaNet pre-trained models, only one experiment was performed to check 
its performance with our dataset. Brightness and verticle flipping along with horizontal flipping was used as the 
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data augmentation technique. Proposals were fixed as default values used In Faster R-CNN. Indeed the model 
surprisingly generalized well with similar accuracies, inference time and training time and competed closely with 
Faster R-CNN on larger objects while performing less accurately on the smaller objects. This goes to prove that the 
models which perform well on smaller objects imply that they perform well on larger objects but the vice-versa is 
not true [100]. 
 The above experiments could be automated using automation tools such as HyperDrive instead of 
babysitting our model. These are advanced APIs provided by Microsoft to work with their cloud solution Azure. 
This is built on searching techniques such as random sampling, grid sampling and Bayesian sampling for 
hyperparameters searching based on the range of values of the specified hyper-parameters. With this automation, 
optimization could be made easy, eliminating the need for manually experimenting with a myriad of hyper-
parameter values. Based on the sampling technique chosen, the tool would ultimately return the best 
hyperparameter values of the model, which could take days to arrive at a certain value. This also depends on the 
amount of dataset being used and the number of iterations being targetted. Some efforts were indeed made 
towards integrating this library into our pipeline but ultimately failed due to a)advanced API to be used b)lack of 
expertise in this field. But currently, research (Google’s AutoML and Pytorch’s HyperSearch)is being done towards 
such automation techniques to remove the cumbersome manual efforts needed to arrive at an optimized model.  
 

6.3. Tracking 

Because the object detection quality is the key aspect for tracking [138,117], the idea is to perform 
detection is once in N frames and in the remaining frames having the tracker to estimate the positions of the 
bounding boxes without having any information about the speed of the sorter. 

Simple Online Real-time Tracking (SORT) [138] is chosen as the tracker in this project due to its simplicity 
and ease to integrate into our pipeline. This employs a simple linear Kalman filter to predict the states and corrects 
them with the detections and associates IDs using the Hungarian Algorithm and IoU matching technique with a 
single hypothesis.  

New IDs would be assigned to the newly detected objects in the (N+1)th frame. If the tracker could not 
associate itself to any detections in the next frame, new IDs would be assigned again to avoid the waiting for data 
associated with the corresponding detection in future frames. Since the interest is only to calculate the TSUs in the 
OFZ, tracking analysis was performed on the TSUs present on the sorter and in the OFZ. Analysis such as associating 
the IDs post occlusion seen while TSUs gets transferred from the sorter on to the overflow zone was ignored due 
to more failure detection rate in that area, due to fewer data samples the model was trained on. This implies that 
with more data, the detection accuracy of the TSUs in the overflow zone could be increased which in turn increases 
the tracking performance. 

Applying detection once in the Nth frame failed to produce good tracking results with N=5 because of the 
wrong estimation heuristics by the filter. Hence detection is performed in every frame assigning the IDs. Results 
are shown the Figures 52. Counting the number of TSUs entering and exiting OFZ were performed using the simple 
euclidean distance between the centroids of the TSU and the fixed points (red dots) on the virtual lines (green) 
drawn at the entrance and at a certain distance In the OFZ. These points vary as the resolution of the video varies. 
The jam detection is performed based on the detections. IoU between the (N-1)th frame detections and Nth frame 
detections were calculated and certain thresholds were empirically set for two different resolutions given in Table 
22. Table 23 provides the context of true positives and false positives. In this project, the videos that were provided 
had two different frame rates, 30 FPS and 15FPS. The reason is quite unknown but it has worked out to be in our 
favor due to the fact that in 30FPS, with high-speed sorting, no major displacement of the TSUs was seen from one 
frame to another. Hence we could implement our jam detection just by employing the IoU matching heuristics. 
This also implies that we could employ even lower FPS cameras for counting and detecting jams.  

Since we need to have better detection in every frame for detecting the jams, we measure the performance 
of the detector with respect to the number of frames where all the TSUs would be detected. This metric is defined 
as the total number of frames the detection fails. Lesser the number of this metric, the better are the detections. 
A total number of TSU/s missed is a metric that shows the overall count of TSU/s missed during failed detections. 
Lower the number better the tracking. In order to track the performance of the tracker, two metrics are defined 
as a) number of ID switches b)number of IDs lost in presence of detection. ID switches indicate the number of 
times the reported identity associated with TSU/s in the past frame changed its association with a different TSU in 
the future frame. This necessarily does not have any impact on jam detection but there might be wrong TSU count 
while it is exiting the OFZ. In our video analysis, there were a couple of times where the exit count of TSU/s in the 
OFZ mismatched with the actual number of TSU/s exiting it by a very small margin during high capacity. Hence 
detailed analyses could be made if more videos were available at our disposal. We think that by carefully tuning 
the Kalman Filter’s parameters could solve the ID switching issue.  
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The metric Number of times IDs lost with its associated detection is a metric that shows the capability of the 
tracker to maintain its association with the detections over the total frames. Lesser the IDs lost, better is the 
tracker’s performance. Again, as mentioned earlier, this metric’s results would not pose any problem for the jam 
detection but might have a negative effect on the TSU counts in the OFZ if this metric has large numbers. False 
positives count indicate the total number of times, in the total frames, either jam was not detected though there 
was no jam or the no jam case was indicated as jam. Lower the count, better it is and this depends on the detection 
rate across the frames. In case if a TSU is jammed and if the model could not detect that TSU In a certain number 
of consecutive frames, it would harm the system’s performance. Hence the detection of TSUs in every frame is of 
utmost importance. This FP number could be related to the metric # of TSUs missed but cannot infer anything 
about the jams. For example, for the metric # of TSUs missed is 9, the corresponding FP count is 2 which indicates 
that the model could detect the TSU causing the jam in almost every frame.  

Separate analyses have been made on the effect of reducing the resolution on the above-mentioned 
metrics in Tables 24 and 25. It is to be noted that though the # of TSUs missed and #frames detection failed has 
higher numbers for a 600x600 had the least effect on the Jam detection (#FP count). Since the available jam videos 
were less in number due to the difficulty in creating such jam scenarios in the facility, thorough testing needs to 
performed and this research would aid to continue this project even further. 

 

Resolution IoU threshold 

498*719 (Jam Videos) 0.8 

827*1080 (No Jam Videos) 0.95 

Table 22- Different IoU threshold values for jam and no jam videos with different resolution 

 

 Jam No Jam 

Jam TP FP 

No  Jam  FP TP 

Table 23- Context of True positive (TP) and False Positive (FP) in this project 

 
 

Video Total 
frames 

Total TSU/s # frames 
detection 

failed 

# TSUs 
missed 

Id switches 
count 

#Id lost with 
detection 

FP 
count 

Jam 110 32 1 2 1 3 1 

Jam 135 17 2 3 1 2 2 

No Jam 71 16 1 1 1 0 1 

No Jam 50 33 1 2 0 1 1 

Table 24- Detection and tracker performance with model size of (800,1333) with 500 proposals for jam and no jam videos with different 

resolutions. Lower the numbers, better the performance. (# = Total number of) 

 

 

Video Total 
frames 

Total TSU/s # frames 
detection 

failed 

# of TSUs 
missed 

# Id 
switches  

# Id lost with 
detection 

# FP 
count 

Jam 110 32 19 9 2 6 2 

Jam 135 17 2 2 1 2 0 

No Jam 71 16 36 6 2 3 1 

No Jam 50 33 20 5 1 2 1 

Table 25- Performance of detector and tracker. The model size of the detector is (600,600) with 500 proposals. Lower the scores, better 

are the performances of detector and tracker. (# = Total number of) 
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a)                                                                                             b) 

Figure 54- Jam video a)Before the jam, in Nth frame 4 TSUs are counted in the OFZ  b) In N+4 frame jam is detected. IDs are still 

maintained for some time from the Nth frame in the OFZ. 

 

 
a)                                                                                                           b) 

Figure 55- No Jam videos a) Tracking in the Nth frame and the corresponding count in the OFZ  b) Tracking in the N+1 frame and 

corresponding count in the OFZ where one TSU (ID=1)has moved away from the exit line of the OFZ. The track IDs are sustained 

(1,3,5,7). 
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7. CONCLUSION 

  Using various methods to increase the detection accuracy of the deep learning-based Faster R-CNN 
model, we were able to generalize it well including under different lighting conditions, it could detect all the TSUs 
on the sorter and up to a certain known OFZ length using high-resolution images. Though the TSUs in the overflow 
zone were detected using the same model, for tracking analysis it was discarded because of too many missed 
detection during high capacity. Increasing the dataset with more examples from the overflow zone, carefully 
designing the anchor sizes and Installing one more camera near the overflow could solve the problem. 

For tracking Simple Kalman filter to predict and correct the generated trajectories with Hungarian algorithm 
and IoU matching for data association proved to be effective and performed well with very few ID switches. These 
ID switches are observed more near the entrance of the TSU. We hypothesize that the co-variances of the Kalman 
filter during the initial prediction and updating of the measurements might be a cause for such switches. Also, 
since the SORT algorithm is highly dependent on the object detector, with a 100% detection rate in a given video, 
it was observed the tracker maintained the correct IDs throughout the video sequences apart from very few ID 
switches. 
Handling the occlusions (transition from sorter to overflow) and data re-association during failed detection of TSUs 
are recommended for the future work and are not handled in this project here due to the above explanation. 

  There are effectively only three ways to decrease the inference time a) decreasing the number of layers in 
the model b)decreasing the image resolution c)Using a high-speed GPU like Nvidia’s Titan X (currently used a lot in 
the research community). Since our problem is detecting a single class, the TSU, using a higher-end GPU would not 
be cost-effective. Hence we need to make a trade-off between a) and b). We already know that decreasing the 
resolution is bound to hurt the model’s performance from our experiments and hence the only option is to reduce 
the number of layers. But new theories indicate that using lesser layers reduces the accuracy (ResNet-34 performs 
inferior to ResNet-50) which can also be seen in the paper [100] and hence we suggest not to reduce the layers 
but to prune the layers for dead neurons or less activated neurons using various model pruning techniques such 
as weight pruning, filter pruning, etc. Model pruning and model compression is the current research trend where 
the researchers are trying to reduce the inference time by removing the unwanted layers resulting in not hurting 
the model’s performance significantly and decreases the model’s inference time significantly. This is necessary 
because models like ResNets cannot be used in mobile or embedded devices. Also, with more ground-truth, one 
could also use the single stage detectors like the SSDs or Tiny YOLO  (very recently Nano-YOLO) which are superior 
in terms of speed. 

Essentially, with this research, the company could ideally track the TSUs (with different load capability) and 
can theoretically be able to predict the jams. This could be done by tracking the angle of each TSU with some 
reference point in the image plane because every TSU aligns on the sorter in a straight line and when a TSU is 
pushed into the OFZ, it does so in certain known angle. Significant deviations from the known angle could lead to 
a potential jam.  

Finally, with this research, we have proven that by using a simple IP RGB camera, we could count the number 
of TSU irrespective of its load and irrespective of the speed of the sorter. With this, we could a) safely eliminate 
the dedicated PECs in the OFZ b) a significant reduction in the testing time solely for jam detection c) avoids 
searching the sweet spot for the placing the dedicated PECs in the OFZ. 
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8. FUTURE WORK: 

1. Using a dedicated object detection backbone rather than a classification backbone. One such architecture 
is Detnet-59 which could be built on top of the existing Pytorch architecture.[2] 

2. Use of light heads networks [3] 
3. Using weight pruning techniques to increase the inference time and to reduce the model size or memory 

footprint using different techniques like L1-norm based channel pruning, Network slimming, sparse 
structure selection, soft filter pruning, and unstructured weight-level pruning. 

4. Automation for selecting the best hyperparameter for the model. Hyperdrive (Microsoft Azure), AutoML, 
Tune, etc. support frameworks like TensorFlow, Pytorch models based on the Random search and 
Bayesian optimization techniques. 

5. Use of network of cameras and calibrating them for data association to gain more precise tracking 
information using optical flow.[1] 

6. Using Siamese style networks (using one-shot learning) for classifying jams. 
7. Increasing dataset and labeling by generating them synthetically using 3D models of the parcels. 
8. Training a Faster R-CNN model with an additional class (OFZ_TSU) to count the number of TSUs in the 

OFZ. This would drop the necessity to add trackers in the pipeline. 
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9. RECENT RESEARCH IN DEEP LEARNING: 

 
1. More research towards back-propagation algorithms like [140] where instead of using the chain rule they 

have used Hilbert Schmidt Independence Criterion (HSIC) method which has convincing results on the 
CIFAR-10 dataset to eliminating vanishing and exploding gradient problem. 

 
2. Also, the recent introduction of Adaptive Adam optimizer like [141] has got quite a lot of attention. 

 
3. Facebook’s model compression technique where the authors have reduced the ResNet-50 model from 

300 MB to a mere 5MB maintaining a similar accuracy from the benchmarks on the ImageNet [142] where 
CPU could be used to get the inference. 
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11. APPENDIX 

 
 

 
Figure 1 [143]- Two Stage Detectors 
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Figure 2 [143]- Single Stage Detector 

 
 
 

Techniques Advantages Disadvantages 

Background Subtraction • Widely used and computation 
efficient 

• Low memory footprint 

• The model learns about BG-FG based 
on simple Otsu thresholding  

• Objects can become part of the 
background model without 
destroying the existing background 
model 

 

• Inaccurate since they cannot deal with quickly 
changing scenes. 

• Initializing Gaussian parameters is important 

• Cannot handle shadows  

• False positives are more due to the non-availability 
of shadow handling techniques 

• Sensitive to illumination changes 

• Cannot handle multimodal background 

• Needs Intelligent selection of parameters. 

Optical Flow • Complete information about the 
motion of objects can be known 

• Subpixel accuracy 

• Computation bottleneck 

• Sensitive to illumination such as flickering of light 

• Tends to be noisier around corners 

• Relies on strong assumptions, brightness constancy 
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Frame Differencing • Works well with static background 
models 

• Easy to use and computation friendly 
varying from moderate to low 
depending on the application 

• Needs a background with no objects in the scene to 
model the background 

• Sensitive to thresholding values. 

Template Matching • Good performance in a known static 
environment where objects do not 
change their appearance much. 

• Cannot handle dynamic features in the scene 

• Brute force method 

• It can be employed only for one-to-one 
correspondence. 

• Cannot handle occlusions 

• Cannot handle objects which exit from the scene 
temporarily 

Feature-based (HOG, SIFT, 
etc) 

                                                           HOG 

• It has a fixed-length feature vector 
enabling the features to be used by 
machine learning models. 

• Suitable for low-resolution images 

• Not scale and rotation invariant 

• The sliding window technique is used for object 
detection which is very slow and inaccurate. 

                                                      SIFT or SURF 

• Robust to occlusion 

• Distinct features 

• Number of features generated for 
small objects are huge 

• Rotation and scale-invariant 

• Robust to affine transform to some extent 

• Both are highly sensitive to illumination changes 

• Do not work well with the motion blur 

                                                      LBP 

• Robust to occlusion 

• Robust to illumination changes. 

• High false positives 

• Generally less accurate than HOG 
 

Table 1- Advantages and disadvantages of various vision based object detection techniques 
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LeNet: 
 

 

 
Figure 3 [102] – LeNet architecture 

 

AlexNet: 
 

 

 
Figure 4 [103]- AlexNet architecture  
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ZFNet: 
 

 
Figure 5 [104]- ZFNet architecture  

 

VGGNet: 
 

 
 

 
Figure 6 [105] VGGNet architecture 
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GoogLeNet: 

 
                   a)                               b) 
 
 
 

 
 

 
c) 

Figure 7[106]- a) Naïve version of inception module, b) Inception module with dimensionality reduction, c) GoogLeNet 

architecture 

 

ResNet: 

 
Figure 8[107] – Different architectures of ResNet for classification 
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ResNeXt: 
 

 
 

 
Figure 9 [109] – ResNeXt architecture compared with ResNet50 with cardinality C=32. Numbers outside the bracket (bottom image) are 

the layers stacked one above the other 

 
 


