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Management Summary 
A decision tree for predicting and detecting software breakdowns using machine learning 

techniques has been created during this research. It provides guidance for implementing 

suitable machine learning algorithms in information systems. The created decision tree is 

focused on both the supervised classification and unsupervised anomaly detection 

algorithms. By going through the decision tree some data shortcomings might be found. 

Several options to tackle these shortcomings are provided during an elaboration of the 

decision tree. When the decision tree is followed the practitioner has gained an overview of 

machine learning requirements that are not yet fulfilled as well as several methods to fulfil 

the unmet requirements. The application of the decision tree is demonstrated based on the 

situation of the company’s support department.  

The researched machine learning types, supervised classification and unsupervised anomaly 

detection, can both be used to, respectively, predict and detect breakdowns of software. 

Both types need different input and therefore provide different possibilities. Supervised 

classification needs data that contains a label for each feature set whether or not an error 

occurred. This data is then used to predict whether or not an error can be expected for a 

new feature set. The downside of this method is that labelling the data often turns out to be 

a time-consuming and costly endeavour. Unsupervised anomaly detection does not need 

labelled data but needs data with a lot of normal behaving feature sets. The algorithms use 

this data to detect abnormal behaviour in new feature sets which might cause errors. The 

drawback is that normal behaving data and error data are sometimes hard to distinguish.   

CAPE Groep’s support department has to monitor and maintain a growing number of 

Mendix and eMagiz applications. As this makes up a large portion of their day-to-day tasks, 

they want to know beforehand if and when their applications might breakdown, so they can 

preemptively maintain their applications and provide a higher uptime to their clients. They 

are changing their data saving architecture as well as their monitoring dashboard to get a 

better insight into the health status of the applications. They want to start with 

implementing types of artificial intelligence that will help them maintain and monitor their 

applications. However, the stored Mendix application data does not yet fulfil the 

requirements of either machine learning type.  

The application of the decision tree on the support department’s current situation yielded 

that the support department should focus on unsupervised anomaly detection. This is the 

preferred machine learning type due to the lack of breakdown data, which makes it 

impossible to train the supervised classification algorithms. In order to start using 

unsupervised anomaly detection, the support department has to investigate the metric data 

of the applications to create a dataset with only non-anomalous feature sets. Once the 

algorithms have been trained on this dataset they should be implemented on the real-time 

application data. Once the algorithms are properly aligned with the application data they 

should be able to detect anomalies and inform the support department so they can act 

accordingly and perhaps prevent the application from breaking down.    
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Reader’s guide 
In this part, I will address the structure of the report as well as the abbreviations and definitions I 

used. 

Report Structure. 
My report contains six chapters and three appendices.  

Chapter 1 | Context Analysis In this chapter I describe both the company and the support 

department on which behalf this research is conducted. I will continue by defining the action 

problem and the steps I took to get to the core problem of this research. After identifying the core 

problem I will address the research objective and measurement of the solution. Then I address the 

motivation behind solving this core problem. I will conclude this chapter with a list of knowledge 

questions that I had to answer and discuss the used research methodology. 

Chapter 2 | Literature Review During this chapter I will elaborate on the literature reviews I 

conducted for the needed machine learning knowledge. I will start the chapter with an introduction 

of machine learning and its types. The next two sections of this chapter are devoted to supervised 

classification and unsupervised anomaly detection and their most applicable algorithms. I will 

conclude this chapter with a description of how to test and compare the different algorithms to find 

the most applicable algorithm for a similar data set.   

Chapter 3 | Solution Design In this chapter I will explain the created design artefact, a decision tree 

with branches for both supervised classification and unsupervised anomaly detection, in detail. All 

the steps of the decision tree are addressed and some specific recommendations will be provided in 

the steps. 

Chapter 4 | Data Analysis During this chapter I address the data analysis on the Mendix applications 

that I conducted during this research. 

Chapter 5 | Solution Tests This chapter describes the usage of the decision tree on the situation of 

the support department. I will go step by step through both branches of the decision tree to find out 

what requirements the support department lacks for successfully implementing machine learning in 

their information systems. I conclude this chapter by comparing the two types and deducing which 

of the two is better applicable to the situation of the company.   

Chapter 6 | Conclusion and Recommendations The chapter will conclude my bachelor thesis 

research with the conclusion of the research and the recommendations given to the support 

department of CAPE Groep based on the design artefact.   

Appendices In the appendices I put the information that was not suitable for the report itself but still 

contains valuable information. During the report, the appendices are mentioned when extra 

information might be useful for understanding that section.   

 

 

 

 



7 
 

Professional jargon. 
Action problem:  This is the problem that CAPE Groep wants the 

researcher to solve. 

Amazon Sagemaker:     Amazon Webservices’ machine learning platform. 

Amazon Webservices:  Webservice provided by Amazon to provides on-

demand cloud computing platforms. 

Artificial Intelligence:  The theory and development of computer systems 

able to perform tasks normally requiring human 

intelligence, such as visual perception, speech 

recognition, decision-making, and translation 

between languages. 

Core problem:  This is the problem that, when solving, tackles the 

action problem of CAPE Groep. 

Data set:      Set of feature sets.  

Design Science Research Methodology:  The Design Science Research Methodology is a 

commonly accepted framework for successfully 

carrying out design science research and a mental 

model for its presentation.  

eMagiz:  Model-driven development platform used by CAPE 

Groep to develop business-specific busses to create 

integration between the current systems of a 

company and possibly new Mendix application(s).  

Features:  These are indicators like CPU usage and memory 

usage of the applications.  

Feature set:  Set of feature values at a corresponding moment in 

time. 

Feature value:      One value of one feature. 

Grafana:  This is a platform specialized in analytics and 

monitoring. 

Health checks:  Time-specific evaluation of the status of the 

applications. When something weird is spotted 

maintenance of the application might be needed.  

InfluxDB:  This is an open-source time-series database that is 

optimized for fast, high-availability storage and 

retrieval of time series data 

Information systems:     Systems that helps organize and analyse data. 

Labelled data:  Labelled data consists of features together with a 

label like anomalous or non-anomalous. The feature 
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data is then most often used to predict the label 

outcome.  

Mendix:  Model-driven development platform used by CAPE 

Groep to develop business-specific applications to 

improve (primary) processes.  

Prio1 list:  This is a list of all the applications that broke down 

and that need repairing.  

Problem cluster:  This is an overview of the action problem, possible 

core problems and in between causes. 

Tick Stack:      This is the combination of InfluxDB and Grafana.  

Unlabelled data:  Unlabelled data consists only of features with no 

label, so the outcome of the features is unknown.  
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Ch1: Context Analysis 
In sections 1.1 and 1.2 I will introduce CAPE Groep and its support department respectively. Then in 

section 1.3, the action problem will be defined before the path to the core problem will be 

investigated in section 1.4. The research objective and measurement of the solution are addressed 

in sections 1.5 and 1.6. This chapter will conclude by describing the motivation behind the core 

problem in Section 1.7. 

Section 1.1: CAPE Groep. 
CAPE Groep is an information technology consultancy company that is specialised in improving other 

businesses’ processes by offering several services. These services concern the development and 

integration of business-specific software, the connection between different business applications to 

work cohesively and their use of their business intelligence to give sector-specific advice. They 

achieve this by using the model-driven development platforms Mendix and eMagiz. Mendix is used 

to develop business-specific applications and eMagiz creates the integration between the business’ 

current information technology systems and the (possibly) new Mendix application(s).  

Section 1.2: Support department of CAPE Groep. 
The support department’s main responsibilities are maintaining and monitoring both Mendix 

applications and Emagiz busses, each with one specialized support member assigned to it. The 

support department’s manager helps to solve application breakdowns but spends most of his time in 

innovating the current support process and structure. For the bigger part of the day, the support 

members are busy with working through the prio1 list, which contains all notifications of 

applications that went down, as well as providing service to clients that are calling them.  

Section 1.3: Action problem. 
The support department wants to reduce the number of application breakdowns so their customers 

have less downtime and the support department can spend more time on further improving their 

processes and services. A cause for the rise in the number of application breakdowns may lie in the 

significant growth of CAPE Groep as a company. At the start of 2018, the support department had to 

maintain sixty-seven applications which grew to ninety-seven applications at the end of 2018. The 

estimated number of applications at the end of 2019 is over two hundred. With this significant 

growth in applications the support department had to spend more time on repairing applications 

that broke down. This resulted in a reduction of so-called health checks, which give the status of an 

application at that specific point in time. The health checks are performed to actively maintain the 

applications, so a reduction in health checks result in less actively maintained applications. This leads 

to an increase in application breakdowns.  

Based on preliminary analysis and discussion with the manager of the support department, the 

following action problem was identified: “the total time spend at repairing the unexpected 

application breakdowns is too high”. The action problem is the problem that is being tackled 

indirectly by solving the core problem, which I describe in section 1.4. To ensure multiple possible 

core problems would be identified I chose to make the action problem time related instead of 

number related. Furthermore, I also wanted to specify the action problem to applications that broke 

down without prior knowledge, so the “reduced time for health checks” was taken into account, 

hence the “unexpected breakdowns” in the action problem. The core problem for solving this action 

problem is described in section 1.4. 
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Section 1.4: Path to the Core Problem 

The found core problem is “number of repetitive tasks for health checks is too high” and will be 

solved by investigating the possibilities of machine learning. I identified the core problem by finding 

direct causes to the action problem and expending these with associated direct causes until no more 

causes were found, these causes together form a so-called problem cluster (Heerkens & van 

Winden, 2012). This problem cluster is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The problem cluster shows the four possible core problems I found to solve the action problem. It 

turns out the formulation the action problem time related two direct causes to the action problem 

were found, instead of one direct cause if I had chosen for a number related action problem. The 

two found direct causes are “the number of breakdowns is too high” (number related) and “the time 

spend on each breakdown is too high” (time-related).  I expanded both direct causes with other 

causes, which in the end yielded two possible time-related core problems and two possible number-

related core problems. To show the connection between the possible core problems and the action 

problem I chose to describe the relation from core problem to action problem. This will give a better 

understanding of the connection between the two than when the connections are explained from 

action problem to core problem.   

The four possible core problems that were found are: 

1. Number of applications per support employee is too high. 

Monitoring and maintaining over a hundred applications is quite significant for three 

support employees. As every day some applications break down they have to spend time 

repairing the applications instead of monitoring them. This means that fewer applications 

Figure 1: Problem Cluster from Action Problem to Core Problem 
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are maintained and therefore the problems are not spotted and breakdowns not prevented. 

This results in more applications breaking down.  

2. Number of repetitive tasks for health checks is too high.  

The health checks are similar for different applications. As there are over a hundred 

applications to maintain this is a lot of repetitive and time-consuming work. This means that 

the available time for performing health checks is not efficient. Therefore a lot of 

applications are not monitored even if some time is available for health checks. This results 

in more applications breaking down.  

3. No clear communication between client, consultant and support. 

The lack of communication between the client, consultant and support is two-folded. On the 

one hand, the lack of communication between the client and support results in a lot of time 

wasted on understanding the exact problem of the breakdown. On the other hand, the lack 

of communication, in the form of feedback, between the consultant and support leads to 

minimal changes in the application building process. This causes high time requirements for 

solving application breakdowns 

4. Every application is differently structured.  

There is no uniform application building structure. Therefore applications are differently 

structured and more time is needed to get an understanding of the cause of the breakdown. 

This causes high time requirements for solving application breakdowns.  

One of these four possible core problems had to be chosen as core problem for this research. This 

decision is based on the impact that a solution for each possible core problem has on the action 

problem. The one possible core problem with the highest impact is chosen as core problem of this 

research.  

After talking with the manager of the support department it became clear what the options were. 

Even though every application is (slightly) differently structured and there is no clear communication 

between the different parties, the solution would be some sort of a uniform standard within the 

company for both problems. However, the impact on the action problem from both possible core 

problems would not be that high, as the amount of time spent on understanding the application is 

not significant compared to the amount of time needed to repair the number of applications that 

breakdown according to the support manager’s expertise.  

This leaves two possible number-related core problems to be discussed. Hiring more employees 

would reduce the application per employee ratio, but there is no intent to significantly increase the 

number of support department employees as it is not in line with the innovation plan of the support 

department.  

This left finding a solution for the possible core problem “number of repetitive tasks for health 

checks is too high” as most impactful of the four possible core problems. This core problem has been 

investigated to solve the action problem of the support department. The support department is 

already working on a new monitoring dashboard to have access to the real-time health of the 

applications. This dashboard will use thresholds to represent the real-time health of the applications, 

together with real-time access to the graphs and logs of the applications. However, CAPE Groep 

wants to innovate even more and start with integrating different types of artificial intelligence. They 

want to know the possibilities of integrating machine learning in their monitoring and maintaining of 

the applications.  
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Section 1.5: Research objective 
The design artefact will be a decision tree that provides guidance to the support department on 

implementing suitable machine learning algorithms. The decision tree will focus on the two most 

commonly used types of machine learning, the supervised classification algorithms as well as the 

unsupervised anomaly detection algorithms. 

The possibilities of implementing machine learning algorithms in the monitoring and maintaining 

processes of the support department will be investigated. However, due to the limited time for this 

Bachelor Thesis providing a working machine learning code that can be implemented is not feasible. 

So instead a decision tree that guides the support department in integrating machine learning 

algorithms will be provided. This decision tree will be universal so other practitioners besides CAPE 

Groep’s support department can use this guiding artefact to implement suitable machine learning 

algorithms in their information systems. As machine learning is a broad topic and limited time is 

available I had to limit the decision tree to the two most used machine learning types, supervised 

classification and unsupervised anomaly detection. The used methodology of creating this decision 

tree is shown in Appendix A and the knowledge questions that needed answering are shown in 

Appendix B.  

To give adequate recommendations to the support department I will apply the created decision tree 

to the situation of the support department. This will yield a list of missing requirements and steps to 

take in order to implement machine learning algorithms in the monitoring and maintaining of the 

applications.  

Section 1.6: Measurement of the Solution 

Once the given recommendation, originating from applying the decision tree, are processed and the 

right data is available to implement machine learning in the support departments information 

systems the number of unexpected application breakdowns should reduce. This can be measured by 

counting the number of breakdowns per project, which can consist of multiple applications, and 

compare this to the number of breakdown per project of previous years. When the number of 

breakdowns is less than the years before the implementation of machine learning did most likely 

have a positive impact on the number of breakdowns. However, as these are yearly based statistics 

and the implementation will not take place during the executing of this research it will not be 

possible to measure the effectiveness.  

Section 1.7: Motivation 
Reducing the number of application breakdowns is important for both the support department and 

the clients. The support department is every day busy with “day-to-day firefighting” which requires 

so much time that other responsibilities might not be performed. However, this “day-to-day 

firefighting” impacts the client's processes as the applications cannot be used while a breakdown is 

occurring. To increase the importance of this problem even more, most of the applications are used 

in the client’s primary processes and therefore have a significant impact on the client’s business. As 

CAPE Groep is providing (almost) all applications of company X, a large company, a breakdown of an 

application will result in unsatisfied customers of company X. This, in turn, might give CAPE Groep 

bad publicity. That is why finding a solution for all the application breakdowns is important.  
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Ch2: Literature Review 
Section 2.1: Machine Learning 
There are four different types of machine learning, however, I chose to focus on the two most 

commonly used types, supervised machine learning and unsupervised machine learning. In advance 

to shortly describing these four machine learning types, and going in-depth on supervised and 

unsupervised machine learning later on, I will thoroughly explain the concept of machine learning. 

The CEO of Emerj, a company that has knowledge on the impact of artificial intelligence in 

businesses, formulated the following aggregated definition of machine learning based on the 

expertise of several companies (i.e. Nvidia) and Universities.  

“machine learning is the science of getting computers to learn and act like humans do, and improve 

their learning over time in autonomous fashion, by feeding them data and information in the form of 

observation and real-world interactions.” (Faggella, 2019) 

So, basically, the concept of machine learning is teaching a computer how to learn from data and let 

it predict or detect patterns/outcomes which makes the job of the user easier. There may only be 

four main machine learning types, but together they contain a lot of different methods (see Figure 

3).  

As Figure 3 shows there are machine learning types that require target variables and some that do 

not require target variables. Target variables are labelled feature sets. When no target variables are 

required no labelled data is needed. Table 1 shows the difference between labelled and unlabelled 

data. 

Figure 2: machine learning Types (Ivan, 2015) 

Table 1: Labelled Data vs Unlabelled Data 
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Labelled data consists of a set of features together with an indication of that data, the label. In Table 

1 the labelled data is whether or not the day is good for hiking or not. If the data does not contain a 

label that gives an indication of that data it is called unlabelled data. The rest of the section will 

describe the different types of machine learning.  

First, there is supervised machine learning. This type of machine learning needs labelled data in 

order to accurately label a new feature set, by either classifying new feature sets (classification) or 

predicting the value of new feature sets (regression), both are shown in Figure 4. The best way to 

show the classification approach is to use a popular example, the Titanic: machine learning from 

Disaster challenge on Kaggle.com. They provide a dataset with all sorts of passenger data (i.e. age, 

sex and travel class) together with the information if the passenger survived the disaster or not. By 

using classification the algorithm will try to find a pattern in the provided dataset to learn what 

criteria have the most influence on whether a passenger survived or not. The written machine 

learning code will be tested on another dataset, without the survival information, and predicts 

whether or not a passenger would have survived the disaster (Kaggle, 2012). Another frequently 

used application of classification is Medical Imaging, where classification is used to predict whether a 

tumour is malicious or not. A frequently used example of the regression approach is house pricing. 

The data contains several house features (i.e. size, number of bedrooms, location) as well as the 

selling price of the house. This data is used to teach the computer what feature values lead to what 

selling prices and it will, therefore, be possible to predict the selling price of a house based on a 

feature set alone (Ng, 2017). 

  

 

 

 

 

 

 

 

The second type of machine learning is unsupervised machine learning. Contrary to supervised 

machine learning there is no labelled data present and therefore the classification and regression 

methods do not work. This type is split in clustering and association. When clustering the machine 

learning algorithm tries to split the data set in two or more clusters based on the given dataset. 

There are a lot of applications for this type of unsupervised learning, for instance, it can be used for 

data reduction by finding representatives data points for homogeneous groups, finding useful and 

suitable groupings for data classes and it can be used to find unusual data points (Priy Surya, 2019). 

When using association the machine learning algorithm tries to mine and extract rules and patterns 

from the dataset to explain the relationship between the different features. This is often used to get 

insight into businesses’ and the organisation’s huge data repositories (Ivan, 2015). 

Then there is semi-supervised machine learning which is a combination of supervised machine 

learning and unsupervised machine learning, therefore, it uses both classification and clustering. This 

type is most often used for voice recognition and web content classification (Rodriquez, 2017).  

Figure 3: Classification and Regression (Soni, 2018) 
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Finally, there is reinforcement learning which can be used both on labelled data and unlabeled data. 

Reinforcement learning works differently from the other types of machine learning as reinforcement 

learning uses a reward system. By subjecting an agent to an environment and rewarding or 

punishing the agent based on certain actions the agent will learn what is expected of him. By using 

this approach the computer will be able to learn how to drive a car, finding the shortest way through 

a maze and learning how to play a video game (Simonini, 2018)(Ng, 2017).  

Section 2.2: Supervised Classification Machine Learning 
There are a lot of supervised classification algorithms available and they all need labelled data to 

gain an understanding of the data and start predicting errors. Every algorithm has benefits and 

disadvantages and based on the available data one algorithms might perform better than another. 

The supervised classification algorithms that will be discussed are general and frequently used by 

practitioners. This does not mean that these are the only algorithms that have to be considered 

during training and testing. They can, however, be used as a starting point for machine learning as 

some will have pretty decent accuracy for the data the practitioners might have available. The 

following algorithms will be described. Decision Tree, Naive Bayes, k- Nearest Neighbours (kNN), 

Random Forest, Neural Network (Sidana, 2017)(Raina & Shafi, 2015). 

Section 2.2-a: Decision Tree. 
The Decision Tree structures the data in the form of a tree with decision nodes, moments where a 

decision has to be made, and leaf nodes, which shows the final classification based on the decision. 

By going through this created decision tree the algorithm will determine the new label by making 

decisions at the decision nodes, like did the CPU usage transcend 10%.  

Section 2.2-b: Naive Bayes. 
The Naive Bayes classifier assumes that every feature of a data set contributes an equal amount to 

the probability. The algorithm does not take the connections between features into account which 

makes this one of the simplest algorithms for supervised classification. Because of the simplicity of 

the algorithms, it is perfectly suited for very large data sets and practise shows that it can 

outperform highly sophisticated classification methods.  

Section 2.2-c: k- Nearest Neighbours (kNN). 
The k- nearest neighbour tries to learn how to label new feature sets based on the labelled data. This 

is done by looking at the label of the nearest neighbours of a feature value of a new feature set. 

Every label found adds to that label count of the feature set and the label with the most, so-called, 

votes is set as the label of this new feature set. The value of “k” determines how many neighbours 

are taken into account for each feature value.  

Section 2.2-d: Random Forest. 
The method, like the Decision Tree, creates decision trees based on the labelled data. However, this 

algorithm creates multiple decision trees and outputs the label that was outputted by most of the 

decision trees for a new feature set. 

Section 2.2-e: Neural Network.  
The Neural Network is best explained with Figure 5. The features of the feature set serve as input, 

each with an individual input orb, of the hidden layer. The hidden layer then calculates an output 

with an (often nonlinear) function and passes the output on to the next layer. These functions take 

into account the weights assigned to their inputs. These weights are determined during the training 

of the data set.  
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Section 2.3: Unsupervised Anomaly Detection Machine Learning. 
There are a lot of different sorts of unsupervised machine learning approaches, but the anomaly 

detection method of Andrew Ng of Stanford University stood out. This method is used when 

(almost) no labelled data is available and the data comes from machines or applications, which suits 

the support department’s information systems.  

Anomaly detection is a machine learning method where, based on “normal behaviour” data, the 

algorithm tries to find “anomalous behaving” feature sets in a new data set. This approach is based 

on the Gaussian distribution, also known as the normal distribution. It calculates the mean, called 

mu, and standard deviation, called sigma, for each feature of a large data set. As the data set 

contains a lot of feature sets it is not a problem if some “error data points” are present in the data 

set as it will get filtered out. However, when too many error data slips into the data set the whole 

distribution changes and the algorithms might not detect the right anomalies. According to Andrew 

Ng also features that are not following the Gaussian distribution can be used for this approach, 

however, a Gaussian distribution is preferred (Ng, 2017). The course of Andrew Ng of Stanford 

University covers two approaches, the Univariate and Multivariate Gaussian distributions. When 

learning about these two approaches a third, somewhat similar, approach was found, called the 

Mahalanobis distance. As these algorithms differ from each other they are all discussed in the 

following three sections. All these three algorithms are based on statistics and therefore an overview 

of the used statistics can be found in Appendix C.  

Section 2.3-a: Anomaly Detection: Univariate Gaussian distribution. 
The Univariate Gaussian Distribution uses the mean and standard deviation of each feature to 

determine the probability of a feature value occurring. Figure 6 shows the formula of calculating the 

probability of a feature value occurring as well as the statistical ways to determine the mu and 

sigma.  

After calculating the mu and sigma for each feature it will be possible to calculate the probabilities of 

new feature values with the formula shown in Figure 6. Once the probabilities of all feature values of 

a new feature set are calculated, the probability of the whole feature set can be determined by 

multiplying all of the feature probabilities. Then this probability is compared to the value of epsilon, 

see Appendix D-b for a determination of the epsilon value. When the probability is lower than the 

epsilon the feature set is detected as an anomaly by the algorithm. An example algorithm can be 

found in Appendix E-a. 

Figure 4: Neural Network Overview 
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Section 2.3-b: Anomaly Detection: Multivariate Gaussian Distribution. 
The Multivariate Gaussian distribution is closely related to the Univariate Gaussian distribution with 

one slight variation. Instead of calculating the probabilities of a new feature value individually and 

multiplying them afterwards, it calculates the probability of a feature set occurring in one go by 

using the covariance matrix of the features. The covariance does not only contain the variances of 

each feature but also the correlation between two features. The formula, as well as the calculation 

of the mu and covariance matrix, are shown in Figure 7.  

The mu is calculated the same for the Univariate and Multivariate Gaussian distribution. However, 

the sigma of the Univariate Gaussian distribution is changed to the covariance matrix for the 

Multivariate Gaussian distribution.  

The added value of the Multivariate Gaussian distribution compared to the Univariate Gaussian 

distribution is shown in Figure 8. 

Whereas the Univariate Gaussian distribution draws circles over the feature sets, the Multivariate 

Gaussian distribution also takes the correlation between the different features into account. This is 

shown in the ellipses around the feature sets. As the figure shows based on the correlation of the 

two features the red dots should have been spotted as anomalies. As the Univariate Gaussian 

distribution lacks the correlation of the features it did not spot the anomalies, but the Multivariate 

Gaussian distribution did spot them.  

Figure 6: Univariate Gaussian Distribution (Ihler, 2012) Figure 5: Multivariate Gaussian Distribution (Ihler, 2012) 

Figure 7: Univariate Gaussian Distribution vs Multivariate Gaussian Distribution 
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There are also a few other things to take into account when choosing between Univariate Gaussian 

distribution and Multivariate Gaussian distribution. When using the Multivariate version of the 

Gaussian distribution the number of features may not be too large as more features require more 

computational power. The reason for this is that the inverse of a matrix has to be calculated and 

larger matrices are harder to invert than smaller matrices. Also, the dataset of the Multivariate 

Gaussian should be at least ten times bigger than the number of features to get good values. 

Besides, when the number of features is bigger than the dataset, this option is impossible to use as 

than the matrix is not invertible. An example algorithm can be found in Appendix E-b. 

 

Section 2.3-c: Anomaly Detection: Mahalanobis Distance. 
The final researched algorithm is the Anomaly Detection: Mahalanobis Distance. This method uses 

the mu and covariance matrix of the different features to calculate the Mahalanobis distance that a 

feature set is away from the centre of the dataset. The formula for the Mahalanobis distance can be 

found in Figure 9 (Machine Learning Plus, 2019). See Appendix E-c for an example code. 

This Mahalanobis distance value is then compared to the chi-square test with (number of features 

minus one) degrees of freedom and when the Mahalanobis distance surpasses the chi-square test 

value it is detected as an anomaly. The Chi-square values can be found in Table 2.  

 

 

 

 

 

 

 

 

 

 

Figure 8: Mahalanobis Distance Formula 

Table 2: Level of Significance by n-1 Degrees of 
Freedom 
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Ch3: Solution design  
During this chapter, I will explain my solution design by first introducing the chosen design artefact 

in section 3.1. Then in section 3.2, the created design artefact is discussed step by step in full detail. 

Section 3.1: Design Artefacts 

As design artefact, I created a decision tree that goes both over the requirements for predicting 

errors, supervised classification, and detecting anomalies, unsupervised anomaly detection. The 

decision tree is designed to be neat and simple, so far that it is possible for a challenging subject as 

machine learning. I tried to keep the number of steps and number of words as low as possible to 

keep the decision tree clear and consistent. The decision tree is based on information gathered 

during literature studies, as addressed in chapter 2. The rest of this chapter is all about explaining 

the created decision tree.  

Section 3.2: Decision Tree 
The created decision tree will be explained by addressing all the steps it contains subsequently, first 

for predicting errors and then for detecting anomalies. The whole decision tree is shown in Figure 

12. 

 

 

 

Figure 9: Decision Tree 
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1. What is the goal? 

By answering this question the machine learning type is chosen and the corresponding 

requirements and approach to implementation are given during subsequent steps. When 

predicting errors is the intended use of machine learning step two will be next, if detection 

anomalies is the objective step nine will be next. 

 

2. Is labelled data available? 

Labelled data is the key requirement for supervised classification and therefore of utmost 

importance. When no labelled data, as mentioned in section 2.1, is available it should be 

gathered. To get the practitioner started on labelling the data some labelling techniques are 

given at step three of the decision tree. If the data is already labelled step four will address 

the balance of the labels in the data.   

 

3. Label the data. 

Gathering labelled data is a time-consuming, effortful and challenging endeavour. It not only 

requires the expertise of a frequent user of the data, or application/machine which produces 

the data, but also machine learning knowledge and experience to adequately direct the 

experts on gathering/labelling the data. There are several methods that help with labelling 

data. The practitioner should decide whether to use one of these methods or find some 

other labelling approaches to gather labelled data as every data set is different and might 

need a different labelling method, that might not be mentioned here. Several methods of 

labelling data, with their pros and cons, that might help the practitioner start with gathering 

labelled data are (Altexsoft, 2018):  

• Internal labelling: 

Assign an in-house team to the task. This ensures high accuracy of the labelled data 

as the team knows the data and its current use. It also will be possible to track the 

labelling progress as the labelling is done within the company. However, this 

labelling requires a lot of time, which might result in high costs, and lack of machine 

learning knowledge within the team might lead to inefficient labelling.   

• Outsourcing: 

Recruit temporary employees to label the data. This makes sure that the right skills 

for the labelling team can be gathered to effectively label the data. However, the 

newly assembled team needs an organized workflow by a manager to execute their 

tasks.  

• Crowdsourcing: 

Cooperate with freelancers from crowdsourcing platforms. This will reduce the cost 

of labelling data, as the freelancers are funded by multiple companies/people. The 

freelancers are also experienced in labelling the data so it will not take too long to 

get results. However, as the freelancers are not an employee of the company the 

results might have less quality than intended.  

• Specialized outsourcing companies: 

Hire an external team to label the data. As a specialized company is hired the results 

have a high quality, as defined in the contract. However, the costs of hiring an 

external company to label the data are often quite high.  

• Synthetic labelling:  

Use algorithms to created synthetic data that can be used as stand-in for the 
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available data. This will ensure that no third party will get hands-on sensitive and 

regulated data. This will also make the training of the algorithms easier as there are 

no mismatches and gaps in the data. Overall this is a cost- and time-effective 

method of labelling the data. The big downside of this approach is that high 

computational power is required.  

• Data programming: 

Use scripts to label the data. This is an automated process and yield fast results. 

However, the quality of the data set will be less then experts labelled the data.   

 

No matter what type of data labelling will be used it is recommended to have an employee 

with machine learning experience overlooking/guiding the process to ensure the desired 

labelled data is gathered. Before a deeper look is taking into the labelling of the data it is 

important to look at subsequent steps of this decision tree to see how the data is used and 

what other requirements there are. It might be possible to gather several requirements 

during one data-gathering session. 

 

4. Is the data balanced? 

The data should contain both feature sets with errors/breakdowns and feature sets that 

behave normally. However, when one of the feature sets contains way more samples than 

the other the algorithms will have trouble predicting. Even though, there is not a formally 

defined distribution that indicates an imbalance in the data the rule of thumb is that a data 

set is imbalanced when the labelled feature sets have a 1:10 ratio (Datascience, 2016). This 

means that when there are ten times as many feature sets of one label than another it is 

said to be imbalanced and therefore would benefit from balancing techniques. When the 

data is imbalanced step five will provide some balancing methods to investigate. When the 

data is balanced enough the training of the algorithms is explained at step six.  

 

5. Balance the data. 

There are several methods to counter imbalance in data but, just like with labelling the data, 

there is no uniform way to do this. Some methods that are worth investigating are (for 

detailed explanation the article “Fighting Imbalanced Data Set with code Examples” (Wei, 

2019) might be useful): 

• Gathering new, most likely error, data examples. 

Often the imbalance comes from the lack of error examples and therefore gathering 

some extra would be helpful to balance the data. However, in most cases, this is not 

possible as encountering an error would have significant impact on the company 

and other people (e.g. an aeroplane engine or assembly line failing).  

• Methods to level the data. 

It is possible to changes the number of feature examples to achieve a more balanced 

distribution. Some examples, with their pros and cons, are: 

o Under-sampling. 

By reducing the number of data samples of the majority feature set(s) a 

more balanced distribution can be attained. This also reduces the run time 

of the algorithms and needed storage capacity for the data, however, it 

might also cut feature samples that contain important information for the 

algorithms and reduces their effectiveness.  

o Over-sampling. 

By increasing the number of data samples of the minority feature set(s) a 
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more balanced distribution can be attained. This eliminates the downside of 

under-sampling as no data is deleted, but might lead to overfitting since 

feature data is replicated.  

• Algorithms to level the data. 

Algorithms can be used to modify the bias towards majority feature sets of the 

selected machine learning algorithms. This is a challenging method to use and 

therefore it requires a good understanding of both the current machine learning 

algorithm as well as the by algorithms modified version. Also, the precise reasons 

why the machine learning algorithm is failing to use the current data distribution is 

needed. The most used algorithms are cost-sensitive approaches.  

o Cost-sensitive approaches. 

This type of learning algorithms take the misclassification costs, and possibly 

other types of costs, in consideration and tries to minimize the total costs of 

the predictions. This method is explained in-depth in “Cost-Sensitive 

Learning and the Class Imbalance Problem” (Ling & Sheng, 2008). 

• Weight the labels. 

By adding weight to the labels, to indicate their significance, the algorithm will 

adjust its predictions accordingly. However, assigning the right weight to the label(s) 

is not an easy task and will require experience and expertise of machine learning. 

 

If none of these methods are of any help to attain a more balanced distribution a study in 

other methods will be necessary. There are countless methods to balance data and an 

applicable method might be found this way. Once the data is balanced enough a start can be 

made with training the algorithms, explained at step 6. 

 

6. Train algorithms. 

Now that the right data is at hand the algorithms can be trained. This is often done by 

splitting the available data into two sets, the training set that contains 90% of the data and 

test set that contains 10% of the data. Make sure to randomly shuffle the data beforehand. 

This will ensure that the error examples are better distributed over the whole data set, as it 

will split the, often clustered, errors. Then it is time to train the different classification 

algorithms, some good algorithms to start with are:  

• Decision Tree. 

• Naive Bayes. 

• k- Nearest Neighbours (kNN) 

• Random Forest 

• Neural Network. 

These algorithms are explained in sections 2.2-a to 2.2-e. Once the algorithms are trained 

the practitioner should go to step five to compare the performance of the algorithms with 

different number of features. The evaluation and feature selection of the algorithms, as 

addressed in step seven, has to be done after the algorithms have been trained.  

7. Compare algorithms. 

The evaluation and feature selection of the algorithms are done by calculating the f1-score 

by testing the algorithms on the test set, explained in Appendix D-c. By calculating this f1-

score of all algorithms with different sets of features for each algorithm the best 

combination of features will be found for each algorithm individually. Then these f1-scores, 
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the highest-scoring feature combination of each algorithm, should be compared. The 

algorithm with the highest f1-score, that contains that algorithms best feature combination, 

will be chosen as the best algorithm for this data. When the best performing algorithm is 

found it should be implemented, as shortly described in step eight. 

 

8. Implement the algorithms. 

The implementation of the best performing algorithm is different for every dataset. There 

are, however, a few things to keep in mind while implementing the algorithm.  

• Access to real-time data. 

The algorithm should have access to the real-time data to predict the errors as 

quickly as possible because the longer it takes to predict the error the longer it will 

take to handle the error.  

• Attach an alarm. 

The algorithm will start predicting errors and therefore an alarm should be attached 

to an error prediction so it is known when an error is expected. Then the predicted 

error can be inspected and, when predicted correctly, fixed.  

• Evaluate the algorithm. 

By checking whether or not the algorithm accurately predicts the errors valuable 

information is gathered. Based on the performance of the algorithm the decision to 

adjust it or not can be made.   

• Consider automatically updating the training set. 

In some cases, the system/machine data will evolve over time and will gain or lose 

certain errors. This means that, when the algorithm did not get updated while the 

system/machine evolved, the algorithm might start predicting errors when nothing 

is going on and not predict errors when something is going on. By updating the 

training data of the algorithm this can be prevented. However, it is also possible that 

a change in the data is indeed a developing harbinger. When the training set is being 

updated with this data it will learn that this change is not worrisome and therefore 

not worth predicting. It depends on the available data and the reason for 

implementation when automatically updating the algorithms is useful. Automatically 

updating the training set should be thought of by each machine learning 

implementation.  

 

9. Is normal behaving data available? 

Unsupervised anomaly detection does not need labelled data to train the algorithms. 

Instead, these type of algorithms needs normal behaving data to learn when the 

system/machine is working as intended. Therefore a data set that only contains normal 

behaving feature sets is needed. If this data is available the next requirement should be 

checked at step eleven. If this data is not available step ten should be investigated.  

 

10. Gather normal behaving data.  

Gathering the normal behaving data is necessary for calculating the mean, standard 

deviation and covariance of the features to train the algorithms. Gathering this data will be 

less challenging then labelling a dataset. However, the expertise of a frequent user of the 

data is vital for gathering the feature sets that are considered normal and those that are not. 

When also the benefits of supervised learning want to be attained it might be best to label 
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the data as described at step three as both data requirement will be fulfilled this way. When 

only normal behaving data is needed a combination of logs and graphs might help filter the 

errors out the training set, however, these logs might be based on thresholds and therefore 

not yield the right data. An expert of the data source will be needed to successfully 

categorize data moments as anomalous and non-anomalous. Before this data should be 

gathered the follow-up steps should be investigated to find out if some other requirements 

are missing. Then the gathering of the normal behaving data and the other requirement 

might be done at the same time to reduce the time spent on implementing algorithms in the 

Information System. When the normal behaving data is gathered checking for error 

examples is done at step eleven. 

 

11. Are there some error examples available? 

The algorithms can be trained with the normal behaving data, however, in order to evaluate 

and attain the right features and epsilon value some error data is needed for testing. A ratio 

of 10.000 normal behaving data to 20 error examples, so 500:1 normal behaving to error 

examples, is a good guideline (Ng, 2017). When there are enough error examples present 

the training of the algorithms can start at step thirteen. However, when this is not the case 

some error examples should be gathered as explained in step twelve.  

 

12. Gather some error examples. 

In order to evaluate the performance of the algorithms and find the right features and 

epsilon value, some error examples are needed for the calculation of the f1-scores. This 

gathering can be done by purposely letting the data sources breakdown, but this is not an 

advisable method of attaining the data as this might have significant consequences for the 

company and or users. A better way to attain this data is to go through the logs and graphs 

of the data and gather the data of the moments an error occurred. This sounds easier than it 

is in practise as several difficulties might show up, as can be seen in section 4.1. It will be 

beneficial if the error examples have different error reasons, for instance some with a 

memory-related error and other with a CPU related error. This way the algorithms will be 

tested on multiple errors which will result in a more applicable implementation in the end. 

When there is no way of gathering error examples the algorithms can also be trained on the 

normal behaving data and their performance can be evaluated after implementation by 

keeping track on its detecting accuracy. The best performing algorithm can then be kept and 

the others can be left out. When some error examples are gathered or the evaluation after 

implementation method is chosen the algorithms should be trained as described in step 

thirteen.  

 

13. Train the algorithms. 

The algorithms should be trained on about 60% of the normal behaving data and the other 

40% and error examples will be used for the evaluation of the algorithms (Ng, 2017). The 

three researched algorithms for unsupervised anomaly detection are: 

• Univariate Gaussian. 

• Multivariate Gaussian. 

• Mahalanobis Distance. 

These three algorithms use the mean, standard deviation and covariance matrix of the 

feature data, as explained in sections 2.3-a to 2.3-c. As they are based on the Gaussian 

distribution, also known as the normal distribution, the feature data is preferably also 

normally distributed. However, as practise shows, feature data that is not normally 
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distributed can also be beneficial for the detection of anomalies (Ng, 2017). When the 

algorithms are trained the should be evaluated and compared as explained in step fourteen.  

 

14. Compare the algorithms. 

For the evaluation of the algorithms, and feature and epsilon selection, the f1-score will be 

calculated as explained in Appendix D-c. By calculating the f1-score of all algorithms with 

different features and epsilon values the best combination, the combination that yields the 

highest f1-score, for the data will be found. Then by comparing the highest f1-scores of the 

different algorithms the algorithm that is best aligned with the data can be used and 

implemented as step fifteen indicates. 

 

15. Implement the algorithms. 

The implementation of the best performing algorithm is different for every dataset. There 

are, however, a few things to keep in mind while implementing the algorithm.  

• Access to real-time data. 

The algorithm should have access to the real-time data to detect anomalies as 

quickly as possible because the longer it takes to detect the anomaly the longer it 

will take before investigation is started and the possible problem is 

prevented/addressed.  

• Attach an alarm. 

The algorithm will start detection anomalies and therefore an alarm should be 

attached to get notified whenever an anomaly is detected. Then the predicted 

anomaly can be inspected and, when detected correctly, addressed.  

• Evaluate the algorithm. 

By checking whether or not the algorithm correctly detected the anomalies valuable 

information is gathered. Based on the performance of the algorithm the decision to 

adjust it or not can be made.   

• Consider automatically updating the training set. 

In some cases, the system/machine data will evolve over time and the definition of 

an anomaly might change.  

Therefore it will be important to keep the algorithms up-to-date so they will be 

detecting the right anomalies, instead of the anomalies based on an old training set. 

This can be done automatically, however, the expertise of the used data is needed 

to know what data changes are intended or logical and therefore can be considered 

as normal.   
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Ch4: Data analysis 
Section 4.1: Data analysis 
During an intensive data analysis, the following was found: 

• Data accessibility. 

The accessibility of the data at the start of my data analyse was not optimal. I could only 

gather small features sets at a time and had to go through large text files that contained the 

logs. This is sufficient when the time of a breakdown is known and its cause has to be 

investigated, however, it makes gathering large sets of the data challenging. Luckily the 

support department was already improving the data accessibility when my Thesis started 

and I could access the data easier vis the new dashboard and underlying data architecture 

(Appendix F).    

• Aggregated data saving. 

In order to use machine learning, it is important to have as many feature sets with a 

constant time elapsing between two feature sets. However, the available data was being 

aggregated. This means that, for instance, the one-minute feature sets became aggregated 

to a five-minute feature set after three hours had passed. In order to get a large data set 

with all one-minute feature sets the data should be gathered every three hours, which is 

infeasible for gathering a large data set. So during this analysis, I ensured that the 

aggregating of the feature sets got postponed from three hours to three months so I could 

gather larger amounts of one-minute feature sets.  

• Application features with different times between data points. 

Some feature of the applications outputted their feature values every one minute while 

other features outputted their feature values every five minutes. These outputs cannot be 

used together for machine learning and therefore the time between feature outputs should 

be the same for all features. 

• Error moments give empty feature sets. 

Whenever an error occurred that broke an application down the feature sets were, logically, 

empty as no data can be gathered when an application is down. That is why I investigated 

the one-minute feature sets before a breakdown to find a cause for the breakdown. 

Unfortunately, the inspected feature sets did not show any spikes in the data that could 

have caused the breakdowns. So I was not able to gather any breakdown feature sets during 

this research.   

• No normal behaving data. 

As the error moments give empty data points, in theory, it should be easy to get normal 

behaving error data, the errors are logged after all. Unfortunately, the data that remains, 

when taken away the error logged data, contains feature spikes that are not logged. 

Therefore it is not possible to split the data into normal behaving data and error data 

without an investigation of the data from an expert.  
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Ch 5: Solution tests 
This chapter starts with an introduction to the solution test in section 5.1 before both branches are 

addressed in sections 5.2 and 5.3, supervised and unsupervised respectively. I conclude this chapter 

with a comparison between both outcomes and determine which type has more potential for the 

support department.   

Section 5.1: Solution Test Introduction. 
The support department of CAPE Groep can, in principle, use both supervised and unsupervised 

machine learning in monitoring and maintaining their applications. Supervised machine learning 

might be able to predict future breakdowns, by training the algorithm(s) on the data before 

breakdowns happened in the past and then use the trained algorithms on real-time data. 

Unsupervised machine learning might be able to detect anomalies that cause breakdowns that the 

current thresholds do not detect, by providing a “normal behaving” dataset to the algorithm(s) it 

uses this information to spot differences between the provided data and the real-time data. In order 

to find out which type of machine learning is better applicable to the available or gatherable data, 

both branches will be investigated, in sections 5.2 and 5.3, and compared afterwards in section 5.4. 

Section 5.2: Solution Test Decision Tree: Supervised Branch. 
For implementing supervised classification in their information system the support department of 

CAPE Groep has to label their data as well as balance this labelled data. However, before this can be 

done the support department should conduct a research on breakdown data. If breakdown data is 

indeed gatherable the labelling and balancing of the data can begin.   

The first question to be answered in the predicting breakdowns branch is “Is labelled data 

available?”. Based on the conducted research, addressed in chapter 4, the answer to this first 

question is that the Mendix application data is not labelled. The breakdown moments do not contain 

feature values as the application is down and no data can be collected. When investigating the 

feature sets directly before a breakdown no significant change in the data was found as an indication 

of the upcoming breakdown. However, as the support department is in the middle of improving its 

monitoring and maintaining capabilities with the new dashboard and data architecture the data 

accessibility was not optimal during this research. It might turn out that when a new investigation in 

the data before a breakdown is conducted signs of the future breakdown can be found. This due to 

the fact that the data is better accessible as well as more applications can be investigated. When this 

is the case the data can be labelled and then be used for supervised classification. However, there is 

no guarantee this will be possible.  

The next question, assuming labelled data can be gathered in the future, that arises is “Is the data 

balanced?”. When looking at the collected data it turns out that, even for applications that regularly  

breakdown, the number of feature sets that are not close to breakdowns of applications is 

significantly higher than the number of feature sets that are close to breakdowns. One of the 

datasets I investigated went out of memory 20+ times during one day and even then only 17.48% 

(501) of all its feature sets (2866) was within 15 min. of a breakdown. So around one-fifth of all 

feature sets of an application that regularly breaks down might be used as breakdown information. 

So for the applications that do not regularly breakdown the “normal data” “breakdown data” ratio 

will be around the 1:10. Therefore it can be concluded that the future labelled data will most likely 

be imbalanced.  
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So before the training, testing and implementation of supervised classification algorithms can start 

the support department will have to label and balance its data. In order to get the right data, the 

support department will have to conduct a research into the gathering breakdown examples. When 

these two main requirements for supervised classification are met the training, testing and 

implementation of the algorithms should pose no real difficulties.  

Section 5.3: Solution Test Decision Tree: Unsupervised Branch 
In order to implement unsupervised anomaly detection in the support department’s information 

systems, they have to gather a lot of non-anomalous feature sets and test the algorithms on real-

time data.  

The first question that arises when going through the unsupervised branch of the decision tree is “Is 

normal behaving data available?”. The data research of chapter 4 showed that, when the logged 

errors and breakdowns are excluded from a data set, the remaining data still contains spikes. This 

makes it hard to find out whether or not this data should be categorized as non-anomalous data or 

not. However, a group of experts within the company should be able to classify these data spikes. 

The next question of the decision tree is “Are there some error examples available?”. As there are no 

feature values during breakdowns and the feature sets prior to the breakdown do not provide clear 

changes there are no clearly defined anomalous feature sets available. The lack of anomalous 

feature sets makes testing of the algorithms with a test set not possible. However, the testing of the 

algorithms can also be done with real-time data. By implementing the trained algorithms on the 

real-time data it will start detecting anomalies. Then these anomalies can be investigated by the 

support team to see if there was actually an error or breakdown. Based on the results the algorithms 

could be tweaked to represent the real-time data better.  

So before the support department can implement anomaly detection algorithms they have to 

narrow down when the applications are behaving normal and when not. Then that data should be 

used to train the algorithms and implement the trained algorithms afterwards. Once the algorithms 

start detecting anomalies they have to investigate them. Based on these investigations they can 

determine the usefulness of these algorithms on the real-time data and decide to tweak the 

algorithms accordingly.   

Section 5.4: Supervised vs Unsupervised   
As mentioned before, both types of machine learning are, in principle, useful to monitoring and 

maintaining the Mendix applications. However, the largest encountered difficulty during this 

research was the lack of breakdown data. This has significant impact on the applicability of the 

supervised classification algorithms as these algorithms cannot be trained without breakdown data. 

For the unsupervised anomaly detection the impact is significantly less as the training of the 

algorithms can be done without breakdown data. As investigating the feature sets before 

breakdowns will be a time-consuming work, the dashboard and data architecture are not yet in 

place and there is no way of guaranteeing the right data will be gatherable I would advise focussing 

on unsupervised anomaly detection. Investigating the non-anomalous data peaks will be less time 

consuming than labelling the data, so attain the right data set will be easier. After the right training 

data is gathered and the algorithms are trained, some codes are provided in Appendix E, I would 

advise testing the algorithms on real-time data. Then based on the performance of the algorithms 

they can be tweaked or left out. Once the trained algorithms are properly in place they should be 

able to detect anomalies in the metric data of the applications.   
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Ch6: Conclusions and 

recommendations 
Overall I think the support department can benefit from implementing machine learning algorithms 

in the monitoring and maintaining of the Mendix applications. However, the available Mendix 

application data is not (yet) in line with the data requirements for both supervised and unsupervised 

machine learning. The fact that it was not possible to collect breakdown feature sets and no clearly 

defined normal behaving data set was gatherable the implementation of either one machine 

learning type is infeasible for the moment. However, with the help of the created decision tree, I am 

able to provide some to the point advice for implementing machine learning algorithms in the 

future.  

Of the two types of machine learning, supervised classification and unsupervised anomaly detection, 

I would advise the support department to start with unsupervised anomaly detection. The fact that 

no breakdown data was gatherable makes training of the supervised classification algorithms 

infeasible. An intensive research in the feature sets before application breakdowns might yield 

enough breakdown examples. However, as no breakdown examples were found during this research 

there is no way to guarantee this data will be gathered during a new data investigation. This makes 

focussing on the supervised classification algorithms a riskier endeavour than to focus on the 

unsupervised anomaly detection algorithms.  

In order to be able to test the unsupervised anomaly detection algorithms on the real-time 

application data, a non-anomalous data set should be gathered. This can be done by investigating 

the data peaks of feature sets that are nowhere near to a breakdown. If the support department 

manages to categorize these peaks in either non-anomalous data or anomalous data a training set 

will be gatherable. Then the algorithms, some are provided in Appendix E, can be trained on this 

gathered training set and should afterwards be applied to the real-time data. Based on the 

performance of the algorithms a decision can be made to keep them, tweak them or delete them. If 

the mentioned unsupervised anomaly detection algorithms do not provide the expected outcome of 

the support department it might be worthwhile to investigate other types of unsupervised machine 

learning before starting with supervised classification. This because the attaining of the labelled data 

for supervised classification will be an uncertain and time-consuming endeavour.  

I think that gathering the data for unsupervised anomaly detection is a proper starting point of 

implementing machine learning in the monitoring and maintaining of the Mendix applications. If the 

implementation of the unsupervised anomaly detection algorithms is successful in this process the 

support department, and CAPE Groep as a whole, can start looking for other types of machine 

learning to use in its processes.  
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Appendix A: Research Methodology 
As information systems (IS) are a vital part of this research and a design artefact, describe in chapter 

4, will be delivered I chose to use the Design Science Research Methodology (DSRM) as this 

methodology aligns with creating design artefacts.  

A framework for the DSRM can be found in “A Design Science Research Methodology for 

Information Systems Research” (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007). The 

framework they created “incorporates principles, practices and procedures required to carry out 

such (design science (DS)) research and meets three objectives: it is consistent with prior literature, 

it provides a nominal process model for doing DS research, and it provides a mental model for 

presenting and evaluating DS research in IS.” By keeping these three objectives in mind they made 

sure their DSRM provides a production and presentation framework for design science research in 

information systems. This way they provided “a commonly accepted framework for successfully 

carrying out DS research and a mental model for its presentation”. The DSRM framework they 

created consists of six steps (see Figure 2) 

 

 

 

 

 

 

1. Problem identification and motivation 

During this step, the current process and its problems will be described together with an 

elaboration on the importance of the problem. When done in a proper way the problem is 

clearly stated and the solution will fit the current process perfectly.  

2. Definition of the objectives for a solution 

During this step, the requirements of the solution will be discussed. Besides this, the 

limitations of the expected deliverable will be defined as there is limited time available for 

the research.  

3. Design and development 

During this step, the deliverable is designed and developed. In the case of this research, the 

different methods of machine learning types have been investigated and an artefact has 

been created.  

4. Demonstration 

During this step, the deliverable is tested to see its applicability.  

5. Evaluation 

During this step, the outcomes of the test will be evaluated on how well it solved the 

problem. After the evaluation, the researcher, if needed, goes back to stage three of the 

DSRM to improve its deliverable and continues the following steps afterwards. This loop will 

be repeated until a sufficient problem-solving deliverable is created.  

6. Communication 

During this final step, improvement and implementation recommendations will be given to 

the company as well as a report will be written about the research.  

Figure 10: Design Science Research Methodology Framework 
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Appendix B: Knowledge questions 
1. Problem identification and motivation 

a. How is the support department currently structured? 

b. What is the support department currently improving? 

c. What is the problem the support department wants to get a solution for? 

d. What is the benefit of finding a solution to this problem? 

2. Definition of the objectives for a solution  

a. What is expected of the deliverable(s)? 

i. What are the requirements? 

ii. What limitations can be set up to limit the depth of the deliverable(s)? 

3. Design and development 

a. What machine learning algorithm methods are there? 

i. What are the overarching types of machine learning algorithms? 

ii. What are the characteristics of these types? 

iii. What types best suit what sort of data?  

b. What data is available? What data is useful? 

c. What type of machine learning algorithm suits this dataset best? 

d. What design artefact is desired? 

i. When the data is sufficient for machine learning? 

ii. When the data is insufficient for machine learning? 

4.  Demonstration 

a. How to test the design artefact? 

i. When a machine learning code is written? 

ii. When a decision tree is made? 

5. Evaluation 

a. How do you measure the performance of the design artefact? 

i. Of a machine learning code? 

ii. Of a decision tree? 

b. What steps should be taken when the level of performance is insufficient?  

c. What can be done when testing is not possible due to lack of data? 

6. Communication 

a. How does the company benefit from the design artefact?  

b. What are the implementation recommendations to the company? 

c. What are the improvement recommendations to the company? 
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Appendix C: Statistical Knowledge 
Before the different machine learning algorithms can be discussed the statistical knowledge needs to 

be established. As the three unsupervised algorithms are based on the Gaussian distribution, also 

known as the normal distribution, it is important to know what it looks like and how it works. The 

Gaussian distribution has two inputs, mu and sigma. The mu is the mean, which is the centre point 

of the dataset with 50% of the data to its left and 50% of the data to its right. The sigma is the 

standard deviation, which measures the amount of variation in the dataset. The Gaussian 

distribution is a set of data points that looks like an old clock, in Figure 13 the Gaussian distribution is 

graphed with the mu and sigma.  

 

 

 

 

 

 

In this example, mu = 0 and sigma (σ) is given no value. As the figure shows one standard deviation 

to the right of the mean contains 34.1% of the data, the same goes for one standard deviation to the 

left. The more standard deviations a point is from the mu the less data it will contain, for instance 

when a point is three or more standard deviations away from the mean it falls in 0.1% of the data 

points. This means that the more standard deviations a point is from the mu the lower the 

probability is that it will occur. This is shown in Figure 14 where a standard Gaussian distribution 

with mu = 0 and sigma = 1 is shown.  

  

 

 

 

 

 

 

As the table on the right shows, the probability that a data point will have the value 0 is 39.89%, but 

the father the point is from the mu the lower the probability of occurring is. The probability of a data 

point having the value 1 (or -1) is 24.2%, but for 3 (or -3) it goes down to 0.04%. 

Now that the Gaussian distribution is explained it is important to know what the covariance and the 

variance matrices are. Starting with the variance matrix will be easiest, see Table 3.  

Figure 11: Gaussian Distribution 

z chance

-3 0.004432

-2 0.053991

-1 0.241971

0 0.398942

1 0.241971

2 0.053991

3 0.004432

Figure 12: Gaussian Distribution with Probabilities 
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The variance matrix shows the variance of the different features (variable in Table 3), as, for 

example, random values are used. The variance of a feature is the standard deviation squared and is 

used to measure the spread of the values in a dataset. As it has no correlation taken into account all 

the correlations are set to 0. 

 

 

 

 

 

 

 

 

The covariance matrix that can be seen in Table 4 shows both the variance of the features as well as 

the covariance, which is the relation between the two features.  

 

 

  

Table 3: Variance Matrix 

Table 4: Covariance Matrix 
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Appendix D: Accuracy 
Appendix D-a: Preparing for Supervised Classification Algorithm 

Testing  
For the testing of the algorithms the data should be split. The training set should contain 

approximately 90% of the available data and should contain both error examples and normal 

examples. The test set should contain the rest of the data, approximately 10% and should also 

contain error examples and normal examples. In order to find the best performing algorithm for the 

data at hand the f1-scores, explained in Appendix D-c, of the different algorithms with different 

number of features attached will be calculated. The algorithms should be trained on the training 

data and tested with the test set. This testing is done by calculating the f1-score with different 

numbers of features attached to the algorithms. The highest f1-score for each algorithm will yield an 

optimal combination for that specific algorithm. Then the f1-scores of all algorithms will be 

compared and the algorithm with the highest f1-score can be implemented and used to predict 

errors in new feature sets.  

Appendix D-b: Preparing for Unsupervised Anomaly Detection 

Algorithm Testing. 
Before the training and testing of the algorithms can be done the right data needs to be available. 

First of all, the algorithms need non-anomalous data, in other words, data that is definitely not 

causing errors. Then, in order to test the algorithms, some error examples are required. The 

preferred ratio is five hundred non-anomalous feature sets to one error example (Ng, 2017). Once a 

multitude of this data is available it should be split into three parts. For example, when ten thousand 

non-anomalous feature sets and twenty anomalous feature sets are available the following split is 

used during the Stanford machine learning course. A training set of six thousand non-anomalous 

feature sets, a cross-validation set of two thousand non-anomalous feature sets and ten anomalous 

feature sets and the last set, the test set, should also contain two thousand non-anomalous feature 

sets and ten anomalous feature sets. Tuning the feature selecting and the epsilon determining, 

which is the threshold for detecting anomalies, is done with the f1-score, method of determining the 

accuracy of the detection, of the cross-validation set. The f1-score will be discussed in Appendix D-c. 

By calculating the f1-score for different combinations of features and different values of epsilon the 

combination with the highest f1-score should be chosen for comparing the algorithms among each 

other. Before the algorithms can be compared the chosen combination should be run on the test set 

and output another f1-score. Then after comparing the f1-scores of the three algorithms, the 

algorithm with the highest f1-score can be implemented and used to detect anomalies in new 

feature sets.  

Appendix D-c: Calculating the f1-scores.  
F1-scores provided better accuracy testing than using the conservative accuracy testing method 

where only the overall accuracy is calculated. The conservative accuracy testing adds all the correctly 

predicted/detected data examples together and divides this with the total number of data examples. 

This yields one overall accuracy but based on the number of error examples in the test set this 

accuracy might have no meaning. For instance, when only 1% of the test set contains error examples 

and the algorithms predicts/detects everything as normal the conservative accuracy testing method 

will yield an accuracy of 99% when the algorithm did not predict/detect any error. That is where the 

f1-scores come into play.  
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Even though the required data for supervised and unsupervised learning are different, as addressed 

in the previous two appendices, the testing of the f1-scores are the same, only the usage of the f1-

score is. The f1-score uses the true positive, false positive, true negative, false negative method, 

which is nicely described in Figure 10. 

 

 

 

 

 

 

 

 

 

The benefit of this evaluation method is that it will be clear where the algorithms perform good and 

where they are lacking. When these four accuracies have been calculated the performance of the 

algorithm can be further evaluated by calculating the precision and recall of the outcomes to attain 

the f1-score. The f1-scores can be used to determine what features to use, and for unsupervised 

machine learning specific also what epsilon value to use.  

Calculating the precision tries to answer the question “What proportion of positive identifications 

was actually correct?”. This will give the accuracy of how many of the errors/anomalies it did 

predict/detect correctly when an anomaly/error is set as being the positive outcome (Google 

Developers, 2019).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The calculation of the recall tries to answer the question “What proportion of actual positives was 

identified correctly?”. For supervised data, this would give the percentage of correctly predicted 

errors and for unsupervised data, this would give the percentage of correctly detected anomalies 

(Google Developers, 2019). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

These precision and recall can be calculated as one value, called the F1-score. The closer the F1-

score is to one the better the algorithm performed. The closer the F1-score is to zero the worse the 

algorithm performed (Google Developers, 2019).  

𝐹1 = (
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
) = 2 ×

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

For both machine learning types, the f1-score is used to determine what algorithm can be used best 

for the data that is available. Once an algorithm has achieved a desirable f1-score the algorithm can 

be implemented in the information system and start predicting/detecting errors/anomalies of real-

time data.  

Figure 13: True Positive, False Positive, True Negative and 
False Negative 



38 
 

Appendix E: Python Codes  
Example codes for unsupervised anomaly detection are provided as this approach was tried for the 

available data. Unfortunately, there were no feature sets with error examples to test and evaluate 

the codes. The supervised classification code is lacking as the only code I wrote during preparation 

was eighty blocks long and unclear as it was one of the first codes I wrote.  

Appendix E-a: Unsupervised Anomaly Detection: Univariate  
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Appendix E-b: Unsupervised Anomaly Detection: Multivariate  
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Appendix E-c: Unsupervised Anomaly Detection: Mahalanobis 

Distance  
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Appendix F: New Dashboard and 

Architecture  
The support department is creating a new dashboard, to view real-time health of the applications, 

and behind it a new architecture, to better save and analyse the data, to improve their support 

processes. At the time of writing this report, the support department has to look at the CAPE Service 

Point, the current dashboard, with an overview of the performed health checks and application error 

logs, but they would have to go to the Mendix site to look at the features of the application to see 

the graphs to investigate the errors. With the new architecture that is being developed, both the 

logs and the features can be viewed from the CAPE Service Point itself, with an easy-to-use time and 

error selection system so the breakdown time can easily be accessed and evaluated. This new 

structure is shown in Figure 11.  

The feature data will be gathered from the Mendix applications by using InfluxDB, an open-source 

time-series database that is optimized for fast, high-availability storage and retrieval of time series 

data (InfluxDB, 2019), where it gets linked with the logs in Grafana, a platform specialized in 

analytics and monitoring (Grafana, 2019), together known as the Tick Stack. The logs are gathered 

from the Mendix applications by Elastic Search, a search engine specialized in working with logs 

(Elastic, 2019) before they are transported to Grafana to match the feature data. These programmes 

will make it possible to access both the features and logs in one dashboard.  

 

 

Figure 14: New Dashboard Architecture 


