

Designing a Machine Learning Decision Tree

for Information Systems:
A study into the implementation of supervised and

unsupervised machine learning methods

Bas van Tintelen

BSC Industrial Engineering and Management
s1866494

Conducted on behalf of

Graduate
Bas van Tintelen
s1866494
BSc Industrial Engineering and Management

CAPE Groep BV CAPE Groep BV Supervisor
Transportcentrum 14 Mr. B. Knol
7547 RW Enschede Manager Customer Support
Netherlands CAPE Groep
www.capegroep.nl

University of Twente
Drienerlolaan 5
7522 NB Enschede
Netherlands
www.utwente.nl

University of Twente First Supervisor University of Twente Second Supervisor
Dr. N. Knofius Dr. L. O. Meertens
Postdoc Assistant Professor
Dep. of Industrial Engineering and Dep. of Industrial Engineering and
Business Information Systems Business Information Systems

Preface
Dear Reader,

This report indicates the end of my Bachelor Thesis Assignment for my bachelor Industrial

Engineering Management study at the University of Twente conducted on behalf of CAPE

Groep’s support department. My Bachelor Thesis has been a challenging, time-consuming,

brain-teasing, but above all an interesting and informative experience. During my Bachelor

Thesis Assignment, I explored the possibilities of machine learning in CAPE Groep’s

information systems. This report contains the research I conducted, starting with

preparation and concluding with the results and recommendations to the company.

I would like to start by giving credits where they are due. First of all, I want to thank CAPE

Groep, in particular, the support department, for helping me conducting this research and

aiding me whenever I needed assistance. I especially want to thank Bart Knol, head of the

support department, for guiding me through the weeks and providing the necessary

information needed for this research. Also, I want to thank Gilang Charismadiptya, support

department employee, for guiding me through the different websites and applications to

gain insight into CAPE Groep’s information systems.

Furthermore, I want to thank my supervisors from the University of Twente, Nils Knofius

and Lucas Meertens. Nils assisted me with his machine learning knowledge and provided

essential feedback on the structure of the report. Lucas increased the academic level of the

report by aiding with defining the design artefact and tweaking the writing style of the

report.

I want to end with thanking Kaleb Dan, Wim Klaassen, Ruben Lucas, Thijmen Meijer,

Alexander Stekelenburg, Mariëlle van Tintelen, Frits Tuininga and Armando van Vlastuin

who helped me carry on, provided feedback and gave advice to improve my research.

I hope you will find this report an educational and pleasant read.

Bas van Tintelen.

Enschede, August 2019

Table of Contents
Management Summary .. 5

Reader’s guide .. 6

Report Structure. .. 6

Professional jargon. .. 7

Ch1: Context Analysis .. 9

Section 1.1: CAPE Groep. .. 9

Section 1.2: Support department of CAPE Groep. .. 9

Section 1.3: Action problem. .. 9

Section 1.4: Path to the Core Problem ... 10

Section 1.5: Research objective .. 12

Section 1.6: Measurement of the Solution ... 12

Section 1.7: Motivation ... 12

Ch2: Literature Review .. 13

Section 2.1: Machine Learning .. 13

Section 2.2: Supervised Classification Machine Learning ... 15

Section 2.2-a: Decision Tree. ... 15

Section 2.2-b: Naive Bayes. ... 15

Section 2.2-c: k- Nearest Neighbours (kNN). .. 15

Section 2.2-d: Random Forest. .. 15

Section 2.2-e: Neural Network. ... 15

Section 2.3: Unsupervised Anomaly Detection Machine Learning. .. 16

Section 2.3-a: Anomaly Detection: Univariate Gaussian distribution. ... 16

Section 2.3-b: Anomaly Detection: Multivariate Gaussian Distribution. 17

Section 2.3-c: Anomaly Detection: Mahalanobis Distance. .. 18

Ch3: Solution design ... 19

Section 3.1: Design Artefacts .. 19

Section 3.2: Decision Tree ... 19

Ch4: Data analysis ... 26

Section 4.1: Data analysis ... 26

Ch 5: Solution tests ... 27

Section 5.1: Solution Test Introduction. ... 27

Section 5.2: Solution Test Decision Tree: Supervised Branch. .. 27

Section 5.3: Solution Test Decision Tree: Unsupervised Branch .. 28

Section 5.4: Supervised vs Unsupervised.. 28

Ch6: Conclusions and recommendations ... 29

Bibliography .. 30

Appendix A: Research Methodology .. 32

Appendix B: Knowledge questions ... 33

Appendix C: Statistical Knowledge .. 34

Appendix D: Accuracy ... 36

Appendix D-a: Preparing for Supervised Classification Algorithm Testing 36

Appendix D-b: Preparing for Unsupervised Anomaly Detection Algorithm Testing......................... 36

Appendix D-c: Calculating the f1-scores. .. 36

Appendix E: Python Codes .. 38

Appendix E-a: Unsupervised Anomaly Detection: Univariate .. 38

Appendix E-b: Unsupervised Anomaly Detection: Multivariate ... 39

Appendix E-c: Unsupervised Anomaly Detection: Mahalanobis Distance .. 40

Appendix F: New Dashboard and Architecture .. 41

5

Management Summary
A decision tree for predicting and detecting software breakdowns using machine learning

techniques has been created during this research. It provides guidance for implementing

suitable machine learning algorithms in information systems. The created decision tree is

focused on both the supervised classification and unsupervised anomaly detection

algorithms. By going through the decision tree some data shortcomings might be found.

Several options to tackle these shortcomings are provided during an elaboration of the

decision tree. When the decision tree is followed the practitioner has gained an overview of

machine learning requirements that are not yet fulfilled as well as several methods to fulfil

the unmet requirements. The application of the decision tree is demonstrated based on the

situation of the company’s support department.

The researched machine learning types, supervised classification and unsupervised anomaly

detection, can both be used to, respectively, predict and detect breakdowns of software.

Both types need different input and therefore provide different possibilities. Supervised

classification needs data that contains a label for each feature set whether or not an error

occurred. This data is then used to predict whether or not an error can be expected for a

new feature set. The downside of this method is that labelling the data often turns out to be

a time-consuming and costly endeavour. Unsupervised anomaly detection does not need

labelled data but needs data with a lot of normal behaving feature sets. The algorithms use

this data to detect abnormal behaviour in new feature sets which might cause errors. The

drawback is that normal behaving data and error data are sometimes hard to distinguish.

CAPE Groep’s support department has to monitor and maintain a growing number of

Mendix and eMagiz applications. As this makes up a large portion of their day-to-day tasks,

they want to know beforehand if and when their applications might breakdown, so they can

preemptively maintain their applications and provide a higher uptime to their clients. They

are changing their data saving architecture as well as their monitoring dashboard to get a

better insight into the health status of the applications. They want to start with

implementing types of artificial intelligence that will help them maintain and monitor their

applications. However, the stored Mendix application data does not yet fulfil the

requirements of either machine learning type.

The application of the decision tree on the support department’s current situation yielded

that the support department should focus on unsupervised anomaly detection. This is the

preferred machine learning type due to the lack of breakdown data, which makes it

impossible to train the supervised classification algorithms. In order to start using

unsupervised anomaly detection, the support department has to investigate the metric data

of the applications to create a dataset with only non-anomalous feature sets. Once the

algorithms have been trained on this dataset they should be implemented on the real-time

application data. Once the algorithms are properly aligned with the application data they

should be able to detect anomalies and inform the support department so they can act

accordingly and perhaps prevent the application from breaking down.

6

Reader’s guide
In this part, I will address the structure of the report as well as the abbreviations and definitions I

used.

Report Structure.
My report contains six chapters and three appendices.

Chapter 1 | Context Analysis In this chapter I describe both the company and the support

department on which behalf this research is conducted. I will continue by defining the action

problem and the steps I took to get to the core problem of this research. After identifying the core

problem I will address the research objective and measurement of the solution. Then I address the

motivation behind solving this core problem. I will conclude this chapter with a list of knowledge

questions that I had to answer and discuss the used research methodology.

Chapter 2 | Literature Review During this chapter I will elaborate on the literature reviews I

conducted for the needed machine learning knowledge. I will start the chapter with an introduction

of machine learning and its types. The next two sections of this chapter are devoted to supervised

classification and unsupervised anomaly detection and their most applicable algorithms. I will

conclude this chapter with a description of how to test and compare the different algorithms to find

the most applicable algorithm for a similar data set.

Chapter 3 | Solution Design In this chapter I will explain the created design artefact, a decision tree

with branches for both supervised classification and unsupervised anomaly detection, in detail. All

the steps of the decision tree are addressed and some specific recommendations will be provided in

the steps.

Chapter 4 | Data Analysis During this chapter I address the data analysis on the Mendix applications

that I conducted during this research.

Chapter 5 | Solution Tests This chapter describes the usage of the decision tree on the situation of

the support department. I will go step by step through both branches of the decision tree to find out

what requirements the support department lacks for successfully implementing machine learning in

their information systems. I conclude this chapter by comparing the two types and deducing which

of the two is better applicable to the situation of the company.

Chapter 6 | Conclusion and Recommendations The chapter will conclude my bachelor thesis

research with the conclusion of the research and the recommendations given to the support

department of CAPE Groep based on the design artefact.

Appendices In the appendices I put the information that was not suitable for the report itself but still

contains valuable information. During the report, the appendices are mentioned when extra

information might be useful for understanding that section.

7

Professional jargon.
Action problem: This is the problem that CAPE Groep wants the

researcher to solve.

Amazon Sagemaker: Amazon Webservices’ machine learning platform.

Amazon Webservices: Webservice provided by Amazon to provides on-

demand cloud computing platforms.

Artificial Intelligence: The theory and development of computer systems

able to perform tasks normally requiring human

intelligence, such as visual perception, speech

recognition, decision-making, and translation

between languages.

Core problem: This is the problem that, when solving, tackles the

action problem of CAPE Groep.

Data set: Set of feature sets.

Design Science Research Methodology: The Design Science Research Methodology is a

commonly accepted framework for successfully

carrying out design science research and a mental

model for its presentation.

eMagiz: Model-driven development platform used by CAPE

Groep to develop business-specific busses to create

integration between the current systems of a

company and possibly new Mendix application(s).

Features: These are indicators like CPU usage and memory

usage of the applications.

Feature set: Set of feature values at a corresponding moment in

time.

Feature value: One value of one feature.

Grafana: This is a platform specialized in analytics and

monitoring.

Health checks: Time-specific evaluation of the status of the

applications. When something weird is spotted

maintenance of the application might be needed.

InfluxDB: This is an open-source time-series database that is

optimized for fast, high-availability storage and

retrieval of time series data

Information systems: Systems that helps organize and analyse data.

Labelled data: Labelled data consists of features together with a

label like anomalous or non-anomalous. The feature

8

data is then most often used to predict the label

outcome.

Mendix: Model-driven development platform used by CAPE

Groep to develop business-specific applications to

improve (primary) processes.

Prio1 list: This is a list of all the applications that broke down

and that need repairing.

Problem cluster: This is an overview of the action problem, possible

core problems and in between causes.

Tick Stack: This is the combination of InfluxDB and Grafana.

Unlabelled data: Unlabelled data consists only of features with no

label, so the outcome of the features is unknown.

9

Ch1: Context Analysis
In sections 1.1 and 1.2 I will introduce CAPE Groep and its support department respectively. Then in

section 1.3, the action problem will be defined before the path to the core problem will be

investigated in section 1.4. The research objective and measurement of the solution are addressed

in sections 1.5 and 1.6. This chapter will conclude by describing the motivation behind the core

problem in Section 1.7.

Section 1.1: CAPE Groep.
CAPE Groep is an information technology consultancy company that is specialised in improving other

businesses’ processes by offering several services. These services concern the development and

integration of business-specific software, the connection between different business applications to

work cohesively and their use of their business intelligence to give sector-specific advice. They

achieve this by using the model-driven development platforms Mendix and eMagiz. Mendix is used

to develop business-specific applications and eMagiz creates the integration between the business’

current information technology systems and the (possibly) new Mendix application(s).

Section 1.2: Support department of CAPE Groep.
The support department’s main responsibilities are maintaining and monitoring both Mendix

applications and Emagiz busses, each with one specialized support member assigned to it. The

support department’s manager helps to solve application breakdowns but spends most of his time in

innovating the current support process and structure. For the bigger part of the day, the support

members are busy with working through the prio1 list, which contains all notifications of

applications that went down, as well as providing service to clients that are calling them.

Section 1.3: Action problem.
The support department wants to reduce the number of application breakdowns so their customers

have less downtime and the support department can spend more time on further improving their

processes and services. A cause for the rise in the number of application breakdowns may lie in the

significant growth of CAPE Groep as a company. At the start of 2018, the support department had to

maintain sixty-seven applications which grew to ninety-seven applications at the end of 2018. The

estimated number of applications at the end of 2019 is over two hundred. With this significant

growth in applications the support department had to spend more time on repairing applications

that broke down. This resulted in a reduction of so-called health checks, which give the status of an

application at that specific point in time. The health checks are performed to actively maintain the

applications, so a reduction in health checks result in less actively maintained applications. This leads

to an increase in application breakdowns.

Based on preliminary analysis and discussion with the manager of the support department, the

following action problem was identified: “the total time spend at repairing the unexpected

application breakdowns is too high”. The action problem is the problem that is being tackled

indirectly by solving the core problem, which I describe in section 1.4. To ensure multiple possible

core problems would be identified I chose to make the action problem time related instead of

number related. Furthermore, I also wanted to specify the action problem to applications that broke

down without prior knowledge, so the “reduced time for health checks” was taken into account,

hence the “unexpected breakdowns” in the action problem. The core problem for solving this action

problem is described in section 1.4.

10

Section 1.4: Path to the Core Problem

The found core problem is “number of repetitive tasks for health checks is too high” and will be

solved by investigating the possibilities of machine learning. I identified the core problem by finding

direct causes to the action problem and expending these with associated direct causes until no more

causes were found, these causes together form a so-called problem cluster (Heerkens & van

Winden, 2012). This problem cluster is shown in Figure 1.

The problem cluster shows the four possible core problems I found to solve the action problem. It

turns out the formulation the action problem time related two direct causes to the action problem

were found, instead of one direct cause if I had chosen for a number related action problem. The

two found direct causes are “the number of breakdowns is too high” (number related) and “the time

spend on each breakdown is too high” (time-related). I expanded both direct causes with other

causes, which in the end yielded two possible time-related core problems and two possible number-

related core problems. To show the connection between the possible core problems and the action

problem I chose to describe the relation from core problem to action problem. This will give a better

understanding of the connection between the two than when the connections are explained from

action problem to core problem.

The four possible core problems that were found are:

1. Number of applications per support employee is too high.

Monitoring and maintaining over a hundred applications is quite significant for three

support employees. As every day some applications break down they have to spend time

repairing the applications instead of monitoring them. This means that fewer applications

Figure 1: Problem Cluster from Action Problem to Core Problem

11

are maintained and therefore the problems are not spotted and breakdowns not prevented.

This results in more applications breaking down.

2. Number of repetitive tasks for health checks is too high.

The health checks are similar for different applications. As there are over a hundred

applications to maintain this is a lot of repetitive and time-consuming work. This means that

the available time for performing health checks is not efficient. Therefore a lot of

applications are not monitored even if some time is available for health checks. This results

in more applications breaking down.

3. No clear communication between client, consultant and support.

The lack of communication between the client, consultant and support is two-folded. On the

one hand, the lack of communication between the client and support results in a lot of time

wasted on understanding the exact problem of the breakdown. On the other hand, the lack

of communication, in the form of feedback, between the consultant and support leads to

minimal changes in the application building process. This causes high time requirements for

solving application breakdowns

4. Every application is differently structured.

There is no uniform application building structure. Therefore applications are differently

structured and more time is needed to get an understanding of the cause of the breakdown.

This causes high time requirements for solving application breakdowns.

One of these four possible core problems had to be chosen as core problem for this research. This

decision is based on the impact that a solution for each possible core problem has on the action

problem. The one possible core problem with the highest impact is chosen as core problem of this

research.

After talking with the manager of the support department it became clear what the options were.

Even though every application is (slightly) differently structured and there is no clear communication

between the different parties, the solution would be some sort of a uniform standard within the

company for both problems. However, the impact on the action problem from both possible core

problems would not be that high, as the amount of time spent on understanding the application is

not significant compared to the amount of time needed to repair the number of applications that

breakdown according to the support manager’s expertise.

This leaves two possible number-related core problems to be discussed. Hiring more employees

would reduce the application per employee ratio, but there is no intent to significantly increase the

number of support department employees as it is not in line with the innovation plan of the support

department.

This left finding a solution for the possible core problem “number of repetitive tasks for health

checks is too high” as most impactful of the four possible core problems. This core problem has been

investigated to solve the action problem of the support department. The support department is

already working on a new monitoring dashboard to have access to the real-time health of the

applications. This dashboard will use thresholds to represent the real-time health of the applications,

together with real-time access to the graphs and logs of the applications. However, CAPE Groep

wants to innovate even more and start with integrating different types of artificial intelligence. They

want to know the possibilities of integrating machine learning in their monitoring and maintaining of

the applications.

12

Section 1.5: Research objective
The design artefact will be a decision tree that provides guidance to the support department on

implementing suitable machine learning algorithms. The decision tree will focus on the two most

commonly used types of machine learning, the supervised classification algorithms as well as the

unsupervised anomaly detection algorithms.

The possibilities of implementing machine learning algorithms in the monitoring and maintaining

processes of the support department will be investigated. However, due to the limited time for this

Bachelor Thesis providing a working machine learning code that can be implemented is not feasible.

So instead a decision tree that guides the support department in integrating machine learning

algorithms will be provided. This decision tree will be universal so other practitioners besides CAPE

Groep’s support department can use this guiding artefact to implement suitable machine learning

algorithms in their information systems. As machine learning is a broad topic and limited time is

available I had to limit the decision tree to the two most used machine learning types, supervised

classification and unsupervised anomaly detection. The used methodology of creating this decision

tree is shown in Appendix A and the knowledge questions that needed answering are shown in

Appendix B.

To give adequate recommendations to the support department I will apply the created decision tree

to the situation of the support department. This will yield a list of missing requirements and steps to

take in order to implement machine learning algorithms in the monitoring and maintaining of the

applications.

Section 1.6: Measurement of the Solution

Once the given recommendation, originating from applying the decision tree, are processed and the

right data is available to implement machine learning in the support departments information

systems the number of unexpected application breakdowns should reduce. This can be measured by

counting the number of breakdowns per project, which can consist of multiple applications, and

compare this to the number of breakdown per project of previous years. When the number of

breakdowns is less than the years before the implementation of machine learning did most likely

have a positive impact on the number of breakdowns. However, as these are yearly based statistics

and the implementation will not take place during the executing of this research it will not be

possible to measure the effectiveness.

Section 1.7: Motivation
Reducing the number of application breakdowns is important for both the support department and

the clients. The support department is every day busy with “day-to-day firefighting” which requires

so much time that other responsibilities might not be performed. However, this “day-to-day

firefighting” impacts the client's processes as the applications cannot be used while a breakdown is

occurring. To increase the importance of this problem even more, most of the applications are used

in the client’s primary processes and therefore have a significant impact on the client’s business. As

CAPE Groep is providing (almost) all applications of company X, a large company, a breakdown of an

application will result in unsatisfied customers of company X. This, in turn, might give CAPE Groep

bad publicity. That is why finding a solution for all the application breakdowns is important.

13

Ch2: Literature Review
Section 2.1: Machine Learning
There are four different types of machine learning, however, I chose to focus on the two most

commonly used types, supervised machine learning and unsupervised machine learning. In advance

to shortly describing these four machine learning types, and going in-depth on supervised and

unsupervised machine learning later on, I will thoroughly explain the concept of machine learning.

The CEO of Emerj, a company that has knowledge on the impact of artificial intelligence in

businesses, formulated the following aggregated definition of machine learning based on the

expertise of several companies (i.e. Nvidia) and Universities.

“machine learning is the science of getting computers to learn and act like humans do, and improve

their learning over time in autonomous fashion, by feeding them data and information in the form of

observation and real-world interactions.” (Faggella, 2019)

So, basically, the concept of machine learning is teaching a computer how to learn from data and let

it predict or detect patterns/outcomes which makes the job of the user easier. There may only be

four main machine learning types, but together they contain a lot of different methods (see Figure

3).

As Figure 3 shows there are machine learning types that require target variables and some that do

not require target variables. Target variables are labelled feature sets. When no target variables are

required no labelled data is needed. Table 1 shows the difference between labelled and unlabelled

data.

Figure 2: machine learning Types (Ivan, 2015)

Table 1: Labelled Data vs Unlabelled Data

14

Labelled data consists of a set of features together with an indication of that data, the label. In Table

1 the labelled data is whether or not the day is good for hiking or not. If the data does not contain a

label that gives an indication of that data it is called unlabelled data. The rest of the section will

describe the different types of machine learning.

First, there is supervised machine learning. This type of machine learning needs labelled data in

order to accurately label a new feature set, by either classifying new feature sets (classification) or

predicting the value of new feature sets (regression), both are shown in Figure 4. The best way to

show the classification approach is to use a popular example, the Titanic: machine learning from

Disaster challenge on Kaggle.com. They provide a dataset with all sorts of passenger data (i.e. age,

sex and travel class) together with the information if the passenger survived the disaster or not. By

using classification the algorithm will try to find a pattern in the provided dataset to learn what

criteria have the most influence on whether a passenger survived or not. The written machine

learning code will be tested on another dataset, without the survival information, and predicts

whether or not a passenger would have survived the disaster (Kaggle, 2012). Another frequently

used application of classification is Medical Imaging, where classification is used to predict whether a

tumour is malicious or not. A frequently used example of the regression approach is house pricing.

The data contains several house features (i.e. size, number of bedrooms, location) as well as the

selling price of the house. This data is used to teach the computer what feature values lead to what

selling prices and it will, therefore, be possible to predict the selling price of a house based on a

feature set alone (Ng, 2017).

The second type of machine learning is unsupervised machine learning. Contrary to supervised

machine learning there is no labelled data present and therefore the classification and regression

methods do not work. This type is split in clustering and association. When clustering the machine

learning algorithm tries to split the data set in two or more clusters based on the given dataset.

There are a lot of applications for this type of unsupervised learning, for instance, it can be used for

data reduction by finding representatives data points for homogeneous groups, finding useful and

suitable groupings for data classes and it can be used to find unusual data points (Priy Surya, 2019).

When using association the machine learning algorithm tries to mine and extract rules and patterns

from the dataset to explain the relationship between the different features. This is often used to get

insight into businesses’ and the organisation’s huge data repositories (Ivan, 2015).

Then there is semi-supervised machine learning which is a combination of supervised machine

learning and unsupervised machine learning, therefore, it uses both classification and clustering. This

type is most often used for voice recognition and web content classification (Rodriquez, 2017).

Figure 3: Classification and Regression (Soni, 2018)

15

Finally, there is reinforcement learning which can be used both on labelled data and unlabeled data.

Reinforcement learning works differently from the other types of machine learning as reinforcement

learning uses a reward system. By subjecting an agent to an environment and rewarding or

punishing the agent based on certain actions the agent will learn what is expected of him. By using

this approach the computer will be able to learn how to drive a car, finding the shortest way through

a maze and learning how to play a video game (Simonini, 2018)(Ng, 2017).

Section 2.2: Supervised Classification Machine Learning
There are a lot of supervised classification algorithms available and they all need labelled data to

gain an understanding of the data and start predicting errors. Every algorithm has benefits and

disadvantages and based on the available data one algorithms might perform better than another.

The supervised classification algorithms that will be discussed are general and frequently used by

practitioners. This does not mean that these are the only algorithms that have to be considered

during training and testing. They can, however, be used as a starting point for machine learning as

some will have pretty decent accuracy for the data the practitioners might have available. The

following algorithms will be described. Decision Tree, Naive Bayes, k- Nearest Neighbours (kNN),

Random Forest, Neural Network (Sidana, 2017)(Raina & Shafi, 2015).

Section 2.2-a: Decision Tree.
The Decision Tree structures the data in the form of a tree with decision nodes, moments where a

decision has to be made, and leaf nodes, which shows the final classification based on the decision.

By going through this created decision tree the algorithm will determine the new label by making

decisions at the decision nodes, like did the CPU usage transcend 10%.

Section 2.2-b: Naive Bayes.
The Naive Bayes classifier assumes that every feature of a data set contributes an equal amount to

the probability. The algorithm does not take the connections between features into account which

makes this one of the simplest algorithms for supervised classification. Because of the simplicity of

the algorithms, it is perfectly suited for very large data sets and practise shows that it can

outperform highly sophisticated classification methods.

Section 2.2-c: k- Nearest Neighbours (kNN).
The k- nearest neighbour tries to learn how to label new feature sets based on the labelled data. This

is done by looking at the label of the nearest neighbours of a feature value of a new feature set.

Every label found adds to that label count of the feature set and the label with the most, so-called,

votes is set as the label of this new feature set. The value of “k” determines how many neighbours

are taken into account for each feature value.

Section 2.2-d: Random Forest.
The method, like the Decision Tree, creates decision trees based on the labelled data. However, this

algorithm creates multiple decision trees and outputs the label that was outputted by most of the

decision trees for a new feature set.

Section 2.2-e: Neural Network.
The Neural Network is best explained with Figure 5. The features of the feature set serve as input,

each with an individual input orb, of the hidden layer. The hidden layer then calculates an output

with an (often nonlinear) function and passes the output on to the next layer. These functions take

into account the weights assigned to their inputs. These weights are determined during the training

of the data set.

16

Section 2.3: Unsupervised Anomaly Detection Machine Learning.
There are a lot of different sorts of unsupervised machine learning approaches, but the anomaly

detection method of Andrew Ng of Stanford University stood out. This method is used when

(almost) no labelled data is available and the data comes from machines or applications, which suits

the support department’s information systems.

Anomaly detection is a machine learning method where, based on “normal behaviour” data, the

algorithm tries to find “anomalous behaving” feature sets in a new data set. This approach is based

on the Gaussian distribution, also known as the normal distribution. It calculates the mean, called

mu, and standard deviation, called sigma, for each feature of a large data set. As the data set

contains a lot of feature sets it is not a problem if some “error data points” are present in the data

set as it will get filtered out. However, when too many error data slips into the data set the whole

distribution changes and the algorithms might not detect the right anomalies. According to Andrew

Ng also features that are not following the Gaussian distribution can be used for this approach,

however, a Gaussian distribution is preferred (Ng, 2017). The course of Andrew Ng of Stanford

University covers two approaches, the Univariate and Multivariate Gaussian distributions. When

learning about these two approaches a third, somewhat similar, approach was found, called the

Mahalanobis distance. As these algorithms differ from each other they are all discussed in the

following three sections. All these three algorithms are based on statistics and therefore an overview

of the used statistics can be found in Appendix C.

Section 2.3-a: Anomaly Detection: Univariate Gaussian distribution.
The Univariate Gaussian Distribution uses the mean and standard deviation of each feature to

determine the probability of a feature value occurring. Figure 6 shows the formula of calculating the

probability of a feature value occurring as well as the statistical ways to determine the mu and

sigma.

After calculating the mu and sigma for each feature it will be possible to calculate the probabilities of

new feature values with the formula shown in Figure 6. Once the probabilities of all feature values of

a new feature set are calculated, the probability of the whole feature set can be determined by

multiplying all of the feature probabilities. Then this probability is compared to the value of epsilon,

see Appendix D-b for a determination of the epsilon value. When the probability is lower than the

epsilon the feature set is detected as an anomaly by the algorithm. An example algorithm can be

found in Appendix E-a.

Figure 4: Neural Network Overview

17

Section 2.3-b: Anomaly Detection: Multivariate Gaussian Distribution.
The Multivariate Gaussian distribution is closely related to the Univariate Gaussian distribution with

one slight variation. Instead of calculating the probabilities of a new feature value individually and

multiplying them afterwards, it calculates the probability of a feature set occurring in one go by

using the covariance matrix of the features. The covariance does not only contain the variances of

each feature but also the correlation between two features. The formula, as well as the calculation

of the mu and covariance matrix, are shown in Figure 7.

The mu is calculated the same for the Univariate and Multivariate Gaussian distribution. However,

the sigma of the Univariate Gaussian distribution is changed to the covariance matrix for the

Multivariate Gaussian distribution.

The added value of the Multivariate Gaussian distribution compared to the Univariate Gaussian

distribution is shown in Figure 8.

Whereas the Univariate Gaussian distribution draws circles over the feature sets, the Multivariate

Gaussian distribution also takes the correlation between the different features into account. This is

shown in the ellipses around the feature sets. As the figure shows based on the correlation of the

two features the red dots should have been spotted as anomalies. As the Univariate Gaussian

distribution lacks the correlation of the features it did not spot the anomalies, but the Multivariate

Gaussian distribution did spot them.

Figure 6: Univariate Gaussian Distribution (Ihler, 2012) Figure 5: Multivariate Gaussian Distribution (Ihler, 2012)

Figure 7: Univariate Gaussian Distribution vs Multivariate Gaussian Distribution

18

There are also a few other things to take into account when choosing between Univariate Gaussian

distribution and Multivariate Gaussian distribution. When using the Multivariate version of the

Gaussian distribution the number of features may not be too large as more features require more

computational power. The reason for this is that the inverse of a matrix has to be calculated and

larger matrices are harder to invert than smaller matrices. Also, the dataset of the Multivariate

Gaussian should be at least ten times bigger than the number of features to get good values.

Besides, when the number of features is bigger than the dataset, this option is impossible to use as

than the matrix is not invertible. An example algorithm can be found in Appendix E-b.

Section 2.3-c: Anomaly Detection: Mahalanobis Distance.
The final researched algorithm is the Anomaly Detection: Mahalanobis Distance. This method uses

the mu and covariance matrix of the different features to calculate the Mahalanobis distance that a

feature set is away from the centre of the dataset. The formula for the Mahalanobis distance can be

found in Figure 9 (Machine Learning Plus, 2019). See Appendix E-c for an example code.

This Mahalanobis distance value is then compared to the chi-square test with (number of features

minus one) degrees of freedom and when the Mahalanobis distance surpasses the chi-square test

value it is detected as an anomaly. The Chi-square values can be found in Table 2.

Figure 8: Mahalanobis Distance Formula

Table 2: Level of Significance by n-1 Degrees of
Freedom

19

Ch3: Solution design
During this chapter, I will explain my solution design by first introducing the chosen design artefact

in section 3.1. Then in section 3.2, the created design artefact is discussed step by step in full detail.

Section 3.1: Design Artefacts

As design artefact, I created a decision tree that goes both over the requirements for predicting

errors, supervised classification, and detecting anomalies, unsupervised anomaly detection. The

decision tree is designed to be neat and simple, so far that it is possible for a challenging subject as

machine learning. I tried to keep the number of steps and number of words as low as possible to

keep the decision tree clear and consistent. The decision tree is based on information gathered

during literature studies, as addressed in chapter 2. The rest of this chapter is all about explaining

the created decision tree.

Section 3.2: Decision Tree
The created decision tree will be explained by addressing all the steps it contains subsequently, first

for predicting errors and then for detecting anomalies. The whole decision tree is shown in Figure

12.

Figure 9: Decision Tree

20

1. What is the goal?

By answering this question the machine learning type is chosen and the corresponding

requirements and approach to implementation are given during subsequent steps. When

predicting errors is the intended use of machine learning step two will be next, if detection

anomalies is the objective step nine will be next.

2. Is labelled data available?

Labelled data is the key requirement for supervised classification and therefore of utmost

importance. When no labelled data, as mentioned in section 2.1, is available it should be

gathered. To get the practitioner started on labelling the data some labelling techniques are

given at step three of the decision tree. If the data is already labelled step four will address

the balance of the labels in the data.

3. Label the data.

Gathering labelled data is a time-consuming, effortful and challenging endeavour. It not only

requires the expertise of a frequent user of the data, or application/machine which produces

the data, but also machine learning knowledge and experience to adequately direct the

experts on gathering/labelling the data. There are several methods that help with labelling

data. The practitioner should decide whether to use one of these methods or find some

other labelling approaches to gather labelled data as every data set is different and might

need a different labelling method, that might not be mentioned here. Several methods of

labelling data, with their pros and cons, that might help the practitioner start with gathering

labelled data are (Altexsoft, 2018):

• Internal labelling:

Assign an in-house team to the task. This ensures high accuracy of the labelled data

as the team knows the data and its current use. It also will be possible to track the

labelling progress as the labelling is done within the company. However, this

labelling requires a lot of time, which might result in high costs, and lack of machine

learning knowledge within the team might lead to inefficient labelling.

• Outsourcing:

Recruit temporary employees to label the data. This makes sure that the right skills

for the labelling team can be gathered to effectively label the data. However, the

newly assembled team needs an organized workflow by a manager to execute their

tasks.

• Crowdsourcing:

Cooperate with freelancers from crowdsourcing platforms. This will reduce the cost

of labelling data, as the freelancers are funded by multiple companies/people. The

freelancers are also experienced in labelling the data so it will not take too long to

get results. However, as the freelancers are not an employee of the company the

results might have less quality than intended.

• Specialized outsourcing companies:

Hire an external team to label the data. As a specialized company is hired the results

have a high quality, as defined in the contract. However, the costs of hiring an

external company to label the data are often quite high.

• Synthetic labelling:

Use algorithms to created synthetic data that can be used as stand-in for the

21

available data. This will ensure that no third party will get hands-on sensitive and

regulated data. This will also make the training of the algorithms easier as there are

no mismatches and gaps in the data. Overall this is a cost- and time-effective

method of labelling the data. The big downside of this approach is that high

computational power is required.

• Data programming:

Use scripts to label the data. This is an automated process and yield fast results.

However, the quality of the data set will be less then experts labelled the data.

No matter what type of data labelling will be used it is recommended to have an employee

with machine learning experience overlooking/guiding the process to ensure the desired

labelled data is gathered. Before a deeper look is taking into the labelling of the data it is

important to look at subsequent steps of this decision tree to see how the data is used and

what other requirements there are. It might be possible to gather several requirements

during one data-gathering session.

4. Is the data balanced?

The data should contain both feature sets with errors/breakdowns and feature sets that

behave normally. However, when one of the feature sets contains way more samples than

the other the algorithms will have trouble predicting. Even though, there is not a formally

defined distribution that indicates an imbalance in the data the rule of thumb is that a data

set is imbalanced when the labelled feature sets have a 1:10 ratio (Datascience, 2016). This

means that when there are ten times as many feature sets of one label than another it is

said to be imbalanced and therefore would benefit from balancing techniques. When the

data is imbalanced step five will provide some balancing methods to investigate. When the

data is balanced enough the training of the algorithms is explained at step six.

5. Balance the data.

There are several methods to counter imbalance in data but, just like with labelling the data,

there is no uniform way to do this. Some methods that are worth investigating are (for

detailed explanation the article “Fighting Imbalanced Data Set with code Examples” (Wei,

2019) might be useful):

• Gathering new, most likely error, data examples.

Often the imbalance comes from the lack of error examples and therefore gathering

some extra would be helpful to balance the data. However, in most cases, this is not

possible as encountering an error would have significant impact on the company

and other people (e.g. an aeroplane engine or assembly line failing).

• Methods to level the data.

It is possible to changes the number of feature examples to achieve a more balanced

distribution. Some examples, with their pros and cons, are:

o Under-sampling.

By reducing the number of data samples of the majority feature set(s) a

more balanced distribution can be attained. This also reduces the run time

of the algorithms and needed storage capacity for the data, however, it

might also cut feature samples that contain important information for the

algorithms and reduces their effectiveness.

o Over-sampling.

By increasing the number of data samples of the minority feature set(s) a

22

more balanced distribution can be attained. This eliminates the downside of

under-sampling as no data is deleted, but might lead to overfitting since

feature data is replicated.

• Algorithms to level the data.

Algorithms can be used to modify the bias towards majority feature sets of the

selected machine learning algorithms. This is a challenging method to use and

therefore it requires a good understanding of both the current machine learning

algorithm as well as the by algorithms modified version. Also, the precise reasons

why the machine learning algorithm is failing to use the current data distribution is

needed. The most used algorithms are cost-sensitive approaches.

o Cost-sensitive approaches.

This type of learning algorithms take the misclassification costs, and possibly

other types of costs, in consideration and tries to minimize the total costs of

the predictions. This method is explained in-depth in “Cost-Sensitive

Learning and the Class Imbalance Problem” (Ling & Sheng, 2008).

• Weight the labels.

By adding weight to the labels, to indicate their significance, the algorithm will

adjust its predictions accordingly. However, assigning the right weight to the label(s)

is not an easy task and will require experience and expertise of machine learning.

If none of these methods are of any help to attain a more balanced distribution a study in

other methods will be necessary. There are countless methods to balance data and an

applicable method might be found this way. Once the data is balanced enough a start can be

made with training the algorithms, explained at step 6.

6. Train algorithms.

Now that the right data is at hand the algorithms can be trained. This is often done by

splitting the available data into two sets, the training set that contains 90% of the data and

test set that contains 10% of the data. Make sure to randomly shuffle the data beforehand.

This will ensure that the error examples are better distributed over the whole data set, as it

will split the, often clustered, errors. Then it is time to train the different classification

algorithms, some good algorithms to start with are:

• Decision Tree.

• Naive Bayes.

• k- Nearest Neighbours (kNN)

• Random Forest

• Neural Network.

These algorithms are explained in sections 2.2-a to 2.2-e. Once the algorithms are trained

the practitioner should go to step five to compare the performance of the algorithms with

different number of features. The evaluation and feature selection of the algorithms, as

addressed in step seven, has to be done after the algorithms have been trained.

7. Compare algorithms.

The evaluation and feature selection of the algorithms are done by calculating the f1-score

by testing the algorithms on the test set, explained in Appendix D-c. By calculating this f1-

score of all algorithms with different sets of features for each algorithm the best

combination of features will be found for each algorithm individually. Then these f1-scores,

23

the highest-scoring feature combination of each algorithm, should be compared. The

algorithm with the highest f1-score, that contains that algorithms best feature combination,

will be chosen as the best algorithm for this data. When the best performing algorithm is

found it should be implemented, as shortly described in step eight.

8. Implement the algorithms.

The implementation of the best performing algorithm is different for every dataset. There

are, however, a few things to keep in mind while implementing the algorithm.

• Access to real-time data.

The algorithm should have access to the real-time data to predict the errors as

quickly as possible because the longer it takes to predict the error the longer it will

take to handle the error.

• Attach an alarm.

The algorithm will start predicting errors and therefore an alarm should be attached

to an error prediction so it is known when an error is expected. Then the predicted

error can be inspected and, when predicted correctly, fixed.

• Evaluate the algorithm.

By checking whether or not the algorithm accurately predicts the errors valuable

information is gathered. Based on the performance of the algorithm the decision to

adjust it or not can be made.

• Consider automatically updating the training set.

In some cases, the system/machine data will evolve over time and will gain or lose

certain errors. This means that, when the algorithm did not get updated while the

system/machine evolved, the algorithm might start predicting errors when nothing

is going on and not predict errors when something is going on. By updating the

training data of the algorithm this can be prevented. However, it is also possible that

a change in the data is indeed a developing harbinger. When the training set is being

updated with this data it will learn that this change is not worrisome and therefore

not worth predicting. It depends on the available data and the reason for

implementation when automatically updating the algorithms is useful. Automatically

updating the training set should be thought of by each machine learning

implementation.

9. Is normal behaving data available?

Unsupervised anomaly detection does not need labelled data to train the algorithms.

Instead, these type of algorithms needs normal behaving data to learn when the

system/machine is working as intended. Therefore a data set that only contains normal

behaving feature sets is needed. If this data is available the next requirement should be

checked at step eleven. If this data is not available step ten should be investigated.

10. Gather normal behaving data.

Gathering the normal behaving data is necessary for calculating the mean, standard

deviation and covariance of the features to train the algorithms. Gathering this data will be

less challenging then labelling a dataset. However, the expertise of a frequent user of the

data is vital for gathering the feature sets that are considered normal and those that are not.

When also the benefits of supervised learning want to be attained it might be best to label

24

the data as described at step three as both data requirement will be fulfilled this way. When

only normal behaving data is needed a combination of logs and graphs might help filter the

errors out the training set, however, these logs might be based on thresholds and therefore

not yield the right data. An expert of the data source will be needed to successfully

categorize data moments as anomalous and non-anomalous. Before this data should be

gathered the follow-up steps should be investigated to find out if some other requirements

are missing. Then the gathering of the normal behaving data and the other requirement

might be done at the same time to reduce the time spent on implementing algorithms in the

Information System. When the normal behaving data is gathered checking for error

examples is done at step eleven.

11. Are there some error examples available?

The algorithms can be trained with the normal behaving data, however, in order to evaluate

and attain the right features and epsilon value some error data is needed for testing. A ratio

of 10.000 normal behaving data to 20 error examples, so 500:1 normal behaving to error

examples, is a good guideline (Ng, 2017). When there are enough error examples present

the training of the algorithms can start at step thirteen. However, when this is not the case

some error examples should be gathered as explained in step twelve.

12. Gather some error examples.

In order to evaluate the performance of the algorithms and find the right features and

epsilon value, some error examples are needed for the calculation of the f1-scores. This

gathering can be done by purposely letting the data sources breakdown, but this is not an

advisable method of attaining the data as this might have significant consequences for the

company and or users. A better way to attain this data is to go through the logs and graphs

of the data and gather the data of the moments an error occurred. This sounds easier than it

is in practise as several difficulties might show up, as can be seen in section 4.1. It will be

beneficial if the error examples have different error reasons, for instance some with a

memory-related error and other with a CPU related error. This way the algorithms will be

tested on multiple errors which will result in a more applicable implementation in the end.

When there is no way of gathering error examples the algorithms can also be trained on the

normal behaving data and their performance can be evaluated after implementation by

keeping track on its detecting accuracy. The best performing algorithm can then be kept and

the others can be left out. When some error examples are gathered or the evaluation after

implementation method is chosen the algorithms should be trained as described in step

thirteen.

13. Train the algorithms.

The algorithms should be trained on about 60% of the normal behaving data and the other

40% and error examples will be used for the evaluation of the algorithms (Ng, 2017). The

three researched algorithms for unsupervised anomaly detection are:

• Univariate Gaussian.

• Multivariate Gaussian.

• Mahalanobis Distance.

These three algorithms use the mean, standard deviation and covariance matrix of the

feature data, as explained in sections 2.3-a to 2.3-c. As they are based on the Gaussian

distribution, also known as the normal distribution, the feature data is preferably also

normally distributed. However, as practise shows, feature data that is not normally

25

distributed can also be beneficial for the detection of anomalies (Ng, 2017). When the

algorithms are trained the should be evaluated and compared as explained in step fourteen.

14. Compare the algorithms.

For the evaluation of the algorithms, and feature and epsilon selection, the f1-score will be

calculated as explained in Appendix D-c. By calculating the f1-score of all algorithms with

different features and epsilon values the best combination, the combination that yields the

highest f1-score, for the data will be found. Then by comparing the highest f1-scores of the

different algorithms the algorithm that is best aligned with the data can be used and

implemented as step fifteen indicates.

15. Implement the algorithms.

The implementation of the best performing algorithm is different for every dataset. There

are, however, a few things to keep in mind while implementing the algorithm.

• Access to real-time data.

The algorithm should have access to the real-time data to detect anomalies as

quickly as possible because the longer it takes to detect the anomaly the longer it

will take before investigation is started and the possible problem is

prevented/addressed.

• Attach an alarm.

The algorithm will start detection anomalies and therefore an alarm should be

attached to get notified whenever an anomaly is detected. Then the predicted

anomaly can be inspected and, when detected correctly, addressed.

• Evaluate the algorithm.

By checking whether or not the algorithm correctly detected the anomalies valuable

information is gathered. Based on the performance of the algorithm the decision to

adjust it or not can be made.

• Consider automatically updating the training set.

In some cases, the system/machine data will evolve over time and the definition of

an anomaly might change.

Therefore it will be important to keep the algorithms up-to-date so they will be

detecting the right anomalies, instead of the anomalies based on an old training set.

This can be done automatically, however, the expertise of the used data is needed

to know what data changes are intended or logical and therefore can be considered

as normal.

26

Ch4: Data analysis
Section 4.1: Data analysis
During an intensive data analysis, the following was found:

• Data accessibility.

The accessibility of the data at the start of my data analyse was not optimal. I could only

gather small features sets at a time and had to go through large text files that contained the

logs. This is sufficient when the time of a breakdown is known and its cause has to be

investigated, however, it makes gathering large sets of the data challenging. Luckily the

support department was already improving the data accessibility when my Thesis started

and I could access the data easier vis the new dashboard and underlying data architecture

(Appendix F).

• Aggregated data saving.

In order to use machine learning, it is important to have as many feature sets with a

constant time elapsing between two feature sets. However, the available data was being

aggregated. This means that, for instance, the one-minute feature sets became aggregated

to a five-minute feature set after three hours had passed. In order to get a large data set

with all one-minute feature sets the data should be gathered every three hours, which is

infeasible for gathering a large data set. So during this analysis, I ensured that the

aggregating of the feature sets got postponed from three hours to three months so I could

gather larger amounts of one-minute feature sets.

• Application features with different times between data points.

Some feature of the applications outputted their feature values every one minute while

other features outputted their feature values every five minutes. These outputs cannot be

used together for machine learning and therefore the time between feature outputs should

be the same for all features.

• Error moments give empty feature sets.

Whenever an error occurred that broke an application down the feature sets were, logically,

empty as no data can be gathered when an application is down. That is why I investigated

the one-minute feature sets before a breakdown to find a cause for the breakdown.

Unfortunately, the inspected feature sets did not show any spikes in the data that could

have caused the breakdowns. So I was not able to gather any breakdown feature sets during

this research.

• No normal behaving data.

As the error moments give empty data points, in theory, it should be easy to get normal

behaving error data, the errors are logged after all. Unfortunately, the data that remains,

when taken away the error logged data, contains feature spikes that are not logged.

Therefore it is not possible to split the data into normal behaving data and error data

without an investigation of the data from an expert.

27

Ch 5: Solution tests
This chapter starts with an introduction to the solution test in section 5.1 before both branches are

addressed in sections 5.2 and 5.3, supervised and unsupervised respectively. I conclude this chapter

with a comparison between both outcomes and determine which type has more potential for the

support department.

Section 5.1: Solution Test Introduction.
The support department of CAPE Groep can, in principle, use both supervised and unsupervised

machine learning in monitoring and maintaining their applications. Supervised machine learning

might be able to predict future breakdowns, by training the algorithm(s) on the data before

breakdowns happened in the past and then use the trained algorithms on real-time data.

Unsupervised machine learning might be able to detect anomalies that cause breakdowns that the

current thresholds do not detect, by providing a “normal behaving” dataset to the algorithm(s) it

uses this information to spot differences between the provided data and the real-time data. In order

to find out which type of machine learning is better applicable to the available or gatherable data,

both branches will be investigated, in sections 5.2 and 5.3, and compared afterwards in section 5.4.

Section 5.2: Solution Test Decision Tree: Supervised Branch.
For implementing supervised classification in their information system the support department of

CAPE Groep has to label their data as well as balance this labelled data. However, before this can be

done the support department should conduct a research on breakdown data. If breakdown data is

indeed gatherable the labelling and balancing of the data can begin.

The first question to be answered in the predicting breakdowns branch is “Is labelled data

available?”. Based on the conducted research, addressed in chapter 4, the answer to this first

question is that the Mendix application data is not labelled. The breakdown moments do not contain

feature values as the application is down and no data can be collected. When investigating the

feature sets directly before a breakdown no significant change in the data was found as an indication

of the upcoming breakdown. However, as the support department is in the middle of improving its

monitoring and maintaining capabilities with the new dashboard and data architecture the data

accessibility was not optimal during this research. It might turn out that when a new investigation in

the data before a breakdown is conducted signs of the future breakdown can be found. This due to

the fact that the data is better accessible as well as more applications can be investigated. When this

is the case the data can be labelled and then be used for supervised classification. However, there is

no guarantee this will be possible.

The next question, assuming labelled data can be gathered in the future, that arises is “Is the data

balanced?”. When looking at the collected data it turns out that, even for applications that regularly

breakdown, the number of feature sets that are not close to breakdowns of applications is

significantly higher than the number of feature sets that are close to breakdowns. One of the

datasets I investigated went out of memory 20+ times during one day and even then only 17.48%

(501) of all its feature sets (2866) was within 15 min. of a breakdown. So around one-fifth of all

feature sets of an application that regularly breaks down might be used as breakdown information.

So for the applications that do not regularly breakdown the “normal data” “breakdown data” ratio

will be around the 1:10. Therefore it can be concluded that the future labelled data will most likely

be imbalanced.

28

So before the training, testing and implementation of supervised classification algorithms can start

the support department will have to label and balance its data. In order to get the right data, the

support department will have to conduct a research into the gathering breakdown examples. When

these two main requirements for supervised classification are met the training, testing and

implementation of the algorithms should pose no real difficulties.

Section 5.3: Solution Test Decision Tree: Unsupervised Branch
In order to implement unsupervised anomaly detection in the support department’s information

systems, they have to gather a lot of non-anomalous feature sets and test the algorithms on real-

time data.

The first question that arises when going through the unsupervised branch of the decision tree is “Is

normal behaving data available?”. The data research of chapter 4 showed that, when the logged

errors and breakdowns are excluded from a data set, the remaining data still contains spikes. This

makes it hard to find out whether or not this data should be categorized as non-anomalous data or

not. However, a group of experts within the company should be able to classify these data spikes.

The next question of the decision tree is “Are there some error examples available?”. As there are no

feature values during breakdowns and the feature sets prior to the breakdown do not provide clear

changes there are no clearly defined anomalous feature sets available. The lack of anomalous

feature sets makes testing of the algorithms with a test set not possible. However, the testing of the

algorithms can also be done with real-time data. By implementing the trained algorithms on the

real-time data it will start detecting anomalies. Then these anomalies can be investigated by the

support team to see if there was actually an error or breakdown. Based on the results the algorithms

could be tweaked to represent the real-time data better.

So before the support department can implement anomaly detection algorithms they have to

narrow down when the applications are behaving normal and when not. Then that data should be

used to train the algorithms and implement the trained algorithms afterwards. Once the algorithms

start detecting anomalies they have to investigate them. Based on these investigations they can

determine the usefulness of these algorithms on the real-time data and decide to tweak the

algorithms accordingly.

Section 5.4: Supervised vs Unsupervised
As mentioned before, both types of machine learning are, in principle, useful to monitoring and

maintaining the Mendix applications. However, the largest encountered difficulty during this

research was the lack of breakdown data. This has significant impact on the applicability of the

supervised classification algorithms as these algorithms cannot be trained without breakdown data.

For the unsupervised anomaly detection the impact is significantly less as the training of the

algorithms can be done without breakdown data. As investigating the feature sets before

breakdowns will be a time-consuming work, the dashboard and data architecture are not yet in

place and there is no way of guaranteeing the right data will be gatherable I would advise focussing

on unsupervised anomaly detection. Investigating the non-anomalous data peaks will be less time

consuming than labelling the data, so attain the right data set will be easier. After the right training

data is gathered and the algorithms are trained, some codes are provided in Appendix E, I would

advise testing the algorithms on real-time data. Then based on the performance of the algorithms

they can be tweaked or left out. Once the trained algorithms are properly in place they should be

able to detect anomalies in the metric data of the applications.

29

Ch6: Conclusions and

recommendations
Overall I think the support department can benefit from implementing machine learning algorithms

in the monitoring and maintaining of the Mendix applications. However, the available Mendix

application data is not (yet) in line with the data requirements for both supervised and unsupervised

machine learning. The fact that it was not possible to collect breakdown feature sets and no clearly

defined normal behaving data set was gatherable the implementation of either one machine

learning type is infeasible for the moment. However, with the help of the created decision tree, I am

able to provide some to the point advice for implementing machine learning algorithms in the

future.

Of the two types of machine learning, supervised classification and unsupervised anomaly detection,

I would advise the support department to start with unsupervised anomaly detection. The fact that

no breakdown data was gatherable makes training of the supervised classification algorithms

infeasible. An intensive research in the feature sets before application breakdowns might yield

enough breakdown examples. However, as no breakdown examples were found during this research

there is no way to guarantee this data will be gathered during a new data investigation. This makes

focussing on the supervised classification algorithms a riskier endeavour than to focus on the

unsupervised anomaly detection algorithms.

In order to be able to test the unsupervised anomaly detection algorithms on the real-time

application data, a non-anomalous data set should be gathered. This can be done by investigating

the data peaks of feature sets that are nowhere near to a breakdown. If the support department

manages to categorize these peaks in either non-anomalous data or anomalous data a training set

will be gatherable. Then the algorithms, some are provided in Appendix E, can be trained on this

gathered training set and should afterwards be applied to the real-time data. Based on the

performance of the algorithms a decision can be made to keep them, tweak them or delete them. If

the mentioned unsupervised anomaly detection algorithms do not provide the expected outcome of

the support department it might be worthwhile to investigate other types of unsupervised machine

learning before starting with supervised classification. This because the attaining of the labelled data

for supervised classification will be an uncertain and time-consuming endeavour.

I think that gathering the data for unsupervised anomaly detection is a proper starting point of

implementing machine learning in the monitoring and maintaining of the Mendix applications. If the

implementation of the unsupervised anomaly detection algorithms is successful in this process the

support department, and CAPE Groep as a whole, can start looking for other types of machine

learning to use in its processes.

30

Bibliography
Altexsoft. (2018). How to Organize Data Labeling for Machine Learning: Approaches and Tools |

AltexSoft. Retrieved September 9, 2019, from
https://www.altexsoft.com/blog/datascience/how-to-organize-data-labeling-for-machine-
learning-approaches-and-tools/

Datascience. (2016). classification - When should we consider a dataset as imbalanced? - Data
Science Stack Exchange. Retrieved September 2, 2019, from
https://datascience.stackexchange.com/questions/11788/when-should-we-consider-a-dataset-
as-imbalanced

Elastic. (2019). Open Source Search & Analytics · Elasticsearch | Elastic. Retrieved August 1,
2019, from https://www.elastic.co/

Faggella, D. (2019). What is Machine Learning? | Emerj. Retrieved July 1, 2019, from
https://emerj.com/ai-glossary-terms/what-is-machine-learning/

Google Developers. (2019). Classification: Precision and Recall | Machine Learning Crash
Course | Google Developers. Retrieved August 15, 2019, from
https://developers.google.com/machine-learning/crash-course/classification/precision-and-
recall

Grafana. (2019). Grafana - The open platform for analytics and monitoring. Retrieved August 1,
2019, from https://grafana.com/

Heerkens, H. (Johannes M. G., & van Winden, A. (2012). Geen probleem : een aanpak voor alle
bedrijfskundige vragen en mysteries : met stevige stagnatie in de kunststoffabriek. Van Winden
Communicatie. Retrieved from https://research.utwente.nl/en/publications/geen-probleem-
een-aanpak-voor-alle-bedrijfskundige-vragen-en-myst

InfluxDB. (2019). InfluxDB: Purpose-Built Open Source Time Series Database | InfluxData. Retrieved
August 1, 2019, from https://www.influxdata.com/

Ivan, M. (2015). Types of machine learning algorithms | en.proft.me. Retrieved July 23, 2019, from
https://en.proft.me/2015/12/24/types-machine-learning-algorithms/

Kaggle. (2012). Titanic: Machine Learning from Disaster | Kaggle. Retrieved July 1, 2019, from
https://www.kaggle.com/c/titanic/overview

Ling, C. X., & Sheng, V. S. (2008). Cost-Sensitive Learning and the Class Imbalance Problem
Motivation and Background. Springer. Retrieved from
https://cling.csd.uwo.ca/papers/cost_sensitive.pdf

Machine Learning Plus. (2019). Mahalonobis Distance - Understanding the math with examples
(python) – Machine Learning Plus. Retrieved July 23, 2019, from
https://www.machinelearningplus.com/statistics/mahalanobis-distance/

Ng, A. (2017). Machine Learning — Andrew Ng, Stanford University [FULL COURSE] - YouTube.
Retrieved July 4, 2019, from https://www.youtube.com/playlist?list=PLLssT5z_DsK-
h9vYZkQkYNWcItqhlRJLN

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research
Methodology for Information Systems Research. Journal of Management Information Systems
(Vol. 24). Retrieved from http://www.tuunanen.fi.

31

Priy Surya. (2019). Clustering in Machine Learning - GeeksforGeeks. Retrieved July 23, 2019, from
https://www.geeksforgeeks.org/clustering-in-machine-learning/

Raina, H., & Shafi, O. (2015). Analysis Of Supervised Classification Algorithms. INTERNATIONAL
JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 4(09). Retrieved from www.ijstr.org

Rodriquez, J. (2017). Understanding Semi-supervised Learning - Jesus Rodriguez - Medium. Retrieved
September 1, 2019, from https://medium.com/@jrodthoughts/understanding-semi-
supervised-learning-a6437c070c87

Sidana, M. (2017). Types of classification algorithms in Machine Learning. Retrieved September 9,
2019, from https://medium.com/@Mandysidana/machine-learning-types-of-classification-
9497bd4f2e14

Simonini, T. (2018). An introduction to Reinforcement Learning. Retrieved July 23, 2019, from
https://www.freecodecamp.org/news/an-introduction-to-reinforcement-learning-
4339519de419/

Soni, D. (2018). Supervised vs. Unsupervised Learning - Towards Data Science. Retrieved July 23,
2019, from https://towardsdatascience.com/supervised-vs-unsupervised-learning-
14f68e32ea8d

Wei, H. (2019). Fighting Imbalanced Data Set with code Examples - Towards Data Science. Retrieved
September 4, 2019, from https://towardsdatascience.com/fighting-imbalance-data-set-with-
code-examples-f2a3880700a6

32

Appendix A: Research Methodology
As information systems (IS) are a vital part of this research and a design artefact, describe in chapter

4, will be delivered I chose to use the Design Science Research Methodology (DSRM) as this

methodology aligns with creating design artefacts.

A framework for the DSRM can be found in “A Design Science Research Methodology for

Information Systems Research” (Peffers, Tuunanen, Rothenberger, & Chatterjee, 2007). The

framework they created “incorporates principles, practices and procedures required to carry out

such (design science (DS)) research and meets three objectives: it is consistent with prior literature,

it provides a nominal process model for doing DS research, and it provides a mental model for

presenting and evaluating DS research in IS.” By keeping these three objectives in mind they made

sure their DSRM provides a production and presentation framework for design science research in

information systems. This way they provided “a commonly accepted framework for successfully

carrying out DS research and a mental model for its presentation”. The DSRM framework they

created consists of six steps (see Figure 2)

1. Problem identification and motivation

During this step, the current process and its problems will be described together with an

elaboration on the importance of the problem. When done in a proper way the problem is

clearly stated and the solution will fit the current process perfectly.

2. Definition of the objectives for a solution

During this step, the requirements of the solution will be discussed. Besides this, the

limitations of the expected deliverable will be defined as there is limited time available for

the research.

3. Design and development

During this step, the deliverable is designed and developed. In the case of this research, the

different methods of machine learning types have been investigated and an artefact has

been created.

4. Demonstration

During this step, the deliverable is tested to see its applicability.

5. Evaluation

During this step, the outcomes of the test will be evaluated on how well it solved the

problem. After the evaluation, the researcher, if needed, goes back to stage three of the

DSRM to improve its deliverable and continues the following steps afterwards. This loop will

be repeated until a sufficient problem-solving deliverable is created.

6. Communication

During this final step, improvement and implementation recommendations will be given to

the company as well as a report will be written about the research.

Figure 10: Design Science Research Methodology Framework

33

Appendix B: Knowledge questions
1. Problem identification and motivation

a. How is the support department currently structured?

b. What is the support department currently improving?

c. What is the problem the support department wants to get a solution for?

d. What is the benefit of finding a solution to this problem?

2. Definition of the objectives for a solution

a. What is expected of the deliverable(s)?

i. What are the requirements?

ii. What limitations can be set up to limit the depth of the deliverable(s)?

3. Design and development

a. What machine learning algorithm methods are there?

i. What are the overarching types of machine learning algorithms?

ii. What are the characteristics of these types?

iii. What types best suit what sort of data?

b. What data is available? What data is useful?

c. What type of machine learning algorithm suits this dataset best?

d. What design artefact is desired?

i. When the data is sufficient for machine learning?

ii. When the data is insufficient for machine learning?

4. Demonstration

a. How to test the design artefact?

i. When a machine learning code is written?

ii. When a decision tree is made?

5. Evaluation

a. How do you measure the performance of the design artefact?

i. Of a machine learning code?

ii. Of a decision tree?

b. What steps should be taken when the level of performance is insufficient?

c. What can be done when testing is not possible due to lack of data?

6. Communication

a. How does the company benefit from the design artefact?

b. What are the implementation recommendations to the company?

c. What are the improvement recommendations to the company?

34

Appendix C: Statistical Knowledge
Before the different machine learning algorithms can be discussed the statistical knowledge needs to

be established. As the three unsupervised algorithms are based on the Gaussian distribution, also

known as the normal distribution, it is important to know what it looks like and how it works. The

Gaussian distribution has two inputs, mu and sigma. The mu is the mean, which is the centre point

of the dataset with 50% of the data to its left and 50% of the data to its right. The sigma is the

standard deviation, which measures the amount of variation in the dataset. The Gaussian

distribution is a set of data points that looks like an old clock, in Figure 13 the Gaussian distribution is

graphed with the mu and sigma.

In this example, mu = 0 and sigma (σ) is given no value. As the figure shows one standard deviation

to the right of the mean contains 34.1% of the data, the same goes for one standard deviation to the

left. The more standard deviations a point is from the mu the less data it will contain, for instance

when a point is three or more standard deviations away from the mean it falls in 0.1% of the data

points. This means that the more standard deviations a point is from the mu the lower the

probability is that it will occur. This is shown in Figure 14 where a standard Gaussian distribution

with mu = 0 and sigma = 1 is shown.

As the table on the right shows, the probability that a data point will have the value 0 is 39.89%, but

the father the point is from the mu the lower the probability of occurring is. The probability of a data

point having the value 1 (or -1) is 24.2%, but for 3 (or -3) it goes down to 0.04%.

Now that the Gaussian distribution is explained it is important to know what the covariance and the

variance matrices are. Starting with the variance matrix will be easiest, see Table 3.

Figure 11: Gaussian Distribution

z chance

-3 0.004432

-2 0.053991

-1 0.241971

0 0.398942

1 0.241971

2 0.053991

3 0.004432

Figure 12: Gaussian Distribution with Probabilities

35

The variance matrix shows the variance of the different features (variable in Table 3), as, for

example, random values are used. The variance of a feature is the standard deviation squared and is

used to measure the spread of the values in a dataset. As it has no correlation taken into account all

the correlations are set to 0.

The covariance matrix that can be seen in Table 4 shows both the variance of the features as well as

the covariance, which is the relation between the two features.

Table 3: Variance Matrix

Table 4: Covariance Matrix

36

Appendix D: Accuracy
Appendix D-a: Preparing for Supervised Classification Algorithm

Testing
For the testing of the algorithms the data should be split. The training set should contain

approximately 90% of the available data and should contain both error examples and normal

examples. The test set should contain the rest of the data, approximately 10% and should also

contain error examples and normal examples. In order to find the best performing algorithm for the

data at hand the f1-scores, explained in Appendix D-c, of the different algorithms with different

number of features attached will be calculated. The algorithms should be trained on the training

data and tested with the test set. This testing is done by calculating the f1-score with different

numbers of features attached to the algorithms. The highest f1-score for each algorithm will yield an

optimal combination for that specific algorithm. Then the f1-scores of all algorithms will be

compared and the algorithm with the highest f1-score can be implemented and used to predict

errors in new feature sets.

Appendix D-b: Preparing for Unsupervised Anomaly Detection

Algorithm Testing.
Before the training and testing of the algorithms can be done the right data needs to be available.

First of all, the algorithms need non-anomalous data, in other words, data that is definitely not

causing errors. Then, in order to test the algorithms, some error examples are required. The

preferred ratio is five hundred non-anomalous feature sets to one error example (Ng, 2017). Once a

multitude of this data is available it should be split into three parts. For example, when ten thousand

non-anomalous feature sets and twenty anomalous feature sets are available the following split is

used during the Stanford machine learning course. A training set of six thousand non-anomalous

feature sets, a cross-validation set of two thousand non-anomalous feature sets and ten anomalous

feature sets and the last set, the test set, should also contain two thousand non-anomalous feature

sets and ten anomalous feature sets. Tuning the feature selecting and the epsilon determining,

which is the threshold for detecting anomalies, is done with the f1-score, method of determining the

accuracy of the detection, of the cross-validation set. The f1-score will be discussed in Appendix D-c.

By calculating the f1-score for different combinations of features and different values of epsilon the

combination with the highest f1-score should be chosen for comparing the algorithms among each

other. Before the algorithms can be compared the chosen combination should be run on the test set

and output another f1-score. Then after comparing the f1-scores of the three algorithms, the

algorithm with the highest f1-score can be implemented and used to detect anomalies in new

feature sets.

Appendix D-c: Calculating the f1-scores.
F1-scores provided better accuracy testing than using the conservative accuracy testing method

where only the overall accuracy is calculated. The conservative accuracy testing adds all the correctly

predicted/detected data examples together and divides this with the total number of data examples.

This yields one overall accuracy but based on the number of error examples in the test set this

accuracy might have no meaning. For instance, when only 1% of the test set contains error examples

and the algorithms predicts/detects everything as normal the conservative accuracy testing method

will yield an accuracy of 99% when the algorithm did not predict/detect any error. That is where the

f1-scores come into play.

37

Even though the required data for supervised and unsupervised learning are different, as addressed

in the previous two appendices, the testing of the f1-scores are the same, only the usage of the f1-

score is. The f1-score uses the true positive, false positive, true negative, false negative method,

which is nicely described in Figure 10.

The benefit of this evaluation method is that it will be clear where the algorithms perform good and

where they are lacking. When these four accuracies have been calculated the performance of the

algorithm can be further evaluated by calculating the precision and recall of the outcomes to attain

the f1-score. The f1-scores can be used to determine what features to use, and for unsupervised

machine learning specific also what epsilon value to use.

Calculating the precision tries to answer the question “What proportion of positive identifications

was actually correct?”. This will give the accuracy of how many of the errors/anomalies it did

predict/detect correctly when an anomaly/error is set as being the positive outcome (Google

Developers, 2019).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

The calculation of the recall tries to answer the question “What proportion of actual positives was

identified correctly?”. For supervised data, this would give the percentage of correctly predicted

errors and for unsupervised data, this would give the percentage of correctly detected anomalies

(Google Developers, 2019).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

These precision and recall can be calculated as one value, called the F1-score. The closer the F1-

score is to one the better the algorithm performed. The closer the F1-score is to zero the worse the

algorithm performed (Google Developers, 2019).

𝐹1 = (
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
) = 2 ×

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

For both machine learning types, the f1-score is used to determine what algorithm can be used best

for the data that is available. Once an algorithm has achieved a desirable f1-score the algorithm can

be implemented in the information system and start predicting/detecting errors/anomalies of real-

time data.

Figure 13: True Positive, False Positive, True Negative and
False Negative

38

Appendix E: Python Codes
Example codes for unsupervised anomaly detection are provided as this approach was tried for the

available data. Unfortunately, there were no feature sets with error examples to test and evaluate

the codes. The supervised classification code is lacking as the only code I wrote during preparation

was eighty blocks long and unclear as it was one of the first codes I wrote.

Appendix E-a: Unsupervised Anomaly Detection: Univariate

39

Appendix E-b: Unsupervised Anomaly Detection: Multivariate

40

Appendix E-c: Unsupervised Anomaly Detection: Mahalanobis

Distance

41

Appendix F: New Dashboard and

Architecture
The support department is creating a new dashboard, to view real-time health of the applications,

and behind it a new architecture, to better save and analyse the data, to improve their support

processes. At the time of writing this report, the support department has to look at the CAPE Service

Point, the current dashboard, with an overview of the performed health checks and application error

logs, but they would have to go to the Mendix site to look at the features of the application to see

the graphs to investigate the errors. With the new architecture that is being developed, both the

logs and the features can be viewed from the CAPE Service Point itself, with an easy-to-use time and

error selection system so the breakdown time can easily be accessed and evaluated. This new

structure is shown in Figure 11.

The feature data will be gathered from the Mendix applications by using InfluxDB, an open-source

time-series database that is optimized for fast, high-availability storage and retrieval of time series

data (InfluxDB, 2019), where it gets linked with the logs in Grafana, a platform specialized in

analytics and monitoring (Grafana, 2019), together known as the Tick Stack. The logs are gathered

from the Mendix applications by Elastic Search, a search engine specialized in working with logs

(Elastic, 2019) before they are transported to Grafana to match the feature data. These programmes

will make it possible to access both the features and logs in one dashboard.

Figure 14: New Dashboard Architecture

