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Abstract

The randomized controlled trial has been the golden standard for clinical testing of treat-
ment efficacy for the last 70 years. To determine a treatment effect, patients are ran-
domly assigned to a treatment group or a control group. In the control group, patients
sometimes do not receive a treatment, only serving as the statistical controls to deter-
mine the treatment effect. This is done such that the average measurement of both
groups can be compared, and the statistical significance of the treatment effect can be
evaluated. However, it is considered unethical to assign patients to a group who do not
receive treatment, while there is already an existing effective therapy. This is especially
the case when the placebo group concerns a vulnerable group like children, psychiatric
patients, and patients suffering from cancer.

In this research, a statistical method is developed in which the effect of a medi-
cal treatment is tested for without a control group. The idea is that groups of patients
undergoing effective treatment will show correlated outcomes. The modeling frame-
work considered in this research provides a way to test for this additional correlation in
interval-censored survival data. In a simulation study, it is shown that objective Bayesian
inference can be efficiently performed on such data, and additional correlation can be
tested for.

Keywords: clinical trials, covariance testing, Bayesian statistics, Bayes factors, sur-
vival analysis, Markov chain Monte Carlo.

1



Contents

1 Introduction 5

2 Clinical Trials 7
2.1 Randomized Controlled Trials in medicine . . . . . . . . . . . . . . . . . . 7

2.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Phases of Clinical Research . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Organization of Phase II-III Trials . . . . . . . . . . . . . . . . . . . 9
2.1.4 Randomization Procedure . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Outcome Variables and Statistical Tests . . . . . . . . . . . . . . . 12

2.2 Sample Size Reduction in Clinical Trials . . . . . . . . . . . . . . . . . . . 13
2.2.1 History Controlled Trials . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Sequential Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Multi-Armed Bandits . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Designs of History Controlled Trials . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Pooling of Control Data . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Biased Sample Approach . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Power Prior Approach . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Hierarchical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Principles of Bayesian Statistics 23
3.1 P values and Bayes Factors . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Bayes Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 The Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . . 30
3.2.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Laplace-Metropolis Approximation . . . . . . . . . . . . . . . . . . . . . . 33

2



CONTENTS 3

4 Treatment Induced Correlation in a Survival Model 35
4.1 Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 The Survival Model Introduced By Lin and Wang . . . . . . . . . . . . . . 36
4.3 The Multivariate Survival Model . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Modeling the Baseline as a Combination of Integrated Splines . . . . . . 40

5 Inference for the Survival Model with Additional Correlation 43
5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Sampling Z|(τ, γ, β,X, L,R) . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Sampling τ |(β,X, Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 Sampling β|(τ,X, Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Sampling γ|(β, θ,X, τ, L,R) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Summary of Inference Method . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Simulation Study 53
6.1 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Parameter Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Bayes Factor Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion and Discussion 65
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A List of Symbols and Their Description 71

B Conditional Marginal Distributions for a Truncated Multivariate Normal Vec-
tor 73

C Alternative Expression of an Equicorrelated Multivariate Normal Integral 75

D The falsely claimed error in the method of Lin and Wang 79

E Mathematical Formulation 82
E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
E.2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

F Test Martingales 86



4 CONTENTS

G Frequentist Hypothesis Tests 89
G.0.1 Qualitative responses . . . . . . . . . . . . . . . . . . . . . . . . . 89
G.0.2 Quantitative Responses . . . . . . . . . . . . . . . . . . . . . . . . 92
G.0.3 Time to Event Responses . . . . . . . . . . . . . . . . . . . . . . . 93



Chapter 1

Introduction

For the last 70 years, the randomized controlled trial has been the golden standard for
statistically assessing the benefits of a new treatment over a standard one (Pocock,
2013). In these trials, patients are randomly assigned to either a control or a treatment
group. In cases where e.g. there currently exists no treatment, patients in the control
group receive no treatment or only receive a placebo (saline). This is done such that
a significant difference in average outcomes can be determined between control group
patients and patients in the treatment group(s). The ethical concern with this is however
that a group of patients in the trial does not get any treatment, while it is possible to treat
them. Especially in cancer research, child care or psychiatric care, clinical trials with a
placebo control groups face this criticism.

In (Fox, Mulder, & Sinharay, 2017), Bayesian covariance testing is explored for an
equicorrelated multivariate probit model. The explored idea in this research was to apply
this to a multivariate survival model. The choice was made to consider the model for
(type II) interval censored survival data introduced in X. Lin and Wang (2010). As the
underlying latent variables in this model are Gaussian, this survival model can be easily
extended to handle more complicated covariance structures.

With the testing procedure considered in this research it is possible to detect treat-
ment effects in clinical data without the need for a control group. Namely, if patients are
subjected to an effective treatment, patients will have a (positive or negative) response
to this treatment. This change in response will manifest partly in the form of additional
covariance in the outcomes of these patients. When there are groups of patients in the
trial that have a different response to the treatment, the treatment induced covariance
can be tested for, and hence a treatment effect can be determined. Furthermore, in the
situation where group differences are detected, personalized medicine might be a viable
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6 CHAPTER 1. INTRODUCTION

option for this treatment.
Testing without the need for a control group has a lot of benefits. If the control group

would have gotten a placebo, all patients are now given the treatment. Furthermore,
difficulties associated with designing and implementing an RCT are avoided. Finally,
the procedure leads to a serious reduction in costs to evaluate the effectiveness of a
treatment by only requiring treatment data.

Another manner in which covariance testing might be used is in the case where dif-
ferent versions of a treatment are administered in a trial. Detecting covariance in the
outcomes could lead to detection of an optimal version, or could indicate that personal-
ized medicine might be an option.

In the next chapter, a literature study on clinical trials is summarized. After that, an
introduction to concepts in Bayesian statistics that are explored in this research will be
given. Next, the multivariate survival model considered in this research is introduced.
In the chapter that follows, the employed inference method for this model will be ex-
plained. As the limits to Bayesian inference are largely determined by computational
tractability, a simulation study is performed in Chapter 6 to evaluate whether inference
can be performed efficiently and reliably. The final chapter contains a conclusion and
discussion.



Chapter 2

Clinical Trials

2.1 Randomized Controlled Trials in medicine

This chapter summarizes a literature study on the design of clinical trials, and methods
for sample size reduction. The main sources on clinical trials used here are Friedman
et al. (2010) and Pocock (2013).

Following Friedman et al. (2010), a randomized controlled trial (RCT) in medicine
can be defined as ”a prospective study comparing the effect and value of intervention(s)
against a control in human beings. Subjects are partitioned in groups according to a
formal randomization procedure, and subject-linked outcome variables are compared ”.
RCTs are conducted in medicine, but also increasingly in e.g. business, economy or
social sciences (Deaton & Cartwright, 2018). The main difference in medicine is that
in many cases the design of the trials has an ethical aspect. In extreme cases, the
decision to give a subject an intervention can be the difference between life and death.
Another difference between clinical trials and trials in other fields can be the fact that hu-
man subjects are considered, hence there is a possibility that subjects do not adhere to
the treatment protocol. Finally, double measurements are often not possible, e.g. when
patient survival times are measured.
A clinical trial is prospective, which means that subject outcomes can be monitored and
analyzed during the trial. Furthermore, subjects do not enroll in the study simultane-
ously. Due to the prospective nature, intermediate intervention in RCTs is possible.
This intermediate intervention can be e.g. to stop the trial prematurely, to adapt the as-
signment procedure, or to increase the dose of medicine. The prospective aspect leads
to flexibility in the design of RCTs, making e.g. online optimization of the trial design
possible.
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8 CHAPTER 2. CLINICAL TRIALS

2.1.1 History

According to Pocock (2013), one of the most famous early examples of a modern clinical
trial is the study of Lind in 1753, who evaluated treatments for scurvy (Lind, 1757).
Procedures to evaluate treatment effect can be traced back to 2000 BC, but Lind’s trial
was one of the first in which emphasis was placed on keeping all factors other than
treatment as comparable as possible.

In the setup by Lind, not much significance was given to the measurement procedure
of patient outcomes, deviation from treatment (non-adherence) and the registration of
the patient diagnosis at arrival. One of the first proponents of placing emphasis on
these factors was Louis (Louis, 1835), stating importance of these factors in 1835 for
determining whether bleeding had any effect on the progression of pneumonia. His trial
found no significant differences in outcomes for the treatment groups, and led to the
eventual decline of bleeding as a treatment.

The first instance of a trial with randomization and single-blinding was reported in
1931 by Amberson Jr (1931). Single-blinding denotes the situation in which patients
do not know the groups to which they are assigned. The group allocation in this trial
was decided by partitioning the subjects in two groups, and flipping a coin to determine
which group gets the new treatment.

Although there were trials in which the treatment effect was obvious, for some trials
this was not the case. A formal procedure to determine a significant difference in group
outcomes was needed. Such a procedure was introduced by Fisher in his book design
of experiments (Fisher, 1936). The concept of a Null hypothesis, as well as the Fisher
exact test were introduced in this book. The Fisher exact test is used to compare binary
outcomes, and is still used to this day in clinical research.

Around the middle of the 20-th century, the randomized clinical trial became the pre-
ferred method to evaluate new medical treatments. This development is largely credited
to Sir Austin Bradford Hill. Hill introduced the randomized double-blinded controlled trial
in the British Medical Research Council’s trial of streptomycin for pulmonary tuberculo-
sis (Hill, 1990). In double-blinded RCTs, both the subjects and investigators do not know
the group allocation, which is randomized. This double blinding removes a large amount
of allocation bias. Since the work of Hill, the design of RCTs has remained relatively
unchanged and RCTs remain the golden standard of clinical testing to this day.
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2.1.2 Phases of Clinical Research

When RCTs are used to assess the effect of a new treatment, the trial can be classified
in one of four phases of experimentation (Pocock, 2013):

• Phase I Trials: Test for Toxicity and Clinical Pharmacology
These trials mostly test the safety of a new medicine, not the efficacy, and hence
are mostly applied to healthy human test subjects or patients that did not respond
to the standard treatment. The objective is often to estimate the maximum toler-
ated dose in dose-escalation experiments. Other objectives can be e.g. to find the
biochemical or psychological effect of the drug on the subject, or to determine the
bioavailability of the drug (e.g. how long the drug stays in the body).

• Phase II Trials: Initial Test of the Clinical effect
This phase is reached if the drug has passed phase I. Phase II trials are small
scale (100-200 patients) investigations to assess the effects of a number of drugs
on patients. These patients are often carefully selected and heavily monitored.
Often, phase II trials are used to select the drugs with genuine potential from a
larger number of drugs, so that these may continue to phase III.

• Phase III Trials: Full-scale Evaluation of Treatment
When the drug(s) have passed phase II, the new drug(s) are compared to the
standard treatment in a larger trial (300 - 3000 patients). A control/reference group
is necessary in this phase.

• Phase IV Trials: Post-marketing surveillance
After successful completion of phase III, the drug can be administered to anyone
seeking treatment. The physician prescribing the medicine will monitor the long
term/large scale effects of the drug.

As phase I and IV trials do not require control groups of patients, the focus in the re-
mainder will lie on phase II-III trials. From this section, it is clear that a clinical trial is
often performed in a sequence of trials, and hence does not occur in a vacuum.

2.1.3 Organization of Phase II-III Trials

When a clinical trial is conducted, the research question(s) should be well posed. There
should always be a primary question, and possibly some secondary questions. Fur-
thermore, the definition of the study population is an integral part of posing the primary
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question. The study population is the part of the total patient population eligible for the
trial. In general it is not sufficient to know that a treatment has had an effect, it is also
important to know which group of subjects the treatment has effect on. The study pop-
ulation is defined by the inclusion/exclusion criteria of the trial. These criteria are often
based on:

1. The potential for the subjects to benefit from the treatment.

2. The possibility to detect the treatment effect in subject outcomes.

3. The possibility that the treatment is harmful for the subjects.

4. Effects of other diseases that could interfere with successful treatment.

5. The probability that the subjects adhere to the treatment protocol.

When defining a study population, it must be kept in mind how this study population
relates to the total patient population. In some cases, data (features and outcomes) for
the excluded patients are collected. In this case, inference can be made as to what
extent trial results can be extrapolated to expected results in the overall population. In
some cases, data from excluded patients is not available and some leap of faith, based
on expert knowledge, has to be taken to extrapolate trial results to the total population.

From the above discussion, it can be seen that RCTs often only consider a part of
the total patient population. How trial results can be extrapolated to expected results for
the overall patient population is always something to consider in clinical research.

2.1.4 Randomization Procedure

In clinical trials, the preferred method of assessing a treatment effect is a trial in which
patients are randomly allocated to a control or treatment group.

One reason for this is that, in combination with double blinding, it eliminates bias in
treatment assignment. An example of this is a physician that always assigns more frail
subjects to the experimental/standard treatment because he believes this treatment is
superior. With randomization and blinding, this is not possible anymore. Furthermore,
randomization is also believed to reduce bias by accounting for unobserved variables
having an effect on the outcomes. Under randomization, the same distribution for these
confounding variables is induced in the control and treatment group.
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Lastly, randomization justifies the reasoning that in the case of ineffective treatment,
average outcome differences between treatment and control groups are observed by
chance. This justifies the use of statistical tests in RCTs.

Different randomization procedures can be used, and in the trial description it should
always be clear which one is used:

• Simple Randomization
In simple (fixed) randomization, each patient is assigned to each group k with
some fixed probability pk. In (Friedman et al., 2010), it is advised that allocation
should be uniformly distributed in an RCT (pk = 1/N for N groups). In order to
avoid a large difference in the sample sizes of treatment groups, simple random-
ization can be done according to an accept/reject method with some acceptance
criteria (e.g. no more than a difference of 10 patients between all group sizes).

• Blocked Randomization
Another way to avoid serious imbalance in the number of participants assigned to
each group is blocked randomization. Subjects are (approximately) divided in K

sampling groups with size equal to the number treatment groups (|Gk| = N for each
sampling group Gk). Next, members of each sampling group are randomly divided
over the treatment groups such that 1 member per sampling group is assigned to
each treatment group.

• Stratified Randomization
One of the reasons for randomization is to balance the treatment groups in terms of
factors determining the treatment outcomes. In stratified randomization, the sub-
ject population is divided in strata (e.g. male/female, age higher/lower than 65).
For the arriving subjects, the variables corresponding to the strata are measured.
Next, patients in the same strata are randomly divided (by simple/blocked random-
ization) over treatment groups. A downside to this randomization procedure is that
a large number of subjects might be necessary to get a significant amount of sub-
jects per strata. Also, factors thought to be important a priori might turn out to not
be important in the outcome analysis, inducing an unnecessary number of strata.
According to Friedman et al. (2010), a regression analysis can also be conducted
instead of stratification, which results in approximately the same amount of power.

From this section, it is clear that randomization is used in order to reduce allocation
bias, and to validate the use of statistical tests. Different methods of randomization are
possible.
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2.1.5 Outcome Variables and Statistical Tests

In clinical trials, it is often the case that outcomes from one treatment procedure are
compared with outcomes from one other treatment procedure in a frequentist hypoth-
esis test. Statistical tests comparing three or more treatment groups, using Bayesian
methods or covariates, as well as paired samples are also known in literature (see e.g.
Walker and Almond (2010), Armitage, Berry, and Matthews (1971)) but will not be con-
sidered in this section, as the most often occurring testing procedures are two-sample
frequentist tests.

It is often assumed that the outcomes in the two treatment groups are independent
and identically distributed (iid). This assumption is justified by checking that the treat-
ment groups are balanced. For this, statistical tests are often performed for assessing
differences in the distribution of characteristics between the two treatment groups. The
effect of having balanced groups is that all variables having an effect on the comparison
are accounted for. When differences between patient outcomes are compared in e.g. a
t-test, only the treatment effect will be measured on average.

The main three outcome variables in clinical trials, as well as the most often per-
formed test to assess significant differences are now listed below.

1. Qualitative responses
Qualitative responses are responses that fall in a finite range. Examples of these
are e.g. a test results, stages of some disease or the indicator of some symptom.
Often used frequentist hypothesis tests on qualitative responses are the Fisher
exact test (Mehta & Senchaudhuri, 2003) and the Chi-square test (McHugh, 2013).
If the qualitative data can be ordered (i.e. is ordinal), the Mann-Whitney U-test can
be performed (Mann & Whitney, 1947).

2. Quantitative responses
In the case of quantitative responses, the responses can (approximately) take on
any value in R, or a subset of R with infinite cardinality. Examples of quantitative
observations are e.g. concentrations of hormones or tumor size. The most often
performed test on this type of data is the independent two sample t-test (Walker &
Almond, 2010). Other often performed tests are the Mann-Whitney U-test (again)
and Welch’s t-test (Pocock, 2013).

3. Event time responses.
Another possible outcome variable in clinical trials can be in the form of event-time
responses. This can be the recurrence time of a disease, the time that the patient
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comes back to the clinic, or time of death. In chapter 4, where the multivariate
survival model is introduced, more information will be given on this type of data.
A central object to event-time responses is the survival curve, which for each t re-
turns the probability that the event time is larger than t. The most often performed
test for assessing equality of the survival curves based on event-time outcomes is
the Logrank test (Korosteleva, 2009).

In Appendix G, more information is given on outcome variables in clinical trials, and
often used frequentist hypothesis tests.

2.2 Sample Size Reduction in Clinical Trials

Despite the advantages of RCTs, allocating patients randomly in a treatment and control
group is unethical in some cases. The main example of this is the case when no (good)
treatment is available prior to starting the RCT. Control group patients often only receive
a placebo (saline) in this case. Especially in cancer research, child disease or research
on psychological diseases, the effect of this is detrimental. Hence, statisticians have
been (and are still) trying to redesign RCTs in such a way that the required sample
(or control group) size is reduced. This section lists the three main methods found in
literature to do this.

2.2.1 History Controlled Trials

In history controlled trials (HCT), control group outcomes are obtained from historical
patient data, reducing the minimal required control group size. The main problem with
HCT’s is the question of how one can decide to what extend the historical data is repre-
sentative for the current control group. In Pocock (2013), it is stated that the causes for
potential incompatibility can be divided into two areas, patient selection and the experi-
mental environment.

• The incompatibility from patient selection involves the fact that subjects from the
historical control group might not adhere to the inclusion criteria of the trial, and it
could be impossible to find out what patients would have been included in the trial
due to data limitations. Furthermore, a change in patient population between trials
might make the results of the former trial not representative for the current one.
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• The incompatibility due to experimental environment stems from the fact that e.g.
the quality of the historical data might be inferior to the currently collected data and
the recording procedure of the trial outcomes may change over time. Furthermore,
the overall healthcare procedures for patients may change over time. This could for
example be due to doctors leaving the hospital or overall healthcare improvement.
Another problem is that non-adherence is often not recorded in historical data.
The overall effect is that a historical control group might have entirely different
properties as compared to a control group in a clinical trial.

Nevertheless, in Pocock (2013) and Friedman et al. (2010), it is stated that despite
the limitations of historical controls, there are cases in which they can be used. In
Pocock (2013), it is stated that historical controls from a previous trial in the same orga-
nization might be of use in a later trial, but he proposes that even then, results should
be treated with caution. In the work of Gehan in 1978, it was suggested that historical
bias could be overcome by using more complex statistical methods like analysis of co-
variance (ANCOVA) to allow for difference in patient characteristics. Pocock objects that
the possibility of having poor data, a too small amount of features, and environmental
changes are then still not accounted for. In Section 2.3, methods in which historical data
can be included in a clinical trial are examined in more detail.

2.2.2 Sequential Analysis

Another way to reduce the sample size in a clinical trial is by sequential analysis, pi-
oneered by Abraham Wald (Wald, 1945). In sequential analysis, results are analyzed
at intermediate time points in the trial. When there is significant evidence that either
hypothesis (null/alternative) is false, the trial is stopped with an early conclusion. As
already stated, RCTs are prospective, hence intermediate testing is a possibility. When
the same test is used repeatedly on an expanding dataset, the type I error rate (chance
of rejection under the null) increases, as noted by Pocock (2013).

The reasoning behind this is as follows: Let Tk be the test statistic of the trial when k
patient outcomes have been observed, and let Rα

k ⊂ R be the rejection region at level α
for Tk under the null hypothesis P0 (i.e. P0(Tk ∈ Rα

k ) ≤ α for all k). Let n be the sample
size and k1, . . . , km be the number of patient outcomes at which the (m) interim analyses
take place. Assuming that Ts ∈ Rα

s if Tk ∈ Rα
k for s > k, it then holds that:

P0(∪mi=1{Tki ∈ Rα
ki
}) = P0(Tk1 ∈ Rα

k1
) + P0(∪mi=2{Tki ∈ Rα

ki
} ∩ {Tk1 /∈ Rα

k1
}) ≥ α.
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It can hence be the case that the type 1 error probability is higher than α, depending
on the situation and number of interim tests. Thus, when this strategy is used and the
dependence between test statistics is not accounted for, it is advised not to use too
many interim analyses and a lower significance level per test than α (the level for the
whole sequential testing procedure). In Pocock (2013), guidelines are given on what a
good significance level is for a certain group of tests.

Sequential methods became more accepted in clinical trials after the success of
the Beta-Blocker Heart Attack Trial (BHAT), which ended in June 1982. The use of a
sequential procedure shortened the 4 year trial by 8 months. After this trial, the use of
sequential methods in clinical trials increased, as well as research on this topic. More
information on sequential analysis can be found e.g. in the second chapter of Lai (2001).

2.2.3 Multi-Armed Bandits

Research has also been done on optimization of the allocation rule in clinical trials.
In this case, treatment allocation depends on the already observed outcomes. The
situation of allocating the treatments in an optimal way is called a multi-armed bandit
problem (a type of reinforcement learning). These problems are all analogous to be-
ing in a casino with multiple slot machines with different probabilities of success. The
bandit, who has to maximize his profit, does not know these probabilities and has to
estimate these by pulling different arms. The slot machine situation can be very gen-
eral, e.g. the machine can give any type of payoff (e.g. real-valued, discrete), can have
certain traits/covariates (contextual bandits) and the payoff distribution can change in
time (nonstationary bandits). There is an exploration/exploitation tradeoff inherent to
these problems. The ”profit” of the ”bandit” in clinical trials can be e.g. the number of
patients being cured or the number of ”good” outcomes. In Friedman et al. (2010) and
Spiegelhalter, Abrams, and Myles (2004), it is stated that these method are not often
used in clinical trials and face a lot of criticism. Based on the latter source, the following
objections to adaptive allocation are given:

1. Multi armed bandits are less robust to model misspecifations as compared
to (sequential) RCTs.
In multi armed bandit models, one has to make assumptions which then lead to
a strategy which is (close to) optimal. The optimal strategy (and hence the trial
conclusion) can however depend highly on these assumptions. Think for instance
of a contextual (covariate-based) bandit problem where not all important features
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are taken into account. RCTs and sequential testing are much more robust in this
regard due to randomization/balancing.

2. It is more difficult to implement a multi-armed bandit based design in prac-
tice.
A lot of communication is needed between researchers and doctors in order to
determine the assigned control group for each new patient, communicate results
etc. This additional difficulty in the trial design may make doctors more reluctant
on letting their patients participate in the trial.

3. Multi-armed bandit problems are sensitive to the chosen objective function.
The chosen objective function determines the optimal solution, so there is a larger
element of choice as compared to the statistical methods, especially when multiple
outcomes are involved.

4. Multi-armed bandit trial designs may induce a larger sample size.
In an optimized clinical trial, the idea is that statistical inference is done on two (or
more) groups with unequal sample sizes. For statistical tests, it is often seen that
significant group outcome differences are observed the earliest when the group
sizes are equal. Hence, in clinical trial optimization, a larger sample size is often
needed as compared to in standard trials 1. This larger sample size means that
the trial takes longer to complete, hence the total patient population has to wait a
longer time for the new medicine.

The importance of the above objections depends on the case at hand. If a trial already
has a very large sample size, and the increase due to a multi-armed bandit approach
will be negligible, the objection may be rejected.

2.3 Designs of History Controlled Trials

Due to the ethical concerns with randomization in clinical trials, there has been (and still
is) an abundance of research on incorporating historical trial data in currently performed
clinical trials. One of the earliest articles on inclusion of historical control data in current
trials is by Pocock (1976). In this paper, the following six criteria are given for historical
control data inclusion:

1Note that the objective is not always to minimize trial duration.
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1. The treatment for the historical control group must be the same as that for the
current control group.

2. The historical control group must have been a part of a recent clinical study which
contained the same inclusion criteria as the current trial.

3. The methods of treatment evaluation/analysis must be the same.

4. The distributions of patient characteristics in both groups should be comparable.

5. The historical control group patients should have been treated at the same orga-
nization with roughly the same clinical investigators.

6. There must be no indications that factors other than treatment differences will lead
to different results in the historical control and current treatment group.

These criteria are often taken as guidelines, as they are quite stringent, reasoning is
often given why some of the criteria can be relaxed. In e.g. Lim et al. (2018), van
Rosmalen, Dejardin, van Norden, Löwenberg, and Lesaffre (2018), Viele et al. (2014)
and in chapter 6.9 of Spiegelhalter et al. (2004), surveys are given of historical control
inclusion methods. The methods outlined in these surveys can be classified in five
groups:

• Use the historical data as a so called literature control.

• Pool the historical control group data with the current data.

• A biased sample approach.

• Use a so called power prior.

• Assume a hierarchical model for the current and historical control group. This is
also often called a meta-analytic approach.

The first approach, using literature controls, corresponds to the often used method em-
ployed in clinical research up until the 1950’s. It assumes that enough historical data is
available to give a reasonable estimate of the control parameter of interest, which will
be denoted by θc. This parameter can be e.g. the mean of the distribution, the variance,
or some quantile. In the case of θc being the mean, it is e.g. assumed that the sam-
ple mean of the historical data is exactly equal to the true mean of the control group
outcomes. In the currently conducted trial, H0 : θt = θc is then tested against some
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alternative hypothesis (e.g. θt − θc = δ, θt − θc < δ or θt − θc > δ), where θt is the same
parameter of interest for the treatment group. As already stated, this procedure does
not account for changes in the patient population, time dependent effects and change
in inclusion/exclusion criteria between trials. In Viele et al. (2014), a simple example
is given in which the power and type 1 error rate are seen to be very sensitive to the
true parameter θc for this type of trial. It is clear that this method is an unreliable way to
incorporate historical data in clinical trials, and hence in the following, the focus will lie
on the latter four methods.

2.3.1 Pooling of Control Data

When control data is pooled, the historical control group data is pooled with the current
control group data. Of course, if the historical control group data is not representative
of the current control group data (e.g. due to trends in the data), tests based on this
procedure may have less power or a larger probability of a type 1 error, as shown in
Viele et al. (2014).
A safer procedure in this regard is often called the test-then-pool procedure. In this
procedure, similarity between the historical and current control group data is first tested
for. For example, one of the tests in Section 2.1.5 could first be applied to the historical
and current control group. If this test rejects, the trial is conducted using only current
control group data. If the test doesn’t reject, historical and current control data are taken
as one sample (pooled). In this way, the amount of historical data included in the trial
is decided on in a data-driven way and there is more control on the power and type 1
error of the test than before. The downside to this procedure is that it is an all-or-nothing
approach, either all or none of the historic data is included depending on whether the
statistic exceeds some threshold value. A way of softening these decision boundaries
is by using a Bayesian approach2. The power prior and hierarchical modeling approach
are examples of such approaches.

2.3.2 Biased Sample Approach

The first instance of this is the work of Pocock in 1976 (Pocock, 1976). Pocock consid-
ered the case of two treatment groups (control and treatment) in a trial with quantitative
outcome data. Let Y T

i be the treatment group outcomes, Y C
i be the control group out-

2For an introduction to Bayesian statistics, see Chapter 3.
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comes, and Y H
i the historical control group outcomes.

The following model was assumed:

Y T
i

iid∼ N (µT , σ
2
T )

Y C
i

iid∼ N (µC , σ
2
C)

Y H
i

iid∼ N (µC + δ, σ2
H)

δ ∼ N (0, σ2
δ ).

In the above, N (µ, σ2) is the class of normally distributed random variables with mean
µ and standard deviation σ. All standard deviations are assumed to be known and all
variables are assumed to be independent and identically distributed (which is denoted
by iid∼). The value of interest is now µT−µC (the treatment effect). From the above model,
one can see why this approach is called the biased sample approach, the average effect
based on Y H

i alone would give a biased estimator (with bias δ) for the treatment effect.
Using improper uniform priors on µT and µC , the posterior distribution of µT −µC was

derived:

µT − µC ∼ N (Y T − Y C,H , σ
2
T/NT + VC,H)

where

Y C,H =
(σ2

H/NH + σ2
δ )Y C + (σ2

C/NC)Y H

σ2
C/NC + σ2

H/NH + σ2
δ

VC,H =
(
(σ2

C/NC)−1 + (σ2
δ + σ2

H/NH)−1
)−1

.

In the above, Y T , Y C , Y H are the sample averages and NT , , NC , NH the number of
patients in the different groups of the trial.

It is seen from the above that the certainty about the difference in means depends on
the chosen sample sizes and standard deviations, especially on the chosen value of σδ,
whose effect doesn’t decrease with sample size. It is probably useful to try out different
values of σδ to get a grip on the robustness w.r.t this parameter. Pocock proposes to set
the standard deviations of the observed variables equal to the square root of the sample
variance.

2.3.3 Power Prior Approach

Power priors form a way of incorporating historical data in a prior for a Bayesian analysis.
The effect of this is that it softens the decision boundary for testing (Viele et al., 2014).
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Power priors have emerged in research around the end of the 20th century, and a good
summary about them can be found in either (Ibrahim, Chen, Gwon, & Chen, 2015) or
(Ibrahim, Chen, et al., 2000). Let D denote the control group data and D0 the historical
control group data, let θc denote the current control group parameters and pθc be a
prior on the control group parameters. Let fθc|D0 and fθc|D be the posterior densities of
the control group parameter given the historical data and the current data respectively.
In a power prior model, the prior for the Bayesian analysis is given conditional on the
historical data D0. In fact, if one denotes this conditional prior with pθc|D0, for some
a0 ∈ [0, 1]:

pθc|D0(θc) ∝ fθc|D0(θc)
a0pθc(θc).

Hence the influence of the historical data on the prior is downweighted by some factor
a0 ∈ [0, 1]. The effect of this is that the posterior density of θc based on the historical
data is flattened. The justification for this flattening could be for instance that in the
current control group, the inclusion/exclusion criteria are different, but it is not known
which members in the history control group would have been excluded. The power prior
is a way to discount all information equally for the historical control group.
Consider for instance an experiment where for some θ ∈ [0, 1]

I1, . . . , In
iid∼ Ber(θ)

are recorded. Taking a standard uniform U(0, 1) on θ and letting N =
∑

i Ii, it follows
that:

fθ|N(θ) ∝ θN(1− θ)n−N1[0,1](θ).

Here 1E(x) is the indicator that x ∈ E. Hence, if one was to conduct a new experiment
and use a power prior to include historical information on θ, the power prior would be:

pθ|N(θ) ∝ θa0N(1− θ)a0(n−N)
1[0,1](θ).

Hence, the historical sample size was effectively multiplied with a0.

From Bayes’ rule, it follows that using the power prior, the posterior density of the pa-
rameters is given by:

fθc|D,D0,a0(θc) ∝ fθc|D(θc)fθc|D0(θc)
a0pθc(θc). (2.1)

Note that if the posterior was originally well defined (i.e. f(θc|D)p(θc) is integrable for all
θc), then the posterior following from using the power prior is also well defined. If one
takes a0 = 1, this means that the historical control data is pooled with the current control
data, and a0 = 0 means that the historical data is thrown away.
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In the original definition of the power prior in Ibrahim et al. (2000), a0 was fixed. In
this case, this procedure can be seen as a method that lies between pooling the control
data and ignoring it. With fixed a0, the power prior method does not borrow the historical
data dynamically, and hence this procedure still has a quite high risk of having a type 1
error or low power.
An approach to make the borrowing dynamic is to set a prior pθc,a0 on (θc, a0) and multiply
the conditional densities in (2.1) with pθc,a0 instead of pθc. However, due to the fact that
there is a term fθc|D0(θ)

a0 in the posterior, it can be the case that the posterior becomes
an improper function. A solution for this problem is given in (Neuenschwander, Branson,
& Spiegelhalter, 2009), where it is required that pθc,α0 = pθc(θc)pa0(a0) and:

pθc,a0|D0 =
fθc|D0(θc)

a0pθc(θc)∫
fθc|D0(θc)

a0pθc(θc)dθc
pa0(a0). (2.2)

This conditional prior is integrable, which can be seen by integrating over the parameter
space of θ first, and then for a0.
The upside to this method is that the borrowing of historical data is now ”dynamic”. The
downside is that the calculation of the numerator in (2.2) is often hard. Furthermore,
the posterior distribution of a0 does not depend on D, as remarked by (Hobbs, Carlin,
Mandrekar, & Sargent, 2011). Hence these priors do not measure the so called com-
mensurability between D0 and D. Thus, this method of choosing a0 is not very dynamic
at all, and often overestimates the correspondence between the historical data and cur-
rent control data. Another problem with power priors is the question on how to combine
multiple trials, hierarchical modeling provides a better setup for this.

2.3.4 Hierarchical Modeling

The hierarchical model or meta-analytic approach was proposed in Neuenschwander,
Capkun-Niggli, Branson, and Spiegelhalter (2010). It can deal with multiple historical
trials, and assumes that the parameters θ1

c , . . . , θ
K
c for these (K) trials are iid drawn from

the same normal distribution:

θ1
c , . . . , θ

K
c

iid∼ N (µc, σ
2
c ).

Often, the assumption of continuous support can be justified by making a transformation
on model parameters that have bounded support (e.g. assuming a generalized linear
model).
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The data D1, . . . , DK corresponding to these trials are then sampled from some
parametrized probability measures Pθ1c , . . . ,PθKc .When a prior on µc (often non-informative)
and σ2

c are chosen, prediction of θK+1
c (the control parameter for the current trial) can be

done using D0, . . . , DK . If this prior for θK+1
c is then used for improving the trial design,

this procedure is called Meta Analytic Prediction.
If after the trial, information D0, . . . , DK+1 are used to strengthen the conclusion of

the trial, this is called the Meta Analytic Combined method. Tests based on the meta
analytic procedure have a smooth decision boundary where historical data is dynami-
cally included. In terms of power and type 1 error probability, they perform better than
the power prior in that both measures can assume a supremum/infimum between the
curves given by pooling and exclusion of historical data. Furthermore, examples can be
given in which these suprema/infima are less extreme as compared to the test-then-pool
procedure (see (Viele et al., 2014)).

Sometimes, to account for the fact that there is a possibility that the historical and
current controls do not correspond, the meta analytic posterior of θcK+1 is mixed with a
(preferably) conjugate prior pθcK+1

to construct the meta analytic prior for θcK+1. For some
chosen w ∈ [0, 1] the following definition holds for this prior:

pθcK+1|(D1,...,DK) = wfθcK+1|(D1,...,DK) + (1− w)pθcK+1
.

This approach was introduced in (Schmidli et al., 2014), the effect is that the prior flat-
tens, just as in the power prior approach. The parameter w can be based on expert
opinion, or multiple values could be tried out.

In the next chapter, an introduction is given to the concepts in Bayesian statistics
used in the remainder of this thesis.



Chapter 3

Principles of Bayesian Statistics

Bayesian statistics is a way to couple prior belief with inference from observations
in a way that is based on Bayes’ rule. This well-known rule is basically a one-step
derivation from the definition of the conditional probability density.
Given two real valued random variables X, Y having a joint probability density denoted
by f(X,Y ), and marginal densities fX and fY , the conditional density fX|Y of X given Y

is defined for all x, y ∈ R as :

fX|Y (x, y) :=


f(X,Y )(x,y)

fY (y)
if fY (y) > 0,

0 else.

Hence, using that fY |X is similarly defined with the same joint density, one obtains
Bayes’ rule:

fY |X(x, y) =


fX|Y (x,y)fY (y)

fX(x)
if fX(x) > 0,

0 else.

In Bayesian statistics, it is often the case that X is observed, and Y is unknown. A well-
known result from probability theory states that fY |X(X, y) (i.e. the conditional density
of Y with a random first argument distributed as X) induces a conditional probability
measure for Y . This basically states that when X = x is observed, fY |X(x, ·)1 is a
probability density function.

Note that as X = x was observed, it must be that fX(x) > 0 and hence

fY |X(x, ·) =
fX|Y (x, ·)fY (·)

fX(x)
∝ fX|Y (x, ·)fY (·). (3.1)

1The · denotes the free variable.

23
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The function on the left is often called the posterior density of Y given X. The ∝ sign
above denotes that the latter function is merely a scaling of the former function. In
Bayesian inference, the scaling can be taken out of consideration as it is known that
fY |X is a probability density and hence integrates to 1. In the remainder, this notation will
be used often as it makes the derivations shorter. By convention, the random variable
corresponding to this posterior density will be denoted by Y |X. Bayesian inference
revolves around the posterior density fY |X , as it contains all information (e.g. the mean,
variance, credible intervals) of Y given X.
In Bayesian statistics, it is often the case that (X, Y ) follows a model, where X are the
observations and Y are parameters of the model. An example of this would be the
case where X is a vector of n independent N (µ, 1)−distributed random variables. In
the Bayesian setting, Y would represent µ and inference is done on µ|X. Note that
from relation (3.1) it follows that one has to define a prior (density) pµ on µ in order
to do inference on µ2. When comparing this method to classical frequentist statistics
it induces an additional modeling choice, namely specifying the prior. Furthermore, it
seems quite counterintuı̈tive to treat the parameter µ as a random variable. However,
there are two ways in which it can still be justified to do this:

• One way is to see the model as a belief model instead of a probability model,
this correspond to subjective Bayesian inference. The prior now corresponds to
the prior belief of the conductor of the experiment. In the previous example, the
researcher might have a strong belief that µ lies in the interval [100, 200] and hence
might select aN (150, 400) prior on µ where almost 99% of the probability mass lies
in [100, 200]. In cases where µ ∈ [100, 200], this can lead to quicker contraction of
the posterior density for µ and hence a smaller sample size is required in order to
do reliable inference on µ. The tradeoff here is that when µ /∈ [100, 200], posterior
contraction might be slower than in a setup where a less informative prior is used.
One hence has to really think before making such a priori assumptions.

• In many cases, a frequentist-matching prior can be used (Mukerjee, 2003) to make
the inference procedures of Bayesian and frequentist statistics agree (often to
the extent of some approximation). This corresponds to objective Bayesian in-
ference. The chosen priors in objective Bayesian inference are often improper,
which means that they are not integrable, but can lead to integrable posteriors. In
the normal variables example, a matching prior would be to take pµ ∝ 1. As fX|µ

2In the following, to denote that a probability density is a prior, priors will be denoted by p.
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is a product of normal densities, it is easy to see that

fµ|X ∝ e−
n(µ−Xn)2

2 ,

(
Xn =

1

n

n∑
i=1

Xi

)
. (3.2)

Hence µ|X ∼ N (Xn, 1/n) which can be compared to the frequentist situation,
where we would estimate µ with Xn ∼ N (µ, 1/n). 3

In a sense, frequentist-matching priors do not give information on Y , which is
why they are often more attractive from a frequentist point of view. Furthermore,
Bayesian analysis can still be conducted, which also brings some advantages (e.g.
in the case of a latent variable model).

As already stated after the first bullet point above, the choice of prior has a large influ-
ence on the contraction rate of the posterior. For computational purposes, the choice of
prior can also matter a lot. For a given model, a special class of priors are the conjugate
priors for that model. If a model M for (X, Y ) induces the likelihood function fX|Y , the
class of conjugate prior distributions FCPM for that model is given by all prior densities pY
such that fX|Y · pY ∈ FCPM , and hence fY |X ∈ FCPM .

Consider for example the independent standard normal model. As fX|µ ∝ fµ|X in Re-
lation (3.2), it follows that for a N (µ0, σ

2
0) prior on µ, the following relation holds for the

posterior density:

fµ|X(µ) ∝ e
− 1

2

(
(µ−Xn)2

1/n
+

(µ−µ0)
2

σ20

)
∝ e−

1
2((n+1/σ2

0)µ2−2µ(nXn+µ0/σ2
0))

∝ e
− 1

2

(
µ−

nXn+µ0/σ
2
0

n+1/σ20

)2

1/(n+1/σ20) . (3.3)

Hence for this prior, it holds that µ|X ∼ N
(
nXn+µ0/σ2

0

n+1/σ2
0
, 1
n+1/σ2

0

)
and thus the class of nor-

mal distributions forms a class of conjugate priors for this model.
In the case that the class of conjugate priors is parametrized (i.e. there exists an iso-
morphism between FCPM and Rd for some d), this is of particular use. In this case,
calculating the posterior density of Y |X amounts simply to updating the parameters of
the prior. One example where this is useful is in on-line Bayesian estimation, where X is
frequently updated. Bayesian inference with conjugate priors makes that the posterior
density of Y can be quickly updated in this case.

3Note the difference in interpretation above, the statement µ|X ∼ N (Xn, 1/n) says that if we consider
the data X as if it came from the described normal model, the posterior density of the mean given that
model is a N (Xn, 1/n)−distribution. In the latter case (Xn ∼ N (µ, 1/n)), the statement is much weaker,
it says that if the data follows the described model, the sample mean has a N (µ, 1/n)−distribution. In the
former case, there are no restrictions on the underlying distribution of the observations.
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3.1 P values and Bayes Factors

3.1.1 p-values

As already stated in chapter 2, frequentist hypothesis tests are the most often per-
formed tests in clinical trials. When a frequentist hypothesis test has been rejected, a
corresponding p-value is often reported. First, a formal definition of a p-value is given,
which can be found in e.g. Shafer, Shen, Vereshchagin, Vovk, et al. (2011) or Grünwald
(2016):

Definition 1. A p-value under the null hypothesis probability measure P0 is defined as
a random variable P such that for all α ∈ [0, 1]:

P0(P ≤ α) ≤ α. (3.4)

The above definition basically states that P is a good representation of the probability
of attaining at most its own value. A p-value is called precise if the second inequality
in Equation (3.4) is an equality. Often, in clinical research, a null hypothesis is rejected
(and trial results are deemed significant) when P ≤ 0.05.
In frequentist hypothesis testing, the p-value is often based on the test statistic T , which
is a real-valued function of the data X. If Y is an iid sample of the data under P0, it
follows from the above definition that:

PT := P0(T (X) < T (Y )|X)

is a p-value based on T (see e.g. Grünwald (2016)).
P-values based on test statistics (denoted PT ) have faced a lot of criticism in the last

two decades (see e.g. Wagenmakers (2007), Assaf and Tsionas (2018), Wasserstein,
Lazar, et al. (2016) or Grünwald (2016)). The main points of critique are:

1. PT is hard to interpret
Most clinical researchers have a hard time interpreting p-values. In a survey pub-
lished in JAMA (Windish, Huot, & Green, 2007), medical residents were asked
to answer multiple-choice questions about subjects in statistics. One of these
subjects was about interpreting p-values. Of all residents, only 58.8% was able
to correctly answer questions about interpreting a P-value. Furthermore, while
88% of the residents expressed fair/complete confidence in their knowledge about
P-values, only 62.8% of these residents could answer elementary p-value interpre-
tation questions correctly.
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Often, a p-value is misunderstood as the probability that the null hypothesis H0

is true. This is not the case as from Definition 3.4, it is seen that P only has an
interpretation under P0. Hence, a P value can only be interpreted assuming that
the null hypothesis is true.
A further problem with interpretability exists when P > 0.05. From Definition 3.4, it
can be seen that, if the P -value is not precise, the probability under the null of P
being e.g. less than 0.8 can still be smaller than 0.05. However, many researchers
interpret a large P value as a large amount of evidence for the null hypothesis.
Furthermore, from Definition 3.4, it can be seen that no alternative hypothesis is
considered. Hence it is also not the case that a large p-value indicates a lot of
evidence for any alternative hypothesis, which is also sometimes assumed.

2. Tests based on PT will always reject with increasing sample size.
Note that as ”all models are wrong” (Box, Luceno, & del Carmen Paniagua-Quinones,
2011), the probability of rejection based on the p-value will tend to 1 with increas-
ing sample size. This is a fallacy of the p-value, but can also be seen as a fallacy
of frequentist hypothesis testing as a whole. This phenomenon is described in e.g.
M. Lin, Lucas Jr, and Shmueli (2013).

3. PT is sensitive to the sampling procedure
Here the example of optional continuation of experiments can help to give a clar-
ification. Suppose that a researcher is conducting an experiment and after it is
completed he obtains a p-value of 0.06. As this p-value is very close to 0.05, he
decides to restart the experiment in the hope that the p-value will become lower
than 0.05 If this researcher calculates the p-value as if he had done the whole
experiment without an intermediate observation, he is in the wrong. He namely
has to calculate the p-value conditional on the already observed data. Calculating
these conditional p-values can be difficult in some cases.

4. The value of PT is often based on asymptotic results.
Many tests, such as e.g. the chi-squared test or the independent two-samples
t-test are based on asymptotic results. These tests form a good approximation
when the sample size is large. However, in clinical trials, large sample sizes are
often not observed.

Due to these criticisms, alternative hypothesis testing procedures, such as Bayes factor
testing are often proposed, which will now be introduced.
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3.1.2 Bayes Factors

For a dataset D, let a model M for this data denote a probability density fD|M on the
support of the data. The posterior evidence for a modelM given the data can now be
defined as:

fM|D :=
fD|MpM
pD

.

In the above, pM is the prior probability of model M being true and pD is the prior for
the data D.
Now, let H0 and H1 be models for D. If pH0|D = 0 iff pH1|D = 0, the Bayes factor for testing
H0 vs. H1 is now defined as the ratio between the posterior evidence for the models:

B(D) =
fH0|D(D)

fH1|D(D)
=
fD|H0(D)pH0

fD|H1(D)pH1

pD(D)

pD(D)
=
fD|H0(D)pH0

fD|H1(D)pH1

.

The prior probabilities for the two models are often taken equal (pH0 = pH1) and in this
case the Bayes factor is equal to the likelihood ratio of the data under the two models:

B(D) =
fD|H0(D)

fD|H1(D)
. (3.5)

This gives the Bayes factor a clear interpretation, when B(D) = α, the data is α times
more likely to have been generated under model H0 as compared to under H1.

Let Pi be the probability measure under Hi for i ∈ {0, 1}, and denote with Ei the corre-
sponding expectation. If D lies in Rn for some n, it follows from Markov’s inequality, as
B(D) is nonnegative, that for all α ∈ (0, 1):

P1(B(D) ≥ 1/α) ≤ αE1 [B(D)] = α

∫
Rn

fD|H0(x)fD|H1(x)

fD|H1(x)
dx = α

∫
Rn
fD|H0(x)dx = α.

(3.6)
Hence, under H1, large values of B(D) are unlikely.
Similarly, for α ∈ (0, 1):

P0(B(D) ≤ α) = P0(1/B(D) ≥ 1/α) ≤ αE0 [1/B(D)] = α

∫
Rn

fD|H1(x)fD|H0(x)

fD|H0(x)
dx

= α

∫
Rn
fD|H1(x)dx = α.

Thus, under H0, small values of B(D) are unlikely.
These properties link Bayes factors to p-values. Indeed, from the derivation above

and Relation (3.4), it can be seen that B(D) is a p-value under H0. Furthermore, by
writing P1(B(D) ≥ 1/α) as P1(1/B(D) ≤ α), it can be seen that 1/B(D) is a p-value
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under H1. Hence, H0 and H1 can be rejected (but never simultaneously) based on
B(D).

Notice that a lot of downsides of using p-values based on test statistics do not play
a role with Bayes factors. When a Bayes factor is large/small, this indeed means that
the probability of the null hypothesis is large/small and the inverse relation holds for
the alternative hypothesis, hence downside 1 for p-values on Page 26 is taken out of
consideration.

Furthermore, inference in Bayesian statistics does not revolve around the assump-
tion that the chosen model is true. Hence, the problem with rejection of the null hypoth-
esis with large sample sizes (issue 2 on Page 27) is no issue anymore.

Also, Bayes factors are also useful for optional continuation. Following e.g. Ly, Etz,
Marsman, and Wagenmakers (2018), if a researcher intermediately looks at the results
of the test and decides to continue, the Bayes factor at the endpoint will just be:

fD(2)|(D(1),H0)

fD(2)|(D(1),H1)

=
fD|H0

fD|H1

·
fD(1)|H1

fD(1)|H0

. (3.7)

In the above, D(1) denotes the observed data prior to the intermediate decision, and D(2)

denotes the data after the decision was made. Note that in order to make the decision,
the researcher has already calculated pD(1)|Hi and hence at the end of the experiment
only has to calculate pD|Hi to determine the conditional Bayes factor. The equation
above also states that the Bayes factor for the total dataset D is just the multiplication of
the Bayes factor for D(1) and the conditional Bayes factor for D(2)|D(1).

Lastly, most results in Bayesian statistics hold with finite sample size. Often, no
asymptotic approximations need to be made. Hence the last issue on Page 27 is also
solved.

In a sequential analysis, the Bayes factor can be sequentially updated based on
new information. The result of this can be viewed as a discrete time stochastic process.
Quite recently, a class of stochastic processes has been investigated that encompasses
this process. This class is called the test martingales (Grünwald, 2016). Studying these
types of processes could produce some results that apply to a situation more general
than just clinical trials. In Appendix F, some (known) results about test martingales are
stated.
In this research, the Bayes factor is approximated using samples from a Markov Chain
Monte Carlo (MCMC) algorithm, hence these class of algorithms, in particular the Metropolis-
Hastings algorithm and Gibbs sampling, are now elaborated on.
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3.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) techniques are often used for sampling from fY |X

when the unobserved variable Y in Bayesian analysis is multidimensional and/or no
analytical expression can be found for the joint posterior density of Y |X. The idea in
MCMC is to create an ergodic, discrete time, (often) continuous state Markov Chain
with stationary distribution equal to the probability measure induced by the density fY |X .
One of the techniques to construct such a Markov Chain is the so called Metropolis-
Hastings algorithm.

3.2.1 The Metropolis-Hastings Algorithm

First, define g : Rd×Rd → R+ to be a transition kernel iff g(x, ·) is a probability density on
Rd for all x ∈ Rd. Denote with Pgx the induced probability measure at x. In the Metropolis-
Hastings algorithm, as a first step a transition kernel g supporting Y (i.e. g(z, y) > 0 for
all z, y ∈ supp(Y )) is chosen. Now, for all z, y in the support of Y , the acceptance ratio
is defined as follows:

a(z, y) = min

(
1,
fY |X(y)

fY |X(z)

g(y, z)

g(z, y)

)
= min

(
1,
fX|Y (x, y)pY (y)

fX|Y (x, z)pY (z)

g(y, z)

g(z, y)

)
. (3.8)

Note that the second equality above only holds because of proportionality, the normal-
ization constants divide out. Let P0 be an (initial) probability measure on the support of
Y , the Metropolis-Hastings algorithm can now be written as follows:
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Algorithm 1 Metropolis-Hastings
1: Inputs:

Observed data X;
2: Initialize:

draw Y0 ∼ P0;
3: for k ∈ {1, . . . , N} do
4: draw Y ∗ ∼ PgYk−1

;
5: draw Uk ∼ U(0, 1);
6: if Uk ≤ a(Yk−1, Y

∗) then
7: set Yk := Y ∗;
8: else
9: set Yk := Yk−1;

10: end if
11: end for
12: Outputs:
13: Y1, . . . , YN .

In the above, U(a, b) is the class of uniformly distributed random variables on the interval
[a, b] for a < b in R.
The following well-known result now follows:

Theorem 1. The Markov chain induced by the Metropolis-Hastings algorithm has a
stationary distribution equal to the probability distribution induced by fY |X .

Proof. As the (would be) stationary probability density is fY |X and the kernel for the
Markov chain is

g′(z, y) = g(z, y)a(z, y) = g(z, y) min

(
1,
fY |X(y)

fY |X(z)

g(y, z)

g(z, y)

)
,

it follows that when fY |X(z) and fY |Z(y) are positive:

fY |X(z)g′(z, y) = fY |X(z)g(z, y) min

(
1,
fY |X(y)

fY |X(z)

g(y, z)

g(z, y)

)
= min

(
fY |X(z)g(z, y), fY |X(y)g(y, z)

)
= fY |X(y)g(y, z) min

(
1,
fY |X(z)

fY |X(y)

g(z, y)

g(y, z)

)
= fY |X(y)g′(y, z).

Note that the above equations do not hold when Y is not supported by g. If one of the
conditional densities is zero, the acceptance ratio is zero and as a result, the above
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equality also holds. Hence detailed balance holds and according to Kelly’s Lemma
(Kelly, 2011)4, the Markov chain is ergodic with a stationary distribution induced by
probability density fY |X .

Note that the above theorem does not give any guarantees that the induced chain is
ergodic (in short, that in some sense convergence to the stationary distribution indeed
occurs). For this, stronger conditions about the generating chain and model are needed
(see e.g. Roberts and Smith (1994)). The rate of convergence to the stationary distri-
bution is determined by the choice of transition kernel g. An alternative MCMC method,
the Gibbs sampling algorithm, is now described in the next section.

3.2.2 Gibbs Sampling

In the Gibbs sampling algorithm, Y is marginalized into smaller parts Y = [Y1, . . . , Yk]
′

which may or may not be univariate. The transition kernel is now chosen such that
sequentially Yi|Y(−i),X is sampled for i ∈ {1, . . . , k} (here Y(−i) is Y with the part corre-
sponding to Yi removed).
Denote with di(·) the projection of a vector onto the same vector with the part corre-
sponding to Yi removed (e.g. di(Y ) = Y(−i)).
The global transition kernel is now equal to a kernel where sampling from the transition
kernels g1, . . . , gk is sequentially performed, where:

gi(z, y) :=
fY |X(y)

fY(−i)|X(di(y))
I(di(z) = di(y)).

Here, I(F ) is the indicator that the statement/event F holds.
Now, it is seen that when sampling according to gi is performed, the corresponding

rejection rate αi is given by:

ai(z, y) = min

(
1,
fY |X(y)

fY |X(z)

gi(y, z)

gi(z, y)

)
= min

(
1,
fY |X(y)

fY |X(z)

fY |X(z)fY(−i)|X(di(y))I(di(z) = di(y))

fY |X(y)fY(−i)|X(di(z))I(di(z) = di(y))

)

= min

(
1,
fY(−i)|X(di(y))I(di(z) = di(y))

fY(−i)|X(di(z))I(di(z) = di(y))

)
.

4Originally, Kelly’s lemma holds for a discrete state Markov chain with transition/stationary probabilities,
but by considering the limit for the result on Markov chains on finer and finer partitions of the state space,
one can show that the result also holds with a continuous state space when using the transition/stationary
densities.
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Due to the fact that new samples Y are generated according to the kernel gi, it is always
the case that di(Yk−1) = di(Y

∗) in the Markov chain. Hence, the above term is always
equal to 1 in the Gibbs sampling algorithm. Hence, under some additional conditions,
the Gibbs sampling algorithm is equivalent to the Metropolis-Hastings algorithm with
acceptance ratio equal to 1. This does not mean however that Gibbs samplers are
optimal in the sense of convergence. The acceptance ratio is 1 but it can still be the
case that the sampled process shows a lot of autocorrelation and is thus very sensitive
to the initial state. An advantage of the Gibbs sampler is that one can for instance make
use of conjugacy in each Gibbs sampling step, resulting in a fast evaluation of posterior
marginal densities, especially when the posterior distribution is parametrized.

3.3 Laplace-Metropolis Approximation

Returning to Bayes factors, in elaborate models, it is hard to analytically evaluate fX|Hi
from Equation 3.5. However, if the hypotheses (or models) describe a joint distribution
of X and some latent variable Y ∈ Rd, the Bayes factor can be written as follows:

B(D) =

∫
Rd fD|(Y,H0)(D, y)fY |H0(y)dy∫
Rd fD|(Y,H1)(D, y)fY |H1(y)dy

. (3.9)

Both integrals above can be approximated with the so called Laplace-Metropolis estima-
tor (Lewis & Raftery, 1997). This estimator revolves around the Laplace approximation,
which is based on a second order Taylor approximation for a special class of functions.
Namely, for a bounded unimodal function h ∈ C2(Rp):∫

Rp
eh(u)du ≈ (2π)p/2|H∗|1/2eh(u∗).

In the above, u∗ = arg max
u∈Rp

h(u) and H∗ = − [Hess(h)(u∗)]−1 .

In the above, Hess stands for the Hessian operator.
Taking hi(u) = log(fD|(Y,Hi)(D, u)fY |Hi(u)) and di the number of incorporated latent vari-
ables under Hi for i ∈ {0, 1}, it follows that when h is bounded, twice continuously
differentiable and unimodal that:∫

Rd
fD|(Y,Hi)(D, y)fY |Hi(y)dy ≈ (2π)di/2|H∗i |1/2fD|(Y,Hi)(D,u∗i )fY |Hi(u∗i ).

In the above, u∗i is equal to arg max
u∈Rd

log(fD|(Y,Hi)(D, u)fY |Hi(u)), note that this is exactly

the maximum a posteriori estimator of the parameters under Hi. Furthermore, H∗i is the
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negative inverse Hessian of h at u∗. The expectation of the inverse of this is exactly
the so called Fisher information matrix (see e.g. Van der Vaart (2000)). The inverse of
the Fisher information matrix is (under regularity conditions) the asymptotic covariance
matrix in a central limit theorem for the maximum likelihood estimator. Hence, one could
state that |H∗i | represents the variance in the posterior density of the parameters.

The formula above leads to the following approximation for the logarithm of the Bayes
factor:

log(B(D)) ≈d0 − d1

2
log(2π) +

1

2
(log (|H∗0|)− log (|H∗1|)) +

(l0(X,u∗0)− l1(X,u∗1)) + (λ0(u∗0)− λ1(u∗1)). (3.10)

In the above, li(u) = log(fD|(Y,Hi)(D, u)) and λi(u) = log(fY |Hi(u)) for all u.
Approximation 3.10 can be divided in four interpretable parts. The part (d0−d1) log(2π)/2

corresponds to the difference in dimensions of the models H0 and H1. From this, it is
seen that the Lapplace approximated Bayes factor gives more evidence toward models
with more parameters. The part (log (|H∗0|)− log (|H∗1|)) /2 evaluates the difference in
covariance/spread in the posterior densities. Curiously, the Laplace Metropolis Bayes
factor gives more evidence toward the model with the most amount of posterior vari-
ance. This seems counterintuı̈tive as more posterior covariance implies more posterior
uncertainty about the parameter values. No intuı̈tive explanation for this was given in
(Lewis & Raftery, 1997) or found elsewhere.

The part corresponding to (l0(X,u∗0)− l1(X,u∗1)) gives more evidence to the estimate
that gives the highest posterior density and the part corresponding to (λ0(u∗0)− λ1(u∗1))

gives more evidence to the estimate that has the highest prior density.
In Lewis and Raftery (1997), it is advised to estimate u∗ with the multivariate posterior
median, and to estimate H∗ with the weighted variance matrix estimate described in
Rousseeuw and Van Zomeren (1990). The former is also done in this research, however
it took too much time in practice to compute the weighted variance matrix, hence the
standard covariance estimator was used.



Chapter 4

Treatment Induced Correlation in a
Survival Model

In this chapter, the multivariate survival model combining the research of X. Lin and
Wang (2010) and Fox et al. (2017) will be introduced. This model was not yet seen in
literature. In the first section, an introduction to survival analysis is given, after which
the model for censored survival data proposed in X. Lin and Wang (2010) is introduced.
In the last two sections, the multivariate extension of the survival model is defined, after
which it is explained how the baseline is modeled.

4.1 Survival Analysis

Time to event or survival responses are analyzed using so called survival analysis (or
reliability/duration analysis in engineering/economics). The events of interest are e.g.
recurrence to the clinic, time until equipment breaks down, or time to default in eco-
nomics. The subjects arrive to the trial at some time point, and are followed until the
event of interest has been observed, or the event-time is right censored. This censor-
ing basically entails all events that cause the time-to-event measurement to stop early.
Examples of this are e.g. patients leaving the trial, stopping of the trial or death due to
other causes than the disease. Next to right censoring, left censoring and interval cen-
soring can also occur. Left censoring occurs when only an upper bound on the event
time is known. This can happen for instance when patients are added to a clinical trial
retrospectively (e.g. when the inclusion criteria are redefined) and the event has already
occurred before the patients have entered the trial. Interval censoring occurs when only
the interval in which the event time lies is known. This can happen when monitoring is
not done continuously but only between certain time points.

35
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Denote the event times for subject i with Ti. The observations for subject i in survival
analysis are now time intervals [Li, Ri) in which Ti lies. When no censoring occurs, this
interval becomes degenerate (where the interval is now taken to be closed), but in the
case of left/right/interval censoring, it contains more than one point. In addition to time
intervals, the observations for a patient can also contain some covariates, denoted by
Xi for patient i. These covariates can be e.g. age, gender, and length.

4.2 The Survival Model Introduced By Lin and Wang

Let T = {−∞, 0, t1, . . . , tl,∞} denote a set of time points, where ti ∈ R for all i. In the
model proposed in X. Lin and Wang (2010), it is assumed that right and left censor-
ing can occur. Furthermore, it is assumed that the event-times are interval censored
with endpoints in T . Hence, the observations are nondegenerate intervals [Li, Ri), with
Li, Ri ∈ T such that Ri > Li. In the case Li = −∞, the event-time is left censored and
when Ri = ∞ the event-time is right censored. It is assumed that event-times for pa-
tients cannot be both left and right censored. Furthermore, p subject-linked covariates
are observed, and the vector of covariates for patient i is denoted Xi ∈ Rp. Let there be
N patients under consideration (i.e. let the sample size be N ).

It is assumed that the latent (unobserved) event-times Ti are conditionally indepen-
dently distributed. This means that given every parameter in the model, the event times
are independently distributed. Furthermore, it is assumed that there exists β ∈ Rp and
a continuous nondecreasing baseline hazard function α(·) such that for all patients i:

Ti = α−1(Xiβ + εi). (4.1)

In the above equation, {ε1, . . . , εN} is a set of iid random variables. The above model can
be seen as a linear regression model, but with a possibly nonlinear increasing transfor-
mation function α−1, which is equal to the inverse of the baseline hazard function. The
term Xiβ basically shifts the argument of the inverse baseline to the left/right and hence
decreases/increases the expected event time respectively (note that α−1 has to be an
increasing function).
By choosing εi to have a certain distribution, some often used models in survival analysis
can be obtained. When the standard logistic distribution is assumed for εi, one obtains
the logistic survival model (X. Lin & Wang, 2010). Furthermore, when α is assumed
to be differentiable and when the standard extreme value distribution is assumed, one
obtains the same partial likelihood as in the often used Cox proportional hazards model
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(Pettitt, 1984). Lastly, when the distribution of εi is assumed to be standard normal, one
obtains the survival model introduced in X. Lin and Wang (2010).

To further highlight the generality of model 4.1 further, note that model 4.1 equals a
linear regression model when Ti is observed and α equals identity. Furthermore, when α
is allowed to be discontinuous, the model also contains ordinal regression models when
α is taken to be a certain step function with jumps at the thresholds. This situation can
of course be seen as a limiting case for model 4.1, as a combination of step functions
can be approximated arbitrarily well by functions in the class of increasing continuous
functions.

From now on, the model introduced in (X. Lin & Wang, 2010) is considered, hence,
it is assumed that εi

iid∼ N (0, 1). In the article, the latent event-times Ti are transformed
by the baseline α, resulting in latent normally distributed random variables Zi:

Zi := α(Ti)
iid∼ N (Xiβ, 1).

Note that the following relation now holds between the observed intervals and the latent
variables Zi:

{Li = L, Ri = R} ⇐⇒ {Zi ∈ [α(L), α(R))}.

Note that the above model looks a lot like an ordinal regression model. However, the
thresholds α(T ) for T ∈ T are restricted to be in the range of the baseline function α.
Furthermore, due to left or right censoring, both L and R need to be specified, as the
left survival endpoint does not determine the right survival endpoint. This model is now
extended to a multivariate framework in the next section.

4.3 The Multivariate Survival Model

In this section, a multivariate extension of the model proposed by (X. Lin & Wang, 2010)
will be introduced, which has strong links to the model in (Wu & Wang, 2019). The
extension is based around the assumption that there now exist groups of patients for
which a treatment effect is drawn independently from the same normal distribution. This
idea has links to the hierarchical or meta-analytic models considered in section 2.3.

Let there be n patient groups with mj patients in group j. The group number is
indicated with a subscript j for all variables (e.g. Ti is now denoted Tij). It is now
assumed that:

Zij = α(Tij) = Xijβ + θj + εij, θj
iid∼ N (µ, τ), εij

iid∼ N (0, 1). (4.2)
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In the above, the treatment effect for group j is θj. One can now define β(2) := [µ, β]′ and
X

(2)
ij = [1, Xij]

′ to arrive at another linear combination (X
(2)
ij )′β(2) defining the expected

value of Zij. Furthermore, the term θj − µ can be integrated out to obtain a multivariate
distribution for the variables Zij in each group j. Define Zj = [Z1j, . . . , Zmj ], and X(2)

j the
matrix with row i equal to X(2)

ij it then follows that, in vector form:

Zj = X
(2)
j β(2) + Ej, Ej ∼ Nmj(0, Imj + τJmj). (4.3)

In the above, Jmj is the square matrix in Rmj×mj with every element equal to 1.
When examining Relation (4.3), it is seen that it allows τ to take on more values than

in Relation (4.2), where τ ≥ 0 is required. To see this, let 1mj denote the vector in Rmj

with every element equal to 1 and let eji denote the i-th unit vector in Rmj , it holds that:

(Imj + τJm)1mj = (1 +mjτ)1mj

(Imj + τJm)(eji − 1mj/mj) = (eji − 1mj/mj).

hence, considering the eigenvalue decomposition, the matrix (Imj + τJmj) is positive
definite iff τ > −1/mj for all j. Hence, under (4.2), τ < 0 is not possible but under (4.3)
it is. Due to this property, the choice was made to henceforth consider 4.3 as the model
for the latent vectors Zj. The reason for this will be explained shortly.

It is seen from Equation 4.3 that besides the often assumed difference in average
outcomes µ due to treatment, it is also assumed that there are groups of patients in the
trial that have correlated outcomes due to the treatment procedure. A situation in which
this can happen is when no standard treatment is currently available. Namely, in this
case, when patients are treated, suddenly some aspects of the treatment procedure
have an effect on the outcomes (e.g. the surgeon or physician), inducing correlated
outcomes in patient groups. Detecting these correlated groups should then mean that
the treatment indeed has had an effect, otherwise these factors shouldn’t matter. The
assumption here is that all other effects (e.g. age, gender) are accounted for by the
regression Xijβ.

The other case in which correlation is induced is when slightly different versions
of the same treatment are applied in a clinical trial. If it matters which version is ad-
ministered to patients, slight differences in performance in patient groups should be
detectable. If there is evidence for τ > 0, this indicates that there could possibly be one
best (or worst) version of the treatment. If negative correlation is detected (τ < 0), it
would mean that a version works well for some patients, but less well for others. Per-
sonalized medicine might be an option in this case. Lastly, when there is evidence for
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τ = 0 in this case, it means that it doesn’t matter which version is administered. If one
version is cheaper than the others, this means that the medicine can be sold for a lower
price. Hence, following Fox et al. (2017), the idea is now to construct a Bayes factor for
comparing the evidence of τ = 0 against τ 6= 0.

The main advantage of taking 4.3 to be the model for Zj is now that it ensures that
under the null hypothesis (H0 : τ = 0) the parameter τ lies in the interior of the parameter
set. This is an advantage as Bayes factors can break down when parameters are on
the boundary of the parameter set (Pauler, Wakefield, & Kass, 1999).

Rewriting X := X(2) and β := β(2), the model considered in the remainder is hence:

Definition 2. The Survival Model with Treatment Induced Covariance
For all j ∈ {1, . . . , n}, L,R ∈ T such that R > L and m ∈ {1, . . . ,mj}:

{Lij = L, Rij = R} ⇐⇒ {Zij ∈ [α(L), α(R))},
Zj ∼ Nmj(Xjβ, Imj + τJmj).

To reiterate, the observations in the above model are the events {Lij = L, Rij = R}.
Note that when τ ≥ 0 in the above model, the second line above is still equivalent to
Equation 4.2. Hence, the model in Definition 2 can also be rewritten as:

Definition 3. Survival Model with Treatment Induced Covariance (Alternative definition)
For all j ∈ {1, . . . , n}, L,R ∈ T such that R > L and m ∈ {1, . . . ,mj}:

{Lij = L, Rij = R} ⇐⇒ {Zij ∈ [α(L), α(R))},

Zj ∼

Nmj(Xjβ + θj1mj , Imj) for τ ≥ 0,

Nmj(Xjβ, Imj + τJmj) for τ < 0.

In this research, it was found that making this case distinction based on τ can reduce
the computational effort for inference under this model. Hence, in some sampling steps
in Chapter 5, the choice will be made to sample some parameters under the above defi-
nition of the model. In the sections of Chapter 5, it will always be explained under which
model specification the parameters are sampled.
For readers of this thesis, might be jarring to go from the model described by Equation
4.2 to Defintion 2 to Definition 3. At first, the plan in this research was actually to do
inference strictly under Definition 2. However, it was seen that it takes a very long time
to do inference on the baseline function α in this case. At first, an extension of the
method outlined in X. Lin and Wang (2010) was investigated, which could be efficiently
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performed under 2. However, in this research it was falsely assumed that the inference
method outlined in the article was wrong (see Appendix D for more information) and
hence other methods of inference were investigated. In hindsight however (after com-
pletion of the thesis), the inference method of Lin and Wang turned out to be correct
and hence other inference methods can be investigated. A last thing of note is the work
in (Wu & Wang, 2019), where this approach is taken for positive correlation only.

4.4 Modeling the Baseline as a Combination of Integrated
Splines

As in X. Lin and Wang (2010), the choice is made to model the continuous nondecreas-
ing function α with a translated linear combination of I-splines Bd,t

l :

α(t) = γ0 +
k∑
l=1

γlB
d,t
l (t) ∀t ∈ R. (4.4)

The functions Bd,t
l , as well as their parameters, are defined in/around Equation (4.5),

but first the M-splines will be elaborated on.

The family of M-splines is often used for function estimation as it contains the solution
to a general penalized regression problem (see Theorem 2 below). Furthermore, it will
be seen that the M-splines are only nonzero on a closed interval. The effect of this in
e.g. density estimation problems is that for the cases where there are no observations,
the approximation will be equal to 0, which is often desired.

The familyMd,t of M-spline functions is defined by a degree d ∈ N and a sequence
of k + d knots t = (t1, . . . , tk+d) such that:

• t1 = t2 = · · · = td

• tk+1 = tn+2 = · · · = tk+d

• tl < tl+d for l ∈ {1, . . . , k}

The set {td+1, td+2, . . . , tk} are called the interior knots for the M-splinesMd,t.
Given the sequence of knots t and the degree d, the set of corresponding M-splines
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Md,t = {Md,t
1 , . . . ,Md,t

k } can be recursively defined for all l ∈ {1, . . . , k} and t ∈ R:

M1,t
l (t) =

1[tl,tl+1)(t)

tl+1 − tl
,

Md,t
l (t) =

d

d− 1
·

(t− tl)Md−1,t
l (t) + (tl+d − t)Md−1,t

l+1 (t)

(tl+d − tl)
∀d ∈ N.

The M-splines for the sequence of knots t and degree d have the following characterizing
properties:

• Md,t
l (t) ≥ 0 with equality if t /∈ [tl, tl+k],

• The domain of every function Md,t
l is R and

∫
RM

d,t
l (t)dt = 1,

• Md,t
l ∈ Cd−2(R) for d ≥ 2, where Cq(S) is the set of all q-times continuously differ-

entiable functions on the set S,

• When restricted to [tl, tl+d), M
d,t
l is a polynomial of degree d− 1,

• For d ≥ 2, any function f ∈ Cd−2(R) that, when restricted to any of the intervals
[tl, tl+1) is a polynomial of degree d− 1, can be expressed as a linear combination
of Md,t

1 , . . . ,Md,t
k .

The latter property hence implies that Md,t forms a basis for the vector space Pd,t of
Cd−2(R)-functions that are polynomials of degree d−1 when restricted to the sets [tl, tl+d)

for all l (d ≥ 2). This property is particularly of use when considering the next Theorem.

Theorem 2. Consider data points (t1, y1), . . . , (tn, yn), λ ∈ (0,∞) and

F =

{
f ∈ C2(R) |

∫
R

(
∂2

∂t2
f(t)

)2

dt <∞

}
.

It holds that:

arg min
f∈F

([
n∑
l=1

(yl − f(tl))
2

]
+ λ

∫
R

(
∂2

∂t2
f(t)

)2

dt

)
∈ P4,t.

In the above, the internal knots of t are t1, . . . , tn.

Proof. See (Wahba, 1990).
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This result hence that under a regularity penalty (the second derivative term), the so
called cubic1 splines contain the best approximation to the data out of a large class of
functions. This makes the M-spline basis very appealing for interpolation, and due to
them integrating to 1, the M-splines are often used for probability density estimation.
The corresponding cumulative probability functions are the I-splines (integrated splines):

Bd,t
l (t) =

∫ t

−∞
Md,t

l (s)ds. (4.5)

The d-th degree I−splines with knots t are denoted by Bd,t
l instead of the usual Id,tl to

prevent confusion with the identity matrix in the remainder.

1Note that a function in P4,t is a third order polynomial between the knots.



Chapter 5

Inference for the Survival Model with
Additional Correlation

In this section, it is explained how samples are generated from the posterior density
f(β,γ,τ)|(L,R,X) under Model 2 and the specification for α in the last section. The poste-
rior samples are generated with a Metropolis-Hastings algorithm. Data augmentation is
used, meaning that as an intermediate step, the latent variables Z from the last chapter
are sampled. Each group of parameters Z, τ, β, γ is sampled sequentially, and if possi-
ble, a Gibbs sampling step is performed to do so. The main purpose of the sampling
procedure in this research is to estimate the Bayes factor for testing H0 : τ = 0 vs.
H1 : τ 6= 0 with the Laplace-Metropolis estimator described in Section 3.3.

In the following, denote with subscript j the corresponding matrix for group j (e.g.
Xj ∈ Rmj×p) and with two subscripts the patient-specific vector (e.g. Xij ∈ Rp for patient
i in group j). Furthermore, no subscript indicates the set of all group matrices (e.g.
X = {X1, . . . , Xn}). The degree d and knots t of the I-splines are fixed in the algorithm.
Furthermore, it is assumed that the patient groups have been determined beforehand,
and are hence also fixed.

5.1 Initialization

In this section, it is described how the Metropolis-Hastings algorithm is initialized. This
corresponds to determining P0 in Algorithm 1. The choice of the initial distribution has a
large influence on the speed of convergence of the Metropolis-Hastings algorithm. If the
starting point is a point with very small posterior density, the induced Markov process
can take a long time to converge to the limit distribution.
The initial distribution is determined by maximum likelihood estimation under the survival
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model where τ = 0 (i.e. pτ = δ0, the Dirac measure at 0), as in this case one can
efficiently evaluate the parameter likelihood. As τ is fixed at zero, the estimator for (β, γ)

remains to be found. Maximum likelihood estimation is performed with the nonlinear
minimizer nlm in the software package R.
Let ~Lij ∈ Rk+1 be the vector of B-spline values such that ~Lijγ = α(Lij), and similarly
define ~Rij, the likelihood to maximize can now be written as:

f(L,R)|(X,β,γ)(β, γ) =
n∏
i=1

mj∏
j=1

(Φ(~Rijγ −Xijβ)− Φ(~Lijγ −Xijβ)).

For numerical stability, the negative log likelihood − log(f(L,R)|(X,β,γ)) is minimized.
As the minimization method nlm uses a Newton-type algorithm, the Hessian is cal-

culated at each point, and the Hessian at the optimum is an optional output value for
this algorithm. This is convenient because the Hessian at the optimum also provides
an estimate of the Fisher information matrix I(β,γ) at n observations for this model. The
inverse of this matrix is the covariance matrix for the MLE in a central limit theorem (see
(Van der Vaart, 2000), page 65).

Hence, if the MLE is denoted by θ̂ and the estimated Fisher information matrix at n
observations with Îθ, the choice is now made to sample the starting values of [β, γ] in
the Metropolis-Hastings algorithm as:

[β0, γ0] ∼ Np+k+1

(
θ̂, Îθ

−1
)
. (5.1)

Furthermore, the initial value of τ , and (hence) also all treatment effects θj, are set to 0.

The choice to sample the Metropolis-Hastings starting point from a distribution instead
of setting it equal to the MLE is made because sometimes, one wants to diagnose
convergence of the Markov Chain with e.g. the Gelman-Rubin diagnostic. In this case
it is often advised to initialize the different Markov chains at different points (Gelman,
Rubin, et al., 1992).

After initializing the Metropolis-Hastings algorithm, the parameter groups Z, [β, θ], τ, γ
are sampled sequentially on the other parameter groups and the observations. Theorem
(1) then dictates that asymptotically, the sampled values of (β, γ, τ) have to converge to
the joint posterior distribution.

5.2 Sampling Z|(τ, γ, β,X, L,R)

In this section, it is described how Z|(τ, γ, β,X, L,R) is sampled according to Definition
2. Z is sampled according to this definition instead of Definition 3 because it can be
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done more efficiently as no case distinction for τ is needed. Given (τ, γ, β,Xj, Lj, Rj),
each Zj is a multivariate truncated normally distributed vector. The truncation interval for
element Zij is [α(Lij), α(Rij)). Truncated multivariate normal vectors cannot be sampled
jointly in an efficient manner. Instead, the often used solution is to marginally sample
Zij conditional on (Z

(−i)
j , τ, γ, β,Xj, Lj, Rj) in a Gibbs sampling step.

Following Corollary 4.1 with a = 1, b = τ , it holds that for all i, j:

Zij|(Z(−i)
j , γ, β,X, L,R) ∼ N (µij, σ

2
j )|[α(Lij),α(Rij)), (5.2)

where

µij = (Xjβ)i +
τ

(mj − 1)τ + 1

∑
k 6=i

(Zkj − (Xjβ)k),

σ2
j =

mjτ + 1

(mj − 1)τ + 1
.

Now, for all µ, a, b ∈ R, σ ∈ (0,∞) such that a < b, X ∼ N (µ, σ2)|[a,b) can be efficiently
sampled as:

X = Φ−1

(
Φ

(
a− µ
σ

)
+ U ·

(
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)))
σ + µ, U ∼ U(0, 1).

5.3 Sampling τ |(β,X, Z)

As Z is a sufficient statistic for τ , the parameter τ is conditioned only on (β,X, Z) in
this step of the Metropolis-Hastings algorithm. The choice was made to sample τ under
Definition 2 of the survival model as this can be done more efficiently. For this, an
approach similar to the one described in Fox et al. (2017) is followed.

Define εj = Zj − Xjβ ∼ Nmj(0, Imj + τJmj) and consider the orthonormal Helmert
matrices

Hj =



1√
mj

1√
mj

1√
mj

. . . 1√
mj

1√
2

−1√
2

0 . . . 0

1√
6

1√
6

−2√
6

. . . ...
...

...
... . . . 0

1√
mj(mj−1)

1√
mj(mj−1)

1√
mj(mj−1)

. . . − mj−1√
mj(mj−1)


∀j.

It now follows that

Vj =
Hjεj√
mj

∼ Nmj
(

0,
Imj
mj

+ τej1
(
ej1
)′)

.
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This means that only the first coefficient of Vj depends on τ and one hence only has to
condition on V1j ∼ N (0, 1/mj + τ) for all j to do inference on τ .
If the mj are all the same (assume equal to m), and if one takes an inverse gamma
(IG(α0, β0)) prior on τ + 1/m, it holds that τ has the shifted inverse gamma distribution
as described in Fox et al. (2017):

(τ + 1/m)|(V11, . . . , V1n) ∼ IG

(
α0 + n/2, β0 +

∑n
j=1 V

2
1j

2

)
.

Which means that τ can be sampled efficiently a posteriori by sampling 1/m + τ as
above, and subtracting 1/m from it.
When considering the case of clinical trials however, it is not realistic to assume that the
group sizes are all equal.
In the case of unequal group sizes the following relation holds for the posterior density
of τ :

fτ |(V11,...,V1n) ∝ pτ (τ)
n∏
j=1

1√
1/mj + τ

e
−

V 2
1j

2(1/mj+τ) I(τ ≥ −1/mj).

Define m∗ := max({mj : j ∈ {1, . . . , n}}) and note that the posterior density of τ can
only be positive on [−1/m∗,∞).

The proposed method for sampling from this density is with a Metropolis-Hastings
step with a bounded Gaussian random walk transition kernel:

gσ(τ (1), τ (2)) ∝ e−
(τ(1)−τ(2))

2

2σ2 I
(
τ (1), τ (2) ≥ −1/m∗

)
∀τ (1), τ (2) ∈ R. (5.3)

The above kernel is chosen as the acceptance rate for the proposals can be tuned with
the step size parameter σ. Similar to the procedure described in (Fox, 2010), page 84, σ
is updated dynamically for a fixed number of times (20). The initial value of σ is 1. To get
the fraction of accepted proposals in the Metropolis-Hastings algorithm to roughly 50%,
σ is multiplied by 2 if the fraction of accepted proposals in the last 50 iterations is higher
than 50% and it is divided by 2 otherwise. Note that an increase of σ induces that the
proposals deviate more from the current value, and hence a lower amount of accepted
proposals can be expected. Note that only after the last time σ was updated. This ”delay
of Markovness” was seen to provide no serious consequences for convergence of the
Markov chain.
The transition kernel in Relation (5.3) is symmetric, hence when dropping the indicators
(which will always equal 1 by virtue of the chosen kernel) and using an independent (of
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β, γ) prior pτ on τ, the acceptance ratio becomes:

a(τ (1), τ (2)) = min

(
1,
pτ
(
τ (2)
)

pτ (τ (1))

[
n∏
j=1

√
1/mj + τ (1)√
1/mj + τ (2)

e
−
V 2
1j
2

(
1

1/mj+τ
(2)
− 1

1/mj+τ
(1)

)])
. (5.4)

5.4 Sampling β|(τ,X, Z)

As Z is a sufficient statistic for β, the parameter β is conditioned only on (β,X, Z) in this
step of the Metropolis-Hastings algorithm. The choice is made to sample β under Defi-
nition 3, hence a case distinction is made based on τ. The choice was made to simulate
β under this definition because when τ > 0, both θ and β can be sampled simultane-
ously. This is more efficient compared to the case where β|(τ,X, Z) and θ|(β, τ,X, Z)

are sampled separately.
Define G ∈ Rs×n, where s =

∑n
j=1mj to be the group indicator matrix such that

Gij = I(patient i is in group j).

Denoting with ~Z the concatenation of all vectors Zj and ~X the vertical concatenation of
all matrices Xj. Now, when the last sampled value of τ is nonnegative, it holds that:

~Z = [ ~X,G]

[
β

θ

]
+ ~ε, ~ε ∼ Ns(0, Is)

which is a standard linear regression model.
Now, as a priori θj ∼ Nj(0, τ) when τ ≥ 0 in Model 3, a Nn(0, τIn)-prior is taken for each
θj. Combining this prior on θ with an independent (of θ, γ, τ ) multivariate Np(µ0,Σ0) prior
on β, it is now a well-known result (see Gelman et al. (2013) page 356) that the posterior
distribution of [β, θ] is as follows:

(β, θ)|(τ,X, Z) ∼ Np+n(µ,Σ), (5.5)

Σ =

[
~X ′ ~X + Σ−1

0
~X ′G

G′ ~X G′G+ τ−1In

]−1

,

µ = Σ

[
Σ−1

0 β0 + ~X ′ ~Z

G′ ~Z

]
.

When τ < 0, the second line in Definition 3 holds. Let Z̃j = (Imj + τJmj)
−1/2Zj and

X̃j = (Imj + τJmj)
−1/2Xj. Now denoting with ~Z the concatenation of Z̃j and with ~X the

concatenation of X̃j, it then holds that:

~Z = ~Xβ + ~ε, ~ε ∼ Ns(0, Is).
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Now, with the same prior on β, it holds again from Gelman et al. (2013) that:

β|(τ,X, Z) ∼ Np(µ,Σ), (5.6)

Σ = ( ~X ′ ~X + Σ−1
0 )−1,

µ = Σ(Σ−1
0 β0 + ~X ′ ~Z).

5.5 Sampling γ|(β, θ,X, τ, L,R)

The choice was made to do inference on γ according to Definition 3. This decision
was made because γ is sampled according to a Metropolis-Hastings step, and when
τ > 0 the acceptance ratio can be evaluated more efficiently under Definition 3 as
compared to under Definition 2. Furthermore, the choice was made to condition γ only
on (β,X, τ, L,R) and possibly also θ (if the last sampled τ is nonnegative), and hence
not Z. This is allowed (as Z is latent) and this is often seen to speed up the Markov
chain convergence (see e.g. Fox (2010), page 84).

The transition kernel chosen for this step is a partially nonnegative Gaussian random
walk, for all γ(1), γ(2) ∈ Rk+1:

gσ(γ(1), γ(2)) =
1√

2πσ1

e
−

(γ(1)1 −γ(2)1 )
2

2σ21

k+1∏
i=2

√
2

πσ2
i

e
−

(γ(1)i
−γ(2)
i )

2

2σ2
i I(γ(1)

i , γ
(2)
i ≥ 0). (5.7)

Note that the first element of γ is sampled with a Gaussian random walk, and hence can
be negative. The reason for choosing this kernel is the same as the reasoning on Page
46, the variance parameters σ1, . . . , σk+1 are updated in the same manner as σ in the
last section.
Note that the chosen transition kernel gσ is symmetric, hence from Equation (3.8), when
taking independent (of β, τ ) priors pγ on γ, it follows that the acceptance ratio is equal to
the (capped) ratio of the posterior densities for the old and new γ values:

a(γ(1), γ(2)) = min

(
1,

fγ|(β,X,τ,L,R)(γ
(2))

fγ|(β,X,τ,L,R)(γ(1))

)
= min

(
1,

f(L,R)|(β,X,τ,γ)(γ
(2))pγ(γ

(2))

f(L,R)|(β,X,τ,γ)(γ(1))pγ(γ(1))

)
. (5.8)

Now, as the likelihood of (L,R) only depends on γ through α, it follows that

f(L,R)|(β,X,τ,γ) = f(L,R)|(β,X,τ,α).
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Let Φn(E;µ,Σ) denote the probability that a multivariate normal vector with mean µ and
covariance matrix Σ lies in E ∈ B(Rn). It now holds that under Model 2:

f(L,R)|(β,X,τ,α) =
n∏
j=1

Φmj

(
mj∏
i=1

[α(Lij), α(Rij));Xjβ, Imj + τJmj

)
. (5.9)

When the last sampled τ is nonnegative, the treatment effects θj are used to determine
f(L,R)|(β,θ,X,α). Namely, in this case, following Definition 3:

f(L,R)|(β,θ,X,α) =
n∏
j=1

mj∏
i=1

(Φ(α(Rij)−Xijβ − θj)− Φ(α(Lij)−Xijβ − θj)). (5.10)

When the last sampled value of τ is negative, another technique is used. The following
result namely holds:

Theorem 3. For all j ∈ {1, . . . , n} and τ ∈ (−1/mj,∞):

Φmj

(
mj∏
i=1

[α(Lij), α(Rij)); Xjβ; Imj + τJmj

)

= E

e
τ(∑mji=1

Vij)
2

2(1+mjτ)√
1 +mjτ

 mj∏
i=1

(Φ(α(Rij)−Xijβ)− Φ(α(Lij)−Xijβ)). (5.11)

In the above, Vij ∼ N (0, 1)|[α(Lij)−Xijβ, α(Rij)−Xijβ) for all i.

Proof. See Appendix C.

The above integral could not be simplified any further, however, a lower and upper
bound were found for τ < 0, namely:

Corollary 3.1. For all j ∈ {1, . . . , n} and τ ∈ (−1/mj, 0), let

Pj = Φmj

(
mj∏
i=1

[α(Lij), α(Rij)); Xjβ; Imj + τJmj

)
.

If L̃ij = α(Lij)−Xijβ, and R̃ij is defined similarly, it then holds that:

e
τ(I(1)j

+I
(2)
j )

2(mjτ+1)√
mjτ + 1

mj∏
i=1

(Φ(R̃ij)− Φ(L̃ij)) ≤ Pj ≤
1√

mjτ + 1

mj∏
i=1

(Φ(R̃ij)− Φ(L̃ij)) (5.12)
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where

I
(1)
j =

 mj∑
i=1

L̃ije
−
L̃2
ij
2 − R̃ije

−
R̃2
ij
2

√
2π
(

Φ(R̃ij)− Φ(L̃ij)
)
+mj,

I
(2)
j =

mj∑
i=1

∑
k 6=i

 e−
L̃2
ij
2 − e−

R̃2
ij
2

√
2π
(

Φ(R̃ij)− Φ(L̃ij)
)
 e−

L̃2
kj
2 − e−

R̃2
kj
2

√
2π
(

Φ(R̃kj)− Φ(L̃kj)
)
 .

Proof. Again, see Appendix C.

These bounds are used to construct lower/upper bounds for the acceptance ratio in
Equation 5.8. If the sampled uniform random variable lies above/under the upper/lower
bound, the new value of γ is rejected/accepted without having to determine 5.9 twice.
Whenever the sampled uniform random variable is between the bounds for the accep-
tance ratio, 5.8 is evaluated using 5.11 where the expectation is evaluated with Monte
Carlo integration.

In the case that τ has been sampled nonnegatively, the likelihood of the data (given
θ) can be evaluated quite efficiently, hence the choice is made to accept or reject each
new element γi of γ drawn under 5.7 with 5.8. In the case that τ is sampled negatively,
evaluating the likelihood takes a longer time, hence the whole vector γ, drawn under 5.7
is evaluated at once with 5.8.

Developing the sampling procedure for γ in this chapter provided the largest chal-
lenge in the methodological part of this research. First, an extension of the method
proposed in X. Lin and Wang (2010) was explored. It was however (falsely) assumed
during this research that the inference method proposed in this article contained an error
(see Appendix D).

Another considered technique was to sample γ uniformly in the domain of the spline
matrix such that the induced thresholds correctly separate the latent variables Z. How-
ever, it was seen that while the sampling procedure for this is fast, the correlation be-
tween Z and γ becomes very high. The effect is that convergence of the Markov chain
to the limit distribution takes too long.

It now became clear that γ had to be sampled according to a Metropolis-Hastings
step, and the acceptance ratio 5.8 had to be calculated efficiently in some way. For
this, an efficient way had to be found to compute 5.9. Due to the fact that the number
of variables n can be high, the integral Φn(E;µ; Σ) cannot be computed efficiently in
general (see e.g. Gassmann, Deák, and Szántai (2002)). However, by making use
of the simple correlation structure, Formula 5.11 was derived, which can be used to



5.6. SUMMARY OF INFERENCE METHOD 51

evaluate the probability more efficiently with Monte Carlo techniques. This method was
also chosen as it was also seen to induce quick Markov Chain convergence in practice,
by independence of Z. This procedure of sampling spline coefficients has not yet been
seen in literature.

5.6 Summary of Inference Method

To summarize the previous sections, the steps to sample (β, γ, τ)|(L,R,X) can be sum-
marized in the following algorithm:

Algorithm 2 Metropolis-Hastings sampler for the survival model with treatment-induced
correlation (Definition 2)

1: Inputs:
Observed data (L,R,X), number of iterations M , Nσ, priors pγ, pτ
and regression coefficient prior parameters µ0,Σ0;

2: Initialize:
Sample (β0, γ0) ∼ Np+k+1

(
θ̂, Î−1

θ

)
as in (5.1);

Set τ0 := 0 and θi := 0 for all i ∈ {1, . . . , n};
Sample Zij ∼ N (Xijβ, 1)|[α(Lij),α(Rij)) for all i, j;
Set ci := 0 and σi := 1 for all i ∈ {1, . . . , k + 2};

3: for l ∈ {1, . . . ,M} do
4: for j ∈ {1, . . . , n} do
5: for i ∈ {1, . . . ,mj} do
6: Sample Zij|(Z(−i)

j , γl−1, βl−1, X, L,R, τl−1) ∼ N (µij, σ
2
j )|[α(Lij),α(Rij)

7: as in (5.2) ;
8: end for
9: end for

10: Sample τ ∗ according to the Markov chain described by gσ in (5.3) with σ = σ1;
11: Sample U ∼ U(0, 1) and let a be as in (5.4);
12: if U ≤ a(τl−1, τ

∗) then
13: Set τl := τ ∗;
14: Set c1 := c1 + 1;
15: else
16: Set τl := τl−1;

17: end if
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18: if τl ≥ 0 then
19: Sample (βl, θ)|(τ,X, Z) as in (5.5);
20: else
21: Sample βl|(τ,X, Z) as in (5.6);
22: end if
23: if τl ≥ 0 then
24: Set γ := γl−1;
25: for i ∈ {1, . . . , k + 1} do
26: Sample γ∗i univariate according to the Markov chain described by gσ in

(5.7) with σ = [σ2, . . . , σk+2];
27: Let γ∗ be such that γ∗j = γj for j 6= i and γ∗j = γ∗i if i = j;
28: Sample U ∼ U(0, 1) and let a be as in (5.8) where f(LR)|(β,θ,X,τ,α) is
29: calculated with Equation 5.10.
30: if U ≤ a(γ, γ∗) then
31: Set γ := γ∗;
32: Set ci+1 : ci+1 + 1;
33: end if
34: end for
35: Set γl = γ;

36: else
37: Sample γ∗i multivariate according to gσ in Equation 5.7 with σ = [σ2, . . . , σk+2];
38: Sample U ∼ U(0, 1) and let a be as in (5.8), where f(L,R)|(β,Xτ,α) from
39: Equation 5.9 is approximated by Monte Carlo integration (100 samples);
40: if U ≤ a(γ, γ∗) then
41: Set γ := γ∗;
42: Set ci+1 : ci+1 + 1 for all i ∈ {1, . . . , k + 1};
43: end if
44: end if
45: if mod (l, 50) = 0 and l < 20Nσ then
46: for i ∈ {1, . . . , k + 2} do
47: if ci/50 > 0.5 then
48: σi := 2σi;
49: else
50: σi := σi/2;
51: end if
52: end for
53: end if
54: end for
55: Outputs:
56: β1, . . . , βM , γ1, . . . , γM and τ1, . . . , τM .



Chapter 6

Simulation Study

In this chapter, the inference method of the previous chapter will be tested according to
a simulation study. The focus will be on the average performance of the method on a set
of relatively small datasets and a set of relatively large datasets. The performance on
small datasets should give a feeling on how the algorithm performs in practice, while the
performance on the larger datasets highlights more of the large sample performance of
the algorithm. The method to simulate the datasets is explained in the next section.

6.1 Simulation Procedure

The differences between the two evaluated datasets lies in the number of groups, the
expected number of patients per group, and the baseline function for each scenario
(each sampled instance). In the smaller datasets, similar to the first simulation study of
X. Lin and Wang (2010), the baseline function α is fixed per scenario and taken to be:

α(t) = −3 + 2t ∀t ∈ R.

In the case of the larger datasets, the baseline function is not fixed per scenario. Instead,
the baseline is sampled as follows:

d = 5, k = 6, t = (0, 0, 0, 0, 0, 9.5, 19, 19, 19, 19, 19),

α(t) = γ0 +
k∑
l=1

γlB
d,t
l (t) ∀t ∈ R, (6.1)

γ0 ∼ N (0, 3), γi ∼ N (0, 1)|[0,∞) ∀i ∈ 1, . . . , k.

In Figure 6.1, one can see an example of a baseline function on the interval [0, 19], sam-
pled according to the procedure described above.
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Figure 6.1: Example of a baseline function α sampled according to (6.1).

In the smaller datasets, the number of groups is set to 10, while in the larger datasets,
the number of groups is set to 100. The expected number of patients per group in the
smaller datasets is set to 50 while in the larger datasets, 100 patients are expected to be
in a group. The number of patients for each individual group is independently sampled
according to a Poisson distribution restricted to {0, . . . ,m∗} for some m∗ ∈ N. The two
datasets, each containing 100 scenarios of clinical trials, are independently sampled for
each value of τ in the set {−1/(2m∗), 0, 0.1, . . . , 1}.
For both datasets, the number of covariates per patient is 10 (p = 10), and the re-
gression coefficients are sampled independently according to a U(−1, 1)-distribution.
The possible values of the left and right endpoints Lij and Rij are taken to be T =

{−∞, 0, 1, 2, . . . , 19,∞}. Hence, every patient has an event time between two values in
this set.
In order to get a more or less balanced distribution of patients over the endpoints, each
patient is assigned one finite value κ

(1)
ij in T . Next, κ(2)

ij is defined as the value in T
consecutive to κ

(1)
ij . In the case that κ(1)

ij is the maximum finite value in T , the smallest
possible value for κ(2)

ij is∞. This leads to a problem in the simulation procedure, and to
circumvent this, κ(2)

ij is set to κ(1)
ij + 2. The assignment of patients to intervals is done in

such a way that every such interval is assigned roughly the same amount of patients.
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One thing of note is that this is an idealized situation. In practice, there will probably
be more observations of events at the earlier time intervals than in the later intervals.
Hence, providing a good estimate for γ at the later time points will probably be more
difficult for real-life datasets.
After assigning the intervals, the regression means µij, which will eventually correspond
toXijβ for patient i in group j are sampled uniformly inside the interval

[
α
(
κ

(1)
ij

)
, α
(
κ

(2)
ij

))
.

Next, the covariates Xij are sampled as follows. The first p− 1 covariates are sampled
uniformly in the interval [−10, 10], and the last covariate [Xij]p is set equal to

[Xij]p :=
µij −

∑p−1
k=1[Xij]kβk
βp

, enforcing µij = Xijβ.

After this, the latent vectors Zj are sampled as:

Zj ∼ Nmj(Xjβ, Imj + τJmj).

Now, the left and right endpoints of the observed interval are determined as the tuple
(Lij, Rij) such thatRij is the smallest value in T higher than Lij and Zij ∈ [α(Lij), α(Rij)).

The last step is now to include some additional right and left censoring. Of the patients
for which Lij is finite, 5% is drawn at random and Rij is set to ∞. Similarly, 5% of the
patients for which the right endpoint is finite is selected for left censoring (Lij is set to
−∞). The method to simulate the datasets is summarized in Algorithm 3.

A last thing of note is the chosen priors for the parameters. For γ0 a N (0, 1010)

prior was chosen, for γi where i > 0, a N (0, 1010)[0,∞) prior was chosen. For τ + 1/m∗,
a IG(10−10, 10−10)−prior was chosen. For β, the choice was made to set µ0 = 0 and
Σ−1

0 = Op (the zero matrix) . This corresponds to taking the improper prior pβ ∝ 1 for β.

Thus, where possible, a non-informative prior was chosen, and if this wasn’t possible,
a nearly non-informative prior was chosen. Hence, the objective Bayesian approach is
taken. After performing a few test simulations, the choice was made to set the number
of Markov chain iterations for the smaller set to 5000. Similarly, for the larger datasets,
the number of Markov chain iterations was set to 3000. The burn-in period for both
these datasets was set to 1000. The simulation study took about a week to complete
on a standard laptop using the software package R. One last thing of note is that no R

packages for MCMC (such as RStan) were used in this simulation study.
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Algorithm 3 Method to simulate a set of clinical trials with data according to Model 2.
1: Inputs:

Number of groups n, the number of covariates p, the spline degree
d and knots t, the set of possible endpoints T , the censoring
frequency q and the expected number of patients per group,
denoted λ. Additionally, the baseline function α can also be given
as input.

2: Initialize:
Define Bd,t

1 , . . . , Bd,t
k to be the I-splines of order d with knots t.

3: Sample group sizes mi
iid∼ Pois(λ);

4: Sample βi
iid∼ U(−1, 1);

5: if α is undefined then
6: Sample γ0 ∼ N (0, 3) and γi ∼ N (0, 1)|[0,∞) for i ∈ {1, . . . , k};
7: Define α := γ0 +

∑k
i=1 B

d,t
i γi

8: end if
9: for j ∈ {1, . . . , n} do

10: for i ∈ {1, . . . ,mj} do
11: Set κ(1)

ij := Tlij , where lij = mod
(∑j−1

l=1 ml + i, |T | − 2
)

+ 1

12: and Ti is the i-th order statistic in T ;
13: Set κ(2)

ij := Tkij+1;
14: if κ(2)

ij =∞ then
15: Set κ(2)

ij := κ
(1)
ij + 2;

16: end if
17: Sample µij ∼ U

(
α
(
κ

(1)
ij

)
, α
(
κ

(2)
ij

))
;

18: Sample (Xij)1, . . . , (Xij)p−1
iid∼ U(−10, 10);

19: Set (Xij)p :=
µij−

∑p−1
l=1 (Xij)lβl
βp

;
20: end for
21: Sample Zj ∼ Nmj(Xjβ, Imj + τJmj);

22: for i ∈ {1, . . . ,mj} do
23: Set Lij := max{t ∈ T : α(t) ≤ Zij};
24: Set Rij := min{t ∈ T : α(t) > Zij};
25: end for
26: end for
27: Set IL = {(i, j) : j ∈ {1, . . . , n}, i ∈ {1, . . . ,mj}, Lij > −∞};
28: Choose dq · |IL|e elements (i, j) of IL and set the corresponding Rij to∞;
29: Set IR = {(i, j) : j ∈ {1, . . . , n}, i ∈ {1, . . . ,mj}, Rij <∞};
30: Choose dq · |IR|e elements (i, j) of IR and set the corresponding Lij to −∞;
31: Outputs:
32: L,R,X,m1, . . . ,mn



6.2. PARAMETER RECOVERY 57

6.2 Parameter Recovery

In Table 6.1, one can find parameter recovery results for the inference method on the
smaller dataset (10 groups, 50 patients on average). The estimator for each parameter
is the posterior median. A distinction in the performance evaluation is made between
the estimator for the baseline translation coefficient γ0 and the estimators for the other
baseline coefficients γ(−0). For the regression and baseline coefficient estimators, the
relative bias (RB) and relative precision (RP ) measures, defined as the bias and stan-
dard deviation divided by the absolute value of the true parameter, are calculated in
percentage points for each value of τ . The median of these performance measures
over all simulated scenarios was then calculated. The median was taken because with
only 100 simulated scenario’s per τ value, it was seen that the outliers in performance
effected the estimated sample mean too much. The median over medians and median
over standard deviations of the posterior samples of τ are also displayed in the table.
Note that the median posterior standard deviation for τ is in absolute percentage points,
not relative percentage points.

No significant relation can be seen between the value of τ and the relative bias/precision
of the posterior medians for β and γ. Almost no bias is seen for the regression parame-
ters, while the baseline coefficients show more bias. The median relative precisions for
the regression coefficients are also smaller than those for the spline coefficients. This
could be due to the fact that the spline functions act more locally than the regression
parameters. The information for a spline coefficient is only provided by patients having
the event-time in a certain time interval.

The posterior bias and variance of τ are seen to increase with τ . This relationship
also holds in other models. Consider for instance inference on the variance in iid normal
data. The posterior variance has an inverse gamma distribution. For this distribution,
the variance is proportional to the mean.

As the median posterior standard deviation in τ is in many cases almost equal to the
true value of τ in the table below, it cannot be said that the posterior density of τ is very
informative about the true value of τ . This is mainly due to the fact that effectively, as
there are 10 groups, there are only 10 observations of τ for each scenario.

In Table 6.2, one can find parameter recovery results for the inference method on the
larger dataset (100 groups, on average 100 patients). It is seen that the relative bias and
precision for the regression coefficients has decreased. As the baseline in the larger
dataset is not taken to be fixed, it is not fair to compare differences in the relative bias
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Table 6.1: Parameter recovery results for n = 10, expected group size λ = 50, 100

simulations and 5000 Markov chain iterations with a burn-in period of 1000.
β̂ γ̂0 γ̂(−0) τ̂

τ RB (%) RP (%) RB (%) RP (%) RB (%) RP (%) Median SD (%)
-0.0071 −0.12 6.35 3.57 13.55 −3.73 9.21 −0.0069 1.60

0 0.23 6.36 4.47 13.96 −5.52 8.76 0.0094 2.83

0.1 0.24 5.95 1.34 13.72 −0.49 8.87 0.09 7.55

0.2 −0.06 5.91 2.46 13.57 −5.25 9.96 0.22 17.34

0.3 0.10 5.78 1.54 13.75 −1.37 10.33 0.27 20.87

0.4 −0.51 6.39 2.51 13.75 −3.66 10.47 0.37 27.46

0.5 0.11 6.04 3.55 13.36 −3.51 11.18 0.52 39.33

0.6 0.26 6.03 1.74 13.50 −2.48 12.26 0.65 47.27

0.7 −0.05 5.91 3.19 13.61 −2.33 11.88 0.74 55.16

0.8 0.39 5.70 3.33 13.66 −1.09 12.62 0.85 62.81

0.9 0.00 6.05 2.01 12.77 −2.54 12.91 0.94 65.04

1 0.22 6.88 2.46 13.98 2.00 14.19 1.11 78.76

and precision of the spline coefficients to the same measures for the small dataset. It
is seen that the performance measures for the spline coefficients are approximately the
same. It is seen that the medians for τ lie closer to the true value as compared to in the
smaller dataset, and the posterior standard deviation in τ is now also lower. The median
is very close (exact up to two decimals) to the true value of τ for τ < 0.5, after which
some bias can still be seen. It can now be said that the posterior density of τ is quite
informative for the true value of τ .

When compared to the regression coefficients, the spline coefficients showed more
posterior variation. To get a better view of the effect of this larger variation, the estimated
baseline is compared to the true baseline in the next part. In Figure 6.2, the true baseline
is shown for the smaller dataset, as well as the mean of all estimated (median) baselines
and the 5% and 95% pointwise quantiles over all estimated baselines. Note that in this
set of estimated baselines no distinction between values of τ is made.
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Table 6.2: Parameter recovery results for n = 100, expected group size λ = 100, 100

simulations and 3000 Markov chain iterations with a burn-in period of 1000.
β̂ γ̂0 γ̂(−0) τ̂

τ RB (%) RP (%) RB (%) RP (%) RB (%) RP (%) Median SD (%)
-0.0036 0.00 1.51 0.63 8.33 1.43 1.81 −0.0035 0.12

0 −0.07 1.55 0.04 18.28 2.37 4.33 0.0011 0.20

0.1 0.16 1.58 −0.05 15.95 2.75 4.63 0.10 1.68

0.2 −0.02 1.56 −2.09 16.20 2.79 4.59 0.20 3.16

0.3 −0.02 1.63 −2.09 14.84 3.03 7.62 0.30 4.85

0.4 0.07 1.70 −1.32 15.60 4.81 7.04 0.40 6.12

0.5 0.01 1.62 0.22 16.50 2.95 8.18 0.53 8.07

0.6 0.03 1.55 −1.47 15.03 1.18 5.40 0.61 9.20

0.7 −0.05 1.55 0.19 17.23 6.22 9.92 0.76 12.56

0.8 −0.06 1.56 −2.63 15.19 2.11 10.36 0.83 13.06

0.9 −0.05 1.40 −2.03 15.55 2.63 8.92 0.93 14.47

1 −0.05 1.56 −0.94 16.45 2.74 10.29 1.01 15.99
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It is seen that the mean baseline is quite close to the true baseline, and that the
radius of the confidence interval increases with the event-time. This mainly has to do
with the fact that the baseline is modeled as a linear combination of I-spline functions,
and these functions are all nonzero at the larger event-times. Hence the uncertainty
in the spline coefficients has most of its effect on the uncertainty in the baseline at the
larger event-times. The maximum radius of the 90% confidence interval lies around
10%. It can be concluded from this that the baseline can be determined with quite a lot
of certainty from the scenarios in the small dataset.

In Figure 6.3, the true baseline is plotted against the mean, 95% and 5% baseline
quantiles for one scenario in the large dataset. With this larger sample size, the variance
is not seen to noticeably increase anymore with t this time. The baselines sampled from
the posterior distribution lie very close to the true value in this scenario. It is however
seen that the true baseline slightly misses the 90% confidence interval at lower/larger
event times. This could be due to the fact that the quantiles are determined pointwise
instead of e.g. over the whole vector γ (which should increase the radius).

Another way to evaluate the performance of the Metropolis-Hastings algorithm is
to check whether estimated credible intervals for parameters really give the desired
coverage for that parameter. The credible interval of probability p is defined as the region
between the (1−p)/2-th and the (1 +p)/2-th quantile of the posterior distribution for that
parameter (equal tails). It is hence an interval in the support of the random variable that
contains a posterior probability of p. The coverage of a credible interval is the expected
frequency of times that the true parameter lies in that credible interval. The choice is
made to evaluate coverage of the credible intervals for τ . For each scenario in the small
and large dataset, credible intervals of probability p ∈ {0.6, 0.65, . . . , 0.9, 0.95, 0.99} are
estimated by taking the empirical (1− p)/2-th and (1 + p)/2-th quantiles of the posterior
samples. For each p and τ , the frequency of scenario’s where the value of τ was in
the credible interval was calculated. In Figure 6.4 and 6.5, for both the small and large
dataset respectively, the average, minimum and maximum coverage over all values of τ
are plotted vs. the credibility value p.

It is seen that the average coverage increases with the credibility value, and often
lies close to the theoretical coverage, as expected. It can be seen that there is quite a
lot of spread in the coverage values over the values of τ . This might have to do with the
small (100) number of scenarios per dataset. The two figures show approximately the
same behavior. This is expected, the credible intervals for the larger dataset should be
tighter, however the performance of these intervals should be approximately the same
as the (wider) credible intervals for the smaller dataset.
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Figure 6.2: True baseline vs. the aver-
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Figure 6.3: True baseline vs. the aver-
age estimated baseline as well
as the 5% and 95% pointwise
quantiles for one scenario in
the large dataset.

0.6 0.7 0.8 0.9 1.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

credibility

co
ve

ra
ge

Theoretical Coverage
Average Coverage Posterior Samples
maximum coverage Posterior Samples
minimum coverage Posterior Samples

Figure 6.4: Estimated vs. Theoretical
coverage of credible intervals
for τ in the smaller dataset. The
mean coverage over all values
of τ is shown, as well as the
pointwise minimum and maxi-
mum over all values of τ .
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6.3 Bayes Factor Evaluation

In this section, the Laplace-Metropolis approximated Bayes factors are calculated and
evaluated for the scenario’s in the small and large dataset. Remember from Section 3.3
that the Bayes factor is approximated with:

d0 − d1

2
log(2π) +

1

2
(|H∗0| − |H∗1|) + (l0(D,u∗0)− l1(D,u∗1))− (λ0(u∗0)− λ1(u∗1)).

In this case, d0 − d1 = −1 as model H1 also contains parameter τ . Furthermore, u =

(β, γ, τ). Now, let ~L, ~R be as in Section 5.1, and D = (X,L,R). When looking at the
priors described on page 55, it holds that:

l0(X,L,R, β, γ, τ) = log

(
n∏
j=1

mj∏
i=1

(
Φ(~Rijγ −Xijβ)− Φ(~Lijγ −Xijβ)

))
,

l1(X,L,R, β, γ, τ) = log

(
n∏
j=1

Φmj

(
mj∏
i=1

[~Lijγ, ~Rijγ); Xjβ; Imj + τJmj

))
,

λ0(β, γ) = log

(
φ
( γ0

105

) k∏
l=1

2 · φ
( γi

105

)
1[0,∞)(γi)

)
+ C,

λ1(β, γ, τ) = log

(
pτ (τ) · φ

( γ0

105

) k∏
l=1

2φ
( γi

105

)
1[0,∞)(γi)

)
+ C.

In the above, C is the term induced by the constant improper prior on β, notice that in
the Bayes factor approximation, this constant vanishes assuming that the same prior is
taken in both models. Furthermore, pτ is the shifted inverse gamma density with scale
and shape parameters equal to 10−10.

In Figure 6.6 and 6.7, the pointwise average over the scenarios, as well as the 99.75%

and 0.25% quantiles of logarithm of the Laplace-Metropolis approximated Bayes factor
are plotted vs. the true value of τ for the smaller and larger dataset respectively. When
looking at the results, a negative relationship can be seen between the average loga-
rithm and τ . The negative relation is as expected, with a larger value of τ one expects
a larger evidence in favor of the hypothesis H1 : τ 6= 0 as compared to H0 : τ = 0,
resulting in a lower Bayes factor.

For the smaller dataset it is seen that for τ ≈ −0.007 and τ ∈ {0, 0.1}, the average
log-Bayes factor is positive and for τ ≥ 0.2 the average log-Bayes factor is negative.
When looking at the quantiles, it is seen that the log Bayes factor is positive for at least
95% of the scenarios when τ ≤ 0. When τ > 0, negative values also occur, and it is
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seen that the Bayes factor has a larger negative range than a positive range. In other
words, when τ > 0, the negative values that the log Bayes factor attains are higher in
absolute value than the positive ones. Again, by looking at the quantiles, it is seen that
the log Bayes factor is negative for at least 95% of the scenarios only when τ ≥ 0.9.

For the larger dataset, it is seen that the average value of the log Bayes factor be-
comes negative when τ > 0. By checking the quantiles, it is seen that when τ ≥ 0.2, the
log Bayes factor is negative for at least 95% of the scenarios. For the larger dataset, the
Bayes factors are a lot more concentrated around the average and take on lower values
than the Bayes factors for the smaller dataset. This can be expected as the sample
sizes are larger in the larger dataset, hence there is a lot more evidence to be found
for/against the models.

In the Bayes factor evaluation, it was seen that the Bayes factor cannot detect prop-
erly if τ < 0. This is probably due to the fact that quite a large average group size is
taken for both the small and the large dataset (50 and 100 respectively), hence the neg-
ative τ values considered were quite close to 0. In retrospect, it would have been better
to take smaller average group sizes. In future research, a simulation study with smaller
average group sizes would hence be necessary to also show more clearly the Bayes
factor performance at negative values of τ .

To conclude this chapter, it the simulation results were as expected. Inference on the
model yielded reliable information about the true parameter values. With larger values
of τ , the Bayes factor is seen to reject the null hypothesis more frequently. Furthermore,
it was seen that with larger samples, there was more confidence about the parameters
of the model. The conclusion from this is that inference under the model in Definition 2
can be efficiently and reliably performed by the method described in Chapter 5. In the
future, a dataset with small expected group sizes is however still needed to assess the
Bayes factor performance for negative values of τ.
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Chapter 7

Conclusion and Discussion

7.1 Conclusion

In this research, alternative designs for clinical trials were investigated. After a literature
research, the choice was made to investigate a multivariate survival model, where the
event-times are interval censored. This model has links to the recently introduced meta-
analytic approach to modeling multiple clinical trials.

It was seen that inference on the survival model can be done efficiently and reliably.
The method for sampling the spline coefficients γ in this model uses a formula for a
multivariate normal integral. This formula yielded an efficient method of evaluating a
multivariate probability in very high dimensions, under the restriction of equal correla-
tion. As such a probability in general cannot be evaluated efficiently, the method could
also have a lot of other uses.

Lastly, the multivariate survival model also lends itself to covariance testing. If a
medicine is effective, one would expect that the outcome variables for patients to ei-
ther increase or decrease overall. This effect induces correlation in the outcomes of
the patients, which can only be accounted for by the treatment effect. If groups of pa-
tients in the group have significantly different responses to the treatment, the additional
correlation can be tested for. Detecting this correlation hence corresponds to detecting
that the treatment has had an effect on the outcome variables. This testing procedure
can be performed without the need for a control group. Hence, if no current medicine
is available, every patient in the group now receives treatment. Only dealing with one
treatment group also has monetary advantages, a lot of planning and bookkeeping in
clinical trials can be avoided.

Covariance testing can also have other uses. It can also be used to determine

65



66 CHAPTER 7. CONCLUSION AND DISCUSSION

whether personalized medicine might be an option. If different versions of the treat-
ment are given to different groups of patients, detecting covariance indicates that these
groups had a significantly different reaction to the different treatments and the best op-
tion might be selected.

7.2 Discussion

In this section, ideas for further research are considered. First off, throughout this re-
search, it is stated that if there are groups of patients in a trial, and if correlation is found
for outcomes of patients in these groups, a treatment effect is detected. An interesting
possible next step for this research would be to include uncertainty about these groups
in the survival model (i.e. to find these groups). This could be quite difficult, one has
to define a distribution on clusters of patient outcomes having a latent jointly multivari-
ate Gaussian distribution. In sequential analysis, the number of patients is unbounded
(in theory) and hence, an infinite amount of clusters could possibly occur. Reversible
jump Markov Chain Monte Carlo techniques, or techniques in nonparametric Bayesian
statistics might be an option to deal with this problem.

From Figure 6.2, it is seen that the uncertainty in the baseline increases at the larger
time points. This is due to the fact that α is chosen as a linear combination of increasing
functions, which are all nonzero at the later time points. In practice, it will already be
difficult to determine the baseline at these points due to the decreasing number of event
observations at later times. Hence, this additional uncertainty at later time points is
unwanted. It could be that the definition of α can be altered such that the uncertainty
decreases with time.

In this research, a method was considered to test for a treatment effect without a
control group. This ”loss of control” could result in a higher probability of a type 1 error
/ lower power of the Bayes Factor test when compared to an RCT situation. It could
hence be useful to compare the performance of a test conducted in an RCT with the
Bayes factor test on the same benchmarks.

Another idea for further research could be to include multiple significantly different
treatments in the trial. The model would then consider the treatment effects for these
variables as drawn from different distributions, hence more elaborate covariance struc-
tures are considered. Furthermore, more outcome variables, possibly representing re-
current or dependent events could also be included in the model.
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Appendix A

List of Symbols and Their Description

Symbol Description
I(F ) The indicator that statement/event F is true.
1E(x) The indicator that x lies in the set E (i.e. 1E(x) = I(x ∈ E)).
pY The prior on the latent variable(s) Y .
fY |X The conditional density of the latent variable(s) Y given X.
1m The vector of length m (for m ∈ N) where every element is equal to 1.
iid∼ Independent and identically distributed according to the distribution on the right.
Φ The standard normal cumulative distribution function.
Φk(E; µ; Σ) The probability that a multivariate normal vector with mean µ and covariance Σ

lies in a set E.
φ The standard normal density function.
∧,∨ The binary minimum and maximum operators respectively, where conventionally

logical statements are taken to be either 1 or 0.
Hess() The Hessian operator. When acting on a d-dimensional function, it returns

a function H : Rd → Rd×d such that [H(x)]ij =
(

∂2

∂ui∂uj
h
)

(x) ∀x ∈ Rd.

IG(α, β) The class of inverse gamma distributed random variables with shape and scale
parameter α and β respectively.

U(a, b) The class of uniformly distributed random variables on the interval
with endpoints a, b with a < b both in R.

Nk(µ,Σ) The class of k-dimensional multivariate normally distributed vectors with mean µ
and variance Σ. When k = 1, the subscript is omitted.

Jm The m×m matrix where every element is equal to 1.
Im The m×m identity matrix.
Bd,t
l The l-th integrated spline function with degree d and knots t.

eji The i-th unit vector in Rmj , where mj is the j-th group size.
Cq(S) The set of q-times continuously differentiable functions on the set S.



Appendix B

Conditional Marginal Distributions for
a Truncated Multivariate Normal Vector

In this appendix, the result stated on Page 44 is shown.

Theorem 4. Let X ∼ Nm(µ,Σ) with X = [X ′1, X
′
2]′, µ = [µ′1, µ

′
2]′ and Σ =

(
Σ11 Σ12

Σ′12 Σ22

)
such that X1 ∼ Nm1(µ1,Σ11) and X2 ∼ Nm2(µ2,Σ22) with m1 +m2 = m.
Then:

X1|X2 ∼ Nm1(µ1 + Σ12Σ−1
22 (X2 − µ2), Σ11 − Σ12Σ−1

22 Σ′12)

Proof. See Eaton (1983) pg. 116-117.

Definition 4. A random vector X ∈ Rm has the Truncated multivariate normal distribu-
tion if there exist three vectors µ, L,R ∈ Rm and a matrix A ∈ Rm×n for some n ∈ N such
that:

X ∼ µ+ AY

where Y ∈ Rn is a random vector with density:

fY (y|µ,A, L,R) = C

n∏
i=1

φ(yi)1(Li,Ri)((Ay + µ)i).

In the above equation C is the normalizing constant. Defining Σ = AA′, the shorthand
notation used in this research is X ∼ Nm(µ,Σ)|(L,R)

Corollary 4.1. Let Z ∼ Nm(µ, aIm + bJm)|(L,R) where a ∈ (0,∞), µ ∈ Rm and b ∈
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(− α
m
,∞). Then, denoting with Z(−i) the vector Z without its i-th element, it holds that

Zi|Z(−i) ∼ N (µ, σ2)|(Li,Ri),
where

µ = µi +
b

(m− 1)b+ a

∑
j 6=i

(Zj − µj),

σ2 =
a(bm+ a)

(m− 1)b+ a
.

Proof. The density pZ of Z is zero when the density fZ(−i)of Z(−i) is zero, hence the pdf
of Zi|Z(−i) is given by:

fZi|Z(−i) =


fZ

f
Z(−i)

when fZ(−i) > 0,

0 else.

As fZ(−i) = 0 iff Z(−i) is not in the truncation intervals, the truncation intervals for Z(−i)

vanish in the above ratio. Hence, taking X ∼ Nm(µ, aIm + bJm), it follows that

fZi|Z(−i) =
fX
fX(−i)

1(Li,Ui)(Zi) = fXi|X(−i)1(Li,Ui)(Zi).

Hence one can just apply Theorem (4) to get fXi|X(−i) and multiply the result with an
indicator.
Referring to Theorem (4), it follows that Σ22 = aIm−1 + bJm−1, Σ21 = b1m−1.
Furthermore, it holds that µ1 = µi and µ2 = µ(−i).
It can now be checked that:

Σ−1
22 =

1

a
Im−1 −

b

a((m− 1)b+ a)
Jm−1.

Hence

Σ12Σ−1
22 = b1′m−1

(
1

a
Im−1 −

b

a((m− 1)b+ a)
Jm−1

)
= b

(
1

a
− (m− 1)b

a((m− 1)b+ a)

)
1′m−1 =

b

(m− 1)b+ a
1′m−1.

And thus

µ = µi +
b

(m− 1)b+ a
1′m−1(Z(−i) − µ2) = µi +

b

(m− 1)b+ a

∑
j 6=i

(Zj − µj).

Furthermore:

σ2 = a+ b− b2(m− 1)

(m− 1)b+ a
=

a(bm+ a)

(m− 1)b+ a
.



Appendix C

Alternative Expression of an
Equicorrelated Multivariate Normal
Integral

In this Appendix, the results stated on Page 49 are shown.

Theorem 5. Let n ∈ N, L,R ∈ Rn such that L < R elementwise, 0n ∈ Rn have every
element equal to 0, and τ ∈ (−1/n,∞).
The multivariate normal probability

Φn

(
n∏
i=1

[Li, Ri);0n; In + τJn

)
(C.1)

can be rewritten as:

E

e τ(
∑n
i=1 Vi)

2

2(nτ+1)

√
nτ + 1

 n∏
i=1

(Φ(Ri)− Φ(Li)) , where Vi ∼ N (0, 1)|[Li,Ri) for all i.

Proof. Extending the result in Steck and Owen (1962), Expression (C.1) can be written
as:

I :=

∫
R

[
n∏
i=1

(Φ(Ri −
√
τy)− Φ(Li −

√
τy))

]
φ(y)dy.

Note that when τ < 0, the term
√
τy is imaginary.

First, consider the case τ ≥ 0.

75



76APPENDIX C. ALTERNATIVE EXPRESSION OF AN EQUICORRELATED MULTIVARIATE NORMAL INTEGRAL

In this case it is easy to see that:

I =

∫ R1

L1

· · ·
∫ Rn

Ln

(2π)−n/2
∫
R

1√
2πτ

e−
[∑ni=1(xi−z)

2]+z2/τ
2 dz · dx1 · · · dxn

=

∫
∏n
i=1[Li,Ri)

(2π)−n/2e−
‖x‖22

2
1√

nτ + 1
e

(
∑n
i=1 xi)

2

2(n+1/τ)

∫
R

√
(1/τ + n)

2π
e−

(1/τ+n)

(
z−
∑n
i=1 xi
n+1/τ

)2

2 dz · dx

=

∫
Rn

e
τ(
∑n
i=1 xi)

2

2(nτ+1)

√
nτ + 1

[
n∏
i=1

e−x
2
i /21[Li,Ri)(xi)√

2π

]
dx.

Now, consider the case τ < 0.

As φ is symmetric around zero, the integral can be written in the following manner:

I =

∫
R

1

2

[
n∏
i=1

(Φ(Ri −
√
τy)− Φ(Li −

√
τy)) +

n∏
i=1

(Φ(Ri +
√
τy)− Φ(Li +

√
τy))

]
φ(y)dy.

Now, for all z ∈ R:

Φ(z −
√
τy) = e|τ |y

2/2

∫ z

−∞
eix
√
|τ |yφ(x)dx.

Hence:

1

2

[
n∏
i=1

(Φ(Ri −
√
τy)− Φ(Li −

√
τy)) +

n∏
i=1

(Φ(Ri +
√
τy)− Φ(Li +

√
τy))

]

=
1

2

[
n∏
i=1

e|τ |y
2/2

∫ Ri

Li

eix
√
|τ |yφ(x)dx

]
+

1

2

[
n∏
i=1

e|τ |y
2/2

∫ Ri

Li

e−ix
√
|τ |yφ(x)dx

]

=
1

2
en|τ |y

2/2

∫ R1

L1

· · ·
∫ Rn

Ln

[
n∏
i=1

eixi
√
|τ |yφ(xi)

]
dx1 · · · dxn

+
1

2
en|τ |y

2/2

∫ R1

L1

· · ·
∫ Rn

Ln

[
n∏
i=1

e−ixi
√
|τ |yφ(xi)

]
dx1 · · · dxn

= en|τ |y
2/2

∫ R1

L1

· · ·
∫ Rn

Ln

ei[
∑n
i=1 xi]

√
|τ |y + e−i[

∑n
i=1 xi]

√
|τ |y

2

[
n∏
i=1

φ(xi)

]
dx1 · · · dxn

= en|τ |y
2/2

∫ R1

L1

· · ·
∫ Rn

Ln

cos

(√
|τ |y

n∑
i=1

xi

)[
n∏
i=1

φ(xi)

]
dx1 · · · dxn.
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When the above expression is integrated against φ(y) over R, one obtains:

I =

∫
R

∫
Rn
en|τ |y

2/2 cos

(√
|τ |y

n∑
i=1

xi

)[
n∏
i=1

φ(xi)1[Li,Ri)(xi)

]
φ(y) dx1 · · · dxndy

=

∫
Rn

∫
R

e−(1−n|τ |)y2/2
√

2π
cos
(
1′nx

√
|τ |y

)
dy · fX(x) dx

=
1√

1− n|τ |

∫
Rn

∫
R

e−u
2/2

√
2π

cos

(
1′nx

√
|τ |

1− n|τ |
u

)
du · fX(x)dx

=
1√

1− n|τ |

∫
Rn

E

[
cos

(
1′nx

√
|τ |√

1− n|τ |
Y

)]
· fX(x)dx Y ∼ N (0, 1)

In the above, fX(x) =
[∏n

i=1 φ(xi)1[Li,Ri)(xi)
]

for all x ∈ Rn.

Now, for every a ∈ R, by using Fubini’s Theorem and the Taylor series for the cosine
function, it holds that :

E[cos(aY )] = E

[
∞∑
k=0

(−1)k(aY )2k

2k!

]
=
∞∑
k=0

(−1)ka2kE
[
Y 2k
]

2k!
= 1 +

∞∑
k=1

(−1)ka2k(2k − 1)!!

2k!

= 1 +
∞∑
k=1

(−1)ka2k

2k!!
=
∞∑
k=0

(−1)ka2k

2k!!
= e−a

2/2.

In the above, the fact is used that as Y is standard normally distributed,
E[Y 2k] = (2k − 1)!! for all k ∈ N. Here, k!! =

∏dk/2e
i=1 (2i− k%2).

Hence:

I =
1√

1− n|τ |

∫
Rn
e−

S(x)2

2(1/|τ |−n)fX(x)dx =

∫
Rn

e
τ(
∑n
i=1 xi)

2

2(nτ+1)

√
nτ + 1

[
n∏
i=1

e−x
2
i /21[Li,Ri)(xi)√

2π

]
dx.

Hence, for both τ < 0 and τ ≥ 0, I takes on the same expression.
Lastly, by noticing that the term in square brackets above is the unnormalized density

of independent truncated normally distributed variables, it holds that:

I = E

e τ(
∑n
i=1 Vi)

2

2(nτ+1)

√
nτ + 1

 n∏
i=1

(Φ(Ri)− Φ(Li)), where Vi ∼ N (0, 1)|[Li,Ri) for all i.

A corollary now follows:
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Corollary 5.1. Let n ∈ N, L,R ∈ Rn such that L < R elementwise, let 0n have every
element equal to 0 and τ ∈ (−1/n, 0). Lastly, let:

P = Φn

(
n∏
i=1

[Li, Ri);0n; In + τJn

)
.

Then:
e
τ(I1+I2)
2(nτ+1)

√
nτ + 1

n∏
i=1

(Φ(Ri)− Φ(Li)) ≤ P ≤ 1√
nτ + 1

n∏
i=1

(Φ(Ri)− Φ(Li)) (C.2)

where

I1 =

 n∑
i=1

Lie
−L

2
i
2 −Rie

−R
2
i
2

√
2π (Φ(Ri)− Φ(Li))

+ n,

I2 =
n∑
i=1

∑
j 6=i

 e−
L2
i
2 − e−

R2
i
2

√
2π (Φ(Ri)− Φ(Li))

 e−
L2
j
2 − e−

R2
j
2

√
2π (Φ(Rj)− Φ(Lj))

 .

Proof. The upper bound is trivial when one considers the result of Theorem 5 and no-
tices that τ√

nτ+1
is negative and (

∑n
i=1 Vi)

2 has to be positive, hence the exponent is
always less than 1 for τ < 0.
The lower bound is found by applying Jensen’s inequality in Theorem 5, as ex is convex,
it holds that:

e
τE[(∑ni=1 Vi)

2]
2(nτ+1) ≤ E

[
e
τ(
∑n
i=1 Vi)

2

2(nτ+1)

]
.

It now holds that:

E

( n∑
i=1

Vi

)2
 = E

[
n∑
i=1

V 2
i

]
+ E

[
n∑
i=1

∑
j 6=i

ViVj

]
.

Now, define I1 to be the left expectation in the expression above, and I2 to be the
rightmost expectation. The result then follows by applying ordinary rules of integration.



Appendix D

The falsely claimed error in the method
of Lin and Wang

In this section, the inference method used in X. Lin and Wang (2010) to sample γ

will be examined. This method was used as a starting point for this research. However,
during our research, it was falsely claimed that the method was not correct, and in this
section, it will be explained what part of the method we thought was wrong.
In the paper by Lin and Wang, it was the case that, like Z in the ultimately chosen
method, the vector γ is not sampled jointly. Similar to Z in the described MH algorithm,
the whole vector γ is not sampled. Instead, each element γi is Gibbs sampled condi-
tionally on the other values γ(−i) and one obtains convergence to the joint posterior in
the limit. A prior pγi is taken on γi, and µj := Xjβ. Furthermore, define

Tjl = (Ljl −Rjl)I(Ljl > −∞) +Rjl

and ξjl = I(Rjl <∞∧ Ljl > −∞) which indicates no censoring.
Now take Vj = Zj − α(Tj). The idea is to base inference on γi on V . It now holds that
Vj ∼ Nmj(µj − α(Tj),Σj)|(α(Lj)−α(Tj),α(Rj)−α(Tj)), where Σj = Imj + τJmj and hence by
Bayes’ rule:

fγi|(γ(−i),β,X,V,τ,L,R)

∝ pγi

n∏
j=1

e−
1
2

(Vj+α(Tj)−µj)′Σ−1
j (Vj+α(Tj)−µj)∏mj

l=1 1(α(Ljl)−α(Tjl), α(Rjl)−α(Tjl))(Vjl)

P (Vjl ∈ [α(Ljl)− α(Tjl), α(Rjl)− α(Tjl)) ∀l ∈ {1, . . . ,mj})

The denominator above was not included in the derivation of the Gibbs sampler provided
by Lin and Wang. This is the case as the eventual Gibbs sampling step (D.1) for γi will
match with that of the one provided in X. Lin and Wang (2010). However, we thought
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the denominator had to be included to normalize the likelihood of V used in Bayes’ rule.
However, the likelihood function is with respect to both V and L,R and can be seen to
integrate to 1 with respect to these variables.
Now, it is shown how continuing without the denominator yields the Gibbs sampling step
provided by Lin and Wang:

pγi

n∏
j=1

e−
1
2

(Vj+α(Tj)−µj)′Σ−1
j (Vj+α(Tj)−µj)

mj∏
l=1

1(α(Ljl)−α(Tjl), α(Rjl)−α(Tjl))(Vjl)

∝ pγi

n∏
j=1

e−
1
2

(Vj+α(Tj)−µj)′Σ−1
j (Vj+α(Tj)−µj)

mj∏
l=1

1(0, α(Rjl)−α(Ljl))(Vjl)
ξjl .

The last step holds as in the cases of left and right censoring, the indicators do not
depend on γi. Now, define:

σjl = Σ
−1/2
j Bd,t

l (Tj),

µ̃j = Σ
−1/2
j µj,

Ṽj = Σ
−1/2
j Vj,

δjlm = Bd,t
m (Rjl)−Bd,t

m (Ljl),

µ̂ij = µ̃j −
∑
l 6=i

σjl γl − Ṽj,

and let σl, µ̂i be the concatenation of σjl and µ̂ij for all j respectively.
It follows that:

fγi|(γ(−i),β,X,Z,τ,L,R)

∝ pγi

n∏
j=1

e−
1
2

(σji γi+
∑
l 6=i σ

j
l γl−µ̃j+Ṽj)

′(σji γi+
∑
l6=i σ

j
l γl−µ̃j+Ṽj)

mj∏
l=1

(
1(−δjliγi,

∑
m 6=i δ

j
lmγm)(Vjl − δjliγi)

)ξjl

= pγie
− 1

2

∑n
j=1(σji γi−µ̂ij)

′(σji γi−µ̂ij)
n∏
j=1

mj∏
l=1

1(
Vjl−

∑
m 6=i δ

j
lm
γm

δ
j
li

,γi+
Vjl

δ
j
li

)(γi)

ξjl

= pγie
− 1

2
(σiγi−µ̂i)′(σiγi−µ̂i)I

(
γi > max

{(j,l):ξjl=1}

Vjl −
∑

m 6=i δ
j
lmγm

δjli

)
.

The last equation follows from the fact that for ξjl = 1 it will a.s. be the case that Vjl > 0

hence γi +
Vjl

δjli
> γi a.s. and one can drop this requirement and get the indicator with the

maximum.
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The exponent above also appears in Bayesian linear regression with one covariate,
hence it is well known (Gelman et al., 2013) that the last expression can be rewritten as:

fγi|(γ(−i),β,X,Z,τ,L,R) ∝ pγie
−σ
′
iσi(γi−σ

′
iµ̂i)

2

2 I

(
γi > max

{(j,l):ξjl=1}

Vjl −
∑

m6=i δ
j
lmγm

δjli

)
.

From the structure of the above posterior, we see that the truncated normal distribution
is a conjugate prior for γi and hence if one sets a N (µ0, σ

2
0)|(a0,b0) prior on γi, it holds

that:

γi|(γ(−i), β,X, Z, τ, L,R) ∼ N (µ1, σ
2
1)|(a1,b1) (D.1)

σ2
1 =

1

σ′iσi + (σ2
0)−1

,

µ1 = σ2
1

(
µ0

σ2
0

+ σ′iµ̂i

)
,

a1 = max

((
max

{(j,l):ξjl=1}

Vjl −
∑

m 6=i δ
j
lmγm

δjli

)
, a0

)
,

b1 = b0.



Appendix E

Mathematical Formulation

E.1 Introduction

In this Appendix, the situation of a group of randomized controlled trials in medicine is
modeled. This was done in order to get a grip on the problem at hand. Eventually, this
model/formulation was not used in this research. After inspection of Chapter 2, some
common aspects of clinical trials are:

1. Subjects enter a clinical trial at a random time point σi for every patient i, and leave
the trial at a random time point τi.

2. According to some (possibly randomized) assignment rule, based on observed
patient features (and possibly all patient/outcome data collected up to that point),
the patient is selected for one of the treatment groups.

3. Call YG|k the possible outcomes of a subgroup G of patients when they would have
been assigned to treatment group k. Based on the recorded outcomes, treatment
assignments and patient features, a test (often based on the mean) is now per-
formed with the null hypothesis that YG|k is distributed as YG|0. Testing can be
done on multiple subgroups, treatment groups, and at multiple time points.

This leads to the following mathematical description of an RCT, which is expressed in
terms of measure theoretic probability.
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E.2 description

First, let (Ω,F ,Ft) be a filtered measurable space, where t denotes time. Furthermore,
let k ∈ N ∪ {∞} be the number of features having an influence on trial outcomes. It is
assumed that each of these features lie on/have an injective mapping to the real line.
Hence, the features of patient i at time t can be represented by an Ft−adapted process:

X i : Ω× R+ → Rk ∀i ∈ N.

In the above definition (and in the following definitions), the first input variable induces
(the possibility of) randomness in the process, and the second input variable denotes
time. It is seen from this formulation that every feature has the possibility to stochasti-
cally change in time. Note also that as i can take on any value in N, the patient popula-
tion is infinite.
Now, let there be d ∈ N decision variables (e.g. the assigned treatment group, the
location of the trial center), which (like the features) are assumed to lie in/have an in-
jective mapping to the real line. An assignment policy is now defined as a Ft-adapted
stochastic process

πi : Ω× R+ → Rd

where i denotes the patient for which the decision is made.
The outcome process is now defined:

Y i : Ω× R+ → Rl ∀i ∈ N

is the Ft−adapted, (l)−dimensional outcome process for patient i, where l ∈ N ∪ {∞}.

In the following, if Zi is a stochastic process for patient i, Zi
t denotes the process

evaluated at t (which is a random vector) and Z denotes the matrix-valued process
where the rows correspond to the patients. Note that dependencies between X , πi and
Y i can all be modeled with the probability measure that is eventually chosen for the
measurable space (Ω,F ,Ft).
Next, censoring of information is modelled. Let N be the total number of patients
recorded in the trial, let (ji)

N
i=1 be a sequence in N of length N denoting the patients

included in the trials. Assume that from these patients, X1, . . . , XN and Y 1, . . . , Y N are
measured, where X i only measures mi ≤ k number of features in X ji and Y i only mea-
sures ni ≤ l outcome variables in Yji.
Let σi denote the arrival/diagnosis time of patient i, and let τi be the ”dropout” time for
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patient i, where σi ≤ τi. Assume they are both stopping times with respect to Ft. It then
holds that

νit = (t ∧ τi) · 1[0,t](σi)

is also a stopping time w.r.t Ft for every t ∈ R+. In the above, ∧ denotes the binary
minimum operator. νit is a stopping time (for all t, i) which remains zero until patient i
enters the trial, after which it jumps to σi and increases linearly with slope 1 in t until the
patient leaves the trial at time τi. The total filtration evaluated at these stopping times
hence exactly measures information of patient i up until time t. For an example of a path
of νit , see Figure E.1.

0 1 2 3 4 5 6 7
t

−1

0

1

2

3

4

5

6

νi t

σi τi

Figure E.1: Example of a path of νit in the case σi = 2 and τi = 5.

Hence, define

Gt =
n∏
i=1

F (Xi,Y i)

νit
∩ Fπit

to be the filtration where the observed patient features and outcomes are observed
inside the observation intervals (σi, τi) as well as the treatment policies up to time t.
In the above definition, the product is Cartesian. To explain some notation, for an Ft-
adapted process X, the filtration FXt contains the σ−algebra’s generated by X up to
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each time point t. It hence only contains the minimal required information to measure
X. Furthermore, for anFt stopping time τ , Fτ = {A ∈ F∞ : A∩{τ ≤ t} ∈ Ft ∀t ∈ R+}.
In the case of statistical hypothesis testing based on trial outcomes, there is a fixed/pre-
determined probability measure Pπ over the treatment policies. A treatment policy π∗

is then drawn from this probability measure and patient features and outcomes are
collected up to some finite time T in a trial based on this policy. One now chooses
a set of models {Mπ∗

1 , . . . ,Mπ∗
r } based on the sampled policy and determines for which

of these models the likelihood of the observations (X, Y ) is the largest.
In the case where decision making is applied (e.g. sequential testing or a multi-armed
bandit approach), the situation is different. Assume a decision has to be made at time t
and one has observed (X i

s, Y
i
s )s∈[0,νit ]

, as well as πi up to time t for all followed patients i.
Let E ∈ Gt be the corresponding set in Gt on which the observed event takes place. Let
Q be the set of all possible treatment policies. One now chooses a class of probability
measures as the model for the data

P = {Pπ|Pπ is a probability measure on (Ω,F) for every π ∈ Q}.

Let O := ∪∞i=1{f | f : R+ 7→ Rl} be the set of all possible outcomes for the process Y.
Let L : O → R be an F−measurable loss function based on all outcome processes.
The objective in decision making in clinical trials is now to find a probability measure Q
over all possible policies π that minimizes (possibly approximately):∫

Q
Eπ [L(Y )1E] dQ(π).

In words, find the policy distribution, that given the observed event E minimizes the
expected loss induced by the outcome process under the chosen model P for the data.



Appendix F

Test Martingales

This section relates Bayes factors to a recently studied class of stochastic processes
called test martingales. If the clinical trial is regarded as a prospective study rather than
a retrospective study (the latter of which is mostly assumed throughout this thesis),
one can view the Bayes factor value based on all information up to that time point as
a stochastic process Bn (where discrete time is assumed for convenience). This pro-
cess is related to a class of processes called test martingales (Shafer et al., 2011),
(Grünwald, 2016), (Hendriks, 2018). Hence, studying these types of processes could
provide results applicable on both clinical trials and other situations of sequential testing.
First, a definition is given:
Definition 5. A test martingale is a stochastic process M on L1(Ω,F , (Fn)∞n=1 ,P) for
some set Ω, σ-algebra F for Ω, filtration (Fn)∞n=1 and probability measure P such that:

1. M1 = 1, P− a.s.

2. Mn ≥ 0 for all n ∈ N,

3. E[Mn+1|Fn] = Mn P− a.s. .

By Doob’s martingale inequality for nonnegative (sub)martingales, denoting M∗ =

supn∈NMn, it holds that:

P
(

1

M∗ ≤ α

)
= P

(
M∗ ≥ 1

α

)
≤ α.

By Doob’s first convergence theorem, M∞ exists P-almost surely. Furthermore, be-
cause of monotonicity, M∗ and 1/M∗ are well-defined (possibly infinite) random vari-
ables. The latter variable satisfies (3.4), and it is hence a p-value. Furthermore, one
can ask whether more links exist between p-values and test martingales, as well as
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Bayes factors and test martingales. The following relations show that a test martingale
is a generalization of p-values and Bayes factors:

Theorem 6. Let M be a test martingale, P be an exact p-value and B be a Bayes factor.
The following statements hold:

1. (M∗)−1 is a p-value.

2. (n1[0,1/P )(n))∞n=1 is a test martingale.

3. M−1
n for all n and M−1

∞ are Bayes factors.

4. (E[B−1
k | Fn])∞n=1 is a test martingale in n for all k. Furthermore, if the observations

are independent, (Bn)∞n=1 is a test martingale.

Proof. see (Shafer et al., 2011).

In 3.7, it was seen that the Bayes factor for a total dataset can be written as the
product of conditional Bayes factors. It is now shown that this property holds for all test
martingales.

Theorem 7. Let (M i)ki=1 be a sequence of independent stopped test martingales on a
probability space (Ω,F ,P) with k ∈ N ∪ {∞}. Let F i be the filtrations generated by the
martingales, and let τi be the stopping time corresponding to M i.
Define s0 = 0, si =

∑i
j=1 τj for i ∈ {1, . . . , k}.

Let T = {∅,Ω} be the trivial sigma algebra, and

F i,ln =

{
T n ≤ l,

F in−l n > l.

Be a right-shifted version of F in for every n, l ∈ N.
Now, let F s1n = F1

n, F s0n = T for all n, and recursively define the filtrations:

F sin = {A ∈ F : A∩{si−1 = l} ∈ F i,ln ∩F
si−1

l ∀l ∈ N∪{0}} for i ∈ {2, . . . , k}, n ∈ N.

Then

Mn =
k∏
i=1

(
1{si−1≥n} +M i

n−si−1
1{si−1<n}

)
is a test martingale with respect to the filtration (F skn )∞n=1.
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Proof. The measurability statement {si = n} ∈ F sin holds by induction.
Furthermore, F sin ⊂ F

si+1
n for all i, n and as the term 1{si−1≥n} + M i

n−si−1
1{si−1<n} ∈ F sin ,

it holds that the product Mn is F skn measurable. Furthermore, it trivially holds that Mn

nonnegative and M1 = M1
1 = 1.

Now all that’s left is to prove the martingale inequality, as this also shows that M is
integrable by nonnegativity and the tower rule:

E [Mn+1|F skn ] = E

[
k∑
i=1

1{si−1<n<si}

i−1∏
j=1

M j
τj
M i

n+1−si−1
|F skn

]
+ E

[
k−1∑
i=1

1{n=si}

i∏
j=1

M j
τj
|F skn

]

+ E

[
1{n≥sk}

k∏
j=1

M j
τj
|F skn

]
=

k∑
i=1

1{si−1<n<si}

i−1∏
j=1

M j
τj
E
[
M i

n+1−si−1
|F skn

]
+

k−1∑
i=1

1{n=si}

i∏
j=1

M j
τj

+ 1{n≥sk}

k∏
j=1

M j
τj
.

The second equality holds as 1{si≤n}M
i
τi

is F sin (and thus F skn ) measurable, namely:

1{si≤n}Mτi1{si−1=k} = 1{τi≤n−k}Mτi1{si−1=k} ∈ F i,kn ∩ F
si−1

k ∀k ∈ N.

Now, for all A ∈ F skn , by the definition of conditional expectation and as M i
n−l is a mar-

tingale on F i,ln for n > l:

E
[
1{si−1<n<si}M

i
n+1−si−1

1A

]
= E

[
n−1∑
l=1

1{si−1=l}M
i
n+1−l1A∩{si>n}

]

= E

[
n−1∑
l=1

1{si−1=l}M
i
n−l1A∩{si>n}

]
= E

[
1{si−1<n<si}M

i
n−si−1

1A

]
.

The second equation holds as A ∩ {si > n} ∈ F sin for i ∈ {1, . . . , k} by induction, hence

A ∩ {si > n} ∩ {si−1 = l} ∈ F i,ln ∩ F
si−1

l .

Now, by independence of the martingales:

E[M i
n+1+l|F i,ln ∩ F

si−1

l ] = E[M i
n+1+l|F i,ln ] = M i

n+l.

Hence E
[
1{si−1<n<si}M

i
n+1−si−1

|F skn
]

= 1{si−1<n<si}M
i
n−si−1

and the martingale equation
holds.

The interpretation of the filtration F skn is that it measures the martingale Mn up to
min(n, sk).



Appendix G

Frequentist Hypothesis Tests

In this appendix, more information is given about the frequentist hypothesis tests
often used in clinical trials.

G.0.1 Qualitative responses

Qualitative responses are recorded in cases where it is difficult/not possible to record
outcomes numerically. This can be for instance in the case that the outcome is e.g.
a test result or a psychological effect. Mathematically speaking, the outcome set of a
qualitative response is a finite countable set. Assume without loss of generality (wlog)
that the responses are denoted by {1, . . . , K} for someK ∈ N. The two treatment groups
are denoted by {0, 1}. Let Xi be the outcome for subject i, and let Ti ∈ {0, 1} be his
treatment group. Let N be the sample size, N0 be the number of subjects in treatment
group 0, and N1 := N −N0. Lastly, let Nk

T be the number of subjects in treatment group
T ∈ {0, 1} having response k, and let Nk := Nk

0 +Nk
1 .

In this section, the null hypothesis is as follows :

P0(Xi = k) = P0(Xj = k) = pk ∀i, j, k. (G.1)

In the above, P0 denotes the probability under the null hypothesis.
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Fisher exact test

A Fisher exact test is often performed in clinical trials when the sample size is small.
Under the null hypothesis (G.1), it follows that:

P0(N1
0 = m1, . . . , N

K
0 = mK |NT ) =

(
N0

m1, . . . ,mK

) n∏
i=1

pmii

(
N1

N1 −m1, . . . , NK −mK

) n∏
i=1

pN
i−mi

i ,

P0(N1 = l1, . . . , N
K = lK) =

(
N

l1, . . . , lK

) K∏
i=1

plii ,

hence P0(N1
0 = m1, . . . , N

K
0 = mK |N1, . . . , NK)

=

(
N0

m1,...,mK

)∏n
i=1 p

mi
i

(
N1

N1−m1,...,NK−mK

)∏n
i=1 p

N i−mi
i(

N
N1,...,NK

)∏n
i=1 p

N i

i

=

(
N0

m1,...,mK

)(
N1

N1−m1,...,NK−mK

)(
N

N1,...,NK

) .

Call the latter conditional probability π(m,n) for m,n ∈ NK (taking
(
l
k

)
= 0 for k > l). If

m,n ∈ NK are now observed (i.e. nk = Nk
1 and mk = Nk

0 ), the p-value P in the Fisher
exact test is calculated as:

P =
∑

k,l∈NK :π(k,l)≤π(m,n)

π(k, l).

In words, the sum of probabilities of all less likely outcomes given N1, . . . , NK .

The upside of this test is that it does not assume knowledge of the probabilities pk,
the downside of the test is that the p-value is calculated conditional on the distribution
of subjects over outcomes. This makes the test more conservative, and decreases the
statistical power as compared to similar tests (see e.g. Barnard’s test in Mehta and
Senchaudhuri (2003)). The p-value in the Fisher exact test can also be based on other
statistics (see for instance Mehta and Senchaudhuri (2003)), the p-value in this section
is considered standard, and based on e.g. Raymond and Rousset (1995).

Chi-square test

The Chi-square test is often performed in trials with large sample sizes. It is based on
the following result:

Theorem 8. Let p̂k = Nk

N
for all k, then under (G.1) :

TN :=
K∑
k=1

(Nk
0 −N0p̂k)

2

N0p̂k
+

(Nk
1 −N1p̂k)

2

N1p̂k

d→ χ2
(K−1) as N →∞.
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Proof. See e.g. Van der Vaart (2000), page 247.

In the above d→ denotes convergence in distribution. The p-value of this test is now
taken to be 1−Fχ2

(K−1)
(TN). For more information about the Chi-square test, see McHugh

(2013).

Mann-Whitney U Test

If there exists a binary ordering relation < on the qualitative outcome space, we can
assume wlog that the numbers linked to the outcomes have the same ordering, and we
are dealing with an ordinal outcome space. In this case, the Mann-Whitney U test can
also be used to compare outcomes in two different treatment groups, either for a small
or large sample.

In this test, every subject i is given a rank Ri ∈ Q+, where there exists δ ∈ Q+ such
that for all patients i, j :

Xi < Xj ⇐⇒ Ri < Rj,

Xi = Xj ⇐⇒ Ri = Rj,

Xi = k, Xi+1 = k + 1 =⇒ Ri+1 −Ri = δ,

N∑
i=1

Ri =
N(N + 1)

2
.

LetR′k be the ranking of subjects having outcome k, these conditions lead to an invertible
linear system in R′1, . . . , R′K and hence the ranks are uniquely defined.

Let R0
i be the ranks for the i-th subject in treatment group 0, and let R1

i be defined
similarly. Following Hollander, Wolfe, and Chicken (2013), the Mann-Whitney U statistic
is now equal to:

U =

[∑
i

R0
i

]
− N0(N0 + 1)

2
.

Remarkably, many other definitions of U are available in literature (Hollander et al.
(2013), LaMorte (2019)). The test on the above statistic are equivalent or more standard
than tests based on other statistics.
Assuming (G.1), the statistic U should be distributed as if the sum of ranks were taken
from any given subset of size N0 of the total set of rankings. Hence, to get an exact con-
ditional p-value, the frequency of all subsets of outcomes such that the resulting value of
the statistic U is smaller/larger than the observed value (one-sided) or both (two-sided)
is determined.
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Sometimes, in large samples, a test based on asymptotic normality of the scaled/translated
U statistic is performed (which was shown by Mann and Whitney Mann and Whitney
(1947)). This mainly has to do with the fact that the possible number of subsamples
grows fast with sample size.

G.0.2 Quantitative Responses

Let Xi now be the responses for the subjects in treatment group 0, and Yi those for
treatment group 1. Let XN denote the sample average for the outcomes in group 0, and
Y N the average for group 1. Lastly, let sX , sY denote the sample standard deviation for
group 0 and 1 respectively.

Independent Two-sample t-test

If the data is assumed to follow a normal distribution, the independent two-sample t-test
can be conducted1. We take as null hypothesis:

∃µ ∈ R, σ0, σ1 ∈ R+,

[
Xi

Yj

]
iid∼ N2

([
µ

µ

]
,

[
σ2

0 0

0 σ2
1

])
, ∀i ∈ {1, . . . , N0}, j ∈ {1, . . . , N1}.

Two independent-sample t-tests can be performed, one is Welch’s t-test (Pocock, 2013)
and one is the independent-sample Student’s t-test (Walker & Almond, 2010).

1. independent-sample Student’s t-test
In this case, it is furthermore assumed under the null hypothesis that σ0 = σ1. The test
statistic:

T =
XN − Y N

sp
√

1
N0

+ 1
N1

, where sp =

√
(N0 − 1)s2

X + (N1 − 1)s2
Y

N0 +N1 − 2

is known (see e.g. Armitage et al. (1971)) to have a TN0+N1−2−distribution under the null
hypothesis, which can be used to form a p-value for the test.

2. Welch’s independent-sample t−test
In Welch’s independent-sample t-test, it is assumed that σ1 6= σ0. The test statistic in
Welch’s test is now defined as:

T =
XN − Y N√

s2
X/N0 + s2

Y /N1

.

1If this assumption is violated, the nonparametric Mann-Whitney U test is sometimes also performed.
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The statistic is approximately follows a Tν−distribution where ν ∈ N is the largest natural
number such that:

ν ≤ (s2
X/N0 + s2

Y /N1)2

s4
X/(N

2
0 (N0 − 1)) + s4

Y /(N
2
1 (N1 − 1))

.

A downside of Welch’s t-test is that it is based on an approximation of a distribution.
The test is however seen to outperform the Student t−test under unequal variances in
practical applications (Ruxton, 2006).

G.0.3 Time to Event Responses

Time to event responses are analyzed using so called survival analysis. The events of
interest are e.g. recurrence to the clinic or time of death. The subjects arrive to the trial
at some time, and are followed until the event of interest is observed, or the response is
right censored. This censoring entails basically all events that causes the time-to-event
measurement to stop early. Examples of this are e.g. patients leaving the trial, stopping
of the trial or death due to other causes than the disease. Next to right censoring, left
censoring and interval censoring can also occur. Left censoring occurs when only an
upper bound on the event time is known. This can happen for instance when patients
are added to a clinical trial retrospectively (e.g. when the inclusion criteria are rede-
fined) and the disease has already recurred before the patients enter the trial. Interval
censoring occurs when only the interval in which the event time lies is known. This can
happen when monitoring is not done continuously but only between certain time points.
Denote the event times for subjects in the control group with T 0

i and the times for sub-
jects in the treatment group with T 1

i . The observations for subject i in survival analysis
are now time intervals [Li, Ri) in which Ti lies. When no censoring occurs, this interval
becomes degenerate, but in the case of left/right/interval censoring, it contains more
than one point. In frequentist hypothesis testing, the following null hypothesis is now
often posed:

SX(t) := P0(T 0
i > t) = P0(T 1

i > t) =: SY (t) ∀t ∈ R+.

The functions SX(t) and SY (t) are often called the survival functions for groups X and Y
respectively. The null hypothesis hence states that the survival functions for both groups
are identical.

Logrank Test for Event-time Data

The logrank test is often performed in cases where interval censoring takes place. It is
hence the case that the observation for each patient i in treatment group j ∈ {0, 1} is
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the tuple (Lji , R
j
i ) with Rj

i ≥ Lji and Lji , R
j
i ∈ {t1, . . . , tm} for ti ∈ R ∀i.

To construct the test statistic, define

O0
j =

N0∑
i=1

I((R0
i < tj) ∧ (L0

i ≥ tj−1)),

O1
j =

N1∑
i=1

I((R1
i < tj) ∧ (L1

i ≥ tj−1)),

N0
j = O0

j +

N0∑
i=1

I(L0
i ≥ tj−1),

N1
j = O1

j +

N1∑
i=1

I(L1
i ≥ tj−1),

Oj = O0
j +O1

j ,

Nj = N0
j +N1

j .

In words, O0
j , O

1
j , Oj are the number of subjects in group 0, 1 or both groups experiencing

the event between tj−1 and tj, and N0
j , N

1
j , Nj are the number of subjects at risk of

experiencing the event between tj−1 and tj. Note that N0
j , N

1
j , Nj does not count the

number of censored subjects in the period [tj−1, tj].

Similarly to the situation in Fisher’s exact test above, under the null hypothesis, Zj :=

O0
j |Oj, Nj, N

0
j are independently drawn (for all j) from the hypergeometric distribution:

P0(O0
j = k|Oj, Nj, N

0
j ) =

(N0
j

k

)( N1
j

Oj−k

)(
Nj
Oj

) ∀k ∈ N ∪ {0}.

Like in the Fisher exact test, all outcomes with a smaller probability could be summed
up to obtain a p-value. However, with large sample sizes the number of possible com-
binations of outcomes grows very fast. Hence an asymptotic approximation is often
performed. The expectation and variance of Zj are

µj =
OjN

0
j

Nj

, Vj =
N0
jN

1
j (Nj −Oj)Oj

N2
j (Nj − 1)

.

Hence, by Lindenberg’s central limit theorem (Pollard, 2002), as m→∞:∑m
j=1(Zj − µj)√∑m

j=1 Vj

d→ N(0, 1).

Notice that m→∞ also means that the sample size goes to infinity. For more informa-
tion on survival analysis, see Korosteleva (2009).
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