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Abstract

Objective: Manual detection of interictal epileptiform activity in long-term EEG recordings
is time-consuming and highly susceptible to individual interpretation. Automatic detection
algorithms offer a faster, reproducible and more objective, and therefore more efficient method
for EEG evaluation. These algorithms are able to reach human-like sensitivities. Nevertheless,
they are rejected in the clinical practice due to their high false-positive rate and mostly imprac-
tical manner of displaying their results. Therefore, the objective of this research is to design
a clustering algorithm and graphical user interface, that presents the automatically detected
Interictal Epileptiform Discharges according to their morphology and localisation.

Methods: The clustering algorithm was based on the events found by the Persyst P13 spike
detector. We divided single lead EEG segments into groups according to their localisation.
The events within these groups were then clustered with the K-means algorithm. The Squared
Euclidean distance and Dynamic Time Warping distance were considered as distance measures
for the clustering. The combination of clustering algorithm and graphical user interface is
referred to as the Cluster Tool.

The Cluster Tool was evaluated with usability and clinical performance tests. A total of 23
EEGs was used.The usability tests were performed by five EEG experts, through moderated
testing. The clinical performance assessments were done by two test participants. Mutually
agreed on clinical conclusions were compared to the clinical conclusion that was described in
the EEG report, which was considered the gold standard.

Results: The usage of the tool resulted in remarkably similar clinical diagnoses in comparison
to the EEG report. However, the clusters derived by the algorithm did not consistently meet
the expectations of the neurologists. This decreased their trust in the performance of the tool
and caused them to spend time on manually checking detections within clusters. The use of
the Cluster Tool did not speed up the EEG evaluation. The Dynamic Time Warping distance
showed a slightly better separation of the cluster results than the SE distance.

Discussion: The Cluster Tool shows the potential of a comprehensive visualisation of interic-
tal epileptiform discharges for improving EEG evaluation. However, the clustering algorithm
was too inaccurate to impact the clinical workflow positively. After the implementation of
a sufficiently accurate clustering algorithm, the designed prototype promises a faster, repro-
ducible and more objective method for EEG evaluation. The post processing of the output
of automatic spike detection algorithms is a step which has been underestimated for too long.
Focusing on the visualisation of these detections is an important step toward the clinical im-
plementation of such algorithms.
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”Success consists of going
from failure to failure
without loss of enthusiasm”.

WINSTON CHURCHILL



1 | Introduction

1.1 Motivation

Epilepsy is one of the most common neurological diseases worldwide, with around 50 million
people diagnosed1. Epilepsy is a disease of the brain that is characterised by at least one
unprovoked epileptic seizure and a high risk of further seizures2. The occurrence of seizures
is unpredictable, and epilepsy can, therefore, lead to a sudden loss of autonomy. Besides of
seizures, epilepsy can cause cognitive and psychological problems. Hence, the disease entails a
major burden in seizure-related disability, comorbidities, and costs1.

Accurately diagnosing epilepsy, including the specific seizure type and seizure onset area,
can be challenging. Despite this difficulty, an accurate diagnosis is essential in epilepsy to en-
sure proper treatment and to avoid false diagnosis and thereby, ineffective treatment. Epilepsy
can be diagnosed by examining the patients’ history, where especially seizure semiology con-
tains essential information. However, patient history is always subjective and often does not
provide enough information to make a certain diagnosis.

The electroencephalogram (EEG) provides supplementary evidence of the clinical suspicion
of epilepsy and is the most important technological device in the diagnosis and management
of epilepsy. Once an epileptic seizure is recorded on EEG, the diagnosis ’epilepsy’ can be
confirmed. The EEG during a seizure is also referred to as ictal EEG. Epileptic seizures may
occur daily in some patients, but in most cases, weeks, months or even years can pass without
the occurrence of a seizure. Hence, it is often not possible to record the ictal EEG.

The interictal EEG is defined as the EEG between seizures. Epileptiform discharges can be
seen in the interictal EEG. These Interictal Epileptiform Discharges (IEDs) are often referred
to as ’spikes’. The presence of such IEDs in the EEG is a sign for an increased likelihood of
seizures and therefore serves as a marker for epilepsy3. This stresses the importance of the
EEG as a diagnostic tool.

To achieve an accurate diagnosis, it is very important that EEG evaluation is performed
properly, by an experienced EEG reader and interpreted by an experienced physician, in the
context of the clinical history4. It is common practice that ictal and interictal EEG charac-
teristics are detected manually through visual assessment of the entire EEG recording, which
is a very labour intensive process. Moreover, the manual detection of IEDs is inextricably
linked to the issue of subjectivity. The inter-reader agreement of experienced EEG readers is
remarkably low for interictal spike marking, with values ranging from 39-55%.5–9.
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Automatic detection could lead to a more efficient interpretation of IEDs, by enabling
faster, reproducible and more accurate evaluation of EEGs. The shift from manual evaluation
to automatic detection will speed up the review time and assure that the outcome of the
evaluation will always be the same, thereby complying with the reproducibility. It will also
enable us to automatically quantify IEDs and gain additional insight into their role within
epilepsy diagnosis and treatment6. Quantification of IEDs would make it easy to study e.g.
whether the amount of interictal discharges is related to the effectiveness of treatment or
if certain waveforms are related to specific syndromes. Until now, such studies are mainly
performed by counting spikes and manually identifying interictal waveforms, which entails a
huge workload10. Hence, the use of automatic detection will not only lead to more efficient
EEG evaluation, but it will also open doors to further research for better understanding of the
role of IEDs in epilepsy treatment and diagnosis.

1.2 Literature review

Various automatic detection algorithms for IEDs have been developed since the EEG became
digitalised in the 1970s. Despite significant improvements in the field of these algorithms over
time, they are not used frequently by clinicians. This is mainly caused by the general impres-
sion that automatic detection algorithms perform less than skilled EEG-readers5,8. There is
a substantial lack of agreement on the generally accepted determination of epileptic activity,
which limits the definition of a proper gold-standard. Therefore, performance assessment of
these algorithms remains challenging, and the major part of clinicians keeps questioning the
reliability of automatic spike detection algorithms.

Despite the general lack of acceptance from the clinical field, several automatic spike detec-
tion software are commercially available, offering their added value as a tool for more efficient
spike detection. Recently, a study by Scheuer et al. (2017) presented an algorithm, the Per-
syst P13 ( c©Persys Development Corporation 2016), which showed human-level performance
for epileptogenic spike detection5. This shows that automatic detection software can be used as
a more objective and efficient tool for EEG evaluation in clinical practice, without handing in
on the quality of review performance. A clinical assessment by Halford et al. (2018) confirmed
that the P13 algorithm has good sensitivity performance based on a pairwise comparison with
35 EEG readers. However, they also raised their concerns about the high rate of false-positives
of the spike detector and state that the algorithm is not ready to use in a clinical setting11.

The false-positive rate (FPR) of automatic spike detection algorithms has always been an
obstacle for the clinical implementation of these algorithms. In 2002, Wilson recalled the fun-
damental issue, which was already described by Frost in 1985, that automated spike detection
algorithms have high FPRs6. More than 30 years later, Halford et al. (2018) show that auto-
matic spike detection algorithms still have FPRs, which are considered unacceptably high11. It
seems like researchers have been entangled in a battle-of-algorithms for the last 50 years, where
everyone keeps searching for the perfect spike detection algorithm, but none seems to find it.
The high sensitivity of the detection algorithm is crucial to detect all important events, but it
must be considered what level of sensitivity is realistic and sufficient. Currently, the sensitivity
of IED detection by humans, which can be considered the gold standard, varies between 39%
and 70%5. Scheuer et al. (2017) showed that their P13 detection algorithm performed human-
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like, with a sensitivity of 43.9%. However, this level of sensitivity comes with a false-positive
rate (FPR) of 1.65 per minute5. Regarding the state-of-the-art of IED validation, the best
possible sensitivity which can be achieved is the level of human-like-performance. Therefore,
it is about time to stop focusing on improving detection algorithms and start searching for
methods to deal with the high FPRs and look for ways to enable clinical implementation of
those algorithms.

A possible solution to deal with false-positive detections is given by Wilson et al. in 1999,
who states that it is sufficient when a user interface allows the neurologist “to quickly delete
artefacts and determine whether there are multiple spike generators [. . . ].”12. Automatic de-
tection algorithms are not designed to replace the work of a neurologist, but rather to assist
in EEG evaluation as a decision support system. Therefore, an automatic detection algorithm
must serve as a tool which enables the neurologist to review the IEDs in a quick and easy
manner so that it can be decided which detections are truly epileptiform and which are false-
positive detections.

Wilson et al. (1999) proposed to combine all detected events with nearly similar mor-
phology and topology into one event through clustering12. This way, the results of automatic
detection are summarised and presented more comprehensively. They report an increase in
reviewing speed and the opportunity of immediate identification of multiple detections at once
when using the spike clusters. This shows the potential of cluster techniques to group the
detected events according to their waveform, and thereby separating the false detections from
the IEDs. Such a clustering method would enable us to create a comprehensive overview of
the automatically detected spikes, and facilitate more efficient clinical interpretation of the
results, without wasting time on false positive detections.

1.3 Outline of this thesis

This research aims to study if the clustering of automatically detected IEDs according to
their localisation and morphology and their presentation in a comprehensive user interface,
will enable more efficient clinical interpretation and facilitate the implementation of automatic
detection algorithms in the clinical field.

Chapter 2 provides a detailed context analysis, which results in a clear problem definition
and study aim. It describes the clinical setting for which the clustering algorithm and user
interface were designed and introduces the automatic detection software used for this research;
the Persyst P13 spike detector. The chapter also includes some background information about
IEDs and common EEG artefacts. It concludes with a detailed problem description which
focuses the problem stated in this introduction on a specific clinical setting while using the
P13 spike detector.

Chapter 3 presents the clustering algorithm designed to partition the events detected by
the P13 spike detector. It briefly introduces time series clustering and describes the different
steps which are applied in the clustering algorithm, being: data preparation, calculation of a
distance measure and clustering.

The design of the graphical user interface (GUI) is presented in chapter 4. The GUI
facilitates the interaction between the cluster results and the user. The architecture of the
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GUI and graphical layout are presented in this chapter.
The clustering algorithm and GUI together are referred to as the Cluster Tool. The per-

formance and usability of the Cluster Tool are evaluated and discussed in chapter 5.
Chapter 6 provides a general discussion on the Cluster Tool, where the methods applied

in this research are reviewed, and recommendations are suggested based on the results of the
validation.

This thesis finalises with the conclusion presented in chapter 7.
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2 | Conceptual framework

2.1 Clinical setting and procedures

Stichting Epilepsie Instellingen Nederland (SEIN) in the Netherlands, is a tertiary expertise
centre for epilepsy and sleep medicine. At the Epilepsy Monitoring Unit (EMU) of SEIN, eight
rooms are available for patient intake, where the long-term EEG recordings are performed un-
der continuous monitoring of video, audio and co-registration of the Electrocardiogram (ECG)
and on occasion Electromyography (EMG). Each room has four rotatable cameras, which are
controlled and observed around the clock by nurses. These nurses also assist the patient and
perform cognitive tests on the patient when a seizure occurs. This way, the EEG, ECG, video
and audio of the patients are recorded during the entire intake. Two of the rooms are used for
pre-surgical admissions. These patients come in on Monday and stay for five days. The other
six rooms are used for 24- and 48-hour recordings. This means that during a full week over
800 hours of EEG recordings are registered.

Currently, all EEG recordings are analysed manually. Figure 2.1 shows a screenshot of one
EEG page, which typically includes 15 seconds of EEG recording. The visual evaluation of
the entire EEG is performed by the EEG technicians. They start with the evaluation of the
background pattern and the diagnostic tests, of which they make a representing selection. The
inspection of the rest of the registration is done by scrolling chronologically through the EEG.
All pieces of EEG containing abnormal and suspicious events are marked. It can sometimes
be difficult to distinguish abnormal activity from regular activity or artefacts. Many kinds of
artefacts can occur in EEG recordings. The definition of these artefacts is explained more in
detail in section 2.3.2. In cases when it is difficult to interpret EEG phenomena, the video
recording provides additional information and is used by the technician to decide which parts
to mark.

Once the entire EEG has been evaluated and annotated by the technician, the neurologist
will look into the registration and review the representative selections and the annotated parts.
Based on these selections, the neurologist will form a conclusion and recommendation according
to the clinical question of the outpatient physician who had referred the patient to SEIN.

2.1.1 Future vision of the workflow

Instead of analysing the entire EEG recording manually, the experts at SEIN want to start
using automatic spike detection in addition to the visual evaluation of a small selection of
the EEG. Current spike detection algorithms are not capable of detecting IEDs with high
specificity. Nevertheless, the experts at SEIN believe that it is about time that automatic
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Figure 2.1: EEG recording shown for 15s in the average reference montage. The EEG was
recorded according to the 10-20 system with additional F9 and F10 electrodes.

detection will be implemented within the clinical field. Their vision of future EEG evaluation
is to review only one hour of the wake EEG, including the diagnostic test, the first hour of
sleep and the first half-hour after waking. This should provide enough information to get a
good impression of the background activity and general EEG of the patient. The rest of the
EEG should be analysed by automatic detection software, as shown in Figure 2.2. Note that
for a completely automated evaluation, a reliable seizure detection and trend analysis must
also be used. However, the current study will only focus on the automatic detection of IEDs.

The implementation of an automatic detection algorithm at SEIN would directly help to
optimise the diagnostic process and thereby increase the quality of patient care. Experts at
SEIN are willing to use semiautomatic spike detection software in the clinical practice and are
actively testing available software. The current project is part of this research field.

2.2 Persyst P13 spike detector

The P13 spike detector, as is presented by Scheuer et al. (2017) uses EEG recordings in the
common average reference montage to detect focal IEDs5. Generalised discharges are detected
in another referential montage, which uses either the two frontopolar electrodes (Fp1 and Fp2),
the temporal electrodes (T7 and T8) or the occipital electrodes (O1 and O2)5.

The morphology of the detection is described by dividing the waveform into six-half waves.
The algorithm uses features of each half-wave, containing information about the amplitude,
duration and curvature. The two waves in the middle represent the deflection of the spike.
The two waves at the beginning describe the EEG activity preceding the spike, and the two
waves at the end describe whether a slow component follows the spike. Whenever a similar
detection is found around the same time, but on a different channel, the spike will be detected
on the channel with the highest amplitude only5.
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Figure 2.2: Schematic overview of the workflow of EEG evaluation. a) shows the current
workflow of EEG evaluation used in SEIN, where the entire EEG is reviewed manually. b)
presents an overview of the workflow of EEG evaluation SEIN wants to achieve in the future.
Only one hour of wake, which includes the diagnostics tests, the first hour of sleep and the half
hour after waking up are reviewed manually. The rest of the EEG is evaluated by automatic
detection software.

All features describing the morphology, localisation and context of the detection are used
in a set of neural networks to create a likelihood score for the event to be truly an IED. This
results in every detection being assigned a perception value between 1 and 0. A value of 1
represents a very high likelihood, and a value of 0 represents that it is very unlikely for the
event to be an IED. Whenever an event is uncertain, it is assigned a perception value near
0.55.

2.2.1 Performance of the P13 spike detector

An internal study at SEIN compared three commercially available software packages for au-
tomatic spike detection and showed that the Persyst P13 outperformed the spike detection
software of AIT Encevis and BESA Epilepsy 2.013. The study revealed that the P13 indeed
performed equal to the human reviewers, as is also stated by other studies5,11. The perfor-
mance of the Persys P13 was evaluated by comparing the clinical conclusion based on the
software, with the clinical conclusion as described in the EEG report. Each event was cate-
gorised based on its importance as either high, medium or low. Events with high importance
had a direct impact on the clinical diagnosis, medium important event supported a diagnosis
and events with low importance only gave vague information about waveforms present in the
EEG, without influencing the clinical diagnosis. Figure 2.3 shows the results of this compari-
son and it can be observed that by using Persyst a large part of the events were detected.

Although the performance of Persyst P13 was similar to human performance, the way the
results were presented was experienced as limited. The current user interface of the Persyst
spike review presents the detections to the user based on electrode location, as can be seen
in Figure 2.4. This poor way of presenting the detections caused that certain waveforms got
lost in the list of detections and were overlooked. This had a negative impact on the clinical
conclusion and is the reason that not all events of high and medium importance were found in
the internal study at SEIN13. It was also noted that a relatively large number of the detected
spikes were false. This high FPR was also described by Halford et al. (2018) who found mean
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Figure 2.3: Number of events detected when using Persyst P13, compared to the current
practice. The events are divided by importance. Events with high importance had a direct
impact on the clinical diagnosis, medium important event supported a diagnosis and events
with low importance only gave vague information about waveforms present in the EEG, without
influencing the clinical diagnosis. Persyst P13 performed similar to the current practice on all
levels of importance. Figure adapted from ‘A practical comparison of automatic detection software
for interictal spikes in long-term EEG recordings at SEIN ’ by Spijkerboer, F. L. (2018).13

pairwise false positive rate of 1.2 per minute, when applying the 0.9 perception threshold11.
The fear of overlooking important events resulted in a workflow where all detected events were
inspected and classified manually. Hence, the workload of long-term EEG review was not
found to be mitigated when using Persyst P13. It was therefore concluded that the software
is not ready for implementation in the clinical workflow yet, which agrees with the conclusion
of Halford et al. (2018)11.

2.3 Theoretical background

2.3.1 Interictal Epileptiform Discharges

Identifying Interictal Epileptiform Discharges (IEDs) and differentiating them from normal
variant can be difficult. In the revised glossary of terms most commonly used by clinical elec-
troencephalographers, Kane et al. (2017) defined IEDs as transient which is distinguishable
from the background activity with characteristic morphology14. They contain a sharp or spiky
aspect and a wave duration which is either shorter or longer than the ongoing background ac-
tivity. The transient disrupts the background activity surrounding the epileptiform discharge
and can be followed by a slow wave. Different kind of IEDs can be distinguished, as presented
in Table 2.1. It may seem like clear definitions for IEDs exists, but in reality, it can be difficult
to distinguish different IED morphologies. Interictal discharges can vary significantly between
patients, even if both waveforms would be classified as the same type of IED. Within a patient
though, IEDs tens to be morphologically very similar15.
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Figure 2.4: Overview of the user interface of Persyst P13 spike review. The events are
grouped per electrode location, which are shown in the top row above the EEG segments.
Below each electrode group a very short segment of the average waveform of all detections
present in group are presented in the average reference montage.

It is important to realise that many epileptiform like patterns exist, which do not sup-
port the diagnosis epilepsy. In patients with non-epileptic disorders, such as psychogenic
non-epileptic spells (PNES) and syncope, misreading epileptiform like patters have caused in-
correct diagnosis many times. Studies have shown that approximately 30% of adult patients
which are referred for intracable epilepsy have non-epileptic events16. Distinctive physiolog-
ical waveforms like vertex waves, lambda waves, positive occipital sharp transients of sleep
(POSTS), or sharp transients which are poorly distinguished from background activity, such
as 6Hz spike-and-slow-waves, are not considered epileptiform. Generalised paroxysmal fast
activity or wicket spikes are also examples of epileptiform like patterns that are frequently
confused with IEDs16. This shows the difficulty of accurately detecting IEDs.

2.3.2 Artefacts

Many kinds of artefacts can occur in EEG recordings, some of which might be mistaken for
sharp epileptic activity. When these artefacts originate from electrical activity from other body
parts, they are called biological artefacts. Eye blinks produce high amplitude signals over the
frontal electrodes, and lateral eye movements produce sharp positive signals on the left or
right frontal electrodes, depending on the direction of the eye movement. Muscle tension,
originating from chewing, tongue movement, or swallowing result in spike trains, which shape
and amplitude depend on the degree of the muscle contraction. Other artefacts can result
from, for example, cardiac activity, poor electrode contact, the 50 Hz transmission line, or
physical movement of the patient. The morphology of these artefacts can be mistaken for
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Table 2.1: Definition of different types of IEDs. The definitions adapted from ‘A revised
glossary of terms most commonly used by clinical electroencephalographers and updated proposal
for the report format of the EEG findings. Revision 2017.’ By Kane et al. (2017). In Clinical
Neurophysiology Practice.14

Polyspike
complex

A sequence of two or more spikes. This waveform can be epileptiform but
can also be confused with generalised paroxysmal fast activity or wicket spikes.

Polyspike-and-
slow-wave
complex

An epileptiform pattern consisting of two or more spikes associated with one
or more slow waves

Sharp wave

An epileptiform transient clearly distinguished from the background activity,
although amplitude varies. A pointed peak at a conventional time scale and
duration of 70–200 ms, usually with a steeper ascending phase when
compared to the descending phase. The main component is generally
negative relative to other areas and may be followed by a slow wave of the
same polarity.

Comment: Sharp waves should be differentiated from spikes, i.e. transients having similar

characteristics but shorter duration. However, it should be kept in mind that this distinction is

largely arbitrary and primarily serves descriptive purposes.

Sharp-and-slow-
wave complex

An epileptiform pattern consisting of a sharp wave and an associated
following slow-wave, clearly distinguished from background activity. May be
single or multiple.

Spike

A transient, clearly distinguished from background activity, with a pointed peak
at a conventional time scale and duration from 20 to less than 70 ms.
Amplitude varies but typically >50 lV. The main component is generally
negative relative to other areas.

Comments:

1. term should be restricted to epileptiform discharges. EEG spikes should be differentiated

from sharp waves, i.e. transients having similar characteristics but longer durations. However,

it should be kept in mind that this distinction is largely arbitrary and primarily serves

descriptive purposes.
2. EEG spikes should be clearly distinguished from the brief unit spikes recorded from single

cells with microelectrode techniques

Spike-and-slow-
wave complex

An epileptiform pattern consisting of a spike and an associated following
slow-wave, clearly distinguished from background activity. May be single or
multiple

epileptiform activity and lead to false interpretation. Due to the wide variety of morphologies
of IEDs, the similarity of IEDs with physiological epileptiform like patterns, and the presence
of artifact within the EEG, the detection of IEDs is difficult17. This not only entails difficulties
for the diagnosis of epilepsy but makes it also difficult to design and validate algorithms for
automatic detection of IEDs.

2.3.3 Components of the clinical diagnosis epilepsy

To get to a comprehensive and clinically usable overview of all events which are detected
by Persyst P13, it must be considered carefully what information should be presented in the
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comprehensive overview. Three crucial components can be distinguished, by which epileptiform
events are described and interpreted in the current clinical practice; wave morphology, temporal
occurrence, and localization. A neurologist would write a conclusion in the clinical report
formulated like ”The EEG showed occasional poly spikes with maximum right fronto- temporal”
or ”The EEG is often interrupted by clusters of high-amplitude, bioccipital, sharp and slow
waves”4. Therefore, the comprehensive overview should provide information on the wave
morphology, temporal occurrence and localisation of the detected events.

2.4 Research objective

This research was executed at the EMU of SEIN, and the IEDs were detected by the Persyst
P13 spike detector. The general objective is to design a clustering algorithm to group au-
tomatically detected IEDs according to their localisation and morphology and present those
clusters in a comprehensive overview, to enable efficient clinical interpretation of long-term
EEG recordings. This is realized through the following specific research objectives:

• Develop a cluster algorithm which groups all events detected by Persyst P13 according
to their morphology and localization

• Design a Graphical User Interface (GUI) which presents the results of the clustering by
their morphology, localization and temporal occurrence

• Evaluation of the clustering and GUI to assess the impact of using a comprehensive
overview, on the clinical interpretation of long-term EEG recordings.
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3 | Development of the Clustering
Algorithm

3.1 Introduction

This chapter describes the algorithm, developed to cluster the events which are detected by
the Persyst P13 spike detector, according to their morphology and localisation. Clustering is
a form of unsupervised classification where groups are created in a way that objects within a
cluster are similar, and objects belonging to different clusters are not similar. It is not known
in advance what the groups will look like and no label is assigned to the groups or clusters.
The process of clustering can be divided into four steps:

1. Data preparation
The preparation step determines the structure of the clusters. This may include the data
size, data selection and pre-processing steps. When using a feature-based approach, the
selection of the features is also included in this step.

2. Definition of the distance measure
This is often considered as the most important step of the entire clustering process18.
The distance measure quantifies the degree of dissimilarity between two or more time-
series, in a way that it can be used as a criterion for creating clusters. Care should be
taken when choosing a distance measure because a proper criterion for dissimilarity is
based on the characteristics of the time-series, the representation method of the data,
and the objective of the clustering19.

3. Clustering
The clustering algorithm uses the set of distance measures as input to create clusters
based on the characteristics of the algorithm. Many different types of clustering exist,
and they can serve in many different applications. The choice for a clustering algorithm
depends on the application, the type of clustering desired and the type of input data.

4. Validation of the clustering
Cluster evaluation is not a well-developed, though an important part of cluster analysis20.
Due to its very nature, the definition of good clustering can be troublesome, and different
type of cluster algorithms require different kinds of evaluation measures. The selection of
a validation method should always be made in the context of the data type and objective
of the clustering.
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Figure 3.1: Flowchart of the clustering process. It starts on the left with the input data,
which is applied to the clustering algorithm. The input data consists of an EEG file, and
a file containing the output of the Persyst P13 spike detector. Both input files are patient-
specific. The algorithm consists of three steps: the data preparation, the definition of a distance
measure and clustering. The output consists of clusters, which require a visualisation step to
be inspected. The visualised clusters can then be validated, as the last step of the clustering
process.

The first three steps of the clustering process define the performance of a clustering algo-
rithm. The following sections will present the algorithm developed in this project. First, the
in- and output data are presented. Subsequently, the methods applied for data preparation,
calculation of the distance measure and clustering are described. The last step of the clustering
process is the validation of the results. This will be discussed in chapter 5.

3.2 Input and Output

3.2.1 Input data

A flowchart of the in- and output data is shown in Figure 3.1. The clustering algorithm de-
pended on two input files, which were patient-specific. These were the EEG recording and the
output of the spike detection software Persyst P13. The latter was used to select segments
in the EEG recording which contained a spike. These segments were selected based on the
time where Persyst P13 marked a detection. This section analyses the types of input data
which is important because it is essential to choose proper methods for data representation,
the calculation of the distance measure and the clustering algorithm.

EEG data

The algorithm was based on EEG files which were stored as .TRC file. EEG recordings are a
type of time series data. Time-series clustering is a special type of clustering because its feature
values change as a function of time. Time series data is stored with multiple entries per second
and is therefore naturally high dimensional and often large in data size19. Dimensionality in
this context is defined by the number of samples and is represented by the length of the time
series.
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Figure 3.2: Visualisation of the dimensionality of EEG data. The horizontal axis represents
the number of samples, which consists of the sample frequency fs times the duration s in
seconds. The vertical axis shows the number of electrodes n, which is 21 electrodes for the
EEG shown. In depth, the number of EEG segments N are presented.

EEG data is not only multidimensional, but it also consists of several recordings on the
same time scale, recorded by multiple electrodes. This makes the data multivariate. When we
use a sample frequency fs and select EEG segments with a duration s, we get a time series
with a length of fs× s samples. Considering an EEG recording on n different electrodes, one
EEG segment would already consist of a n × fs × s matrix. Figure 3.2 shows an example of
the input data with N EEG segments. The high dimensionality of the multivariate EEG data
limits the choice of clustering algorithms, and a large data size slows down the computational
time of the algorithm.

Persyst P13 output

Automatic spike detection was done for each EEG. The Persyst P13 spike detection software
performed the automatic detection. An overview of this software is presented in Section
2.2. The output of the detection algorithm was extracted to a comma-separated value (csv)
file, which stored three important variables: the exact timestamp of all N detections, the
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Detection Time Perception Value Channel

d1 14:14:49.355 0.60 F7-Av12
d1 14:14:59.640 0.55 F9-Av12
d1 14:20:35.362 0.44 Fp2-Av12
d1 14:24:49.702 0.62 F10-Av12
d1 16:06:07.617 0.97 F7-Av12
d1 16:06:56.672 0.57 F9-Av12
d1 16:07:49.072 0.41 F9-Av12
d1 21:40:25.972 0.90 T7-Av12
d1 21:55:14.997 0.42 F9-Av12
d1 22:11:16.772 0.44 O2-Fp12
d2 00:29:07.653 0.53 C3-Av12

Table 3.1: Overview of the data present in the output file of the Persyst P13 spike detection
algorithm. The first column includes the exact time stamp when the IED was detected, the
second column shows the perception value of the detection, and the third column presents
the electrode channel where the highest amplitude was detected as well as to which reference
electrode the IED was detected.

electrodeposition at which each detection had the highest amplitude, and the perception value
of each detection. The perception value is a measure, introduced by Persyst, to indicate the
likelihood of a detection to truly be epileptiform, where a higher value represents a higher
likelihood. An example of an output file from the P13 spike detector is presented in Table 3.1.
The output file of the spike detection and the EEG file were both stored under the same name
so that for a certain patient p001 an EEG file p001.TRC and corresponding spike detection
output file p001.csv existed.

3.2.2 Output data

The output of the algorithm consisted of several clusters that divide the set of EEG segments
into groups, based on the morphology and localisation of the EEG waveform. The visualisation
of these clusters is discussed in the next chapter. Figure 3.1 shows the in- and output data in
regards to the steps of the clustering process.

3.3 Data Preparation

To deal with the multivariate high dimensional input data, we applied several selection steps.
An important aspect to consider when clustering time series, is the possible presence of noise,
shifts, artefacts, discontinuities and temporal drift. The data from the Persyst output file was
used to select short segments of the EEG around the exact detection time. The duration of
these EEG segments was four seconds, ranging from two seconds before the detection time
until two seconds after, as shown in Figure 3.3. We chose a range of four seconds because it is
important for clinical evaluation of an IED, to see the surrounding EEG and get an impression
of the background activity.
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Figure 3.3: Selection of an EEG segment with a total duration of four seconds, used for
visualisation. The zero-time, marked in the figure by the red line, corresponds to the exact
timestamp which was detected by Persyst P13. The lighter red area represents the segment
which ranges from 200ms before the detection time to 500ms after the detection time. This
smaller EEG segment is used for calculation of the distance measure and clustering.

The EEG segments were loaded into MATLAB (R2019, MathWorks Inc.). The Fieldtrip
Toolbox was used for preprocessing and visualisation of the EEG segments. Fieldtrip is a free
MATLAB toolbox for EEG analysis. All EEG segments were re-referenced to the average
reference montage. A highpass filter, with a cutoff frequency of 2 Hz and a Hanning window
was applied on the EEG segments to get rid of low-frequency drifts and to taper off the EEG
segments towards the ends. The hereby created EEG segments with a duration of four seconds
were used for the visualisation of the surrounding EEG. For clustering, the EEG segments were
further narrowed to an interval of 200ms before the exact detection time and 500ms after (see
Figure 3.3). By narrowing the EEG segment, we decreased the possible amount of background
activity present in the signal and thereby ensured that the clustering was done mainly based
on the EEG waveform, and less on the background activity.

Subsequently, we divided the EEG segments further into groups based on the perception
value. All EEG segments which corresponded to a perception value of 0.9 or higher were
put in one group and the EEG segments corresponding to a perception value of 0.4 or higher
in another group. The EEG segments with a perception value lower than 0.4 were ignored
since preliminary studies revealed that these events did not contain events significant for the
clinical diagnosis. All steps of this selection process are shown in the flowchart in Figure A.2
in Appendix A.2. Note that the group with the medium perception value (0.4 threshold) also
contained all EEG segments which were also included in the high perception value group (0.9
thresholds).
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Figure 3.4: Definition of the Brain Regions used in the cluster algorithm Left: Overview
of the Brain Regions and the electrodes that are included in each of them. Right: Electrode
placement according to the 10-20 system with additional F9 and F10 electrodes.
* The EEG segments included in this group are detected by Persyst P13 as generalized and are therefore not
found on a specific electrode.
** The EEG segments included in the residuals can results from all electrodes

The pre-selected IEDs were then further divided according to their localisation. We defined
a total of nine brain regions to describe the localisation of the IED; Frontal, Frontotemporal,
Centroparietal and Parieto-occipital, all separated in the right and left hemisphere, and the
midline. A detailed overview of the definition of the brain regions and the corresponding elec-
trodes is presented in Figure 3.4. This figure also shows the scalp position of the electrodes.
Not all events were assigned to one of the brain regions. Some events were marked as gener-
alised by Persyst, meaning that they did not have a specific source but arose from activity all
over the brain. Therefore, these events could not be assigned to a certain brain region and
were therefore assigned to the ‘generalised’ group.

Only the channel where Persyst detected the spike was selected, in order to deal with
the multivariate data. This resulted in EEG segments which consisted of a 1 × fs × s array,
thereby reducing the number of simultaneously recorded samples to one (see Figure 3.5). The
events included in the ‘generalised’ group were not found on a single electrode and removing
leads would delete important information of the generalised IED. Hence, the entries of the
generalised group were not clustered.
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Figure 3.5: Dimension reduction of the EEG data by selecting only the channel where the
spike was detected by Persyst. The new EEG segment is no longer multivariate, but exists of
a 1× fs× s time series.

3.4 Distance measure

To determine whether time series were similar, we had to define a function to measure similar-
ity. This so-called distance measure could then be used to quantify the degree of dissimilarity
between two or more time-series. Note that similarity and distance are inverse concepts. Find-
ing a proper distance measure is one of the most important steps of the clustering process since
it directly influences the shape of the clusters21. Humans are very good at visually recognising
patterns and determining similarity, but programming an algorithm to perform the same is a
difficult problem22. Moreover, time series can be noisy, contain outliers and shifts, and suffer
from discontinuities and temporal drifts19. Therefore, the choice for a distance measure should
be well considered.

Notation

We use the notation D(Xi, Yj) to represent the distance between two EEG segments X =
(x1, x2, ..., xi) and Y = (y1, y2, ..., yj), where X ∈ R and Y ∈ R. Note that i and j represent
the length of the EEG segments t = fs × s, with t the number of samples, fs the sample
frequency and s the duration of the time series in seconds.

3.4.1 Categories of distance measures

Aghabozorgi et al. (2015) reviewed that three different ways of time series clustering can be
defined; shape-based, feature-based and model-based. Feature-based measures require a se-
lection of features from the data that describe the actual time series. They are often applied
to obtain a reduction in both dimensionality and noise. The model-based methods first fit
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(a) Lock-step distance (b) Elastic distance

Figure 3.6: Comparison of two time series made with lock-step and elastic measures, re-
spectively. a. Example of a lock step measure, where sample i will always be compared with
sample j = i. b. Elastic measure, where sample i can be compared with sample j = i + x.

a model to the time series and subsequently compare the parameters of the hereby created
models. Shape-based distance measures compare a pair of time series directly, based on their
raw data. Literature study reveals that feature and shape-based methods are most common in
time series clustering18,19. Esling and Agon (2012) state that shape-based methods are most
appropriate when the time series are relatively short and visual evaluation can be used for
interpretation of the results23. The EEG segments at hand correspond to short time series.
Therefore, a shape-based approach was considered most likely to provide the best results.

Shape-based distance measures can be divided into two categories; the lock-step measures
and the elastic measures. Figure 3.6 presents a comparison of two time series made with lock-
step and elastic measures, respectively. Lock-step measures always compare the ith sample
of time series X to the jth sample of time series Y , with i = j. Elastic measures methods
take into account the surrounding points in time to allow for shifts in time, so that the ith
sample of time series X can be compared to the jth sample of time series Y , with i 6= j. We
used the Squared Euclidean distance as lock-step measure, and the Dynamic Time Warping
distance as an elastic measure. These two measures were chosen because they represent the
two different categories of shape-based distances as well as the most commonly used distance
measures according to literature18,19,21,23.

3.4.2 Squared Euclidean Distance

One of the most commonly used lock-step distance measures is the Euclidean distance. All
lock-step measures require both time series to be of equal length (i = j). In our data, the EEG
segments were all detected on the time of the highest amplitude and surroundings were selected
based on predefined length. Therefore, finding similar waveforms corresponds to finding EEG
segments which show a similar pattern over time. The Euclidean distance was therefore likely
to be a suitable method to define similarity. In this project, we decided to use the Squared
Euclidean (SE) distance, which is almost equal to the Euclidean distance, except that the
calculation of this distance measure is faster, as it does not take the square root.
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The Squared Euclidean distance DSE between two EEG segments X and Y is defined as:

DSE(Xi, Yj) = (x1 − x1)2 + (x2 − x2)2 + ... + (xi − xj)
2

=

t∑
i,j=1

(Xi − Yj)
2

Note that lock-step distance measures, and thus the SE distance, are sensitive to noise,
scale and time-shifts, and thus must be used with care, especially when applied on time-series
data.

3.4.3 Dynamic Time Warping distance

In contrast to the lock-step measures, the elastic shape-based methods take into account the
surrounding points in time to allow for shifts in time. Although the EEG segments are all the
same length and aligned in time based on the position of the highest amplitude, the waveforms
can still show time-warping effects. If this is the case, they will be matched best when elon-
gating or shrinking parts of the EEG segments over time. Therefore, Dynamic Time Warping
(DTW) distance was applied as elastic distance measure.

DTW calculates the smallest distance between two signals in a non-linear way. It distorts
the signals and creates a (t × t) local cost matrix (LCM), where each cell (i, j) corresponds
to the distance between elements xi and yj . Note that t represents the length and thus the
number of samples of the EEG segments. This distance is defined as the quadratic distance
D(xi, yj) = (xi − yj)

2. Subsequently, a warping path W is created, with W = w1, w2, ..., wK

and K the length of the warping path. The warping path always starts at the beginning of the
time series and finishes at the end, so that each sample of both time series is included in the
warping path. Another constraint of the warping path is that it is restricted by the following
moves:

• Vertical moves: (i, j) −→ (i + 1, j)

• Horizontal moves: (i, j) −→ (i, j + 1)

• Diagonal moves: (i, j) −→ (i + 1, j + 1)

A window parameter can be added as additional local constraint. The window parameter
sets the maximum value for |i− j|. Figure 3.7 illustrates the minimum warping path for two
EEG segments through the LCM.

The DTW distance is obtained by finding the warping path with the minimum cumulative
distance for each next possible move. The total distance for the warping path is found by taking
the sum of the individual distances of the LCM trough which the warping path traverses.

DDTW (Xi, Yj) =
K∑
k=1

wk (3.1)
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Figure 3.7: Minimum warping path through the LCM of two EEG segments X and Y . The
grey area represents the boundaries of the warping window.

Note that this distance is equal to the SE distance when the minimum warping path
traverses only the diagonal of the LCM.

3.5 Clustering

Many different applications of cluster analysis exist, and therefore many different clustering
techniques have been developed. Generally, five different categories of cluster algorithms can be
distinguished: distance-based methods, sub-divided into partitional and hierarchical methods,
density-based, grid-based, model-based and multi-step methods19. Each of these categories
can be divided into many more sub-categories and combinations. Since this an exploratory
study, we wanted to start with an algorithm which was as simple as possible, but suitable for
the time series data at hand. Distance-based methods are considered the most simple and
easy to implement20. Moreover, they can be used on time series data when an appropriate
distance measure is applied. Therefore, we chose the K-means clustering algorithm, developed
by Lloyd in 198224. The K-means is one of the oldest and most widely used distance-based
algorithms25. The main reason for choosing the K-means algorithm was its computational
simplicity20,26.

3.5.1 K-means

The K-means algorithm clusters the data into a predefined number of K clusters by minimising
the distance between the cluster centroids and the objects within the clusters27. The algorithm
starts with K initial data points as centroids. These initial centroids are selected according to
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Basic K-means algorithm

1: Select K points as initial centroids.
2: repeat
3: Form K clusters by assiging each point to its closest centroid
4: Recompute the centroid of each cluster.
5: until Centroids do not change

Table 3.2: Formal description of the basic K-means algorithm. Reprinted from ’Cluster
Analysis: Basic Concepts and Algorithms’ by Kumar et al. (2005) In Introduction to Data
Mining 20.

the K-means++ algorithm, a randomised seeding technique which applies a weighted probabil-
ity to the random selection of the initial centroids28. This technique decreases the computation
time of the original K-means and improves the quality of the final clustering28. Figure 3.8 A.
shows an example of a data set with three initial clusters.

When all initial centroids are determined, the standard K-means algorithm can be applied.
All data points (EEG segments) are then assigned to the closest centroid based on the distance
between them. Each collection of data points assigned to a centroid forms a cluster, as shown
in Figure 3.8 B. The centroids of all clusters are then updated based on the points belonging
to each cluster, by using the mean of all points as new centroid (see Figure 3.8 C.). Based on
the newly computed centroids, all points are re-assigned to the closest centroid, which might
differ from the first assignment (see Figure 3.8 D.). The assigning of points and recalculation
of the centroids is repeated until no points change clusters. Kumar et al. (2005, chapter 8)
provide a clear pseudo-code of the basic K-means algorithm, which is presented in Table 3.220.

The assigning of points to the closest centroid is done based on the distance measure, where
the algorithm seeks to minimise the distance of each point to its closest centroid. Since the
initial centroids of the clusters are selected randomly, the outcome of the clustering can vary
when a local optimum is found instead of the global optimum. Therefore, we run the K-means
algorithm 50 times and select the result with the lowest sum of all distances between each
point and its cluster centroid.

We set the maximum number of clusters per brain region to five since we did not expect
that more than five different waveforms would be present in a brain region within a person.
The number of optimal clusters, which was predefined to be between one and five clusters, was
estimated with the gap statistic, as proposed by Tibshirani et al. (2001)26. This technique is
based on the difference between the within-cluster sum of squared errors for different values
of K. For an increasing number of K, the sum of squared errors will decrease monotonically,
but depending on the data set, this decrease will flatten at some point. Gap statistics estimate
the number of clusters for which the sum of squared errors has the largest difference to its
expected value. The principals of gap evaluation are explained in more detail in Appendix A.1.

The output of the clustering is saved as indices corresponding to the original EEG segments.
Whenever a cluster contains less than three events, the cluster is deleted, and the events are
included in a separate group of residuals.
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Figure 3.8: Iterations of the K-means algorithm. a) shows the initial cluster centroids.
The data points are assigned to their closest centroid as shown in b) and c) displays the
recalculation of the centroids. Based on the new centroid, the data points are again assigned
to heir closest centroid, as shown in d).
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4 | Design of the graphical user in-
terface

4.1 Introduction

The results of the cluster algorithm are visualized in a Graphical User Interface (GUI). This
chapter provides an overview of the GUI. The purpose of the GUI is to facilitate interaction
between the cluster algorithm and the neurologist (user).

Kawamoto et al. (2005) showed that ‘automatic provision of decision support as part of the
clinician workflow’ increases the success rate of clinical decision support systems with 75%29.
Hence, the workflow of the clinical department contains valuable information for the definition
of the requirements. The potential users of the GUI were asked which features and require-
ments they found essential. The neurologist of the EMU at SEIN described that they desire a
user interface to make the results of the clustering algorithm, and thereby automatic detection

Figure 4.1: Build-Measure-Learn cycle. This loop represents the process of iterating a
Minimal Viable Product (MVP). One starts with an idea, which is built into an MVP. This
MVP is shown to the potential users and the results are measured. This feedback is then
analyzed, and the developer will learn if they should persevere the initial idea or pivot and
make drastic changes
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Table 4.1: Requirements of the Graphical User Interface. A differentiation was made between
the hard requirements, which define the features the GUI needs, and the soft requirements,
which indicate the wishes of its potential users, but which are not considered to be necessary
for clinical adoption.

Hard requirements (needs):

• Present the average waveform of each cluster
• Indicate the variation of morphologies within a cluster
• Show the localization of the detection
• Point out the temporal occurrence of events in each cluster

Soft requirements (wishes):

• Ability to view events in a cluster individually
• Review the surrounding EEG of a single detection
• Ability to use different montages and filter settings

software in general, usable in the clinical practice. The user stories gave more insight into
the desired functionalities and requirements. The basic GUI prototype was created, developed
according to the Minimum Viable Product (MVP) concept.

The MVP concept is a part of the Lean Startup methodology, developed by Eric Ries30.
An MVP is a very basic prototype of the desired product, which can be evaluated to gather the
maximum amount of feedback. The feedback from this first product iteration is then used to
learn if the development of the product still goes into the right direction, or if changes must be
made, which will lead to a second product iteration. This is done through the build-measure-
learn process, as shown in Figure 4.1.

During the development of the GUI, several versions of MVPs were shown to the neurol-
ogists, starting with just some plots of the results, until a real GUI which allowed for user
interaction. Each time, the feedback from the potential users was analysed and new functions
were added to the MVP, or changes were made. This process resulted in the list of require-
ments shown in Table 4.1. It was differentiated in hard requirements, which represent the
features the GUI must contain to reach its goal, and the soft requirements, which represent
the wishes of the users.

4.2 Design

The GUI was designed with MATLAB App Designer (MATLAB 2019a), which is a MATLAB
environment created for App building. The tool is designed in a way that multiple GUIs
interact. On startup of the tool, the first GUI ‘Mainapp’ is opened. This is the main GUI
of the tool which visualises all clusters per brain region. The Mainapp GUI only presents
detections with a perception value of 0.9 or higher. When opening the tool, the Mainapp GUI
is empty. At the top of the GUI, the tabs for all different brain regions are shown in the fol-
lowing order: Frontal left, Frontal right, Frontolateral left, Forntolateral right, Centroparietal
left, Centroparietal right, parietooccipital left, parietooccipital Right, Midline, Generalized,
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Figure 4.2: Screenshot of the startup screen of the Cluster tool. The tool always opens an
empty version of the Mainapp GUI. The top row shows the tabs to all brain regions. In the left
lower corner, the information about the visualised EEG and cluster settings will be displayed.
In the lower right corner a push button is present which can be used to open the Select files
GUI to select and visualise a specific EEG recording.

Residuals. At the bottom of the GUI, the minimal perception value, the similarity measure
used to create the clusters, and the file ID of the EEG are presented. These last two values are
empty upon startup because no file is selected. The bottom line also includes a push-button
to select files. Figure 4.2 shows a screenshot of the opening screen of the Cluster tool.

The Mainapp GUI has several callback buttons to other GUIs, such as the ‘select files’
GUI, the ‘databrowser’ GUI and the ‘0.4threshold plot’ GUI. The architecture of the GUIs
is shown in Figure 4.3. Each GUI has different functionalities. The select files GUI is used
to select and import data, to select a distance measure and to start the clustering algorithm.
The Mainapp GUI is used to visualize the results of the cluster algorithm, of all events with a
perception value of 0.9 or higher, whereas the 0.4 threshold GUI does the same for all events
with a perception value above 0.4. The Data Browser GUI can be used to visualize the indi-
vidual events within a cluster, including four seconds of the surrounding EEG.

4.2.1 Data import, distance measure selection and clustering

The select files push button in the Mainapp GUI, opens a pop-up window with the Select files
GUI, as shown in Figure 4.4a. Through this GUI, the user can select the EEG file and
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Figure 4.3: Architecture of the GUIs of the Cluster tool. The Mainapp GUI is always the
first GUI to open. From here, other GUIs can be opened as pop-up window.

(a) Layout of the Select files GUI

(b) User action flowchart

Figure 4.4: a) Overview of the Select files GUI and b) the User actions required in the
Select files GUI to select input data and cluster settings and to visualise the cluster results of
a specific EEG.
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corresponding Persyst output file and select a folder where the cluster results will be saved.
Through the ‘Browse” -button, a pop-up window lets the user browse the file system to locate
the specific EEG, .csv file and folder that the user wants to select. From the check-box in
Figure 4.4a, the user can select the distance measure to be used in the cluster algorithm. After
selecting all input, the user must press the “Run” -button, which starts the cluster algorithm
as described in the previous chapter. When the clustering is done, or the cluster results of that
specific EEG were already saved in the selected folder, the OK push button will be enabled.
This initiates the plotting of the cluster results in the Mainapp GUI, as described in the next
section. These user actions are visualised in the flowchart in Figure 4.4b.

4.2.2 Visualization of the clusters

The results of the cluster algorithm are presented in the Mainapp GUI. Each cluster is plotted
in the tab of the corresponding brain region. The number of clusters per brain region can
vary between zero and five. Figure 4.5 shows an example of the frontolateral right region of a
patient with five clusters. Each cluster is visualized by all electrodes belonging to that specific
brain region (see Figure 3.4 in Chapter 3). That means that, although the event is detected
on F8, the EEG signal of F10 and T8 is also displayed in the cluster plot, and these signals are
also included in the calculation of the average waveform. The average waveform is presented
by the fat coloured line, where each cluster has a different colour within a brain region. The
grey waveforms which are seen in the background of the average waveform, are the individual

Figure 4.5: Layout of the Mainapp GUI. The tab that is shown is the Frontolateral right
brain region. Five clusters have been found by the cluster algorithm in this region, with the
Squared Euclidean Distance and a perception value of 0.9 or higher.
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detections. This view can be used as an indication of the variation of the individual detections
from the average waveform. The text box below each cluster plot contains information about
the exact number of detections found on each electrode. Cluster 5 in Figure 4.5 for example
contains 16 detections which are all detected on F8.

Each tab contains a timeline which visualises the temporal occurrence of the detected events
per minute. The colour of the vertical line corresponds to the cluster number, and the height
shows how often an event is detected per minute. Figure 4.5 only contains detections which
occur once per minute. The “View cluster”-button enables the user to view all individual
events within a cluster. By pressing this button, a pop-up window will open the Data Browser
GUI. This GUI exists of the FT databrowser function, implemented in the Fieldtrip Toolbox,
which is a free MATLAB toolbox for EEG analysis.

Figure 4.6 shows an example of a frontolateral left brain region with only one cluster,
which is inspected in detailed through the ft databrowser function. This GUI allows scrolling
through all the individual detections within a specific cluster. The EEG shown in the Data
Browser GUI contains 2 seconds of EEG before and after the exact detection time and there-
fore provides more information about the context of the detection than the average plot. The
“Show perception 0.4”-button can be used to open the ‘0.4threshold plot’ GUI. This GUI is a

Figure 4.6: Mainapp GUI with pop-up window which shows the Data Browser GUI. The
Data Browser GUI shows 2 seconds of EEG data before and after the exact detection time.
All events included in the cluster can be viewed individually, and all EEG electrodes can be
shown.
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copy of the Mainapp GUI, except that the Perception value (left bottom corner) shows a value
of 0.4. This option should only be used when the 0.9 threshold has only a few, or no detected
events, and the user doubts if there are any epileptiform detections.

The tab ‘Residuals’ contains all events, from all brain regions, which were in a cluster with
less than three events. These clusters were then removed from the brain region and included
in the Residuals. Since these events are not clustered anymore according to their morphology
and topology, it would not make sense to plot the average waveform. Therefore, this tab
presents the events in a Table, where the number of detections per electrode is shown. A
“view Cluster”-button is included in the Residuals tab, to view all individual events in this
group. The ‘Generalized’ tab contains all events which were detected as such by Persyst P13.
These events are also not clustered according to morphology and topology and are therefore
presented in the same way as the Residuals.
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5 | Evaluation of the Cluster Tool

5.1 Introduction

In the previous chapters, we described the design of the clustering algorithm and the design
of the GUI. The clustering algorithm was implemented in the GUI and subsequently used for
visualisation of the cluster results. The combination of algorithm and GUI is from now on,
referred to as the Cluster Tool. Evaluation of the Cluster Tool is necessary to measure the
performance of the clustering algorithm and to assess if the tool fits into the clinical workflow
of SEIN. The current chapter introduces methods to evaluate the performance and usability of
the Cluster Tool. First, a review of existing methods on cluster evaluation is provided. Then,
the methods applied for evaluation of the Cluster Tool are presented, followed by the results.
Finally, we discuss the results and evaluation methods applied.

5.2 Literature review

Cluster evaluation is a difficult part of cluster analysis19,20,31. The main problem of cluster
evaluation is captured well by Aggarwal et al. (2013), who state that ”clustering is a prob-
lem in which precise quantification is often not possible because of its unsupervised nature.”32.
Generally, a cluster is defined to be good when objects in a cluster are similar to each other
and different from the objects in other groups. Therefore, cluster evaluation is directly linked

Figure 5.1: Different ways of clustering the same set of points. Adapted from ‘The Challenges
of Clustering High Dimensional Data - Basic Concepts and Techniques of Cluster Analysis’ by
Steinbach, M. (2003)?
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to the definition of the distance measure, which defines the similarity between objects in a data
set. An understanding of the data is required to define the quality of cluster results. Figure 5.1
presents multiple ways to divide a data set into clusters, which all seem to be possibly correct.
This overview of the data enables us to get an impression of the data structure and helps us
to determine which cluster results are potentially good. Note that it is complex to visualise
the structure of the high dimensional time series in 2D. Nevertheless, the data always need to
be placed in context, and the purpose of the clustering needs to be considered to decide which
clustering is correct.

The main techniques for cluster evaluation of time series are visualisation and scalar mea-
surements19. Scalar measures can be divided into two types: external and internal indices.
The possibilities and limitations of these techniques are discussed below. This information is
subsequently used to decide which evaluation methods are suitable to evaluate the Cluster Tool.

5.2.1 Scalar measurements

External validation

One possible way to validate clusters is to compare each object within the cluster with an
externally provided class labels, which represent the ground truth20. External validation
measures represent the degree of agreement between the cluster results and the class labels19.
This approach requires external information about the true clustering and is therefore called
external validation. Note that these externally provided class labels are defined subjectively,
by a human expert. Although these external labels contain subjective judgement, they do
present the shortcomings and strengths of clustering algorithms. Therefore, external validation
provides the best possible way to examine the performance of a cluster algorithm19,20,33.

Internal validation

Internal validation provides another possibility to validate cluster algorithms quantitatively19,20.
These measures define the quality of a clustering algorithm based on the cohesion and sepa-
ration of the clusters. Cohesion is defined as the degree of similarity between objects within
a cluster, whereas separation is defined as the difference between objects of different clusters
(see Figure 5.2). Internal measures can be used to evaluate cluster results when no cluster
labels or any other kind of external information about the accuracy of the clustering is present.
However, these validation measures can only be used to compare cluster algorithms, that apply
the same metric19.

5.2.2 Case studies

Alternative methods need to be applied if no measure can be defined to assess the quality of a
clustering34. Visualisation of the clusters provides valuable information about cluster quality.
Therefore, qualitative case studies are well suited to evaluate the performance of an algorithm,
in case quantitative measures are absent35. Examples of good and bad performances provide
a general impression of the quality of the output of the clustering algorithm. An advantage of
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Figure 5.2: Illustration of the definition of a) Cohesion and b) Separation. Adapted from
‘Cluster Analysis: Basic Concepts and Algorithms’ in Introduction to Data Mining, by Kumar,
V., Tan, P.-N., & Steinbach, M. (2005)20

case studies is their intended focus on a particular issue or feature that provides the possibility
to point out specific drawbacks or advantages of an algorithm. On the other hand, case studies
only present individual cases. Consequently, the interpretation of a case study can only lead
to assumptions on the behaviour of the algorithm on a larger scale. It must be considered that
evaluation of the clustering through visualisation does not only evaluate the performance of
the clustering algorithm but also evaluates the quality of the visualisation of the clusters.

5.2.3 Usability tests

Usability tests provide another method to get an impression of the performance of a digital
product and simultaneously assess its usability. Usability testing is the process of watching
an actual user while they use the product. The so-called moderator sits together with the
test participant and helps them through the task, answers their questions and replies to the
feedback. Moderated usability testing provides live user feedback which contains valuable
information about the usability of the product, including the achieved accuracy and speed for
reaching the products goal36.

5.3 Methods

A visualisation-based approach, including case-studies, was chosen to evaluate the performance
and usability of the Cluster Tool. Qualitative methods offer an effective way of measuring user
experience and discovering the pitfalls and advantages of a product. However, qualitative
results are more difficult to compare systematically. Quantitative evaluation through scalar
measures was considered but was found not to be feasible. Due to the absence of class labels,
we could not perform external validation. The usage of two internal validation measures was
explored during this project: the sum of squared errors (SSE) to measure the cohesion and
the between the sum of squared errors (BSS) to measure the separation of the cluster results.
However, these were no good indicative measure for the quality of the clustering, as presented
in Appendix A.3.

The performance of the clustering algorithm was also assessed on a more global level to
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evaluate the accessibility of the cluster results. As stated by Kumar et al. (2005), there
is more to cluster evaluation than obtaining an exact numerical measure of the validity of
a clustering20. More importantly, cluster evaluation should always consider the usefulness
of cluster results. The purpose of our clustering algorithm was to summarise the output of
an automatic spike detection algorithm and subsequently present the detected events in a
way that enables efficient clinical interpretation. The clinical conclusion in the EEG report
contains information about the morphology, localisation, and temporal occurrence of the IEDs,
and concludes with a clinical diagnosis. For the Cluster Tool to be clinically useful, the user
of the tool should be able to get to the same clinical conclusion as is currently described in
the EEG report. Therefore, the performance of the Cluster Tool was also evaluated based on
these criteria.

5.3.1 Test data

For this project, EEG recordings of 35 patients were retrospectively selected from the EMU at
SEIN, Heemstede. Inclusion criteria were age above fifteen, and an EEG with approximately
24 or 48 hours of recording, which had to be of good quality. The EEGs were recorded with the
Micromed system at a sampling frequency of 256 Hz, in a frequency band of 0.01 to 100Hz. The
electrodes were placed according to the 10-20 system with additional sub-temporal electrodes.
All EEGs were separately analysed by the Persyst P13 spike detector, resulting in a .csv file
containing information about the time, channel and perception value of all detections found
in the EEG. The detections with a perception value of 0.9 or higher were included for further
clustering.

5.3.2 Usability testing

Test setup

Moderated usability tests were performed to gather information about the review time and
usability of the Cluster Tool. A participant-observer sat together with the test participant
and would help him or her through the task of analysing a long-term EEG recording with the
Cluster Tool. Each EEG was reviewed twice, once with the SE distance, and once with the
DTW distance. No participant would review the same EEG with a different distance measure.
Due to logistic reasons, it was not possible to let each participant review the same number of
EEGs. Therefore, some participants used the Cluster Tool more often than others.

The Cluster Tool was installed on a 64-bit virtual Windows computer. This virtual machine
was reachable from every computer within the network of SEIN so that each participant could
perform the tests from their preferred workplace. Five EEG experts, four neurologists and one
physician assistant, were included as test participant. All five participants were experienced
EEG readers and regularly evaluated long-term EEGs for diagnostic purposes at the EMU of
SEIN. Before using the Cluster Tool, the participants were instructed to review a maximum
of one hour of the wake EEG, including the diagnostic test, the first hour of sleep and the first
half-hour after waking. These hours were selected because it represents the workflow SEIN
wants to achieve in the future (see section 2.1). The test participants could review this part of
the EEG in Micromed, the EEG viewer which they currently use in SEIN, and they could use
their preferred montage. The rest of the EEG was subsequently reviewed by using the Cluster
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Tool. The test participants were allowed to ask questions to the participant-observer while they
used the Cluster Tool. After reviewing the complete EEG, the participants formulated their
conclusion, including information about the morphology, localisation, and temporal occurrence
of IEDs. They also formulated a clinical diagnosis based on their findings.

Data collection

Data about the review time and usability of the tool were obtained during the usability tests
by the participant-observer who kept track of all feedback. The review time could only be
assessed through estimation of the participants, who indicated whether the EEG evaluation
was quicker with the Cluster Tool. In order to identify the advantages and pitfalls of the
Cluster Tool, the participants were asked to think aloud and encouraged to give feedback on
their experience. The participant-observer took notes of all positive, negative and neutral
comments and monitored on what EEG certain comments applied. It was also registered
how often a test participant used the feature to inspect clusters by their individual detections
through the ’view cluster’ -button. Data on the number of clusters per brain region and cluster
size were automatically saved in an Excel spreadsheet by the Cluster Tool.

Data analysis

Descriptive statistics were performed using R (version 3.5.3) in RStudio (Version 1.1.463).
Data on individual experiences of the performance, review time and usability of the Cluster
Tool were summarised and described per category. Case studies were performed on selected
EEGs, based on remarkable or frequent findings from the usability tests.

5.3.3 Performance evaluation

Test setup

The performance and usefulness of the Cluster Tool were evaluated by comparing the con-
clusions that resulted from the use of the Cluster Tool with the conclusions described in the
clinical report of SEIN. This resulted in three conclusions per EEG: one from the clinical re-
port, one based on the Cluster Tool with SE distance, and one based on the Cluster Tool with
the DTW distance. The clinical report of SEIN was created as part of the routine clinical prac-
tice, as described in section 2.1. The data that originated from the usability tests could not
be used for the performance evaluation, because the clustering algorithm contained a mistake
in the calculation of the similarity measures at the time the usability tests were performed.
Although the cluster results did not seem to change significantly based on visual inspection,
we decided not to use the clinical conclusions but only the user experiences resulting from the
usability tests. Therefore, the clinical conclusions based on the Cluster Tool had to be defined
again.

Due to time restrictions, the extensive usability study could not be repeated. The clinical
conclusions were obtained by letting two test participants use the Cluster Tool and create a
mutually agreed on the conclusion. An experienced and novice EEG reader, the latter was
also involved in the design of the Cluster Tool, served as test participants for this task. The
clinical conclusion was solely based on the output provided by the Cluster Tool. No parts of
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Table 5.1: Example of a clinical conclusion based on the cluster tool. The information is
divided into morphology, localization, temporal occurrence and the final clinical conclusion

Morphology Localization Temporal occurence Diagnosis

Conclusion
description

Polyspikes-and-
slow-waves,
spike-and-slow-
waves

Frontal
bilateral

Increase
during the night

Epilepsy

the EEG were reviewed in Micromed. Because we were interested in the detection of IEDs,
we considered only the clinical conclusion regarding epileptiform waveforms. The test partic-
ipants reviewed the clusters per brain region. They were instructed to use the detailed view
of the individual detections as least as possible. However, when in doubt, they were allowed
to use this feature. The timeline of the GUI was used to get an impression of the temporal
occurrence of the events in each cluster.

Data collection

The clinical conclusion based on the Cluster Tool was described per EEG, based on the mor-
phology, localisation and, if remarkable information was present also the temporal occurrence
of the IEDs. The two EEG readers decided on a mutually agreed-upon clinical diagnosis, which
could be ‘epilepsy’, ‘normal EEG’, ‘abnormal non-epileptic’, or ‘uncertain’. An example of the
obtained information is shown in Table 5.1. Each EEG was reviewed two times, once with the
SE and once with the DTW as the similarity measure. The clinical conclusion as described in
the EEG report of SEIN was analysed and divided into categories containing the information
about the morphology, localisation, temporal occurrence and clinical diagnosis.

Data analysis

The clinical conclusions created with the Cluster Tool were compared to the events described
in the clinical report. Whenever an event was described similarly in the final report, it was
counted as detected by both, the Cluster Tool and the EEG report. This comparison was made
for all information categories, being morphology, localisation, temporal occurrence and diag-
nosis. The conclusion described in the clinical report of SEIN was considered the gold standard.

5.4 Results

5.4.1 Included data

Due to time restrictions, 23 of the initial 35 EEGs were included. The 23 included EEGs had
a total of 591 hours of EEG recording. The age of the included patients varied from 20 to
65 years, with an average of 37. These EEGs were used for both the usability test and the
performance test. Persyt P13 detected between 3 and 2531 events per EEG. The distribution
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of the number of detections per EEG was positively skewed, with a mean of 480 and a median
of 128 detections per EEG. The exact number of detection per EEG is presented in Table A.1
in Appendix A.5.

5.4.2 Performance evaluation

The clinical conclusion based on the EEG report and the conclusion created with the Cluster
Tool with both, the SE and DTW distance, are presented in Appendix A.5. Comparison of
these conclusions revealed that the clinical diagnoses made with the SE and DTW distance
were the same for all EEGs. Figure 5.3 shows whether the diagnosis created with the Cluster
Tool corresponded to the diagnosis as described in the EEG report. It can be observed that the
clinical diagnosis ‘epilepsy’ (red colour) corresponded in all EEGs, except one. This exception
was EEG ID 9, for which the diagnosis made with the Cluster Tool was ’uncertain’. It stands
out that the results in Appendix A show similar morphology, localisation and even temporal
occurrence as described in the EEG report, but differs regarding the clinical diagnosis. A
detailed case study on the output of the Cluster Tool for this EEG is presented in section
5.4.5.

Figure 5.3: Results of the comparison between the clinical diagnosis from the EEG report
(gold standard) and the clinical diagnosis based on the usage of the Cluster Tool. The diagnosis
based on the Cluster Tool represents both, the diagnosis made with SE and the diagnosis made
with DTW distance. Each square represents an EEG. The border of the square shows the
diagnosis based on the EEG report, while the fill of the square represents the diagnosis based
on the Cluster Tool. One EEG was normal and also correctly diagnosed with the Cluster Tool
(green square). Fifteen EEGs were epileptic, of which fourteen were diagnosed correctly with
the tool (red squares). All other EEGs were marked with an uncertain diagnosis based on the
Cluster Tool (pink filled squares). One of these should have been diagnosed as epileptic, and
three as abnormal non-epileptic.
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Table 5.2: Results of the comparison of the morphologies described in the clinical conclusion
of the EEG rapport and the clinical conclusion based on the usage of the cluster tool, separated
into the use of the SE and DTW distance. The table shows the number of times the morphology
was described per method

EEG rapport SE DTW

Sharp waves 10 9 9

Sharp-and-slow-waves 9 8 8

Poly spikes 1 1 1

Poly-spike-and-slow-waves 3 2 3

Spike-wave-complexes 4 4 4

Sharp transients 8 7 7

One EEG was defined as ‘normal EEG’ by the EEG report. This EEG was also described
as normal by the EEG readers when using the Cluster Tool. All other clinical diagnoses were
defined as uncertain by the users of the Cluster Tool. It stands out that no diagnosis of ‘abnor-
mal non-epileptic activity’ was defined when using the Cluster Tool. These cases were always
described as an uncertain diagnosis.

In general, most IEDs that were described in the EEG report were also described while
using the Cluster Tool. Table 5.2 compares the number of different IEDs described in the
conclusion based on the Cluster Tool, with the ones described in the EEG report. The only
difference between the SE and DTW distance was one event of poly-spike-and-slow-waves that
was not found by using SE distance. In a few cases, a certain type of IED was not described
while using the Cluster Tool. However, the usability study revealed that this was mostly due
to interpretation. If sharp-and-slow-waves were found in an EEG, some EEG readers did not
bother to describe that sharp waves are also present at that localisation. In case sharp tran-
sients were observed in an EEG, it depended on the rest of the findings in the EEG whether
the EEG reader would define the sharp transients as sharp waves or sharp transients. Note
that sharp waves are a type of IED whereas sharp transients are not specific epileptiform.
However, these few differences in the description of IEDs did not influence the clinical diagno-
sis. The results in Table A.1 also present the localisation of the epileptiform detections. The
localisation as described by the test participants while using the Cluster Tool corresponded
with the ones described in the EEG report for all EEGs.

The test participants noticed that the timeline gave a good impression of the frequency
and distribution of the epileptiform events. They even considered the information about the
temporal occurrence to be more accessible compared to the current workflow. However, it
was also noticed that some clusters contained detections which were not considered to be
epileptiform. For these clusters, the timeline gave a biased impression of the frequency of
epileptiform detections.
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Figure 5.4: Number of times a certain number of clusters is created in a brain region. Most
of the times, only one cluster is formed per brain region.

Figure 5.5: Number of detections in a brain region in relation to the number of clusters
in that brain region. Most clusterings that contained one cluster contained a relative small
number of detections.

5.4.3 Usability evaluation

Figure 5.4 shows that the Cluster Tool mostly partitioned a data set into one cluster, and
rarely in two or more clusters. This was the case for both similarity measures. Figure 5.5
shows the relation between the number of detections and the number of clusters per brain
region. Brain regions with a higher number of detections, seem to result in more clusters.
However, several outliers can be observed, where a high number of detections resulted in just
one cluster.
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Figure 5.6: Example of three different clusters, where all events were put together into one
cluster. A. shows a cluster which contains 1493 events. B. shows a cluster that contains only
five detected events and C. shows a cluster which contains 63 events, disrupted by many
artefacts

The test participants distrusted the performance of the clustering algorithm, and thereby
the overview of the clusters, because the it did not show clearly when different morphologies
were present. Especially when the data set was partitioned into one cluster, the amount of
different morphologies within a cluster was high. Figure 5.6 shows three different examples of
clustering results where just one cluster was created. In Figure 5.6 A, a cluster which contains
sharp-waves and sharp-and-slow-waves is presented. Test participants could not distinguish
these two morphologies based on the cluster overview. This supported the distrust of the test
participants in the performance of the clustering algorithm. Figure 5.7 shows an example of
different morphologies which were found within a cluster.

Clusters that contained a small number of detections were often often easy to interpret
for the test participant. Figure 5.6 B shows an example of a cluster with only five detections.
On the other hand, clusters that contained many artefacts, as shown in Figure 5.6 C, were
experienced as difficult to interpret. For clusters that contained a high number of detections
or many artefacts, the ‘view cluster ’-button was used frequently by the test participants to
inspect the detections individually. Since the test participants spend a lot of time on manually
checking the detections within the clusters, the review time of an EEG was experienced as
relatively long.

5.4.4 Distance measures

The DTW distance seems to result in a slightly better clustering in a few cases. It was not
possible to determine which distance measure performed best based on clinical evaluation.
Therefore, the difference in distance measures was evaluated through usability tests and case
studies. Figure 5.8 shows different cluster results based on the SE and DTW distance. The
clustering based on the DTW distance, clusters all spike-and-slow-wave EEG segments together
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Figure 5.7: Example of three detections from the same cluster, originating from the fronto-
lateral left brain region. The morphology from the different detections is not similar.

in one cluster, which resulted in a better separation than the clustering with SE distance. It
occurred more frequently that the DTW clustering resulted in a higher separation between
clusters compared with the SE clustering.

5.4.5 Case study

The evaluation of the EEG with ID 9 revealed several interesting facts about the performance
and usability of the Cluster Tool. A total of 101 events were detected by Persyst P13 in this
EEG. The only difference between the DTW and SE distance measures was observed in the
frontolateral right brain region, which is depicted in Figure 5.9 and 5.10. It shows that DTW
clustering resulted in more clusters, which waveforms can be distinguished more clearly than
in the single cluster created with the SE distance. However, in both cases, the users could not
draw a conclusion based on solely the cluster overview and preferred to inspect the detections
in detail.

EEG ID 9 is the only EEG for which the clinical diagnosis was marked as ’uncertain’ by the
users of the Cluster Tool, while it should have been ’epilepsy’ according to the EEG report. It is
remarkable though, that the morphology, localization and temporal occurrence were described
similarly for the EEG report and the Cluster Tool, as can be seen in Table A.1 in Appendix
A.5. The lack of information about the surrounding EEG and the patient’s history as well
as the absence of filter and montage settings in the Cluster Tool were named as the cause
for in insufficient information for the EEG readers to define a certain clinical diagnosis. This
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Figure 5.8: Screenshot of the GUI presenting the results of SE and DTW clustering. A.
shows the results of clustering with SE distance, where the wave forms of the different clusters
look similar to each other. B. shows the results of clustering with DTW distance. The DTW
captures all spike-and-slow-waves into one cluster.

information was needed because the waveforms reviewed in this EEG were unclear. The EEG
readers discussed that the waveforms mainly looked like small sharp-and-slow-waves, which
could be interpreted as physiological small sharp spikes, also known as Benign sporadic sleep
spikes. This shows the difficulty of the interpretation of these waveforms and the importance
of additional information of the EEG in such cases.

5.5 Discussion

Our prototype shows a striking visual comparison between the clinical diagnosis based on the
Cluster Tool and the EEG report. The diagnoses ’normal’ and ’epilepsy’ were made correctly
for all except one case. Three EEGs with the diagnoses ’abnormal non-epileptic activity’ were
also diagnosed incorrectly. The Custer Tool is designed with the purpose to present IEDs in
a comprehensive overview. It does not provide any information about slow rhythmic activity
or other abnormal non-epileptic phenomena. Therefore, it is acceptable that the EEGs with
diagnoses other than ’normal’ and ’epilepsy’ are not correctly diagnosed.

The main focus for the design of our prototype was that the diagnosis ’epilepsy’ could be
drawn correctly based on the usage of the Cluster Tool. The case study presented in section
5.4.5 showed that the one EEG that was diagnosed incorrectly contained difficult to interpret
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Figure 5.9: General overview in the GUI for the results of the clustering with squared
euclidean distance in the Frontolateral brain region of EEG ID 9

waveforms. It is known that IEDs lack a clear definition, and due to high interrater variability,
the gold standard is doubtful6,9. This is also shown by the fact that the EEG report, which is
considered our gold standard, defined four EEGs with an uncertain diagnosis. Nevertheless,
the Cluster Tool must provide all information that is needed so that its users can apply their
knowledge about the EEG to their full extent. This requires access to the surrounding EEG
and the patient’s history as well as to different montages, filter settings and a more detailed
version of sensitivity settings. Lagerlund (2002) also stresses the importance of access to differ-
ent montages and filters for accurate EEG evaluation37. It is recommended that these features
will eventually be included in such a visualisation tool.

In approximately 83% of the cases, the clustering resulted in only one cluster. The pres-
ence of just one cluster indicates that all EEG segments in the data set are similar. However,
test participants frequently noticed that the waveforms within a cluster were highly variable
and that the average waveform presented in the overview of the Cluster Tool did not capture
this variability. This resulted the fact that the test participants distrusted the performance of
the Cluster Tool and caused them to spend time on manually checking the detections within
clusters. Therefore, the time spend on the EEG evaluation was not positively influenced by
the use of the Cluster Tool. Furthermore, it was not possible to differentiate true IEDs from
false positive detections based on the cluster overview. The bad performance of the clustering
algorithm impacted the clinical implementation possibilities strongly to the negative. It is
expected that an improvement of the clustering algorithm will quickly resolve this issue.
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Figure 5.10: General overview in the GUI for the results of the clustering with dynamic time
warping distance in the Frontolateral brain region of EEG ID 9

It was expected to observe a learning curve based on the number of clusters that was
inspected individually. An increased usage of the Cluster Tool was presumed to result in a
decreased usage of the ’view cluster’ -button. Figure A.4 in Appendix A.4 shows that this was
not the case. We assume that this is also caused by the distrust of the EEG readers towards
the performance of the clustering algorithm.

Although the performance of the clustering algorithm was experienced as poor, the usage
of the GUI resulted in more satisfying experiences. The localisation and temporal occurrence
of the detections were captured well by the tool. The time line that presents the number of
detections per minute was found to give a clear and objective overview, which was considered
better than the current estimation of the temporal occurrence of IEDs. The localisation of
the IEDs described when using the Cluster Tool corresponded completely with the localisation
described in the EEG report. Nevertheless, the test participants noted that they would like
to be able to view different brain regions at the same time and merge similar clusters from
neighbouring brain regions. This indicates that the current choice of brain regions is not
optimal. Ideally, the localisation of the IEDs is presented by their potential source. This does
not need to be in one brain region as we defined them. The division into brain regions as
defined in the Cluster Tool was therefore experienced as sub-optimal.
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The usage of the DTW distance seemed to result in clusters with a higher separation. The
goal of the Cluster Tool was to group all events with similar morphology in the same cluster.
It is known from previous research, that IEDs within patients tend to be morphologically
more similar than between patients15. Since the DTW distance results in a slightly better
separtation of the clusters compared with the SE distance, it seems like it captures similarity
of EEG waveforms more effectively. Thomas et al. (2016) also compared Euclidean and DTW
distance when clustering IEDs and found that DTW provided a more effective approach than
the non-elastic Euclidean distance27. Therefore, DTW distance is found to be a more promis-
ing distance measure.

All in all, this evaluation identified that the visualisation of the IEDs by the GUI was
experienced as satisfying. However, the Cluster Tool is still a prototype and the performance
of the clustering algorithm was too inaccurate to impact the clinical workflow positively. We
believe that the Cluster Tool is the first step towards a faster, reproducible and more objective
method for EEG evaluation.
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6 | General Discussion

The evaluation of the clinical performance and usability of the Cluster Tool indicates the
potential of using a comprehensive overview, which summarises the results of an automatic
spike detection algorithm through clustering techniques. It shows the importance of post
processing the results of automatic spike detection algorithms, to visualise them in a way
that enables correct interpretation. Clustering is an essential part of the post processing, and
entails an important step towards a proper visualisation and thereby clinical implementation
of automatic detection algorithms.

The Cluster Tool designed in this project is a prototype, and this was the first time such
a tool was created and evaluated in SEIN. Therefore, many choices have been made to keep
things simple for this initial prototype. The Cluster Tool still suffers from many limitations,
impeding its implementation in the clinical practice. However, by building this prototype,
many insights have been gained on what features are important for the visualisation of IEDs,
how to improve the clustering, and on alternative methods that might provide better results.
This chapter reviews the methods used in the Cluster Tool in the context of the gained insights
and discusses which alternative methods are likely to lead to better clustering performance,
necessary for clinical adoption.

6.1 The cluster algorithm

The visual assessment of the Cluster Tool indicated that the current clustering algorithm was
too inaccurate. In order to use the Cluster Tool in the clinical practice the clustering algorithm
must be improved. The clustering algorithm developed in this project consists of three main
steps: the data preparation, the definition of the distance measure and the choice of cluster
algorithm. The three steps are reviewed separately in the following sections.

6.1.1 Data preparation

Noisy EEG segments have been observed in the Cluster Tool, which are likely to have a nega-
tive impact on the clustering. The preparation of the data has a large impact on the cluster
results. Noisy time series can result in clusters where groups are created based on similarity in
noise rather than on similarity of the feature of interest19. Arbelaitz et al. (2013) showed that
an inclusion of 10% noise on time series data, resulted in reduction of 33% of the quality of a
clustering31. The filters applied on the input EEG data of the Cluster Tool were not sufficient
to filter out all noise. The EEG was filtered with a 2Hz highpass filter, and Hanning window
was applied on the four seconds segments. We recommended to add a 40Hz lowpass filter, and
apply the Hanning window on a smaller EEG segment to get rid of all high-frequency noise
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and artefacts.

The EEG that surrounds a spike or transient incorporates essential information for accurate
detection of IEDs. The Cluster Tool reduces the EEG data to the single channel where Persyst
P13 detected the spike, thereby reducing the information content of the input data. If we would
use all EEG channels as input data, the cluster performance is likely to increase. However,
this step would increase the dimension of the input data drastically.

The current choice of dividing the detections into brain region was found to be sub-optimal.
This step might be redundant if all EEG channels are included. Information about the lo-
calisation of the IED will then be present in the data itself. This would allow for clusters to
combine IEDs from electrodes which are currently in different brain regions, like for example
F3 and F7. The information about the channel where the event was detected by Persyst could
then serve as an extra feature used for the clustering. It is recommended to study to the
feasibility of clustering EEG segments which include all channels.

The choice for an automatic detection algorithm has a major impact on the accuracy of
Cluster Tool. The quality of the Cluster Tool can only be as accurate as the quality of the
input it receives. We used Persyst P13 as detection algorithm, because its sensitivity of 43.9%
was proven to be human-like, and it seemed to be the best detection algorithm which was
available on the market. Clustering and visualisation of the detections were proposed to deal
with the high FPR of 1.65/min. We found that clustering detections based on morphology
and localisation is a very promising way of presenting the results of a detection algorithm.
Recently, a novel algorithm for the detection of IEDs was presented, which states to reach a
sensitivity of 47.4% with a false positive rate of 0.6/min38. This algorithm was thereby able to
reach a sensitivity which is slightly higher than the one of Persyst P13, but with a remarkable
lower FPR. The implementation of a more specific detection algorithm should be considered.

6.1.2 Distance measure

The Squared Euclidean distance and the Dynamic Time Warping distance were chosen as
distance measures to quantify the dissimilarity between EEG segments. Recall that SE is a
non-elastic measure, whereas DTW is an elastic measure. The K-means calculates the cluster
centroids based on the mean of all objects within that cluster and seeks to minimise the dis-
tance of all objects to its mean. No time warping is applied in the calculation of the cluster
centroids, as this is always a non-elastic calculation. Therefore, the cluster centroid, as calcu-
lated by the K-means, does not provide a good representation of the cluster which is found
based on the DTW distance. This is visualised in Figure 6.1 where the total Sum of Squared
Error (SSE) for a clustering is plotted per iteration of the K-means. The SSE is equal to the
sum of the distances of every object to its centroid. The K-means seeks to minimise the SSE
and it is expected that the SSE decreases with every iteration. However, the usage of DTW
distance results in an SSE which fluctuates and even increases in successive iterations of the
K-means. This is caused by the way the mean is calculated for the objects in a cluster created
based on DTW distance. Therefore, the regular K-means algorithm should not be used in
combination with the DTW distance. Still, the DTW seemed to capture the morphology of
the EEG waveforms better than the SE. In many applications for time series clustering, DTW
performs better than Euclidean distances39. An alternative for the regular K-means is called
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Figure 6.1: Normalized SSE over the iterations of the K-means algorithm

DTW Barycenter Averaging (DBA) K-means. DBA enables the calculation of an average time
series that is consistent with DTW as similarity measure, by taking into account the time-
warping40. Figure 6.2 presents the difference in cluster average when calculated according to
the mean and to the DBA. It shows that DBA captures the warping of a time series better.
It is expected that the usage of DBA K-means will improve the cluster performance.

Besides from DTW, there are numerous other measures which can be used to capture the
(dis)similarity between EEG segments20,39,42. In our current algorithm, we only use the EEG
segment originating from one channel. As stated before, it is recommended to experiment
with the clustering of EEG segments containing information of multiple electrodes. Defining
an appropriate similarity function, which captures the shape of a time series becomes even
more challenging for multivariate time series39. It is therefore proposed to compare different
similarity measures and study which measure captures similarity of multivariate EEG segments
best. Additionally, the performance of the cluster algorithm can be improved by combining
different similarity measures. The perception value, as defined by Persyst, already contains
valuable information about the likeliness of a detection to be truly epileptiform. Correlation of
the perception value or the channel of detection can be used as additional similarity measure.

6.1.3 Clustering algorithm

The cluster algorithm used in the Cluster Tool was the K-means, one of the most widely used
clustering methods. K-means is easy to implement, and the algorithm is known to perform well
for finding non-overlapping spherically shaped clusters in small to medium-sized data sets18.
However, the number of clusters needs to be pre-defined in the K-means algorithm. In this
research, gap statistics are used to estimate the optimal number of clusters. Due to the lack
of a labelled data set, it was not possible to evaluate if the number of clusters was estimated
correctly. The need to pre-assign the number of clusters, while it is not known if the data
contains any natural clusters, is a major drawback of the K-means algorithm19. Besides, it is
uncertain if the underlying assumption of sphericity holds for complex multidimensional data.
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Figure 6.2: Difference between a euclidean and DBA k-means. The x-axis represent time,
whereas the y-axis shows the amplitude. Adapted from tslearn: A machine learning toolkit
dedicated to time-series data by Tavenard et al. (2017) Retrieved October 14, 2019, via
https://tslearn.readthedocs.io/en/latest/autoexamples/plotkmeans.html41

Various clustering techniques have been developed for time series clustering18. Figure 6.3
gives an overview of various well-known clustering algorithms and their impact on different
data structures. Previous studies on clustering interictal epileptiform detections have used,
among others, agglomerative hierarchical clustering, affinity propagation (AP), K-means and
sequential clustering with subsequent template matching12,27,43,44. A comparison between a
K-means and AP algorithm for IED clustering showed that the AP algorithm outperformed the
K-means, based on DTW distance27. Another study on clustering noisy time series compared
the K-means to DBSCAN and concluded better results for the DBSCAN45. This encourages
further research on the performance of other algorithms on the clustering of IEDs.

6.1.4 Dimension reduction

In this research, no dimension reduction techniques were applied. The data size of the EEG
was already reduced by selecting a single channel and only a small segment of the EEG.
However, dimension reduction offers the possibility to visualise high dimensional data in a low
dimensional space, of two or three dimensions. This way, the structure of a high dimension
data set can be studied, which is important to get an impression of the structure of the
data. This information is valuable for the selection of a proper similarity measure and cluster
algorithm, as is shown in Figure 6.3. T-distributed Stochastic Neighbor Embedding (t-SNE)
is a technique for dimension reduction, which is capable of capturing the structure of the high
dimensional data very well46. By using t-SNE we could display EEG data two-dimensional. A
data set with externally provided class labels would enable us to study which distance measure
captures the natural structure of the data best. Subsequently, this labeled data set could be
used to find a proper clustering algorithm. It is highly recommended to use t-SNE for the
exploration of the structure of the high dimensional EEG data and to create a labeled data
set. This method can assist in finding the optimal combination of similarity measure and
cluster algorithm.
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Figure 6.3: This table compares clustering results and run-times for six different algorithms
(columns) applied across four input datasets (rows) with different structures (non-linear noisy
circles, boxes with different densities, data with outliers, and close boxes). Colours represent
cluster labels. Spectral clustering and DBSCAN beat other methods when the dataset has
a circular structure and boxes with different densities (top two rows). For the second type
of dataset, affinity propagation works better than others in most cases. The third dataset
includes an outlier not far from the clusters, and Gaussian mixture model clustering does best
at finding the outlier. The last row shows a dataset with four clusters, two of them are close
to each other. All the algorithms do well, but the ways they partition the two close clusters
are different. Figure retrieved from ’Exploring Patterns in Big Data Using ClusterEnG: A
Clustering Engine for Genomics’ by Manjunath, M., Zhang, Y. (2017). Retrieved October
14, 2019, from http://biomedicalcomputationreview.org/content/exploring-patterns-big-data-
using-clustereng-clustering-engine-genomics
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6.2 The Graphical User Interface

We believe that the poor presentation of the results of automatic detection algorithms is
one of the key factors that limits clinical adoption. Horsky et al. (2012) studied design
principals for usable clinical decision support systems and found that the use of appropriate
visual representation of clinical data belongs to the most important principals47. The GUI
forms an essential part of the Cluster Tool, adding a novel method for visualisation to the
existing detection algorithm.

6.2.1 Comparison with previous literature

A few cases are known where clustering was used to improve the visualisation of automated
detection for more efficient EEG evaluation. Wilson et al. (1999) introduced a hierarchical
clustering algorithm to divide automatically detected transients into groups according to their
localisation and morphology12. The user interface allowed the EEG reader to open the hier-
archical tree and display all levels of the tree until the nodes only contained single detections.
Although this user interface allowed the EEG readers to quickly review the automated de-
tections, it still required opening parts of the hierarchical tree. This action limits a direct
interpretation of the results and decreases the reproducibility of the results.

Scherg et al. (2012) present a clustering algorithm designed to increase review time of
interictal waveforms in long-term EEG by clustering48. This algorithm is implemented in
BESA Epilepsy 2.0, a commercially available software for the automatic detection of IEDs.
An internal study at SEIN tested this software and found that the presentation of the IEDs
through clustering and so-called hyper-clustering was very convenient. However, the detection
algorithm did not perform well. The epileptic events found by BESA Epilepsy 2.0 corresponded
only in 19% of the cases with events found through manual review and thus the software was
rejected by the clinical experts13. This shows the importance of both, a sufficiently sensitive
detection algorithm and a good user interface for the visualisation of the detections.

The Cluster Tool is based on a sufficiently sensitive detection algorithm. Moreover, the
design of the GUI was experienced as effective, and simple. Simplicity of a user interface is one
of the most important features for an effective presentation of clinical results47,49. The GUI of
the Cluster Tool was developed in a lean way, and valuable feedback has been gained during
this process, about what features should be incorporated in the Cluster Tool to be clinically
useful. Therefore, the GUI was designed in a way that corresponded with the clinical workflow
of SEIN. Kawamoto et al (2005) showed that ‘automatic provision of decision support as part
of the clinician workflow’ increases the success rate of implementing the system with 75%.

6.2.2 Implications for future work

In the current version of the Cluster Tool, the average waveform is taken as representative
for the cluster. However, figure 6.2 already shows that in some cases, this is not the best
way to visualise the main waveform of a cluster. Other representations, like the medoid,
shape average prototypes using DTW, such as used by DBA, or a local search prototype
as introduced by Hautamaki et al. (2008) might give a better representation, and hence a
better visualisation of the cluster18,50. The choice for the representation of the cluster should
depend on the distance measure and clustering algorithm applied. Therefore, the possibilities
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of different representations should be studied, while considering the distance measure and
clustering algorithm.

The implementation of the timeline to indicate the temporal occurrence of the events in
a specific cluster was found to be potentially very valuable. It enabled the user to give a
quantitative measure of the occurrence of events in a cluster. Since not all events in a cluster
were defined as truly epileptiform, the quantitative value of the timeline could not be used
to give an accurate quantitative measure but only an indication of the temporal occurrence.
However, as the performance of the clustering and the detection algorithm increases, the
quantitative value of the timeline will increase as well. We recommend to keep using a timeline
for the visualisation of the temporal occurrence, and improve the cluster algorithm to increase
its quantitative value.

The division of the initial detections into brain regions was found to be sub-optimal to
capture the information about the localisation of the IEDs. Furthermore, it is desired to
include information about the surrounding electrodes in the cluster procedure. Currently, the
GUI presents the clusters of each brain region per tab, and shows only the channels included
in that specific brain region. Letting go of this division will result in a major change of the
layout of the GUI. The most optimal way to structure the layout of the GUI will depend
on the distance measure, the cluster algorithm and the representation method. Therefore,
no further concrete recommendation can be given on the layout of the GUI. However, it is
highly recommended to keep working according to the lean method and let potential users use
prototypes to get feedback on how the GUI fits into the clinical workflow.
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7 | Conclusion

This project presents the Cluster Tool, a digital prototype of a visualisation tool, consisting of
a clustering algorithm and a Graphical User Interface (GUI), for efficient clinical interpretation
of automatically detected interictal epileptiform discharges (IEDs). The GUI provided a visu-
alisation of the IEDs, clustered according to their morphology and localisation. The GUI has
been developed trough an iterative design process which was based on the clinical workflow of
EEG readers to eventually facilitate clinical implementation. The clinical performance evalua-
tion and usability tests demonstrated the potential of the visualisation tool for improving EEG
evaluation, but the clustering algorithm was too inaccurate to impact the clinical workflow pos-
itively. The usage of the tool resulted in remarkably similar clinical diagnoses in comparison
to the EEG report. However, the clusters derived by the algorithm did not consistently meet
the expectations of the neurologists, which decreased their trust in the performance of the tool
and caused them to spend time on manually checking detections within clusters. We expect
that an improvement of the clustering algorithm can provide a visualisation of the IEDs that
complies with clinical expectations. After the implementation of a sufficiently accurate clus-
tering algorithm, the designed prototype will enable a faster, reproducible and more objective
method for EEG evaluation, ready for clinical implementation.
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A | Appendix

A.1 Gap statistics

To estimate the optimal number of clusters, we applied gap statistics as proposed by Tibshirani
et al. (2001)26. Gap statistics compares the within cluster cohesion Wk with the expected
cohesion. First, Tibshirani et al. define the within cluster sum of squares Wk for a range of
values of k as:

Wk =

k∑
n=1

1

2|Cn|
∑

x,y∈Cn

DSE(x, y) (A.1)

where |Cn| is the number of objects within cluster n. DSE(x, y) is the sum of pairwise
SE distances for all points in cluster n. Note that this is a different way of calculating the
cohesion than used in Appendix A.3, where the within cluster sum of squares is not divided
by the number of objects within the clusters.

Figure A.1b. shows the value of Wk for different number of clusters k. The optimal number
for k is the number where the value of Wk does not decrease significantly when adding a cluster.
It can be observed that this is the case for two clusters. This method is known as the elbow
method. However, the optimal number of clusters cannot always be identified clearly when
using the elbow method51. Therefore, Tibshirani et al. suggest to standardize the graph of
log(Wk) by comparing it with its expectation under an appropriate null distribution26. The
optimal number of clusters is then estimated by the value of k for which the function log(Wk)
falls the farthest under the reference function. Therefore they define:

Gapn(k) = Ê∗n{log(Wk)} − log(Wk) (A.2)

with Ê∗n the expectation from the reference distribution under a sample size n.
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Figure A.1: Results for a two-cluster example: a) data; b) within sum of squares function
Wk; c) functions log(Wk) (O) and Ê∗n{log(Wk)} (E); d) gap curve. Figure retrieved from
’Estimating the number of clusters in a data set via the gap statistic’ by R. Tibshirani, G.
Walther, and T. Hastie (2001)26

58



A.2 Flowchart data preparation
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Figure A.2: Flowchart of all selection steps applied on the EEG segments. First, a separation
based on the perception value is made, which divides the group into two groups. Secondly, the
groups are separated per brain region
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A.3 Internal validation

The usage of two internal validation measures was explored during this project: the sum of
squared errors (SSE) to measure the cohesion and the between the sum of squared errors (BSS)
to measure the separation of the cluster results.

A.3.1 Calculation of the SSE and BSS

The cohesion of a cluster is defined as the sum of the distances between the cluster centroid
and the data points assigned to that cluster. Since we use the squared Euclidean distance, the
sum of distances equals the sum of squared errors (SSE). The overall cluster cohesion is the
sum of the SSE, as shown in equation A.3.

Total SSE =

k∑
i=1

∑
x∈ci

D(xm, ci) (A.3)

with k the number of clusters, m the number of objects in a cluster with ci the cluster centroid
of the ith cluster and D the SE distance as defined in equation ??.

The cluster separation is defined as the distance of a cluster centroid to the overall centroid,
weighted according to the number of objects in the cluster. Since we use the squared euclidean
distance, the cluster separation is equivalent to the between cluster sum of squares (BSS). The
overall cluster separation is the sum of the BSS over all clusters, as shown in equation A.4.

Total BSS =
k∑

i=1

miD(C, ci) (A.4)

with ci the cluster centroid within the ith cluster, mi the number of EEG trials in that cluster,
C the overall mean of all centroids and D the SE distance as defined in equation ??

A.3.2 Interpretation of the results

The use of K-means clustering with DTW distance has a large negative impact on the BSS.
Figure A.3a shows the BSS of clusterings with SE and DTW. The BSS based on DTW clus-
tering is very low. The DTW distance uses a non-linear approach to calculate the distance
between two time series. However, the K-means algorithm takes the mean of a cluster as its
centroid and does not apply time warping. By calculating the mean of objects which were
defined as similar based on time warping effects, we create a mean signal which loses a lot of
information about the true waveforms of the original objects. Therefore, the mean is not a
good representative of a cluster created with DTW and should not be used as cluster centroid.
Since the BSS is based on the mean as centroids of the clusters, it does not capture the true
separation of a clustering created with K-means and DTW.

The SSE is also affected by the use of DTW in a K-means clustering algorithm. This can
be seen in Figure 6.1. However, the SSE of based on the DTW distance is comparable to the
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(a) (b)

Figure A.3: Boxplots of the between sum of squared errors (BSS) and sum of squared errors
(SSE) of the clustering based on the SE and DTW distance. a) BSS of clusterings with SE
and DTW distance. The BSS represents the separation of a clustering. Note that the y-
axis applies a squared scale. The DTW distance shows a remarkable lower BSS than the SE
distance b) SSE of clusterings with SE and DTW distance. The SSE represents the cohesion
of a clustering. Note that the y-axis applies a squared scale. The SSE of the DTW and SE
distance are comparable, although the DTW distance seems to result in a slightly lower SSE.

SSE of the SE distance (see Figure A.3b). This is because the DTW distance is not restricted
to the lineair warping path, but can find smaller distances by comparing sample i to sample
j + 1. By definition, the DTW distance will always find smaller distances.
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A.4 Learn curve of the cluster tool

Figure A.4: Learn curve of the Cluster Tool. This figure presents the percentage of clusters
that are inspected in detail through use of the ’view cluster’ -button, in regards to the number
of times a specific test participant uses the tool. The colloured symbols represent whether
the test particitpant used the cluster tool with the Squared Euclidean (SE) distance (blue
pyramid), or with the Dynamic Time Warping (DTW) distance (red circel). It was expected
to observe a trend (learning curve), where an increase of the number of times a test participant
used the tool would result in a decrease of the percentage of clusters which were reviewed on
a detailed level. However, no trend could be observed.

62



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

5

EEG
rapport

Sharp transients,
sharp waves

right occipital >
temporo-parietal

Both, isolated
and in series

Epilepsy

SE 9 1
Sharp transients,
sharp waves right parieto-occipital

Only one cluster, with
only nine detections

Epilepsy

DTW 9 1
Sharp transients,
sharp waves right parieto-occipital

Only one cluster, with
only nine detections

Epilepsy

6

EEG
rapport

Polyspike-and-slow-
waves,
spike-wave complexes

Frontal left and right
increase during sleep,
sometimes series up
to 6s

Epilepsy

SE 149 8 Spike-wave complexes Frontal left and right
increase during
the night,

the series were in the
same cluster as the
isolated spikes and
detected only by
scrolling through the
individual detections

Epilepsy

DTW 149 10
Polyspike-and-slow-
waves,
spike-wave complexes

Frontal left and right
increase during
the night,

separate cluster with
mainly eye artefacts,
series were in the same
cluster as isolated
detections

Epilepsy

4

EEG
rapport

Sharp transients,
series of sharp transients
which could be
wicket spikes

Frontotemporal
Left >right

more clear during sleep
PNES,
Abnormalities of
uncertain significance

SE 137 9

Sharp transients,
no specific
epileptiform discharges

Frontotemporal left,
sometime also right

increase during sleep
Unclear meaning of
sharp transients



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

DTW 137 10

Sharp transients,
no specific
epileptiform discharges

Frontotemporal left,
sometime also right

increase during sleep
Uncertain significance
of sharp transients

3

EEG
rapport

Sharp waves/
sharp transients

Frontotemporal -
parieto-occipital

Light functional
neurological disorder
frontotemporal
- parieto-occipital
(Left>Right)
seen as erratic
activity in the alpha band,
sometimes mixed with
a sharp wave.

Signs of a light functional
neurological disorder

SE 186 9
Sharp waves and sharp
transients, often in series

Frontotemporal,
parieto-occipital
Right >Left

multifocal sharp transients
uncertain diagnosis
more information needed

DTW 186 9
Sharp waves and sharp
transients, often in series

Frontotemporal,
parieto-occipital
Right >Left

multifocal sharp transients
uncertain diagnosis
more information needed

8

EEG
rapport

Sharp-and-slow-wave
complexes

Frontotemporal
left >>right

increase during sleep Epilepsy

SE 1644 13

Sharp-waves,
Sharp-and-slow-wave
complexes

Frontal,
Frontotemporal
left >>right

increase in the night Epilepsy

DTW 1644 13
Sharp-waves,
Sharp-and-slow-wave
complexes

Frontal,
Frontotemporal
left >>right increase in the night Epilepsy

9

EEG
rapport

Sharp waves,
sharp-and-slow waves

Frontotemporal
right >left

Sometimes, mainly
during relaxation/
light sleep

some sharp-and-
slow waves,
could be WHAMS

Epilepsy



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

SE 101 4
(small) sharp-and-
slow waves,
sharp waves

Frontotemporal
right >left

increase in the night
and early morning

Difficult to make
a conlcusion without
further context

uncertain diagnosis

DTW 101 6
(small) sharp-and-
slow waves,
sharp waves

Frontotemporal
right >left

increase in the night
and early morning

Difficult to make
a conlcusion
without further
context

uncertain diagnosis

15

EEG
rapport

sharp waves,
sharp-and-slow-waves,
sharp transients

frontotemporal
left>>right

Epilepsy and
unspecific focal
functional disorder

SE 2093 6
sharp waves,
sharp-and-slow-waves

frontotemporal
left>>right

Epilepsy

DTW 2093 6
sharp waves,
sharp-and-slow-waves

frontotemporal
left>>right

Epilepsy

16

EEG
rapport

polyspikes-and-
slow-waves,
spike-and-slow waves

Frontal increase during sleep isolated and in series Epilepsy

SE 127 9
polyspikes-and-
slow-waves,
spike-and-slow waves

Frontal bilateral
increase during
the night

polyspikes-and-slow
-waves can be seen in
cluster overview, series
can be seen in the
individual detections

Epilepsy

DTW 127 9
polyspikes-and-
slow-waves,
spike-and-slow waves

Frontal bilateral
increase during
the night

polyspikes-and-slow
-waves can be seen in
cluster overview,
series can be seen in the
individual detections

Epilepsy



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

17

EEG
rapport

sharp-and-slow waves Frontal right Epilepsy

SE 389 8 sharp-waves Frontal right >left

Cluster tool detects
only during the night
where IEDs are found
clustered, many spikes
within 20 minutes

the slow wave component
is difficult to distinguish
in the MATLAB viewer

Epilepsy

DTW 389 7 sharp-waves Frontal right >left
the slow wave component
is difficult to distinguish
in the MATLAB viewer

Epilepsy

7

EEG
rapport

spike-and-slow-waves,
some (not evident)
polyspikes

Frontal bilateral
interictal Ri>Le, but
ictal Le>Ri

Only in wake, more
often right after
awakening

Epilepsy

SE 613 17
spike-and-slow waves
polyspikes

Frontal Le>ri
and P8

mainly during
the night and
early morning

Ictal series are also
detected (left >right)

Epilepsy

DTW 613 17
spike-and-slow waves
polyspikes

Frontal Le>ri
and P8

mainly during
the night and
early morning

Ictal series are also
detected (left >right)

Epilepsy

19

EEG
rapport

Sharp-and-slow-wave,
Wicket spikes

Frontotemporal right.
wicket Le>Ri

series of spikes which
are seen in the clusters,
are interpreted as wicket
spikes

PNES and epilepsy

SE 291 11

sharp-and-slow waves,
series of spikes,
could be small
sharp spike or
wicket spikes

Frontotemporal right
sss more left

Epilepsy



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

DTW 291 8

sharp-and-slow waves,
series of spikes,
could be small
sharp spike or
wicket spikes

Frontotemporal right
sss more left

Epilepsy

20

EEG
rapport

Normal EEG

SE 3 1 Normal EEG
DTW 3 1 Normal EEG

18

EEG
rapport

Sharp-and-slow-waves,
sharp waves

Frontal/
frontotemporal
Left>Right

Epilepsy

SE
Sharp-and-slow-waves,
sharp waves

Frontal/
frontotemporal
Left>Right

Epilepsy

DTW
Sharp-and-slow-waves,
sharp waves

Frontal/
frontotemporal
Left>Right

Epilepsy

21

EEG
rapport

sharp transients/
sharp waves

Frontotemporal right
/ left

light unspecific
focal functional disorder

SE 262 9
sharp transients/
sharp waves

Frontotemporal right
/ left

Unclear meaning of
sharp transients

DTW 262 9
sharp transients/
sharp waves

Frontotemporal right
/ left

Unclear meaning of
sharp transients

24

EEG
rapport

sharp waves,
sharp-and-slow-waves

maximum P7 and
surrounding

occurs a couple
of time during sleep

Epilepsy

SE 84 7
sharp waves,
sharp-and-slow-waves

Mainly P7,
sometimes F7
F9 and F4

only during the night Epilepsy



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

DTW 84 7
sharp waves,
sharp-and-slow-waves

Mainly P7,
sometimes F7
F9 and F4

only during the night Epilepsy

25

EEG
rapport

low frequent
activity (delta)

temporal left during sleep
non-epileptic,
unclear meaning

SE 49 3
sharp transients
(dubious)

frontotemporal
mostly right

in the night
no specific epileptiform
discharges

DTW 49 3
sharp transients
(dubious)

frontotemporal
mostly rigth

in the night
no specific epileptiform
discharges

26

EEG
rapport

sharp transients temporal during sleep
non-epileptic,
no clear abnormalities

SE 24 4 sharp transients frontotemporal in the night unclear meaning
DTW 24 4 sharp transients frontotemporal in the night unclear meaning

22

EEG
rapport

sharp waves
sharp-and-slow-waves

frontotemporal left
mainly during relaxation
and doezel, in long series

epilepsy

SE 539 6 sharp-and-slow waves frontotemporal left
long series are
recognized very good
in the timeline

epilepsy

DTW 539 6 sharp-and-slow waves frontotemporal left epilepsy

23

EEG
rapport

Sharp waves,
(poly-) spikes-and-
slow-waves

temporal left
and right,
frontal bilateral

in series up to
2s, increase in the
morning

epilepsy

SE 512 9

Sharp waves,
(poly-)spike-and-slow
-waves

temporal left and
right, frontal left
and right

series can be seen
when inspecting
individual detections

epilepsy

DTW 512 9
Sharp waves,
(poly-)spike-and-slow
-waves

temporal left and
right, frontal left
and right

series can be seen
when inspecting
individual detections

epilepsy



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

27

EEG
rapport

sharp transients
temporal
left >right

mainly during light
sleep

no evident epileptiform
detections, but suspicious
waveforms. Aspecifieke
focale functie stoornis

SE 109 6 sharp transients parieto-temporal

suspisous graphic
elements, not enough
information for a
clinical conclusion

DTW 109 6 sharp transients parieto-temporal

suspisous graphic
elements, not enough
information for a
clinical conclusion

28

EEG
rapport

sharp transients
parieto-occipital
right

physiological rhythms
parieto-occipital
are remarkably high in
amplitude

no evident epileptiform
detections

SE 67 4 sharp transients
parieto-occipital
right

no evident epileptiform
detections

DTW 67 4 sharp transients
parieto-occipital
right

no evident epileptiform
detections

29

EEG
rapport

sharp waves,
sharp-and-slow-waves

frontotemporal
right

occurs often,
only in sleep

epilepsy

SE 1104 8
sharp waves,
sharp-and-slow-waves

frontotemporal
right

only during
the night

epilepsy

DTW 1104 8
sharp waves,
sharp-and-slow-waves

frontotemporal
right

only during
the night

epilepsy

30

EEG
rapport

sharp waves,
(poly-)spike-and-slow
-waves

frontal left and
bilateral synchronous

sharp waves
sporadical during
wake,
PGC low frequent
occuring in sleep

epilepsy



Table A.1: Comparison of the conclusion as described in the EEG rapport with the conclusion made by using the cluster tool. The conclusion
is split into information regarding waveform, location, temporal occurrence and diagnosis.

EEG ID Method
nr. of
detec-
tions

nr. of
clusters

Waveforms Localisation Temporal info Notes Diagnosis

SE 22 4
(poly-)spike-and-slow
-waves

frontal F3, Fz,
sometimes F4

only 22 detections epilepsy

DTW 22 4
(poly-)spike-and-slow
-waves

frontal F3, Fz,
sometimes F4

only 22 detections epilepsy


