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Management Summary

In an era where the availability of data is ever growing, opportunities arise for improving vehicle

routing software through data analytics. Where Operational Research focusses on solving a

predefined problem, data analytics can help in improving the definition of this problem. In this

research, we develop a methodology that uses the data that is gathered during execution to

improve the performance of vehicle routing software by adjusting the handling time parameters.

A case study is performed at a distribution centre of a large retail client of ORTEC.

Currently, the handling times in ORTEC’s vehicle routing software are configured based

on estimations by process experts. No analysis on the effects of altering the handling times

is performed. Changing handling times affects costs made in the planning and costs made by

missing delivery windows during execution. A trade-off occurs between these two types of costs.

If we increase handling times, the costs of the planning will increase since the total duration

increases. However, the number of missed deliveries will decrease because of the increased amount

of extra time that is planned for the deliveries.

To find the best handling time configuration, a method is developed that iteratively evalu-

ates handling time configurations by planning and simulating new configurations. The developed

methodology consists of four parts: data extraction and cleaning, data exploration and distri-

bution fitting, simulation model building and validation, simulation optimization. The input for

this methodology is a year’s worth of planning and realisation data from the aforementioned

retail client.

The planning and realisation data was extracted from the database using a query that joined

the data on the coarsest level of data granularity. Inspecting and visualizing the resulting data

set proved to be important to find erroneous data. To detect and remove statistical outliers, the

double Mean Absolute Deviation method was applied, as this can deal with non-normal skewed

distributions.

Three sets of distributions for different sources of randomness have been fitted on the data.

These sources are the stop durations, travel durations and start time deviation. The selection

of features that should be accounted for in the distributions was done based on insights gained

from correlation between variables and the feature importance as calculated by an Random

Forest (RF). For the stop and travel durations a simple statistical approach was compared to

Random Forests for Conditional Density Estimation (RFCDE) on the cross-validated Average

Conditional Log Likelihood (ACLL) to determine the best fitting model. In both cases, the

RFCDE proved to be the better performing model.

A simulation model was created by combining a list of assumptions with the distribution

models. The simulation model was validated by comparing historic realisations with simulated
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realisations that were created using the same historic planning.

Optimizing the handling times was assisted by a reparametrization model that converts a

fraction of stops to be completed within their planned time to a set of handling time settings. To

iteratively find the best handling time percentile, a Gaussian Process (GP) was used to estimate

the relation between the input and output of the simulation and the Expected Improvement

policy was used to determine new inputs to measure. Using an estimated weight to combine the

costs of the planning with costs made by missing deliveries, we have shown that our optimization

algorithm performs well in a noisy measurement environment. The optimization algorithm was

able to find the location of the estimated minimum in 15 iterations with an error of 3.5% compared

to the location of the estimated minimum after 30 iterations.

A method for determining input setting regions of interest was shown, for when the weights

with regard to the plan costs and the time window violations are unknown, as was the case in

our research.

Finally, a proposed input setting was shown to have 0.12% lower plan costs and 3.73% less

time window violations as compared to the retail client’s current setting. This might be improved

further by looking into adding more detailed settings.

From this all we can conclude that there is value to be gained from the usage of data analytics

in combination with vehicle routing. We therefore recommend that this methodology is further

productised at ORTEC.
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Chapter 1

Introduction

This research is performed at ORTEC, which is a company that is specialized in making software

products that aid their customers in creating more value by optimizing existing business processes

through software and mathematics. ORTEC’s optimization software can handle many types of

problems, including warehouse control, pallet and space loading, workforce scheduling and fleet

routing and dispatch. The software product this research focuses on is the vehicle routing software

called: ORTEC Routing and Dispatch (ORD). This software is typically used by a wide variety

of companies to plan routes from depots and deliver orders to clients or establishments.

ORD ensures that not only the individual routes are feasible but also the overall schedule

can be executed. In order to make ORD provide the companies with schedules that are realistic

and comply with all constraints and wishes, the software is made highly configurable. Due to

the large problem size and the numerous restrictions, it is not possible to incorporate stochastic

information on input data into the optimization process. Therefore some input data of ORD are

deterministic approximations of real-life stochastic variables. Input data values corresponding

with stochastic variables in the real system mainly concern durations of actions that have to

be planned, like (un)loading or travels. Currently, the deterministic approximations of these

durations are estimated by process experts based on experience.

The goal of this thesis is to provide data-driven methods for setting these input data val-

ues, such that planning and the accompanying execution improves. How this improvement is

measured will be discussed further in Section 1.2. The data that is used is gathered during the

execution of the routes. For the remainder of this thesis, when we talk about input data values,

only the input data values that are stochastic in real-life are meant. Other data that can be seen

as input for the planning software, like problem instances or constraints, are dependent on the

requirements of the user of the planning software. Since these requirements are often fixed and

cannot be altered to increase performance of the software, these are not considered to be tunable

input data in this thesis.

This chapter will further introduce this research. Section 1.1 gives some motivation as to why

this research is conducted. Section 1.2 gives an identification of the problem this research aims

to solve. In Section 1.3 the objective and research questions are given and Section 1.4 defines

the limitations of this research.
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1.1 Motivation

Improving the schedules generated by ORD (or any other vehicle routing software package) can

be done by either adjusting the algorithmic parameters or the input data. The former is quite

extensively addressed in literature and at ORTEC. Accounting for the stochasticity of input data

during optimization of the routes is currently infeasible for large instances due to computational

resource limits. Adjusting the input data is something that has not been much researched.

The lack of a structured method to continuously improve the input data makes the systems in

place dependent on the estimation of real world durations by users or experts. Changes in the

real world values of the input data over time may go unnoticed by these experts, leaving the

optimizing software with a broken or outdated view on the situations it has to optimize. Also

dependencies of input data values (e.g., certain vehicles have longer handling times) are hard

to discover and quantify by hand without statistical evidence. Developing a methodology to

systematically adjust and verify these adaptations of the input parameters is useful for all users

and developers of routing optimization software.

ORTEC has a strong background in the Operations Research (OR) field and has acquired

some knowledge on data science over the years. Currently some data science techniques are

already used in dedicated studies, as teaching material and in some forecasting engines integrated

into software products. Further incorporating data science techniques into optimization products

is a strategic goal for ORTEC. This research aims to describe a methodology for improving the

input data values so that ORTEC can apply this to the software installed at multiple customers.

1.2 Problem identification

Since the current process for setting the input data values is simply taking an educated guess,

the required contribution of this research is twofold. First, the stochastic information on input

data values has to be obtained from a dataset. Second, from this stochastic information the

best deterministic values have to be chosen. If only the first step would be done, we could

simply select all mean data values and use these in future planning. However, using the mean as

setting for a duration will cause roughly half of the actual durations to be longer than planned

and the other half be shorter than planned. As there may be costs or service level agreements

connected to arriving late at a location, configuring the mean will most likely not be the best

setting. Therefore, the second step also has to be performed to find the best setting. To figure

out what the best setting is, we have to be able to measure how good or bad a setting is.

When algorithmic parameters are tuned, the assumption is that the input data is correct. This

means that an improvement in performance for an alternative set of algorithmic parameters, can

be measured by looking at the Key Performance Indicators (KPI) of the planning. When input

data values are tuned, this is not possible. For instance, when we underestimate the time it takes

to unload pallets, the KPIs of the planning would only improve because the total time would

decrease. In reality however, the planning would cause the driver to potentially miss the next

time window since he can never unload the pallets that quickly. This means that this research

will have to develop a method that is able to deal with KPIs related to route realizations. This

also makes the method previously developed by Demkes (2014) to tune algorithmic parameters of
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ORD unsuitable for tuning the input data, since this method only uses the KPIs of the planning

to tune the software. Since our learning method will have to deal with KPIs of both the planning

and of the realizations, a trade-off will occur between these.

Execution Data

LearningPlanning

Online learning

Data Learning ExecutionPlanning

Offline learning

Figure 1.1: Schematic of on- and off-line learning, left and right respectively

Learning methods can be divided into two categories: online and offline. In Figure 1.1, the

difference can be seen. When applied to the situation at hand, online learning would include the

learning step into the daily process, updating the input data before creating a planning each day.

At the end of the day the observations would be used to determine how the input data should

be altered to improve the performance. This is in contrast with offline learning, where a set of

data is used once to adjust the parameters and simply use these afterwards. For some practical

reasons, online learning is not suitable for this research. First and foremost is the fact that an

online learning method would have to explore the solution space in order to find the input data

settings that perform well. That knowledge then has to be exploited in order to converge to the

best setting. This would make the method experiment with settings in the real world that may

give bad plannings, and hence are expensive. From a business perspective this is undesirable

for both, ORTEC and the client. Also, the scarcity of the computational resources during daily

usage of the software contributes to the unsuitability of an online learning method. This means

the solution of this research must be sought in the corner of the offline learning methods.

An offline method only has a set of historic data to learn from. How this learning will take

place is not straightforward however. Changing the input settings will change the planning the

software will generate. The performance of the adjusted input settings can only be measured

if a planning and the accompanying realisation is known. Therefore, since our learning method

will be offline and no data is present for the new plannings, the learning method has to be able

to simulate realizations that go with this new planning. Only then can the performance of the

proposed input setting be estimated. The schematics of this learning process can be seen in

Figure 1.2. In order to simulate the realised durations of a schedule, it is necessary to estimate

the distributions of these stochastic values. A method is needed to determine on what variables

(e.g., location, truck or day of the week) the distribution of the durations are dependent.

The problem that then remains is selecting the values of input settings to test. A problem

that was encountered by Demkes (2014) was the large amount of time it takes for the software

to create a planning. When a large computational time is needed for each run, it is not feasible

to simply run all possible options. This was solved by using a form of online algorithm that

sequentially chooses the next input setting to test. Where Demkes (2014) only needed to test

a configuration by running the planning software, the method in this research will also have to
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Simulation Data

LearningPlanning

Simulated sequential learning

Data ExecutionPlanning

Figure 1.2: Schematic of offline learning with an sequential learning step

incorporate a simulation. So in each run the learning algorithm will have to choose an input

data setting to test, create a planning and run a simulation of that planning. When the KPIs of

the simulation are observed, this knowledge can be used to determine the next setting to test.

The long computation time of a single run and the importance of the KPIs of the realizations

result in the need for an offline method with a simulated online component. The schematics of

the proposed type of method can be seen in Figure 1.2. As shown in the figure, the proposed

method intends to use the historic data once to create a simulated environment. In this simulated

environment, a learning method will sequentially chose which setting to evaluate. This sequential

learning method will eventually converge to the best input data setting. The output of the

learning method is a suggested improved input data configuration that then can be used in daily

operations.

The method that will be developed will be applied at a single customer of ORTEC that uses

ORD. This customer will be referred to as the Retailer. The routing case of the Retailer and the

data that will be used is explained in Chapter 2.

1.3 Objective and research questions

In Section 1.1, the need for a learning method is explained, and Section 1.2 argued what form it

should have. From this we can formulate the goal of this research:

Develop an offline learning method that finds better input settings to improve plan-

nings made by ORD

To achieve this objective, we define multiple research questions where some have sub-questions.

The research questions and the reasoning behind these questions are given below.

To effectively solve the problem we first need some information on this problem, information

will be gathered on the routing case present at the Retailer. Also the current configuration and

tunable input parameters are investigated. The data that will be used in the remainder of the

research will be explained and briefly examined.

1. In what context is this research conducted?

• Which input settings can be adjusted in ORD and how are these currently configured

at the Retailer?

• What are all characteristics of the routing case?
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• What KPIs are used to measure the performance of a schedule?

• How can we quantify KPIs related to the realisation?

• What data is available?

After we have gathered information on the specific problem that will be solved in this thesis,

we need information on how we could do this. This information will be gathered from current

literature on the relevant subjects. To see how the quality of plannings can be estimated, we will

look into the vehicle routing literature for a comparable version of the problem that is present at

the Retailer. Also previous research that has been done on tuning input data in routing problems

will be investigated. After that, techniques that can be used for setting up and optimizing a

simulation model are looked into.

2. What literature is available related to stochastic vehicle routing, data mining, simulation

and sequential learning?

• What type of the Vehicle Routing Problem (VRP) is related to our case and how are

these typically solved?

• What methods are available to infer distributions from data?

• What methods are known for setting up and validating a simulation model?

• What sequential simulation optimization methods are available?

After obtaining the knowledge from literature on how this type of problem is handled and

what techniques can be used for this, these techniques will be applied to create a simulation

model for the routing case of the Retailer. To achieve this, the data gathered at the Retailer will

be used to create and validate the model.

3. How can we use the realisation data to perform a simulation?

• What numbers have to be simulated?

• How can we determine from the data what factors influence the variables that have

to be simulated?

• What method is most suited to estimate the distributions?

• What assumptions have to be made?

• How can we validate our simulation model?

When a simulation model has been created that is valid, the near optimal setting has to

be found. For this, a suitable sequential simulation optimization algorithm is needed. Since

optimizing over a large number of parameters can be a difficult problem, we want to use all

knowledge on the problem that is available to help the optimization process. We would like to

know how well the algorithm performs, and what the impact is of the new settings on the routing

case of the Retailer.

4. How can a sequential learning algorithm be used to find the best settings?

• How can the available data be used in the optimization process?
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• How well does the algorithm perform?

• How fast does the tuning method find a good set of input settings?

• How well do the new input settings perform compared to the old input settings?

The method that is developed in this thesis is applied to a single customer case. Therefore,

the adjustments that have to be done to implement the methodology so that it can be used for

other customer cases will be discussed.

5. How can ORTEC implement the methodology so the learning method can be used for other

cases?

To meet the research goal, the research questions will be answered in the order they are

stated. This thesis is organised such that each chapter answers one of the research questions.

The first question will be answered by talking to content experts within ORTEC and at the

Retailer. The second question will require a literature study to answer. The following questions

concern the development and execution of the method. In the final chapter, conclusions and

recommendations will be made regarding all previous chapters.

1.4 Limitations

To manage the size of this research, some limitations are defined to clarify what will be investi-

gated in this thesis. The limitations that could be encountered during the research can be found

below.

• Input data corresponding to stochastic random variables

Only input data corresponding to variables of a stochastic nature in the real system are

investigated. No changes will be made to either algorithmic parameters or constraints.

• Current configuration

Only the values that are currently configured will be tuned. No new input data settings

will be added.

• Data quality

The quality and availability of the data is important for the success of developed method.

When issues arise during the research because of this, some assumptions may have to be

made or data has to be generated to be able to complete the method.
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Chapter 2

Context

This chapter will explain and discuss the context in which this research is conducted. Section 2.1

will discuss the software ORD and the configuration options it has. In Section 2.2 the Retail

case and the available data is described.

2.1 Planning software

This section will first give a short explanation of the routing terminology of ORD that is used

in the remainder of this thesis. The different options for configuring ORD are described in

Section 2.1.2.

2.1.1 Terminology

There is a lot of technical terminology in this thesis. A lot of terminology is related to VRP,

but since researchers and practitioners often have different explanations for the same words, the

meaning can be ambiguous. Therefore it is useful to give an overview of how the terms are used

at ORTEC. These terms will also be used in this thesis. The terms in this thesis are defined as

follows:

Order: An amount of a single product that needs to be delivered from a depot to a customer.

For instance, 3 pallets of frozen goods.

Resource: An entity required to perform certain actions. Most common resources are: trucks,

trailers and drivers. Although present, this thesis does not deal with trailers and drivers.

Action: An activity in a trip. Examples are a stop action and a travel action.

Trip: A sequence of actions performed by a resource starting and ending at a depot. In literature

often referred to as routes.

Depot: A central warehouse where the orders are present prior to delivery.

Customer: A location where orders are delivered.

Stop action: The period a truck is at a single location. This can be at either a depot or a

customer. During a stop orders are picked up or delivered, these are then called pickup- or

delivery-stops. The planned duration of a stop is location and amount dependent.

Travel action: Section of a trip where the truck travels between two locations. Also referred
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to as sections, edges or legs.

Address opening time: Time period in which the location is open such that (un)loading can

take place.

Time window: Time period in which an order has to be delivered at a customer. Differs from

address opening times in that a user of ORD can set these separately for all orders. These are

usually more restrictive than the address opening times.

Address type: A grouping of addresses based on some common attribute that is configured by

the user of ORD. For instance, all night stores have an individual location but are of the same

address type. By using address types, users can easily configure settings for a large number of

addresses. These can also be referred to as address kinds.

Case: A set of orders that have to be planned in their respective time windows on a set of

available resources. A case is the input in its entirety as seen by ORD. ORD tries to find the

planning for each case that has the lowest costs while fulfilling all constraints.

2.1.2 Configurable input data

In order to make ORD versatile and work with a lot of different real-life routing situations, it is

highly configurable. A lot of flexibility comes from many types of restrictions that can be set, but

since these will not be adjusted in any way, we will not discuss them. Also, the input data can

be configured in multiple ways. The input data can be categorized in two main groups, namely:

stop durations and travel times. Some other input data settings like (un)coupling durations and

cleaning durations can also be configured but these are not the focus of this thesis and therefore

will not be discussed. The reason for this will be explained in Section 2.2.

Stop duration

The stop duration is the time a vehicle is present at a location and is (un)loading orders. This

can be either at a depot or at a customer. The time that ORD calculates the stop will takes is

given by the following linear relation:

ST = FT + V T ·Q

Where ST, FT and VT indicate total stop time, fixed handling time and variable handling time

respectively. Q indicates the quantity of products that is delivered in the stop, this is often

measured in number of pallets. This means that to calculate the stop time, two input data

values have to be set: the fixed handling-time and the variable handling-time. A pair of fixed

and variable handling-times is called a handling-time setting.

Handling-time settings can be configured on several levels of specificity for groups or individual

locations and products. ORD calculates the duration of a specific stop by searching for the most

specific setting that is configured. The most common configuration is done on the level of the

address-type. Then two handling-time settings are created for all stops occurring on a certain

address-type, one for picking up orders and one for delivering. Another common occurrence is

a setting for a specific product on an address-type. For instance, the user knows that when

alcoholic products are delivered extra paperwork has to be signed, so he adds a handling-time

setting for this product with a higher fixed time. Since separate handling-times can be set for
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specific products and multiple products can be delivered in a single stop, ORD sometimes has

to use different handling-time settings together to determine the duration of one stop. When

this occurs, of all handling-times the highest fixed time is used and every variable time is used

for each product quantity associated with that handling-time. While setting the handling time

on the address-type level is common, it is also possible to configure handling time setting for

individual locations. For practical reasons this is not often done.

Travel times

Travel times are an important aspect of routing problems. If these are not correctly set, then the

solution provided by an optimisation algorithm might be far from optimal. In ORD, the travel

times are calculated using maps. These maps contain information on the roads. To calculate

the travel time between two locations, an optimization algorithm determines which roads are

taken for the fastest route. The input for the calculations is the speed that the vehicles travel

on certain road types. A set of speed configurations is called a vehicle profile. As with the stop

times, the vehicle profiles can be configured on several levels. The most common implementation

is to create vehicle profiles for vehicle types. Next to the configuration of vehicle profiles also a

single number can be configured to increase or decrease all travel times.

2.2 Retailer case

In this research a learning method is developed and applied in a practical case at one of the

customers of ORTEC. This section will describe the routing case of the Retailer and describe

the available data.

2.2.1 Retailer

The Retailer is a large Russian retail company with thousands of stores and vehicles. The total

region that is covered by the Retailer can be seen in Figure 2.1. Due to large distances some trips

have total distances from over 1000 kilometres. These stores are supplied from 8 Distribution

Centers (DC). ORD is configured such that these DCs have a complete separate implementation.

This means that all DCs have a separate vehicle fleet, schedule, delivery area and settings.

2.2.2 Case

In the case study that will be performed the data of 1 DC is used. This DC delivers products to

873 stores. These stores are divided into five address types. In Table 2.1 the number of addresses

and total number of stops per store-type can be found. On a single day, goods are delivered to

on average 450 stores planned in 190 separate trips. To create feasible routes for this DC, ORD

has to account for some constraints. These constraints are:

Vehicle capacity: The number of pallets that a truck moves cannot be larger the capacity of

the vehicle. Different trucks can have different capacities.

Driving time legislation: After certain consecutive driving times, drivers are mandated to

take a break before continuing driving.
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Figure 2.1: Operating area of the Retailer

Table 2.1: The store types configured at the Retailer. The handling time per pallet for all of the

address types is equal to 3 minutes.
Name Number of individual addresses Number of stops in dataset Fixed handling time setting in minutes

SHOPRNDYD 712 124933 30

shop 107 16042 25

shop RND 49 12945 30

RND 45 4 1323 45

RND 60 1 395 60

Time windows: Orders have to be scheduled within a 6 hour time window that is predeter-

mined. This way the store personnel knows when a delivery approximately arrives. During

execution of the routes, the deliveries may deviate from these times as long as they are within

the address opening times. When a truck arrives before a location opening time, then it will have

to wait until it can start unloading. The time windows are separate from the address opening

times, but will always occur when the address is open.

Depot loading capacity: The depots have limited loading capacity, this means that the de-

parture of trucks has to be smoothed out over the day.

Product contamination: Some product types may not be shipped together in the same truck.

For instance, fish and vegetables.

Vehicle capabilities: Some product types are chilled or frozen. These can only be transported

by trucks with cooling capabilities.

2.2.3 KPIs

In daily operation the Retailer uses ORD to create routes and resources assignments to these

routes to create feasible plannings. To provide a good set of routes, ORD makes use of hierarchical

objectives to optimize the planning. This means, that a solution is accepted when a KPI improves

when all KPIs that are considered to be more important remain equal. The other way around,

less important KPIs may deteriorate as long as the higher ranked KPIs improve. The KPIs that
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ORD uses, ranked on importance, are given below.

1. Number of planned orders

2. Plan costs

3. Distance

4. Total duration

5. Driving time

6. Number of trips

7. Waiting time

These KPIs all improve when they decrease, except for the number of planned orders. Since

ORD uses heuristics and there are many restrictions and limited resources, it is not guaranteed

that all orders can be planned. Therefore, the first goal of ORD is to plan as much orders as

possible. The second KPI, the plan costs, is a weighted sum of other KPIs. The KPIs that

are used in this sum are total duration, the distance, the number of stops and the number of

trips. The weights of these costs can differ between different vehicle types. So, for instance, a

larger truck has a higher costs per distance as it will use more fuel. These are configured so

that they approximate the actual costs that are made when all orders are delivered according to

the planning. The 3rd to 7th objective provide ORD with some tie breakers to decide on which

solution is better when the plan costs are the same between two potential solutions.

Conversations with the Retailer have revealed that the total costs in their logistic operation

consist of two parts. Besides the plan costs that are used by ORD, also some extra costs are

made when the execution of the routes deviates from the planning. These costs, the service costs,

consist out of costs that have to be made when time windows are missed. No clear definition

exists for the service costs. The Retailer stated that only missing the time window is not overly

problematic as long as the arrival is within the opening time of the shop. When the arrival at

a shop is later then planned and outside the opening times of the store, the extra costs for that

delivery are high.

2.2.4 Data description

The database that is used contains all planned routes for 1 year, from March 2018 to March

2019. This includes all information that is used by ORD to keep track of the entire planning and

all constraints.

The data regarding the realised times of the actions is present only for the stop actions. For

the stops the arrival and departure time at the locations is recorded. It is unknown whether

the time of arrival is also the start of the unloading. Information on the travel actions can only

be gained from the start- and end times of previous and following stops. This means that no

information is present on the speed on certain road types or sections. For data regulation reasons

all information regarding drivers, including anonymous identifier numbers, is not present in the

dataset.

Since ORD has more detailed information regarding the stop and travels than only the total

duration, a SQL-query was written to extract a dataset from the database that groups all relevant

information on the stops and travels. This dataset has a single stop or travel action in every row

and a feature in each column. All features and descriptions can be found in Appendix A.
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2.2.5 Problem description

Using the knowledge we have on the dataset and current configuration of ORD at the Retailer,

we will decide on which input data values to investigate and tune. Since both travels and stop

duration can be controlled with parameters, these will be briefly investigated in order to make a

choice.

40 20 0 20
Deviation from planned duration of stops in minutes

0.000

0.005

0.010

0.015

0.020

0.025

D
en

si
ty

40 30 20 10 0 10 20 30 40
Deviation from planned duration of travels in minutes

0.00

0.02

0.04

0.06

0.08

D
en

si
ty

Median: -5.27 Median: -0.167

Figure 2.2: Histograms of the deviation from planned duration for stops and travels.

In Figure 2.2 the histograms of the deviation from the planned duration for both the stops

and the travels can be seen. In this figure we see that the stops take on average shorter than

planned. The travels deviate around the planned duration.

Since the travels seem to be configured well on average, and the data regarding the travel

actions is not as detailed as the parameters that can be configured, we decide to only further

investigate and tune the stop durations.

In Figure 2.3 the durations of the stop have been plotted against the number of pallets in

the stop for each of the address types and the depot. This enables us to effectively plot the

current configuration against what the relation is according to a linear regression. It is clearly

visible, that in most cases the simple linear regression line already deviates from the current

configuration. For the depot stops, we see that the data does not correspond at all with the

setting that is configured in ORD. This means that there are probably actions occurring at the

depot that are not configured in ORD. This is a problem that cannot be fixed only by data

analysis. We therefore decide to not attempt to tune the stop duration set at the depot and not

to use the data on the durations of the stops at the depot.
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Figure 2.3: Scatter plots showing the relation between the realised duration of a stop and the

number of pallets (un)loaded for every address type and the depot. The plotted lines indicate

the current configured handling time setting and the relation obtained using linear regression.

The problem at the Retailer that will be solved by our learning method, is the tuning of the

stop time settings of the five address types. Since the handling times at each of the address

types consist of two durations, the total problem consist of finding ten continuous variables. Our

learning method will try to find the ten values that give the lowest total cost. This total cost

exists of plan and service costs. Both of these costs are affected by the changing of the handling

time settings. The plan costs will be lower when the handling times are set to be shorter. When

the stops take less time, the costs decrease since the total duration will be short. It may also

occur that compared to using longer handling times, less trips or vehicles are needed to deliver

all orders. The service costs however, will rise when the handling time is set to be shorter as

more time windows will be missed. The costs of missing a delivery are not known exactly by the

Retailer, meaning that these also have to be estimated somehow.
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2.3 Conclusion

In this chapter, we have described the context in which this research is conducted. First, we have

described what settings can be adjusted in ORD. Then, the characteristics of the routing case

at the Retailer are described. The KPIs that are used to measure the performance of planning

and realisation are given. Also, the data that is available has been described. From a brief

investigation into the data and the current configuration at the Retailer, we have concluded that

only the handling time will be adjusted and not the travel times. The handling time settings for

five address kinds will be adjusted so that the total costs are minimized.
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Chapter 3

Literature review

This chapter gives an overview of the available literature regarding the several fields this thesis

touches. In the applicable subjects, methods will be chosen to implement based on the found

literature. Section 3.1 first discusses the Vehicle Routing Problem (VRP). Then the VRP-variant

most applicable to our case will be discussed. The available literature will be investigated on

the usual methods for solving these. Next, the methods for determining or adjusting input data

will be discussed. In Section 3.2 several important steps in the process of mining information

from data are described. Section 3.3 gives an overview of several methods that can be used to

estimate densities from data. Section 3.4 closes this chapter by describing some methods that

are relevant for creating and optimizing a simulation model.

3.1 Vehicle routing problems

This section will first discuss the VRP and some variant of it. Then the limited research on the

tuning of input data is discussed.

The VRP was first introduced by Dantzig and Ramser (1959) under the name: The Truck

Dispatching Problem. It is a generalized form of the Travelling Salesman Problem (TSP) in which

a set of customers has to be serviced by a set of vehicles given some constraints, while minimizing

the total cost of the routes. The VRP is a NP-hard problem (Cordeau et al., 2002). Solving

this problem to optimality using exact algorithms is possible to approximately 200 customers

(Pecin et al., 2017). Therefore, in practice, mainly heuristics are used to solve these problems as

realistic instances often are larger. The classical VRP is not representative for many practical

situations since these often have multiple constraints.

To make the VRP more practical many variants of the original have been investigated. For

instance, the Vehicle Routing Problem with Time Windows (VRPTW), is a variant on the VRP

that constrains the delivery times to be within their respective time windows. There has been

much research focussed on the VRPTW, as it is a constraint that needed for many applications.

To solve this variant, (meta-)heuristics have been developed. The use of population-based search

methods, large neighbourhoods and allowing infeasible solutions during the search seems to be

successful in state-of-the-art heuristics (Toth and Vigo, 2014). The variant, in which a fleet of

vehicles having different capacities is available, called the Heterogeneous Vehicle Routing Problem
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(HVRP), was first studied by Golden et al. (1984). The HVRP does not only add a constraint,

but may also alter the objective, as different vehicle types can have different associated fixed and

routing costs (Baldacci et al., 2008). The goal is then no longer to simply find the set of feasible

routes with the lowest total distance, but the routes that yield the lowest total costs are sought.

A relaxation on the VRP, stating that deliveries may be split over several vehicles, named the

Split Delivery Vehicle Routing Problem (SDVRP), was introduced by Dror and Trudeau (1989)

to show that this could result in lower total costs. A survey on methods that have been developed

and used to solve this variant, was given by Archetti and Speranza (2012).

Some other variants, are less well known as the constraints are not common in practice. An

example of such a constraint, is the loading capacity of depots. As fleet sizes grow, one can

imagine that there have to be imposed some constraints on the maximum number of vehicles

that can be loaded at the same time. Rieck and Zimmermann (2010) modelled this constraint,

and solved the problem using a Mixed Integer Linear Program (MILP) for a maximum of 30

customers. Another constraint of a practical nature is necessary when several product types,

that have to be shipped in differing conditions, are loaded into several compartments within a

truck. For instance, frozen, cooled and ambient temperature compartments. Ostermeier et al.

(2018) investigated this variant, named Two-dimensional Loading and Multi-Compartment Ve-

hicle Routing Problem (2L-MCVRP), and used a large neighbourhood search heuristic approach

to solve problem instances up to 360 orders spread over 100 customers.

These variants mostly focus on adding one restriction at a time. However, real world applica-

tions often require several of these constraints. Giving every combination of a multi-constrained

VRP a new acronym would become unclear, so these more realistic variants are given a more

general overarching term, the “Rich”-VRP. Interested readers are referred to Toth and Vigo

(2014) for more information on the numerous variants of the VRP and methods that have been

developed to solve them.

In general, when more constraints are added or the number of customers increases, the prob-

lem becomes more difficult to find good solutions for. Recall, the problem at the Retailer was

subject to all of the constraints mentioned in this section. Also, the problem size of 450 cus-

tomers on average is quite large. This all results in a complicated problem that has to be solved

by ORD. The heuristics that are used by ORD to solve this problem will almost certainly not

find the optimal solution, and there are no guarantees on the distance between the optimal and

the found solution.

3.1.1 Stochasticity

The routing problem of the Retailer may be modelled as deterministic VRP, but in reality we

know that the problem has some stochastic components. Since we would like to improve solutions

by using the information on these stochastic variables, we will briefly discuss the variant of

the VRP that incorporates stochastic travel and service times, the Stochastic Vehicle Routing

Problem (SVRP). Under the SVRP, variants exist where either the customers or demands are

stochastic. We will however, focus only on variants where the times are stochastic.

Laporte et al. (1992) first introduced the SVRP, only considering the travel times to be

stochastic. Here an a priori framework was considered, meaning that routes are planned and
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are not altered during the realization of the travel times. A variant of interest of this research

is the Stochastic Vehicle Routing Problem with Time Windows (SVRPTW) since we know that

in the Retail case the travel- and service-times are stochastic and the total costs are determined

by general routing costs and extra costs made when time windows are missed. The SVRPTW

states that every customer must be serviced within a given time window and some aspects are

stochastic. This can be further expanded by allowing the vehicles to wait outside a location for

the start of a time window or continue servicing after the closure of the time window against

some penalty. Variants considering multiple time windows are also present in literature.

A slightly different variant of the VRP also considers travel and service times to be uncertain.

This variant, the Robust-VRP, assumes that there is uncertainty in some aspects of the input

data and models this by using an uncertainty set instead of a distribution (Ordóñez, 2010).

The use of a set of numbers to model uncertainty instead of a full distribution allows for easier

calculations. The goal of these problems is to maximize the worst case scenario Hu et al. (2018).

Calculating the quality of a proposed solution for the SVRP can be a challenge for these

problems. Since the models include stochastic parameters the value cannot be calculated exactly,

only an expected value can be calculated. Wang and Regan (2007) provides some models to

evaluate the quality of a proposed solution. This can be done for small instances by evaluating

all possible outcomes with their probability and value. As instances get larger computing all

scenarios quickly becomes intractable. For larger instances Wang and Regan (2007) leaves out

the scenarios that are unlikely to simplify the calculation. For complex or large instances the

value of a solution can be evaluated using a stochastic simulation (Li et al., 2010).

3.1.2 Input data

We will now discuss the limited literature regarding the estimation or adjusting of input data

values for a VRP. Literature on the VRP typically describes a variant, the model and solution

approach. How the input data values are determined is often missing in these descriptions. Also

analysis on the consequences of altering input data values is not often discussed.

While variants like the SVRP or the Robust-VRP account for uncertainty in times, methods

used to translate data from a real world problem into the needed distributions or uncertainty

sets is not the focus of these research.

The research by Zunic et al. (2018), is the only one found that describes a method that was

used to adjust input data of a VRP. Zunic et al. (2018) use GPS-data gathered by trucks to

improve the prediction of service times and the location of the customers. Since the service time

was given by a fixed time and a variable time per article the new prediction method also had to

deal with that. They found that the prediction of the time per article was quit good. The fixed

time was predicted at each customer by taking the average of the last 10 realised fixed times.

These realised fixed times were calculated by taking the total realised time and subtracting the

estimated time per articles times the number of articles that were delivered. In this research

they only used the average duration that they measured, no consideration was given to the fact

that these duration might vary more in some locations. Also, configuring a fixed service time

slightly longer than the mean to create a more reliable planning was not discussed.
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3.1.3 Conclusion

In the first section we have seen that the problem present at the Retailer is quite complex

compared to current cases described in literature. The heuristics used by ORD will almost

certainly not find the optimal solution and the quality of the solution cannot be determined. After

that, we looked into VRPs that account for uncertainty in their model and optimization method.

Using stochastic information during optimization is computationally expensive and cannot be

done for large problem sizes. Calculating the quality of a set of routes, when uncertainty is

present, is done using stochastic simulation when case sizes grow or are more complex. We found

that there currently is a gap in research, on methods that can be used to find the right input

data for VRPs. This thesis aims to shed some light on that part of the problem.

3.2 Data mining

This section will discuss some methods available in literature for gaining knowledge from data.

In Section 3.2.1 data preprocessing steps are discussed.

3.2.1 Data preprocessing

Unfortunately data is most often not handed on a silver platter. It may be incomplete, inconsis-

tent or noisy. There are several techniques that are able to deal with these issues. Maimon and

Rokach (2010) give a good review on the steps that need to be taken to create a clean data set.

The most important steps are:

• Missing value handling

• Feature selection

• Outlier detection

Missing value handling

Since most estimation methods or learning methods cannot deal with missing values the handling

of these missing values is almost always the first step in the data pre-processing stage (Maimon

and Rokach, 2010; Garćıa et al., 2016). The method that is chosen to deal with missing values

can have a large impact on the results of the regression or classification problem the data is used

for and thus should be chosen with care (Gromski et al., 2014).

The easiest way of dealing with missing values is list-wise deletion. This method simply

deletes all rows or columns missing any values. The downside to this simple method is that it

may cause important information to be deleted from the dataset.

In situations where deleting data is undesirable, using methods to fill in the missing values

can be useful. This is called missing value imputation (Garćıa et al., 2016). Common ways are

mean or median imputation. These methods typically simply impute the mean or median of the

variable over the entire dataset for the missing variables.

Other more advanced methods use a learning algorithm to “predict” the missing value. This

has been demonstrated to work using a k-Nearest-Neighbor algorithm or a Random Forest

(Stekhoven and Bühlmann, 2012).

Page 18



Feature selection

Dimensionality (the number of attributes in a dataset) can be a serious obstacle for data mining

algorithms (Maimon and Rokach, 2010). This problem is also known as the “curse of dimen-

sionality”, as additional features increase the size of the search space for meaningful information

exponentially (Elder IV and Pregibon, 1996). The process of feature selection helps to overcome

this obstacle by reducing the dimensionality of the dataset. The goal of feature selection is to

find the subset of features that give the best classification or regression model. Choosing the

number of features to select is a trade-off between computational cost and model accuracy. In

some cases the accuracy of the model even improves when redundant or irrelevant features are

removed (Hall, 1999).

Feature selection techniques can be divided into filter methods and wrapper methods depend-

ing on the interaction with the learning process of the model (Maimon and Rokach, 2010).

Filter methods are heuristic methods that use general characteristics of the data instead of

a learning algorithm to evaluate the added value of features. Correlation between the feature

and the decision variable is a common example of such a characteristic. The use of simple

characteristics of the data causes these methods to be computationally cheap, making them

effective on high dimensional data. However, filter methods do not account for the interaction

between the model and features. Also, correlation between several features is not taken into

account.

Wrapper methods are methods that decide which subset of features to chose by training a

model on subsets of interest. This means that these methods do account for the interaction be-

tween the features and the model. A disadvantage of wrapper methods is that the computational

cost is a lot higher compared to filter methods since the models need to be trained multiple times.

Wrapper and filter methods can also be combined to select a suitable feature subset. This

combined method uses a filter method to select the feature subsets check. The final decision on

which subset to use is made by training the model on all selected feature subsets, as done for the

wrapper methods. This combined method reduces the computational costs of a wrapper method

by not testing every feature subset.

Outlier detection

The detection of outlying observations in the dataset is an important step in many data mining

applications. Failing to clean erroneous data may lead to a biased estimation and incorrect

results (Liu et al., 2004). A common outlier detection method, called the Standard Deviation

(SD) method, is based on the assumption that the data is generated by a normal distribution

N(µ, σ2). Points are declared outliers by the SD method when they are outside an outlier region

defined by a confidence coefficient α (Gudgeon and Howell, 1994). The α-outlier region of the

N(µ, σ2) distribution is defined by

region(α, µ, σ2) = {x :
|x− µ|
σ

> z1−α/2},

where zq is the q quantile of the N(0, 1). This boils down to considering points outliers when

they are more than a predetermined number of times the standard deviation of the dataset from

the mean of the dataset. However, this method is not robust since the estimated mean and
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standard deviation can easily be influenced by the outliers (Hampel, 1985). It also relies heavily

on the normality assumption which is violated in skewed or heavy tailed distributions.

The Median Absolute Deviation (MAD) method is a robust version of the SD method (Leys

et al., 2013). Where the SD method uses the amount of standard deviations from the mean to

set the outlier region, the MAD method uses the amount of MAD’s from the median of the data

set. The MAD is a measure of statistical dispersion that can be calculated for univariate data

set x1, x2, ..., xn as follows.

MAD = median(|xi −median(X)|)

This measure is less easily influenced by the outliers than the standard deviation. The MAD

method can be extended for skewed distributions by calculating the MAD for data points higher

than the median separately from the MAD for data points lower than the median.

3.2.2 Conclusion

To create a clean dataset all three steps will be performed. To handle the missing values, we

choose to use list-wise deletion as the size of the dataset allows this. This method is preferred

over value imputation for implementation ease. The method used for feature selection will be a

combined wrapper and filter method. This choice is made because a combined method reduces

the computational cost needed for a pure wrapper method and increases the accuracy of a pure

filter method. To identify and remove outliers from the data set, we choose to use the extended

MAD method. This method is chosen for the improved robustness over the SD method. The

extended version is chosen to deal with non symmetrical data sets.

3.3 Density estimation

In order to use data in a simulation, probability densities have to be inferred from this data. This

common statistical problem is called Density Estimation. When a dataset is present with some

explanatory variables and the goal is to estimate the density of the dependent variable when the

explanatory variables are known, the problem is referred to as Conditional Density Estimation

(CDE). Given a data set, CDE aims to describe the statistical relationship between a conditional

vector x and a dependent variable y by modelling the conditional probability p(y|x).

3.3.1 Statistical methods

The most common methods for the fitting of distributions to data come from the field of statistics.

The distributions that are fitted can be divided into theoretical and empirical distributions (Law,

2011). These are explained further below. The underlying assumption for any distribution is that

all data that is observed is independent and identically distributed (IID). The data is divided

in sets that are all assumed to be generated by a common distribution. This can be done by

separating the data on a categorical variable for which it is either known or seen that it influences

the dependent variable.
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Theoretical distributions

Theoretical distributions are probability density functions that can be parametrized. Some ex-

amples are the Gaussian and Gamma distributions. When a theoretical distribution is fitted on

a data set, random samples can be drawn from that distribution and used for simulation.

The first step for finding a distribution that represents the data well, is to decide what general

families (e.g., Gaussian, lognormal, exponential, gamma or Weibull) seem appropriate based on

their shape. A histogram of the data is a good tool for determining the shape of the data (Law,

2011). The second step in the process, is the estimation of the parameters for the selected

distribution families. There are several methods for estimating these parameters. The two most

common methods are the method of moments and the maximum likelihood estimation method

(Montgomery and Runger, 2003).

To choose between the distributions that have been fitted in the second step, the fit of

each of these distributions has to be checked to see how representative they are. This can be

done graphically or by performing a goodness-of-fit test. A graphical approach is to create a

density-histogram plot. A goodness-of-fit test is a statistical test to test the null hypothesis

H0 that the data is generated by the fitted distribution. A common example of a goodness-

of-fit test is the χ2-test (Law, 2011). The χ2-test is common because it can be applied to any

univariate distribution. Another goodness-of-fit test is the Kolmogorov-Smirnov test. This test

measures the largest distance between the Cumulative Distribution Function (CDF) of the fitted

distribution and the empirical distribution function of the data. The Kolmogorov-Smirnov test

has generally a lower error rate than the χ2-test and is therefore more valid in general (Hsiao-Mei,

2009).

An advantage of using theoretical distributions to represent the uncertainty in a simulation

model is that they are computationally cheap to fit and use during simulation. They also take

up little memory since the dataset is represented by only a few parameters. Theoretical distribu-

tions also work with small amounts of data and give smooth distributions that extrapolate the

probability mass outside the observed data (Law, 2011).

A disadvantage is that most distributions are only defined for the univariate case and cannot

be used in a multivariate setting. Also the data has to be split into groups that are assumed

to be generated by the same distribution. No data is shared between these groups, which may

cause some information to be lost. Also the groups have to be defined by the user based on some

prior knowledge.

Empirical distributions

Empirical distributions are distributions that are fully defined by the data set that was used to

create them. A simple method to create such a distribution is to create a continuous, piecewise-

linear empirical distribution function (Law, 2011). This can be done by sorting the data set so

that X(1) ≤ X(2) ≤ ... ≤ X(n). We can then define F̃ (x) as follows :

F̃ (x) =





0 if x < X(1)

i−1
n−1 −

x−X(i)

(n−1)(X(i+1)−X(i))
if X(i) ≤ x ≤ X(i+1) for i = 1, 2, ..., n− 1

1 if X(n) ≤ x

(3.1)
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An example of such an empirical distribution can be seen in Figure 3.1. This method gives a

rough CDF when the number of observations is low, but will result in a smooth distribution

when a large enough data sample is used. This method can be extended to accept weighted

observations (Kaczynski et al., 2012).
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)

Figure 3.1: Example of a continuous, piecewise-linear empirical distribution function.

A more advanced non-parametric method to estimate densities is Kernel Density Estimation

(KDE). This method has a strong relation with the histogram but is able to give a more smooth

density estimate by using the kernel and selecting the right bandwidth (Silverman, 1986). Where

a histogram divides the range in a finite number of bins and stacks the density in the bins if a

point falls into them, the KDE assumes the probability around each point is given by a kernel

function. The density estimate is then the sum of all individual kernels. An example of the

relation between a histogram and a KDE can be seen in Figure 3.2. The kernel is a non-negative

function parametrized with a smoothing parameter often referred to as the bandwidth. The

selection of the bandwidth has a large impact on the resulting estimated density. This effect

can be seen in Figure 3.3. If the bandwidth is chosen too wide the resulting density is over-

smoothed, picking a too narrow bandwidth gives a under-smoothed density. The bandwidth can

be selected using some rule of thumb or by using cross validation to find the bandwidth that

gives the highest likelihood. Using rules of thumbs is faster than using cross validation but can

give over-smoothed results when the underlying assumptions on normality are violated (Botev

et al., 2010). KDE can be extended to estimate densities in a multivariate setting (Scott and

Sain, 2004). This means also conditional density estimation can be done. However, this assumes

a spatial relation between all variables which may not hold when some of the input variables are

categorical.

An advantage of empirical distributions is that no assumptions have to be made on the shape

of the underlying distribution and that the empirical distribution will converge to this underlying

distribution when more observations are added.

A disadvantage of empirical distributions is that they have difficulty extrapolating the prob-

ability density outside the bounds of the observed data. This is especially a problem when the

number of observations is low (Law, 2011). When the number of observations is high this is not a

problem, but memory related issues can occur. Unlike theoretical distributions, empirical distri-

butions are defined by all observations. So when an empirical distribution is used in a simulation

model, all observations must be held in memory during the sampling of random variates.
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Figure 3.2: Left: histogram on 6 datapoints. Right: kernel density estimate on the same 6

datapoints. The red dashed lines show the individual kernels, the blue line the kernel density

estimate.
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Figure 3.3: KDE with different bandwidths.

3.3.2 Advanced statistical methods

Methods to estimate probability densities have been developed in the machine learning commu-

nity by transforming or adapting existing statistical methods. These methods are still statistical

methods, albeit an advanced form. We put them in a separate category because, unlike the pre-

viously listed statistical methods, the models that these methods create cannot fitted in an exact

and optimal fashion. These models consist of a large number of parameters that are found using

heuristic methods during a training phase. These methods are especially useful when dealing

with large datasets containing mixed data types. These methods come, like the statistical meth-

ods, in parametric and non-parametric flavours. The two most well known methods that have

been combined to estimate densities are Neural Networks and Random Forests. Both Neural

Networks and Random Forests can be combined with either flavour. While more methods exist,

these two are investigated for their ability to deal with non-linear relations between features and

distributions.

Neural Networks

A Neural Network (NN) is an, often layered, collection of connected perceptrons that map input

signals to output signals by receiving, non linearly processing and propagating these signals.
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Mixture Density Networks (MDNs) combine NNs with a mixture density model in order to

estimate conditional probabilities (Bishop, 1994). A NN is trained to map the input vector x to

the parameters θi and mixture coefficients αi of a set of K mixture components. The basic shape

of the components is set to be Gaussian. The network is trained to so that the log likelihood is

maximized. The conditional density of a sample as computed by the network is given by:

p(y|x) =

K∑

i=1

αi(x)p(y|θi(x))

Ambrogioni et al. (2017) combines parametric with non-parametric methods to create Kernel

Mixture Networks (KMNs). As with MDNs, KMNs utilize a NN to map the input vector x to

the mixture weights αi. The location and scale of the mixture components are not determined by

the NN however, these are, like with KDE, set at the location of the training points. To control

the size of the model, the number of used kernels can be limited by clustering the training points.

Since the location of the mixture components is fixed for the KMNs, the flexibility is lower

than of the MDNs. It does however, reduce the risk of overfitting compared to MDNs (Rothfuss

et al., 2019). But still these methods are both quite prone to over-fitting when training the

models to maximize the likelihood. The use of proper regularization techniques is therefore

important. These models are both shown to generalize better when they are trained with noise

added to the training sample labels (Bishop, 1995; Rothfuss et al., 2019).

Random Forests

A Random Forest (RF) is an ensemble of decision tree regressors such that each tree is trained

on a random bootstrap sample of the data (Breiman, 2001). A decision tree is a directed graph

that can be used for regression or classification by dividing the total feature space into a finite

number of rectangular clusters and predicting labels for each cluster (Breiman et al., 1984). To

create a decision tree, the features and thresholds to split on have to be chosen. Since finding the

optimal tree is computationally impossible due to the large number of combinatorial alternatives,

heuristic methods are employed to recursively train trees. During training the split is chosen

that creates the two nodes that most improve some loss function indicating node impurity (Za-

man et al., 2011). Node impurity is a measure of homogeneity of the samples in the node, thus

pure nodes indicate that all samples in the node are similar. Besides the randomness introduced

into each tree in a random forest by taking a bootstrap sample of the training data, RFs also

introduce variation by examining only a random subsample of features for the best split during

training for each split (Ho, 1995). The introduced variation among trees within a RFs overcome

the tendency of individual decision trees to over-fit (Kleinberg, 1996).

Conditional quantiles can be predicted by a generalization of RFs, called Quantile Regression

Forests (QRF) (Meinshausen, 2006). This was achieved by recognizing that RFs actually pro-

vide an estimation for the conditional mean E(Y |X = x) by calculating a weighted mean over

the observations of the dependent variable Y in the training set. X here is the random vec-

tor containing all independent variables from which x is a sample. Following the notation of

Meinshausen (2006) it is shown that a tree makes a prediction for a new sample x by taking a

weighted average of the training sample data. The weight wi for training sample i predicted by
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tree t is defined as:

wi,t(x) =





0 if i not in same leaf as x

1
#(samples in leaf) if i in same leaf as x

(3.2)

The prediction of tree t for sample x when trained on training data yi; i = 1, 2, ..., n, is then

given by:

µ̃t(x) =

n∑

i=1

wi,t(x)yi (3.3)

The prediction of a random forest is calculated by taking the average weights for the training

samples predicted by the trees:

wi(x) =
1

k

k∑

t=1

wi,t(x) (3.4)

The prediction of a RF is then:

µ̃(x) =

n∑

i=1

wi(x)yi (3.5)

QRFs use these predicted weights of the training samples in combination with the training

sample to fully specify an empirical distribution of the newly predicted sample. This is done by

using an adaptation of the piecewise-linear cumulative distribution function, Equation (3.1) so

that weighted samples are accepted.

Pospisil and Lee (2018) improve on QRF by using a more appropriate impurity function

on which to test the splits during training. Their method, named Random Forests for Condi-

tional Density Estimation (RFCDE), replace the Mean Squared Error (MSE) impurity used by

QRF with a impurity function specific for CDE (Izbicki and Lee, 2017). Where MSE detects

only changes in the mean of a node the new impurity is sensitive to changes in the empirical

distribution.

Random Forest can also be used for the parametric estimation of densities. Cousins and

Riondato (2019) introduce RFs that estimate the parameters of a theoretical distribution called

’CaDET’. The distribution family has to be chosen prior to the training of the model. At the

leaves of the tree only the sufficient statistics have to be stored instead of all training samples.

The use of only some summary statistics in the leaves instead of all training samples results in a

model that is smaller in size and faster to query compared to QRF and RFCDE. However, being

a parametric method CaDET will be outperformed by RFCDE or QRF when the shape of the

data does not nicely follow a theoretical distribution.

3.3.3 Evaluating predictions or distributions

Since different methods can be applied to estimate the distribution of data points, a method

to compare different distribution models is needed. When choosing a distribution model, it is

desirable that the model explains the data well. Cox (1961) gives a test statistic to compare 2

non-nested models. This test statistic uses the likelihood of the data under the given models.

The likelihood of a single data point under a model m with parameters θ is:

L(θ,m|x) = p(x|θ,m)
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When this test statistic is calculated for a data set the joint probability of observing the data

set under the distribution is calculated by:

L(θ,m|D) = p(D|θ,m)

where the probability of the dataset can be calculated by:

p(D|θ,m)
i.i.d.
=

∏

i

p(di|θ,m)

For computational reasons it is common to work with the natural logarithm of this number since

the product of many probabilities will quickly lead to a very small number, which may cause

numerical underflow. This gives:

log(L(θ,m|D) = log(

N∏

i=1

p(di|θ,m))

log(L(θ,m|D) =

N∑

i=1

log(p(di|θ,m)))

This can be used for any type of model to determine the likelihood of a dataset under the

model. Since this likelihood will always only decrease when the data set grows, it is appropriate

to normalize this value for the size of the data set used to determine it. It is also easily extensible

to a conditional version, the measure is then called Average Conditional Log Likelihood (ACLL)

(Norwood et al., 2001). Assuming the m parametrized by θ is tasked with predicting the density

of Y given X, this measure is:

ACLL =
1

N

∑

(x,y)∈D

log(p(y|θ,m, x)))

Simply using this measure and training or fitting models to find the maximum value may

lead to a model that perfectly explains the data on which it was trained, but fails to generalize

(Hawkins, 2004). This is called over-fitting. Since the aim is to create a model that finds the

underlying distribution it is desirable to have a model that performs well on data samples that it

has not yet seen. Different methods have different ways to account the performance measure for

over-fitting. When statistical models are used, typically a penalizing measure that is related to

the number of parameters is used. For RFs, performance can be measured for each tree on the

samples that are not used in the training of that specific tree, the so called out-of-bag samples.

A common method that is used to check the generalization of machine learning models is to

separate the data set into a training and test set and train the model exclusively on the data

present in the training set. The final decision of model choice is based on the accuracy (e.g.

likelihood or MSE) of the test set containing data that the model has not seen before (Maimon

and Rokach, 2010). This can be extended to an estimator that uses all the data by using cross

validation (Smyth, 2000). Using cross-validation has the advantage of being generally applicable

to any model or accuracy function. A disadvantage however, is that it may take a large amount

of computational power in order to train a model on every fold.
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3.3.4 Conclusion

There are many methods available to estimate conditional densities. In this thesis these methods

will be used to provide density estimates to be used in the simulation model. We decide on which

density model to use based on the cross-validated ACLL. We will use statistical methods and

advanced statistical methods and compare these to see which perform better. The advantage of

the statistical methods lie in their speed and interpretability. Given the size of the data set, the

advanced statistical methods are expected to perform better because of their ability to use many

explanatory features in a non-linear fashion. Among the advanced statistical methods described

we firstly chose in favour of a RF based method because these are generally easier to implement,

train and tune in comparison to NN methods. Among the RF methods we opt for the RFCDE

method developed by Pospisil and Lee (2018) because of the fully non-parametric nature of it.

3.4 Simulation

This section describes methods known in literature for setting up and verifying simulation models

in Section 3.4.1. In Section 3.4.2 methods regarding the optimization of simulation models are

described.

3.4.1 Building and verifying a simulation model

Setting up a simulation model is the process of gathering information on the system structure

and operating procedures and translating this into a computer program (Law and Kelton, 2015).

This model can then be used to test a set of interventions in order to make a decision on the

implementation of one of the interventions. In order to draw valid conclusions it is important

that the simulation model is a reasonable model for the real process. This can be established by

carefully building and validating the model.

Building a simulation model is done by first creating a conceptual model and ask people

involved in the real life process to check this. Law and Kelton (2015) recommend to keep a

documented list of assumptions made for the model. This can be divided into assumptions on

the components of the system and the interactions between these components (Banks et al.,

2010). Also the input parameters and data assumptions have to be checked, this is done by

validating the distributions that are used as sampling source. This conceptual model can then

be converted into an operational simulation model.

The validation of a simulation model can be done in several ways. Law and Kelton (2015)

suggest several techniques that are applicable to our case. The first and foremost technique used

to verify a model is to check the code of the model. For larger models it is useful to check this

per code module and use more than one person to check these parts (Law and Kelton, 2015).

Other important techniques involve the checking of the inputs and corresponding outputs of the

model. First the model can be checked to see if the outputs for various inputs are reasonable.

Next the model can be run with a set of input values for which an approximate output value is

known to see if the model adequately approximates the reality (Sargent, 2011).

Page 27



3.4.2 Simulation optimization

Simulation optimization is attempting to optimize a problem where the relation between the

input and output is unknown and there is uncertainty present (Amaran et al., 2016). This

uncertainty comes from the fact that the output is generated by a simulation. This can be

mathematically formulated as:

arg max
x∈X

E[f(x)]

There are many available optimization techniques for many different problems. We know

already a couple of aspects of our problem that help limit the search for applicable optimiza-

tion methods. For instance we know that our function f(x) is a simulation model and thus

no derivatives are available. We also know that the function is stochastic, resulting in noisy

measurements. Luckily, we know that all attributes of the input vector x are numerical instead

of categorical making it possible to use methods utilizing some distance metric between input

values. Since our function evaluation is a computationally expensive simulation run, we focus

our search on methods that sequentially decide which input vector to evaluate next in order

to find a near-optimal solution in few evaluations. Sequential methods applicable to simulation

optimization can be roughly divided into two categories: gradient approximation methods and

Response Surface Methodologies (RSM).

Gradient approximation

The Finite Difference algorithm approximates the gradient with respect to the input by comput-

ing an approximation of the gradient using a pair of simulations for every input variable (Spall,

2005). To optimize the simulation the next input set is then chosen by performing a gradient

descent step. This method requires a growing number of function evaluations as the dimension

of the input grows. Simultaneous Perturbation Stochastic Approximation tackles this problem

by using only two simulation evaluations to estimate gradients of all input variables (Hill and

Fu, 1995; Bhatnagar et al., 2013). These methods are proven to converge to a local optimum

and are easy to implement. However, they may take many iterations to converge (Kim, 2006).

Response Surface Methodologies

RSM focus on learning the relation between inputs and outputs by approximating this relation

with a functional surface, also known as surrogate model(Law and Kelton, 2015). This surrogate

model can then be used to find the inputs to be simulated next. The value of a new potential

sample point is determined by an acquisition function that uses the surrogate model, such that

the next point is sampled at the argmax of the acquisition function (Brochu et al., 2010). Meth-

ods in RSM differ on the surrogate model, acquisition function and how the surrogate model

is updated (Amaran et al., 2016). Most methods are developed for stochastic functions, but

some are used specifically for deterministic measurements. The Efficient Global Optimization

(EGO) method fits a smooth function through deterministic measurements and uses the expected

improvement to select the next points (Jones et al., 1998). The expected improvement is also

used in Bayesian Optimization (BO), a generalization of EGO, which uses a Gaussian process

as surrogate model (Frazier, 2018). A Gaussian process is a generalization of a probability dis-

tribution (which describes a finite-dimensional random variable) over functions such that every
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linear combination of these random variables follows a Gaussian distribution (Rasmussen and

Williams, 2005). These Gaussian processes can be efficiently sampled using a method called

kriging to obtain an interpolation between known values (Jones et al., 1998). This can then be

used to efficiently calculate the values of the acquisition function. This can be used in com-

bination with techniques like the Upper Confidence Bound (UCB) policy, which searches the

point with the highest UCB to sample next(Chang et al., 2007). Other policies include Expected

Improvement (EI) and Probability of Improvement (PI), these polices respectively maximize the

expected value of the improvement in the next sample point or the chance that an improvement

is observed. Where the PI-policy can get stuck in local optima, the EI-policy offers a better

trade-off between exploitation and exploration by also considering the size of the improvement.

These three policies are not necessarily restricted to the use of a GP surrogate model.

A subset of BO that aims to reduce the number of samples that have to be taken in order

to optimize a problem is Optimal Learning (Powell, 2010). Methods in Optimal Learning focus

mainly on the acquisition function. In Optimal Learning, online and offline learning are separated

by the fact that an offline learning problem has a separated learning and implementation phase,

while during online learning the implementation and learning happen simultaneously. This means

that for online learning the total reward over all measurements has to be maximized, while in an

offline learning case the best input has to be found in a limited number of measurements and the

reward during the learning process is irrelevant. Some simple heuristics are applicable in on- and

off-line learning (Frazier et al., 2008). A more advanced method, the Knowledge-Gradient (KG)

policy (Frazier et al., 2008), was originally intended for offline learning but can be used for the

online case with a small adjustment (Ryzhov et al., 2012). This policy is not necessarily restricted

to using a Gaussian-process as surrogate model. The concept behind the KG is to sample the

points that reveal the most information on all points. To calculate the expected increment in

the value of information Frazier et al. (2008) assume a priori knowledge on the correlation in

the surrogate model. This can be difficult to obtain when using other surrogate models than a

Gaussian process. The Hierarchical Knowledge-gradient only needs a known a priori structure

of the input space, which is easer to obtain in general (Mes et al., 2011). The most used policy

is the Expected Improvement policy since it performs well and is easy to implement (Frazier,

2018). The Knowledge-Gradient policy is more complicated to implement but performs better

in more complex settings (van der Herten et al., 2016).

Finding the next sample point in BO is done by finding the point that maximizes the ac-

quisition function. This however, is in itself a optimization problem. This is normally solved in

one of two ways: sampling random points and taking the maximum or using a gradient ascent

algorithm. The sampling of random point is easy to implement since only the acquisition func-

tion is needed. It can become inefficient however when the input is high-dimensional. Using a

gradient ascent algorithm can be more efficient in high dimensional space, but is more involved

to implement since besides the acquisition function also the derivative of the acquisition function

is needed. Since gradient ascent methods only provide local optima, a multi-start version is

typically used to find the global optimum (Frazier, 2018).
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3.4.3 Conclusion

The methods known in literature on building and verifying a simulation model all give the same

general way to do this. In this study we will also apply these steps when building the model. For

the optimization of the simulation model many different methods exist. Since we already know

that performing a simulation run will be computationally expensive, we want to use a method that

uses a small number of simulation runs to come to a near optimal solution. For this reason the

gradient approximating methods are not suitable. Methods developed in the BO field seem like a

good fit for the optimization problem present since these are able to perform global optimization

on continuous and high-dimensional inputs where the outputs are noisy. Only the choice of

acquisition function remains. We chose to implement the Expected-Improvement policy for the

decent performance and easier implementation compared to the Knowledge-Gradient policy.

Page 30



Chapter 4

Case Study

This chapter describes the steps that were taken in the practical application of our method on

the case of the Retailer. Section 4.1 explains the methodology. In Section 4.2 the steps taken to

create a clean data set are described. In Section 4.3 the process of estimating distributions and

choosing the best model is given. Section 4.4 explains the setup of the simulation model and the

assumptions that have to be made.

4.1 Methodology

To elucidate the steps that are applied in this thesis, we will explain these steps and their order

in this section. In Figure 4.1, all steps that will be performed can be seen. These have been

divided into four phases. The first three phases of the methodology are handled in the remainder

of this chapter. The last phase of the methodology is applied in the next chapter.

In the first phase, the data preprocessing phase, the data from the database will be trans-

formed into a cleaned data set. The input for this phase is a snapshot of the database of the

Retailer. To do this, first the raw data needs to be extracted from this database. Data from

multiple tables within the database have to be joined in order to create a single data set. This

process is mixed with the next step, feature creation. Feature creation will add calculated and

derived features that are not originally in the dataset but are expected to be useful based on ex-

pert knowledge. When these two steps have been completed an iterative process of data checking

and cleaning will be performed. The cleaning of the data will consist of handling the missing

values and removing outliers according to the method found in Chapter 3. The output of this

phase is a clean data set.

In the second phase, the cleaned data set will be used to estimate the distributions needed

for the simulation. First, we determine what sources of randomness exist in the real world. A

distribution or distribution model is needed for every source of randomness. These distributions

will be estimated using a statistical fitting method and an advanced statistical method. For both

these methods, the explanatory variables influencing the dependent variable will be investigated

first. For the statistical method, distributions will then be fitted to the data set, and the best

fitting distributions family is chosen among these fits. For the advanced statistical method,

feature selection will first take place to reduce the number of variables.
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Figure 4.1: Flowchart of the methodology used in the remainder of this thesis.
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After a subset of features is chosen, the hyper-parameters of the model will be tuned to get a

good performing model that does not overfit. To choose the best model among the statistical and

advanced statistical models, the models will be compared on performance using cross-validation.

When the distributions have been estimated from the data, the simulation model can be

built. Besides the distributions, also some knowledge from process experts is needed in this

step. This knowledge will be used to formulate a list of assumptions that lie at the heart of

the simulation model. These assumptions combined with the distributions will be programmed

into a model that will simulate trip executions. To check the validity of this model, we will

compare simulated realised durations with historic realised durations. This will be done by using

the historic planning to create a set of routes as input for the simulation. Then the historic

realised durations from the data set can be compared to the simulated realised durations when

the planning is the same. This validation process can be used to tune the model in order to

obtain the desire level of accuracy.

In the final phase, the simulation model will be used to find the optimal settings. To simplify

the optimization, we reparametrize the problem. As mentioned in Section 2.2.5, the goal is to

find a handling time setting for all five address kinds. Instead of searching for the five sets of

fixed and variable handling times, we search for a single value that represents the fraction of

stops that is completed within their planned duration. We use our distribution model to find the

input data values that should be configured for any given input data percentile. As determined

in Chapter 3, a Bayesian Optimization (BO) algorithm will sequentially decide which percentile

of the distribution of the input data values to test. In the test of a given percentile several steps

are performed. First, the percentile will be used to calculate all ten input data values to be used

in the planning optimization. Then, using these input data values, a planning will be made for

a predetermined selection of cases. These plannings will be used in a simulation to determine

the service costs made by missing time windows. The service costs combined with the plan

costs calculated by ORD make up the total costs. These total costs are used by the simulation

optimization algorithm to determine the next percentile to test.

The output of the last phase is a proposed new set of input data values to be used. This

will be compared to the current settings on more tangible KPIs to assess the value of this new

setting.

4.2 Data preprocessing

This section describes the different steps that were taken to create a clean dataset. First, the

handling of the missing values is described. Then, the methods used for removing the outliers

are explained.

4.2.1 Missing value handling

To create a dataset that can be used for distribution estimation, first the data records that are

missing values should be dealt with. As described in Section 3.2.1, the options are to either

remove data points missing values or impute the missing values.

Upon inspection of the data set it was seen that mainly columns regarding the realisation
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data contained missing values. In Table 4.1 the number of missing data values can be seen. Since

the remaining data set is still of reasonable size we decide to use list wise deletion on the data

entries that are missing values and simply remove these from the data set.

Table 4.1: Variables in data set missing values

Variable Number of missing values Percentage missing values

realisedStartInstant 17852 3.82%

realisedFinishInstant 18798 4.03%

realisedDurationMinutes 23726 5.08%

id unionResourceCombi 385 0.08%

Any of the above 23789 5.09%

4.2.2 Data Cleaning

The cleaning of the data set is done in two steps:

• Visual inspection for aberrant data

• Statistical outlier removal

The data is first inspected using some summary statistics and visualizations. This way we can

quickly detect values which we know are incorrect and remove these. Then a statistical procedure

is used to determine which data points are outliers and these are also removed.

Visual data inspection

During inspection using summary statistics, it was found that some variables, which we know

are non-negative, contain negative values. For instance it is known that all variables that contain

any form of durations have to be positive. The entries containing negative values are removed

from the dataset.
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Figure 4.2: Histogram of the relative duration delta
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After inspecting the summary statistics some visualizations are investigated for strange values.

In Figure 4.2 one of these visualizations can be seen. It is clearly visible that there is a peak of

data points having a relative duration delta of 0. Further inspection revealed that these data

entries had a delta of exactly 0 and the planned start and finish times exactly equal to the

realised start and finish times. This is a clear indication that either the planned or the realised

times of these data points are incorrect. All data points that have a delta of exactly 0 have also

been removed from the data set.

Statistical outlier removal

The removal of outliers is essential when working with real world data. We will be removing

outliers by looking at one variable at a time. We opt for this univariate removal of outliers

because it is fast and easy to perform. Before we can remove outliers, we have to split the

data set into subsets for which we can assume that the variables of interest are produced by the

same underlying distribution. This firstly means that we will look at the stop and travel actions

separately. The features that are used to determine whether an action is an outlier, are for both

the stops and travels the same: the deviation between the planned and realised duration and the

relative deviation.

For the stop actions, all actions were processed in a single pass. This can be done because the

stops are all roughly of the same duration, meaning that the deviations and relative deviations

can be assumed to come from the same underlying distributions. The MAD method was applied

as described in Section 3.2.1, with a threshold values of 3. That is, all data point have a MAD

larger than 3 are removed from the data set. Of the 141.809 stop actions, 32.284 were deemed

outliers and were removed from the data set.
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Figure 4.3: KDE plot of the planned duration of travel actions. Red lines indicate the values of

the planned duration on which the data was split before outlier removal.

For the travel actions a different approach was used. Since the travel actions can differ much

in length, the planned and realised duration are not all of the same scale. To overcome this,

we first divide the travel actions in categories based on the planned duration. To determine

at what values of the planned duration to split the set, we looked at the distribution of the

planned duration. In Figure 4.3, we can see that three clusters can be identified from the Kernel

Page 35



Density Estimation (KDE) plot of the planned durations. The travel data was split such that

these clusters were separated and a group was created for all travel actions longer than the third

cluster. These splits were made at 30, 90 and 180 minutes planned duration. For every split, the

same cleaning procedure is used as for the stop actions. As there is a relatively large number of

short stops, separating these groups before the cleaning ensures that the longer trips can have a

larger deviation. When all trips would have been cleaned in a single group, the large number of

small trips and their small deltas would cause the estimated distribution of the deviation of all

trips to be narrow. This would cause the cleaning to remove the long trips with deltas that are

not that large compared to their own duration but that are large when comparing them to the

deviation of the short trips.

Figure 4.4: Comparison of data set with and without outliers, of the travel actions. Every blue

dot represents a data point. Red lines indicate the values at which the data set was split before

removing outliers.

In Figure 4.4, the result of removing the outliers can be seen. We can see that the deltas of

the cleaned short trips have a narrow distribution. The deltas of the long trips have a more wide

distribution. Of the 137.893 travel actions, 21.707 were deemed outliers and have been removed

from the data set.

4.3 Distribution estimation

This section will give the methods that are used to estimate the distributions. For both the

loading times and the travel times, distributions are needed as input for the simulation model.

Next to that, also a distribution is needed to account for some variation in the start time of a

trip. For these three sets of distributions, separate models are trained or estimated. Section 4.3.1

describes the steps taken to create a distribution model for the service time. In Section 4.3.2 the

process for estimating the distributions for the travel times is described. In Section 4.3.3, this

process is described for the distribution of the deviation in start time.
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4.3.1 Service time

To create a distribution model for the service times, we need to know on what explanatory

variables the service time duration depends. We have some a priori knowledge from the current

modelling in ORD and we can extract relations between the explanatory variables and the

duration of a stop from the data.

We firstly use the pearson correlation coefficient to gain insight into the variables that influ-

ence the realised total duration of a stop. In Figure 4.5, the correlation coefficient matrix can

be seen for the data on the stop actions. In this figure, mainly the top row of the matrix is of

interest, as this shows the correlation between our dependent variable and the explanatory fea-

tures. We see that the number of delivered pallets, the planned wait time and the realised time a

truck arrives before the start of the time window all have some correlation with the realised total

duration of a stop. This indicates that these variables have to be considered when estimating

distributions.

realisedDuration

totNumPalDeliver
dayNr

StartTimeDeviation

hourRealisedStart

realisedStartBeforeTW

realisedDuration

totNumPalDeliver

dayNr

StartTimeDeviation

hourRealisedStart

realisedStartBeforeTW

1.00 0.49 0.02 0.05 0.01 0.36

0.49 1.00 -0.14 0.03 0.10 0.03

0.02 -0.14 1.00 0.09 -0.09 0.03

0.05 0.03 0.09 1.00 0.06 -0.11

0.01 0.10 -0.09 0.06 1.00 -0.04

0.36 0.03 0.03 -0.11 -0.04 1.00

1.00
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1.00

C
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Figure 4.5: Pearson correlation coefficient matrix for the numeric variables of the stop data. The

top row shows the correlation of explanatory variables with our independent variable: realised

duration.

In Figure 4.6, the features importances of all explanatory variables can be seen. These were

calculated by fitting a random forest to the data on the stop actions. This measure gives a rough

estimate of which variables influence the duration of a stop. Since the feature importance is

not able to deal with correlated features such as finishAddressID and finishAddressKind,

all variables that have such correlation should still be treated with care. From Figure 4.6 we

conclude that the distributions we estimate or learn for the stop time duration will have to deal

with the following variables:

• realisedStartBeforeTW

• totNumPalDeliver

• StartTimeDeviation

• finishAddressID

The use of these variables intuitively make sense for the most part. The stop durations that

Page 37



rea
lis

ed
Star

tB
efo

reT
W

tot
NumPalD

eli
ve

r

Star
tTim

eD
ev

iat
ion

fin
ish

Addres
sID

res
ou

rce
ID

plan
ned

Durat
ion

With
ou

tW
ait

ingTim
e

hou
rR

ea
lis

ed
Star

t

wee
kd

ay
Rea

lis
ed

Star
t

deli
ve

rD
ry_

Rnd

deli
ve

rF
roz

en
_R

nd

fin
ish

Addres
sK

ind

res
ou

rce
Kind

sto
pNumber

numberS
top

sIn
Trip

sto
psL

eft

Feature

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e 

im
po

rt
an

ce

Figure 4.6: Bar chart of feature importance obtained training a random forest using all explana-

tory variables. Random forest settings: number of trees = 1000, minimum number of samples in

leaf = 5.

are in the dataset only give the total time a truck spent at a location, so this will in some cases

include waiting time if the truck arrives before the time window. The start before the time

window can also be seen as the expected waiting time. Also for different address types separate

handling time settings are configured. In these handling time settings there is a fixed and variable

time per pallet configured. So one would expect that the amount of pallets and the address at

which a stop occurs influence the duration of a stop. The start time deviation of a stop is the

only variable that we cannot explain using common sense.

Using the knowledge on which variables influence the total duration of a stop, models for the

distribution of the total stop duration will be made. A statistical method will be compared to

an advanced statistical method, and the best performing model is chosen. The performance of a

model is measured using the cross-validated Average Conditional Log Likelihood (ACLL).

Simple statistical distribution model

For the statistical distribution model we choose to use univariate models. This choice was

made since univariate distributions offer a larger set of distribution families to choose from

than multivariate distributions. Also, dealing with skewed distributions is more involved in

a multivariate setting. When dealing with categorical variables, we have to split the data into

multiple categories for both univariate and multivariate distributions. However, smaller amounts

of data per category are more problematic in a multivariate setting than in a univariate setting.

To estimate distributions of the total stop durations, the data first has to be divided into groups

for which we can assume that the observations come from the same distribution. We observed

that the duration of a stop is dependent on the location, expected waiting time, deviation in start

time and the number of pallets that is delivered. For this distribution model we choose to let the
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waiting time and start time deviation out. This means we only use the location and the number

of pallets to fit a distribution for the handling time. To account for the location, the data is

divided into separate sets for each address kind. While the feature importance of the address is

higher than that of the address type, we opt for the simpler model using only the address types

to account for the location. Using individual addresses may cause issues since there are some

addresses for which there are not enough stops in the data set to estimate a distribution. The

amount of pallets that is delivered in a stop is accounted for using a constant time per pallet.

This can also be seen as considering the time per pallet to be a constant and attributing all

variation in the stop duration to the fixed time. This choice was made based on the fact that

the Retailer expected deviations in stop durations to be caused by differences in time it takes to

park the truck and sign paperwork.

The time per pallet is estimated using linear regression for each individual address kind.

Using the estimated time per pallet we subtract the variable time from the total duration so the

remaining duration reflects the estimated fixed time of a stop. The distribution is then fitted for

the fixed time of a stop per address kind. The fitting of a distribution on a single group of data

points is done by first fitting several different distribution types to the data. The distribution

types that are used are:

• Gaussian distribution

• Log-Normal distribution

• Gamma distribution

• Exponential distribution

• Beta distribution

• Inverse Weibull distribution

• Weibull minimum distribution

For each distribution, the maximum likelihood estimation technique is used to estimate the

parameters. When all distribution types have been fitted, the Kolmogorov-Smirnov test is used

to determine which distribution type has the best fit to the data. The theoretical distribution

with the best fit is selected and used afterwards.

Besides the theoretical distributions also empirical distributions are fitted for each of the

address kinds. A KDE was fitted by using a rule of thumb to select the bandwidth.

The theoretical and empirical distributions that were fitted on the stop data per address kind

can be seen in Figure 4.7.

2-layer statistical distribution model

From the feature importance analysis we know that the location of the stop contains information

about the duration. However, the simple statistical model only used the address type and not

the individual addresses. Therefore, a statistical model that attempts to find distributions for

every individual location is made. However, since for some locations there are little observations

present in the data set we need to prune the distributions of locations for which the distribution

is worse than the distribution fitted on it’s parent address kind. Also a minimal number of data

points is set so that no distributions are made if the individual address has less data points than

this threshold. So this method will first fit distributions for every address kind as was done
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Figure 4.7: Theoretical and empirical distributions fitted to the stop data per addresskind after

subtracting the variable time using the estimated time per pallet gained from the regression

analysis.

by the previously described method also used for the simple statistical model. Then it will fit

for every individual address a distribution and check if the fit of the distribution fitted for the

individual address is better than the fit of the distribution that was fitted for the address kind.

If the fit is worse, this distribution is removed. This model cannot be visualized easily since it

contains over 300 separate distributions. We will therefore simply look at the performance to

judge the model.

Table 4.2: Log likelihood for the different models on the test set
Model distribution type variable time Mean ACLL Standard deviation ACLL

Simple statistical Theoretical regression estimated -4.35 0.111

Simple statistical Empirical regression estimated -4.25 0.085

2-layer statistical Theoretical regression estimated -4.26 0.053

2-layer statistical Empirical regression estimated -5.16 0.398

To compare all statistical models, 5-fold cross validation is performed with the ACLL as per-

formance measure. The results can be seen in Table 4.2. From this we can see that the model

using an empirical distribution without the distributions on the individual addresses performs

slightly better on average than the other models. While it is close to the 2-layer model using

theoretical distributions on average, and may be even worse when regarding the standard devia-

Page 40



tion of the performance, we still prefer the empirical statistical model because it is much simpler.

We will use this model to compare to the advanced statistical model that will be fit to select the

most suitable model.

Random Forest

To estimate the conditional densities using an advanced statistical method, the Random Forests

for Conditional Density Estimation (RFCDE) is used. Before we can estimate the performance of

the model, feature selection and hyper parameter tuning has to be done. We choose to first select

the features that will be used using some standard hyper parameters. After the feature selection

has been done, the hyper-parameters are tuned. The selected features will not be altered during

or after the tuning of the hyper-parameters.
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Figure 4.8: 5-fold cross validated log likelihoods of RFCDE trained using different sets of features

Feature selection is done using the list of features sorted on feature importance calculated by

the regular RF, as can be found in Figure 4.6. For quick reference we will refer to these features

based on their rank, with feature 1 being the most important feature according to the standard

RF. The features will be added one by one starting from feature 1. The performance will be

measured in the same way as for the statistical methods (5-fold cross validation on ACLL). In

Figure 4.8 the performance of the RFs can be seen for different sets of features. In this image

some jumps in performance are visible when te 2nd and 4th features are added. After the adding

of the 4th feature the performance does not significantly improve. To check whether the addition

of the 3rd variable is needed also a forest has been fit on the combination of feature 1,2 and 4.

We can see clearly that using the first four features performs better than using features 1,2 and

4. Based on Figure 4.8 we choose to use feature 1 to 4. These are:

• realisedStartBeforeTW

• totNumPalDeliver

• StartTimeDeviation

• finishAddressID

Now the features to train the RFCDE on have been chosen, the hyper-parameters can be
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tuned. Using the code package of Pospisil and Lee (2018) there are just three tunable parame-

ters. The number of trees, number of features considered in each split and the minimal number of

samples present in a leaf node can be adjusted. Since some of these parameters will also influence

the time it takes to draw a random variate of a sample during simulation, the tuning of these

parameters will be done considering both the performance and the sample time. Empirical stud-

ies have shown that using only a subset of the features for each split has worked well. Suggested

rules of thumb are d 13ke or dk 1
2 e where k is the total number of features. Since these rules will

both result in a value of 2 we decide to simply use this. The tuning of the number of trees and

the leaf node size will be done consecutively with the number of trees to be decided and fixed first.

In Figure 4.9 the performance and speed of a RFCDE with differing numbers of trees can

be seen. We see that the performance does not increase much after 200 trees while the sample

time keeps increasing. We therefore chose to use 200 trees in the RFCDE model. In Figure 4.10

the performance and speed of RFCDE can be seen when using different minimal leaf node sizes.

From this figure we first of all see that the performance is not affected much by changes in node

size. The sample time does not change much, but it does increase slightly with the node size.

We therefore chose to use the default minimal node size of 10.
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Figure 4.9: Performance (box plot, left

axis) and sample time (line, right axis)

when using different amounts of trees in the

RF. Node size parameters was set to 10.
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Figure 4.10: Performance (box plot, left

axis) and sample time (line, right axis) of

RFCDEs using several minimal leaf node

sizes.

Conclusion

The RFCDE model has a mean ACLL of -4.04 with a standard deviation of 0.017. The final

statistical model has a mean ACLL of -4.25 with a standard deviation of 0.085. From this we

conclude that the RFCDE model has a higher overall performance. We therefore chose to use

the RFCDE model for the stop time distributions in the simulation.

In order to gain some insight into the RFCDE model, the individual conditional expectation

plots of the median of the stop duration distribution are plotted for the three numerical variables

in Figure 4.11. These plots portray what would happen to the median of the predicted stop

duration distribution, when the feature of interest is altered while the other features remain the

same. Every black line in the plot corresponds to one data sample for which this is done. The
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red line in the plot is the average of these black lines, also known as the partial dependence.

These plots can only show what happen to the median of the distribution, meaning that changes

in the spread of a distribution cannot be gathered from these plots. In the left plot in Figure 4.11

the partial dependence of the stop duration on the start time before the time window can be

seen. On average the stop duration becomes higher when a truck arrives more minutes before

the start of a time window, an effect we would expect. We can also see in this plot that it differs

per case how much the stop time duration increases. We also see that the median stop time

does not increase any more when arriving more than 80 minutes before the time window. In the

middle plot the effect of a larger number of pallets that have to be unloaded in the stop can be

seen. As expected, the duration of a stop increases with the number of pallets that have to be

unloaded. How much this increases, is somewhat of the same scale for most samples. The right

plot show the effect of the deviation in start time from the planned time. A positive value for

the start time deviation indicates that the action has started later than originally planned. The

plot seems to indicate that on average the duration of a stop tends to be longer when the truck

arrives later. However, there seem to be some samples for which this may not be true.

Figure 4.11: Individual conditional expectation plots of the mean stop duration of the three

numerical features. The thick red line is the partial dependence, which is the mean of all

individual conditional expectation plots.

4.3.2 Travel time

To estimate the duration of a travel action the same procedure will be followed as for the stop

durations. In the preliminary data exploration we have seen that on average the travel time

predictions made by the map are decent and that the realised duration vary around the predicted

duration. Creating distributions for every start and finish pair is not feasible with the amount of

data that is present. We therefore chose to create distributions for the deviation between planned

and realised durations. During simulation a deviation can be drawn from the distribution and

added to the planned duration giving a random travel duration. The deviation in duration is
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more on the same scale for different lengths of trips than the total duration. This can be seen

as a form of normalization. To chose the best model, we will use a statistical method and an

advanced statistical method to estimate the distributions. Before this is done we will first look

at what other factors influence the deviation in travel time.

To determine which features influence the deviation in travel duration, we again use a pearson

correlation matrix, which can be seen in Figure 4.12. From the correlation matrix, we can see

that the planned duration and the travel distance correlate with the deviation in duration. This

correlation was already visible in Figure 4.4, where it is clear that the travel actions that have

a longer planned duration also deviate more. We can also see that the deviation in duration

correlates with the planned waiting time of the next action and the estimated waiting time.

The difference between these two variables is small, the former only indicates the waiting time

present in the planning, while the latter subtracts the deviation in start time of the travel from

this planned waiting time. That this variable shows some correlation can be logically explained.

A driver can see in the planning the time windows for the next stop and how much waiting time

is planned. Accounting for any previous delays he may have had, subtracting the deviation in

start time of the travel action from the planned waiting time at the next stop results in the

expected waiting time. When a driver expects to have some waiting time, he can chose to simply

take a break during the travel instead of driving through to the next stop and waiting there.

To check the importance of features, again the feature importance is calculated using a

standard RF. In Figure 4.13, it is again clearly visible that the estimated waiting time before the

next stop is an important feature. After that, the planned duration and distance rank second

and third. The other features seem to be relatively unimportant according to the calculations of

the RF.

durat
ion

Delta

plan
nedDurat

ion

tra
vel

Dista
nce

dayN
r

Star
tTim

eD
evi

atio
n

hourReal
ise

dStar
t

week
dayR

eal
ise

dStar
t

Pla
nnedWaitT

imeN
ext

Actio
n

Estim
ate

dWaiti
ngTim

eN
ext

Stop

durationDelta

plannedDuration

travelDistance

dayNr

StartTimeDeviation

hourRealisedStart

weekdayRealisedStart

PlannedWaitTimeNextAction

EstimatedWaitingTimeNextStop

1.00 0.48 0.50 0.03 -0.08 0.26 0.00 0.70 0.73

0.48 1.00 0.99 -0.02 0.24 0.04 0.01 0.54 0.43

0.50 0.99 1.00 -0.03 0.23 0.04 0.01 0.55 0.44

0.03 -0.02 -0.03 1.00 0.03 -0.02 -0.00 0.03 0.01

-0.08 0.24 0.23 0.03 1.00 -0.17 0.02 0.22 -0.32

0.26 0.04 0.04 -0.02 -0.17 1.00 0.00 0.10 0.18

0.00 0.01 0.01 -0.00 0.02 0.00 1.00 -0.01 -0.02

0.70 0.54 0.55 0.03 0.22 0.10 -0.01 1.00 0.75

0.73 0.43 0.44 0.01 -0.32 0.18 -0.02 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Correlation coefficient

Figure 4.12: Pearson correlation matrix for numerical features of the travel times. durationDelta

is the dependent variable.
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Figure 4.13: Features of the travel times sorted on feature importance as calculated by a RF.

Statistical distribution model

To fit the statistical distribution model we will again use the same approach as was used for the

stop duration distributions. From the correlation matrix and feature importance we know that

both the estimated waiting time and the planned duration influence the deviation in travel time,

meaning that these have to be accounted for somehow in our distribution model.

Table 4.3: The four categories of travel actions with their respective thresholds of the planned

total duration in minutes.
Name Lower bound Upper bound

short 0 30

middle-short 30 90

middle-long 90 180

long 180 ∞

To account for the planned duration we split up the travel action data based on planned

duration. The thresholds for these splits are the same as were used in the cleaning step, these

can be found in Table 4.3. The estimated waiting time in the next stop is used to normalize the

deviation in travel time. This is done by using a linear regression to estimate the slope of the

relation between the estimated waiting time and the travel time deviation for every category.

After normalisation, theoretical distributions are fitted in the same way as was done for the stop

duration. That is, a set of distribution families is fitted using the maximum likelihood method,

from these the best fitting distribution is chosen based on the Kolmogorov-Smirnov test. Besides

the theoretical distributions also a empirical distribution is estimated in the form of a KDE.

In Figure 4.14, the resulting theoretical and empirical distributions can be seen for the four

categories. For every category except the “long”-category, the relation between the estimated

waiting time was nearly 0. We therefore decided to not use the normalization on the estimated
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waiting time for these categories.
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Figure 4.14: Distributions fitted for the travel duration delta on the four categories of travel

actions. The distributions are fitted after normalization of the estimated waiting time in the

next stop.

In Table 4.4, the performance of the two models can be found. From this we can conclude

that the empirical model performs slightly better than the model using theoretical distributions.

The empirical model will be compared to the model that is fitted using the advanced statistical

method.

Table 4.4: Performance of the two statistical models measured using 5-fold cross validation

Model Distribution type Mean ACLL Standard deviation ACLL

Statistical Theoretical -3.52 0.076

Statistical Empirical -3.49 0.072

Random Forest

As advanced statistical method a RFCDE is used to estimate densities. The same procedure is

followed to select features and tune hyper-parameters, as was done for the density estimation of

the stop durations. That means that first the feature selection is done using standard hyper-

parameters, after which the hyper-parameters will be tuned one by one.
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Figure 4.15: Performance of RFCDE trained using different sets of features. Features are added

one by one sorted on the feature importance calculated by the vanilla random forest.

Feature selection is done by using the list of features sorted on feature importance, as calcu-

lated by the regular RF portrayed in Figure 4.13. These features will be added one by one and

the performance of the RFCDE will be measured using 5-fold cross validation. The performance

of the resulting RFCDEs can be seen in Figure 4.15. We can see clearly that the addition of the

planned duration increases the performance drastically. Adding the distance and finish location

features increases the performance slightly. The addition of the 5th feature does not increase the

performance noticeably. Therefore, we chose to use the first four features.
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Figure 4.16: The performance (box plot, left

axis) and sampling times (line, right axis)

when using different amount of trees in the

RFCDE.
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Figure 4.17: Performance (box plot, left axis)

and speed (line, right axis) of RFCDE for dif-

ferent leaf node sizes.

The number of features to consider in each split is decided in the same way as was done for

the stop durations. This means, that since we have four features, both rules of thumb suggest

considering two features in each split. We therefore use a value of two for this hyper-parameter.
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In Figure 4.16, the performance and speed can be seen when different amounts of trees are

used in the RFCDE. We can see that the performance increases slightly when more trees are

used. This increase in performance stagnates between 100 and 200 trees. Also, the time it takes

to sample random variates from the model increases with the number of trees. From the amount

of 200 trees onwards, the sample time increases almost linearly. We therefore choose to use 200

trees in our model.

In Figure 4.17, performance and speed results of the RFCDE with different numbers of

minimal leaf node sizes can be seen. Using a minimal node size of more than 10 does not

increase the performance noticeably. Since using an minimal node size of 10 also was the fastest

in our test, we chose to use this.

The final RFCDE that will be compared to the statistical model is trained using four features:

estimated waiting time, planned duration, distance and finish location. In each split, two features

are considered by the model to split on. The forest contains 200 trees, and has a minimal node

size of 10.

Conclusion

The statistical model using empirical distributions has a mean ACLL of -3.49 with a standard

deviation of 0.072. The final RFCDE model has a mean ACLL of -3.22 with a standard deviation

of 0.051. We therefore conclude, that the RFCDE model has the higher overall performance.

The RFCDE will be used in the simulation model.

In order to gain some insights into the effects that the features have on the travel time

deviation, the individual expectation plots of the mean travel time deviation for the numerical

features can be seen in Figure 4.18. In the left most plot we can see that the estimated waiting

time increases the mean travel time deviation in some, but not all cases. The same can be said

for both the planned duration and the travel distance.

Figure 4.18: Individual conditional expectation plots of the mean stop duration of the three

numerical features. The thick red line is the partial dependence, which is the mean of all

individual conditional expectation plots.
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4.3.3 Trip start time

The start of a trip has some variation with respect to the planned start. To account for this

variation in the simulation, a distribution is needed. Since the data on the duration of loading

at the depot is not usable, as explained in Section 2.2.4, we cannot use the variation in these

loading times as the source of the variation in the departure time from the depot. We may not

have valid data on the duration of the stop at the depot, but the departure time from the depot

is correct. We therefore will use a distribution that models the deviation in departure time from

the depot with respect to the planned departure time, thereby leaving the duration of stops at

the depot completely out of the simulation.

To model this variation, we chose a simple univariate distribution that does not depend on

any features. Again, both theoretical and statistical distributions have been fit to the departure

time deviation. These distributions and the underlying histogram can be seen in Figure 4.19.
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Figure 4.19: Theoretical and empirical distributions fitted on the deviaiton in departure time

from the depot.

To test whether the theoretical or empirical distributions would explain unseen data better,

5-fold cross validation is performed using the ACLL as performance measure. In Table 4.5, the

results can be seen. Since the theoretical distribution has a lower standard deviation of the

ACLL and the means of the two models are similar, we choose to use the theoretical distribution

in the simulation.

Table 4.5: Performance of the two statistical models fitted on the departure time deviation

measured using 5-fold cross validation.

Distribution type Mean ACLL Standard deviation ACLL

Theoretical -4.905 0.0036

Empirical -4.905 0.0041
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4.4 Simulation model

This section explains the assumptions that lie at the heart of the simulation model. Then,

we describe how the model was implemented. After that, some insight into the validity of the

simulation model is given.

4.4.1 Assumptions

To create a simulation model it is essential to list all underlying assumptions. When these

assumptions are listed, one can better understand were the discrepancies between the model and

the real system lie. Below the assumptions and their explanations can be found.

1. Routes are not altered during execution

The routes that are planned by ORD, are executed as fully as planned. This means that also

stops that occur after time windows or opening times are still executed. This assumption

prevents us from having to make guesses on what happens when a truck arrives late.

2. Stop and travel duration are only dependent on the features on which the

distribution models are trained

This means that the stop duration is dependent only on the location it occurs, the number

of pallets that are delivered, the number of minutes of the start before the time window and

the deviation in from the planned start time. The duration of a travel action is dependent

on the expected waiting time at the next stop, the planned duration, the distance and the

destination location. This means that there are no dependencies on for instance drivers or

vehicles.

3. All routes are independent

The departure time from the depot varies around the planned time and is independent of

all other factors. This means that no dependencies exist between routes that may be part

of a larger multi-trip route.

4. Deliveries are missed when the driver arrives after the time window

The Retailer has indicated that both missing time windows and opening times are unde-

sirable, as time windows are always within opening times, we simplify this by considering

all deliveries after their time windows to be missed deliveries. We treat the durations of

these deliveries as normal and add a penalty for every missed delivery to the total costs.

These assumptions have been checked with the relevant experts at ORTEC. It is possible

that assumption 3 could have been avoided when there was valid data available of stops at the

depot. Unfortunately, this data is not present and therefore this assumption has to be made.

4.4.2 Model implementation

The simulation model essentially has to calculate the number of deliveries that fall outside their

time windows. The input for this model is a planning created by ORD and the distributions

models. This was implemented in three parts.

First, the planning file that is created by ORD is converted to a data structure that is more

convenient for the simulation. The planning file written by ORD creates separate nodes for every
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route. Within a route, all the loading and unloading actions for every order is separated. Also,

when a truck has to travel, this travel time is added to the (un)loading action that comes after

this travel action. For the simulation input file, this structure is converted so that stop actions

and travel actions are separated. Also, all loading actions at the same location are joined so

that there is a single action for one stop. This creates a list per route with all the actions that

the simulation will sample a duration for. All the features that are needed by the distribution

models are written to the actions as attributes.

The second part of the simulation model is tasked with sampling the correct durations from

the distribution models. This part is greatly helped by having the right data structure. In

a single run of the simulation, we first create a loop that runs over the list of routes. Then,

for every route we consecutively draw a duration for every action in this route. This is done

for the stop and travel actions by predicting the conditional cumulative distribution based on

the attributes of the action from the corresponding RFCDE. We sample a duration by using

the inverse transform sampling method. That is, we draw an uniform sample between 0 and 1

and interpret this as a probability. Then, the duration that corresponds to that probability is

calculated using the conditional cumulative distribution that was predicted by the RFCDE.

During the last part of a single simulation run, the KPIs are calculated. For every route,

the number of stops and corresponding number of pallets that arrive outside the time window

are counted. Then the KPIs of the case are calculated by summing the KPIs of the individual

routes. When multiple cases are used, there is an additional summation that joins the KPIs of

the cases.

4.4.3 Model validation

To validate the simulation model, a comparison will be made between the historic data and the

simulation model. In order to make a good comparison, we will use the routes from the database

and compare their respective realisations to realised routes created by the simulation model when

the same planned routes are given as input. This means that the input for this simulation does

not come from ORD, but was directly created from the database.

To achieve this, a script was written to create input files for the simulation using planned

routes from the data set. However, since the cleaning of data was done on an action level, not

all routes could be used, as some actions may have been removed from the route in the data

set. Therefore, we used routes for which none of the actions were removed from the data set

to create a set of “clean” routes. From this set of routes, which contained over 32000 routes,

500 routes were picked randomly to create the validation set. This was done to reduce the

computational time. During the simulation of the validation set, the results of every action were

written to a dataframe so that these can be compared to the historic durations. This increased

the computation time for simulating 500 routes from approximately 5 seconds to 10 minutes.

The simulation model performed 5 runs using the validation set as input. To compare the

results of the simulation to the realised routes in the data set, the difference between the realised

historic durations and simulated realisations of the same actions or routes are investigated.

In Figure 4.20, the deviation in minutes between the historic realised times and the simulated

realised times can be seen. The deviations have been calculated for stop actions, travel actions
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Figure 4.20: Deviation between the realised durations in the historic dataset and the realised

durations of the simulation when the same planned routes are used.
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Figure 4.21: Relative deviation between the realised durations in the historic dataset and the

realised durations of the simulation when the same planned routes are used.

and complete routes. We can see that both the simulated stop and travel durations are slightly

longer than the historic durations. The full route length is almost 15 minutes longer on average

than the historic realised route duration. This means that our simulation somewhat overestimates

the durations.

In Figure 4.21, the relative deviations between the realised historic durations and simulated

realisations is shown. These deviations are relative to the realised historic durations. Here, not

to our surprise, we also see that our simulation slightly overestimates the durations compared to

the historic durations. However, we can now see that the overestimation might be caused by the

stop actions, as these relatively deviate on average more than the travel actions or routes.

These durations are not the KPIs that will be used during the optimization. Since our service

costs are determined by a number of missed time windows, these should be investigated as well.

This was done by looking at the percentage of stops that started after the time window. In the

historic realised routes from the validation set, 8.34% of the stops started after the time window.

In the simulated realisations this was 8.97% of the stops on average. Since this model will be

used only to compare KPIs of different input parameter settings with each other and not with

the KPIs of the real system, this increase is small enough for our model to be used.
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4.4.4 Conclusion

In this section the assumptions made by the simulation model have been explained. Also, a

validation of the simulation model has been performed by comparing it to routes from the data

set. The validation of the simulation model has revealed that it slightly overestimates some

durations. This could be caused by some missing dependencies or assumptions that are violated.

However, we believe that the model could not be improved with the data that we have used.

Also, the percentage of stops that are outside the time windows is overestimated by 7.6% by the

simulation model. Besides this, the simulation model will be used to judge the effect of changing

input data values. This effect will be measured by comparing outputs of the simulation model

with new settings to the output of the simulation with the old setting. So, while the model may

not give the most reliable absolute values for some KPIs, we can still use it to investigate the

relative effect of changing parameters.
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Chapter 5

Simulation Optimization

This chapter explains how a sequential optimization algorithm can be used to find the best

input data values. Section 5.1 explains a method that can be used to incorporate knowledge on

the input data into the optimization. In Section 5.2, the algorithm that was used is described.

Section 5.3 gives some results of running the algorithm. In Section 5.4, proposed new input data

sets are compared to each other and the current setting. Finally, Section 5.5 draws conclusions

from the results seen in this chapter.

5.1 Reparametrization

Optimizing the input of a simulation increases in difficulty with every added parameter to opti-

mize over. Therefore, it is useful to reduce the amount of parameters that need to be optimize.

This will reduce the number of iterations the optimization algorithm needs to find the location

of the minimum. Given the relatively long computation time per iteration, this dimensionality

reduction is needed to keep the total computation time in check. We use the data set to create

a model for the input data values to reduce the number of parameters to optimize over to 1.

The motivation behind this model starts with realizing that when the average parameters

are configured, approximately 50% of the stops will be shorter than planned and 50% will be

longer. Since missing time windows will incur some costs, we might want to slightly overestimate

these stop times in the planning so that a larger percentage of the stops are completed within

their planned durations. We call this percentage the service level. So, to reduce the number of

parameters to optimize over, we use this service level instead of the individual handling times

setting for all five address types. Thus, we need a model that gives us the handling time settings

that correspond to any percentage of stops that ought to be completed within their planned time.

The handling time settings generated by this model will not guarantee that a certain stop service

level is reached. We therefore call this estimated percentage of stops the handling time percentile

to differentiate it with the service level. The reason for this difference between the estimated

and realised percentage will be explained later. When this model is used in the simulation

optimization, the optimization algorithm will attempt to find the handling time percentile that

gives the lowest total costs. Thus, in every iteration, the optimization algorithm proposes a

percentage which is then converted to the handling time settings for every address type by our
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model which are then used to plan all deliveries.

An added benefit of this dimensional reduction is that all address types will be treated

approximately equal. When we would have used the separate handling times to optimize over,

the effect of changing handling times of the address types that have only a limited number of

orders, is hard to judge and therefore difficult to find the best value for. The output of the

simulation would then be dominated by the address types that have relatively many orders.

To find the handling time setting that correspond to the handling time percentiles, we use

an RFCDE model. Recall that the model that is used for the distributions of the stop times in

the simulation model was trained on four features: number of delivered pallets, address, realised

start before time window and the deviation in start time from planning. The model that will

be used to calculate the distribution of the handling times is trained using these same features

except using the address type instead of the individual address. The set of hyper-parameters

that is used to train the handling time distribution model is the same as the set that was used

for the stop time distributions.

This RFCDE-model predicts a cumulative distribution for every combination of the four

features. We use these predicted cumulative distributions to calculate what the handling times

setting should be for a certain handling time percentile. Since in the planning ORD explicitly

plans waiting time, we want to configure the handling times so that these do not include this

waiting time. Also, in the planning we assume that all actions start at their planned time. For

these two reasons, we use the RFCDE-model to predict the distributions of the handling times

when setting both the start time before time window and the deviation from the planned start

time to 0. This reduces our RFCDE-model to accept only the address type and number of pallets

and returns a conditional cumulative distribution. The cumulative distribution is the relation

between the duration of the stop and the percentile of realised stops that are shorter than that

duration. To calculate the relation between the handling time percentile and the individual

handling time settings, we use a linear regression to determine the fixed and variable handling

time. This is done per address type and percentile. So, for a certain address type and percentile,

the RFCDE-model predicts the distribution of the stop duration on that address type for a range

of pallets amounts, and takes the duration from these distributions that correspond to the desired

percentile. Then a linear regression is performed on this set of durations and number of pallets

to find the fixed and variable handling time for this address type and percentile.

The resulting relation between the handling time percentile and the corresponding handling

times settings can be found in Figure 5.1. These have been plotted for percentiles between

0.01 and 0.99 to prevent the figure from being distorted from strange durations at the limits.

The axes of all plots are aligned equally so that the differences between the address types can

more easily be spotted. We notice that the relation between the input data values and the

handling time percentile seems to be almost linear between a percentile of 0.2 and 0.7. A higher

handling time percentile than 0.7, is associated with a steep rise of the fixed handling time for all

address types. Note that the estimations of the parameters for the address types “RND 45” and

“RND 60” have a larger uncertainty. This can be explained by the fact that these address types

had fewer associated addresses and therefore fewer data points than the other address types.

When looking at the fixed time, we note that the address types “SHOPRNDYD” and “shop”

have a slightly higher fixed time in general than the other address types. When looking at the
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Figure 5.1: Estimated parameters per address type for every handling time percentile. The blue

line and left axis in each plot give the fixed handling time. The red line and right axis gives the

variable time per pallet of the handling time setting. The percentiles range between 0.01 and

0.99.

variable time however, the address types “SHOPRNDYD” and “shop” have a lower associated

time per pallet than the other address types.

The handling time percentile that we use looks a lot like the service level of the stop. However,

during the simulation it is not necessarily the case that the handling time setting corresponding

to a certain handling time percentile will achieve that service level for the stops. This is caused

by the fact that during the simulation also the waiting time is included in the stop duration, as

was the case in the data set. Therefore, we simply do not know how long the unloading actually

took and how long the driver was waiting. Also, the deviation from the planned start time is

taken into account in the simulation while we purposefully filtered that out of the handling time

percentile model.

We would like to point out that the creation of such a model, that relates a handling time

percentile for the stops to an estimated setting, is not restricted to the RFCDE model that we

have used. The statistical model that was fitted to the stop data could also have been used to

create such a model. If that would have been done however, the variable time would simply be

a fixed parameter for all address types, as the statistical model assumed that all variation in

duration comes from the fixed handling time. We also could have used the exact same model

that was used as distribution model for the stops, with the address as feature and not the

address types. That model would then be able to give a relation between handling time settings

that should be set at every individual address and the service level. Averaging these over all
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addresses of a certain address type would then also give the relation between the service level and

address types. This method is slightly different from the method that we have chosen. If first all

handling times setting models for all individual addresses are calculated and then averaged to

find the handling time setting for the address type, the durations at every address are weighed

equally. The method that we have opted for, implicitly favours addresses that occur more often

in the data. We think however, that it is useful to calculate the settings of the address type

by favouring addresses more often in the data set as these are more often visited and therefore

should be considered more than the addresses that are not visited as much.

5.2 Optimization set up

To find a good set of handling times settings, we use an optimization algorithm. This opti-

mization algorithm will use the model explained in Section 5.1 to create handling time settings

corresponding to handling time percentiles in order to reduce the dimensionality of the optimiza-

tion problem. This means that the optimization algorithm has a one-dimensional and continuous

search space.

5.2.1 KPI

To find the best value in this one-dimensional handling time percentile search space, the per-

formance of a setting has to be measured using a KPI. As mentioned in Section 2.2.5, the total

costs of a set of routes is determined by the plan costs and the number deliveries that happen

after the time window. To get a KPI that reflects total costs, the deliveries that happen after

their time window have to be converted to costs. We do this by using the plan costs per pallet

and multiplying this by the total number of pallets that were delivered after their time window

as a rough estimation of the costs that would be made if the pallets had to be redelivered. To

control how undesirable it is to miss deliveries, a factor is used to multiply these service costs

by. The calculation of this KPI is then given by

TC = PC + SCF ·MP · PC
TP

where TC is the total cost, PC the plan costs, SCF the service cost factor, MP the number of

missed pallets and TP the total number of pallets. This KPI balances the importance of finding

a tight schedule with the value of delivering pallets within their time window. How important

one aspect is with respect to the other can be adjusted using the service cost factor. To create

an easily interpretable KPI for which we can quickly see how well it performs compared to the

current situation, the total costs are always displayed as a fraction of the total costs that the

handling times settings that are currently configured gives in the same situation. With same

situation here we mean, the same cases, service cost factor and simulation runs. This value will

be equal to 1 if the costs of the new handling time setting are the same as the current costs, and

it will be below 1 if the costs of the new settings are lower.
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5.2.2 Cases

In every iteration of our optimizer, routes are first planned by ORD and realisations are simulated

by our simulation model to calculate the total costs. To do this, some sets of orders and vehicles

are needed that represent situations at the Retailer, so that these can be planned by ORD. The

obvious choice here is to retrieve all data from the data set on a particular day and create a case

file with all orders that were planned on that day with all vehicles that were used. So, we define a

case as the historical instance of a day as found in the data set. This was implemented by creating

a script that is able to create input files for ORD based on the data set. As a consequence, only

the orders present in the cleaned data set have been used to create the case files. Optimizing

the performance of a handling time setting on a single case may lead to overfitting on that case.

Therefore a set of cases is used during the simulation optimization process. The more cases

used in every iteration, the better the estimation of the general performance of a handling time

setting. However, planning a single case takes 15 minutes on average. We therefore choose to

use four cases that are planned and simulated in every iteration. These four cases have been

chosen so that they all occurred on different days of the week and spread over the year of data

that was available. Taking the cases spread over the year automatically caused some cases to be

larger than others, as the demand fluctuates seasonally at the Retailer.

5.2.3 Algorithm

ORD, the simulation model and the handling time model combined are seen as a large and

expensive black box function that gives a single output value when evaluating a single input

value by the optimization algorithm. A depiction of how these models are combined and what

their inputs and outputs are can be seen in Figure 5.2. The output of this black box function

contains noise, and no derivatives are available. When we use the term input with respect to the

optimization algorithm, a handling time percentile is meant. This also applies to the output of

our function to optimize, as it is the total cost.

Black box function as seen by optimization algorithm

ORD

Cases

Handling time
settings

Reparametrization
model

Handling time
percentile

Planning

Simulator

Distributions

Total costs

Figure 5.2: Schematics of the different modules and their respective inputs and outputs of the

black box function that is optimized.

As explained in Section 3.4.3, to sequentially decide which percentile of the handling times

settings to test, we use a Bayesian Optimization algorithm. This means that we use a Gaussian

Process surrogate model to estimate the relation between our input and outputs during opti-

mization. The optimization algorithm was implemented using the Scikit-Optimize package in

Python. The Expected Improvement is used as acquisition function to decide which input value

to evaluate next. That is, the input value that has the highest Expected Improvement is evaluate
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in the next iteration. This acquisition function has no parameters that need to be tuned. The use

of this acquisition function automatically balances exploration and exploitation in the learning

process. An example of the acquisition function can be seen in Figure 5.3. Here, we see how the

GP approximates the relation between inputs and outputs. We also see that the GP is uncertain

about a section of the search space. The red line in Figure 5.3 indicates the EI-function. We can

see that it measures a point close to the current minimum next. However, another section of the

input search space is also interesting as there is still some uncertainty there. This corresponds

to the trade-off between exploration of uncertain areas and the exploitation of the region where

the model suspects the minimum to be.
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Figure 5.3: Example optimization problem showing how the GP approximation of the input

output relation behaves. The blue shaded area indicates the uncertainty of the GP-model. The

red line portrays the Expected Improvement acquisition function, this been enlarged and shifted

to provide a clear image.

To initialize the GP, some input-output value pairs are needed. These are typically determined

in one of two ways. One way is to uniformly sample a set of input values across the input search

space and evaluate all these points. Another way is to determine the input values using a priori

knowledge on the function. After the initialization set of input values have been evaluated,

the acquisition function sequentially determines the following input values. To initialize the

optimization algorithm we have chosen the second option. We suspect that the handling time

percentile will have to lie somewhere between 0.4 and 0.8, and therefore initialize the model with

a range of values between 0.4 and 0.8 with increments of 0.1. This range was chosen based on

expert opinion.

When the output values of these four initial input values have been calculated, the GP-model

is fitted to the set of input-output pairs. Then, the point on the input space that maximizes

the acquisition function is calculated using a multi-start gradient ascent optimization algorithm.

This input space is restricted to the range 0.01 to 0.99 to prevent the measurement of strange
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handling time settings at the limits. This input percentile is then evaluated by calculating the

corresponding handling times using the model from Section 5.1, optimizing the planning of all the

cases using ORD, simulating the planned routes and calculating the total costs of the planning

and simulation. The evaluated point and corresponding output are then appended to the list of

observations and the GP-model is updated. This process is then performed iteratively.

The optimization algorithm also requires a stopping criterium. Typically, this is either a

maximum number of iterations, or a criterion that stops the algorithm when the minimal dis-

tance between the next input value and all previous measured input values gets below a certain

threshold. We opt here for the simpler variant using a maximal number of iterations. This can be

configured more easily, only requiring knowledge on the computational duration of an iteration

and the total computation time that is available. We chose to use a maximum of 15 iterations

for every optimization run without any early stopping rules.

5.3 Experiments

Since the absolute KPIs of our simulation are not relevant, we first run the simulation with the

handling times that are currently configured at the Retailer, so that we later can calculate the

KPIs of our new handling time settings relative to the current situation.

The simulation using the current handling time configuration was also used to determine

the number of simulation runs that should be performed for every case in every iteration. The

heuristic used by ORD is fully deterministic, meaning that given the same case and handling

time settings, the planning that is created will be the same every time. Therefore the KPIs that

are determined by the planning, like plan costs or total distance, cannot be used to determine

how many simulations have to be performed, as these have no variation at all. We used the

total number of pallets delivered after their time window as KPI to determine the number of

replications. We first replicated the simulation 1000 times using the current handling time

configuration. This resulted in on average 41.2 pallets arriving after the time window of a total

of 6388 pallets. The standard deviation of this KPI was 18.5. We first of all note that the

percentage of pallets that arrive late (0.29%) seems quite low. This could be caused by some

assumptions that have to be made to create the simulation model. For instance, the fact that

in our simulation all trips are independent, may cause the number of late pallets to drop, as the

deviation of earlier trips by the same truck do not cause later trips by the same truck to be late.

Besides the low average number of late pallets, the standard deviation is relatively high com-

pared to the average number of late pallet indicating that it fluctuates a lot in every replication.

Typically, the number of replications is determined by checking if the relative confidence interval

of the mean is below a certain threshold. This calculation was performed with a confidence

level of 0.05 and a relative width of the confidence interval of 0.05 giving a value around 350

replications. However, we have chosen to use slightly fewer replications during the iterations

of the optimization to lower the computation time. We use 200 replications in every iteration.

The computation time for planning a single case is around 15 minutes. Replicating the simula-

tion for a single case 200 times also takes roughly 15 minutes. Some computational efficiency is

gained through the fact that ORD can optimize the cases in parallel in different processes. This

reduces the computation time for planning and replicating the simulation 200 times for 4 cases
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from approximately 120 minutes to around 90 minutes. This parallelization was not possible

for the simulation, as the package used for the distribution models did not allow for copying of

the models. This is needed to run the simulations fully in parallel using separate parts of the

memory.

In the remainder of this section, the results of the experiments are shown. In Section 5.3.1,

the first experiment with a cost factor of 1 is given. Section 5.3.2 describes the experiment

where different cost factors are used to show that this causes the resulting minimum to shift.

Finally, to show the convergence and functioning of the algorithm, a cost factor is estimated and

subsequently used in Section 5.3.3.
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Figure 5.4: Estimated relation between handling time percentile and total costs after 15 iterations

with a service cost factor of 1. Total costs are relative to the total costs of the current handling

time setting.

5.3.1 Initial experiment

We first run the optimization algorithm with a cost factor of 1. This cost factor was chosen as

it is the most logical factor, simply stating that for every missed pallet a penalty costs equalling

the average plan costs of a pallet is charged. In Figure 5.4, the results can be seen of 15 iterations

of the optimization algorithm with a service cost factor of 1. We can see that the optimizer has

not found a balanced setting and simply minimized the handling times. This is supported by the

fact that a large portion of the measurements is performed close to the handling time percentile

0.01. This seems to have such a large effect on the planning costs that the increased number of

pallets that arrive late are of no effect. Using a handling time percentile of 0.01 increases the

number of late pallets to an average of 122.6. However, this is still little compared to the total

number of pallets that are transported, which makes the effects of the number of pallets that are

late on the total costs small. This result is not desirable for the Retailer, as a 200% increase in

late arrivals does not weigh up to a 2% decrease in planning costs. This means that we have to

find another way to get a balanced handling time setting.
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Figure 5.5: Estimated relation between han-

dling time percentile and total costs after 15

iterations with a service cost factor of 10.
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Figure 5.6: Estimated relation between han-

dling time percentile and total costs after 15

iterations with a service cost factor of 20.
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Figure 5.7: Estimated relation between han-

dling time percentile and total costs after 15

iterations with a service cost factor of 30.
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Figure 5.8: Estimated relation between han-

dling time percentile and total costs after 15

iterations with a service cost factor of 40.

5.3.2 Different cost factors

That this cost factor of 1 does not give a balanced result may be caused by some of the assump-

tions underlying the simulation model. We will show that the optimization method works when

using a total cost KPI that balances the plan costs and the time window violations. We do this

by simply increasing the service cost factor, so that late pallets are more severely penalized. We

have run the simulation optimization algorithm using service costs factors of 10, 20, 30 and 40.

We can use the insights that are gained from these runs, but not the optimal settings that come

out of them, as then we would be looking for the service cost factor that would give the most

logical result. This would make us tune the method until the result is to our liking, instead of

choosing a service cost factor that can be explained.

In Figures 5.5 to 5.8, the results can be seen for the four different service costs factors.

Comparing the handling time percentiles that minimize the total costs for the different service

cost factors, reveals that the handling time percentile that minimizes the total costs increases
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as the time window violations cost more. However, we also see there is a lot of noise in the

observations. Further inspection revealed that this noise in the measurements does not only

come from the service costs that are calculated by the simulation, but also from the plan costs

calculated by ORD. For instance, the planning that was made using a handling time percentile

of 0.6 has overall lower planning costs than the planning that was made at a handling time

percentile of 0.5, indicating that a solution has been found with less distance or lower total

duration. This better planning should also be possible with the handling time settings of a 0.5

percentile, as the stops only get shorter. The shorter stops may cause an increase in waiting

time, but the total duration should not increase overall. This variation in solution quality can

be attributed to the heuristic nature of ORD.
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Figure 5.9: Relative plan costs and relative time window violations of all measurements made

during the optimization using the service cost factors 10, 20, 30 and 40. The Pareto frontier

indicates the measurements that are dominating. The red line portrays the position of solutions

with equal total costs when the service cost factor is set to 28.57

5.3.3 Estimated cost factor

Unfortunately, the handling time percentiles that were found in Figures 5.5 to 5.8 are not the

percentiles that would yield the lowest costs at the Retailer as the service cost factors were chosen

arbitrarily. Discussions with the Retailer have not resulted in a service cost factor that would be

appropriate. Therefore, to show that the algorithm is able to find a good setting, we will make

an educated guess of the service cost factor based on the previous measurements and use this

to run the optimization. We guess the service cost factor based on the Pareto frontier shown in

Figure 5.9. In this figure the two KPIs of interest are on the x- and y-axis. We can clearly see the

trade-off between the plan costs and time window violations in this figure. Choosing a service

cost factor is equivalent to choosing the slope of a line indicating solutions of equal value in the

Pareto plot. It is choosing how important we value one KPI compared to the other KPI. If we

then find the line with this slope that has the lowest intercept while still passing through a point

in the Pareto plot, we find the point that is optimal for that service cost factor. The distance
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from a point to the line indicated how much worse that measurement is to the optimal. Since we

believe the current configuration is decent, we have chosen a service cost factor that minimizes

the distance from the current configuration to the optimal found solution. This is the red line

that can be seen in Figure 5.9. This corresponds to choosing a service cost factor of 28.57.
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Figure 5.10: Estimated relation between handling time service level and total costs respectively

after 7, 8, 9 and 10 iterations with a service cost factor of 28.57. The red line portrays the

acquisition function.

The estimated cost factor of 28.57 was used in an optimization run with 4 different cases than

were previously used to create a independent experiment. The optimization was run for a total

of 30 runs in order to check whether 15 iterations are sufficient. To show how the acquisition

function behaves during the iterations, the GP-model and corresponding Expected improvement

function for iteration 7 to 10 can be seen in Figure 5.10. Here we can see that in the acquisition

function chooses a point close to the current minimum after the 7th iteration, exploiting the

current knowledge. After the 9th iteration a new observation is done in a section where the

variance is higher, exploring the search space. This shows that the acquisition function balances

exploration and exploitation automatically.
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Figure 5.11: Estimated relation between han-

dling time percentile and total costs after 15

iterations with a service cost factor of 28.57.
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Figure 5.12: Estimated relation between han-

dling time percentile and total costs after 30

iterations with a service cost factor of 28.57.
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mum as approximated by the GP after a num-
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In Figures 5.11 and 5.12, the results of the optimization after respectively 15 and 30 iterations

of the optimization algorithm can be seen. We can see that the observation that has the lowest

total costs after 30 iterations is found within the 15 iterations. We note that settings are estimated

to result in higher total costs than the current handling times settings. When we look at the

observations, we note that only the best observation has total costs lower than the total costs of

the current handling time setting. This can also be seen in Figure 5.13, where the value of the

best observations is plotted over the iterations. Only once is a new minimum value found. This

is caused by the fact that the first observation is the second best measurement in the end. Since

we know that our measurements are noisy, we are not only interested in the observations with the
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lowest total costs, but in the location of the minimum of the estimated GP-model. This represents

the setting that is estimated to have the lowest total costs in general. In Figures 5.11 and 5.12,

we also see that the location of the expected minimum shifts from 0.654 to 0.632 respectively

from iteration 15 to 30. This is a shift of 0.022 or 3.5%. The location of the expected minimum

as estimated by the GP-model over the iterations can be seen in Figure 5.14. In the 15th to

30th iteration the location of the expected minimum varies between 0.632 and 0.685. This range

has a width of 0.053. The shift of this estimated minimum is caused by two factors. The first

factor that causes the minimum to shift is the fact that the GP-model is relatively flat in the

part where the minimum lies. Using a handling time percentile of 0.632 or 0.685 is estimated to

result in relative total costs of respectively 1.0198 and 1.0202. The second factor that causes the

minimum to shift is the high variance between the observations. In Figure 5.14, we note that

the location of the estimated minimum is relatively stable after the 6th iteration.

5.4 Configuration comparison

Since we had to guess the service cost factor in the final experiment in order to run the opti-

mization algorithm, the resulting found handling time percentile might not be the best result for

the Retailer. To find a good handling time percentile, we will compare the observations on more

tangible KPIs.

To find the handling time percentile that gives a good general performance, we look at the

relation of the plan costs and number of late pallets with the handling time percentile. This was

done by using all observations from the optimization runs with a service cost factor of 10, 20, 30

and 40. The relation with the handling time setting was estimated with a Gaussian Process (GP).

In Figures 5.15 and 5.16, these two relations can be seen. In Figure 5.15, we can clearly see the

fluctuation of the solution quality, as there are in some cases relatively large differences in plan

costs for settings that are close. To identify a region of interest, the handling time percentile

at which the KPIs are approximately equal to that of the current handling time setting, are

marked. For the plan costs this is 0.63, and since plan costs increase with the handling time,

a handling time setting lower than 0.63 may give lower plan costs. The number of late pallets

is approximately equal to the current settings at a handling time percentile of 0.58, indicating

that configuring a higher handling time percentile would give a lower number of late pallets

on average. These two values combined give a small range of handling time percentiles that is

interesting, as both KPIs may improve over the current situation in this range.

To find a good value within that range, we evaluate the performance of handling time per-

centiles of 0.58, 0.6 and 0.63. To reduce the noise in the measurements caused by the planning

heuristic, 10 available cases were used instead of the four that were used in the optimization

runs. This is now possible as the we do not perform iterations but only run each setting once.

The results of these settings and of the current configuration can be seen in Table 5.1.

We note that only the plan costs of the 0.58 handling time percentile setting, is higher than

the plan costs of the current configuration. The mean number of late pallets is lower for all

three proposed settings. However, the deviation in these values refrains us from drawing hard

conclusions from this result. Using a one tailed t-test and testing whether the mean late number

of pallets is greater for the current configuration than of the proposed 0.6 setting resulted in a
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Figure 5.15: Relation between the relative

plan cost and the handling time percentile es-

timated by a Gaussian Process.
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Figure 5.16: Relation between the relative

number of late pallets and the handling time

percentile estimated by a Gaussian Process.

Table 5.1: Results of the current setting and three handling time percentiles of interest, tested

on 10 cases with 100 simulation replications. The value after ± indicates the half width of the

95% confidence interval of the mean.

Setting Plan costs
Mean number

of late pallets

Distance

(km)

Planned duration

(hours)

Mean realised

duration (hours)

Current

Configuration
1611786 112.5± 6.4 195780 11334.1 13152.2± 12.1

0.58 1617300 109.5± 6.0 197956 11325.1 13252.6± 12.4

0.6 1611885 107.8± 6.3 197494 11286.3 13085.1± 12.7

0.63 1609929 108.3± 6.2 196417 11248.5 12927.7± 10.3

p-value of 0.14. So, our evidence is not strong. Remarkable is that the 0.6 setting has a lower

average number of late pallets than both the 0.58 and 0.63 setting. The relation in these results

between the plan costs and the handling time percentile is also opposite of what is expected. This

again points to fluctuating quality of solution produced by ORD. The lower costs in the proposed

setting compared to the current configuration is caused by a lower total duration, as the distance

of the three proposed settings is higher than the distance of the current configuration. Of the

three proposed settings we favour the input setting with a handling time percentile of 0.63 as

it has a reduced plan cost and a reduced number of time window violations. The 0.63 handling

time percentile reduces the plan costs with 0.12% and the number of missed pallets with 3.73%.

In Table 5.2, the current configuration can be seen compared to the proposed setting. We

can see that the proposed new setting increases the fixed duration and decreases the variable

duration for the first three address types, while the reverse is true for the last two address types.

As we have stated in Section 1.4, no new settings are added, so only the existing settings

will be tuned. However, creating a reparametrization model for the individual address level

is easily done and allows us some insight into the variation that is present among addresses

belonging to the same address types. Figure 5.17 gives a graphical representation of the settings

that a reparametrization model for the handling time settings of individual addresses estimates,
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Table 5.2: Current configuration for all address kinds compared to the new proposed setting. All

durations are given in minutes.

Address kind Parameter type Current setting Proposed setting

SHOPRNDYD
Fixed time 30 36.3

Time per pallet 3 2.2

shop
Fixed time 25 31.3

Timer per pallet 3 2.7

shop RND
Fixed time 30 30.7

Time per pallet 3 2.9

RND 45
Fixed time 45 26.5

Time per pallet 3 4.2

RND 60
Fixed time 60 24.0

Time per pallet 3 4.1

compared to the settings of the address kind. We first of all note, that the settings of the

individual addresses are spread over the graphs. This indicates that there might still be some

performance improvements to be gained if additional settings are added instead of only improving

current ones. We also note that the setting on the address type level is not simply an average

of the settings of the address levels. For the address types with a lot of addresses, the settings

on the address level have relatively high variable time per pallet compared to the address kind

setting. This may be caused by the fact that there is less data available for the individual

addresses, which causes these to be more susceptible to duration changes when the number of

pallets change. On the address kind level these are smoothed out by the multiple addresses. This

should be considered when attempting to find settings for individual addresses.

5.5 Conclusion

This chapter provides method and results of the optimization of the inputs of the simulation.

We have shown how the data can be used in the optimization process. This was done by

creating a model that gives an estimated distribution of the input parameters. Instead of opti-

mizing over every separate value, we use the percentile as input and use the reparametrization

model to find the accompanying input parameters. This allows for much easier optimization as

the dimensions are reduced. Besides the easier optimization, the reparametrization model itself

can be used to quickly gain insight into what the parameters look like according to the data.

We have shown the set up of a sequential optimization algorithm. A Gaussian Process was

implemented to estimate the relation between the input and output of the simulation. Using the

Expected Improvement as acquisition function automatically balances exploration and exploita-

tion.

Using a logical weight to combine the two KPIs into a single total cost KPI did not result in a

balanced optimization result. A weight was estimated by finding the weight that minimized the

distance between the current situation and the best found setting. Using this weight, we have

shown that the optimization algorithm estimates the location of the minimum with a deviation
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Figure 5.17: The estimated settings per address compared to the setting estimated for the address

kind for a handling time percentile of 0.63.

of 3.5% of the minimum that is estimated after 30 iterations. The observation with the lowest

total costs is found within 15 iterations. We have seen that there is noise in the KPIs of both

the planning and the simulation.

An alternative method was demonstrated to identify an interesting region and find a good

setting based on tangible KPIs. The resulting settings that have been investigated show that

the number of time window violations can be decreased while plan costs remain approximately

equal. From these investigated settings, the handling time percentile of 0.63 is recommended as

setting to implement. This setting reduces the plan costs with 0.12% and the number of missed

pallets with 3.73%.

Finally, we have shown that there are still opportunities for improvement by looking into

setting handling time settings per address.
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Chapter 6

Implementation

In this chapter, we will explain how the method that was applied in this thesis on the Retailer case,

can be implemented by ORTEC so that it can be applied to other customer cases. This chapter

is divided so that each section describes the implementation of a part of the methodology. The

method is divided into parts as shown in Figure 4.1. In Section 6.1, the required parts needed

for implementing the data preprocessing step are listed. Section 6.2 gives some suggestions

on the implementation of the distribution fitting step. In Section 6.3, the required steps for

implementing a simulation model is given. Section 6.4 describes how the optimizing of the

simulation can be implemented. Section 6.5 concludes the chapter.

In the description of the implementation we make a distinction between steps in the method

that have to be tailor made for every customer and the steps that are general and can be

implemented in the software.

6.1 Data preprocessing

The first part of the method is the preprocessing of the data. In this part the available data on

the planning and realisation has to be joined, extracted and cleaned. Since the data at the client

can differ in source and granularity, this step needs attention of a consultant that applies the

methodology. It can be beneficial, if a standardized template for the query is made for common

forms of implementation and realisation data. This can greatly reduce the total duration of the

project. In this stage the realisation data has to be joined with the planning data. This join has

to occur on the least detailed level of these two parts. In our case, the realisation data dictated

that the data set had a full stop or travel action in each row of the set. When more detailed

realisation data is available, for instance, durations per road section or separate waiting and

unloading times for the stops, this has to be taken into account in the data extraction process.

During this step, communicating with the client is an important aspect to gather information on

suspicions that they have.

After a preliminary data set has been created, features that might be of interest have to be

created. This is done using a priori knowledge on what factors could influence the durations

of interest. This a priori knowledge comes from suspicions voiced by the customer, the way

the durations are configured in the software and some common sense. This process is shown
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in Figure 4.1 as a single step which is performed once, but this creation of features occurs in

parallel of the entire method as during the process the knowledge on the system grows and new

insights arise.

When the features have been created, the data should be inspected and cleaned. This can

be done using standard data science methods. For the cleaning of the data, we recommend the

use of the 2-sided MAD method, as it is robust and able to deal with skewed distributions. To

decide on which parameters to tune, the cleaned data set should be briefly investigated to see

which durations deviate a lot. The granularity of the data combined with the availability and

quality should also be considered when deciding which parameters to tune. For instance, in our

case we chose not to investigate the travel times or speeds, as only total durations of the trips

were available and the configuration required speeds per road type.

6.2 Distribution fitting

After the data is extracted and cleaned, distributions can be fitted to the data. First should

be decided what distributions are needed, in our case this was for the travel and stop durations

and the start time deviations. However, other types of durations, like cleaning or (un)coupling

durations, might also be required. When the query has been standardized, a script for this

process can be written once and used for multiple customers. We recommend making this script

modular so that new distribution models can easily be added.

For each set of distributions, the exploration and fitting process is roughly the same. We

consider the methods employed in this thesis to be quite general. One does not necessarily have

to make the distinction between statistical and advanced statistical methods or choose the same

method that we have chosen. However, the process of first investigating explanatory features

and then fitting and testing the distributions models, is a general data science process that can

be applied anywhere. We do think it is useful to fit multiple models to see which has the better

overall performance. Also, the usage of a RF to calculate feature importance and use this in the

exploration of the features is beneficial in our opinion. In our opinion, the RFCDE is a useful

model to investigate as it is versatile and easy to tune and train. Also, the ability to deal with

categorical variables makes it a useful technique.

6.3 Simulation model

Programming the simulation model is combining the distributions with the assumptions. These

assumptions can either come from process experts or from limitations that are set by the data

availability. The most important part is to carefully list all these assumptions so that one later

can understand why a model might not give the desired results. These methods are again quite

generally applicable to other cases.

Before anything can be simulated, case files need to be created. In this thesis, this was

done by creating a script that used a separate environment to add new orders with the same

characteristics as the historic orders. This can more easily be done when an option is implemented

in the scheduling module that allows completed orders to be extracted from the plan so that
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these can be used in the optimizer. Implementing this is not only beneficial for tuning input

parameters as we have done, but can also help create realistic case files for tuning the algorithm.

A first step in the implementation of the simulation is parsing the planning files that ORD

creates, to files that can be used as input for the simulation. Using the right data structure as

input for the simulation, allows for a more readable script that performs the simulation. In our

case, the output of ORD contained the stop actions per order and the travel times were added

to the first order in a stop. This was converted to a set of routes that contained separate travel

actions and joined the actions occurring at the same location. This allowed the simulation to

simply loop over this list and use the attributes of the action at hand to simulate a duration.

As it is useful to standardize the query, it would also be beneficial to create a standard output

format that can be used for the simulation.

Standardizing the simulation script itself is only beneficial when the output format of ORD

is also standardized. The script that was written to run the simulation in this thesis forms a

good starting point. It can be further improved in terms of computational speed by running the

simulation in multiple processes for every case. A requirement for this is that the distribution

models can all be loaded from the disk. This was not the case for the RFCDE and therefore this

was not yet implemented.

When the model has been created, a validation has to be performed. In this thesis, this was

done by simulating the routes as they were planned in the data set and comparing the simulated

realisations to the historic simulations. This can also be done in other cases.

6.4 Simulation optimization

The first step in the entire simulation optimization process was creating a model that reparametrizes

the input data values to a single value. This is possible in other cases if some conditions are met.

First, the data should be at least as detailed as the parameters that are investigated. Secondly,

the model used for determining the duration during planning is a linear combination of features

that are also available in the data set. When these two conditions are satisfied, it is possible

to make a reparametrizing model. When during the distribution fitting it is discovered that the

durations depend on a lot more features than are used in planning, some strategies can be used

to overcome this. In our case the stop durations depend on the estimated waiting time as this

was included in the realisation data but not in the planning entity, setting this feature to 0 in the

reparametrization effectively filters out the effect that this feature has on the duration. Other

features that cannot be set to 0 can simply be left out the model as this causes the model to use

the average effect that the left out feature has. If multiple sets of durations are investigated, like

stop and travel durations, one should consider creating separate reparametrization models to be

able to tune the service levels separately. Creating such a reparametrization model is relatively

fast compared to running the simulation. When the methodology is applied at a customer to

tune the input parameters periodically, one might chose to use the percentile that was found

previously and only fit a reparametrization model on the latest data to find new parameters.

This process could be automated to run without supervision on moments when the computa-

tional load is low. This would greatly reduce the computational resources needed to find new

parameters.
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The method used to optimize the simulation is generally applicable and could be used in other

cases. Although it was not demonstrated in this thesis, BO is able to deal with categorical and

multi-dimensional optimization problems. Also, the alternative method that was demonstrated to

find an interesting region of handling times is applicable to other cases. For this any combination

of KPIs can be used to determine what range of values is interesting.

6.5 Conclusion

We have shown in this chapter that the methodology that developed and applied in this thesis is

generally applicable to other customer cases. Also, some insights into how the methodology that

was developed in this thesis can be implemented have been given. The steps of the methodology

regarding the data exploration, require the attention of a consultant occupied with tuning the

input parameters. However, standardization in the right places can greatly reduce the time

needed to complete an input parameter tuning project. This standardization can be achieved by

productizing this methodology.
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Chapter 7

Conclusions and

recommendations

The answers to the five research questions stated in Section 1.3, collectively fulfil our research

goal. The answers to these questions have been given in Chapters 2 to 6. For a recap on the

answers to the research questions we refer to the (sub)sections containing conclusions in these

chapters. In Chapter 2, the context in which the research is performed and the routing case that

is present at the Retailer have been described. Chapter 3 gives a review on the available literature

on the routing problem and the methods that have been used to tune the input data. Chapter 4

describes the process of creating a simulation model from the data set. This simulation model is

used to find new input data values in Chapter 5. Finally, in Chapter 6 we have given a description

of the implementation of the methodology so that it can be applied at other customers.

In this chapter we conclude this research. We report our findings in Section 7.1 and discuss

these in Section 7.2. Finally, in Section 7.3, we lay out our recommendations based on the

obtained results.

7.1 Conclusion

The goal of this research was to improve planning by using realisation data. This was formulated

in our research goal as:

Develop an offline learning method that finds better input settings to improve plan-

nings made by ORD

We have developed a generally applicable method that can be used to systematically approach

the problem and can find better input settings, even when the simulation model has to make

some assumptions that are violated in the real system.

With this method, we have shown that the use of data analytics can improve the performance

of vehicle routing algorithms. We have shown how data from the real system can be used to

adjust the problem definition so that the overall resulting solution improves. From this, we can

conclude that for optimization projects, besides the improvement of the problem solving method,

also the improvement of the problem definition is important. As heuristic methods that are in use
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are already quite complex, the use of data analytics can yield an increase in routing performance

relatively easily. This makes a small step towards the integration of data science and OR.

The methodology uses the realisation data to create a cleaned data set on which several dis-

tribution models are fitted. We have seen that the cleaning of the data set is important, as there

can be many samples having large deviations caused by unknown irregular circumstances. The

Random Forests for Conditional Density Estimation (RFCDE) was demonstrated as a practical,

well performing distribution model. The ability of the RFCDE to deal with categorical variables

of high cardinality and easy tuning of hyper-parameters makes it suitable for the task.

We validated the simulation by comparing historic durations to simulated durations when

the same planned routes are used. We have seen that the quality and availability of data dictate

the accuracy of the simulation model, as was seen in our customer case. However, even when

some assumptions have to be made that cause the simulation model to give unrealistic results,

the method is still able to use it.

We have shown that a sequential Bayesian Optimization algorithm can be used to find good

handling time settings. This was achieved by using a reparametrization model for the input data

to reduce the dimensionality of the optimization problem. In the optimization of the simulation

model, fluctuating solution quality of the plannings can give relatively large differences in KPIs

for settings that are relatively close. This confirms that when we want to solve complex VRP

instances quickly, no guarantees can be given in the solution quality. This also indicates that

over fitting could occur if a limited number of cases is used. The optimization algorithm was able

to find the location of the estimated minimum in 15 iterations with an error of 3.5% compared

to the location of the estimated minimum after 30 iterations.

A method for determining input setting regions of interest was shown, for when the weights

with regard to the plan costs and the time window violations are unknown, as was the case in

our research. This method is able to identify a region where all KPIs are expected to improve.

However, the solution with the lowest total costs may be outside this region. This is dependent

on how KPIs are valued by the client.

Finally, a proposed input setting was shown to yield 0.12% lower plan costs and 3.73% less

time window violations as compared to the current settings used by the Retailer. This might be

improved further by looking into adding more detailed settings.

7.2 Discussion

All findings with respect to performance of the proposed setting are dependent on the data set

that was used. This means that the strength of these finding stands or falls by the quality of

the data set. First of all, there might still be correlation between durations of stops and travels

within a route that was not found during the fitting of the distributions. This could be caused

by features that were missing, either as these were not created or because data is simply not

present in the database.

We have seen that the solution quality of the plannings made by ORD, can cause longer han-

dling time settings to yield plannings having shorter distance and total duration than plannings

made with shorter handling time settings. This raises the question of what the real underlying

performance is of the setting and when we can be sure of measuring it correctly, as a setting that
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gives a good result on one case may be bad on another. This problem could be circumvented by

tuning the planning algorithm to give a more stable performance or using more cases to get a

better average. However, in order to get a more stable performance of the planning algorithm,

the running time will increase. So, this trade-ff between the accuracy of the measurement and

the computation time of a single measurement is worth exploring in order to improve the perfor-

mance of the simulation optimization algorithm. Also, more insight on what cases cause some

of the settings to have a bad performance could prove useful.

Data availability can force assumptions on the simulation model that are violated in the real

system. We had to make the assumption that all routes were independent, as no reliable data

was present on the loading at the depot. This assumption of independence is almost certainly

not valid and can cause our simulation model to be optimistic about the number of time window

violations that are made. However, since all comparisons are made within the same simulation

and given the fact that our proposed solution improves both KPIs, we can say that the proposed

input setting is an improvement compared to the current configuration.

7.3 Recommendations

We first of all recommend that the Retailer investigates the proposed new handling time setting

to see whether performance improves. Secondly, to be able to create a more valid simulation

model and tune the durations on the depot, the data collection of the durations at the depot

should be improved.

In order to make this type of research easier to perform, we recommend that ORTEC looks

into creating standard queries to extract and join realisation and planning data. When this is

achieved, quick insights into the ranges of parameters can be created by training a reparametriza-

tion model.

To determine the best percentile for input data values at a customer, simulation can be used.

To be able to find the best setting in that simulation, we recommend discussing the KPI or

restriction on the service level that accurately represents the goal, with the customer.

When a service level is determined for a customer, the reparametrization model could be used

periodically to update the input parameters, as it is relatively cheap to compute compared to

the simulation model.

To get a better understanding of why some deliveries are late, explicit information on missed

deliveries could be logged in the data base. This might enable data analysts at the customer to

notice structural deviations quicker.

Another interesting direction for further research is to look into configuring more detailed

input parameters. As can be seen in Figure 5.17, the more detailed settings can vary quite a lot,

indicating that there is still room for improvement.
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Appendix A

Data description

Table A.1: Variables present in data set only present for travel actions

Variable

name
type description calculation

startAddressId integer identifying number for the

starting address

startAddressKindName string type of the starting address

isStartDepot boolean indicating whether travel

starts at the depot

finishAddressId integer identifying number for the

destination address

finishAddressKindName string type of the destination ad-

dress

isFinishDepot boolean indicating whether travel

ends at the depot

stopActionStopNumber integer number indicating the ordi-

nal rank of the travel in the

trip

MaxStop integer number indicating total

number of stops in the trip

NumStopsLeft integer number of stops remaining in

the trip

MaxStop - stopActionStop-

Number

distance float total distance of travel in

kilometers
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Table A.2: Variables present in data set only present for stop actions

Variable

name
type description calculation

finishAddressId integer identifying number for the

address the stop takes place

finishAddressKind integer identifying number for the

type of address the stop takes

place

isFinishDepot boolean indicating whether stop

takes place at the depot

stopActionStopNumber integer number indicating the ordi-

nal rank of the stop within

the trip

MaxStop integer number indicating total

number of stops in the trip

NumStopsLeft integer number of stops remaining in

the trip

MaxStop - stopActionStop-

Number

tot num pal deliver float Total number of pallets de-

livered in stop

tot num pal pickup float Total number of pallets

picked up in stop

plannedWaitStart datetime planned arrival at stop loca-

tion

plannedWaitFinish datetime planned start of actual un-

loading

plannedWaitTimeMinutes float Duration of planned waiting

time

plannedWaitFinish -

plannedWaitStart, de-

fault=0

plannedDuration WithoutWait-

ingTime

float Duration of action without

waiting time

plannedDurationMinutes -

plannedWaittimeMinutes

MaxStartDate datetime start of time window

MinTillDate datetime end of time window

MinutesPlannedStart Befor-

eStartTimeWindow

float number of minutes the action

is planned to start before the

start of time window, 0 if

planned start is within time

window

max(0, maxStartDate -

plannedStartInstant)

MinutesPlannedFinish Af-

terEndTimeWindow

float number of minutes the action

is planned to end after the

end of time window

max(0, plannedFinishinstant

- MinTillDate)

MinutesRealisedStart Befor-

eStartTimeWindow

float number of minutes the ac-

tion actually started before

the start of time window

max(0, maxStartDate - re-

alisedStartInstant)

MinutesRealisedFinish Af-

terEndTimeWindow

float number of minutes the action

actually ended after the end

of time window

max(0, realisedFinishinstant

- MinTillDate)
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Table A.3: Variables present in data set for both stop and travel actions

Variable

name
type description calculation

id action integer unique identifier number for

a single action

id shift integer unique identifier number for

a trip

id resource1 integer Truck id number

resourceKindCode1 string Truck type

plannedStartInstant datetime date and time of planned

start of action including

waiting times if present

plannedFinishInstant datetime date and time of planned fin-

ish of action

dayFromStart integer Number of days since earliest

action present in database

realisedStartInstant datetime date and time of actual start

of action

realisedFinishInstant datetime date and time of actual finish

of action

plannedDurationMinutes float planned duration of action in

minutes

plannedFinishInstant -

plannedStartInstant

realisedDurationMinutes float realised duration of action in

minutes

realisedFinishInstant - re-

alisedStartInstant

DurationDeltaMinutes float delta of duration in minutes,

positive means action took

longer than planned

realisedDurationMinutes -

plannedDurationMinutes

RelativeDurationDelta float relative duration delta DurationDeltaMinutes /

plannedDurationMinutes

StartTimeDeviationFromPlanMinutesfloat delta of the start time in min-

utes, positive means action

started later than planned

realisedStartInstant -

plannedStartInstant

weekdayRealisedStart integer integer of weekday of re-

alised start of action (Mon-

day=1,..Sunday=7)

weekdayRealisedFinish integer integer of weekday of re-

alised finish of action (Mon-

day=1,..Sunday=7)

hourRealisedStart integer hour of realised action start

hourRealisedFinish integer hour of realised action finish
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