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Chapter 1

General introduction

Intelligent systems are rapidly becoming ubiquitous in the modern healthcare system. Robotic
devices assist surgeons in minimally invasive surgeries [1] and help therapists during neurorehabil-
itation and physical therapy [2, 3]. Besides, exoskeletons are used to support gait to retain lost
motor functions [4]. The control of such robots is however a complex challenge [5]. Robotic devices
are currently controlled in an ad-hoc manner based on classical control methodologies [2, 5] but in
order to enhance the design of effective, versatile and intuitive interaction robots, researchers have
expressed the desire to design robots that resemble interactions between two humans [2, 5, 6]. In-
teracting robots that resemble the interaction between humans could help us to better understand
the intentions of the robot and vice-versa. Rehabilitation robots could interact with a patient just
like a therapist would do in order to facilitate recovery and alleviate the demands of the therapist
[5].

1.1 Human-human interaction

Human-human interaction happens through various physiological processes by exchanging signals
with one another [7]. Speech is the most obvious means to establish interaction, but there are
many others. Besides speech, humans are able to coordinate actions between each other through
for instance facial expressions, body posture or gestures [8]. Facial expressions and body posture
tell us something about someone’s feelings [9] while monitoring body movements can be used
to infer someone’s intentions [10]. Humans can also coordinate actions by exerting forces onto
each other. This type of interaction is referred to as physical human-human interaction or haptic
human-human interaction (as haptic concerns touch and force) [11].

1.1.1 Haptic human-human interaction

Physical or haptic interaction occurs when two humans pass an object, move furniture, teach
manual skills, or dance. Forces and motions are coupled either directly from limb to limb or via
a mutually grasped object which can either be rigid or compliant. Physical interaction requires
partners to adapt, anticipate, and react to each other’s forces and motions [12]. The physical
interaction between humans depends mainly on the task and roles of each partner [11, 5]. Jarrassé
et al. [11] described a framework for the description of different types of haptic human-human
interaction. The interactions are classified into three main categories: competition, collaboration
and cooperation (see Fig. 1.1).

Competition

During a competition, both partners only concentrate on minimising their own cost (sum of effort
and error) and, if necessary impede other’s performance. While in competition, two humans may
have different goals, such as reaching different targets at the same time with the same object, e.g.
playing tug-of-war. Besides, humans may have the same goal, such as when two basketball players
try to grasp for the ball.
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Cooperation

Cooperation is a form of haptic human-human interaction in which each partner considers his/her
own cost and that of their partner in order to work together towards a consensual solution to a
problem. The roles in a cooperation are determined a priori and are fixed, such as a student-teacher
relation.

Cooperative haptic interaction can be further subdivided into two groups: assistance and ed-
ucation. Assistance is a form of interaction in in which one partner is providing assistive forces
to the other partner in order to achieve a motor goal that the second partner may not be able to
accomplish on his or her own [5]. The assisting partner in this case only considers the cost of the
partner who is receiving assistance. During education one partner (teacher) considers his/her own
effort and the error of the other partner (student) while the student only considers his/her own
cost. The goal of education is for the teacher to eventually become obsolete, allowing the student
to perform the task independently.

Collaboration

Collaboration is, like cooperation, a form of haptic human-human interaction in which each partner
considers his/her own cost and that of their partner in order to work together towards a consensual
solution to a problem. However, during a collaboration, roles are not assigned a priori and can
emerge and change spontaneously. Both partners attempt to achieve the task by themselves but
could also take the performance of the other partner into account. Partners are equally responsible
for reaching the goal, e.g. moving furniture or cycling a tandem together.

A form of collaboration is known as co-activity. During co-activity, partners can interact with
one another to succeed in the common task without needing to know what the other partner is
doing [11]. An example of co-activity is when two interacting partners are connected through a
haptic connection while executing a motor task independently. Although they are ignoring their
partner, they are influenced through the interaction force exchanged by the haptic connection
[13]. Co-activity is the simplest form of haptic human-human interaction since exchange of haptic
information through the interaction force is possible but yet not required.

1.1.2 Previous work on haptic human-human interaction

Research on haptic interaction between humans has mostly focused on collaboration. While collab-
oration tasks in daily life often involve whole-body movement such as folding a tablecloth, studies
have focused primarily on visuomotor tasks that require limited degrees-of-freedom [5]. During
most studies, participants sit across each other and face a computer screen while holding a manip-
ulandum. This manipulandum provides either a direct physical haptic link [14] or virtual coupling
[15]. The participants perform a joint motor task which could include real [14] or virtual [16] object
manipulation or trajectory tracking [15]. During these tasks, participants obtain visual feedback
in order to complete the task as quickly or as accurately as possible.

Collaboration CompetitionCooperation

Assistance Education

e.g. Moving furniture e.g. Playing tug-of-war
e.g. Helping 

someone out of bed
e.g. Teaching 

someone to play pool

Figure 1.1: Taxonomy of haptic human-human interaction based upon the classification proposed
by Jarrassé [11].

6



Improvement of performance due to haptic interaction

Two haptically coupled partners can perform a collaboration task as well as [17] or better than
[14, 15] either of the partners alone. Ganesh et al. [15] performed a co-activity task in which
two participants were compliantly coupled by a virtual spring during a tracking task. The target
trajectory was the same for both participants. They showed that physically interacting participants
improved, regardless of whether the partner performance was better or worse than the individual’s
performance. It is surprising that a better partner improves while being connected to a worse
partner since you might expect that this connection would impede performance.

Haptic interaction strategies

Takagi et al. [18] explained the results of Ganesh et al. [15] by proposing that physically interacting
partners continuously estimate each other’s movement goal. They introduced the ‘interpersonal
goal integration’ model in which partners use the interaction force to estimate the partner’s move-
ment goal by first estimating the partner’s position and thereafter the control actions in order to
improve motor performance. They compared the prediction of the interpersonal goal integration
model and three other models, proposed in the literature, against data from an empirical physical
interaction task. The other interaction models were the ‘no computation model’, the ‘follow the
better’ model and the ‘multi-sensory integration’ model. The no computational model assumes that
no haptic information is exchanged between partners. The follow the better model assumes that
partners estimate each others performance through the haptic connection and switch to following
the partner when he/she is better [19]. Finally, the multi-sensory integration model presumes that
partners estimate each other’s position through the haptic interaction force and optimally combine
this information with their own information about the target position [20]. Takagi et al. found
that the interpersonal goal integration model fitted the empirical data best. However, other haptic
interaction strategies might be adopted and responsible for improvement during interaction.

Mojtahedi et al. [21] for instance showed that a partner (‘follower’) was able to infer the
intended or imagined (but not executed) movement direction from the upper limb impedance of
the other partner (‘leader’) while being rigidly coupled to each other. The follower was instructed
to scan the workspace while the leader was instructed to stay within the centre of the workspace
while preserving the intention to move in a given intended direction. This study suggests that
the modulation of joint impedance might be a contributor of haptic communication in haptic
human-human interaction.

1.2 Joint impedance

Joint impedance relates the position of the joint and the torque acting on it. The control of
joint impedance allows the central nervous system to vary the resistance to forces applied to
the body and to provide stability [22, 23]. In everyday life, we often need to reject external
disturbances or perform manipulative tasks that involve unstable interactions between the body
and the environment, e.g. when handling tools [24]. To successfully perform these actions, the
joint impedance must be controlled because it stabilises the limb to external force fields [25, 26].
A higher joint impedance suppresses the effects of internal noise on movement kinematics and is
therefore one of the strategies used by the neuromuscular system to generate accurate movements
[27, 28, 29, 30, 31]. Besides, joint impedance is a mechanism used in the early phase of learning to
accelerate the rate of dynamic motor learning [26, 32] and decreases as an internal model is formed
[33].

1.2.1 Modulation of joint impedance

Joint impedance consists of three contributions [34, 35, 36]:

1. an intrinsic contribution due to limb inertia and the viscoelastic properties of muscle fibres
and tissues in rest;

2. an intrinsic contribution due to active muscle fibres;

3. a reflexive contribution were muscles respond to stretches by producing counteracting torques.
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Because of the large range over which it can be modulated, muscle activation is used to profoundly
alter joint impedance.

Muscles are arranged in antagonistic groups of muscles which control the motion of a body
segment about a joint. The body segment is accelerated by one group of muscles in one direction
while the other group of muscles accelerates the body segment in the opposite direction. The
muscles that accelerate the body segment in the direction of motion are referred to as agonists
of the movement whereas the decelerating muscles are referred to as antagonists of the movement
[37]. For instance, the biceps brachii and the triceps brachii form an agonist/antagonist muscle
pair in which the biceps brachii causes flexion of the elbow joint whereas the triceps brachii causes
extension of the elbow joint.

The net torque about a joint is determined by the difference between the activities of the agonist
and antagonist muscles and are thus subtracted from one another. As muscles are activated to
generate a torque, joint impedance changes. This is because muscle activation increases the stiffness
[38, 39, 40] and to a lesser degree the viscosity [38, 39, 41] of a joint. Both stiffness and viscosity
increase linearly as muscle activation increases [37]. In contrast to joint torque, joint impedance
is predominantly determined by the sum of the activities of the agonist and antagonist muscles
[39]. Equal activation of agonist and antagonist muscles, referred to as co-contraction, are thus
responsible for increasing joint impedance without changing the net torque [24]. Hence, humans
are capable of modulating joint impedance independent of torque through a change in muscle
co-contraction.
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Chapter 2

Thesis





The effect of partner performance on arm
impedance modulation during haptic human-human

interaction
E. Zwijgers

Abstract—Humans often coordinate movements with each
other during haptic human-human interaction. Previous research
showed that individual task performance improves when two
partners are physically connected, but the underlying mecha-
nisms of how we use haptic cues remain unclear. A study suggests
that joint impedance might be a contributor of haptic communi-
cation during interaction. Joint impedance, changed by muscle
co-contraction, is namely one of the strategies used by the neu-
romuscular system to generate accurate movements. This study
investigated if the level of individual muscle co-contraction during
haptic collaboration is related to the performance of one’s partner
during haptic human-human interaction. An experiment was
developed in which participants haptically interacted through
a compliant connection in a continuous tracking task. During
the experiment, the amount of co-contraction was measured
using electromyography sensors to determine muscle activity.
The tracking performance of the participants was manipulated
by applying visual noise to the target movement to obtain
more pronounced performance differences between partners. Our
results indicate that muscle co-contraction in the monoarticular
shoulder muscles and partly in the monoarticular elbow mus-
cles is modulated based on the performance of the partner.
The amount of co-contraction was increased when haptically
interacting with a worse partner compared to performing the
task alone, while the amount of co-contraction was decreased
when haptically interacting with a better partner. Besides, the
co-contraction was negatively correlated with the performance
of the partner when the interacting partner was better. Further
research should reveal if the modulation of arm impedance is a
genuine mechanism used to improve individual task performance
during haptic human-human interaction.

I. INTRODUCTION

Humans are talented in coordinating movements with one
another during physical human-human interaction. Physical
interaction requires partners to adapt, anticipate, and react to
each other’s forces and motions [1]. Parents, for instance, use
haptic cues to teach their children how to walk. Likewise,
a therapist can physically assist or motivate a patient during
rehabilitation to retain motor functions after injury or disease.
The latter has served as motivation for the design of intuitive
and natural rehabilitation robots [2], [3]. A better understand-
ing of haptic interaction between humans could enhance the
design and control of such robots. However, the underlying
mechanisms of how we use haptic human-human interaction
to coordinate movements remain unclear.

Previous research showed that individual task performance
improves when two partners are physically connected [4]–
[6]. Reed and Peshkin [4] showed that the reaching time
of participants decreased while being rigidly coupled to a

partner. Ganesh et al. [5] performed an experiment in which
participants tracked an unpredictably and continuously moving
target while being compliantly coupled to a partner. They
showed that physically interacting participants improved, re-
gardless of whether the partner performance was better or
worse than the individual’s performance [5]. Takagi et al. [7],
[8] explained the results of Ganesh et al. [5] by proposing
that physically interacting partners continuously estimate each
other’s movement goal through the interaction force. The
prediction of a participant’s own target can be improved
using the estimated goal of their partner. This theory assumes
that accurate haptic communication has to occur in order
to explain the performance benefits of haptic human-human
interaction [6]. Although humans are reasonably accurate at
discriminating two different forces in terms of magnitude,
they show errors in force magnitude perception, especially
when the forces are small [9]–[13]. Besides, humans cannot
accurately estimate the precise direction of an applied force
[10], [11]. Because of this, Beckers et al. [6] challenged the
theory of Takagi et al. [7], [8] and showed that an accurate
perception of the interaction force was not necessary to
improve performance during haptic human-human interaction.
This raises the question: what alternative mechanisms could
be used to improve performance during haptic human-human
interaction?

Mojtahedi et al. [14] showed that a partner (‘follower’)
was able to infer the intended or imagined (but not executed)
movement direction from the upper limb impedance of the
other partner (‘leader’) while being rigidly coupled to one
another. The follower was instructed to scan the workspace
while the leader was instructed to stay within the centre of the
workspace while preserving the intention to move in a given
intended direction. This study suggests that joint impedance
might be a contributor of haptic communication in haptic
human-human interaction.

Several studies found that increasing joint impedance, both
through co-contraction and reflex modulation, stabilises the
limb to external force fields [15], [16]. Besides, a higher
joint impedance suppresses the effects of internal noise on
movement kinematics [17]. Joint impedance is therefore one
of the strategies used by the neuromuscular system to generate
accurate movements [17]–[21]. Besides, joint impedance is a
mechanism used in the early phase of learning to accelerate
the rate of dynamic motor learning [16], [22] and decreases
as an internal model is formed [23]. Therefore, improvement
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of performance during haptic human-human interaction might
be induced by adaptation of joint impedance.

Humans are able to control joint impedance through the
modulation of muscle co-contraction [24]–[26]. During hap-
tic human-human interaction, participants might change the
amount of co-contraction based on the present interaction
force. The amount of hinder or contribution of this force might
cause participants to decrease their amount of co-contraction
and let the interaction force guide them or increase their
amount of co-contraction to resist the interaction force. In
other words, participants could choose if they want to ‘lead’
or ‘follow’ their partner based on the amount of hinder or
contribution of the interaction force and thus the individual
performance of their partner. This study investigated if the
level of muscle co-contraction during haptic collaboration is
related to the performance of one’s partner in haptic human-
human interaction and could therefore be a mechanism used
to induce improvement of performance.

An experiment was developed in which participants hap-
tically interacted through a compliant connection in a con-
tinuous tracking task. During the experiment, the amount of
co-contraction was measured using electromyography (EMG)
sensors to determine muscle activity. The tracking perfor-
mance of the participants was manipulated by applying visual
noise to the target movement to obtain more pronounced
performance differences between partners. We expected that
the amount of muscle co-contraction of the participants was
related to the performance of one’s partner. Specifically, we
expected that a participant interacting with a worse partner
showed more co-contraction with respect to a subject interact-
ing with a better partner since the interaction forces were more
hindering. Besides, it is expected that a participant interacting
with a worse partner will co-contract more with respect to no
interaction and will therefore improve performance.

II. MATERIALS AND METHODS

Twenty-two participants (aged 19-29, 8 males and 14 fe-
males; all except two were right-handed according to the
Edinburgh handedness inventory [27]) participated in the ex-
periment. The study was designed following the principles of
the Declaration of Helsinki and approved by the Ethical Com-
mittee of the University of Twente. All participants provided
written informed consent and received compensation (gift
card) for their participation regardless of their performance.
The experiment lasted approximately one hour and a half.

The method is structured as follows: the fist section de-
scribes the robotic setup, followed by a section explaining
the specific experimental task and design of visual noise.
Thereafter the method to measure muscle activity is reported.
The fourth section elaborates on the experimental design,
including the structure of the experimental blocks and the
protocol. Finally, the data analysis is discussed.

A. Robotic setup

The experiments were performed with a dual robotic setup
consisting of two manipulanda as used in Beckers et al. [6] (see

Fig 1). The manipulanda allowed arm movements in a circular
planar workspace with a radius of 10 cm. The manipulanda
were admittance-controlled such that the dynamics of the
handle (a mass of 0.3 kg and a damping of 0.25 N s m-1) were
the same across the complete workspace. Both participants
had their own display which showed the circular workspace,
the common target and their own cursor. Each cursor could
be controlled by moving the handles of each manipulandum.
The movement of the cursor and target were scaled to match
the real-world movement. The forearm of the participants was
supported in the gravity direction by a passive arm support
at shoulder joint height, such that each participant’s arm
moved in a horizontal plane. The wrist joint of the participants
was fixed with a brace (Thuasne Ligaflex Classic Open, size
1), immobilising the wrist joint, such that the participants
could only move the handle through elbow and shoulder joint
movement [16], [21], [28]. The brace was connected to the
manipulandum handle at the center of the hand palm. The
view of the partner and partner’s display was obstructed by
a curtain. Besides, a panel obstructed direct view of the arm
and manipulandum of each participant. During the experiment,
participants were not allowed to verbally communicate.

B. Task

The experiment consisted of a repeated planar tracking task
in which the goal of the participants was to track the target as
accurate as possible. The score, presented as the mean tracking
error, and high score of each participant was shown after each
trial. Both partners within a pair tracked the same continuously
moving target during trials of 23 s followed by a 5 s break.
The trajectory of the target (in cm) was defined as a sum of
sines (see appendix B-B) [29]

x(t) = 3.92 sin(1.57t+ 0.27) + 3.46 sin(1.89t+ 0.50),

+ 2.68 sin(2.51t+ 3.89) + 1.85 sin(3.46t− 2.32),

y(t) = 3.40 sin(1.89t− 1.28) + 2.99 sin(2.29t+ 3.76),

+ 2.32 sin(2.83t+ 9.93) + 1.62 sin(3.77t+ 5.53). (1)

The target movement had a mean velocity of 12.04 cm s-1 with
a maximum velocity of 20.14 cm s-1. An uniformly random
start time for the signal was chosen (t ∈ [t0, t0 + 20]s) to
prevent fast learning or other cognitive strategies [6].

1) Visual noise: The tracking performance of the par-
ticipants was manipulated by applying visual noise to the
target movement, similar to [30], [31]. The tracking error
was linearly and significantly related to the amount of visual
noise, such that greater visual noise resulted in larger tracking
errors (see appendix A). The target was composed of a
dynamic cloud around the actual target position (see Fig. 2).
The dynamic cloud consisted of five circular spots that were
displayed every millisecond. Each spot was regenerated, one
at a time, every 500 ms by picking a new relative position and
velocity with respect to the target (see Eq. A.1). The position
and velocity parameters were determined from normal random
distributions with a standard deviation of σp = 0.4 cm for the
position, and from a set of five equally spaced values from σv
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Fig. 1. Dual robotic setup. Each participant had his/her own manipulandum and display showing a cursor and target. The target was composed of a dynamic
cloud around the trajectory consisting of five circular spots. The individual cursor could be controlled by moving the handle. The target movement was the
same for both participants. The wrist joint of the participants was fixed by a brace which was connected to the handle of the manipulandum. The detail shows
how the partners were physically coupled through a compliant computer-generated spring [6].

= 0.5 to σv = 10 cm s-1 for the velocity (see appendix B-A).
The amount of visual noise was controlled by the standard
deviation of the spots’ velocities which was fixed during a trial.
Spots with low velocity noise where relatively easy to track
but high velocity noise spots spread out rapidly like fireworks.

Low High
More visual noise by 

increasing spots’ velocities 

Actual
target

(hidden)

Fig. 2. The target was composed of a dynamic cloud around the actual target
position. The dynamic cloud consisted of five circular spots which spread
out slowly (low visual noise) or rapidly (high visual noise) to control each
individual’s tracking performance. The amount of visual noise was controlled
by the amount of the standard deviation of the spots’ velocities which was
fixed during a trial [31].

2) Connected and single trials: Two types of trials were
used in the experiment: connected (C) and single (S) trials.
During a connected trial partners physically interacted through
a compliant connection which connected the handles of the
two partners (see Fig 1). The connection was a computer-
generated spring, which generated an interaction force

Fs = ks(pp − po) + bs(vp − vo), (2)

where ks is the connection stiffness constant in N m-1, bs the
damping constant in N s m-1, pp and vp and po and vo are
the partner’s and the participant’s own position and velocity,
respectively. The interaction force (Fs) is exerted onto both

partners’ hands by the robotic manipulanda. The compliant
connection allowed the partners to haptically interact, while
being able to independently execute the tracking task such
that independent and active task execution was required. The
stiffness was set to ks = 100 N m-1 [31] and the damping to
bs = 3 N s m-1. The damping was added for spring stability.
During a single trial, partners within a pair were not connected
and performed the task alone.

C. Electromyography

We measured the muscle activity of three antagonistic
muscle pairs through EMG using the Trigno™Avanti Wireless
System (Delsys). The activity of two monoarticular shoulder
muscles, pectoralis major and posterior deltoid, two biarticular
muscles, biceps brachii and long head of the triceps, and two
monoarticular elbow muscles, brachioradialis and lateral head
of the triceps, were recorded [16], [32]. The electrode locations
were chosen following the Seniam recommendations [33] to
maximise the signal from a particular muscle while avoiding
cross-talk from other muscles. Skin was prepared using alcohol
and, if needed, removal of hair. Electrode placement was
verified using isometric force tasks [21], [34].

D. Experiment design

The participants performed the experiment in randomly
formed pairs (11 pairs). Each pair performed seven blocks
of a various amount of trials, see Fig. 3A. Participants had
a four-minute break between blocks. Block 1 consisted of
one baseline trial to check the baseline level of EMG when
participants were fully relaxed and eight maximal voluntary
contraction (MVC) trials. MVC trials were performed by
instructing the participants to maximally extend or flex the
elbow or shoulder while static resistance was delivered by the
experimenter. Block 2 served as a training block to achieve
a steady-state behaviour. All trials in this block were single
trials. The lowest visual noise level (σv = 0.5 cm s-1) was
applied to the first ten trials. In the following five trials the
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Fig. 3. The structure of the experimental blocks and the set of standard
deviations of the velocity for both participants during connected trials. A
The seven experimental blocks, including the amount and type of trials.
The single and connected trials in block 3 to 7 were randomly ordered and
randomly assigned with a standard deviation of the velocity. B The possible
combinations for the standard deviation of the velocity for participant 1 (σv1)
and participant 2 (σv2), denoted by the purple boxes. Each of the nine
combinations is repeated five times (45 connected trials in total).

visual noise level was increased in ascending order. In the
last five trials the five levels of visual noise were applied
randomly to get the participants acquainted with randomly
changing visual noise levels.

Block 3 to 7 consisted of five single and nine connected
trials, which were randomly presented to the partners. In these
blocks, at the start of each connected trial one of the levels of
visual noise was assigned to each of the participants. One of
the two participants was always assigned with a visual noise
level with a standard deviation of 0.5 cm s-1 while the other
participant got a visual noise level with a standard deviation
from the set of five equally spaced values, see Fig. 3B. Every
combination of visual noises for the connected trials (total of
nine) was applied only once within a block. During the five
single trials within each block, a level of visual noise was
randomly assigned for both participants separately and only
applied once per block.

E. Analysis

Data of the handle position and velocity, interaction force
and EMG signals were sampled at 1 kHz. The data were
then parsed to perform additional analysis using MATLAB
R2017B. Individual performance was calculated as the root
mean square of the tracking error E (in cm) and only the last
20 s of each trial was used. The tracking error is referred to Es
in a single trial and Ec in a connected trial. EMG data were

high-pass filtered using a 30 Hz cut-off frequency to remove
ECG cross-talk and movement artefacts [35]. The signal was
then rectified and filtered using a moving average filter with
a window of 0.5 s for the baseline and MVC trials and a
window of 0.3 s for all other trials [36]. The MVC value for
each muscle is defined as the highest peak in the corresponding
MVC trial. EMG data of every muscle were scaled using the
MVC value of the specific muscle.

1) Improvement of performance due to interaction: The
improvement of performance due to interaction with a partner
is visualised using the relative performance between partners
and performance improvement due to interaction [5]–[7]. The
performance improvement per participant due to interaction
(I) is calculated as

I = 1− Ec
Es
, (3)

where the error of the connected trial (Ec) is compared to
the error of the single trial (Es) with the equivalent level
of visual noise in the same experimental block. The relative
performance of the partner (R) you interact with is calculated
as

R = 1− Es,p
Es

, (4)

where Es,p is the partner’s performance during the single trial
in which the level of visual noise was the same as the level of
visual noise of the partner in the connected trial and belongs
to the same experimental block. The improvement is binned in
bins of 20% of relative performance wide to reveal any trend
in the improvement I versus relative performance R. The mean
and standard error of the mean (s.e.m.) of the improvement
were calculated per bin.

2) Co-contraction index: To investigate how muscle co-
contraction during interaction dependeds on the performance
of the partner, the absolute difference in performance between
partners and the level of co-contraction for the three antago-
nistic muscle pairs is determined. The level of co-contraction
(co-contraction index, CI) in each trial is calculated as (see
Appendix C) [37]–[39]

CI =

√√√√ 1

n

n∑
i=1

(common area muscle A & B)2, (5)

where muscle A and B represent the antagonistic muscles. The
co-contraction index in connected trials is compared against
the absolute difference of performance of the two partners
(∆R) and is calculated as

∆R = Es − Es,p. (6)

3) Statistical analysis: Statistical analysis was done using
IBM SPSS Statistics 25. The improvement due to interaction
versus relative partner performance was fitted using an expo-
nential regression model

Ii,j = α0 + α1e
α2Ri,j + εi,j , (7)
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Fig. 4. Example of participant’s cursor path and muscle activity measured with EMG. A The cursor and target path of a participant during single trials.
A trial with low visual noise (σv = 0.5 cm s-1) and high visual noise (σv = 10 cm s-1) is shown. B EMG activity normalised with the maximal voluntary
contraction (MVC) of the biarticular muscles (biceps brachii and long head of the triceps) for a random trial. The shaded area denotes the common area of
the antagonistic muscle pair. The co-contraction index (CI) is calculated as the root mean square of the common area.

where R is the relative partner performance (continuous pre-
dictor), α0...2 the fitted coefficients, ε is the unexplained
variance in the data and the subscript i and j denote the
trial number and participant, respectively. Where applicable,
parametric statistical tests (ANOVA and repeated measures
ANOVA) were used to analyse the effect of visual noise on
the individual performance and co-contraction index. The co-
contraction index of the three antagonistic muscle pairs during
interaction versus the absolute difference in performance of the
two partners were analysed using a linear mixed model with
a random intercept and fixed slope [40]

CIi,j = β0j + β1∆Ri,j + εi,j (8)

where β0i and β1 are the random intercept and fixed slope, re-
spectively, ∆R the absolute difference in partner performance,
ε is the unexplained variance in the data and the subscripts
i and j denote the trial number and subject, respectively.
All data and statistical model fit residuals were checked for
normality using the Kolmogorov-Smirnov normality test and
visual inspection (QQ plots). In case of non-normality, the
non-parametric Friedman’s ANOVA is used for K-related sam-
ples with the Wilcoxon signed-rank test as post hoc analysis

using a Bonferroni correction to account for multiple testing
bias. For the regression model and linear mixed model, in case
of non-normality of the residuals, the robust bootstrap method
is used for analysis [41], [42]. A two-tailed dependent t-test
or a two-tailed Wilcoxon signed-rank test, in case of non-
normality, is performed to see if the amount of co-contraction
significantly differed between interaction and no interaction.
The level of significance for all tests was set to 0.05 unless
specifically mentioned differently.

III. RESULTS

To investigate how relative partner performance influenced
arm impedance modulation during haptic human-human in-
teraction, a collaborative tracking task was performed. The
performance of participants was manipulated using visual
noise to obtain more pronounced performance differences
between partners. Muscle activity of six upper limb muscles
was measured to assess participants’ adopted levels of muscle
co-contraction. The first section will discuss the results on
the improvement of the tracking performance due to haptic
human-human interaction and if this is influenced by adding
visual noise to the target. Thereafter, we discuss whether
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Fig. 5. The improvement in task performance in each participant for each dual trial was plotted against the relative performance of their partner. Improvement
is observed when the partner is better and partly when the partner is worse, up till a relative partner performance of ± -120%.

Fig. 6. The absolute improvement in task performance in each participant for each dual trial was plotted against the absolute difference performance in
partner performance and grouped per level of visual noise. The spread in absolute improvement increased with a higher level of visual noise (VN).

muscle co-contraction is modulated based on the performance
of the partner.

A. Improvement due to interaction

Fig. 4A shows an example of the cursor paths of one
participant when a low and high level of visual noise was
added to the target. The tracking performance with a low
level of visual noise was much better compared to the tracking
performance with a high level of visual noise.

To analyse how each individual’s performance changed
as a function of the partner’s performance during haptic
human-human interaction in a connected trial, the relative
improvement due to interaction as a function of the relative
partner performance is plotted in Fig. 5. The data was fitted

using an exponential regression model (R2 = 0.17), with
the relative partner performance as a significant predictor
(t(979) = 11.99, p = 5.35 · 10−31). The performance of a
participant improved when the interacting partner was better.
Moreover, the improvement increased as the performance
of the partner increased. Participants still improved when
their partner was worse then them, but improvement benefits
decreased towards zero with a progressively worse partner. The
improvement due to haptic human-human interaction is similar
to those of Ganesh et al. [5] and Beckers et al. [6], but there is
a main difference in the interception point (i.e. where the im-
provement is zero). The data of Ganesh et al. suggest that you
will improve regardless of the performance of the partner. The

6 of 21



Fig. 7. The standard deviation of the performance in single trials is plotted
against the level of visual noise. The green data points represent an individual
participant. The variability between a certain visual noise level and the not
immediately adjacent visual noise levels differ significantly, p < 0.05. † To
account for individual differences, the standard deviation (σ) was adjusted:
σadjustedi,p = σi,p+( 1

P

∑P
p=1 σg− 1

N

∑N
i=1 σi,p), where n and p denote

the trial number and participant number, respectively, and σg denotes the mean
standard deviation of each participant.

data of Beckers et al. show an intercept of approximately -40%
while this data suggests an intercept of approximately -120%.
Besides, our data show less improvement of performance when
connected to a partner with the same performance compared
to the study of Ganesh et al. and Beckers et al. In addition,
our data show more data points in the lower-right quadrant
(indicating deterioration of performance with a better partner)
compared to the data of Ganesh et al. and Beckers et al. To
investigate this difference, the absolute improvement due to
interaction as a function of the absolute difference in partner
performance, grouped per level of visual noise, is plotted in
Fig. 6. The spread in absolute improvement increased with
higher levels of visual noise. To further investigate the effect
of visual noise on the variability in performance, the standard
deviation of the performance per level of visual noise in single
trials is shown in Fig. 7. A repeated measures ANOVA showed
that the magnitude of standard deviation of the performance
was significantly affected by the amount of visual noise
(F (2.62, 54.92) = 21.71, p = 8.73 · 10−9; Mauchly’s test
showed violation of sphericity, χ2(9) = 22.47, p = 0.008,
Greenhouse-Geisser correction is therefore applied). Post hoc
tests using the Bonferroni correction showed that the standard
deviation of the performance was significantly different for all
combinations of visual noise except the adjacent pairs of visual
noise, p < 0.05. The variability in performance thus increased
with a higher level of visual noise. The higher amount of
data points for deterioration of performance when coupled to
a better partner is most likely due to a higher variability in

Fig. 8. The co-contraction index of the shoulder antagonistic muscle pair
in single trials is plotted against the level of visual noise. The first level of
visual noise (0.5 cm s-1) significantly differed from the other levels of visual
noise, p < 0.05. † To account for individual differences, the co-contraction
index (CI) was adjusted: CIadjustedi,p = CIi,p + ( 1

P

∑P
p=1 CIg −

1
N

∑N
i=1 CIi,p), where n and p denote the trial number and participant

number, respectively, and CIg denotes the mean co-contraction index of each
participant.

performance with a higher level of visual noise.

B. Co-contraction modulation due to partner performance

Fig. 4B shows the measured EMG activity and the inferred
muscle co-contraction of the biarticular muscle pair for one
participant within one single trial.

1) Effect of visual noise on co-contraction: Before we
could analyse the effect of partner performance on the amount
of co-contraction during the connected trials, we needed to
analyse the effect of visual noise on the amount of co-
contraction in the single trials. This is done to ensure that
an effect on the amount of co-contraction is due to partner
performance and not visual noise. Fig. 8 shows the co-
contraction index in single trials per level of visual noise for
the monoarticular shoulder muscles. We found that there was
a significant effect of the level of visual noise on the amount
of co-contraction in single trials (Friedman’s ANOVA non-
parametric tests; χ2(4) = 38.84, p = 7.53 · 10−8; χ2(4) =
22.22, p = 1.81·10−5; χ2(4) = 26.66, p = 2.30·10−6, for the
monoarticular elbow muscles, monoarticular shoulder muscles
and biarticular muscles, respectively). Wilcoxon signed-rank
tests were used to follow up this finding and a Bonferroni
correction was applied. It appeared that only the amount of
co-contraction in the lowest level of visual noise (0.5 cm s-1)
significantly differed from the other levels of visual noise for
all three antagonistic muscle pairs (p < 0.005).

2) Relation between partner performance and co-
contraction: Because there was a significant effect between
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Fig. 9. The co-contraction index of the monoarticular shoulder muscles during interaction as a function of the absolute difference in partner performance.
Each color represents a specific participant. Data points are fitted using a linear mixed model with a random intercept and fixed slope. A Data points are
measured when a low level of visual noise was applied to the target (σv = 0.5 cm s-1). B Data points are measured when a high level of visual noise was
applied to the target (σv = 2.9, 5.3, 7.6, 10 cm s-1).

the level of visual noise and the amount of co-contraction,
visual noise was taken into account when analysing the
effect of the performance of one’s partner on the amount of
co-contraction. The level of visual noise and the absolute
difference in partner performance are strongly subjected
to multicollinearity (Pearson correlation test; r = 0.815,
p = 9.98 · 10−12) and it was therefore not possible to include
visual noise as a covariate in the linear mixed model (see Eq.
8). We therefore chose to split the data of the monoarticular
elbow muscles, monoarticular shoulder muscles and the
biarticular muscles in two groups based on the level of visual
noise. The first group, labelled as low visual noise, consisted
of all trials with the lowest level of visual noise (σv = 0.5 cm
s-1). The second group, labelled as high visual noise, consisted
of trials with all other levels of visual noise (σv = 2.9, 5.3,
7.6, 10 cm s-1). Fig. 9A and 9B show the co-contraction index
of the monoarticular shoulder muscles in connected trials as
a function of the absolute difference in partner performance
for the low visual noise group and high visual noise group,
respectively (see appendix E for figures of monoarticular
elbow muscles and biarticular muscles). Using the linear
mixed model (see Eq. 8), the absolute difference in partner
performance significantly predicted the co-contraction index of
the monoarticular elbow muscles and monoarticular shoulder
muscles for a high level of visual noise, F (1, 418.34) = 7.50,
p = 0.006 and F (1, 418.62) = 9.82, p = 0.002, respectively.
The relation between the absolute difference in partner
performance and the co-contraction index is negative and
has a slope of β1 = −0.15 and β1 = −0.21 %MVC

cm
for the monoarticular elbow muscles and monoarticular

shoulder muscles, respectively. The absolute difference
in partner performance did not significantly predicted the
co-contraction index of the biarticular muscles for a high
level of visual noise (F (1, 418.47) = 2.30, p = 0.13)
and for all three antagonistic muscle pairs for the low
level of visual noise, F (1, 528.25) = 1.95, p = 0.16;
F (1, 528.28) = 0.26, p = 0.61; F (1, 528.29) = 1.03,
p = 0.31, for the monoarticular elbow muscles, monoarticular
shoulder muscles and biarticular muscles, respectively.

3) Effect of interaction on co-contraction: Fig. 10 shows
the average amount of co-contraction for the monoarticular
shoulder muscles, monoarticular elbow muscles and biarticular
muscles during trials without haptic interaction and during
trials with haptic interaction for a low and high level of visual
noise. The amount of co-contraction of the monoarticular
shoulder muscles during haptic interaction with a low level of
visual noise significantly increased with respect to no haptic
interaction (two-tailed Wilcoxon signed-rank tests; z = −2.64,
p = 0.008). A change in co-contraction with a low level of
visual noise was not seen in the monoarticular elbow and
biarticular muscles, z = −0.21, p = 0.83; z = −0.50,
p = 0.61, respectively. The amount of co-contraction during
haptic interaction significantly decreased with respect to no
haptic interaction with a high level visual noise, for the
monoarticular shoulder muscles (two-tailed Wilcoxon signed-
rank tests; z = −2.52, p = 0.012). A change in co-
contraction with a high level of visual noise was not seen in
the monoarticular elbow and biarticular muscles, z = −0.016,
p = 0.99; z = −0.89, p = 0.37, respectively.
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Fig. 10. The average co-contraction index of the monoarticular shoulder
muscles, monoarticular elbow muscles and biarticular muscles with a low
and high level of visual noise (VN). The average co-contraction indexes are
plotted for single (S) trials in which participants were not haptically connected
and for connected (C) trials in which participants were haptically connected to
one another. The average co-contraction index in the monoarticular shoulder
muscles in connected trials differed significantly from the single trials in
both the low visual noise and high visual noise group. † To account for
individual differences, the co-contraction index (CI) for all three muscle
groups separately was adjusted: CIadjustedi,p = CIi,p+( 1

P

∑P
p=1 CIg−

1
N

∑N
i=1 CIi,p), where n and p denote the trial number and participant

number, respectively, and CIg denotes the mean co-contraction index of each
participant.

4) Relation between visual noise and performance of the
partner: The level of visual noise was directly related to the
absolute difference in partner performance, such that a low
level of visual noise (σv = 0.5 cm s-1) resulted almost always
in a worse partner (89.6 %) and a high level of visual noise
(σv > 0.5 cm s-1) resulted almost always in a better partner
(99.5%). It can therefore be said that the results obtained
within the low level of visual noise group say something about
a worse partner performance and the results obtained within
the high level of visual noise group say something about a
better partner performance.

IV. DISCUSSION

This study investigated if muscle co-contraction - an indica-
tor of arm impedance - during haptic collaboration is related
to the performance of one’s partner during haptic human-
human interaction. Participants tracked a common randomly
moving target while haptically interacting though a compliant
connection. The tracking performance of the participants was
manipulated by using visual noise to obtain more pronounced
performance differences between partners. Visual noise was

created by representing the target as a cloud of randomly
moving dots which spread out slowly (low visual noise)
or rapidly (high visual noise). The muscle activity of six
upper limb muscles was measured using EMG to assess each
participant’s adopted levels of muscle co-contraction. First,
the relation between co-contraction and the performance of
the partner is discussed. Thereafter, we discuss the effect of
visual noise on the improvement due to interaction and the
variability in performance. Finally, we describe the limitations
of this study and suggestions for further research.

A. Co-contraction modulation due to partner performance

Our results show that muscle co-contraction was changed
based on the performance of the partner. The co-contraction in
the monoarticular shoulder muscles (pectoralis major and pos-
terior deltoid) was increased during interaction with a worse
partner compared to performing the task alone. Furthermore,
the co-contraction in the monoarticular shoulder muscles was
decreased when being connected to a better partner compared
to no interaction, and gradually decreased with increasing
partner performance. The co-contraction in the monoarticular
elbow muscles (brachioradialis and lateral head the triceps)
was not significantly different when being connected to a better
partner compared to no interaction. Yet, there was a negative
correlation between the co-contraction and the performance
of the partner when the interacting partner was better. No
change in co-contraction in the monoarticular elbow muscles
was found when being connected to a worse partner. The
co-contraction in the biarticular muscles (biceps brachii and
long head of the triceps) did not change based on the perfor-
mance of the partner. This study thus provides evidence that
haptically interacting partners modulate co-contraction of the
monoarticular shoulder muscles and partly the monoarticular
elbow muscles based on their partner’s performance, which
indicates that the individuals selected different arm impedance
modulation strategies based on their partner’s performance.

1) Co-contraction strategies: Our results show that the co-
contraction in the elbow and shoulder muscles is modulated
independently, which is supported by the findings of Grib-
ble and Ostry [43]. They found that humans modulate co-
contraction in the shoulder and elbow independently based on
task requirements during arm reaching movements. Moreover,
Franklin et al. [44] showed that co-contraction of the different
muscle groups in the shoulder and elbow joints was selectively
controlled when moving in differently orientated unstable envi-
ronments. This indicates that the central nervous system (CNS)
selectively changes the co-contraction of muscle groups and
thus applies different strategies depending on the environment
and task requirements. The application of different strategies
is also seen in our study as co-contraction increases when the
partner’s performance is worse and decreases as the partner’s
performance is better.

The geometry of the arm has an influence on the contri-
bution of particular muscles on the endpoint stiffness [44].
For example, when the arm is relatively extended in front
of the body, an increase in the arm impedance in the x-
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direction can only be achieved by increasing the co-contraction
of the monoarticular shoulder muscles. When the arm is more
flexed, a similar increase in arm impedance can be produced
by either the monoarticular shoulder muscles, the biarticular
muscles or the monoarticular elbow muscles. An increase
in co-contraction in the monoarticular shoulder muscles is
effective in most arm geometries and might therefore be the
preferred method of the CNS to modulate arm impedance
during a tracking task in haptic human-human interaction.

2) Increased co-contraction when interacting with a worse
partner: The co-contraction in the monoarticular shoulder
muscles was increased when being connected to a worse
partner compared to the co-contraction levels when performing
the task alone. To explain this finding, it is possible that partici-
pants interacting with a worse partner perceived the interaction
force as a perturbation and increased their co-contraction in
order to be more robust to (unanticipated) external interaction
forces [15], [16]. In addition, several studies have shown that a
higher arm impedance causes higher movement accuracy [17]–
[21]. Hence, the increased arm impedance during interaction
with a worse partner (up till a relative partner performance of
-120%) could have resulted in better or at least no degraded
tracking performance. When the performance of the partner
was worse than approximately 120%, the interaction force was
presumably more hindering than providing accuracy benefits,
due to increased co-contraction, resulting in deterioration of
performance during interaction.

3) Decreased co-contraction when interacting with a better
partner: The co-contraction in the monoarticular shoulder
muscles was decreased when being connected to a better
partner compared to performing the task alone. Besides,
the co-contraction in the monoarticular shoulder and elbow
muscles was negatively correlated with the performance of
the partner when the interacting partner was better. Previous
studies suggest that the CNS attempts to decrease levels of
muscle activation - referred to as slacking - when haptically
assisted [45]–[49]. During haptic assistance, participants rely
on the external help as movement errors remain small. Our
results could indicate that participants were slacking when
connected to a better partner as they relied on the haptic
guidance provided by their partner to improve performance.
Besides, participants seemed to slack more, or rely more on the
haptic guidance provided by their partner when their partner
became even better (based on the decreased co-contraction
levels), presumably because a better partner caused smaller
movement errors when being followed.

B. Effect of visual noise on improvement

We found that the amount of co-contraction increased when
the target with the lowest level of visual noise was presented
(σv = 0.5 cm s-1) compared to all other levels of visual
noise. Previous studies have shown that muscle co-contraction
voluntarily increases with increasing accuracy requirements,
leading to reduced endpoint deviations in reaching tasks [21],
[50], [51]. Participants had the highest chance to improve their
high score (shown after each trial) in trials with the lowest

level of visual noise. Because humans have a competitive
nature [52] they likely increased their muscle co-contraction
in order to increase movement accuracy and therefore try
to improve their high score. This matches the opinion of
the participants. Most participants stated that they were more
motivated when the lowest level of visual noise was presented.

The effect of increased muscle co-contraction with the low-
est level of visual noise on the improvement due to interaction
is visible when comparing this study to the study of Beckers
et al. [6]. We found lower improvement when connected to
a partner with the same performance and participants still
improved with a relatively worse partner. This is due to the
fact that participants with the lowest level of visual noise
performed better without interaction and were more stabilised
to the interaction force [15], [16]. Less improvement of
performance due to visual noise was also seen in the results
of Takagi et al. [31] who also introduced visual noise to the
target.

C. Effect of visual noise on variability

The visual noise on the target made accurate estimation of
the target position more difficult [30] and subsequently led to
lower accuracy when tracking the target, resulting in a worse
performance. Moreover, the results of this study show that the
variability of performance increased with greater visual noise.
Visual noise therefore introduces, alongside lower accuracy,
lower precision. This is in accordance to the study of Ma-
Wyatt and McKee [53] who studied the endpoint precision for
a rapid pointing task when the amount of visual information
was adjusted. Similar to this study, Takagi et al. [31] performed
a continuous tracking task with physically coupled dyads,
triads and tetrads from which their tracking performance was
manipulated by adding visual noise similar to us. A high
variability in performance due to visual noise is, however,
not seen in the study of Takagi et al. The difference can be
explained by a methodological difference since the tracking
error during no interaction is determined differently compared
to this study. The method of Takagi is disregarding a higher
variability in performance due to visual noise while it should
be taken into account when analysing performance.

D. Limitations

1) Effect of visual noise on co-contraction: A relation
between the partner performance and the amount of co-
contraction in the monoarticular shoulder muscles when the
partner performance was worse was not found. Yet, the amount
of co-contraction did increase in the monoarticular shoulder
muscles when connected to a worse partner compared to no
interaction. The absence of a trend can be assigned to an
increased amount of co-contraction without interaction due
to a low level of visual noise. Since participants are already
more co-contracted when doing the task alone, they might not
increase their amount of co-contraction much more during
interaction. Muscle co-contraction is namely metabolically
expensive, and thus with respect to energetic considerations
alone, would not represent an optimal strategy for movement

10 of 21



control [54]. However, in order to stabilise the limb to external
forces, the optimal compromise between energy consumption
and accuracy does in fact require antagonistic muscle acti-
vation [55]. During connection with a slightly worse partner
the maximum compromise in favour of co-contraction might
already be achieved and thus not further increase during
interaction with a much worse partner. The introduction of
visual noise resulted in more pronounced differences in per-
formance but possibly obscured the relation between muscle
co-contraction and a worse partner performance.

2) Co-contraction measuring method: The measure of co-
contraction used in this study has a few limitations. The co-
contraction index is solely based on surface EMG signals and
thus does not take into account factors such as differences in
the muscle force-generating ability or differences in muscle
moment arms [21]. Besides, muscles not monitored in this
study could also have a contribution to the impedance of the
upper limb. Moreover, the EMG activity of all six muscles
was relatively low (average maximum of 20 %MVC) which
could cause a low signal to noise ratio. Nevertheless, as a first
approximation, the measure used here is useful as a rough
estimate of how opposing agonist/antagonist activity during
interaction changes with respect to partner performance. Be-
sides, other methods to measure co-contraction are not suitable
during haptic human-human interaction experiments since
the interaction force would disturb these measurements (see
Appendix C).

E. Further research

This study only looked at the modulation of co-contraction
per trial, but it is interesting to see how co-contraction is
changed within a trial and if it is modulated based on the
amplitude and direction of the haptic interaction force. It is
recommended for further research to investigate the direct
relation between co-contraction and the interaction force.

Our results indicate that muscle co-contraction in the
monoarticular shoulder muscles and partly in the monoarticu-
lar elbow muscles is modulated based on the performance of
the partner. We found a connection between arm impedance
modulation and improvement during interaction; however, it
is possible that haptically-interacting partners improved per-
formance through other strategies as well. Further research
should reveal if the modulation of arm impedance is a gen-
uine mechanism used to improve individual task performance
during haptic human-human interaction.
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APPENDIX A
VISUAL NOISE PILOT STUDY

A. Introduction

To test if the amount of individual muscle co-contraction is related to the performance of one’s partner, the tracking ability of
participants should be manipulated to create a larger performance difference. This can be achieved by applying visual noise to
the target [30], [31]. To understand the effect of visual noise on the individual motor performance, a pilot study was executed.

B. Method

Three participants (aged 23-32, 1 female, 2 males; two where right-handed according to the Edinburgh handedness inventory
[27]) participated in the experiment. All participants where naı̈ve to the visual noise task. The experiments were performed
using one manipulandum of the robotic setup mentioned in section II-A (see Fig. 1). All participants performed the same planar
tracking task. The goal was to track the target as accurately as possible. The participants tracked the continuously moving
target during trials of 20 s followed by a 5 s break. The monitor displayed a cursor of the handle position and the target,
which was composed of a dynamical cloud. The target movement (in cm) was defined as a sum-of-sines [6]:

x(t) = 2.87 sin(0.94t− 7.77) + 2.71 sin(1.26t− 8.53),

+ 2.35 sin(1.89t− 4.36) + 1.80 sin(2.83t− 3.79),

y(t) = 2.71 sin(1.26t− 0.71) + 2.53 sin(1.57t− 3.79),

+ 2.16 sin(2.20t+ 2.92) + 1.64 sin(3.14t+ 4.93). (A.1)

The tracking signal required hand movements over a circular workspace with a radius of 10 cm, an average of 7.9 cm s-1

and a maximum velocity of 13.9 cm s-1. To prevent fast learning or other cognitive strategies, an uniformly random start time
for the signals was chosen (t ∈ [t0, t0 + 20]s). The dynamic cloud consisted of five circular spots that were displayed every
millisecond. Each spot was regenerated, one at a time, every 500 ms by picking a new relative position and velocity with
respect to the target. The absolute spot velocity was defined as the sum of the target velocity and the assigned relative spot
velocity:

ẋsi(t) = ẋ(t) + ∆ẋsi ,

ẏsi(t) = ẏ(t) + ∆ẏsi , (A.2)

where ∆ẋs and ∆ẏs are the assigned relative spot velocities (regenerated every 500 ms) and subscript i denotes the considered
spot (i ∈ [1, 5]). The position and velocity parameters were determined from normal random distributions with a standard
deviation of 0.4 cm for the position, and from a set of thirteen values for the velocity (ten equally spaced values from 0.5
to 30 cm s-1 and 15, 22.5 and 30 cm s-1). Spots with low velocity noise where easy to track but high velocity noise spots
spread out rapidly like fireworks. Each participant performed four blocks of fifteen trials. Between blocks participants had a
two-minute break. The first eight trials served as a baseline, in which the target was visualized as one spot with no visual noise.
In the following 52 trials, the standard deviation of the velocity varied per trial. Each level of noise was tested for four trials,
randomly ordered. The tracking error of each participant in a trial was measured as the root-mean squared distance between
the target and the cursor. The lower the tracking error, the better the performance.

C. Results

Fig. 11 shows the tracking error of all three participants as a function of the different levels of visual noise. There is a signif-
icant relationship between the standard deviation of the relative spots’ velocities and the tracking error, r =

[
.95 .91 .92

]
,

p (one-tailed) < 0.001. The tracking error increased linearly with respect to an increasing standard deviation of the relative
spots’ velocities up to a certain level of visual noise. Above a standard deviation of approximately 10 cm s-1 the effect of an
increasing standard deviation of the relative velocity starts to decline.

D. Conclusion

The tracking error of participants is linearly and tightly related to the standard deviation of the visual noise up to a
standard deviation of approximately 10 cm s-1. Visual noise can therefore be used to influence the tracking performance of the
participants.
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Fig. 11. Standard deviation of the relative spots’ velocities versus the tracking error. Each level of noise was tested for four trials.
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APPENDIX B
DESIGN OF PROTOCOL

A. Number of trials

At the start of each connected trial a certain standard deviation for the velocity of the spots within the dynamic cloud is
assigned to the participants. One of the two participants is always assigned with the smallest standard deviation for the velocity
while the other participant is assigned with one of the included standard deviations for the velocity. The number of possible
combinations for a connected trial (connected conditions) is therefore two times the amount of standard deviations for the
velocity minus one. EMG signals are variable as they are a result of many physiological, anatomical and technical factors [56].
Because of this, each connected condition is repeated five times. The amount of single trials is equivalent to the amount of
standard deviations for the velocity. The single conditions are repeated five times. The total amount of trials (ntrials) depends
on the amount of included standard deviations for the velocity:

ntrials = ntraining + 5(2nsd − 1) + 5nsd, (B.1)

where ntraining is the amount of training trials and nsd the amount of included standard deviations for the velocity. To limit
the experimental time, a maximum of 90 trials, including 20 training trials, is chosen. To satisfy this criterion, the amount of
included standard deviations for the velocity is set to five.

B. Trajectory

The target signal is designed as quasi-random sum-of-sine signals with sines at multiple frequencies [29]. The random
appearance of such multi-sine signals induces skill-based feedback control behaviour, while allowing the experiment designer
to define the properties of the signal [29]. The target signal is designed according to:

x(t) =

N∑
k=1

Ax(k) sin(ωx(k)t+ ϕx(k)),

y(t) =

N∑
k=1

Ay(k) sin(ωy(k)t+ ϕy(k)), (B.2)

where A(k), ω(k) and ϕ(k) indicate the amplitude, frequency and phase of the kth sine. N indicates the number of sines
which is set to four. In every trial a measurement time of Tm = 20 s is used. The sinusoid frequencies ωx(k) and ωy(k) are
all defined to be integer multiples of the measurement time base frequency, ωm = 2π/Tm = 0.3142 rad/s. The multiples are
chosen in such a way that the mean velocity of the target is ±12 cm s-1. The amplitudes of the individual sines are determined
with a second-order low-pass filter:

A(jω) =

∣∣∣∣(1 + TA1jω

1 + TA2jω
)2
∣∣∣∣ , (B.3)

with TA1 = 0.05 s and TA2 = 0.42 s. Such a filter reduces the power for the higher frequencies, giving a realistic and not
overly difficult tracking task. The amplitude distributions of Ax and Ay were scaled to attain different variances for x and y
(ratio of 4:3) to create larger differences between the amplitudes. Besides, the amplitudes where scaled to a maximum deviation
of 9.5 cm. A large number of random sets of phases was generated to determine the phase distribution. The two sets of phases
that yielded the smoothest path, without leading to excessive peaks, were selected for x and y. This set was chosen to minimize
the crest factor for x and y:

CFx =
max|x(t)|

σx
,

CFy =
max|y(t)|

σy
, (B.4)

where σx and σy are the standard deviations of the signal x and y, respectively. Besides the curvature was minimized:

κ =
|ẍẏ − ẋÿ|

(ẋ2 + ẏ2)3/2
. (B.5)
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APPENDIX C
MEASURING CO-CONTRACTION

This section discusses possible methods to measure muscle co-contraction and the applicability in a continuously tracking
task during haptic human-human interaction. Thereafter the chosen method is discussed.

A. Mechanical perturbations
Co-contraction of antagonistic muscles causes an increase in both the stiffness and viscosity of the joints. Several studies

measured joint stiffness using mechanical force perturbations [57] or position perturbations [58], [59]. These methods use
force/torque or position perturbations and measure the resulting change in displacement or restoring force relative to the mean
undisturbed movement for force/torque and position perturbations, respectively. The relative displacement or restoring force
are then used to determine joint stiffness. These methods require knowledge of the unperturbed trajectory which implies that
the trajectory should be repeatable and not change over trials. Because of the interaction forces during haptic interaction, this
assumption cannot be made.

B. System identification
Bennett [60] and Lacquanti [61] used system identification with a linear second-order model to measure joint stiffness with

force perturbations as input and the displacement as output. These methods require continuous mechanical perturbations as an
input which will disturb the interaction forces. Besides, multiple repeated trials are needed for a reliable estimation which will
make the experiment very long.

C. Time-frequency approach
Piovesan et al. [62]–[64] used time-frequency analysis to estimate the arm’s mechanical properties along a reaching trajectory.

The method is based on the analysis of the reassigned spectrogram of the arm’s response to impulsive perturbations and can
estimate arm stiffness on a trial-by-trial basis. Van der Ruit et al. [65] used a different time-frequency approach. They validated
a parametric and non parametric estimator to identify continuous-time linear time-varying systems. The parametric estimator
is based on a kernel based regression method and the non parametric estimator is based on a skirt decomposition method.
The advantage of nonparametric models over parametric models is that they require very little to no apriori assumptions on
the model structure and order. These methods, however, require continuous mechanical perturbations as an input which will
disturb the interaction forces.

D. Electromyography
Osu et al. [32], [50] proposed an index of muscle co-contraction around the joint (IMCJ) computed from surface EMG and

joint torques. They based their method on the evidence that static stiffness and surface EMG [66] and joint stiffness and joint
torque [67], [68] are highly correlated. This method assumes linear length-tension and velocity-tension curves and constant
moment arms. These simplifications lead to an error which are only negligible if the movement of an individual is identical
in all trials which is not the case in a haptic interaction experiment due to the interaction forces.

Gribble et al. [21] measured the level of co-contraction by normalising each muscle’s EMG activity by its maximum value.
They discarded the portion of EMG in one muscle that is not matched by EMG in the opposing antagonistic muscle. The
resulting time-varying signal represented the magnitude of EMG that is equal and opposite in antagonistic muscles [23].
Besides, several studies investigated the changes in muscle activity during gait and quantified the level of co-contraction with a
co-contraction index [69]. The level of co-contraction is monitored by the normalised EMG activity of the antagonistic muscles
and is the common area of activity either absolute [37]–[39] or relative [70], [71]. The relative co-contraction index is most
suitable when using the index to determine the efficiency of a movement. The absolute co-contraction index is most suitable
when looking for differences in the amount of co-contraction.

E. Chosen method
The used method in the experiment is based on the method of Gribble et al. [21] using the absolute co-contraction index

described in gait analysis studies [37]–[39]. The absolute co-contraction index is calculated as

CI =
1

n

n∑
i=1

(common area muscle A & B), (C.1)

where muscle A and B represent the antagonistic muscles. To enlarge the effect of peaks in the common area and thus the
level of co-contraction, the root mean square is used instead of the mean

CI =

√√√√ 1

n

n∑
i=1

(common area muscle A & B)2. (C.2)
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APPENDIX D
EFFECT OF VISUAL NOISE ON THE INDIVIDUAL MOTOR PERFORMANCE

This section discusses the influence of visual noise on the individual performance. The first subsection discusses the influence
of the level of visual noise in the previous trial on the performance in the successive trial. Thereafter, the effect of visual noise
on the smoothness of the movement of participants is examined. Finally, the effect of visual noise on the mean velocity and
acceleration is analysed.

A. Visual noise level in previous trial

Visual noise impairs the belief about the position of the target and therefore introduces lower accuracy in the performance.
Because the level of visual noise changed randomly within the experiment, it is possible that the level of visual noise of the
previous trial had an effect on the performance of the participants in the successive trial. To investigate this, the deviation from
the mean error per level of visual noise experienced in the previous trial is calculated as

∆Ei,k,j =
Ei,k,j

Ek,j
, (D.1)

where E denotes the mean error and i, k and j the level of visual noise of the previous trial, the level of visual noise of the
successive trial and the participant, respectively. Fig. 12 shows the deviation from the mean error as a function of the level
of visual noise in the previous trial. An ANOVA test showed that there is no significant difference in the deviation from the
mean error with respect to the level of visual noise in the previous trial (F (4, 333) = 0.43, p > 0.79). The level of visual
noise in the previous trial has thus no influence on the performance in the successive trial.

Fig. 12. The deviation from the mean error is plotted as a function of the level of visual noise in the previous trial. The green data points represent an
individual participant.

B. Smoothness

A higher level of visual noise might cause less smoother movements within a trial because predictions about the position
of the target are less accurate. The smoothness of the movement of each participant is calculated as the spectral arc length
of the velocity [72]. Fig. 13 shows the smoothness as a function of the level of visual noise. A repeated measures ANOVA
test showed that the smoothness does not significantly changed with respect to the level of visual noise (F (4, 84) = 1.34,
p = 0.26).

C. Velocity and acceleration

To check if the increased amount of common area in EMG activity due to the lowest level of visual noise (σv = 0.5 cm s-1) is
not caused by a change in mean velocity or acceleration, a paired-samples t-test and in case of non-normality a non-parametric
Wilcoxon signed rank test is performed. It appeared that the mean velocity in the lowest level of visual noise is decreased
with respect to all other levels of visual noise (t = −2.65, p = 0.015). No significant difference in the mean acceleration
between the levels of visual noise is found (z = −0.828, p = 0.41). The study of Sy and Bugtai [73] showed that a larger
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Fig. 13. The smoothness is plotted as a function of the level of visual noise. The green data points represent an individual participant. † To account for
individual differences, the smoothness (S) is adjusted: Sadjustedi,p = Si,p + ( 1

P

∑P
p=1 Sg − 1

N

∑N
i=1 Si,p), where n and p denote the trial number and

participant number, respectively, and Sg denotes the mean smoothness of each participant.

velocity resulted in a higher amount of EMG activity. Because the velocity decreased when the amount of common area in
EMG activity increased for the lowest level of visual noise, this effect is caused by an increase in co-contraction.
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APPENDIX E
CO-CONTRACTION INDEX AS A FUNCTION OF PARTNER PERFORMANCE

Fig. 14. The co-contraction index of the monoarticular elbow muscles during interaction as a function of the absolute difference in partner performance. Each
color represents a specific participant. Data points are fitted using a linear mixed model with a random intercept and fixed slope. A Data points are measured
when a low level of visual noise was applied to the target (σv = 0.5 cm s-1). B Data points are measured when a high level of visual noise was applied to
the target (σv = 2.9, 5.3, 7.6, 10 cm s-1).
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Fig. 15. The co-contraction index of the biarticular muscles during interaction as a function of the absolute difference in partner performance. Each color
represents a specific participant. Data points are fitted using a linear mixed model with a random intercept and fixed slope. A Data points are measured when
a low level of visual noise was applied to the target (σv = 0.5 cm s-1). B Data points are measured when a high level of visual noise was applied to the
target (σv = 2.9, 5.3, 7.6, 10 cm s-1).
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