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Abstract— Threat intelligence sharing has been ex-
panding during the last few years, leading cybersecurity
professionals to have access to a large amount of open-
source data. Among those, the tactics, techniques and
procedures (TTPs) related to a cyber threat are particu-
larly valuable but generally found in unstructured textual
reports, so-called Cyber Threat Reports (CTRs). In this
study, we evaluate different multi-label text classification
models to retrieve TTPs from textual sources, based on
the ATT&CK framework – an open-source knowledge
base of adversarial tactics and techniques. We also review
several post-processing approaches using the relationship
between the various labels in order to improve the
classification. Our final contribution is the creation of a
tool able to extract ATT&CK tactics and techniques from
a CTR to a structured format, which, with more data,
could reach a macro-averaged F0.5 score of 80% for the
prediction of tactics and over 27.5% for the prediction
of techniques.

I. INTRODUCTION

Cyber threat intelligence (CTI) is the collection
and organisation of specific information, which
can be used to prevent, detect or mitigate cyber
attacks. That information can either be: tactical,
providing details about an attacker’s methodology
or the tools and tactics employed during an attack;
or technical, that is to say specific indicators used
by a threat [1]. While technical threat intelligence
–i.e. indicators of compromise (IOCs)– are simple
to obtain, it can be more difficult to have access to
tactical threat intelligence –i.e. tactics, techniques,
and procedures (TTPs). Tactics are also valuable,
as knowing about it helps to develop a better
defence against the related threat, which means
that the adversaries have to expend more resources
to be able to attack [2].

Threat information sharing resources have been
expanding in recent years with the development
of standards to securely and structurally distribute

those (e.g. STIX [3], TAXII [4], CybOX [5]). To
have access to this information, it is either possible
to buy private feeds from specialized companies
or to obtain open-source threat intelligence from
different sources over the internet. More compa-
nies encourage the sharing of threat information
by creating their sharing platform (e.g. IBM X
Force [6], OTX AlienVault [7]), containing lists of
IOCs and referencing cyber threat reports (CTRs),
which have more precise information about the
IOCs and TTPs.

Therefore, the information provided by these
means can either be structured (e.g. IP blacklists)
or unstructured (e.g. CTRs). Whereas structured
data can be accessed simply by using web scrapers
or parsers, unstructured data require either manual
analysis or natural language processing (NLP)
tools, to extract the most relevant information. It
also appears that open source structured intelli-
gence is usually limited to lists of IOCs. That
being the case, the valuable tactical information
contained in CTRs is challenging to obtain. With-
out proper tools, security experts currently have to
read and retrieve information from CTRs manually,
which is a task that requires precision and time.
Considering the number of CTRs published each
day (i.e. in average 15 new text reports are created
and shared each day on platforms such as IBM X
Force and OTX AlienVault1), this is a cumbersome
task for humans. Thus, there is currently a need for
security experts to extract tactical information from
CTRs to a structured format, which they could use

1Number estimated based on the number of reports
published on IBM X Force from January 2019 to March
2019 [https://exchange.xforce.ibmcloud.com/activity/list], and
on the number of reports published on AlienVault OTX
from January 2019 to March 2019 and since its creation
[https://otx.alienvault.com/browse/pulses]
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more efficiently.
The goal of this thesis is to create a tool able to

take as input the text of a given CTR, then process
it to identify TTPs, and finally output those in a
machine-readable format. We use the ATT&CK
(Adversarial Tactics, Techniques, and Common
Knowledge) framework [8], as it aims to describe
every technique and tactic possibly used during
a threat and is often used to describe attacks.
Linking a report to specific tactics and techniques
from the ATT&CK framework also allows the
user to define prevention, detection and mitigation
methods for the threat exposed in the text more
quickly. We expect the tool to be used mainly
on short reports about a precise threat, and not
on more in-depth descriptions, nor annual reports
containing descriptions of multiple threats. We can
summarise our goal in one research question: How
can we automatically retrieve ATT&CK tactics and
techniques from cyber threat reports?

In summary, the contributions of this research
are as follows:

• We define a multi-label text classification
model adapted to the retrieval of ATT&CK
tactics and techniques in CTRs, based on the
limited annotated open-source data available.

• We introduce a post-processing approach
based on the hierarchical structure of the
ATT&CK framework, that we compare to
diverse methods applied to similar problems.

• We describe rcATT: a tool that predicts
ATT&CK tactics and techniques in a CTR
and outputs them in a structured STIX format.
rcATT contains a feedback system allowing
users to add more data to the training dataset,
which will improve the predictions over time.

II. RELATED WORK

Even though cyber threat intelligence sharing
has progressed due to the development of new
tools over the last few years, the research about the
automated analysis of CTRs similar to our project
is limited. The extraction of security concepts can
be found in several research papers, either using
rules and pattern detection, looking to retrieve
vulnerabilities [9], [10], information related to
Undercoffer’s cybersecurity ontology [11], [12],
and other generic concepts [13], [14] from various
unstructured sources.

Several other studies have been conducted about
the extraction of indicators of compromise from
threat reports. If IOCs are interesting to know, they
are easier to extract than other information, using
regular expressions, or parsing the list at the end of
advisories. Multiple open-source tools performing
this kind of tasks are currently available (i.e., 22
repositories about “IOC extractions” on Github).
Several of the tool described in these research
papers start by extracting candidate IOCs using
regular expressions, before using different classifi-
cation techniques based on the semantic context of
the candidate, to remove the false positive from the
results: iACE by Liao et al. [15], iGen by Panwar
et al. [16], and ChainSmith by Zhu et al. [17].
Zhou et al.’s work [18] uses a different approach
to the previous papers by using a neural network
inspired by the research of Lampe et al. [19] and
Dernoncourt et al. [20], and avoid relying on field-
specific language structure, or requiring a large
amount of annotated data.

The identification of adversarial tools in unstruc-
tured data has also been the focus of some papers.
Samtani et al. [21], [22] and Deliu et al. [23]
both use topic modelling based on Latent Dirichlet
Allocation to identify various types of tools (e.g.
website exploits, SQL injections), as well as IOCs
categories, for Deliu et al. [23]. They, however,
rely on manual analysis and labelling of the results
from the topic modelling. While Deliu et al. [23]
work on texts, Samtani et al. [21], [22] apply their
process to text and source code.

Only five research papers aim to retrieve TTPs
in unstructured data, as we do. Zhu et al. [24] fo-
cused strictly on the identification of the behaviour
of malware and the Android features it uses, in
the development of their tool, FeatureSmith. For a
given scientific paper, using a typed-dependency
parser, FeatureSmith extracts behaviours as tu-
ples of subject-verb-object, from which subject or
object could be missing. A behaviour weight is
defined, based on the mutual information between
the different words and the word “Android”. The
tool then builds a semantic network having for
nodes the different malware families, behaviours
and features, and linking a malware and behaviours
or linking behaviours and features. These edges
are weighted by the number of times the nodes
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appear together, within three sentences of each
other. These relations allow the production of an
explanation between the three elements and their
importance to detect malware. Albeit extremely
specific to their topic, their approach can dif-
ferentiate the behaviours associated with separate
malware mentioned in the same text.

Ramnani et al. [25] also extract TTPs from
advisories but to rank them by relevance. The ex-
traction and identification are done using patterns
designed with the help of Basilisk [26], which
identifies patterns surrounding keywords. Basilisk
takes as input candidate patterns, which in this
case were retrieved from AutoSlog TS [27], and
keywords, which were identified based on their
frequency in a cybersecurity corpus. A semantic
similarity score is attributed between each sentence
and each pattern, to define the importance of the
information [28], [29]. On a test set of eighteen
CTRs, Ramnani et al. consistently obtain an av-
eraged recall above 80%, but they also get an
irregular precision across all reports. In order to
improve these results, they decided on implement-
ing a feedback system, to evaluate the validity of
their patterns.

TTPDrill [30], developed by Husari et al., is one
of the closest tools to what we aim to create, as it
extracts threat actions from a cyber threat report,
in order to link them to specific ATT&CK and
CAPEC [31] techniques and tactics. Husari et al.’s
first step is the creation of a unique ontology [32]
based on ATT&CK and CAPEC, linking a Lock-
heed Martin’s kill chain phase [33] to a threat
action, composed of an object, a precondition
and an intent. TTPDrill works the following way.
First, a scraper retrieve threat and blog articles
archive. Then, the content is pre-processed by
sanitizing and selecting relevant articles through
binary Support Vector Machine (SVM) classifica-
tion, based on the number of words, the security-
related verbs density and security-related nouns
density. Using a typed-dependency parser, the tool
identifies candidate threat actions, composed of a
subject, a verb and an object. It, then, filters out the
candidates and retrieves the ATT&CK techniques
by calculating the similarity score, using the BM25
score between the candidate threat actions and the
threat actions present in the ontology. The final

result of a report is a set of threat actions, with their
technique, tactic, and kill chain phase output to the
user in the STIX format. Husari et al. continued
the development of technologies to extract threat
action by creating ActionMiner [34]. Using Part-
Of-Speech tagging, ActionMiner retrieves noun
phrases and verbs, then iterates through a sentence
from a verb to a noun phrase with which it could
form a pair, which result in a candidate threat ac-
tion. These verb-object pairs are filtered based on
the entropy and mutual information defined from
a corpus composed of many computer science-
related articles.

The most recent research on this topic, presented
by Ayoade et al. [35], also has for precise aim to
retrieve ATT&CK tactics and techniques present
in a threat report. The tool starts by extracting
features from a CTR as TF-IDF weighted bag-of-
words. Because of the diversity of the sources –
they use three different datasets for training and
testing: 169 articles from the ATT&CK website,
488 diverse CTRs and 17600 Symantec reports –
Ayoade et al. decided to use a bias correction tech-
nique called covariate shift method, for which they
tested several algorithms: KMM [36], KLIEP [37],
and uLSIF [38]. Then, they classify the report, first
for the ATT&CK tactics, then for the ATT&CK
techniques using a confidence propagation score
between those two classifications. The final step
is the classification of the report into kill chain
phases based on rules [33].

Husari et al. [30], authors of TTPDrill, and
Ayoade et al. [35] defined different methodologies
for the retrieval of ATT&CK tactics and techniques
in CTRs. They both present good performances:
overall 94% precision and 82% recall for TTPDrill
tested on 30 reports and trained on 90 reports
from Symantec; and 76% accuracy on average for
the tactics predictions and up to 82% accuracy on
average for the techniques predictions for Ayoade
et al.’s work, trained and tested on their three
datasets. However, Ayoade et al., being published
after Husari et al.’s paper, is highly critical of the
approach from TTPDrill, finding a 14.8% accu-
racy on the tactics predictions, when using their
datasets. Their claims encouraged us to research a
text classification approach instead of an ontology-
based information retrieval method. Unfortunately,
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we are not able to verify the results from any of
these papers, as we do not have access to their
datasets or their tools. Thus, the only comparison
we will be able to make with their works is on
their concept, which can be found in Section X.

III. ATT&CK FRAMEWORK

The ATT&CK (Adversarial Tactics, Techniques,
and Common Knowledge) framework [8] is central
in our work as it defines the different techniques
and tactics we want to retrieve in CTRs. The main
incentive to using this framework is the fact that
it defines in such an extensive manner attacker
behaviours while being open source and frequently
updated. It also has the advantage to have gained
popularity in recent years for multiple purposes
and to have been integrated into popular threat
information sharing technologies [3], [39].

ATT&CK is a structure created for cybersecu-
rity professionals to have a common taxonomy to
describe adversary behaviours, which is divided by
“technology domains”:

• “Enterprise”, which describes behaviours on
Linux, macOS, and Windows.

• “Mobile”, which focuses on Android and iOS.
Beyond these domains, it also documents be-
haviours for reconnaissance and weaponisation un-
der the “PRE-ATT&CK” designation. As we are
mostly interested in the action that an adversary
could perform on an enterprise network, we focus,
in our case, on Enterprise ATT&CK.

The framework has four core components:
• Tactics, which represent the “why” of a be-

haviour. In the case of Enterprise ATT&CK,
there is a number of twelve: “Initial Ac-
cess”, “Execution”, “Persistence”, “Privilege
Escalation”, “Defense Evasion”, “Credential
Access”, “Discovery”, “Lateral Movement”,
“Collection”, “Command and Control”, “Ex-
filtration”, and “Impact”.

• Techniques, which are the “how” an adversary
will perform an attack tactic. As of July 2019,
there are 244 techniques. Each technique is
associated with one or more tactics.

• Mitigations, which are any tools or processes
that can avert the desired outcomes from the
use of techniques. Each mitigation can be

used for one or more techniques, and tech-
niques can have none to several mitigations
associated with them.

• Recorded adversary uses of techniques under
two categories:

– Groups, which are collections of related
intrusion activities.

– Softwares, which can be either tools or
malware.

Privilege Escalation Defense Evasion Credential Access
Access Token
Manipulation

Access Token
Manipulation

Account
Manipulation

Accessibility
Features

Binary
Padding

Bash
History

AppCert
DLLs

BITS
Jobs

Brute
Force

AppInit
DLLs

Bypass User
Account Control

Credential
Dumping

Table 1: Examples of relationship in the ATT&CK
matrix between tactics and techniques. Each col-
umn represents a different tactic, which is linked
to several techniques, whose title is in each cell.

Tactics and Techniques are the key elements of
the ATT&CK framework and constitute the labels
in our classification. Table 1 presents examples of
how some of these tactics relate to some tech-
niques. For instance, an attacker would use the
“Access Token Manipulation” technique from the
“Privilege Escalation” and the “Defense Evasion”
tactics to increase its permissions level and avoid
being detected.

IV. DATA COLLECTION

In order to use a text classification approach
to our problem, we need to collect enough data
to train and test various models. The only data
we could find already labelled was the content
of the ATT&CK website, which can be found
on the GitHub of MITRE [40], structured in the
STIX 2.0 format (Structured Threat Information
Expression) [3].

Figure 1 represents the organisation of the
dataset for Enterprise ATT&CK. Each name be-
tween brackets is the STIX object under which
the particular ATT&CK object was saved. Ev-
ery instance of “course-of-action”, “malware”,
“intrusion-set”, and “tool” are linked to one or
several “attack-pattern” using the object “relation”
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Mitigation
(course-of-action)

Technique
(attack-pattern) Group

(intrusion-set)

Software
(tool or malware)

Tactic
(x-mitre-tactic)

kill_chain_phases

uses

uses

uses

mitigates

Fig. 1: Organisation of the ATT&CK dataset as
provided on GitHub under a STIX format and as
presented on the ATT&CK website.

of type “mitigates” or “uses”. The techniques
and tactics STIX object are linked through a
“kill chain phases” references directly inside the
techniques STIX objects to a tactic STIX object.

Each of these objects includes external refer-
ences, which are usually threat reports or technical
descriptions, that we can use as training data for
our tool. We only use the ones which are directly
connected to an “attack-pattern”, either contained
in an object “attack-pattern”, or included in a
“relationship” object linked to an “attack-pattern”.
We do not use any of the references from other
objects, as we cannot guaranty that a text explain-
ing a particular object will mention the techniques
related to it. We also only collect the references
with an URL, as references without URLs are
usually not freely available on the internet and,
thus, not representative of the texts in which we
are interested. From these lists of URLs for each
technique, we can retrieve the list of techniques
for one document, and as all techniques are linked
to specific tactics, the list of tactics for one report.

As a result, and once the links for non-accessible
reports and webpages not presenting written re-
ports (e.g. video, code, zip files) were removed,
we have a total of 1490 different reports. The
documents can be separated in two types: the
ones written in HTML (1311 URLs) and the ones
in PDF format (179 URLs). The documents in
PDF format can easily be extracted using existing
tools [41], allowing us to obtain a text format
report quickly. However, the ones in HTML are

more challenging to extract, as they are not all
from the same source. Two hundred eighty-three
different websites host these 1311 reports, which
mean that we have potentially 283 different HTML
architectures. To simplify the extraction, we de-
cided on parsing only the text in paragraph HTML
tags and copied manually the reports which could
not be collected this way. Some of the reports
extracted contained too much noise parsed at the
same time as the report, which could hinder the
classification. This problem is solved during the
pre-processing of the text.

While each tactic has at least 80 reports in
which it is included, it is not the case for the
techniques. 29 out of the 244 techniques present
in the ATT&CK framework are included in less
than three reports (see Appendix XI-A), which we
estimate as being too few for our task. Thus, we
only work on 215 techniques out of the 244 present
in the ATT&CK framework. Nonetheless, we ob-
tained an imbalanced dataset from this collection,
which has an impact on the classification of the
reports and will be addressed in Section VII of
this report.

V. METHODOLOGY OVERVIEW

The definition of our methodology derives from
the work already done on the retrieval of TTPs in
CTRs and the data we could collect. We settled
on using a text classification approach over an
ontology-based retrieval due to Ayoade et al.’s
paper [35], which stated having better results than
Husari et al.’s work [30].

As mentioned before, the reports collected con-
tain several techniques and tactics at the same
time, meaning we are facing a multi-label clas-
sification problem. We are also aware, because of
the analysis made during the data collection, that
our dataset is imbalanced, which might impact our
classification, thus adding a problem to our re-
search. The ATT&CK framework being organised
under a particular hierarchy, having tactics at a
higher level and techniques at a lower level, we
have a hierarchical classification problem. Because
of this, we want to evaluate the classification
performance by label types separately. While the
label relationships have an impact during the multi-
label classification, we also investigate the use of
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ground truth knowledge about these relationships
in post-processing methods.

We define our main research question as “How
can we automatically retrieve ATT&CK tactics and
techniques from cyber threat reports?”, and, based
on all these problems, we address the following
subquestions:

1) Which model would be the best to classify
CTRs by tactics and techniques?

2) How can we solve the imbalanced dataset
problem to improve the classification?

3) Can we improve classification using a post-
processing method based on the labels rela-
tionships?

Each of these questions is studied in this report,
detailing the approach and the results. To define
which model would be the best to classify CTRs
by tactics and techniques, we tested several multi-
label classification models, either with classifiers
being adapted to our multi-label problem, or using
problem transformation methods from the Scikit-
learn library [42]. All of them are compared
when working with different text representation
methods: term-frequency (TF) and term frequency-
inverse document frequency (TF-IDF) weighting
factors [43], and Word2Vec [44]. To answer the
second question, we studied the impact of the
increase in size and the random resampling of
the dataset on the performance of our classifi-
cation, observing the effect on the prediction of
tactics and techniques, overall and for each of
them separately. To finish, we defined several post-
processing approaches using the tactics and tech-
niques relationships to test on our model, based on
literature about similar problems to ours and our
observations of our initial results, and selected the
best ones to implement in our tool.

In order to evaluate our work more precisely,
all experiments are done using a five-fold cross-
validation. We also defined metrics and a baseline,
to observe the evolution of our work and establish
if our model is learning.

A. Metrics

Based on our goal, we use as evaluation metrics
the precision, the recall, and the F0.5 score, with
two different averaging methods: macro-averaging
and micro-averaging [45]. The F0.5 score is the

weighted average between the precision Pr and the
recall Re with an emphasize on the precision Pr.
We choose this metric over the F1 score because,
in this application, the precision is more important
than the recall, as when predicting the TTPs for a
report, we want to be sure these TTPs are present
in the CTR, even if there are only a few of them
predicted.

F0.5 (yt, yp) = 1.25· Pr (yt, yp) ·Re (yt, yp)

(0.25 · Pr (yt, yp)) +Re (yt, yp)

Even though all these metrics are essential, the
most important metric for choosing a final model
to use for our tool is the macro-averaged F0.5 score,
as we want to give equal importance to each label.

B. Baseline

To follow the improvements done during the
evaluation of different models and validate if they
are learning from the training set, we defined a
naive baseline, done by attributing to the testing
set instances the most frequent label in the training
set. The baseline results can be found in Table 2.

Majority Micro Macro
Precision Recall F0.5 Precision Recall F0.5

Tactics 48.72% 19.00% 37.10% 4.43% 9.09% 4.93%
Techniques 9.57% 2.51% 6.11% 0.05% 0.48% 0.06%

Table 2: Baseline for classification by tactics and
techniques based on the most frequent label

VI. MULTI-LABEL CLASSIFICATION OF
REPORTS BY TACTICS AND TECHNIQUES

In this section, we answer the question: “Which
model would be the best to classify CTRs by tactics
and techniques?”, by defining how to do the pre-
processing, which feature extraction method is the
best and what classifier is best fitting our problem.
We also address the problem of overfitting that we
encountered in our evaluation.

A. Pre-processing

The first step before classifying our reports
is pre-processing. It is the cleanup steps, as we
have parsed some noise during the data collection,
which can hinder the classification process. We
studied different ways to do the pre-processing and
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kept the one improving the most the classifica-
tion of the reports. We first remove any potential
leftover HTML tags, non-word and whitespace
characters. Then we created regular expressions to
remove strings that could hinder the classification,
such as Hashes, IP addresses, email addresses
or URL. We then removed all stop words, us-
ing the list provided in Natural Language Toolkit
(NLTK) [46], as well as using a stemmed form of
the words from the text.

B. Text representation
We studied different ways to represent the text

and obtain features to classify the reports. We tried
basic extraction such as term-frequency (TF) and
term frequency-inverse document frequency (TF-
IDF) weighting factors [43], either based on bag-
of-words or uni-grams, bi-grams and tri-grams. We
also tested applying a maximum and a minimum
frequency of appearance in the overall corpus. Be-
cause the number of features chosen would impact
the fitting of the model, we studied selections
approach and the number of features to use to
improve the model.

Overall bags-of-words presented better results
than grouping words. We also defined that select-
ing half of the words with the highest TF or TF-
IDF scores, presented better results, than choosing
a constant number of words for each report or not
limiting the number of features at all.

We also decided on testing the word-embedding
approach Word2Vec [44], as it has been frequently
used in text classification over the recent years. We
decided on training it on our current dataset, in-
stead of using an existing pre-trained version as we
found inconsistent results in an early trial [47]. We
tested both averaging and summing word vectors
as simple approaches to represent the text.

C. Classifiers
Several methods are possible when facing a

multi-label classification problem: we can either
use adapted algorithms or transform the problem.
Ways to transform the problem are to use binary
relevance, which trains a binary classifier for each
label independently [48], a classifier chain, which
is similar to binary relevance but uses the relation
between labels [49], or label powerset, to transform
it into a multi-class problem between all labels

combination [50]. A label powerset model is dif-
ficult to apply to our case, as we have too many
labels and not enough data to cover the entirety
of the possible combination. However, we can use
binary relevance and classifier chains with different
types of classifiers.

As we primarily use Scikit-learn library [51],
we decided on using the multi-label classifiers
implemented in it, namely: multi-label K-Nearest
Neighbours [52], the multi-label Decision Tree
and Extra Tree classifiers, as well as the Ex-
tra Trees, Random Forest ensemble methods for
multi-label classification [51]. Then we selected
several algorithms to use in the classifier chains,
and the binary relevance models, based on their
uses in similar problems to ours (i.e. small and
imbalanced dataset, text classification) presented
in the library’s documentation [51], general data
science resources [53], [54] and various research
papers. We tested several Linear models: Logistic
Regression [55], Perceptron [56], Ridge [57]; but
also Bernoulli Naive Bayes classifier [58], K-
Nearest Neighbors [59] and Linear Support Vector
Machine (Linear SVC) [60]. We also experimented
with multiple tree-based models like Decision
Tree [61] and Extra Tree classifiers [62], as well as
ensemble methods like Random Forest [63], Extra
Trees [64], AdaBoost Decision Tree [65], Bagging
Decision Tree [66] and Gradient Boosting [67],
[42]. Other classifiers from the library were tested
but did not outperform our naive baseline; thus,
they will not be presented in the results.

As we faced overfitting during our tests, in
addition to reducing the number of features as
mentioned previously, we tried regularising the
selected models, fine-tuning the hyper-parameters
of the tested classifiers and focusing on the simpler
models. While these steps might have improved
our classification in general, we privileged the best
results on the testing set with overfitting, over
worse results on the testing set and lower results
on the training set.

The issue of separating classifications by tac-
tics and techniques was also addressed during
this phase of the research, especially as, in some
cases, the best pre-processing and classifier hyper-
parameters for the same classifier and text repre-
sentation method, applied to the separated tactics
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Without resampling With resampling
Micro Macro Micro Macro

Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

Majority Baseline 48.72% 19.00% 37.10% 4.43% 9.09% 4.93% - - - - - -
Term Frequency

CC Adaboost DT 64.73% 50.84% 61.30% 60.87% 45.20% 56.45% - - - - - -
CC Bagging DT 67.19% 40.57% 59.38% 64.01% 33.46% 51.89% - - - - - -
CC Gradient T Boosting 71.84% 44.33% 63.61% 66.72% 37.42% 55.91% - - - - - -
CC Logistic Regression 63.81% 54.35% 61.61% 58.86% 47.78% 55.85% - - - - - -
CC Perceptron 56.34% 56.58% 56.35% 51.63% 50.79% 51.04% - - - - - -
CC Linear SVC 63.81% 51.02% 60.71% 58.89% 44.31% 54.64% - - - - - -
BR AdaBoost DT 62.30% 49.27% 59.08% 57.26% 42.37% 52.91% 49.77% 60.45% 47.08% 52.24% 65.22% 48.91%
BR Bagging DT 68.26% 42.36% 60.75% 63.71% 34.30% 51.54% 52.39% 58.59% 49.36% 54.32% 63.73% 50.48%
BR Gradient T Boosting 71.42% 48.19% 65.04% 66.35% 40.16% 56.78% 54.87% 66.41% 51.94% 57.66% 72.47% 53.92%
BR Logistic Regression 63.71% 54.42% 61.54% 58.74% 47.81% 55.76% 56.94% 61.56% 52.44% 58.66% 66.74% 53.90%
BR Ridge Classifier 61.85% 51.46% 59.39% 55.64% 45.31% 52.92% 49.93% 55.86% 45.48% 51.50% 58.97% 47.03%
BR Linear SVC 64.70% 51.55% 61.51% 59.20% 44.36% 54.89% 54.95% 57.69% 50.76% 56.45% 63.37% 51.83%

Term Frequency-Inverse Document Frequency
CC Adaboost DT 61.42% 49.86% 58.59% 57.71% 44.09% 53.79% - - - - - -
CC Gradient T Boosting 71.15% 43.15% 62.52% 67.40% 36.29% 54.97% - - - - - -
CC Perceptron 62.06% 54.97% 60.28% 58.05% 49.26% 54.72% - - - - - -
CC Ridge Classifier 74.40% 41.27% 63.27% 67.63% 33.31% 51.74% - - - - - -
CC Linear SVC 71.63% 44.89% 63.41% 65.70% 36.76% 54.59% - - - - - -
BR AdaBoost DT 61.02% 51.02% 58.61% 56.61% 44.67% 53.19% 49.52% 58.46% 46.12% 51.84% 63.79% 47.86%
BR Bagging DT 66.88% 41.44% 59.39% 63.92% 34.95% 52.29% 53.15% 56.68% 50.06% 54.70% 61.94% 50.87%
BR Gradient T Boosting 70.13% 46.85% 63.66% 65.08% 38.94% 55.03% 54.30% 63.40% 50.79% 56.92% 70.53% 52.48%
BR Logistic Regression 71.04% 50.70% 65.61% 59.00% 40.53% 51.21% 59.25% 63.13% 56.69% 61.09% 69.80% 57.14%
BR Perceptron 65.20% 55.35% 62.80% 60.54% 48.29% 56.24% 57.26% 62.68% 53.97% 59.28% 69.11% 54.98%
BR Ridge Classifier 72.40% 48.90% 65.83% 66.57% 38.58% 53.32% 59.47% 62.28% 55.77% 61.13% 68.89% 56.59%
BR Linear SVC 65.64% 64.69% 65.38% 60.26% 58.50% 59.47% 57.71% 66.17% 53.88% 59.97% 71.18% 55.75%

Table 3: Best results from initial and resampling classifications for tactics prediction (with CC = Classifier
Chain, BR = Binary Relevance, DT = Decision Tree, T = Tree).

and techniques predictions, would be different.
Ultimately, in classification models were the cor-
relations between labels is used (i.e. multi-label
classifiers and classifier chains), we predicted the
tactics and techniques together, with the best pa-
rameters possible for both label types. In the cases
in which the label relationship did not matter (i.e.
binary relevance), we split the classification by
tactics and techniques, applying to each the best
parameters possible for their category.

D. Results and discussion

The evaluation of the different models we tried
to adapt to our problem is detailed in Appendix XI-
B, and the best results can be found in Tables 3
for the tactics and 4 for the techniques.

When we compare the text representation meth-
ods, we can observe that, overall, models using
Word2Vec either with a sum or an averaging of
the word vectors, underperformed compared to the
ones using a TF or TF-IDF weighting system.
We can observe minor differences in the use of
the average against the sum of the vector in the
Word2Vec approach, but we cannot claim that one
way is better than the other as the results depend
on the classifier used.

Observing the results for the different classifiers,
we can see that adapted algorithms tend to under-
perform compared to the classifier chains and the
binary relevance models, for both the tactics and
techniques predictions. Overall, the classification
made with binary relevance instead of classifier
chain performs slightly better, which means that
the relationship between labels did not have as
much impact as expected.

Some classifiers stand out among the other
for each type of labels. For the classification by
tactics, the AdaBoost Decision Tree, the Gradient
Tree Boosting, Perceptron and the Linear SVC
in classifier chains or binary relevance models
have the best performance, indifferently using TF-
IDF or TF. The Bagging Decision tree, the Ridge
classifier and the Logistic Regression perform well
when used in binary relevance. They also perform
well in a classifier chain if Logistic Regression
and the Bagging Decision Tree classify text using
TF weighting, and for the Ridge classifier, using
TF-IDF. Similar models work as well for the
techniques prediction, in addition to Decision Tree
classifier in a binary relevance or classifier chain
model.

For the tactics prediction and more importantly,
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Without resampling With resampling
Micro Macro Micro Macro

Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5 Precision Recall F0.5

Majority Baseline 9.57% 2.51% 6.11% 0.05% 0.48% 0.06% - - - - - -
Term Frequency

CC Adaboost DT 36.64% 13.27% 27.05% 18.38% 8.98% 13.72% - - - - - -
CC Bagging DT 39.95% 5.83% 18.24% 18.50% 7.90% 12.32% - - - - - -
CC Ridge Classifier 14.82% 25.59% 16.16% 10.88% 23.40% 11.66% - - - - - -
CC Decision Tree 22.44% 17.94% 21.31% 18.64% 14.98% 16.46% - - - - - -
BR AdaBoost DT 35.60% 16.04% 28.56% 18.23% 9.74% 14.23% 26.44% 23.02% 22.79% 14.65% 16.16% 12.45%
BR Bagging DT 39.30% 7.63% 21.42% 16.92% 7.53% 11.88% 26.99% 12.79% 16.81% 12.34% 15.43% 10.75%
BR Gradient T Boosting 27.60% 12.67% 22.31% 20.25% 12.72% 16.26% 18.47% 20.32% 16.73% 14.80% 24.51% 13.96%
BR Ridge Classifier 14.96% 25.96% 16.33% 10.98% 23.50% 11.74% 11.40% 31.83% 12.83% 9.05% 32.50% 10.04%
BR Linear SVC 22.87% 19.22% 21.98% 15.36% 11.39% 13.41% 17.85% 24.59% 17.97% 12.85% 17.01% 11.95%
BR Decision Tree 23.06% 18.53% 21.94% 18.00% 14.76% 16.18% 17.46% 24.90% 17.11% 14.70% 21.66% 13.61%

Term Frequency-Inverse Document Frequency
CC Adaboost DT 37.06% 13.06% 26.98% 17.70% 8.44% 13.19% - - - - - -
CC Decision Tree 23.18% 18.47% 22.02% 18.83% 14.85% 16.77% - - - - - -
BR AdaBoost DT 35.04% 14.77% 27.41% 17.23% 9.05% 13.36% 27.53% 18.12% 22.32% 14.55% 13.00% 11.85%
BR Gradient T Boosting 25.85% 11.60% 20.72% 18.83% 12.09% 15.21% 19.45% 16.76% 17.10% 15.33% 21.69% 14.38%
Logistic Regression 52.82% 3.66% 14.33% 7.86% 2.76% 5.18% 42.05% 4.98% 12.41% 7.53% 4.79% 5.64%
BR Perceptron 30.45% 18.26% 26.82% 21.89% 14.61% 18.32% 25.16% 22.56% 23.03% 19.50% 21.29% 17.32%
BR Linear SVC 37.18% 29.79% 35.02% 28.84% 22.67% 25.06% 31.16% 32.86% 29.37% 26.27% 28.05% 22.87%
BR Decision Tree 20.72% 18.31% 20.15% 16.88% 14.57% 15.55% 17.44% 22.91% 17.02% 15.45% 20.21% 14.21%

Table 4: Best results from initial and resampling classifications for techniques prediction (with CC =
Classifier Chain, BR = Binary relevance, DT = Decision Tree, T = Tree).

for the classification by techniques, the binary
relevance Linear SVC with a TF-IDF weighted text
representation stands out compared to the other
models. By testing this model on the training set,
we can observe a significant difference with the ap-
plication to the testing set, with a macro-averaged
F0.5 score of 95.75% for the tactics prediction and
89.67% for the techniques prediction, compared
to 59.47% and 25.06% for the tactics prediction
and techniques prediction on the testing set. This
demonstrates the overfitting problem mentioned
previously, similarly observed with several models,
which we could not improve, despite limiting the
number of features, regularising the models, and
fine-tuning the hyper-parameters of the classifiers.

VII. IMBALANCED LEARNING AND IMPACT OF
THE SIZE OF THE DATASET ON THE

CLASSIFICATION

One of the problems we face with our dataset
is the fact that it is imbalanced, as some tactics
and techniques have more data than others. The
first solutions we tested to solve this problem were
to use algorithms which tend to perform well on
an imbalanced dataset, penalise the classification
models, and assign a weight to the different label,
during the initial tests we presented in the previous
section.

Another possibility to overcome the imbalanced
problem, as well as the overfitting problem, would

be to add more data. Thus, in this section, we
study the possible impact of the augmentation of
the dataset on the performance of the classification.
We also study the resampling of the dataset, that
we tested on different models, as it is also a
solution against an imbalanced dataset.

Another possibility would have been to group
some of the labels together, which would make
sense as some techniques are more precise in
their definition than other, and differentiation be-
tween techniques and sub-techniques is possible
in the context of the ATT&CK framework [68].
However, such a solution would require, in our
case, to manually re-label our dataset, which we
have decided to not do by lack of time. This
redefinition following the idea of techniques and
sub-techniques could also increase the imbalance
if we were to use the current dataset solely.

A. Evolution of the performance of the classifier
with the increase of data

Like for the overfitting problem, the ideal solu-
tion to an imbalanced dataset would be to add more
data to our training set. However, because of lack
of time and the fact that we do not know how much
more data we would need, we did not try this.
Nonetheless, we want to confirm the hypothesis
that more data could improve the classification.
To do so, we take differents percentage of our
dataset and evaluate our best performing model
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Fig. 2: Evolution of F0.5 score (macro-averaged)
for different dataset size fo tactics and techniques
predictions.

on it. More precisely, we took one-eighth, one-
fourth, three-eighth, one-half, five-eighth, three-
fourth, and seven-eighth of our dataset randomly
five separate times and tested on those the TF-IDF
and binary relevance Linear SVC model, which
was the best performing model in the previous
section, using five-fold cross-validation.

Figure 2 presents the results from these tests.
We can observe an improvement when the dataset
increase in size. While the increase is slow for
the tactics, the improvement for the techniques
prediction is more significant.

Based on these results, we can expect that by
adding more data to our set, we could improve our
results, and possibly limit the overfitting and the
imbalance. As we cannot add more data ourselves
to the dataset, we can implement in our tool
a feedback function for the user to correct the
false results from the classifications and save the
corrected results to the training set.

B. Resampling the imbalanced dataset

One of the solutions to improve the classification
over an imbalanced dataset is to resample the data
to balance the set. Many solutions exist to do so,
but the implementations fitting multi-label prob-
lems are rare. In our case, we decided to randomly
resample each label, trying out different ratios and
undersampling or oversampling. We only test our
resampling on the models with binary relevance,
associated with the TF and TF-IDF feature ex-

tractions, mainly for simplicity of implementation
and because the binary relevance models perform
overall better than multi-label classifiers and faster
than classifier chains. Since we use binary rele-
vance, we split the classification by tactics and
techniques and attributed different sampling ratio.
In the case of the tactics, the resampling method
was a combination of over- and undersampling
for all tactics to have in their training set with
400 positive reports and 400 negative reports. For
the techniques, the best resampling was also a
balance between oversampling and undersampling
with 125 positive reports and 500 negative reports.
However, since only seven techniques have over
125 reports, we are mostly oversampling the tech-
niques data.

The resampling on the tactics prediction resulted
in an overall increase of the recall, but also a
decrease in precision and, thus, in F0.5 score (see
Table 3 or Appendix XI-C.1 for the detailed re-
sults). Only a few models improve because of the
resampling: only ExtraTrees and RandomForest
benefit from it. The Logistic Regression model
does also increase its F0.5 macro-averaged score
when paired with TF-IDF, which is the maximum
obtained in the resampling evaluation. However,
it is not enough to outdo the Linear SVC model
without resampling, which is found to be the best
performing model in the previous section.

The resampling on the techniques prediction
performs similarly (see Table 4 or Appendix XI-
C.2 for the detailed results). The recall increases,
while the precision and the F0.5 score decrease.
The only improvements in performance are for
models which performed very poorly in the initial
classification, and they do not overtop the original
non-resampled best performing model from the
previous section.

The observation that the resampling does not
improve the classification seems incoherent with
the finding that an increase in the size of the dataset
improves the classification. A possible explanation
is that there are differences in the impact of the
dataset size for each label.

C. Relationship between labels prediction and size
of dataset

We want once again to verify the correlation
between the number of reports and classification
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performance, but, this time, focusing on the impact
of the different sampling size for each label with
our binary relevance Linear SVC model, as the
results from our previous tests seemed to contradict
each other.
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Fig. 3: Correlation analysis between the F0.5 score
and the number of reports by tactics.

By plotting the F0.5 score for each tactic based
on the number of reports by tactic, we obtain
Figure 3. We observe a higher F0.5 score for the
tactics which have more reports, compared to the
ones with less of them. We can use the Pearson
correlation coefficient to evaluate the linear cor-
relation between these two variables [69]. This
coefficient is of 0.7012, indicating a positive linear
relation between the prediction of the tactics and
the number of reports labelled as containing them
in the dataset.
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Fig. 4: Correlation analysis between the F0.5 score
and the number of reports by techniques.

We do a similar plotting with the techniques,
taking the F0.5 score resulting from the binary
relevance Linear SVC and the number of reports
for each technique to obtain Figure 4. We observe
a large concentration of F0.5 scores, going from
very low to almost perfect, for the techniques with
a low number of reports. In this case, the cor-
relation coefficient is 0.084, which demonstrates
no relationship between the performance of the
techniques prediction and the number of reports
by techniques.

As we were able to establish a relationship
between the number of reports and the prediction
of a tactic, but we could not establish a relationship
between the techniques related to these tactics
and the number of reports, we want to observe
the change in techniques prediction performance
with different sampling. Observing the Figure 5,
which was build using the F0.5 score of each
techniques prediction from TA005 with different
resampling ratios on our Linear SVC model (see
Appendix XI-C.3 for complete results over all
techniques predictions), we can observe that some
techniques have different performances depending
on the different sampling size and ratios. However,
for some techniques, the F0.5 score is barely chang-
ing, meaning that whatever the size of the training
set for those, they are difficult to predict. We do
not have enough data to establish a relationship be-
tween an increase of performance and the increase
of data for each technique, even for the techniques
which are impacted by the resampling. However,
we did observe that some techniques are impacted
negatively by an oversampling too large, while a
majority of others seems impacted positively.

The conclusion from this analysis of the impact
of the dataset size would be that it is possible
to improve the classification by adding more data
to the training set. Based on the positive linear
correlation between the F0.5 score and the number
of reports by tactics for the tactics prediction
and the fact that, currently, the tactics with the
most reports has a F0.5 score of 80%, we can
expect that, by adding more reports to our dataset,
especially for the tactics with fewer reports, we
would be able to obtain a macro-averaged F0.5

score of at least 80% for the tactics prediction.
However, while the increase of data would impact
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Fig. 5: Impact of training sampling size on F0.5 score of each technique from TA0005 prediction, with
techniques sorted by decreasing number of CTRs in the original dataset. This graph is a representative
sample of the complete graph over all techniques presented in Appendix XI-C.3.

the tactics prediction and some of the predictions
of the techniques that compose them, it might not
improve the prediction of some techniques. These
techniques can be considered as difficult to predict,
but since it is not due to the quantity of data, it
might be due to the dataset quality. A low-quality
dataset would also explain why we observed some
techniques prediction to be worse when adding
more data, or why there is an overall lack of
improvement when performing the resampling in
Section VII-B.

VIII. APPLYING POST-PROCESSING METHODS
TO THE MULTI-LABEL CLASSIFICATION

The binary relevance Linear SVC model, with
TF-IDF weighted bag-of-words, we considered the
best at the end of section VI, is still consid-
ered our best performing model, despite trials at
resampling the dataset for each label. From the
previous section, we also defined that some of
the techniques are more difficult to classify than
others, as the quantity of data in the training set
barely impacts their prediction. As we are currently
limited in our results, we want to use the relation

between the different labels to try to improve our
predictions. We already tested this influence on the
classification by using multi-label classifiers and
classifier chains. However, our best results were
obtained on a model which did not consider it.
Thus we want to use the ground truth knowledge
to improve the classification by studying different
post-processing approaches to add to our current
model.

A. Approaches studied

1) Using relationships between tactics and tech-
niques

Because tactics and techniques are directly re-
lated to the ATT&CK framework, we can use
different simple post-processing methods to try to
improve the classification based on these relation-
ships.

a) Direct rules from techniques to tactics
The first approach is to define the tactics of

a report based on the techniques classification.
Because each technique belongs to one or more
tactics, we can consider rules such as: if we predict
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a technique Te1 in a report and Te1 is part of the
tactic Ta1, then Ta1 is in the report.

b) Tactics as features
Since the techniques prediction underperformed

compared to the tactics prediction, we want to use
the results from the classification by tactics to im-
prove the prediction of the techniques. Our second
method is to use the results of the tactics prediction
as features for the classification by techniques.
It is close to the classifier chain method, but it
solely uses the tactics prediction to influence the
techniques prediction. Additionally, this method is
not purely a post-processing approach; however, it
fits in our goal of improving the classification of
a part of the labels using the other part.

c) Confidence propagation
As a third approach, we want to use the method

described in Ayoade et al.’s paper [35], itself
inspired by Wu et al.’s work [70]. The idea behind
it is to use the confidence score of each tech-
nique and the confidence score of the associated
tactics to create boosting factors. Each boosting
factors are multiplied to each associated tactic
confidence score, and this ensemble is added to the
pre-existing technique confidence score. Based on
the associated tactics confidence score, the tech-
niques’ confidence score increases or decreases,
which impacts the final predictions. As we use
Scikit-learn’s Linear SVC [60], instead of using
the confidence scores of the classifier, we use
the decision function scores, as normalising them
before the application of this method (which is
not automatically done in the library) worsen the
performance of the model.

d) Hanging node
The fourth approach is based on the observa-

tion that for 30% of the techniques predicted for
a report, not all related tactics were predicted,
meaning that either the techniques or the tactics
were incorrectly predicted. The analysis of the
distribution of the frequency of the confidences
shows that the false predictions tend to be closer
to the threshold distinguishing a positive from a
negative label than the true predictions, especially
for the tactics predictions (see Appendix XI-D).
The fourth post-processing method would, thus,
be to use the confidence scores resulting from
each type of classification to add tactics or remove

Input:
R /* report */{
TaRi , ...T e

R
k

}
/* all tactics and

techniques predicted as being present

in the R */

Tex /* one of the techniques */

Tay /* one of the tactics */

p(Tex ∈ R) /* the probability of Tex

being predicted for R */

p(Tay ∈ R) /* the probability of Tay

being predicted for R */

Output:{
TaRi , ...T e

R
k

}
/* updated ensemble of

tactics and techniques being present in

the R */

Data:
th ∈ R /* classification threshold */

a, b, c, d ∈ R /* defined thresholds */

begin
if Tex → Tay then

if p(Tex ∈ R) > a > th and
b < p(Tay ∈ R) < th then{

TaRi , ...T e
R
k

}
+ = Tay /* adding

Tay to the ensemble of

tactics and techniques being

present in the R */

if th < p(Tex ∈ R) < c and
p(Tay ∈ R) < d < th then{

TaRi , ...T e
R
k

}
− = Tex

/* removing Tex to the

ensemble of tactics and

techniques being present in

the R */

Algorithm 1. Hanging node approach

techniques.
As presented in Algorithm 1, for a connected

pair of technique and tactic, if the technique is
predicted with a high confidence score, while the
tactic is not predicted, but with a confidence score
close to the classification threshold th, then we can
add the tactic to the tactics and techniques present
in the report. On the contrary, if the techniques
are declared present, with a confidence score near
the classification threshold th and the tactic is
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not predicted as present in the report, with a low
confidence score, then we can remove the tech-
niques from the labels predicted. The thresholds
a, b, c, d are defined after testing different values
and comparing the improvement in classification
performance.

Other similar connections between techniques
and tactics are difficult to implement, as several
techniques have similar tactics. Adding a technique
if a related tactic is also present in the report would
be misguided, as the high probability could be
due to another technique. Similarly, removing a
tactic, if a related technique is absent, would be
injudicious, for the same reason.

With the current dataset, we use for classifi-
cation threshold th = 0.5 and the thresholds
a = 0.55, b = 0.05, c = 0.95, d = 0.30, which
allow the highest macro-averaged F0.5 score. As
we use the Linear SVC from Scikit-learn [60], we
have defined to the confidence score by scaling
the decision function scores using min-max scaling
with min = − 1 and max = 1 [71].

2) Using relationships between techniques
Based on the same data as the one we used

to build the dataset, we can retrieve joint prob-
abilities between techniques, using their common
appearances in the same malware, tool or group.
Using these probabilities, we decided to test three
separate methods to improve the techniques pre-
dictions.

a) Rare association rules
The first approach follows the work of Benites

and Sapozhnikova [72], based on which we selec-
tion association rules between techniques. The first
step is to calculate the Kulczynski measure [73] for
each pair of techniques. These values are forming
a curve from which we can determine the variance.
If this variance is low, the threshold to decide on
the pairing rules based on their Kulczynski mea-
sure is defined based on the median of differences
between neighbour values. If this variance is high,
it is based on the average of the values slightly
lower than the mean of this curve.

b) Steiner tree association rules
The second approach in this category has been

described by Soni et al. [74], in which they
formulate the label coherence as a Steiner Tree
Approximation problem [75]. Once the techniques

prediction was performed, for each report, we
create a directed tree [76] in which edges have
for weight the conditional probabilities between
the two nodes and the direction is given by the
following criterion:

{
Tei → Tej, p(Tei|Tej) ≤ p(Tej|Tei),
T ei ← Tej, otherwise.

Then we use Edmond’s algorithm [77] to be
left with a reduced tree and a limited number
of connection between techniques. Based on the
predictions from the classification, we find in the
graph the techniques which descend from the pre-
dicted techniques with the K highest weights. In
our case, we define K = 15.

c) Knapsack
The third approach also comes from the paper

from Soni et al. [74] for which they consider the la-
bel assignment as a resource allocation problem. In
this case, we solve the 0-1 Knapsack problem [78],
in which a label is included in the prediction if its
conditional probability based on labels predicted
to increase the overall log-likelihood.

B. Results and discussion

The final results for each approach are presented
in Table 5.

We can observe that for the prediction of tactics,
the independent classification is the best perform-
ing. It is to be expected as the current independent
classification by techniques does not have higher
performance, meaning that every post-processing
depending on it would potentially lower the results.

However, if the techniques prediction were to
become perfect, both post-processing approaches
would help improve the tactics classification. The
approach 1.a. direct rules from techniques to tac-
tics would have a perfect performance, as it is
purely rule-based. However, it is unlikely that the
techniques prediction would improve without the
tactic prediction improving, so the results from
Table 6 would probably be better in the case
of approach 1.d. hanging node and the indepen-
dent classification. However, Table 6 proves that
approach 1.d. hanging node, in theory, helps to
improve the prediction, despite not improving the
results on the current dataset.
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Approaches Micro Macro
Precision Recall F0.5 Precision Recall F0.5

Tactics
Inde. 65.64% ±3.76% 64.69% ±3% 65.38% ±2.87% 60.26% ±3.2% 58.50% ±3.68% 59.47% ±2.29%

1.a. 63.32% ±6.42% 52.34% ±5.08% 60.45% ±3.8% 57.49% ±5.41% 47.94% ±5.87% 54.59% ±3%

1.d. 59.60% ±2.89% 68.04% ±3.06% 61.08% ±3.42% 54.41% ±2.97% 61.28% ±3.12% 55.42% ±3.2%

Techniques
Inde. 37.18% ±6.75% 29.79% ±5.91% 35.02% ±5.32% 28.84% ±6.9% 22.67% ±5.94% 25.06% ±6.09%

1.b. 31.55% ±5% 35.17% ±6% 31.97% ±4.31% 24.70% ±6.29% 22.74% ±6.3% 22.38% ±5.72%

1.c. 33.07% ±7.11% 38.17% ±5.41% 33.69% ±6.2% 28.14% ±6.72% 28.19% ±4.99% 26.06% ±5.69%

1.d. 32.19% ±6.05% 29.27% ±6.2% 31.34% ±5.23% 32.35% ±6.68% 24.21% ±4.89% 27.52% ±6.03%

2.a. 33.70% ±6.79% 36.26% ±5.16% 33.89% ±5.76% 28.08% ±6.8% 25.18% ±5.22% 25.20% ±5.78%

2.b. 37.06% ±6.77% 29.79% ±5.99% 34.93% ±5.34% 28.84% ±6.94% 22.67% ±5.91% 25.06% ±6.11%

2.c. 33.98% ±5.92% 33.88% ±6% 33.68% ±%5.02 28.38% ±6.88% 23.60% ±5.9% 24.80% ±6.06%

Table 5: Comparison of post-processing approaches, in which “Inde.” serves as the new baseline as the
best performing model without any post-processing.

Approaches Micro Macro
Precision Recall F0.5 Precision Recall F0.5

Tactics
Inde. 65.64% ±3.76% 64.69% ±3% 65.38% ±2.87% 60.26% ±3.2% 58.50% ±3.68% 59.47% ±2.29%

1.a. 100% ±0% 100% ±0% 100% ±0% 100% ±0% 100% ±0% 100% ±0%

1.d. 68.09% ±4.02% 72.37% ±2.97% 68.84% ±3.24% 63.32% ±3.1% 66.29% ±4% 63.54% ±2.08%

Techniques
Inde. 37.18% ±6.75% 29.79% ±5.91% 35.02% ±5.32% 28.84% ±6.9% 22.67% ±5.94% 25.06% ±6.09%

1.b. 51.54% ±5.01% 55.90% ±4.23% 52.24% ±4.4% 41.05% ±3.94% 39.04% ±5.13% 38.35% ±3.16%

1.c. 36.51% ±8% 48.75% ±4.13% 38.14% ±7.54% 34.21% ±7.43% 37.12% ±4.13% 32.36% ±6.24%

1.d. 38.40% ±7% 28.39% ±6.14% 35.44% ±5.42% 29.14% ±7.1% 22.40% ±6.22% 25.23% ±6.37%

Table 6: Comparison of post-processing approaches, in which “Inde.” serves as the new baseline as
the best performing model without any post-processing, with the prediction of tactics using perfect
techniques classification and the prediction of techniques using perfect tactics classification.

In the case of the techniques prediction, the
independent classification presented a relatively
low performance. The use of the approaches 1.c.
confidence propagation and 1.d. hanging node is a
possible improvement. In all cases, except for the
approach 1.d. hanging node, the F0.5 score changes
mainly due to the lowering of the precision and
the increase of the recall, due to the addition
of techniques to the predicted set. Thus the F0.5

score increasing in 1.d. hanging node is especially
interesting, as it is due to the decrease of false-
positive and, thus, the increase of the precision.

The approaches relying on the relationship be-
tween techniques are close to the classification
without post-processing. We can conclude from
these results that they are not adapted to our
problem, or to the data we currently have. The ap-
proach 2.a. rare association rules could probably

fit better in a hierarchical environment with known
conditional probabilities. It is also possible that
the ground truth we used is incomplete, as, even
though it is based on data collected and analysed
by experts, it is representing only a sample of the
malware, tools and campaigns of the past years.

If the tactics prediction were to become perfect,
without the prediction of techniques changing, the
approach 1.b. tactics as features would have the
highest evaluation for all metrics, mostly because,
to the contrary of the others, it does not rely
on the prediction of the techniques. Once again,
we cannot choose an approach based on this test
and the results from Table 6, since the techniques
prediction would probably improve at the same
time as the tactics prediction. However, because all
approaches are better than the independent classi-
fication, we can conclude that they are helpful for
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the prediction. However, the fact that the approach
1.d. hanging node is barely higher than the inde-
pendent classification compared to approach 1.c.
confidence propagation, while it was the opposite
on the current dataset, can let us question how
1.d. hanging node and 1.c. confidence propagation
would behave if the dataset was modified and if
improvements in the classification were made.

While the 1.d. hanging node and 1.c. confi-
dence propagation approaches are very different
in their strategy, by observing their behaviours
on the dataset (see Appendix XI-E.1), we can
see that they tend to target different techniques.
1.d. Hanging node seems to affect very little,
but efficiently, the results from the independent
classification and only modifies the results of the
techniques with the highest number of reports. 1.c.
Confidence propagation targets any techniques and
modify many predictions, which would potentially
improve the classification for the hard-to-predict
techniques. However, from our observation, this
approach is right almost as often as it is wrong,
thus worsening the prediction of some labels and
improving the prediction of others. Replotting sim-
ilar graphs as the ones in Section VII-C, to observe
the correlation between the number of reports and
the model performance for each technique, with
the post-processing methods applied, we do not
see major differences (see Appendix XI-E.2). The
correlation coefficient is slightly higher for the 1.c.
confidence propagation, but still not high enough
to demonstrate a linear correlation. As for the
independent classification, there is no proof aug-
menting the size of the training set will positively
impact the predictions of the techniques using
these methods. Thus, we can conclude similarly to
the Section VII. Some techniques might be harder
to predict than others, and the quality of our dataset
might not be good enough to predict some of
the techniques, even when using a post-processing
method.

The final choice of post-processing method for
our classification is difficult as we cannot predict
exactly how they would react if the dataset were
to evolve. Based on the analysis of the results, it is
better to not use any post-processing method on the
tactics classification. In the case of the techniques
prediction, the choice to be made is between the

approaches 1.c. confidence propagation and 1.d.
hanging node. In the current implementation of the
tool, we use the approach 1.d. hanging node as
it is the one performing the best on the current
dataset. However, since the user of our tool can
retrain the model with new data, the approach 1.c.
confidence propagation is also implemented, and
they are compared at each retraining to select the
best method with the current dataset.

IX. RCATT: TOOL IMPLEMENTATION

The goal of our research was to implement a
tool, so our classification model could be used
easily. To do so, we created a simple tool: rcATT,
for “reports classification by adversarial tactics and
techniques”. Based on the conclusions from the
previous sections, the classification is done using a
TF-IDF weighted bag-of-words text representation
and a binary relevance Linear SVC. It is followed
in post-processing by either the hanging node
approach or the confidence propagation approach,
depending on the current training set.

Modify results

Unlabeled
CTR

Labeled
CTRs 

Predict tactics
and techniques

Save for training

Save as STIX
format

Train model

CTR with
TTPs in

STIX

Trained
classifier

Results from
prediction

Fig. 6: Organisation of rcATT.

Figure 6 illustrates the functioning of the tool.
From a cyber threat report, in a text format,
entered by the user, our trained model predicts
different tactics and techniques. The user can view
the results and the confidence score associated
with each prediction, either based on the Min-
Max scaling of the decision function score from
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the classifier or the reevaluation score, based on
the post-processing method. In case the user does
not agree with the results, they can change them.
Regardless, the results can be saved with the other
labelled cyber threat reports to be used to train the
classifier again. The retraining of the classifier has
to be activated manually by the user, as automated
retraining might slow down the tools in unwanted
moments and avoids training when no new data
has been added to the training set. In addition
to retraining the classifier with the new data, this
functionality also defines which post-processing
method improves the most the predictions, as well
as which hanging node thresholds are the best, with
this dataset.

Fig. 7: Example of a report in STIX format output
by rcATT.

The results can also be saved in a JSON file in
STIX format, as seen in Figure 7, so it can easily
be accessed for other uses. The predictions are
exported in a “report” object for which the “name”
and “published” date are left for the user to precise
(or are given default values). The “description” is
the report given by the user for the prediction, and
the results of the prediction, or the changes made

by the user, are saved in the “object refs”, under
the identification number from the STIX version
of the ATT&CK framework [40].

Fig. 8: rcATT commmand-line interface.

Fig. 9: rcATT graphical interface.

It has an interface in command-line and a
graphical interface, having each their perks and
drawbacks, despite the same functionalities. The
command-line version is practical to use when the
user might want to predict TTPs from a large num-
ber of CTRs (see Figure 8). However, if the user
wants to change the results of the classification and
save it to the training set, as a way to give feedback
about the classifier, and increase the training data,
the graphical interface version is easier to use (see
Figure 9).

X. COMPARISON WITH SIMILAR WORK

We have mentioned several similar studies in the
related work section of this paper, and the ones
closest to our implementation are TTPDrill [30]
and Ayoade et al.’s work [35]. However, there are
many differences between our work and theirs.
First of all, we use an approach different from
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TTPDrill [30], as we use text classification. How-
ever, we create a tool and output our results in
a structured manner, as TTPDrill [30], but with
a feedback function to continuously improve the
tool. Though Ayoade et al. [35] does not create a
tool, our classification approach is similar to theirs,
as we separate the classification between tactics
and techniques and use a post-processing approach
to improve the predictions. Although, we do not
use a bias correction technique, preferring to use
a training set with multiple sources, as opposed to
their unique source sets, and the chosen classifiers
and post-processing approaches are different from
theirs.

However, it is difficult to compare these previ-
ous works to our tool as we do not have access
to their code or dataset, and the description given
in their paper is too limited to be implemented
precisely. Solely the tool Unfetter Insight, available
on Github [79], can be compared to ours in concept
and results. This tool has been developed to detect
possible ATT&CK techniques, or tactics, in reports
in TXT, PDF or HTML format. Based on our
understanding of the code, as no paper is available
to describe their approach, the detection is done by
the Babelfish software created by W. Kinsman in
2017, which learns topics from a wiki-like corpus
and retrieve the presence of those topics in a
document. The tool creates convolutions from the
text, from which are only kept the convolutions
having a majority of common vocabulary like the
one present in the corpus. Based on the term
frequency of the vocabulary in the convolutions
left, the techniques are predicted using a binary
relevance Multinomial Naive Bayes classifier, and
a list of techniques, or tactics, is output for the
user to read.

As it is the only tool we have access to, we de-
cided on comparing it with our tool. However, the
premises of the models are not the same, since we
base our classification on a training set of labelled
reports, and they use a dictionary-like learning
set. We could not add our training set without
compromising the concept behind Babelfish itself;
thus, we decided to use only their training set to
test both approaches. It is to be noted that their
wiki-like corpus is, in fact, the content of the
ATT&CK website with the techniques definitions,

Tools Micro Macro
Precision Recall F0.5 Precision Recall F0.5

Tactics
rcATT 79.31% 12.20% 37.75% 81.73% 8.21% 8.21%
Unfetter
insight 19.09% 26.76% 20.25% 19.17% 23.14% 19.28%

Techniques
rcATT 72.22% 2.07% 9.30% 20.60% 4.33% 10.11%
Unfetter
insight 3.54% 1.11% 2.46% 1.31% 0.64% 0.74%

Table 7: Comparison between rcATT and Unfetter
insight ATT&CK tactics and techniques prediction
function, using the same training and testing sets.

which was already part of our dataset.
Using the same training set and testing set, we

obtain the results presented in Table 7. Compared
to our tool, Unfetter Insight tactics and techniques
predictions module underperforms, mainly because
of the higher precision of our tool. Basing the clas-
sification purely on the definition of the technique
is partly at fault, as even our tool underperforms
compared to our original training set.

XI. CONCLUSIONS, LIMITATIONS AND FUTURE
WORK

The goal of our research was the creation of
a tool to retrieve tactics and techniques from the
ATT&CK framework. Based on Ayoade et al. [35]
and Husari et al.’s works [30] on the same
topic, we decided on approaching the problem
using text classification, which led us to investi-
gate which classification model would be the best
for our problem. After comparing different classi-
fiers, problem transformations to fit our multi-label
problem, and text representations, we defined that
the best model for our problem would use a TF-
IDF weighted bag-of-words as text representation
and a binary relevance Linear SVC. If this model
is the best performing among the ones tested,
it is overfitting and working on an imbalanced
dataset. We thus looked for ways to avoid this
imbalance and studied the impact of the dataset
size on the different predictions. The resampling
methods we tried did not improve our classifica-
tion, although we established that increasing the
training data would improve the performance of
our classifier for tactics prediction. By adding more
data, we would be able to reach an 80% macro-
averaged F0.5 score. Studying the F0.5 score for
each technique based on the change of training
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set size, we established that some techniques were
much harder than others to predict and would not
improve much if more data were added to their
classification. We invoke the possibility that we
are working on a low-quality dataset, at least for
some of the techniques. In order to improve the
results, we studied various ways to link the labels
in post-processing methods based on ground truth
knowledge. We defined that two approaches, hang-
ing node and confidence propagation, in which the
tactics prediction influence the techniques predic-
tion, are able to improve the reports classification
by techniques. However, as we believe their per-
formance will evolve depending on the training
dataset, we decide on implementing both in our
tool: rcATT.

While we were able to find a model fitting our
problem and to create a tool out of it, our work has
some limitations. The main issue we faced from
the beginning was the limited amount of data we
could collect, as we did not have the resources
to label enough reports for this project manually.
As mentioned in this report, a problem with the
dataset that we collected is the fact that we are
not able to guaranty that the included reports are
of good enough quality to predict all labels.

Limitations in resources and time restricted us
in testing different text representation models,
like Google’s BERT [80], OpenAI’s GPT [81]
and GPT-2 [82], and other similar methods [83].
Likewise, we limited the test of classifiers to the
ones included in Scikit-learn [42], when more
recent text classification solutions are available
(e.g. neural networks, which are frequently applied
to problem similar to ours [84]). We also limited
ourselves to try only one resampling method, while
others are available [85], but more difficult to
apply to our problem. More importantly, because
of our constraint in time, we were not able to test
all combinations of classifiers, text representation,
post-processing and resampling method.

All these limitations are ground for future work
by testing these different approaches. It would also
be possible to change of general approach and use
a similar information retrieval method to the one
described in Husari et al.’s TTPDrill [30], in order
to verify their results and potentially improve their
method. Another possibility would be to mix both

ideas and to retrieve the threat actions, based on
verb-object pairs, from the reports and use it to
classify the reports by techniques.

The ATT&CK framework is also bound to
change. Modifications of the organisation of the
framework are already being presented [68]. There
will be in the future three levels: tactics, techniques
and sub-techniques. Tactics would seemingly stay
the same as the already existing ones, but more
general techniques would be created, and more
precise sub-techniques would be associated with
them. This format would probably facilitate a
similar approach to TTPDrill [30], but could also
improve a multi-label classification method such
as our work. As we have seen, the classification
by tactics performs better than by techniques,
potentially because they are more general.
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APPENDIX

A. Analysis of the number of reports by tactics and techniques
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Fig. 1: Number of reports for each tactics in ATT&CK’s Github dataset
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Fig. 2: Number of reports for each techniques in ATT&CK’s Github dataset
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B. Results from initial classification by tactics and techniques
1) Evaluation of tactics predictions by model

Micro Macro
Precision Recall F0.5 Precision Recall F0.5 

TF
Classifier Chain

AdaBoost 64.73% 50.84% 61.30% 60.87% 45.20% 56.45%
Bagging 67.19% 40.57% 59.38% 64.01% 33.46% 51.89%
ExtraTrees 62.78% 27.87% 50.05% 54.90% 20.89% 37.82%
Gradient Boosting 71.84% 44.33% 63.61% 66.72% 37.42% 55.91%
RandomForest 65.18% 29.58% 52.35% 56.35% 21.96% 38.65%
Logistic Regression 63.81% 54.35% 61.61% 58.86% 47.78% 55.85%
Perceptron 56.34% 56.58% 56.35% 51.63% 50.79% 51.04%
RidgeClassifier 53.21% 52.66% 53.05% 47.79% 48.27% 47.70%
BernoulliNB 80.20% 6.13% 23.25% 52.02% 3.73% 12.36%
KNN 57.92% 38.67% 52.54% 52.54% 30.40% 43.06%
LinearSVC 63.81% 51.02% 60.71% 58.89% 44.31% 54.64%
DecisionTree 55.28% 48.88% 53.80% 50.80% 44.57% 49.13%
ExtraTree 51.68% 38.15% 48.20% 44.29% 30.71% 39.59%

Binary Relevance
AdaBoost 62.30% 49.27% 59.08% 57.26% 42.37% 52.91%
Bagging 68.26% 42.36% 60.75% 63.71% 34.30% 51.54%
ExtraTrees 63.20% 30.33% 51.81% 56.74% 22.58% 39.61%
Gradient Boosting 71.42% 48.19% 65.04% 66.35% 40.16% 56.78%
RandomForest 63.30% 29.63% 51.32% 53.08% 21.76% 37.39%
Logistic Regression 63.71% 54.42% 61.54% 58.74% 47.81% 55.76%
Perceptron 55.99% 57.45% 56.25% 51.45% 52.36% 51.38%
RidgeClassifier 61.85% 51.46% 59.39% 55.64% 45.31% 52.92%
BernoulliNB 56.36% 32.98% 49.20% 47.43% 27.13% 40.51%
KNN 57.93% 38.66% 52.55% 52.55% 30.41% 43.06%
LinearSVC 64.70% 51.55% 61.51% 59.20% 44.36% 54.89%
DecisionTree 54.85% 49.20% 53.57% 50.59% 44.77% 49.10%
ExtraTree 51.43% 37.91% 47.96% 44.70% 30.46% 39.77%

Adapted algorithms
ExtraTrees 63.83% 26.90% 49.90% 54.95% 18.61% 33.62%
RandomForest 64.03% 27.09% 50.00% 49.46% 18.40% 32.32%
KNN 57.93% 38.66% 52.55% 52.55% 30.41% 43.06%
DecisionTree 48.29% 46.83% 47.97% 41.75% 40.38% 41.38%
ExtraTree 44.07% 39.98% 43.15% 36.72% 32.96% 35.70%

TFIDF
Classifier Chain

AdaBoost 61.42% 49.86% 58.59% 57.71% 44.09% 53.79%
Bagging 68.62% 34.73% 56.97% 64.51% 28.47% 47.85%
ExtraTrees 66.03% 25.24% 49.77% 54.42% 17.68% 33.33%
Gradient Boosting 71.15% 43.15% 62.52% 67.40% 36.29% 54.97%
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RandomForest 62.71% 27.73% 49.93% 53.95% 19.92% 35.29%
Logistic Regression 74.37% 18.65% 43.35% 43.55% 12.48% 24.93%
Perceptron 62.06% 54.97% 60.28% 58.05% 49.26% 54.72%
RidgeClassifier 74.40% 41.27% 63.27% 67.63% 33.31% 51.74%
BernoulliNB 55.71% 38.41% 50.92% 47.54% 32.05% 42.67%
KNN 56.86% 36.69% 51.12% 53.10% 30.89% 44.76%
LinearSVC 71.63% 44.89% 63.41% 65.70% 36.76% 54.59%
DecisionTree 48.66% 46.38% 48.15% 43.26% 40.75% 42.58%
ExtraTree 44.60% 37.21% 42.77% 38.73% 31.18% 36.59%

Binary Relevance
AdaBoost 61.02% 51.02% 58.61% 56.61% 44.67% 53.19%
Bagging 66.88% 41.44% 59.39% 63.92% 34.95% 52.29%
ExtraTrees 64.22% 27.17% 50.29% 56.84% 19.69% 35.94%
Gradient Boosting 70.13% 46.85% 63.66% 65.08% 38.94% 55.03%
RandomForest 65.57% 27.81% 51.32% 57.89% 19.58% 35.67%
Logistic Regression 71.04% 50.70% 65.61% 59.00% 40.53% 51.21%
Perceptron 65.20% 55.35% 62.80% 60.54% 48.29% 56.24%
RidgeClassifier 72.40% 48.90% 65.83% 66.57% 38.58% 53.32%
BernoulliNB 55.78% 38.41% 50.97% 47.60% 32.00% 42.67%
KNN 62.45% 45.24% 57.89% 57.82% 36.75% 49.63%
LinearSVC 65.64% 64.69% 65.38% 60.26% 58.50% 59.47%
DecisionTree 49.33% 47.16% 48.80% 45.02% 43.01% 44.43%
ExtraTree 45.31% 38.61% 43.74% 39.62% 32.50% 37.63%

Adapted algorithms
ExtraTrees 65.21% 23.40% 47.69% 56.20% 15.72% 30.71%
RandomForest 63.99% 24.45% 48.07% 47.71% 16.03% 29.17%
KNN 62.45% 45.24% 57.89% 57.82% 36.75% 49.63%
DecisionTree 46.75% 42.85% 45.87% 40.84% 36.94% 39.84%
ExtraTree 41.79% 36.64% 40.62% 35.46% 30.63% 34.13%

w2v avg
Classifier Chain

AdaBoost 58.59% 44.21% 54.98% 52.69% 36.95% 47.34%
Bagging 62.47% 34.95% 53.75% 54.41% 28.18% 44.15%
ExtraTrees 64.21% 31.81% 52.97% 56.22% 24.33% 41.17%
Gradient Boosting 63.33% 42.22% 57.58% 55.10% 33.38% 47.52%
RandomForest 65.17% 32.87% 54.35% 54.26% 24.39% 40.27%
Logistic Regression 62.80% 34.15% 53.78% 55.27% 26.87% 42.63%
Perceptron 47.15% 50.29% 47.75% 44.62% 48.35% 43.38%
RidgeClassifier 67.80% 33.90% 56.19% 58.81% 25.66% 41.44%
BernoulliNB 42.00% 62.59% 44.92% 39.46% 62.38% 41.82%
KNN 53.40% 51.78% 52.93% 48.15% 43.84% 45.79%
LinearSVC 62.88% 40.82% 56.75% 59.98% 34.04% 49.66%
DecisionTree 45.16% 47.04% 45.48% 38.94% 40.94% 39.11%
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ExtraTree 43.52% 43.22% 43.41% 37.84% 37.75% 37.57%
Binary Relevance

AdaBoost 57.97% 46.24% 55.11% 50.77% 38.54% 46.70%
Bagging 62.30% 37.63% 54.99% 54.08% 29.42% 44.03%
ExtraTrees 63.73% 36.23% 55.20% 55.97% 27.79% 42.62%
Gradient Boosting 64.53% 44.77% 59.23% 55.65% 35.07% 46.78%
RandomForest 64.90% 36.36% 56.03% 58.19% 27.65% 43.52%
Logistic Regression 66.86% 41.94% 59.68% 61.02% 31.95% 46.17%
Perceptron 54.09% 42.20% 50.58% 53.29% 36.27% 40.79%
RidgeClassifier 68.06% 39.26% 59.26% 60.04% 28.61% 42.06%
BernoulliNB 43.35% 62.57% 46.14% 40.10% 61.73% 42.42%
KNN 58.08% 51.48% 56.58% 51.80% 41.86% 47.45%
LinearSVC 64.85% 44.91% 59.49% 56.57% 35.35% 47.81%
DecisionTree 46.08% 46.52% 46.13% 40.20% 40.90% 40.07%
ExtraTree 44.22% 46.17% 44.56% 37.29% 39.00% 37.49%

Adapted algorithms
ExtraTrees 63.11% 35.16% 54.30% 51.38% 26.32% 39.88%
RandomForest 65.44% 35.46% 55.81% 56.18% 26.21% 40.60%
KNN 57.33% 51.03% 55.92% 52.11% 41.78% 47.43%
DecisionTree 44.68% 46.18% 44.93% 38.79% 40.74% 38.96%
ExtraTree 42.24% 45.75% 42.86% 36.52% 39.83% 36.98%

w2v sum
Classifier Chain

AdaBoost 60.26% 43.49% 55.82% 54.81% 36.87% 48.68%
Bagging 62.71% 36.65% 54.65% 53.82% 29.42% 44.40%
ExtraTrees 61.29% 29.94% 50.54% 54.15% 22.87% 39.94%
Gradient Boosting 60.21% 40.00% 54.69% 50.19% 30.78% 43.26%
RandomForest 65.57% 34.24% 55.23% 62.47% 27.04% 45.09%
Logistic Regression 54.83% 50.41% 53.89% 49.18% 42.97% 47.26%
Perceptron 48.97% 38.95% 46.57% 50.73% 30.88% 33.63%
RidgeClassifier 63.90% 26.90% 49.87% 55.71% 21.61% 40.35%
BernoulliNB 42.32% 64.00% 45.32% 39.79% 63.86% 42.24%
KNN 57.61% 48.22% 55.39% 54.82% 39.33% 47.90%
LinearSVC 48.11% 40.23% 46.30% 43.50% 35.29% 38.58%
DecisionTree 45.20% 47.68% 45.62% 39.67% 42.39% 40.00%
ExtraTree 41.28% 42.75% 41.52% 35.04% 36.56% 35.17%

Binary Relevance
AdaBoost 59.75% 45.73% 56.15% 52.96% 38.41% 48.22%
Bagging 61.58% 38.37% 54.84% 52.94% 30.24% 43.90%
ExtraTrees 62.91% 36.36% 54.79% 54.29% 28.15% 43.02%
Gradient Boosting 64.54% 45.72% 59.53% 55.37% 35.96% 47.76%
RandomForest 62.79% 36.37% 54.71% 53.92% 28.10% 43.03%
Logistic Regression 58.71% 48.01% 56.13% 52.07% 42.03% 49.31%
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Perceptron 47.35% 50.01% 47.64% 45.91% 42.11% 39.88%
RidgeClassifier 63.90% 33.99% 54.19% 54.90% 26.00% 42.53%
BernoulliNB 43.75% 62.37% 46.48% 40.41% 61.01% 42.68%
KNN 57.70% 48.23% 55.45% 54.14% 39.26% 47.62%
LinearSVC 41.97% 49.21% 42.94% 40.80% 46.08% 38.60%
DecisionTree 45.93% 48.47% 46.36% 40.43% 43.18% 40.72%
ExtraTree 42.99% 44.57% 43.25% 36.92% 38.51% 37.11%

Adapted algorithms
ExtraTrees 62.54% 36.64% 54.68% 55.45% 28.01% 42.16%
RandomForest 63.59% 36.04% 55.03% 55.85% 27.21% 41.70%
KNN 57.58% 48.08% 55.33% 53.64% 38.95% 47.25%
DecisionTree 45.23% 46.24% 45.31% 38.65% 39.73% 38.63%
ExtraTree 42.90% 44.97% 43.20% 37.01% 39.14% 37.24%
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2) Evaluation of techniques predictions by model

Micro Macro
Precision Recall F0.5 Precision Recall F0.5 

TF
Classifier Chain

AdaBoost 36.64% 13.27% 27.05% 18.38% 8.98% 13.72%
Bagging 39.95% 5.83% 18.24% 18.50% 7.90% 12.32%
ExtraTrees 28.13% 1.89% 7.38% 6.68% 1.19% 2.84%
Gradient Boosting 29.13% 3.46% 11.81% 8.16% 2.61% 5.69%
RandomForest 27.54% 1.52% 6.20% 3.98% 0.51% 1.46%
Logistic Regression 19.64% 23.45% 20.26% 6.40% 19.53% 7.31%
RidgeClassifier 14.82% 25.59% 16.16% 10.88% 23.40% 11.66%
BernoulliNB 11.70% 19.64% 12.70% 4.23% 7.36% 4.51%
KNN 15.68% 4.99% 11.26% 4.34% 1.89% 2.87%
LinearSVC 14.07% 12.63% 13.71% 4.74% 4.66% 4.47%
DecisionTree 22.44% 17.94% 21.31% 18.64% 14.98% 16.46%
ExtraTree 13.89% 10.58% 13.04% 7.94% 6.07% 6.90%

Binary Relevance
AdaBoost 35.60% 16.04% 28.56% 18.23% 9.74% 14.23%
Bagging 39.30% 7.63% 21.42% 16.92% 7.53% 11.88%
ExtraTrees 29.41% 2.59% 9.52% 6.93% 1.35% 3.35%
Gradient Boosting 27.60% 12.67% 22.31% 20.25% 12.72% 16.26%
RandomForest 30.37% 2.06% 8.07% 3.90% 0.53% 1.55%
Logistic Regression 30.92% 6.52% 17.54% 9.53% 3.77% 6.32%
Perceptron 17.43% 20.12% 17.88% 11.17% 12.27% 10.69%
RidgeClassifier 14.96% 25.96% 16.33% 10.98% 23.50% 11.74%
BernoulliNB 12.57% 19.06% 13.46% 4.02% 6.62% 4.27%
KNN 37.21% 5.33% 16.88% 6.73% 1.67% 3.87%
LinearSVC 22.87% 19.22% 21.98% 15.36% 11.39% 13.41%
DecisionTree 23.06% 18.53% 21.94% 18.00% 14.76% 16.18%
ExtraTree 14.38% 11.20% 13.59% 6.91% 5.79% 6.18%

Adapted algorithms
ExtraTrees 31.06% 1.95% 7.64% 6.11% 1.08% 2.74%
RandomForest 34.56% 1.54% 6.49% 5.97% 0.99% 2.94%
KNN 37.21% 5.33% 16.88% 6.73% 1.67% 3.87%
DecisionTree 16.23% 14.06% 15.71% 9.99% 8.27% 9.00%
ExtraTree 12.86% 10.10% 12.19% 6.33% 4.95% 5.55%

TFIDF
Classifier Chain

AdaBoost 37.06% 13.06% 26.98% 17.70% 8.44% 13.19%
Bagging 46.77% 5.30% 17.91% 15.17% 5.39% 9.32%
ExtraTrees 25.12% 1.12% 4.74% 4.45% 0.59% 1.60%
Gradient Boosting 29.33% 3.46% 12.02% 5.48% 1.96% 4.16%
RandomForest 23.46% 0.73% 3.22% 2.66% 0.32% 0.88%
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Logistic Regression 30.42% 0.78% 3.48% 3.89% 1.31% 2.94%
RidgeClassifier 82.45% 1.74% 8.00% 7.65% 3.27% 5.50%
BernoulliNB 11.56% 19.20% 12.54% 4.33% 7.23% 4.56%
KNN 14.58% 1.93% 5.96% 4.18% 1.59% 2.52%
LinearSVC 1.44% 15.04% 16.60% 28.57% 10.46% 5.28%
DecisionTree 23.18% 18.47% 22.02% 18.83% 14.85% 16.77%
ExtraTree 13.30% 9.62% 12.33% 6.68% 5.61% 6.06%

Binary Relevance
AdaBoost 35.04% 14.77% 27.41% 17.23% 9.05% 13.36%
Bagging 45.58% 6.26% 20.07% 16.12% 6.50% 10.58%
ExtraTrees 31.62% 1.80% 7.30% 6.13% 0.97% 2.56%
Gradient Boosting 25.85% 11.60% 20.72% 18.83% 12.09% 15.21%
RandomForest 33.15% 1.42% 5.98% 4.23% 0.50% 1.45%
Logistic Regression 52.82% 3.66% 14.33% 7.86% 2.76% 5.18%
Perceptron 30.45% 18.26% 26.82% 21.89% 14.61% 18.32%
RidgeClassifier 66.85% 3.70% 15.13% 11.48% 4.08% 7.34%
BernoulliNB 12.57% 19.06% 13.46% 4.02% 6.62% 4.27%
KNN 36.04% 2.59% 9.88% 6.13% 1.34% 3.17%
LinearSVC 37.18% 29.79% 35.02% 28.84% 22.67% 25.06%
DecisionTree 20.72% 18.31% 20.15% 16.88% 14.57% 15.55%
ExtraTree 13.60% 9.62% 12.52% 7.37% 5.57% 6.48%

Adapted algorithms
ExtraTrees 24.47% 1.06% 4.46% 3.64% 0.57% 1.52%
RandomForest 30.64% 1.23% 5.31% 5.03% 0.49% 1.74%
KNN 36.04% 2.59% 9.88% 6.13% 1.34% 3.17%
DecisionTree 14.11% 12.19% 13.65% 8.14% 7.19% 7.44%
ExtraTree 12.54% 9.83% 11.85% 5.70% 4.68% 5.15%

w2v avg
Classifier Chain

AdaBoost 29.88% 9.29% 20.67% 9.35% 4.05% 6.70%
Bagging 27.07% 2.70% 9.53% 4.36% 1.16% 2.41%
ExtraTrees 36.45% 1.65% 6.89% 3.87% 0.61% 1.60%
Gradient Boosting 34.51% 7.49% 19.98% 3.61% 0.54% 1.67%
RandomForest 39.05% 2.06% 8.42% 2.99% 0.46% 1.20%
Logistic Regression 38.14% 1.86% 7.94% 3.15% 0.12% 0.07%
RidgeClassifier 35.00% 0.14% 0.67% 0.58% 0.04% 0.15%
BernoulliNB 3.38% 64.05% 4.17% 3.31% 40.41% 3.97%
KNN 35.65% 3.62% 12.20% 5.19% 1.84% 3.15%
LinearSVC 36.21% 3.33% 11.70% 7.58% 3.60% 5.35%
DecisionTree 10.47% 14.60% 11.08% 4.80% 6.09% 4.77%
ExtraTree 11.01% 12.84% 11.33% 4.63% 5.19% 4.46%

Binary Relevance
AdaBoost 26.88% 11.79% 21.36% 9.15% 4.82% 7.31%
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Bagging 30.20% 4.89% 14.81% 5.13% 1.49% 2.99%
ExtraTrees 35.89% 3.67% 12.89% 4.55% 1.10% 2.41%
Gradient Boosting 20.36% 7.55% 15.16% 6.57% 2.81% 4.35%
RandomForest 38.86% 3.70% 13.33% 3.89% 0.83% 2.01%
Logistic Regression 50.63% 3.83% 14.52% 3.64% 0.83% 1.87%
Perceptron 17.43% 15.88% 17.03% 8.33% 7.80% 6.37%
RidgeClassifier 51.89% 0.87% 4.02% 1.23% 0.14% 0.43%
BernoulliNB 10.54% 47.77% 12.47% 5.21% 22.33% 6.06%
KNN 36.87% 9.91% 23.74% 5.78% 2.61% 4.22%
LinearSVC 49.01% 6.33% 20.70% 8.57% 3.27% 5.64%
DecisionTree 13.35% 14.83% 13.61% 5.12% 5.50% 4.98%
ExtraTree 12.75% 14.62% 13.08% 4.92% 5.95% 4.87%

Adapted algorithms
ExtraTrees 37.19% 3.32% 12.15% 4.59% 0.90% 2.25%
RandomForest 37.65% 2.85% 10.89% 3.03% 0.59% 1.40%
KNN 36.67% 9.89% 23.65% 5.49% 2.58% 4.11%
DecisionTree 12.31% 14.03% 12.60% 4.86% 5.54% 4.73%
ExtraTree 12.53% 14.41% 12.85% 5.17% 5.75% 5.05%

w2v sum
Classifier Chain

AdaBoost 27.88% 7.34% 17.68% 8.77% 3.47% 6.14%
Bagging 23.89% 2.50% 8.73% 3.50% 0.68% 1.67%
ExtraTrees 20.06% 1.02% 4.15% 2.19% 0.32% 0.90%
Gradient Boosting 19.01% 1.94% 6.92% 1.86% 1.01% 1.61%
RandomForest 36.44% 2.19% 8.74% 3.06% 0.41% 1.21%
Logistic Regression 29.47% 4.85% 14.57% 2.86% 2.15% 2.69%
RidgeClassifier 23.28% 3.18% 9.94% 5.43% 1.27% 2.86%
BernoulliNB 3.51% 65.27% 4.32% 3.38% 40.81% 4.05%
KNN 38.71% 9.12% 23.33% 5.17% 1.88% 3.36%
LinearSVC 13.56% 8.16% 11.94% 4.95% 3.76% 4.71%
DecisionTree 10.54% 14.60% 11.13% 4.37% 5.60% 4.32%
ExtraTree 11.05% 14.19% 11.54% 4.34% 5.31% 4.30%

Binary Relevance
AdaBoost 28.34% 11.69% 21.93% 9.63% 4.50% 7.30%
Bagging 28.74% 5.44% 15.27% 4.85% 1.34% 2.76%
ExtraTrees 32.49% 4.11% 13.46% 4.49% 0.98% 2.29%
Gradient Boosting 21.14% 8.41% 16.14% 7.38% 2.96% 5.00%
RandomForest 33.04% 4.16% 13.69% 3.76% 0.92% 2.07%
Logistic Regression 20.49% 18.60% 19.98% 11.48% 10.53% 10.62%
Perceptron 16.39% 18.52% 16.77% 6.27% 7.96% 5.65%
RidgeClassifier 30.28% 5.70% 15.72% 6.46% 1.89% 3.91%
BernoulliNB 9.98% 49.20% 11.86% 5.10% 23.51% 5.93%
KNN 38.25% 8.98% 23.00% 5.10% 1.86% 3.35%
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LinearSVC 11.64% 22.82% 12.87% 8.30% 15.49% 8.42%
DecisionTree 13.43% 15.53% 13.77% 4.88% 5.94% 4.84%
ExtraTree 11.94% 14.43% 12.34% 4.74% 5.74% 4.71%

Adapted algorithms
ExtraTrees 33.40% 3.77% 12.85% 3.55% 0.78% 1.85%
RandomForest 37.56% 3.55% 12.68% 3.29% 0.68% 1.64%
KNN 38.58% 9.09% 23.27% 5.60% 1.90% 3.49%
DecisionTree 13.39% 14.23% 13.51% 5.63% 5.73% 5.42%
ExtraTree 11.93% 13.13% 12.12% 5.02% 5.27% 4.79%
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C. Imbalanced dataset analysis
1) Random resampling evaluation for tactics

Micro Macro
Precision Recall F0.5 Precision Recall F0.5 

TF
Binary Relevance

AdaBoost 49.77% 60.45% 47.08% 52.24% 65.22% 48.91%
Bagging 52.39% 58.59% 49.36% 54.32% 63.73% 50.48%
ExtraTrees 52.71% 42.85% 48.02% 52.37% 51.14% 45.36%
Gradient Boosting 54.87% 66.41% 51.94% 57.66% 72.47% 53.92%
RandomForest 49.84% 50.23% 47.36% 51.23% 57.74% 46.35%
Logistic Regression 56.94% 61.56% 52.44% 58.66% 66.74% 53.90%
Perceptron 50.28% 60.76% 45.45% 52.73% 65.79% 47.61%
RidgeClassifier 49.93% 55.86% 45.48% 51.50% 58.97% 47.03%
BernoulliNB 49.82% 47.92% 44.88% 50.68% 54.48% 45.01%
KNN 43.26% 57.69% 39.63% 46.11% 63.42% 41.76%
LinearSVC 54.95% 57.69% 50.76% 56.45% 63.37% 51.83%
DecisionTree 44.84% 57.91% 41.24% 47.35% 60.99% 43.56%
ExtraTree 38.84% 46.45% 34.17% 40.97% 52.44% 35.88%

TFIDF
Binary Relevance

AdaBoost 49.52% 58.46% 46.12% 51.84% 63.79% 47.86%
Bagging 53.15% 56.68% 50.06% 54.70% 61.94% 50.87%
ExtraTrees 51.47% 40.53% 47.17% 51.10% 49.72% 42.96%
Gradient Boosting 54.30% 63.40% 50.79% 56.92% 70.53% 52.48%
RandomForest 48.77% 47.65% 45.17% 49.96% 55.36% 44.17%
Logistic Regression 59.25% 63.13% 56.69% 61.09% 69.80% 57.14%
Perceptron 57.26% 62.68% 53.97% 59.28% 69.11% 54.98%
RidgeClassifier 59.47% 62.28% 55.77% 61.13% 68.89% 56.59%
BernoulliNB 49.35% 53.00% 44.74% 51.13% 59.78% 45.70%
KNN 43.50% 49.52% 45.71% 45.73% 57.55% 43.62%
LinearSVC 57.71% 66.17% 53.88% 59.97% 71.18% 55.75%
DecisionTree 43.59% 55.21% 39.88% 45.98% 58.92% 42.01%
ExtraTree 38.74% 46.25% 33.89% 40.88% 52.46% 35.64%
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2) Random resampling evaluation for techniques

Micro Macro
Precision Recall F0.5 Precision Recall F0.5 

TF
Binary Relevance

AdaBoost 26.44% 23.02% 22.79% 14.65% 16.16% 12.45%
Bagging 26.99% 12.79% 16.81% 12.34% 15.43% 10.75%
ExtraTrees 21.58% 5.21% 8.50% 5.61% 3.63% 3.71%
Gradient Boosting 18.47% 20.32% 16.73% 14.80% 24.51% 13.96%
RandomForest 21.12% 4.66% 7.09% 3.21% 1.61% 1.77%
Logistic Regression 25.21% 8.42% 14.75% 8.31% 5.55% 5.74%
Perceptron 14.58% 24.30% 14.79% 10.01% 16.24% 9.44%
RidgeClassifier 11.40% 31.83% 12.83% 9.05% 32.50% 10.04%
BernoulliNB 9.78% 37.86% 11.95% 3.62% 15.60% 4.40%
KNN 25.22% 9.90% 12.78% 5.06% 3.88% 3.52%
LinearSVC 17.85% 24.59% 17.97% 12.85% 17.01% 11.95%
DecisionTree 17.46% 24.90% 17.11% 14.70% 21.66% 13.61%
ExtraTree 10.26% 17.46% 10.30% 5.59% 11.25% 5.49%

TFIDF
Binary Relevance

AdaBoost 27.53% 18.12% 22.32% 14.55% 13.00% 11.85%
Bagging 34.84% 9.06% 17.13% 12.70% 11.51% 10.01%
ExtraTrees 24.43% 3.18% 6.98% 5.23% 2.46% 3.15%
Gradient Boosting 19.45% 16.76% 17.10% 15.33% 21.69% 14.38%
RandomForest 23.98% 2.69% 5.43% 3.44% 1.40% 1.82%
Logistic Regression 42.05% 4.98% 12.41% 7.53% 4.79% 5.64%
Perceptron 25.16% 22.56% 23.03% 19.50% 21.29% 17.32%
RidgeClassifier 52.10% 5.18% 12.91% 9.65% 7.40% 7.58%
BernoulliNB 11.05% 27.40% 12.53% 4.04% 11.71% 4.56%
KNN 23.94% 2.96% 7.45% 4.51% 2.00% 2.66%
LinearSVC 31.16% 32.86% 29.37% 26.27% 28.05% 22.87%
DecisionTree 17.44% 22.91% 17.02% 15.45% 20.21% 14.21%
ExtraTree 11.24% 12.91% 10.43% 6.87% 9.12% 6.12%
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3) Study of the impact of different sampling on the classification by techniques

T1105 T1027 T1071 T1082 T1059 T1060 T1083 T1057 T1107 T1064 T1003 T1016 T1086 T1056 T1113 T1033 T1193 T1055 T1053 T1043 T1036 T1050 T1204 T1032 T1140 T1112 T1047 T1005 T1012 T1063 T1078 T1002 T1022 T1074 T1024 T1203 T1090 T1085 T1087 T1094 T1076 T1089 T1102 T1065 T1049 T1132 T1088 T1116 T1192 T1007 T1045 T1018 T1099 T1070 T1077 T1023 T1073 T1106 T1124 T1035 T1081 T1497 T1125 T1134 T1041 T1110 T1117 T1123 T1046 T1173 T1001 T1115 T1189 T1038 T1068 T1210 T1119 T1179 T1008 T1034 T1069 T1095 T1114 T1048 T1093 T1120 T1135 T1137 T1015 T1031 T1486 T1009 T1096 T1136 T1158 T1499 T1014 T1091 T1175 T1215 T1222 T1004 T1025 T1097 T1100 T1127 T1133 T1170 T1171 T1483 T1485 T1010 T1066 T1075 T1159 T1195 T1218 T1221 T1019 T1084 T1098 T1178 T1197 T1040 T1130 T1176 T1190 T1219 T1223 T1482 T1487 T1498 T1021 T1067 T1108 T1122 T1168 T1185 T1187 T1191 T1480 T1029 T1079 T1141 T1188 T1198 T1208 T1484 T1037 T1183 T1186 T1220 T1501 T1080 T1145 T1177 T1181 T1201 T1020 T1030 T1052 T1101 T1103 T1162 T1200 T1207 T1490 T1491 T1026 T1028 T1039 T1042 T1044 T1051 T1062 T1092 T1104 T1129 T1142 T1144 T1160 T1182 T1184 T1209 T1211 T1212 T1489 T1013 T1058 T1111 T1131 T1167 T1196 T1202 T1213 T1488 T1492 T1054 T1109 T1128 T1138 T1155 T1156 T1163 T1165 T1174 T1194 T1199 T1205 T1206 T1214 T1216 T1217 T1493 T1500

Te
ch

ni
qu

es

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F0.5 score Fi
g.

1:
Im

pa
ct

of
tr

ai
ni

ng
sa

m
pl

in
g

si
ze

on
F0

.5
sc

or
e

of
ea

ch
te

ch
ni

qu
e,

w
ith

te
ch

ni
qu

es
so

rt
ed

by
de

cr
ea

si
ng

nu
m

be
r

of
C

T
R

s
in

th
e

or
ig

in
al

da
ta

se
t.

36



D. Frequency of confidence scores for false and true predictions
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Fig. 1: Frequency of confidence scores for false and true negative tactics prediction, using the TF-IDF
weighted, binary relevance Linear SVC model.
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Fig. 2: Frequency of confidence scores for false and true positive tactics prediction, using the TF-IDF
weighted, binary relevance Linear SVC model.
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Fig. 3: Frequency of confidence scores for false and true negative techniques prediction, using the
TF-IDF weighted, binary relevance Linear SVC model.
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Fig. 4: Frequency of confidence scores for false and true positive techniques prediction, using the
TF-IDF weighted, binary relevance Linear SVC model.
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E. Impact of post-processing method on dataset
1) Samples showing the behaviours of the hanging node and confidence propagation approach on

the dataset

Independent Hanging node
Tactics TP FN TN FP TP FN TN FP
TA0005 147 46 173 38 154 39 153 58
TA0003 107 42 211 44 114 35 190 65
TA0002 74 41 252 37 79 36 242 47
TA0004 64 53 263 24 70 47 241 46
TA0008 37 52 291 24 44 45 278 37
TA0011 62 26 295 21 67 21 282 34
TA0007 50 31 295 28 53 28 284 39
TA0006 30 45 306 23 33 42 277 52
TA0009 20 27 331 26 24 23 316 41
TA0001 14 35 344 11 21 28 337 18
TA0010 5 25 362 12 8 22 351 23
TA0040 10 16 432 8 14 12 424 16

Fig. 1: Sample over one fold of the change in prediction between the independent classification of
tactics and the one using the hanging node post-processing.
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Independent Hanging node Conf. propag.
Techniques TP FN TN FP TP FN TN FP TP FN TN FP

T1105 23 23 332 26 23 23 335 23 28 18 331 27
T1027 21 9 336 38 21 9 337 37 24 6 323 51
T1071 20 20 342 22 20 20 343 21 26 14 335 29
T1082 25 13 331 35 25 13 331 35 27 11 333 33
T1059 21 14 337 32 21 14 337 32 21 14 335 34
T1060 15 19 336 34 15 19 339 31 16 18 327 43
T1083 12 14 349 29 11 15 350 28 15 11 341 37
T1057 12 16 345 31 11 17 345 31 15 13 336 40
T1107 12 12 341 39 11 13 343 37 16 8 327 53
T1064 5 20 360 19 5 20 360 19 12 13 349 30
T1003 8 24 347 25 7 25 347 25 8 24 352 20
T1016 14 13 351 26 13 14 352 25 16 11 348 29
T1086 9 20 360 15 9 20 360 15 13 16 355 20
T1056 7 14 357 26 7 14 357 26 6 15 364 19
T1113 5 16 362 21 5 16 362 21 7 14 358 25
T1033 12 13 354 25 12 13 354 25 14 11 351 28
T1193 10 9 373 12 10 9 373 12 9 10 374 11
T1055 5 25 357 17 5 25 357 17 7 23 345 29
T1053 4 26 359 15 4 26 359 15 11 19 349 25
T1043 5 7 379 13 5 7 379 13 7 5 366 26
T1036 3 11 371 19 3 11 371 19 4 10 358 32
T1050 5 18 372 9 5 18 372 9 7 16 364 17
T1204 4 7 378 15 4 7 378 15 4 7 370 23
T1032 5 14 369 16 5 14 369 16 8 11 365 20
T1140 4 11 379 10 4 11 379 10 8 7 370 19
T1112 6 12 374 12 6 12 374 12 10 8 366 20
T1047 2 11 379 12 2 11 379 12 4 9 377 14
T1005 3 13 370 18 3 13 370 18 3 13 369 19
T1012 4 12 376 12 4 12 376 12 7 9 368 20
T1063 2 11 383 8 2 11 383 8 7 6 380 11
T1078 2 7 391 4 2 7 391 4 2 7 390 5
T1002 2 11 378 13 2 11 378 13 2 11 380 11
T1022 1 11 381 11 1 11 381 11 1 11 383 9
T1074 6 6 377 15 6 6 377 15 9 3 376 16
T1024 4 14 381 5 4 14 381 5 7 11 379 7
T1203 3 4 389 8 3 4 389 8 3 4 385 12
T1090 1 6 385 12 1 6 385 12 2 5 382 15
T1085 0 8 391 5 0 8 391 5 4 4 381 15
T1087 2 13 382 7 2 13 382 7 4 11 375 14
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T1094 1 5 389 9 1 5 389 9 2 4 380 18
T1076 3 5 388 8 3 5 388 8 3 5 386 10
T1089 3 7 385 9 3 7 385 9 3 7 377 17
T1102 2 5 388 9 2 5 388 9 3 4 374 23
T1065 0 6 385 13 0 6 385 13 0 6 385 13
T1049 2 8 387 7 2 8 387 7 1 9 378 16
T1132 2 7 395 0 2 7 395 0 5 4 389 6
T1088 1 11 392 0 1 11 392 0 4 8 388 4
T1116 3 5 386 10 3 5 386 10 3 5 381 15
T1192 0 8 395 1 0 8 395 1 0 8 395 1
T1007 2 6 391 5 2 6 391 5 3 5 388 8
T1045 3 4 395 2 3 4 395 2 4 3 391 6
T1018 1 6 392 5 1 6 392 5 2 5 389 8
T1099 1 7 390 6 1 7 390 6 2 6 389 7
T1070 2 6 389 7 2 6 389 7 2 6 383 13
T1077 2 8 391 3 2 8 391 3 2 8 392 2
T1023 1 8 389 6 1 8 389 6 2 7 388 7
T1073 2 4 391 7 2 4 391 7 4 2 385 13
T1106 1 7 396 0 1 7 396 0 2 6 394 2
T1124 1 8 394 1 1 8 394 1 2 7 393 2
T1035 1 8 393 2 1 8 393 2 4 5 388 7
T1081 1 4 389 10 1 4 389 10 1 4 389 10
T1497 2 7 393 2 2 7 393 2 3 6 388 7
T1125 2 7 390 5 2 7 390 5 2 7 391 4
T1134 1 9 390 4 1 9 390 4 4 6 391 3
T1041 0 3 397 4 0 3 397 4 0 3 397 4
T1110 2 0 398 4 2 0 398 4 2 0 398 4
T1117 0 4 399 1 0 4 399 1 2 2 394 6
T1123 2 9 393 0 2 9 393 0 2 9 393 0
T1046 3 7 393 1 3 7 393 1 2 8 393 1
T1173 3 1 397 3 3 1 397 3 3 1 394 6
T1001 0 6 397 1 0 6 397 1 1 5 393 5
T1115 1 7 396 0 1 7 396 0 1 7 396 0
T1189 1 5 395 3 1 5 395 3 1 5 396 2
T1038 3 7 392 2 3 7 392 2 4 6 389 5
T1068 2 8 392 2 2 8 392 2 3 7 391 3
T1210 2 6 396 0 2 6 396 0 2 6 396 0
T1119 2 6 393 3 2 6 393 3 2 6 392 4
T1179 2 1 401 0 2 1 401 0 2 1 399 2
T1008 0 5 388 11 0 5 388 11 0 5 385 14
T1034 0 8 390 6 0 8 390 6 2 6 391 5
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T1069 1 6 394 3 1 6 394 3 2 5 393 4
T1095 0 3 392 9 0 3 392 9 0 3 392 9
T1114 1 8 395 0 1 8 395 0 1 8 395 0
T1048 0 6 392 6 0 6 392 6 0 6 393 5
T1093 1 7 395 1 1 7 395 1 2 6 388 8
T1120 1 6 394 3 1 6 394 3 3 4 392 5
T1135 2 8 394 0 2 8 394 0 2 8 393 1
T1137 3 1 399 1 3 1 399 1 3 1 399 1
T1015 1 5 396 2 1 5 396 2 1 5 395 3
T1031 0 6 388 10 0 6 388 10 0 6 388 10
T1486 1 5 388 10 1 5 388 10 1 5 388 10
T1009 2 2 394 6 2 2 394 6 2 2 385 15
T1096 6 2 396 0 6 2 396 0 6 2 395 1
T1136 1 3 398 2 1 3 398 2 2 2 398 2
T1158 0 2 399 3 0 2 399 3 1 1 399 3
T1499 1 3 396 4 1 3 396 4 2 2 396 4
T1014 1 2 394 7 1 2 394 7 1 2 396 5
T1091 1 7 396 0 1 7 396 0 1 7 395 1
T1175 2 3 396 3 2 3 396 3 3 2 396 3
T1215 1 5 395 3 1 5 395 3 1 5 394 4
T1222 3 2 399 0 3 2 399 0 4 1 399 0
T1004 0 4 400 0 0 4 400 0 1 3 400 0
T1025 1 6 396 1 1 6 396 1 1 6 395 2
T1097 2 2 400 0 2 2 400 0 2 2 400 0
T1100 1 2 399 2 1 2 399 2 1 2 399 2
T1127 2 2 400 0 2 2 400 0 2 2 399 1
T1133 1 0 402 1 1 0 402 1 1 0 402 1
T1170 0 5 396 3 0 5 396 3 0 5 395 4
T1171 0 5 398 1 0 5 398 1 0 5 398 1
T1483 1 4 396 3 1 4 396 3 1 4 395 4
T1485 0 5 397 2 0 5 397 2 0 5 397 2
T1010 2 5 386 11 2 5 386 11 3 4 386 11
T1066 1 4 398 1 1 4 398 1 1 4 396 3
T1075 1 3 400 0 1 3 400 0 1 3 400 0
T1159 1 2 397 4 1 2 397 4 1 2 398 3
T1195 2 2 399 1 2 2 399 1 2 2 399 1
T1218 1 1 400 2 1 1 400 2 1 1 399 3
T1221 3 3 398 0 3 3 398 0 4 2 398 0
T1019 1 0 403 0 1 0 403 0 1 0 403 0
T1084 1 1 400 2 1 1 400 2 1 1 399 3
T1098 1 2 392 9 1 2 392 9 1 2 394 7
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T1178 3 5 393 3 3 5 393 3 3 5 395 1
T1197 3 1 391 9 3 1 391 9 4 0 391 9
T1040 2 2 399 1 2 2 399 1 1 3 400 0
T1130 1 1 401 1 1 1 401 1 1 1 400 2
T1176 3 0 401 0 3 0 401 0 3 0 401 0
T1190 1 2 400 1 1 2 400 1 1 2 400 1
T1219 1 1 401 1 1 1 401 1 1 1 401 1
T1223 0 2 402 0 0 2 402 0 0 2 402 0
T1482 2 1 400 1 2 1 400 1 2 1 400 1
T1487 1 1 400 2 1 1 400 2 1 1 400 2
T1498 1 1 402 0 1 1 402 0 1 1 402 0
T1021 1 1 402 0 1 1 402 0 1 1 402 0
T1067 1 2 398 3 1 2 398 3 1 2 398 3
T1108 1 4 397 2 1 4 397 2 1 4 397 2
T1122 3 4 397 0 3 4 397 0 4 3 397 0
T1168 1 2 401 0 1 2 401 0 1 2 401 0
T1185 0 3 400 1 0 3 400 1 0 3 400 1
T1187 1 5 397 1 1 5 397 1 2 4 397 1
T1191 0 1 398 5 0 1 398 5 0 1 395 8
T1480 4 3 397 0 4 3 397 0 5 2 397 0
T1029 0 0 397 7 0 0 397 7 0 0 398 6
T1079 0 4 399 1 0 4 399 1 0 4 400 0
T1141 0 3 398 3 0 3 398 3 0 3 400 1
T1188 0 3 400 1 0 3 400 1 0 3 401 0
T1198 2 1 400 1 2 1 400 1 2 1 400 1
T1208 0 3 400 1 0 3 400 1 1 2 399 2
T1484 0 3 396 5 0 3 396 5 0 3 398 3
T1037 0 5 399 0 0 5 399 0 0 5 399 0
T1183 1 2 400 1 1 2 400 1 1 2 398 3
T1186 2 5 396 1 2 5 396 1 4 3 397 0
T1220 0 4 399 1 0 4 399 1 1 3 394 6
T1501 1 2 401 0 1 2 401 0 1 2 399 2
T1080 1 5 398 0 1 5 398 0 1 5 398 0
T1145 0 1 402 1 0 1 402 1 0 1 402 1
T1177 1 2 393 8 1 2 393 8 1 2 394 7
T1181 2 2 399 1 2 2 399 1 2 2 397 3
T1201 0 4 400 0 0 4 400 0 0 4 400 0
T1020 2 3 399 0 2 3 399 0 2 3 399 0
T1030 1 0 403 0 1 0 403 0 1 0 403 0
T1052 0 1 402 1 0 1 402 1 0 1 402 1
T1101 0 3 401 0 0 3 401 0 0 3 401 0
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T1103 0 4 394 6 0 4 394 6 1 3 394 6
T1162 3 0 397 4 3 0 397 4 3 0 398 3
T1200 0 1 403 0 0 1 403 0 0 1 403 0
T1207 0 1 402 1 0 1 402 1 0 1 401 2
T1490 0 1 400 3 0 1 400 3 0 1 400 3
T1491 0 1 403 0 0 1 403 0 0 1 402 1
T1026 0 0 399 5 0 0 399 5 0 0 398 6
T1028 0 0 398 6 0 0 398 6 0 0 399 5
T1039 1 5 398 0 1 5 398 0 1 5 398 0
T1042 1 4 393 6 1 4 393 6 2 3 393 6
T1044 2 4 398 0 2 4 398 0 2 4 398 0
T1051 0 0 404 0 0 0 404 0 0 0 404 0
T1062 1 0 403 0 1 0 403 0 1 0 403 0
T1092 0 2 402 0 0 2 402 0 0 2 402 0
T1104 0 2 402 0 0 2 402 0 0 2 402 0
T1129 0 2 401 1 0 2 401 1 0 2 401 1
T1142 0 4 400 0 0 4 400 0 0 4 400 0
T1144 0 3 400 1 0 3 400 1 0 3 399 2
T1160 0 1 402 1 0 1 402 1 0 1 401 2
T1182 0 3 401 0 0 3 401 0 0 3 401 0
T1184 0 4 400 0 0 4 400 0 0 4 400 0
T1209 0 3 398 3 0 3 398 3 0 3 397 4
T1211 0 3 399 2 0 3 399 2 0 3 400 1
T1212 0 2 398 4 0 2 398 4 0 2 400 2
T1489 1 1 399 3 1 1 399 3 1 1 400 2
T1013 0 1 401 2 0 1 401 2 1 0 400 3
T1058 0 2 396 6 0 2 396 6 0 2 397 5
T1111 1 4 398 1 1 4 398 1 1 4 399 0
T1131 1 1 400 2 1 1 400 2 1 1 400 2
T1167 0 3 397 4 0 3 397 4 0 3 400 1
T1196 0 2 400 2 0 2 400 2 0 2 400 2
T1202 2 3 396 3 2 3 396 3 2 3 395 4
T1213 0 0 403 1 0 0 403 1 0 0 404 0
T1488 1 2 400 3 1 2 400 3 1 2 400 3
T1492 3 2 395 3 3 2 395 3 3 2 394 4
T1054 1 0 402 1 1 0 402 1 0 1 403 0
T1109 0 2 402 0 0 2 402 0 0 2 402 0
T1128 0 3 401 0 0 3 401 0 0 3 400 1
T1138 0 0 404 0 0 0 404 0 0 0 403 1
T1155 0 1 403 0 0 1 403 0 0 1 403 0
T1156 0 3 401 1 0 3 401 1 0 3 400 2
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T1163 0 1 402 1 0 1 402 1 0 1 401 2
T1165 0 1 403 0 0 1 403 0 0 1 401 2
T1174 0 0 402 2 0 0 402 2 0 0 403 1
T1194 0 2 402 0 0 2 402 0 0 2 402 0
T1199 0 2 402 0 0 2 402 0 0 2 402 0
T1205 0 2 402 0 0 2 402 0 0 2 402 0
T1206 0 1 403 0 0 1 403 0 0 1 403 0
T1214 1 2 402 2 1 2 402 2 1 2 402 2
T1216 0 2 402 0 0 2 402 0 0 2 402 0
T1217 1 3 400 0 1 3 400 0 1 3 400 0
T1493 0 3 402 0 0 3 402 0 0 3 402 0
T1500 1 2 400 1 1 2 400 1 1 2 400 1

Fig. 2: Sample over one fold of the change in prediction between the independent classification of
techniques and the one using the hanging node post-processing.
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2) Analysis of the correlation between techniques predictions and number of reports by techniques
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Fig. 3: Correlation between the F0.5 score and the number of reports by techniques with the hanging
node approach applied.
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Fig. 4: Correlation between the F0.5 score and the number of reports by techniques with the confidence
propagation approach applied.
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