
1

Addressing the limited adoption of Semantic Web for data integration in

AEC industry: Exploration of an RDF-based approach depending on

available ontologies and literals matching

Dimitrios Patsias*

University of Twente, Faculty of Engineering Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands
*Corresponding author: dimitrispatsias@gmail.com

A B S T R A C T

The limitations of Building Information Modeling (BIM) regarding the complete and integrated management

support for building data, which are vast, diverse and distributed across different sources, systems and actors and

which often need to be combined for the purpose of several analyses, stimulated the use of Semantic Web. The

latter enables the uniform representation of heterogeneous data in structured graphs, using the Resource

Description Framework (RDF) and common languages that describe relationships among these, namely

ontologies. By deploying Semantic Web technologies, several research streams have focused on the integration of

BIM with cross-domain data such as GIS, product and material data, sensor and cost data among others, by

suggesting the development of several ontologies that represent concepts and relationships from different domains

and the establishment of semantic links between them. At the same time, people without prior relevant awareness,

perceive the concept of ontologies and tasks related to them as something too complicated. This is considered the

main reason for the slow adoption of Semantic Web technologies, which is obvious within the AEC-FM industry

as well. In this paper, the feasibility of a data integration approach that uses available ontologies and avoids

ontology alignment is explored. For that reason, an approach based on the RDF representation of diverse datasets,

the semantic description of these using available ontologies and the integration of these by matching literals

between datasets, instead of establishing semantic links, is presented. A conceptual framework is developed and

tested in the context of a simple but typical scenario where BIM has to be integrated with heterogeneous data

sources in order to perform several analyses. The results of the evaluation showed that although proven successful

for linking datasets, the unlikelihood of the existence of ontologies that fully describe the datasets and cover the

data needs of every organization, the requirements regarding the lexical and data type similarity of the literals, the

required prior specific knowledge about the data and the resulting complexity of the queries, render this approach

hard to be properly applied and generalized. The discussion and conclusion sections, elaborate on the tradeoffs of

the approach and the lessons learned regarding the requirements, the potential and the challenges for engineering

companies in their effort to comprehend and successfully deploy Semantic Web technologies within their everyday

data management practices.

Keywords: Semantic Web, BIM, data integration, RDF, AEC

1. Introduction

The Architecture, Engineering, Construction and Facilities Management (AEC-FM) industry is a

knowledge-intensive one and currently, an enormous growth is experienced in its capacity to both generate and

collect data. As the construction industry is adapting to new computer technologies, more and more computerized

construction data are becoming available (Soibelman, Wu, Caldas, Brilakis, & Lin, 2008). Moreover, various

forms of knowledge and data, stemming from multiple disciplines within the construction industry have to be

combined in order to facilitate the communication and collaboration among several stakeholders and therefore

enhance the success of construction projects. This increasing data flow has increased the complexity of decision-

making. Furthermore, accessing this data and integrating all this information is a difficult challenge as it is often

stored in disconnected software applications and databases.

In recent years, Building Information Modeling (BIM) technologies have significantly influenced

information management practices throughout the entire building industry. BIM has been established as a concept

of using IT to model and manage data and has demonstrated the potential for tackling problems stemming from

insufficient access to information in all phases of a construction project (Parsanezhad & Dimyadi, 2014). A

2

Building Information Model can be seen as a central repository of building data that can be used by all project

stakeholders (Curry et al., 2013). In order to increase interoperability throughout the design and construction

process within the building design team, the buildingSMART organization developed and maintained the Industry

Foundation Classes (IFC) standard. The IFC data model is represented as a schema in the expressive EXPRESS

data specification language and aims at providing a central “conceptual data schema and an exchange file format

for BIM data” (Liebich et al., 2013). By exporting a native BIM format, which varies depending on the respective

software, to the neutral IFC format or the other way around, BIM data can be exchanged between heterogeneous

software applications, covering a wide range of use cases including 4D planning, 5D cost calculation and structural

analysis (Pauwels, Krijnen, Terkaj, & Beetz, 2017). Many national BIM standards strongly recommend or even

impose the use of IFC to enhance the exchange and communication of building information among project

stakeholders.

However, despite the advantages in terms of software interoperability, within the wider context of an

organization, BIM models are only silos of information (Curry et al., 2013) and there is a need for utilizing other

relevant data generated outside of the context of building projects as well in order to perform various analyses. To

date, however, linking of building data stored in an IFC file, which mainly concern a building’s geometry, with

other relevant data such as, for example, regulations, GIS, building products and materials and sensor data, is

limitedly possible. Data stemming from different domains have heterogeneous data formats and their integration

is not easy because each domain develops its own data schema to represent properties for the same object (Niknam

& Karshenas, 2017). Therefore, combining data about a building element requires accessing several project

documents and manually extracting, combining, validating and sometimes inferring the necessary information for

every kind of analysis, which is a cumbersome and error-prone process (Gonçal Costa, 2017). A typical example

is during the development of a 3D building model, when the modeler has to assess several types of documents to

make sure that the building complies to relevant regulations or that the most suitable building elements have been

selected. These documents can be quite large and although it is possible to attach them to BIM elements (e.g. as

pdf or excel spreadsheets), attached documents are hard to be queried by computers to find relevant data for

different computing tasks (Niknam, 2017). Therefore, the user has to identify and interpret the relevant information

as well as implicitly relate it with BIM elements.

The need to address the aforementioned issue, among others, has stimulated the usage of Semantic Web

technologies in the domains of AEC-FM over the recent years and they are typically considered as complementary

to Building Information Modelling software, focusing on organizing and sharing the ‘semantics’ of a building and

not only on the display of its geometric aspects (Pauwels, Zhang, & Lee, 2017). Semantic Web technologies,

enable the representation of different heterogeneous data into a common standard, namely the Resource

Description Framework (RDF) (Schreiber & Raimond, 2014) and the semantic description of these and their

relationships due to the expressive power of Ontology Web Languages (OWL) (Hitzler, Krötzsch, Parsia, &

Sebastian, 2012). They make it possible to refer to a specific piece of information contained in a document or

program and allow to represent it in structured graphs and efficiently integrate building information of completely

different nature (Pauwels, Zhang, et al., 2017). Several research initiatives have addressed the integration of BIM

with diverse external data by making use of Semantic Web technologies.

The Semantic Web approaches adopted in the academic world usually include the representation of diverse

data as RDF graphs and the development of several ontologies that represent different domains by modeling the

data and describing concepts, instances, and relationships among them. Ontologies have a central role in Semantic

Web-based data integration which is enabled through the definition of mappings and links between data, which

define binary relations between entities that belong to different datasets and relate semantically one to another

(Ferrara & Nikolov, 2011). This way, information of the data sources can be integrated to allow agents (human

and machines) have a more unified view.

 However, the discovery and establishment of these mappings, which is called ontology alignment, is

considered a challenging task that requires collaboration between ontology engineers and domain experts (Gonçal

Costa, 2017), especially when the datasets are large and complex (Cheatham & Pesquita, 2017). Finding

correspondences between entities included in different ontologies is very subjective and depends on the way in

which reality is represented in each one of them. Therefore, human interpretation plays an essential role. Pauwels,

Zhang, et al. (2017), in their literature overview about semantic web technologies in AEC industry, highlighted

the lack of sufficient explanation about the way that semantic links between ontologies are defined and managed.

This aspect, according to them, is considered as one of the key research challenges for the implementation of

3

Semantic Web technologies in the construction industry, which so far is relatively slow (Godager, 2018), since the

lack of a systematic and elaborate explanation of this mapping process hinders comprehension and correct

implementation. Regarding the concept of ontologies in general, Kuriakose (2009) stated that one of the major

challenges in Semantic Technology deployment is the long learning curve regarding ontology development, which

is a difficult and time-consuming process. This comes in accordance with Lanthaler & Gütl (2011) and Serrano &

Stroulia (2017) who noticed that most web developers have a reluctance towards Semantic Web, called

Semaphobia and they perceive its technologies, and especially the concept of ontologies, as something too

complex. According to Garshol (2013), ordinary data modeling being already considered complicated and tricky

by many developers, it can be understood that modeling in description logics, which are families of formal

knowledge representation languages on which ontologies are based, can be rather frightening to them.

Taking the above into account, and given the fact that there are many actors in the construction industry

with limited knowledge about how to exploit Semantic Web technologies (Godager, 2018), the desired integration

of BIM with external relevant building data, requires rather hard work by AEC practitioners, in terms of

comprehending the concepts of semantic data modelling and ontologies, developing ontologies that efficiently

describe their data and cover their data needs, and establishing semantic links between them, so that the

aforementioned integration is possible. This complexity, in combination with the lack of sufficient documentation

and explanation of tasks that require high amounts of human interpretation, such as ontology alignment, places the

threshold for Semantic Web adoption by construction companies rather high and renders the step towards these

technologies difficult. In an attempt to deal with this, this paper claims that alternative approaches could be

explored, where the desired data integration could be achieved in a more familiar to the user way, based on

practices that could be easier comprehended and applied.

 In this regard, this paper explores an approach for RDF-based integration of BIM with relevant data which

depends on the usage of existing ontologies and on literals1 matching between different datasets. While suggesting

the usage of available ontologies in order to avoid the challenging task of ontology development, the scope of this

study addresses mainly the topic of ontology mapping, by exploring an alternative, potentially easier to

comprehend and apply, way of interacting between different datasets and combining data included in these. Instead

of identifying and establishing semantic links between entities, which is rather challenging and requires reflection

and collaborative work by ontology engineers and domain experts, this is done by matching values of instances in

the datasets and then, based on whether this matching is true or not, retrieving relevant data from the datasets. The

proposed conceptual framework constitutes a step-wise guideline for activities and considerations that are required

from engineering companies in order to integrate BIM with relevant data. With the use of a typical scenario, the

applicability and feasibility of the framework are tested. More specifically, the benefits, the generalizability, as

well as the requirements and the restrictions of the approach, are evaluated. The discussion and conclusion derived

elaborate on the tradeoffs of the approach and the lessons learned regarding the requirements, the potential and the

challenges for engineering companies in their effort to comprehend and successfully deploy Semantic Web

technologies within their everyday data management practices.

 In section 2, an overview of the basic technologies of the Semantic Web is presented in order to provide

a basic understanding of their essence and functionality and some representative research approaches related to

the integration of BIM with cross-domain data are mentioned. Sections 4 and 5 present the proposed approach and

the proof of concept respectively. Finally, the evaluation of the approach is discussed and some concluding remarks

and recommendations are highlighted in sections 6 and 7.

2. Semantic Web technologies

 Tim Berners-Lee (1998), director of the World Wide Web Consortium (W3C) first defined the term

“Semantic Web” as “the merging of human-readable documents with machine-understandable data”, which

implies that the data is not only machine-readable but can also be interpreted or ‘understood’ correctly by

computers. In his publication in Scientific American (2001), Berners-Lee further clarifies the concept of the

Semantic Web as “an extension of the current web in which information is given well-defined meaning, better-

enabling computers and people to work in cooperation”. In fact, the Semantic Web makes it possible to refer to a

1 In computer science, a literal is a notation for representing a fixed value in source code. There are five types of literals:

integer, floating point, boolean, character, and string (Wikipedia).

4

specific piece of information contained in a document or program, instead of having to connect to the document

or program themselves. If this information is updated, you can take advantage of this update (Godager, 2018).

Therefore, it could be said that it enables the transition from the traditional web (Web of Documents) to a Web of

Data.

In this section, the most essential Semantic Web technologies namely RDF, RDFS, OWL and SPARQL

are presented in detail, followed by a representative sample of research initiatives, where these technologies were

deployed to achieve integration of BIM with cross-domain data.

2.1 Resource Description Framework (RDF)

 The Resource Description Framework (RDF) is a flexible and generic standard that allows representation

and integration of data from diverse domains. It is a data model designed to represent information stemming from

multiple sources, being heterogeneously structured and having different schemata in an integrated and unified way

(Heath & Bizer, 2011). Data that is stored based on the RDF is represented by triples that consist of a subject, an

object and a predicate, which describes the type of relationship between those two. All three of them are encoded

as URIs (Universal Resource Identifiers), which provide a basic mechanism to globally and uniquely identify

resources and form the basic mechanism used to associate disjoint pieces of data. An example of this logic is

shown in Fig. 1 below, where the triple consists of the Netherlands, which is the subject, Amsterdam, which is the

object, and the predicate which defines the relationship between those two, namely that Amsterdam is the capital

of Netherlands.

Fig. 1. Visual representation of an RDF triple

The same resource can often be referenced in multiple triples. This ability to have the same resource be

in the subject position of one triple and the object position of another makes it possible to find connections between

triples, which is an important part of RDF's power (Schreiber & Raimond, 2014). These triples can be visualized

as a connected graph consisting of nodes (made up by the subjects and the objects) and arcs (formed by the

predicates). All the above can be better understood with the use of Fig. 2. In this example, Netherlands is the

subject of four triples, and Amsterdam is the subject of one and the object of two triples. Therefore, the graph

created can provide diverse information about resources. Each node in such a graph represents a concept or object

in the world. By describing all information as such in interlinked RDF graphs, a uniform representation of

information is achieved, making information reusable by both humans and computer applications (Pauwels, Zhang,

et al., 2017).

Fig. 2. Graph of RDF triples

5

RDF links entities within documents and enables the user to state explicitly the nature of this connection,

so that these links can be followed by applications to discover more data. Therefore, publishing and linking data

using RDF contributes to a Web where data is significantly more discoverable, and therefore more usable (Heath

& Bizer, 2011). Such uses of RDF are often referred to as Linked Data, which is “a set of techniques to represent

and connect structured data on the web” (Berners-Lee, 2006; Wood, Zaidman, Ruth, & Hausenblas, 2014).

Before publishing an RDF graph on the Web, it must first be serialized using an RDF syntax. This means

that particular syntax is used to write the triples that turn an RDF graph into a file (Heath & Bizer, 2011). Some

popular RDF serialization formats are Turtle, N-Triples, RDF/XML and JSON-LD.

A collection of multiple RDF graphs is called an RDF dataset and larger datasets are often stored in

specialized databases called triple stores, that can be accessed and queried over regular network structures

(Pauwels, McGlinn, Törmä, & Beetz, 2018).

2.2 RDF Schema and Web Ontology Language (OWL)

RDF does not provide any domain-specific terms that describe formal hierarchies of things in the world

and how they relate to each other. This function is served by vocabularies and ontologies, which can be described

as knowledge structures that create frameworks of relevant concepts and connections between them. The most

basic elements describing such ontologies are contained in the RDF Schema (RDFS) vocabulary, which consists

of the specifications of classes, subclasses, comments, and data types (Pauwels, Zhang, et al., 2017). A much larger

vocabulary to describe ontologies are provided within Web Ontology Language (OWL) which “is a Semantic Web

language designed to represent rich and complex knowledge about things, groups of things, and relations between

things”. OWL is a computational logic-based language such that knowledge expressed in OWL can be exploited

by computer programs, e.g., to verify the consistency of that knowledge or to make implicit knowledge explicit

(Hitzler et al., 2012)”. The “has capital”, “has population”, “was born in” statements in Fig. 2. above are such

examples.

2.3 The Simple Protocol and RDF Query Language (SPARQL)

Using the RDF, there is a possibility of querying the information captured in RDFS/OWL. The primary

query language for RDF graphs is SPARQL, or the Simple Protocol and RDF Query Language, which is able if

defined correctly, to retrieve, create, update or delete such information. SPARQL is one of the essential

technologies of the Semantic Web and it works by using a triple pattern including both resources and variables

that are being matched against a data triple. Searching with a SPARQL query is actually matching patterns in the

query to patterns in the dataset (Petkova, 2019). The triple pattern is to specify what information needs to be taken

from the triple and how the entities and variables relate to each other in it. A basic query in SPARQL is built like

this:

<prefixes> SELECT <variables> WHERE <pattern>

where <prefixes> indicate vocabularies that are used with their abbreviations during the query, <variables>

store the results that should be returned and <pattern> is the pattern in the graph that should be matched. An

example is provided in Fig. 2 below, where it is requested to get the names of all people who know Bob White.

The vocabulary used is indicated, namely FOAF (Friend Of A Friend)2, ?s is the variables’ results that will be

returned and the pattern ?s foaf:knows “Bod White” is the pattern that should be matched in order to get all

the people that know Bod White.

2 See : http://xmlns.com/foaf/spec/

http://xmlns.com/foaf/spec/

6

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?s

WHERE {

 ?s foaf:knows “Bob White”.

}

Fig. 2. SPARQL example

By making use of statements such as FILTER, GROUP BY, ORDER BY, COUNT, etc. among others3,

it is possible to apply restrictions to the solutions, calculate aggregate values, establish the order of a solution

sequence, create summary values for groups of triples, etc. This way the results can be tailored to the specific

information needs of the user.

SPARQL can be used to express queries across diverse data sources, whether the data is stored natively

as RDF or viewed as RDF via middleware. From 2013, the SERVICE extension to SPARQL 1.1, allows to direct

a portion of a query to a particular SPARQL endpoint and then the generated results are combined with results

from the rest of the query (Prud’hommeaux & Buil-Aranda, 2013). This way, it is made possible to combine data

from resources residing in distant repositories.

2.4. Related work on the integration of BIM with cross-domain data

 By taking advantage of the possibilities that the aforementioned Semantic Web technologies can offer

regarding data integration, among others, several research initiatives have addressed the issue of integrating BIM

with cross-domain data. In this section, a representative sample is presented in order to highlight the most common

practices.

 Niknam & Karshenas (2017) suggested a shared ontology approach for the semantic representation of

cross-domain building information. They organized concepts common to all building lifecycle domains in a

uniform classification system and defined a BIM-shared ontology that describes design properties in a knowledge

base. Then, cost and schedule ontologies were developed by extending the shared ontology and SPARQL queries

provided information by integrating these, using the shared ontology as a query mediator.

 Hor, Jadidi, & Sohn (2016) addressed the integration of BIM with GIS by suggesting the development of

two ontologies that describe IFC and GIS data respectively and a resulting integrated ontology by linking similar

concepts and relationships between them, using a mapping algorithm. Querying the integrated graph provided a

unified view over an integrated knowledge base, combining BIM and GIS data.

 Costa & Madrazo (2015), as part of the research project BAUKOM, created a semantic catalog of building

components which were described based on an ontology that they developed. Their purpose was to examine the

components used on a BIM model and provide compatible products extracted from the catalog, based on rules of

semantic inference, according to safety and structural regulations, which were represented in the RDF.

 Lee, Kim, & Yu (2014), suggested that the search for the most suitable building elements and materials

for the required construction works can be automated. For that reason, using the example of tiles, they propose the

translation of BIM data to RDF, the extraction of work conditions such as building element, finishing base type

and finishing thickness (input) out of these and work items that can be inferred from semantic reasoning rules

(output), according to two domain ontologies, the Tiling Work Condition Ontology (TWCO) and the Tiling Work

Item Ontology (TWIO). As a result, the most appropriate materials can be selected, enabling accurate and reliable

cost estimation results.

 The above-described researches address diverse domains and their integration with BIM and the need for

ontology development and ontology alignment is their common denominator. By developing ontologies that

describe datasets in an efficient way, based on the purpose of the application, and by establishing semantic links

between related entities described by different ontologies, they prove that data integration is possible.

3 See : https://www.w3.org/TR/sparql11-query/

https://www.w3.org/TR/sparql11-query/

7

 However, although creating RDF graphs, linking and using them for querying and reasoning is explained,

explanation about the decisions to be made in order to link different datasets and ontologies is usually missing

(Pauwels, Zhang, et al., 2017). These tasks, which depend on human interpretation, require deep knowledge of the

domain in use as well as of ontology engineering and the lack of documentation hinders the reader from

comprehending how they are implemented. The lack of documentation was highlighted by Godager (2018) in his

literature review of the integration of BIM with Semantic Web technology, where he concluded that researches

that are open and accessible to users in the BIM field are very few.

3. RDF-based integration, depending on literals matching

The current research, having acknowledged the complexity of semantic data modeling and ontologies for

the average AEC practitioner and the lack of sufficient explanation and documentation, which inhibits

comprehension and applicability, explores an alternative and potentially easier to implement and adopt approach

for integrating BIM with cross-domain data. This section presents an approach based on the RDF representation

of diverse datasets, the semantic description of these using available ontologies and the integration of these by

matching literals between datasets, instead of establishing semantic links. The scope of this approach is limited to

internal data management tasks of a construction company that require the combination of BIM models with

relevant data and the extraction of useful information to perform various decision analyses.

In order to develop a conceptual framework for the approach, the “Guidelines for Linked Data generation

and publication” (Radulovic et al., 2015) have been consulted and adjusted based on the scope and the needs of

the current research, namely the integration of BIM with relevant building data based on RDF and literals

matching. This is a detailed set of guidelines, including necessary steps, tools, alternatives, examples and

recommendations, focusing specifically on construction industry use cases and recommended by several

researchers (Chou & Ngo, 2016; Cuenca, Larrinaga, & Curry, 2017; Kalpoe, 2016; Pauwels, Zhang, et al., 2017;

Yu, 2016). Although Radulovic’s guidelines concern the generation and publication of energy consumption data

as Linked Data on the web and include tasks that are outside of the scope of the current paper, such as ontology

development, data linking and publication, several essential tasks of the process were utilized and adjusted in order

to fit the purposes of the current study.

The developed framework is presented in Fig. 3 below. The whole process includes five main tasks and

each task is divided into several steps which will be introduced in the following sections.

Fig. 3. Conceptual Framework

8

3.1 Data collection

The first task of the process concerns the collection of the data that are to be transformed into RDF,

namely the BIM model and the relevant data that it is to be integrated with. These data might be owned by the

company or provided by a collaborating partner.

3.2 Data analysis

Once the data have been obtained, the next task is to look into the data themselves.

3.2.1 Analyze data structure

The first step is to analyze how data are structured and organized. The type of information that they

provide has to be understood and the level to which they are structured has to be defined. Unstructured data are

more difficult to use because they require a level of structuring first, therefore transformations might be required

in order to facilitate the following data processing.

3.2.2 Obtain data schema

Obtaining data schema aims at identifying the domain concepts that are described in the data set, as well

as the relations among them. In case the schema is not available, it has to be extracted from the data, meaning that

the user has to identify what the provided data represent and how they are related to each other. This step is very

important regarding the suggested integration approach, which is based on literals matching. Therefore, the

existence of common concepts in both datasets is essential for the interaction between them.

3.3. Data conversion

This task concerns the transformation of input data into the unified RDF format, in order to enable

interaction between originally heterogeneous datasets. It includes three main steps.

3.3.1 Select ontology

One of the most essential tasks of the whole process is to select an ontology that describes and represents

the terms, concepts, and relationships of the data. This way, not only will the data be semantically enriched, but it

will also be possible to identify patterns within the datasets and match them with query patterns in order to obtain

specific information. As explained above, the purpose of this research is to explore the challenges of implementing

an RDF-based integration depending on available ontologies. Therefore, a prerequisite of this approach is to make

use of existing ontologies. The domain of use, the purpose and the requirements that it should cover, should be

taken into account before selecting an ontology since there can be ontologies that describe the same domain but

have been developed having different scopes and purposes.

There are plenty ontologies that cover a wide range of domains and the W3C (World Wide Web

Consortium) suggests a list of them4, while the Linked Open Vocabulary (LOV) is a high-quality catalog of

reusable vocabularies for the description of data semantics (Vandenbussche, Atemezing, & Vatant, 2014).

3.3.2 Define the resource naming strategy

One of the basic principles of RDF is the use of Uniform Resource Identifiers (URIs) to denote instances

so that data become unique. Radulovic et al. (2015) suggest consulting well-established guidelines when designing

URIs (the W3C working group has provided a detailed list of such guidelines (Hyland, Atemezing, & Villazón-

Terrazas, 2014)) and they divide the process of defining a resource naming strategy in three sub-steps.

The first one concerns the choice of a URI form. It can be either a hash URI, in which a fragment that is

separated from the rest of the URI by a hash character (‘#’) is contained or a slash URI (‘/’). The second one is to

choose a domain and a path that form the base URI and the third sub-step is to choose a pattern for ontology

classes, properties, and individuals in the ontology.

When making the aforementioned decisions, the following aspects should be considered: the URIs should

be unambiguous, persistent and easily understood and the ontology model should be separated from its instances.

3.3.3 Transform data sets

After having defined the resource naming strategy and selected the ontologies, it is time to transform the

data into the RDF format following several steps. First, the RDF serialization has to be selected (RDF/ XML,

4 See : https://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook#Step_3_Reuse_Vocabularies_Whenever_Possible

https://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook#Step_3_Reuse_Vocabularies_Whenever_Possible

9

Turtle, N-Triples, JSON-LD, etc.). The second step concerns the selection of appropriate tools for data

transformation, depending on the format of the data (IFC, spreadsheet, XML, etc.), as the heterogeneity of data

formats will require the use of several different tools. The third step is to use the selected tool in order to obtain

RDF data. During the conversion process, a mapping between data and the selected ontologies, as well as naming

of all instances according to the defined resource naming strategy, will take place. The level of automation of these

tasks depends on the conversion tools that will be selected. Furthermore, conversion tools offer possibilities of

clearing and structuring messy data in the desired way. An essential aspect of this step concerns the structure and

expression of the data in such a way that the desired literals matching can be achieved. This means that not only

common instances must exist between the two datasets, but also that they should be expressed in identical lexical

forms, which are encoded as Unicode strings, and data types in order to be considered equal (Emmons, Collier,

Garlapati, & Dean, 2011). For that reason, based on the data needs of the user, appropriate instances for matching

should be identified within each generated dataset. After the transformation is complete, the obtained RDF data

set should be evaluated. The evaluation process could include validation of the syntax of the RDF produced as

well as execution of SPARQL queries to check the correctness of the obtained results.

3.4 Store the RDF data

The generated RDF data have to be stored into a persistent repository where they can be accessed and

queried. A usual choice is to use an RDF triple store, such as a graph-oriented repository that offers the possibility

of querying the RDF dataset by using SPARQL. However, there can be several other ways to store RDF data that

integrate with the existing infrastructures or architectures of the organization.

3.5. Query development

This task concerns the development of SPARQL queries and its purpose is threefold. First, it serves as a

validation mechanism for checking if the produced RDF data express correctly and entirely the datasets that have

been used. In case of problematic query results, the data conversion part has to be examined anew. Second, it

provides fine-grained querying and reasoning methods on the datasets, meaning that specific pieces of data can be

requested, based on certain restrictions and constraints that are input. Third, SPARQL queries, provide real-time

views on RDF data stemming from different sources (Michelfeit, 2013). This way, complicated and well-targeted

queries could provide timely and precise information by combining data that reside in diverse information silos

and were initially published in diverse formats. The query development task includes two main steps: the selection

of the queries topics and the actual development of the queries.

3.5.1 Select query topics

Before starting developing SPARQL queries it is essential that the information demands of the

organization are clear. A clear concept should exist and the topics of the queries should be selected in such a way

that they provide exact data that cover daily data need scenarios of the organization. A typical example of such a

concept could be the cost estimation of a construction. Relative query topics would then include requests about

the prices of all building components and materials.

3.5.2 Develop SPARQL

After the topics have been specified, it is time to develop/express them into SPARQL queries. Triple

patterns, including both resources and variables, are being matched against the available RDF data triples and

information is extracted among direct or indirect resources relationships. By using restrictions and constraints on

the solutions of the patterns, the desired matching of literals can be performed and specifically-targeted information

can be obtained. In order to implement this task, sufficient knowledge and understanding of SPARQL, as well as

of the ontologies that have been used are required, in order to formulate the patterns that are to be matched against

the RDF triples of the datasets.

4. Proof of concept

In this section, the suggested framework will be tested in the context of simple but representative

scenarios of an engineering company’s everyday data management practices, where information extracted from a

BIM model has to be combined with a differently structured dataset in order to extract data required for specific

construction management tasks.

A typical example is when a BIM modeler needs information about door types, their availability and their

price at a specific time to choose the most appropriate ones. The products provided by a supplier may be changing,

10

evolving and even outdated. To avoid rework, when a designed door type is not available, alternative options could

be examined when manufacturer’s data is linked to the building model.

These illustrative linking tasks will be described below. To implement this example, this study makes use

of an existing standard Revit model and a generated dummy set of manufacturer’s door data in Microsoft Excel.

4.1 Data collection

The data that will be used in this use case include an architectural BIM model of a two-story building in

Autodesk Revit (Fig. 4), and a doors catalog in Microsoft Excel (Fig. 5).

Fig. 4. Floor plans of the Revit model

Fig. 5. Dummy Excel spreadsheet representing door manufacturer’s object data

4.2 Data analysis

Regarding the architectural Revit model, a two-story building including architectural walls, floors, doors,

windows, and a staircase was exported to IFC data model, which is based on the EXPRESS schema. The generated

file is expressed in the IFC-SPF format (‘STEP file’), which is a text format that defines the entities of the model,

as well as the way that they relate to each other.

As far as the manufacturer’s data are concerned, they include a list of all the doors that they produce,

including their product names, according to the naming system of the company, their product codes, their

dimensions, their unit prices, and their inventory level. The data are structured in a tabular form in the Excel

format.

11

4.3. Data conversion

4.3.1 Select ontology

In this step, ontologies that describe the terms, data, and relationships within the two datasets were

selected.

 Regarding the IFC model, the ifcOWL5 ontology was selected. IfcOWL has been jointly standardized

under the umbrella of buildingSMART (buildingSMART, 2016) in order to cover the need for formalization and

convergence of the effort to convert the EXPRESS based schema IFC to an OWL ontology, which had been

researched for several years (Schevers & Drogemuller, 2006; Beetz et al., 2009; Gao et al., 2015; Pauwels &

Deursen, 2015) and serves as a domain ontology for the construction industry. IfcOWL constitutes a translation of

modeling constructs of the IFC model defined in the EXPRESS language (ENTITY, Attributes, data types, etc.)

into equivalents from the RDF(S) and OWL modeling vocabularies (Class, ObjectProperty, DatatypeProperty,

domains, ranges, etc.) resulting in an OWL meta-model for buildings. According to this schema mapping, instance

models exported in IFC can be represented as RDF data without loss of information (Pauwels et al., 2018).

Therefore, for the purpose of the current case, ifcOWL was deemed appropriate to describe the geometric attributes

of the building’s doors, which were used for the literals matching task.

 In order to semantically describe the manufacturer’s door data, the GoodRelations ontology6 (Hepp, 2008)

was selected. This ontology was created in order to cover representational business scenarios and can be used to

exchange information about products and services, pricing, payment options, other terms and conditions, store

locations and their opening hours, and many other aspects of e-commerce. GoodRelations ontology can be used

for Product Information Management inside an organization or a value chain as a global database schema for

integrating information about products and services from multiple sources. Although this ontology was not

developed specifically for the construction domain, and therefore lacks AEC-FM industry-specific vocabulary, it

was deemed appropriate for the current use case, since the data that needed to be semantically described concern

dimensions, product codes, prices, and inventory levels, which are typical aspects of any domain products, and

GoodRelations included sufficient vocabulary for their description.

4.3.2 Define the resource naming strategy

The URIs for this research were constructed based on tips provided by Overbeek & van den Brink (2013)

and Sauermann & Cyganiak (2008), who suggest that URIs should have the following composition:

http://{domain}/{type}/{concept}/{reference} ,

where the {domain} component contains the Internet domain and optionally a path within this domain, the

{type} component indicates which kind of URI is involved and may be ‘id’(identifier of an object in a register)

‘doc’ (documentation on the object in the register) or ‘def’ (definition of a term in an ontology), the

{concept} gives an indication of the type of the concept that is identified by the URI and the {reference}

is the identifying name or code of the individual object.

For both datasets, it was chosen to use http://example.com/7 as a base URI because this domain is free to

use without prior coordination or asking for permission. Then, according to the aforementioned pattern, the URI

for the IFC data is:

http://example.com/id/ifc/20190608_140143/,

where the last component is automatically assigned to the URI by the conversion tool that was used (see 5.3.3)

and acts as an identifier of the specific IFC file that was converted and includes the date of conversion, followed

by a numeric code.

 Regarding the manufacturer’s data, the respective URI of each door element is as follows:

http://example.com/id/door/D1234/,

5 See : http://github.com/buildingSMART/ifcOWL
6 See : http://www.heppnetz.de/ontologies/goodrelations/v1
7 See: http://example.com/

http://github.com/buildingSMART/ifcOWL
http://www.heppnetz.de/ontologies/goodrelations/v1
http://example.com/

12

where the last component is generated on the conversion tool that was used (see 5.3.3) and is named after the

product name of each door, namely the first column of the catalog table.

4.3.3 Transform data sources

Due to the heterogeneity of the data formats, different tools have been selected for the transformation

process. For the IFC data, the IFCtoRDF8 converter was selected. This tool, which is a set of reusable Java

components, converts IFC STEP formatted BIM files into RDF graphs, conforming to the ifcOWL ontology, in a

straightforward way. Using the provided desktop user interface (Fig. 6), a file to file conversion was performed

using the Turtle serialization syntax. A part of the output Turtle file, including data related to an IfcDoor, is

provided in Appendix A.

Fig. 6. Screenshot of IFCtoRDF converter’s Graphical User Interface

For the Manufacturer’s data, Open Refine9 was used. This is a powerful tool for working with messy data

that offers possibilities of cleaning it, transforming it from one format into another, and extending it with web

services and external data. Its RDF extension enables the mapping of the values in the columns of the spreadsheet

into RDF triple formats. In the current use case, a restructuring of the data was necessary. More specifically, the

dimensions of the doors had to be split into two separate columns, namely weight and height, so that each

dimension has its own value. Furthermore, it had to be made sure that the dimensions of the doors are expressed

in the same units and the same data type as in the IFC model so that the matching would be feasible. The generated

RDF dataset, serialized in Turtle, is available in Appendix B.

4.4 Store the RDF data

It was decided to store the generated RDF datasets into GraphDB10. It is a highly-efficient and robust

graph database that offers the possibility of storing RDF datasets in local or remote repositories, exploring the

datasets and querying them due to its SPARQL support. For demonstration purposes, the manufacturer’s data were

stored into a separate local repository, in order to demonstrate the function of federated queries. These enable

access to diverse repositories and the querying of data stemming from different sources. Therefore, the case where

the manufacturer already provides his data in the RDF format is also included.

4.5. Query development

4.5.1 Select query topics

The query topics have been selected in such a way that they satisfy the threefold purpose that has been

described in 4.5 and include requests that provide fine-grained views on datasets as well as complicated requests

that require the integration of the two datasets.

8 See: http://github.com/jyrkioraskari/IFCtoRDF-Desktop
9 See: http://openrefine.org/
10 See: http://graphdb.ontotext.com/documentation/free/index.html

http://github.com/jyrkioraskari/IFCtoRDF-Desktop
http://openrefine.org/
http://graphdb.ontotext.com/documentation/free/index.html

13

For the chosen case, two data need scenarios will be displayed alongside the respective queries that are

required for each scenario. In the first one, we suppose that the BIM modeler uses the door catalog for the first

time and therefore needs to query the catalog in order to select the appropriate door types.

In the second scenario, we suppose that the modeler has already chosen door types from the catalog and

now wants to confirm the availability of these. In case of no availability, alternative options would have to be

sought.

4.5.2 Develop SPARQL

In this section, the SPARQL queries that have been developed in order to provide the requested data,

according to each scenario, will be presented alongside a short description of their functionality and their results.
A concentrated presentation of all the queries that were developed is available in Appendix C.

4.5.2.1 Scenario 1

In this scenario, the user wishes to select the appropriate door types. In order to do that, first, the amount

and size of doors that are needed would have to be extracted from the IFC dataset. This task is performed with the

following Query 1, where the patterns that will be matched against the RDF triples within the dataset constitute

the main part of the SPARQL query. In order to do that, sufficient knowledge of the way in which the data are

described by the ontology is required. Statements such as “doorD is an IfcDoor”, “doorD has overallHeight h” etc.

enable the navigation within the RDF dataset of the IFC data, which describe the whole building, and the

identification and retrieval of the specific door-related data that we are interested in. Although this query does not

concern the integration between BIM and the catalog data, it displays how SPARQL can provide access to specific

pieces of data and let the user have an overview of the data they are interested in.

SELECT Distinct ?doorD ?IfcIdentifier ?hD ?wD

WHERE {

 ?doorD a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifcowl:tag_IfcElement ?tag.

 ?tag express:hasString ?IfcIdentifier.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

}

Fig. 6. Query 1

Table 1. Query 1 results

doorD IfcIdentifier hD wD

inst:GUID/145adf16-8b67-460a-bca8-

932e5c983647

330805 2032. 915.

inst:GUID/145adf16-8b67-460a-bca8-

932e5c983685

330999 2134. 762.

inst:GUID/145adf16-8b67-460a-bca8-

932e5c9832bd

329935 2032. 762.

inst:GUID/145adf16-8b67-460a-bca8-

932e5c98325c

329774 2032. 762.

inst:GUID/145adf16-8b67-460a-bca8-

932e5c983de7

329621 2134. 915.

inst:GUID/145adf16-8b67-460a-bca8-

932e5c98318e

330748 2032. 915.

inst:GUID/145adf16-8b67-460a-bca8-

932e5c98332e

330076 2134. 915.

This query scans the whole model and isolates specific information related to the doors without the need

to access the Revit model itself. In Table 1, The URI and the IFC Identifiers of each of the model’s seven doors

are provided alongside their dimensions so that the user can look them up in the model in case they need to.

 Next logical step would be to query the door catalog in order to look for appropriate door types for each

of the model’s doors. Query 2 below shows this process. For every pair of dimensions, the number of doors that

are needed in the model, as well as the corresponding door types in the catalog, with their inventory level and their

unit prices are identified. In order to do that, the height and width of the doors have to be matched between the

14

two datasets. This literals matching of the attributes height and width enables the interaction between the two RDF

datasets and provides integration of data residing in diverse sources. The matching constraints are highlighted in

Fig. 7 below.

SELECT distinct ?hS ?wS (COUNT(*)/2 AS ?DoorsNeeded) ?doortypecode

?DoorsAvailable ?UnitPrice

WHERE {

 ?doorD a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifc:name_IfcRoot ?root.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

 ?panel ifc:name_IfcRoot ?root.

 ?doorStyle ifc:hasPropertySets_IfcTypeObject ?panel.

 ?typedef ifcowl:relatingType_IfcRelDefinesByType ?doorstyle;

 ifcowl:relatedObjects_IfcRelDefines ?doorD;

 ifcowl:relatedObjects_IfcRelDefines ?IfcDoor.

Service <http://10.99.99.4:7200/repositories/exceldata> {

?doorS gr:serialNumber ?doortypecode;

 gr:width ?wS;

 gr:height ?hS;

 gr:hasPriceSpecification ?UnitPrice;

 gr:hasInventoryLevel ?Inventory.

 }

Filter (?wD = ?wS && ?hS = ?hD).

Bind (?Inventory AS ?DoorsAvailable).

}

GROUP BY ?wS ?hS ?DoorsAvailable ?doortypecode ?UnitPrice

Fig. 7. Query 2

Table 2. Query 2 results

hS wS DoorsNeeded doortypecode DoorsAvailable UnitPrice

2134 762 1 EN658085 0 160

2134 762 1 EN658089 10 185

2032 762 2 EN658075 15 130

2032 762 2 EN658076 0 155

2134 915 2 EN658071 14 145

2032 915 2 EN658055 5 180

2032 915 2 EN658080 32 175

This query introduces a very powerful concept in SPARQL, the federated query. A federated query is

performed in Query 2 in order to connect with the manufacturer’s data, which is stored in a separate repository

and retrieve data included in the doors catalog. This functionality is achieved with the introduction of the SERVICE
statement, followed by the repository’s URL. Regarding doors with dimensions 2134x762mm, the result of this

query shows that there is one door needed in the model with these dimensions, while there are 2 different door

types in the door catalog matching these dimensions, namely the ones with door type code EN658085 and

EN658089 respectively. It can also be seen that regarding the first door type there no doors available in the

manufacturer’s warehouse, while for the second one there are ten doors currently available. Therefore, the options

of the modeler regarding the types of doors with dimensions 2134x762mm are limited to one, namely the door

type with code EN658089, which costs 185 euros per unit. In the same way, the available options for all doors can

be identified.

15

4.5.2.2 Scenario 2

 In this scenario, we consider the case where the modeler has already preselected specific door types for

each of the doors in the model. Therefore, there is a need to confirm that these door types are available at any time,

according to the updated catalog that is provided by the manufacturer. In case there are no doors available,

alternative options would have to be sought. The door type that has been selected for each door has been input in

the model as an IFC parameter, as can be seen in Fig. 8 below.

Fig. 8. Door type code input in the model, as an IFC parameter

 The existence of the manufacturer’s door type code in the BIM model, besides the manufacturer’s door

data Excel spreadsheet, gives more opportunities for literals matching and therefore for the execution of more

targeted queries. Query 3 below asks which door types have been selected by the modeler, how many doors have

been assigned to each door type and the inventory level of each door type. Again, the constraints that define the

matching of literals, and therefore the interaction of the two datasets, is highlighted. According to these, in order

to get the desired data, the height, width and door type codes should match between the two datasets

SELECT distinct ?doortypecode (COUNT(*)/2 AS ?DoorsNeeded) ?DoorsAvailable

?UnitPrice

WHERE {

 ?doorD a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifc:name_IfcRoot ?root.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

 ?panel ifc:name_IfcRoot ?root.

 ?doorStyle ifc:hasPropertySets_IfcTypeObject ?panel;

 ifc:name_IfcRoot [express:hasString ?inputcode].

 ?typedef ifcowl:relatingType_IfcRelDefinesByType ?doorstyle;

 ifcowl:relatedObjects_IfcRelDefines ?doorD;

 ifcowl:relatedObjects_IfcRelDefines ?IfcDoor.

Service <http://10.99.99.4:7200/repositories/exceldata> {

?doorS a gr:ProductOrService;

 gr:name ?name;

 gr:serialNumber ?doortypecode;

 gr:width ?wS;

 gr:height ?hS;

 gr:hasPriceSpecification ?UnitPrice;

 gr:hasInventoryLevel ?Inventory.

 }

filter (?wS = ?wD && ?hS = ?hD && ?doortypecode = ?inputcode).

Bind (?doorD AS ?DoorsNeeded).

Bind (?Inventory AS ?DoorsAvailable).

}

GROUP BY ?doortypecode ?DoorsAvailable ?UnitPrice

 Fig. 9. Query 3

16

Table 3. Query 3 results

doortypecode DoorsNeeded DoorsAvailable UnitPrice

EN658075 2 15 130

EN658071 2 14 145

EN658080 2 32 175

EN658085 1 0 160

A quick overview of the results shows that four different door types have been selected. There are 2 doors

needed for every of the following door types codes, namely EN658075, EN658071, and EN658080, while the

available items based on the manufacturer’s list are 15, 14 and 32 respectively. Therefore, there are no availability

issues. However, concerning the door type code EN658085, there is 1 door needed, while 0 doors are available at

the moment by the manufacturer. Therefore, a replacement should be issued and the next logical step would be to

check for alternative options. In order to do so, for every Ifc door, we should search in the manufacturer’s dataset

for door types that have the same dimensions with it, have not been already selected and their inventory level is

higher than zero. This task is performed in Query 4 below.

SELECT Distinct ?reldoor ?hD ?wD ?CurrentType ?AltType ?amount

WHERE {

 ?door a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifc:name_IfcRoot ?root.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

 ?panel ifc:name_IfcRoot ?root.

 ?doorStyle ifc:hasPropertySets_IfcTypeObject ?panel;

 ifc:name_IfcRoot [express:hasString ?inputcode].

 ?typedef ifcowl:relatingType_IfcRelDefinesByType ?doorstyle;

 ifcowl:relatedObjects_IfcRelDefines ?door;

 ifcowl:relatedObjects_IfcRelDefines ?reldoor.

Service <http://10.99.99.4:7200/repositories/exceldata> {

?doorS a gr:ProductOrService;

 gr:name ?name;

 gr:serialNumber ?doortypecode;

 gr:width ?wS;

 gr:height ?hS;

 gr:hasPriceSpecification ?price;

 gr:hasInventoryLevel ?amount.

 }

filter (?wS = ?wD && ?hS = ?hD && ?inputcode != ?doortypecode && ?amount != 0.0).

Bind (?inputcode AS ?CurrentType).

Bind (?doortypecode AS ?AltType).

}

Fig. 10. Query 4

17

Table 4. Query 4 results

reldoor hD wD CurrentType AltType amount

inst:GUID/145adf16-8b67-460a-

bca8-932e5c983685

2134. 762. EN658085 EN658089 10

inst:GUID/145adf16-8b67-460a-

bca8-932e5c983647

2032. 915. EN658080 EN658055 5

inst:GUID/145adf16-8b67-460a-

bca8-932e5c98318e

2032. 915. EN658080 EN658055 5

According to the results of this query, the door of type EN658085 can be replaced with one of type

EN658089, as there are ten doors of this type in the manufacturer’s warehouse. Moreover, available alternative

options are provided for the rest of the door types as well, in case the user wishes to replace any other door types.

5. Evaluation - Discussion

 In this paper, an approach for integrating BIM with relevant cross-domain data, based on RDF, SPARQL

and literals matching was explored. A conceptual framework of the approach was presented and tested in the

context of a typical scenario, where an engineering company needs to combine data from a BIM model with

relevant heterogeneous data. In this section, the results of the study are discussed and the tradeoffs, the potential,

the limitations and the implications of the approach are addressed.

 Overall, practically speaking, in the context of the use case and the data that were used, the proposed

framework was proven quite functional, in terms of providing possibilities of semi-automating the integration of

BIM with data residing at diverse, heterogeneous sources. Βy following the consecutive steps of the framework,

and having a Revit model and an Excel spreadsheet containing door manufacturer’s data as a starting point, it was

possible to successfully combine data from both sources and semi-automate tasks that would otherwise require

manual extraction and combination of these by assessing whole documents, which could be a rather laborious and

error-prone task. Such tasks include aggregating and listing the door types designed in the model based on their

dimensions, identifying the suitable available door types in the manufacturer’s catalog as well as the alternative

options in case a replacement is needed.

One basic assumption of the current study was that the explored approach has the potential to achieve

data integration in a more comprehensive and familiar to the user way and, in general terms, this was the case. To

begin with, the data conversion process was quite smooth due to the use of available tools that facilitated the

process. The difference of this approach compared to related work lies in the fact that existing ontologies were

selected to semantically describe the datasets, instead of developing new ones. Regarding the datasets that were

used for the proof of concept, the search and the selection of suitable ontologies was quite easy, as the popular and

widely used ifcOWL and GoodRelations were deemed sufficient for the description of the two datasets.

Furthermore, it was proven that by providing an alternative way of interacting between different datasets, namely

by matching literals, such as product codes, height and width values, at query level, integration of diverse data is

possible while avoiding the establishment of semantic links between the respective ontologies. This way, the

complicated tasks of ontology development and alignment, which require significant amounts of understanding,

reflection and labor were circumvented, while the practical purpose of the approach, namely the integration of

heterogeneous data was fulfilled. By applying constraints within the SPARQL queries, that require the matching

of specific literals, such as height, width and product code, using the Filter construct, it was possible to relate data

within the manufacturer’s catalog to data within the BIM model in a rather practical way and extract useful

information about the types, the availability and the price of doors. The basic aspect that renders the approach of

literals matching more familiar to the user is the fact that it actually automates the otherwise manual process of

combining the 3D model with the manufacturer’s door data per se. This task normally requires access to both the

Revit model and the Excel file, manual matching of the doors designed in the model with the door types provided

by the manufacturer, and assessment of their suitability, availability and price. These exact tasks were automated

due to the explored approach, while the rationale of the data combination process remained the same, maintaining

the complexity of Semantic Web adoption at a lower level. Therefore, after comprehending the basic aspects of

RDF, OWL and SPARQL, this approach could be easier adopted by practitioners, compared to ontology alignment

that requires a lot of reflection and experience.

 However, the implementation of the conceptual approach revealed that in order to achieve the desired

functionality, there are several requirements that have to be met. First, in order to avoid the development of new

ontologies, it is essential to find ones that sufficiently describe the datasets or at least the parts of these that will

18

be used in the integration process. Regarding the BIM data, the selected IfcOWL is an officially standardized

vocabulary for describing modeling constructs by performing an exact syntax mapping between the EXPRESS

language and OWL. Furthermore, inspired by the IFC, several modular ontologies such as the Building Topology

Ontology (BOT), Product Ontology (PRODUCT), Properties Ontology (PROPS) and Geometry Ontology

(GEOM) have been developed in order to capture the essence of most of the IFC data sets, namely geometry,

building topology, products, and their properties (Pauwels et al., 2018), enabling thus their use in a wide range of

use cases and applications. As far as the manufacturer’s data are concerned, the GoodRelations ontology includes

appropriate properties that were able to describe the product code, the dimensions, the price and the inventory

level of the manufacturer’s doors. Nonetheless, this ontology has not been developed specifically for construction

products. It lacks a definition of basic properties needed for their sufficient description, such as material properties,

but provides guidelines to extend it (Radinger, Rodriguez-castro, Stolz, & Hepp, 2013). Given the fact that the

nature, as well as the structure of the external relevant data that an engineering company wishes to integrate with

their BIM models, can widely vary, it is unlikely that existing ontologies can always describe the datasets in

question accurately and fully. Therefore, development of new ontologies or at least extension of existing ones

seem inevitable.

 Another basic prerequisite for the successful implementation of the approach is the lexical and data type

similarity of the literals that are to be matched. That means that typographic mistakes, expression of properties

using different units (e.g. a length could be expressed in meters instead of millimeters) or representation of these

in different data types (e.g. a date can be represented in the format of “string”, instead of “Date” or “DateTime”)

could prohibit the desired matching between the literals. The larger and more complicated the datasets that are to

be processed, the higher the possibility of the occurrence of such discrepancies between them, and therefore of the

failure of the literals matching process.

 Furthermore, the fact that matches of specific literals have to be identified between the datasets and

defined as Filter constraints in order to achieve the desired functionality of the approach presupposes that in order

to construct efficient SPARQL queries, thorough prior knowledge of the data is required. In the case of large and

complex datasets, applying these matching constraints would be rather time-consuming and error-prone and would

lead to significantly more complicated queries.

 At the same time, although ontology development and alignment are perceived complicated and their

deployment requires significant amounts of effort, once implemented correctly they eliminate the aforementioned

issues. More specifically, a well-constructed ontology can constitute a rich vocabulary that can capture the whole

range of a domain of action of an organization and can offer plenty of possibilities of links to other ontologies.

These links can be performed either at instance-level, namely at the level of individual entities (e.g. by denoting

that two instances in different ontologies actually refer to the same thing) or at schema-level to declare relationships

between two properties or two classes from different vocabularies. (e.g. by denoting that one instance is a subclass

of another) (Acosta et al., 2019). By establishing such links it is possible to relate/link instances between two

ontologies regardless of their literal values. For example, it can be stated that IfcDoor_1867, as defined in IfcOWL,

is the same as Door6587 as defined in a manufacturer’s ontology, or that the manufacturer’s door types with

specific dimensions are subclasses of the equivalent IfcDoors having the same dimensions. This way, implicit

knowledge that was applied at the query level in the tested approach, thus increasing significantly the complexity

of the queries, can become explicit by being applied at an ontological level.

 By highlighting the challenges that arise when attempting to circumvent ontology development and

alignment, the results of this study come to corroborate the crucial role of ontology linking in achieving integration

of BIM with cross-domain data, in order to enhance data management practices in the construction sector and

address the wide heterogeneity of data that have to be assessed, interpreted and combined. The outcome of this

study constitutes an input for engineering companies in their effort to comprehend the requirements, the potential

and the challenges of deploying Semantic Web technologies within their everyday data management practices.

Although the discussion and evaluation of the results revealed several limitations of the tested approach,

mainly regarding its generalizability, it can still serve as a learning tool which can be deployed in a narrow scope

by an engineering company that takes the first step towards Semantic Web technologies. In the context of simple

scenarios, this approach could help practitioners automate their construction data management practices and

become familiar with the essential processes of semantic data modeling and SPARQL, before deciding to invest

in solutions that require the development and semantic linking of ontologies.

 Within this research, two main limitations can be identified. First, the data that were used were dummy

data created specifically for the purposes of the current research and the domain, the nature and the structure of

the data were selected to fit the needs of the study. That option underlies the risk of selection bias and could have

been eliminated by using actual datasets.

19

Second, the conclusions regarding the feasibility, comprehensibility and generalizability of the explored

approach, were drawn based on the researcher and his own experience with the process, which could also lead to

biased judgment. The conduction of a workshop with the participation of employees of an engineering company,

could lead to more valid and reliable conclusions. However, due to time constraints, this option was not possible.

6. Conclusions

This paper explored the potential of implementing Semantic Web technologies in a setting where an

engineering company wished to integrate BIM with relevant data by using existing ontologies and avoiding the

establishment of semantic links between them. The hypothesis that was tested was that such an approach would

limit the complexity of the data integration process and would, therefore, be easier to apply.

The motivation for this study was the observation of academics that ontology development and alignment

tasks require reflection and hard work from domain experts and ontology engineers and at the same time-related

researches do not document or sufficiently explain linking decisions, which require human interpretation. This

combined with the rather limited knowledge of the industry regarding Semantic Web technology, slow down its

adoption. For that reason, a conceptual framework of an RDF-based integration approach depending on literals

matching was presented and tested in the context of a scenario where a BIM model had to be combined with an

Excel file including manufacturer’s data about doors.

 The results of the evaluation showed that although proven successful for linking datasets, the

unlikelihood of the existence of ontologies that properly describe the datasets and cover the data needs of every

company, the required restrictions regarding the lexical and data type similarity of the literals, the required prior

specific knowledge about the data and the resulting complexity of the queries, render this approach hard to be

properly applied and generalized. In the context of everyday construction management tasks of an engineering

company, the need to assess numerous files of various types and sizes and combine them with BIM would require

an integration method that can be effectively applied regardless of the size and type of the datasets. The amount

of work needed and generalizability are basic criteria regarding the effectiveness of a data integration approach

and the evaluation results reveal that the tested approach poses limitations to both.

By highlighting and reflecting on the limitations of this alternative approach, the results of this study

assist engineering companies with limited knowledge regarding Semantic Web technologies to comprehend their

underlying challenges as well as the benefits that they can bring to their everyday data management practices.

More specifically it became clear that the purpose of deploying these technologies should be to limit the

commitments, the restrictions and the amount of work needed every time, regarding the data integration process.

It was revealed that seemingly simpler and easier solutions might involve numerous requirements and case-

specificity, which renders them complex and not easily generalized. The importance of using ontologies that fully

describe the datasets in question was discussed, alongside the difficulty of always finding available ontologies that

cover the user’s needs. The need for developing new or at least extending existing ones was also highlighted.

Moreover, the value of ontologies for making implicit knowledge explicit was elaborated. Defining relationship

statements among instances or classes by establishing semantic links between ontologies, instead of doing it

implicitly at the query level, results in less complicated, less specific and more comprehensible queries.

 Given the issues raised regarding the complexity of ontology development and alignment and the lack of

their explanation by academics, more detailed documentation is recommended. Since these tasks are subject to

human interpretation, the considerations and measures that need to be taken regarding the development of

ontologies as well as the creation of links, should be elaborated and research accomplishments should be accessible

in order to facilitate comprehension and easier reuse, in an industry that generally lacks knowledge and experience

on Semantic Web technologies.

 As far as practical recommendations are concerned, engineering companies should realize that given the

fact that these technologies are so different than traditional development practices, a significant amount of effort

has to be made, at least at the early stages. Gradual adoption could be achieved via training and after the knowledge

has been acquired, time, deliberation and reflection would be required in order to establish practices of semantic

data modeling and integration and enhance their everyday construction management tasks.

Acknowledgements

 I would like to thank the University of Twente and specifically Prof. Dr. Ir. A.G. Dorée, Dr. Ir. L.L. olde

Scholtenhuis and Dr. Ir. F. Vahdatikhaki for their support, their feedback and for sharing their knowledge with

me. I would like to thank M. Veerman for his support and for giving me the opportunity to perform my master

thesis research at Witteveen+Bos.

20

7. Appendixes

Appendix A. Partial RDF file of IFC data

Appendix B. RDF file of manufacturer data

Appendix C. Proof of concept queries

8. References

Acosta, B., Fagnoni, E., Norton, E., Maleshkova, M., Doningue, M., Mikroyannidis, J., & Mulholland, A. (2019).

How to use Linked Data.

Beetz, J., Leeuwen, J. O. S. V. A. N., & Vries, B. D. E. (2009). IfcOWL : A case of transforming EXPRESS

schemas into ontologies, 89–101. https://doi.org/10.1017/S0890060409000122

Berners-Lee, T. (1998). The World Wide Web: A very short personal history. Retrieved from

https://www.w3.org/People/Berners-Lee/ShortHistory.html

Berners-Lee, T. (2006). Linked Data. Retrieved from https://www.w3.org/DesignIssues/LinkedData.html

Berners Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web: A new form of Web content that is

meaningful to computers will unleash the revolution of new possibilities. The Scientific American, 5(284),

34–43. https://doi.org/10.1038/scientificamerican0501-34

buildingSMART. (2016). ifcOWL ontology (IFC4). Retrieved from

http://ifcowl.openbimstandards.org/IFC4/index.html

Cheatham, M., & Pesquita, C. (2017). Semantic Data Integration. In Handbook of Big Data Technologies.

https://doi.org/10.1007/978-3-319-49340-4_8

Chou, J. S., & Ngo, N. T. (2016). Smart grid data analytics framework for increasing energy savings in residential

buildings. Automation in Construction, 72, 247–257. https://doi.org/10.1016/j.autcon.2016.01.002

Costa, G, & Madrazo, L. (2015). Connecting building component catalogues with BIM models using semantic

technologies : an application for precast concrete components. Automation in Construction, 57, 239–248.

https://doi.org/10.1016/j.autcon.2015.05.007

Costa, Gonçal. (2017). Integration of building product data with BIM modelling: a semantic-based product

catalogue and rule checking system. https://doi.org/10.13140/RG.2.2.11123.63522

Cuenca, J., Larrinaga, F., & Curry, E. (2017). A unified semantic ontology for energy management applications.

CEUR Workshop Proceedings, 1936, 86–97.

Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., & O’Riain, S. (2013). Linking building data in the cloud:

Integrating cross-domain building data using linked data. Advanced Engineering Informatics, 27(2), 206–

219. https://doi.org/10.1016/j.aei.2012.10.003

Emmons, I., Collier, S., Garlapati, M., & Dean, M. (2011). RDF Literal Data Types in Practice, 1–13.

Ferrara, A., & Nikolov, A. (2011). Data Linking for the Semantic Web, 7(September), 46–76.

https://doi.org/10.4018/jswis.2011070103

Gao, G., Liu, Y., Wang, M., Gu, M., & Yong, J. (2015). A query expansion method for retrieving online BIM

resources based on Industry Foundation Classes. Automation in Construction, 56, 14–25.

https://doi.org/10.1016/j.autcon.2015.04.006

Garshol, L. M. (2013). Semantic Web adoption and the users. Retrieved from

http://www.garshol.priv.no/blog/261.html

Godager, B. (2018). Critical review of the integration of bim to semantic web technology. International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4), 303–

308. https://doi.org/10.5194/isprs-archives-XLII-4-233-2018

Heath, T., & Bizer, C. (2011). Linked Data. Evolving the Web into a Global Data Space. Morgan & Claypool.

Hepp, M. (2008). GoodRelations : An Ontology for Describing Products and Services Offers on the Web, 329–

346.

Hitzler, P., Krötzsch, M., Parsia, B., & Sebastian, R. (2012). Web Ontology Language (OWL). Retrieved from

https://www.w3.org/OWL/

Hor, A., Jadidi, A., & Sohn, G. (2016). BIM-GIS INTEGRATED GEOSPATIAL INFORMATION MODEL

USING SEMANTIC WEB AND RDF GRAPHS, III(July), 73–79. https://doi.org/10.5194/isprsannals-III-

4-73-2016

Hyland, B., Atemezing, G., & Villazón-Terrazas, B. (2014). Best Practices for Publishing Linked Data. Retrieved

from http://www.w3.org/TR/2014/NOTE-ld-bp-20140109/

Kalpoe, R. (2016). The integration of dispersed building information by using Linked Data principles.

Kuriakose, J. (2009). Understanding and Adopting Semantic Web Technology. Cutter IT Journal, Vol. 22(9).

Lanthaler, M., & Gütl, C. (2011). A Semantic Description Language for RESTful Data Services to Combat

21

Semaphobia, 5(June), 47–53.

Lee, S., Kim, K., & Yu, J. (2014). BIM and ontology-based approach for building cost estimation. Automation in

Construction, 41, 96–105. https://doi.org/10.1016/j.autcon.2013.10.020

Liebich, T., Adachi, Y., Forester, J., Hyvarinen, J., Richter, S., Chipman, T., … Wix, J. (2013). IFC4 Official

Release. Retrieved November 29, 2018, from http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/index.htm

Michelfeit, J. (2013). Linked Data Integration. Charles University in Prague.

Niknam, M. (2017). Supply Chain Semantic Information Modeling for Data Integration with BIM and FM, 3(4),

3–4. https://doi.org/10.15406/mojce.2017.03.00077

Niknam, M., & Karshenas, S. (2017). A shared ontology approach to semantic representation of BIM data.

Automation in Construction, 80, 22–36. https://doi.org/10.1016/j.autcon.2017.03.013

Overbeek, H., & van den Brink, L. (2013). Towards a national URI-Strategy for Linked Data of the Dutch public

sector, (2), 1–19.

Parsanezhad, P., & Dimyadi, J. (2014). Effective Facility Management and Operations via a BIM-based Integrated

Information System, 1–12.

Pauwels, P., & Deursen, D. Van. (2015). IFC / RDF : Adaptation , Aggregation and Enrichment, (March 2012).

Pauwels, P., Krijnen, T., Terkaj, W., & Beetz, J. (2017). Enhancing the ifcOWL ontology with an alternative

representation for geometric data. Automation in Construction, 80, 77–94.

https://doi.org/10.1016/j.autcon.2017.03.001

Pauwels, P., McGlinn, K., Törmä, S., & Beetz, J. (2018). Linked Data. In A. Borrmann, M. König, C. Koch, & J.

Beetz (Eds.), Building Information Modeling (pp. 181–197). Cham: Springer International Publishing.

Pauwels, P., Zhang, S., & Lee, Y. C. (2017). Semantic web technologies in AEC industry: A literature overview.

Automation in Construction, 73, 145–165. https://doi.org/10.1016/j.autcon.2016.10.003

Petkova, T. (2019). Data, Databases and Deeds: A SPARQL Query to the Rescue. Retrieved from

https://www.ontotext.com/data-databases-sparql-query/

Prud’hommeaux, E., & Buil-Aranda, C. (2013). SPARQL 1.1 Federated Query. Retrieved from

https://www.w3.org/TR/sparql11-federated-query/

Radinger, A., Rodriguez-castro, B., Stolz, A., & Hepp, M. (2013). BauDataWeb : The Austrian Building and

Construction Materials Market as Linked Data.

Radulovic, F., Poveda-villalón, M., Vila-suero, D., Rodríguez-doncel, V., García-castro, R., & Gómez-pérez, A.

(2015). Guidelines for Linked Data generation and publication : An example in building energy

consumption. Automation in Construction, 57, 178–187. https://doi.org/10.1016/j.autcon.2015.04.002

Sauermann, L., & Cyganiak, R. (2008). Cool URIs for the Semantic Web. Retrieved July 6, 2019, from

https://www.w3.org/TR/cooluris/

Schevers, H., & Drogemuller, R. (2006). Converting the Industry Foundation Classes to the Web Ontology

Language, (Skg 2005), 2005–2007.

Schreiber, G., & Raimond, Y. (2014). RDF 1.1 Primer. Retrieved January 5, 2019, from

https://www.w3.org/TR/rdf11-primer/

Serrano, D., & Stroulia, E. (2017). Linked REST APIs : A Middleware for Semantic REST API Integration, 138–

145. https://doi.org/10.1109/ICWS.2017.26

Soibelman, L., Wu, J., Caldas, C., Brilakis, I., & Lin, K. Y. (2008). Management and analysis of unstructured

construction data types. Advanced Engineering Informatics, 22(1), 15–27.

https://doi.org/10.1016/j.aei.2007.08.011

Vandenbussche, P., Atemezing, G. A., & Vatant, B. (2014). Linked Open Vocabularies (LOV): a gateway to

reusable semantic vocabularies on the Web, 1, 1–5.

Wood, D., Zaidman, M., Ruth, L., & Hausenblas, M. (2014). Linked Data: Structured data on the Web. Shelter

Island, NY: Manning Publications Co.

Yu, M. (2016). A linked data approach for information integration between BIM and sensor data. Retrieved from

https://pure.tue.nl/ws/portalfiles/portal/61132956/Yu_0925649.pdf

22

 Appendix A. Partial RDF file of IFC data

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ifcowl: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#> .

@prefix inst: <http://example.com/id/ifc/20190721_122646/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix express:<https://w3id.org/express#> .

@prefix list: <https://w3id.org/list#> .

inst: rdf:type owl:Ontology ;

 owl:imports ifcowl: .

<http://example.com/id/ifc/20190721_122646/GUID/145adf16-8b67-460a-bca8-

932e5c98325c>

 a ifcowl:IfcDoor ;

 ifcowl:globalId_IfcRoot inst:IfcGloballyUniqueId_17832 ;

 ifcowl:name_IfcRoot inst:IfcLabel_17819 ;

 ifcowl:objectPlacement_IfcProduct

 inst:IfcLocalPlacement_11937 ;

 ifcowl:objectType_IfcObject inst:IfcLabel_17777 ;

 ifcowl:overallHeight_IfcDoor inst:IfcPositiveLengthMeasure_17817 ;

 ifcowl:overallWidth_IfcDoor inst:IfcPositiveLengthMeasure_17812 ;

 ifcowl:ownerHistory_IfcRoot inst:IfcOwnerHistory_41 ;

 ifcowl:representation_IfcProduct

 inst:IfcProductDefinitionShape_10949 ;

 ifcowl:tag_IfcElement inst:IfcIdentifier_17833 .

inst:IfcGloballyUniqueId_17832

 a ifcowl:IfcGloballyUniqueId ;

 express:hasString "0KMjyMYsT62hoeaovSc39S" .

inst:IfcLabel_17819 a ifcowl:IfcLabel ;

 express:hasString "M_Single-Flush:0762 x 2032mm:329774" .

inst:IfcLocalPlacement_11937

 a ifcowl:IfcLocalPlacement ;

 ifcowl:placementRelTo_IfcLocalPlacement

 inst:IfcLocalPlacement_11925 ;

 ifcowl:relativePlacement_IfcLocalPlacement

 inst:IfcAxis2Placement3D_11936 .

inst:IfcLabel_17777 a ifcowl:IfcLabel ;

 express:hasString "0762 x 2032mm" .

inst:IfcPositiveLengthMeasure_17817

 a ifcowl:IfcPositiveLengthMeasure ;

 express:hasDouble "2032."^^xsd:double .

inst:IfcPositiveLengthMeasure_17812

 a ifcowl:IfcPositiveLengthMeasure ;

 express:hasDouble "762."^^xsd:double .

inst:IfcOwnerHistory_41

 a ifcowl:IfcOwnerHistory ;

 ifcowl:changeAction_IfcOwnerHistory

 ifcowl:NOCHANGE ;

 ifcowl:creationDate_IfcOwnerHistory

 inst:IfcTimeStamp_6416 ;

 ifcowl:owningApplication_IfcOwnerHistory

 inst:IfcApplication_5 ;

 ifcowl:owningUser_IfcOwnerHistory

 inst:IfcPersonAndOrganization_38 .

inst:IfcProductDefinitionShape_10949

 a ifcowl:IfcProductDefinitionShape ;

 ifcowl:representations_IfcProductRepresentation

 inst:IfcRepresentation_List_17827 .

23

inst:IfcIdentifier_17833

 a ifcowl:IfcIdentifier ;

 express:hasString "329774" .

<http://example.com/id/ifc/20190721_122646/GUID/3c0b405a-6a4d-4a42-aeda-

4e012712b48e>

 a ifcowl:IfcRelDefinesByType ;

 ifcowl:globalId_IfcRoot inst:IfcGloballyUniqueId_18126 ;

 ifcowl:ownerHistory_IfcRoot inst:IfcOwnerHistory_41 ;

 ifcowl:relatedObjects_IfcRelDefines

 <http://example.com/id/ifc/20190721_122646/GUID/145adf16-8b67-460a-

bca8-932e5c98325c> , <http://example.com/id/ifc/20190721_122646/GUID/145adf16-8b67-

460a-bca8-932e5c9832bd> ;

 ifcowl:relatingType_IfcRelDefinesByType

 <http://example.com/id/ifc/20190721_122646/GUID/145adf16-8b67-460a-

bca8-933b5c9832df> .

24

 Appendix B. RDF file of Manufacturer data

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix gr: <http://purl.org/goodrelations/v1#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://example.com/id/doors/D3454> a gr:ProductOrService ;

 gr:name "D3454" ;

 gr:serialNumber "EN658075" ;

 gr:width "762"^^xsd:double ;

 gr:height "2032"^^xsd:double ;

 gr:hasPriceSpecification "130"^^xsd:double ;

 gr:hasInventoryLevel "15"^^xsd:int .

<http://example.com/id/doors/D3455> a gr:ProductOrService ;

 gr:name "D3455" ;

 gr:serialNumber "EN658071" ;

 gr:width "915"^^xsd:double ;

 gr:height "2134"^^xsd:double ;

 gr:hasPriceSpecification "145"^^xsd:double ;

 gr:hasInventoryLevel "14"^^xsd:int .

<http://example.com/id/doors/D3456> a gr:ProductOrService ;

 gr:name "D3456" ;

 gr:serialNumber "EN658067" ;

 gr:width "813"^^xsd:double ;

 gr:height "2134"^^xsd:double ;

 gr:hasPriceSpecification "150"^^xsd:double ;

 gr:hasInventoryLevel "0"^^xsd:int .

<http://example.com/id/doors/D3457> a gr:ProductOrService ;

 gr:name "D3457" ;

 gr:serialNumber "EN658063" ;

 gr:width "864"^^xsd:double ;

 gr:height "2032"^^xsd:double ;

 gr:hasPriceSpecification "165"^^xsd:double ;

 gr:hasInventoryLevel "2"^^xsd:int .

<http://example.com/id/doors/D3458> a gr:ProductOrService ;

 gr:name "D3458" ;

 gr:serialNumber "EN658059" ;

 gr:width "864"^^xsd:double ;

 gr:height "2134"^^xsd:double ;

 gr:hasPriceSpecification "175"^^xsd:double ;

 gr:hasInventoryLevel "3"^^xsd:int .

<http://example.com/id/doors/D3459> a gr:ProductOrService ;

 gr:name "D3459" ;

 gr:serialNumber "EN658055" ;

 gr:width "915"^^xsd:double ;

 gr:height "2032"^^xsd:double ;

 gr:hasPriceSpecification "180"^^xsd:double ;

 gr:hasInventoryLevel "5"^^xsd:int .

<http://example.com/id/doors/D3460> a gr:ProductOrService ;

 gr:name "D3460" ;

 gr:serialNumber "EN658051" ;

 gr:width "864"^^xsd:double ;

 gr:height "2032"^^xsd:double ;

 gr:hasPriceSpecification "170"^^xsd:double ;

 gr:hasInventoryLevel "8"^^xsd:int .

<http://example.com/id/doors/D3461> a gr:ProductOrService ;

25

 gr:name "D3461" ;

 gr:serialNumber "EN658047" ;

 gr:width "864"^^xsd:double ;

 gr:height "2134"^^xsd:double ;

 gr:hasPriceSpecification "175"^^xsd:double ;

 gr:hasInventoryLevel "18"^^xsd:int .

<http://example.com/id/doors/D3462> a gr:ProductOrService ;

 gr:name "D3462" ;

 gr:serialNumber "EN658085" ;

 gr:width "762"^^xsd:double ;

 gr:height "2134"^^xsd:double ;

 gr:hasPriceSpecification "160"^^xsd:double ;

 gr:hasInventoryLevel "0"^^xsd:int .

<http://example.com/id/doors/D3463> a gr:ProductOrService ;

 gr:name "D3463" ;

 gr:serialNumber "EN658086" ;

 gr:width "864"^^xsd:double ;

 gr:height "2032"^^xsd:double ;

 gr:hasPriceSpecification "160"^^xsd:double ;

 gr:hasInventoryLevel "24"^^xsd:int .

<http://example.com/id/doors/D3464> a gr:ProductOrService ;

 gr:name "D3464" ;

 gr:serialNumber "EN658080" ;

 gr:width "915"^^xsd:double ;

 gr:height "2032"^^xsd:double ;

 gr:hasPriceSpecification "175"^^xsd:double ;

 gr:hasInventoryLevel "32"^^xsd:int .

<http://example.com/id/doors/D3465> a gr:ProductOrService ;

 gr:name "D3465" ;

 gr:serialNumber "EN658076" ;

 gr:width "762"^^xsd:double ;

 gr:height "2032"^^xsd:double ;

 gr:hasPriceSpecification "155"^^xsd:double ;

 gr:hasInventoryLevel "0"^^xsd:int .

<http://example.com/id/doors/D3466> a gr:ProductOrService ;

 gr:name "D3466" ;

 gr:serialNumber "EN658089" ;

 gr:width "762"^^xsd:double ;

 gr:height "2134"^^xsd:double ;

 gr:hasPriceSpecification "185"^^xsd:double ;

 gr:hasInventoryLevel "10"^^xsd:int .

<http://example.com/id/doors/D3467> a gr:ProductOrService ;

 gr:name "D3467" ;

 gr:serialNumber "EN658092" ;

 gr:width "864"^^xsd:double ;

 gr:height "2134"^^xsd:double ;

 gr:hasPriceSpecification "190"^^xsd:double ;

 gr:hasInventoryLevel "0"^^xsd:int .

26

 Appendix C. Proof of concept queries

Scenario 1:

Query 1. Requesting a list of the doors included in the Revit model

PREFIX ifc: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX express: <https://w3id.org/express#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ifcowl: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT Distinct ?doorD ?IfcIdentifier ?hD ?wD

WHERE {

 ?doorD a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifcowl:tag_IfcElement ?tag.

 ?tag express:hasString ?IfcIdentifier.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

}

Query 2. Requesting available door type options for set of dimensions

PREFIX ifc: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX express: <https://w3id.org/express#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ifcowl: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX gr: <http://purl.org/goodrelations/v1#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT distinct ?hS ?wS (COUNT(*)/2 AS ?DoorsNeeded) ?doortypecode ?DoorsAvailable

?UnitPrice

WHERE {

 ?doorD a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifc:name_IfcRoot ?root.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

 ?panel ifc:name_IfcRoot ?root.

 ?doorStyle ifc:hasPropertySets_IfcTypeObject ?panel.

 ?typedef ifcowl:relatingType_IfcRelDefinesByType ?doorstyle;

 ifcowl:relatedObjects_IfcRelDefines ?doorD;

 ifcowl:relatedObjects_IfcRelDefines ?IfcDoor.

Service <http://10.99.99.4:7200/repositories/exceldata> {

?doorS gr:serialNumber ?doortypecode;

 gr:width ?wS;

 gr:height ?hS;

 gr:hasPriceSpecification ?UnitPrice;

 gr:hasInventoryLevel ?Inventory.

 }

Filter (?wD = ?wS && ?hS = ?hD).

Bind (?Inventory AS ?DoorsAvailable).

}

GROUP BY ?wS ?hS ?DoorsAvailable ?doortypecode ?UnitPrice

27

Scenario 2:

Query 3: Requesting a list of the door types designed, the amount of every type, their availability

and their unit price

PREFIX ifc: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX express: <https://w3id.org/express#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ifcowl: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX gr: <http://purl.org/goodrelations/v1#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT distinct ?doortypecode (COUNT(*)/2 AS ?DoorsNeeded) ?DoorsAvailable

?UnitPrice

WHERE {

 ?doorD a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifc:name_IfcRoot ?root.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

 ?panel ifc:name_IfcRoot ?root.

 ?doorStyle ifc:hasPropertySets_IfcTypeObject ?panel;

 ifc:name_IfcRoot [express:hasString ?inputcode].

 ?typedef ifcowl:relatingType_IfcRelDefinesByType ?doorstyle;

 ifcowl:relatedObjects_IfcRelDefines ?doorD;

 ifcowl:relatedObjects_IfcRelDefines ?IfcDoor.

Service <http://10.99.99.4:7200/repositories/exceldata> {

?doorS a gr:ProductOrService;

 gr:name ?name;

 gr:serialNumber ?doortypecode;

 gr:width ?wS;

 gr:height ?hS;

 gr:hasPriceSpecification ?UnitPrice;

 gr:hasInventoryLevel ?Inventory.

 }

filter (?wS = ?wD && ?hS = ?hD && ?doortypecode = ?inputcode).

Bind (?doorD AS ?DoorsNeeded).

Bind (?Inventory AS ?DoorsAvailable).

}

GROUP BY ?doortypecode ?DoorsAvailable ?UnitPrice

Query 4: Requesting available alternative door types

PREFIX ifc: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX express: <https://w3id.org/express#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ifcowl: <http://standards.buildingsmart.org/IFC/DEV/IFC2x3/TC1/OWL#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX gr: <http://purl.org/goodrelations/v1#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT Distinct ?reldoor ?hD ?wD ?CurrentType ?AltType ?amount

WHERE {

 ?door a ifc:IfcDoor;

 ifc:overallHeight_IfcDoor ?h;

 ifc:overallWidth_IfcDoor ?w;

 ifc:name_IfcRoot ?root.

 ?h <https://w3id.org/express#hasDouble> ?hD.

 ?w <https://w3id.org/express#hasDouble> ?wD.

28

 ?panel ifc:name_IfcRoot ?root.

 ?doorStyle ifc:hasPropertySets_IfcTypeObject ?panel;

 ifc:name_IfcRoot [express:hasString ?inputcode].

 ?typedef ifcowl:relatingType_IfcRelDefinesByType ?doorstyle;

 ifcowl:relatedObjects_IfcRelDefines ?door;

 ifcowl:relatedObjects_IfcRelDefines ?reldoor.

Service <http://192.168.1.4:7200/repositories/exceldata> {

?doorS a gr:ProductOrService;

 gr:name ?name;

 gr:serialNumber ?doortypecode;

 gr:width ?wS;

 gr:height ?hS;

 gr:hasPriceSpecification ?price;

 gr:hasInventoryLevel ?amount.

 }

filter (?wS = ?wD && ?hS = ?hD && ?inputcode != ?doortypecode && ?amount != 0.0).

Bind (?inputcode AS ?CurrentType).

Bind (?doortypecode AS ?AltType).

}

