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Summary

With cyber-physical systems becoming more prevalent in critical environments, the testing of
such systems becomes more important as well. This is a challenge due to the complexity, mul-
tidisciplinary nature and unique purpose of a cyber-physical system. In this research, a tool
has been developed that is capable of testing a model of a cyber-physical system in an auto-
mated way, inspired by existing software testing techniques. With this tool, a user can define
tests through a newly developed, Gherkin-style inspired testing language. This language is de-
signed with reusability in mind to reduce repetitive writing. In this testing language, a user
can define the temporal behavior of a cyber-physical system through a combination of LTL for-
mulas, boolean equations, mathematical functions and model variables. Through simulation
of a model of a cyber-physical system, the tool obtains testing data with which it can process
test definitions and draw a True or False conclusion. The final product is modular to allow for
switching out components and simulators to match the user’s preferences. Multiple different
simulators are supported so that the user can use the simulator fitting for their project.
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Samenvatting

Cyber-physical systems worden steeds meer gebruikt in kritieke omgevingen. Daardoor wordt
het testen van deze systemen ook steeds belangrijker. Dit is een uitdaging vanwege de complex-
iteit, het multidisciplinaire karakter en unieke doel van een cyber-physical system. Met inspi-
ratie opgedaan uit bestaande software testtechnieken, is in dit onderzoek een tool ontworpen
waarmee modellen van cyber-physical systems automatisch doorgetest kunnen worden. Met
deze tool kan een gebruiker tests definiëren door middel van een nieuw ontwikkelde testtaal
die gebaseerd is op de bestaande Gherkin-stijl. Om repetitief schrijven te verminderen is deze
taal zo ontworpen dat (delen van) test definities herbruikbaar zijn. Met deze testtaal kan een
gebruiker de temporal behavior van een cyber-physical system beschrijven door middel van
LTL formules, boolean vergelijkingen, wiskundige functies en modelvariabelen. Door middel
van een simulatie van een cyber-physical system kan de tool test data verkrijgen waarmee het
een True of False conclusie kan trekken over de gegeven test definitie. Het uiteindelijke prod-
uct is modulair, zodat de gebruiker gemakkelijk componenten en simulators kan verwisselen
naar hun voorkeur. Meerdere verschillende simulatoren zijn bruikbaar, zodat een gebruiker de
passende simulator voor hun project kan gebruiken.
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1 Introduction

1.1 Context

Cyber-physical systems are multi-disciplinary systems consisting of mechanical and electrical
aspects often controlled by software. They have been integrated into aerospace, industrial
manufacturing, transportation, and critical infrastructure, according to Rajkumar et al., 2010.
Grimm et al., 2014 describes cyber-physical systems as a system linked directly with the physi-
cal world. They detect environmental changes and realize the real-time control of the system
behavior. Compared with other traditional complex systems (e.g. mechatronic systems), the
environmental influences (i.e. variances and uncertainties in the environment or created by
human beings) play a significant role in cyber-physical systems. From the computation per-
spective, cyber-physical systems are considered to be developed based on embedded systems.
But due to their link to the physical world, cyber-physical systems become much more com-
plex than ordinary embedded systems, according to Lee and Seshia, 2015. According to Yagan
et al., 2012, placing these complex systems in a critical environment can lead to catastrophic
results if not tested correctly. This calls for a reliable and thorough way a cyber-physical system
can be tested. This is a challenge due to the complexity, multidisciplinary nature and unique
purpose of a cyber-physical system.

Software testing techniques like the ones described in Sawant et al., 2012, can form a starting
point for this research to find a way to streamline and automate the testing of cyber-physical
systems. Most software testing techniques have one thing in common. They produce a True
or False answer based on set constraints that the software at hand adheres to or not. Software
can be tested in controlled, isolated environments which is not the case with cyber-physical
systems due to environmental influences playing a large role in the functionality of such a
system. Influences such as warm-up times of motors, wear & tear and natural effects such as
wind and water all can have their influence on how the system functions. As such, their perfor-
mance can change depending on the situation or environment, which is important to be tested.

A simulator is capable of providing a controlled, digital environment for a cyber-physical sys-
tem to be tested in. Zander, 2013 and Saglietti et al., 2015 use Simulink to achieve a simulation
cycle and simulation state retrieval during the implementation of a system model. They track
the approximate error to improve the performance and reliability of the system and evaluate
the efficiency level of design execution. This shows the potential a simulator has to improve
the testing phase of a cyber-physical system. Because a simulator is in full control of an envi-
ronment, multiple test scenarios can be executed regardless of any dangers, such as collisions
or unforeseen behaviors. On top of that, properties such as path tracking and pose accuracy
are a lot easier to track as a simulator can constantly read out values of each part of the model.
This allows for tests on submodels that would otherwise be inaccessible, hard to measure or
just very costly to test. Even though simulators come with a larger initial investment in time in
the form of creating a realistic model, it is believed that this cost is saved due to the failures a
simulator can prevent. The better the quality of the model, the more failures can be prevented.

Although it is possible to digitalize a cyber-physical system, software testing techniques cannot
be applied one-to-one. Zhou et al., 2018 gives insight into the testing of cyber-physical systems.
Unlike software testing, tests for cyber-physical systems are typically behavior-based, with re-
quirements working with margins and not exact values to indicate correct behavior. True or
False answers can be obtained by checking whether values are in a margin or not. But since a
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cyber-physical system is a continuous system that changes over time, having just one True or
False as an answer to if the system once was within the required range during its run time will
not suffice. If a robot performing surgery was within its safe margin for only a brief moment,
its behavior can still have fatal results. This research, therefore, extends the testing of these
ranges with a technique already existing within software engineering called Linear Temporal
Logic, described by Schmaltz, 2017. LTL allows for test definitions over time, of which a more
extensive explanation can be found in Appendix A.

1.2 Design Objectives

This research streamlines the testing phase of cyber-physical systems by providing a tool capa-
ble of thoroughly testing the temporal behavior of a cyber-physical system based on existing
software testing techniques. A user can provide a test definition to the tool detailing the tests
that need to be performed. A simulation of the cyber-physical system is used to perform this
test on instead of having to run a test on the physical setup, reducing failure consequences
and costs. By processing simulation data the tool can draw test conclusions. It is believed that
by automating these steps through this tool, less time is lost to manually performing tests and
comparing test data.

The tool is aimed to be used by multidisciplinary teams. Making the tests reusable allows team
members to share their tests among each other, or makes it possible to combine smaller tests
into one large test. Since there are types of tests, setups, and simulators, it is required that
the tool is modular. Allowing users to modify the tool to their own needs by switching out
components or simulators makes the tool more versatile and independent of the simulator,
model or test at hand.

1.3 Approach

This tool will consist of three base concepts. First, it needs a way to define tests that apply
to cyber-physical systems. This research uses LTL to test the temporal behavior of a cyber-
physical system. By designing a new language for the definition of these tests, flexibility is pro-
vided to the user as they can define their specific tests by using the building blocks provided by
this language. The user can define these tests in a Gherkin-style inspired manner, as described
in Cucumber, 2019, in which the user can define settings for simulation and LTL formulas.

A controlled, digital environment is needed to thoroughly test cyber-physical systems in. To
provide such an environment, the tool is extended with functionality to communicate with
a simulator. 20-sim is a prevalent simulator used at the department of RaM, but for the sake
of modularity and flexibility, interfacing will be extended to multiple simulators to allow each
user to use their preferred simulator. Examples of such simulators are Simulink, V-REP, ARGoS,
and Gazebo, which are compared and described in Pitonakova et al., 2018.

To turn these test definitions into a simulation performed by a selected simulator, a third
component is required. One that can read out and interpret provided tests and take control of
the simulator. It is also tasked with providing a True or False conclusion to the test definitions
after simulation.

The validation of the tool is done through testing a set of tests that each test a piece of function-
ality in the system. The results outputted by the tool are compared to results obtained when
manually performing the test, to check if the tool is correct in its calculations.

Further detail of these components is provided in Chapter 3.

Bas Jansen University of Twente



CHAPTER 1. INTRODUCTION 3

1.4 Outline

This thesis is built up in the following way:

• An analysis of the problem at hand is made in Chapter 2

• The final design and design choices are explained in Chapter 3

• Obtained results are shown in Chapter 4

• Conclusions are drawn and recommendations are given in Chapter 5

Robotics and Mechatronics Bas Jansen
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2 Analysis

The structure of this tool can be categorized into three parts: A way to define tests, a simulator
and a component that can interpret and process tests, as was described in Section 1.3. This
chapter analyzes these three to lay a base for the final design of the tool.

2.1 Testing Guidelines

To find inspiration for testing definitions, this section looks into existing guidelines and testing
techniques for cyber-physical systems. Jeswiet and Helferty, 1995, Kumičáková et al., 2016 and
RoboDK, 2019 state that ISO 9283 and ANSI/RIA R15.06-2012 are the most prevalent standards
set for testing manipulating industrial robots. ISO 9283 outlines robot performance tests
which are primarily intended for developing and verifying individual robot specifications but
can also be used for such purposes as prototype testing, type testing or acceptance testing.
The American National Standards Institute developed the ANSI/RIA R15.06-2012 standard
together with the Robotic Industries Association which provides a guideline aimed towards
safeguarding personnel and devices by describing training processes, safety procedures built
into robots during the manufacturing process and training guidelines.

Despite there being many guidelines to test cyber-physical systems and their operations, they
usually consist of large, precise ways of testing. Not only would it mean that it would take a lot
of time to design a tool capable of running all these tests, it would also make the tool inflexible.
The user will have to depend on the developer’s interpretation of these tests instead of their
own. Therefore, instead of choosing to design the tool to perform exactly one set of tests, it is
believed to be better to provide building blocks with which the user can build tests themself.
Using LTL formulas and boolean equations involving variables of a simulation model, the user
can define tests specifically for their model. That way, the user can be inspired by guidelines
rather than be bound by them.

2.2 Simulators

As was described in Section 1.1, a simulator can provide a safe environment for the tool to
run tests in. To allow for as many simulators to be compatible with the tool as possible, only
a few necessary requirements should be set. In order to actually run a test and process data,
a simulator should at least be capable of tracking data during a simulation it runs. Popular
simulators for cyber-physical systems are 20-sim, Gazebo, V-REP, Simulink, ARGoS, Webots,
OpenRAVE, Simspark and RoboDK.

Simulator External Interface
20-sim Python API
Gazebo ROS & C++
V-REP ROS & RemoteAPI
Simulink MATLAB
ARGoS Lua & C++
Webots C/C++, Java, Python, MATLAB, TCP/IP
OpenRAVE Octave, MATLAB, Python, Perl
Simspark Network Protocol
RoboDK Python, TCP

Table 2.1: Simulators and their external interfaces
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Table 2.1 shows that all these simulators meet the requirement of having an external interface.
Each simulator will require a specific tool-to-simulator interface, as each simulator has their
own types of interfacing.

Test definitions can be extended with extra functionality to allow for more simulation control.
Simulator-specific extensions can be implemented to make full use of a simulator that is capa-
ble of more than just the basic requirements. The more of such functionality can be used and
controlled by the user through a test definition, the less manual work is needed to be done.

This research uses 20-sim and V-REP to show that it is possible to make use of multiple simu-
lators with different types of interfacing.

2.3 Gherkin

The test definition consists of two parts, one that describes settings for the simulator and one
that describes the temporal behavior to be tested. To pack these settings and behaviors into
one test definition, Gherkin-style inspired definitions are used. Gherkin-style tests are used to
define tests in a certain environment with three keywords; Given, When, Then. A test defini-
tion is structured as follows: Given a certain circumstance, When something occurs, Then the
following action needs to happen. Due to the simplicity of Gherkin, its style has been adapted
for this research. The Given keyword can be used to describe the simulation settings. Since the
processing happens after simulation, the When keyword would always come down to When
a simulation has occurred. This adds nothing, so this keyword is omitted. The Then keyword
is used to describe the temporal behavior that will be tested. The new test structure is then as
follows: Given model X Then proposition Y needs to hold. This Given keyword can be extended
to allow for optional, simulator-specific settings. Gherkin also features the keywords Feature
and Scenario, which can be used to label tests and run multiple test scenarios in one test, re-
spectively. It is believed that defining tests this way makes them readable even for people that
do not have programming experience, making tests more easy to reuse among team members.

2.4 Processing

As was brought up in Section 1.3, a component is required that can interpret tests and process
their outcomes. Therefore there will be two processing steps in the tool occurring before and
after simulation. Before the simulation, the tool must interpret the tests defined by the user and
then communicate these through to the correct simulator. After the simulation, another pro-
cessing step is required for combining the simulation data and LTL formulas to return answers
to the user. These processing steps need to happen in a scalable, dynamic way to allow the user
to define varied tests of variable size. A platform with the following properties is required to
handle these processing steps:

• Scalable and dynamic.

• Has building blocks for the user to define their tests with.

• Can handle Gherkin-style inspired test definitions.

Due to how specific these requirements are, no existing library could be found. Therefore, a
new testing language is designed. One that is dynamic enough to allow the user to extend tests
by as many constraints and options as they want, but strict enough that the test definitions
conform Gherkin and have no ambiguity. After the simulation, the tool can reuse the origi-
nal interpretation of the test definition to combine it with obtained simulation data to fill out
variables and draw test conclusions.
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2.5 Requirements

To sum it up, the tool is required to consist of a way to define tests through a new language.
Based on simulation settings defined in the test definition, a simulation is run. The simulation
data and behavior defined in the test are combined after the simulation to produce an answer
back to the user. This behavior is defined through the use of LTL formulas, boolean equations,
and mathematical functions to test whether model variables are within correct margins over
time.

This leads to the following list of requirements:

• The tool must combine simulation data with the defined tests to produce answers.

• The tool must be modular.

• The testing must be automated.

• The tests must be reusable.

• The test definitions must be Gherkin-style inspired.

• The test definitions must support boolean equations.

• The test definitions must support LTL formulas.

• The test definitions must support model variables.

• The tool should support multiple simulators.

The next chapter will go into more detail about how the tool is designed to meet these require-
ments.

Bas Jansen University of Twente
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3 Design & Implementation

3.1 Introduction

The functional design depicted in Figure 3.1 features the main three design objectives. A way
to define tests, a simulator, and a component that can interpret test definitions, control the
simulator and process outcomes. These three tasks have been split up in their own compo-
nents named Interpreter, Simulation Control and Post-processing to improve modularity of the
system.

Figure 3.1: Functional design of the tool.

First, a design is made for the definition of a test. The structure of such a test has an influence
on the way the tool should interpret it and in turn, also influences how the simulation is run.
The designed structure of a test definition is shown in Listing 3.1.

� �
Feature " feature name"
Scenario " scenario name 1"

Given "model name"
Sett ings X , Y , Z
Then constraint
Then constraint

. . .

Scenario " scenario name 2"
. . .� �

Listing 3.1: Basic test structure.

Where the keywords Feature, Scenario, Given and Then reflect the Gherkin-style inspiration
described in Section 2.3. The Given keyword reflects the part of the test definition where
simulation settings can be set for a Scenario. The Then keyword reflects the part of the test
definition where the user can define temporal behavior through constraints. Constraints are
LTL formulas and boolean equations applied to variables in the model used for the test.

For the tool to interpret this test definition, a new testing language will be designed, as was
concluded in Chapter 2. The structure of a test determines the rules for the grammar that will
define the new testing language. From this grammar, a parser can be derived using ANTLR. A
parser can build a parse tree from a user’s input test definition based on the grammar. Such a
parse tree can be interpreted by software and through the use of a listener, data such as simu-
lation settings and constraints can be extracted from it. A full explanation of how grammars,
parsers, parse trees, listeners and ANTLR work is given in Appendix B.

Robotics and Mechatronics Bas Jansen
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The Interpreter can then package the data in an understandable way for the Simulation Con-
trol component. With this data, the Simulation Control component can select the correct
simulator and initialize settings provided by the user through the test definition. The selec-
tion of the correct simulator can be done by selecting the correct tool-to-simulator interface,
through which the Simulation Control component can communicate with a simulator. After
the simulation, the Simulation Control component will pass on the received simulation data
to the post-processing component.

For the post-processor to combine the simulation data with the original test definition, it
can reuse the parse tree created during the Interpreter stage. By making the post-processor
a listener, it can traverse the original parse tree. The listener can perform calculations over
a node’s children and store the answers in the parse tree’s node. By performing the correct
operation, the listener can calculate answers to LTL formulas, boolean equations, and math-
ematical equations. Starting in the leaves and working the data up the tree eventually results
in an answer to the test definition. A more elaborate example of this concept is described in
Section B.3.1.

A way to define tests and display outcomes is still missing in the functional design of the tool.
By adding a user interface component to the tool, the user will have a way to interact with it.
Not only can such an interface serve as a display for answers, but it can also serve as a platform
for the user to define tests in and run those tests from. Since test definitions are text files, the
user interface could be extended with functionality such as saving, modifying or deleting these
files, depending on what the user needs.

Splitting up the tool in multiple components to improve modularity can lead to the tool be-
coming more complex as well. Due to the pipeline structure of the tool, each component relies
on inputs and outputs of other components. Without exactly knowing what a component can
expect from other components, it becomes a complex task to switch them out. To solve this,
a responsibility-based approach is taken. This means that each component in the tool gets its
responsibility regarding what type of data they consume, what type of data they produce and
what is expected of them to do with the data between consumption and production. When
each component holds itself to these responsibilities, it will be easier to swap out components
that have different implementations as long as the consumption and production responsibili-
ties are upheld. To extend this, the fewer components a component has to communicate with,
the fewer responsibilities a component has to uphold. For this reason, an extra component is
added to the structure called Core. It only passes on data from one component to the next but
could be extended with functionality such as data validation at a later stage. The final structure
of the tool is depicted in Figure 3.2

Bas Jansen University of Twente



CHAPTER 3. DESIGN & IMPLEMENTATION 9

Figure 3.2: Structure of the tool.

3.2 Design Choices

In this section are the design choices made for each component in Figure 3.2 described, along
with the description of a few implementations. The full description of the implementation of
each component is written in Appendix D, along with the dataflow of the tool.

3.2.1 Interpreter

The Interpreter consists of two parts. One is the grammar dictating the rules to which a test
definition needs to adhere, the second is the listener implemented to extract data from test
definitions. First, the grammar is described.

Grammar

From the requirements can be deducted that the grammar needs to support LTL formulas and
boolean equations that can be used to compare model variables over time, and the ability
to retrieve settings for the simulation. The user can test values of the model by using model
variable names. The inclusion of these variables is essential to allow users to compare and test
values from the simulation.

On top of that are file inclusions and methods required to improve the reusability of tests. File
inclusions added allow the user to make more fragmented tests where parts can be reused
in other tests. Method definitions and calls have been added to allow a user to reuse a set of
constraints at multiple locations inside the test.

For more thorough testing is more extensive mathematical functionality required. Multiplica-
tion, division, addition, subtraction, power, and square root allow the user to perform mathe-
matical operations over numbers and variables. On top of that, mathematical functions such
as abs, min and max are needed to further extend the tool’s mathematical functionality. This
functionality could be extended by allowing for three-dimensional values for orientations or
positions, where currently only decimals are supported.
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The Gherkin-based grammar then needs to support:

• LTL formulas.

• Boolean equations.

• Mathematical expressions such as power, square root, multiplication, division, addition
and subtraction.

• Simulation settings.

• Inclusions of other test and constraint files.

• Functions such as minimum, maximum and absolute values.

• Methods.

The structure of a test definition supporting these requirements is depicted in Listing 3.2, serv-
ing as the base for the grammar.

� �
Feature " feature name"

method name( argument1 , argument2 , argument3 , . . . ) :
constraint

. . .

Scenario " scenario name 1" ( f i l l e r variable 1 , f i l l e r variable 2 , . . . )
Given "model name"

with " option1 " = X
with " option2 " = Y

. . .
include " f i l e 1"
include " f i l e 2"

. . .
in simulator
for X time unit
Then constraint
Then constraint

. . .

Scenario " scenario name 2"
. . .� �

Listing 3.2: Test structure.

Keywords such as with, in and for have been added to allow the user to get more control over
the simulation. These keywords allow the user to set initial variables, a simulator, and for
how long the simulation should run, respectively. As such, the testing becomes more auto-
mated and the time spent manually setting values in the simulator is reduced. To increase the
reusability of the test definition, method definitions, filler variables and the keyword include
have been put in place.

The full grammar is defined in Appendix C, along with an in-depth description of each gram-
mar rule. With a fully defined grammar, it is possible to generate a lexer, parser, and listener as
is described in Appendix B. The next section describes how this listener can be used to interpret
tests based off of this defined grammar.
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Listeners

The Interpreter is tasked with interpreting test definitions as defined in the grammar. The In-
terpreter needs to handle file inclusions and extract simulation data such as the name of the
model, which simulator is being used, etc. When the test arrives at the Interpreter before the
handling of inclusions, not all data is present within the test definition. Simulation settings or
whole scenarios can be included, so the first step that needs to be taken is resolving all these
inclusions. For this, an extra listener called the pre-processor has been added. The Interpreter
component now consists of two listeners: the pre-processor and the main processor. The pre-
processor substitutes in all the data gathered from the file inclusions, before sending it through
to the main processor. The pre-processor is currently not recursive, so inclusions cannot con-
tain more inclusions. After the pre-processor is done it is assumed that all data is available
for the main processor. The main processor then retrieves all simulation settings from the
Given parts of the test definition. From the Then parts it extracts all variables that need to
be tracked during the simulation. With the introduction of methods, the main processor has
obtained an extra responsibility: retrieving information about the methods and calls in a test.
The main processor needs to identify the location of each method call, along with the name
of the method called and arguments passed along. This is done so that after simulation, the
results of a method call can be filled out in the correct place.

3.2.2 Method Handling

Before the post-processor can get to work, all method calls must have been handled. That way,
the post-processor only needs to go over the Interpreter’s parse tree and fill out the missing
data. A listener can only enter and exit a node in the parse tree once. But since a method can
be called multiple times, the listener is required to go over one method multiple times. Instead
of letting the listener go over the entire parse tree, the subtree of a method is taken out. For
each method call, the correct variables and arguments are set in the subtree and the answer is
calculated. These answers are stored so that the post-processor can then retrieve them when
traversing the entire parse tree after all method calls have been calculated. By filling the an-
swers in, the post-processor only has to go over each node once, solving the issue of having
enter or exit a node multiple times. A more in-depth explanation of the method handling is
given in Section D.2.

3.2.3 Post-processing

The post-processor is tasked with calculating the answers to a given test definition. This pro-
cessor can calculate answers to:

• LTL Formulas

• Boolean Equations

• Mathematical Equations

• Mathematical Functions

The calculation of these answers is done by reusing the parse tree created by the Interpreter.
Since the test definition did not change during the simulation, the parse tree is still applica-
ble. With the simulation data available, the post-processor can fill in the variables and start
with the calculation. The calculation of a test definition happens in four phases. At first, all
mathematical equations and functions are calculated so that they are turned into just one
value. It is then possible to compare two values to obtain a True or False. Since LTL formulas
are timebound and boolean equations are not, having just a True or False is not enough to
perform LTL formulas on. On top of that, LTL formulas work with discrete states, whereas
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cyber-physical systems are continuous.

Since a simulator is software, it is inherently discrete. This means that a simulator progresses
through timesteps, rather than a continuous flow of time. Each time the simulator steps, it
calculates all data for that moment in time and repeats this until the simulation is complete.
By retrieving variable data along with the time-stamp on each simulation step, it is possible
to create a time series of the data. The smaller the time interval between each step is, the
more accurate the resulting data is. Such time-stamped data can be visualized by a graph. An
example graph for an example simulation output is shown in Figure 3.3.

Figure 3.3: Example output graph.

Say that the LTL formula that needs to be performed on this output is F(out put >= 2). First,
each point in the graph is checked for whether it is greater than two or not. For this graph it can
be said that out put >= 2 is False from t = 0 until t = 4 and True from t = 4 up to and including
t = 6, where the simulation ends. LTL formulas can be performed over such timestamped
booleans. F(out put > 2) is then True, since out put > 2 is eventually True, namely from t = 4
to t = 6. The exact implementation of each mathematical, boolean and LTL operator can be
found in Section D.1.

Output If a boolean equation or LTL formula is only True for part of the simulation, then the
post-processor returns Sometimes True as an answer. The top-level constraint always only
returns True or False. If the top-level constraint is an LTL formula, it is checked if it holds from
t = 0, resulting in either True or False. If a constraint only consists of boolean equations then
the top-level constraint is checked with a G operator. Since no time is bound to a boolean
equation it must either always be True or always be False. A Scenario is True if all top-level
constraints defined in it are True, otherwise it is False. A Feature is True if all Scenarios in it
are True, otherwise it is False.

These results are forwarded to the User Interface, which can display these for the user to see.
The next section details the design of the User Interface.
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CHAPTER 3. DESIGN & IMPLEMENTATION 13

3.2.4 User Interface

The User Interface needs to provide a platform for the user to have control over what simula-
tions are run with which tests. The User Interface in itself is a rather self-contained component,
as the only thing it needs to communicate to the rest of the system is what tests need to be
run. Options such as creating, modifying and deleting tests all happen outside of the rest of the
tool. That way, it provides the user with the freedom to design the User Interface in a way that
is most applicable to the situation the tool is used in, as long as it can tell the Core component
to run a test.

The implemented User Interface has a few examples of additional features. One of them is
output filtering. The user can set a certain output level which indicates how verbose the output
of the tests will be. One user may be interested in just the final result of a test, where another
would like to see in-depth info, returning the result of every layer of a test. This could at a later
stage be extended with more information such as graphs, tables or other formats to improve
the use of the data returned by the tool.

By giving the user the possibility to preset paths, repetition in writing tests is reduced. These
paths point towards folders where for example models, tests and constraints are stored. This
way the user does not have to type out the full path each time they want to refer to one. To
display the versatility of the User Interface component, two interfaces were developed. One is
a GUI allowing the user to create, modify, delete and run tests with, where the user has more vi-
sual feedback. The other is a command-line interface for small applications or batch programs,
where the user can only run a test. Their implementations are detailed in Section D.3.

3.2.5 Core

All tasks described in the requirements are handled by the other components. This does not
mean that the Core component has become obsolete. With the Core component in place, oth-
ers will have to interact with at most two other components. That way, when a component is
switched out, only the responsibilities towards the Core need to be upheld. The Core, therefore,
improves the modularity of the entire tool. With a centralized Core, functions for ensuring the
correctness of data could be put in place.

3.2.6 Simulation Control

With everything happening before and after the simulation in place, it is possible to look into
what actions the Simulation Control component needs to handle. The Interpreter component
is expected to extract the following data from a test:

• Model name.

• Simulator name.

• Variables to initialize.

• Runtime of the simulation.

• Variables that need to be tracked during the simulation.

The post-processor requires timestamped data to perform LTL formulas. The Simulation Con-
trol component needs to obtain this data from the simulation so it can be forwarded to the
post-processor.
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The Interpreter instructs the Simulation Control component on how to set the simulation be-
fore running it. The Interpreter also tells the Simulation Control component what the variables
are that need to be tracked so the post-processor obtains all the timestamped data required
for further processing. By making the Simulation Control component a separate block from
the Simulator, it is possible to run multiple simulations on multiple simulators in quick suc-
cession. The current implementation runs all simulations sequentially independent of which
simulator is used. An improvement here could be that when two tests are run on two separate
simulators, the simulations are run in parallel. But before the Simulation Control can inter-
act with a simulator, tool-to-simulator interfaces are required. These are described in the next
section.

3.2.7 Simulator

The Simulator is in place to obtain timestamped data that can be used to process test defini-
tions. In Section 2.2 it became clear that there are different simulators with different interfaces.
Each simulator, therefore, requires their specific tool-to-simulator interface through which the
Simulation Control component can reach the simulator. A simulator is compatible with the
system if it can provide the following functionality through any means of interfacing:

• Opening a model.

• Tracking variables.

• Running a simulation.

• Providing data and timestamps.

Extra options can be set through the use of the for and with keywords to set the runtime of
the simulation and initial variables, respectively. With simulator-specific tool-to-simulator in-
terfaces in place, the Simulation Control component only needs to select the correct interface
instead of communicating with each specific simulator by itself. The functions called are then
translated by the selected tool-to-simulator interface to the simulator-specific commands,
meaning that to add a new simulator, only a new tool-to-simulator interface needs to be added.

Another effect is that the programming language of a simulator’s external interface does not
have to be the same as that of the rest of the tool, as long as the translation occurs correctly. To
showcase this, two simulators have been built into the tool. One being 20-sim, where the in-
terfacing happens in Python. Another being V-REP, which has an external interface in Java. JNI
is used to set up communication between the tool written in Python and V-REP’s Java Interface.

With each component implemented, actual tests can be performed. Example tests are dis-
cussed in the next chapter to check if the tool meets the requirements set in Chapter 2.
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4 Results

To test if the tool as expected, four test definitions have been developed. These test definitions
showcase the following in the same order:

1. The basics of writing and running a test.

2. The reusability of tests.

3. The compatibility of the tool with other simulators.

4. The mathematical capabilities of the tool.

4.1 Basics Test

Starting off to show the basics of a test, the test definition depicted in Listing 4.1 is used as an
example.

� �
Feature "PWM Test "

Scenario "PWM Check"
Given "PWM Conversion .emx"
in 20−sim
with "PWM. f " = 10
for 0.11 seconds
Then G( ( "PWM. output" == 2 U

( "PWM. output" == −2 U "PWM. output" == 2) ) )� �
Listing 4.1: PWM Check

Where a feature called "PWM Test" is tested that has only one Scenario, "PWM Check". In this
scenario, a model that does PWM conversions is given. This model converts a sine wave to a
PWM signal. The selected simulator is 20-sim and the PWM frequency is initialized to 10Hz.
The simulation is set to run for 0.11 seconds. The constraint then states that it should globally
hold that the PWM output is 2 until the PWM output is -2 until the PWM output is 2 again.
During simulation is the PWM output captured from 20-sim as is visible in Figure 4.1. The red
line denotes the PWM output. Here it can be seen that the red line starts at 2 and stays there
until it goes down to -2. Then, it goes back up to 2 again where it stays until the end.
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Figure 4.1: 20-sim graph of the PWM output.

The result can then be deducted as follows:

• "PWM.output" == 2 : True in time ranges [0,0.05] and [0.1,0.11]

• "PWM.output" == -2 : True in time ranges [0.05,0.1]

• "PWM.output" == -2 U "PWM.output" == 2 : Is then True in time range [0.05,0.11]

• "PWM.output" == 2 U
("PWM.output" == -2 U "PWM.output" == 2) : Is then True in time range [0,0.11]

• G(("PWM.output" == 2 U
("PWM.output" == -2 U "PWM.output" == 2))) : Is True since the proposition holds from
start to end.

So from this it can be expected that the tool returns "True" as the final result and "Sometimes
True" for "PWM.output" == 2 and "PWM.output" == -2. The result is displayed in Figure 4.2,
which is exactly as expected.

Figure 4.2: Tool output of the PWM Test.
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4.2 Reusability Test

The next test is designed to showcase the reusability of a test definition. This test is defined
in Listing 4.2. All functions implemented into the tool to improve the reusability of tests are
integrated into this test definition. These functions are:

• Allowing multiple Scenario keywords in one Feature.

• Allowing multiple Then keywords in one Scenario.

• Importing a constraint from the constraint file described in Listing 4.3.

• Importing a scenario through the import keyword from the scenario2.test file depicted
in Listing 4.4.

• Using a filler variable to fill out a variable in the second scenario.

• Importing test settings described in Listing 4.5 through the include keyword.

• Defining a method called range at the top that is called twice.

The pre-processor handles all the imports and substitutions and combines these three files into
one large test definition, which is depicted in Listing 4.6.

� �
Feature " Reusabi l i ty "

method range ( var , f i r s t , second ) :
(%var > %f i r s t and %var < %second )

Scenario "Scen1"
Given " double_slider_control .emx"

include " . / t e s t S e t t i n g s . t e s t "
Then " . / then . constraint "
Then range ( " Controller . SignalLimiter2 . output " , 0 , 0 . 2 )

import " . / scenario2 . t e s t " ( 0 . 0 0 5 )� �
Listing 4.2: Reusability Test

� �
range ( " axis . posit ion_real . output " , −1 ,0.1)� �

Listing 4.3: then.constraint

� �
Scenario "Scen2"

Given "C: \ Program F i l e s ( x86 ) \20−sim 4.7\ Models\ slider_bigmotor .emx"
in 20−sim

Then G (X 1 seconds
( abs ( " Carriage . position " − " Setpoint . amplitude " ) < &0 ) )� �

Listing 4.4: scenario2.test

� �
in 20−sim for 1 seconds
with "mode.C" = 1
with " setpoint .C" = 0.05
with " axis . posit ion_real . i n i t i a l " = 0� �

Listing 4.5: testSettings.test
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� �
Feature " Reusabi l i ty "

method range ( var , f i r s t , second ) :
(%var > %f i r s t and %var < %second )

Scenario "Scen1"
Given "C: \ Program F i l e s ( x86 ) \20−sim 4.7\ Models\ double_slider_control .emx"
in 20−sim
for 1 seconds
with "mode.C" = 1
with " setpoint .C" = 0.05
with " axis . posit ion_real . i n i t i a l " = 0

Then range ( " axi s . posit ion_real . output " , −1 ,0.1)
Then range ( " Controller . voltage " , 0 , 0 . 2 )

Scenario "Scen2"
Given "C: \ Program F i l e s ( x86 ) \20−sim 4.7\ Models\ slider_bigmotor .emx"
with " Setpoint . amplitude" = 0.05
in 20−sim

Then G (X 1 seconds
( abs ( " Carriage . position " − " Setpoint . amplitude " ) < 0.005 ) )� �

Listing 4.6: Reusability Test after substitutions.

The first Scenario of this test definition tests the controller of a setup consisting of two slid-
ers. The graph in Figure 4.3 depicts the data of the variables "axis.position_real.output" and
"Controller.voltage" after simulation.

Figure 4.3: Graph of variable data of Scen1.

Where the "axis.position_real.output" value is within the range of -1 and 0.1 for the entirety
of the simulation, so this is expected to be True. "Controller.voltage" is in the range of 0 and
0.2 a bit before t = 0.1 until the end of the simulation. This equation is expected to result in
Sometimes True. Since this constraint only consists of boolean equations, this constraint will
still result in False as the constraint does not hold globally. In turn, the Scenario is expected to
fail.
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The second Scenario tests the motor of a slider. The graph in Figure 4.4 depicts the data of the
variables "Carriage.position" and "Setpoint.output".

Figure 4.4: Graph of variable data of Scen2.

Here it is tested if it globally holds that in the next second, the absolute value of "Car-
riage.position" − "Setpoint.amplitude" is less than 0.005. In the graph can be seen that the
position of the carriage is almost equal to the setpoint from a bit before the 1-second marker
until the end of the simulation. The constraint is therefore expected to return True.

The result of the test is shown in Figure 4.5, which matches the expectations.

Figure 4.5: Tool output of the Reusability Test.
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4.3 V-REP Test

To display that the tool supports multiple simulators, the test in Listing 4.7 is defined, where
V-REP is used instead of 20-sim, like in the other tests. By selecting a different simulator, a dif-
ferent model type and different way of naming variables is required too. Where 20-sim models
have the .emx file extension and make use of dots to show component hierarchy in the variable
naming, V-REP uses .ttt files and more basic variable names.

The model depicted in Figure 4.6 is tested with the test definition described in Listing 4.7. It
consists of a self-driving car that uses a visual sensor to detect obstacles. With the car walled in
by obstacles, it should eventually detect one with its visual sensor. When it does, it should back
up within the next 0.5 seconds.

� �
Feature "VREP Test "
Scenario "VREP"

Given "VREPTEST . t t t "
in V−REP for 40 seconds
Then F ( ( F( " resSig " < 0) and X 0.5 seconds ( " backing " < 0) ) )� �

Listing 4.7: VREP Test

Figure 4.6: V-REP model.
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Running the simulation results in the graph depicted in Figure 4.7. The spikes up to 1 show
when the vision sensor detected an obstacle. The other signal is the velocity of the car. The car
backs up almost instantly when the vision sensor detects an obstacle, so the result of this test
is expected to be True.

Figure 4.7: Graph of variable data of VREP Test.

The output of the tool is shown in Figure 4.8, showing the expected True as a result.

Figure 4.8: Tool output of the VREP Test.
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4.4 Math Test

Lastly, the test defined in Listing 4.8 is in place to show the mathematical operations the system
can perform. A controller’s constant is used to compare the tool’s answer.

� �
Feature "Math Test "
Scenario "Math"

Given " double_slider_control .emx"
in 20−sim

with " Controller . Constant .C" = 707281
for 1 seconds

Then " Controller . Constant . output" == ( sqrt (5*(5^3) )−3+7)^5/29� �
Listing 4.8: Math Test

The tool returns True, meaning it correctly calculated the answer to the equation, as can be
seen in Figure 4.9.

Figure 4.9: Math Test Result.

Conclusions will be drawn based on these test results in the next chapter.
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5 Conclusions & Recommendations

5.1 Conclusions

Restating from Chapter 2, the tool must be able to combine simulation data with the defined
tests to produce answers. This requirement is met through the implementation of the post-
processor. It is shown that these answers are correct in Chapter 4. In the same chapter, the
following requirements are met:

• The test definitions must be Gherkin-style inspired.

• The test definitions must support boolean equations.

• The test definitions must support LTL formulas.

• The test definitions must support model variables.

• The tool should support multiple simulators.

• The tests must be reusable.

It was shown how a user can define tests consisting of Gherkin-style inspired keywords allow-
ing for the user to define behaviors through a combination of LTL formulas, boolean equations
and model variables. Here it was also shown that it is possible to perform tests on multiple
simulators. Another test in this chapter showed that reusability is in place through the use of
import, include and method keywords, along with the possibility to use filler variables and
the ability to import constraints from constraint files.

The modularity of the tool is reflected by how the tool

• Is separated into small blocks that have their tasks.

• Has a responsibility-based communication between components.

• Has simulator-specific interfaces through which the Simulation Control component can
quickly select the correct simulator.

• Has no component other than the Core that needs to interface with more than two other
components.

The automation of the tool is ensured through the fact that the user only needs to provide a test
definition. Everything else gets handled automatically by the tool, requiring no other input.
This was shown in Chapter 4, where the tool only required a test definition to produce results.

Therefore it can be concluded that all set requirements are met. But due to the intention to
design the system in such a way that it can be modified to suit every user’s needs, more features
can be implemented beyond the current basis. The following sections look into future work.

5.2 Recommendations

It is believed that the greatest optimization that could be made within the system is the ad-
dition of parallel testing. If multiple simulators could run their tests at the same time, testing
times can be greatly reduced.
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Another extension could be made within the values that are possible to be used. Currently,
only decimals are supported, but this could be extended to other data types such as 3D values
for orientations and positions allowing for even more in-depth testing.

With different data types, it also becomes possible to display data differently. Due to this
research having the aim to just have a list of True and False as a result of the tests, this was
omitted. Extensions that could be made are for example display of graphs, tables or timelines
to give a better idea to the user at what timestamps something is True or False.

Path handling currently is only done once in the pre-processing phase. This means it is not
recursive, so when an imported file contains an import, this import is not handled anymore.
This could be fixed by running the substitution of these paths repeatedly until no more paths
are left. A better, more scalable solution would be one involving the listener to load in and
substitute files.

Methods could become more extensive by including method overloading, recursion, storing
variables and extra functionality that can make methods more useful.
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Appendices
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A LTL

Linear Temporal Logic is a temporal logic that allows one to reason about state properties in
a Labelled Transition System by defining formulae that describe the future of paths. With it,
it is possible to for example describe that eventually, something will hold True, or something
always holds False. For the sake of simplicity, the only LTS that will be used in this research
will be in the shape of a single one-directional path, where each state relates to a timestamp
within the simulation. This is the advantage of the discrete timestamps that simulations use in
comparison to the continuity of time in real life.

It is assumed that one run of a simulation cannot have multiple possible paths after simulation,
as one is already taken. This taken path effectively becomes a timeline of moments where
certain propositions do or do not hold. This could be compared to a digital signal that over
time can be set to high or low depending on whether a proposition is True or False. An example
timeline can be seen in Figure A.1 If the following states were to represent a timeline of t = 0, t =
1, t = 2 and t = 3, we can now say that:

• ϕ is True at t = 0, t = 1 and False at t = 2, t = 3.

• ψ is True at t = 2 and False at t = 0, t = 1 and t = 3.

Figure A.1: Example timeline.

So, it can be said that when looking at this timeline, starting from t = 0, eventually ψ will be
True. To write this in a more concise and descriptive way, the syntax of LTL formulas is intro-
duced, according to Schmaltz, 2017.

LTL makes use of four operators: X,F,G,U. For this research, W and R are also used. The X, neXt,
operator denotes that from a given state, a proposition is supposed to hold in a state directly
following it. Xϕ holds True in a state if proposition ϕ is True in a directly following state, as is
depicted in Figure A.2.

Figure A.2: Xϕ timeline which holds True.

The U, Until, operator denotes that a formula needs to hold True until another formula is True.
ForϕUψ this means that at some point propositionψneeds to hold and preceding to that point
proposition ϕ needs to hold on every preceding state in the path. This also means that ϕ does
not necessarily need to hold True. If ψ holds True in the first state, ϕUψ holds True. This is
depicted in Figure A.3
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Figure A.3: ϕUψ timeline which holds True.

Fϕ means that eventually ϕ must hold in the future. This is depicted in Figure A.4

Figure A.4: Fϕ timeline which holds True.

The Globally operator is denoted as G. Gϕmeans that for every state in the path, propositionϕ
needs to hold as is depicted in Figure A.5

Figure A.5: Gϕ timeline which holds True.

The W and R operators are a variant on the U operator. ϕ W ψ denotes a Weak until. ϕ has
to hold at least until ψ, which is the same as the U operator. An addition is that if ψ never
becomes True, then ϕ must remain True forever. That way, it is a combination of the U and G
operator.

The R, Release, operator is similar. With ϕ R ψ, ψ has to be True until and including the point
where ϕ first becomes True; if ϕ never becomes True, ψ must remain True forever.

Figure A.6: ϕRψ timeline which holds True.

Due to the atomic propositions that can be defined within the LTL formulas, it is now possi-
ble to extend the basic boolean equations with these LTL formulas. LTL formulas can also be
combined again with boolean equations.

With this, it is believed that a wide variety of tests can be implemented. Examples could be:

• F(Contr ol ler Er r or < 0.01), eventually the ControllerError is smaller than 0.01.

• G(Er r or St ate 6= Reached), globally it must hold that the ErrorState is not Reached.

• Motor Runni ng == Tr ue U Cur r entPosi t i on == Desi r edPosi t i on, the motor must
be running until the current position equals the desired position.

• G(Motor 6=Over heated)∧F(Or i ent ati on == Desi r edOr i ent ati on), globally it must
hold that the motor is not overheated and eventually the orientation should be equal to
the desired orientation.
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B Grammars, Lexers, Parsers, Parse Trees, Listeners &
ANTLR

B.1 Grammar

At the base of a parser lies a grammar. Just like how spoken languages have grammars dictating
what correct sentences are, the same concept is used within parsing. Grammars are sets of
rules consisting of two sides usually separated by a colon. One is the name of the rule on the
left-hand side, the other side being a set of other rules or fragments that constitutes the rule
on the left-hand side. For example, in English grammar, the rule for a correct sentence could
be defined in the way of sentence : subject verb object. Then, if we were to parse the input I like
parsers with this grammar, it would be seen as a correct sentence.

B.2 Lexer & Parser

The lexer is the first step required to parse an input according to a grammar. The lexer’s job
is to take in a user’s input and attempt to turn them into tokens. A token usually consists of a
token name followed by a token value. With again the example input "I like parsers", the lexer
would return a list of tokens in the form of [(subject, I), (verb,like), (object,parsers)]. This has
to be done so that the parser can easily match these tokens with the grammar rules to check if
an input can be parsed correctly. The parser takes in this sequence of tokens and tries to build
up a parse tree from these tokens.

B.3 Parse Trees

A parse tree is an ordered, rooted tree consisting of nodes and leaves. With the tokens provided
to the parser, it will attempt to build such a tree by matching sequences of tokens with the
right-hand sides of grammar rules. Upon finding a matching rule, it connects these tokens
as the children of this rule, making this rule a node in the tree. This node now functions as
another token within the sequence and can be used to combine with other tokens again. The
parser repeats this process until it reaches the start rule. If the parser manages to produce a
parse tree having the starting rule at the top of the tree, then that means that the parsed input
is correct according to the grammar.

The following grammar is used as an example.

� �
grammar example;
sentence : subject verb object;
subject : ’I’ | ’You’ | ’We’;
verb : ’like’ | ’dislike’;
object: ’parsers’ | ’lexers’ | ’grammars’;� �

Listing B.1: Example grammar.

The starting rule here is sentence, as it is the only rule that is never featured on the right-hand
side of any other rule. If we let the parser parse the following test, we expect to get a parse tree
having leaves that show the entirety of the input, and the top of the tree to be a node for the
rule sentence. When parsing the sentence I like parsers with this grammar, the following Parse
Tree is produced, as can be seen in Figure B.1.
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Figure B.1: Example parse tree.

Where in the leaves each character of the given input can be found and the sentence rule is at
the top, so the input conforms the grammar rules.

B.3.1 Listeners

Each listener traverses a given parse tree. This is done by making use of a walker that calls
functions within the listener based on a node or leaf it enters or exits. For example, when exiting
the node "Expression", the exitExpression function will be called. Due to the structure of the
grammar, this equation will have two children. The listener is informed about the children, its
parent and other contextual information relevant for it through a ParserRuleContext object. An
issue with this is that when it is attempted to get the children from this "Equation" node, all
that is returned is the context of the child. This means it is possible to get the text stored in this
node, but when the walker is at the Expression node, it does not scale well to have to delve deep
into the children to find an eventual variable name or number. The solution to this is the use of
a dictionary. This dictionary consists of the unique context of a node, stored with a value. This
is used as follows, say the expression "5*8" is parsed and results in the following parse tree.

Figure B.2: Parse tree of the expression 5*8.

When walking over this tree in a depth-first search, the walker first enters the node expr. When
the walker enters a node, it does not know of any values the children may have. Unless this
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node influences the children, the enter function is skipped. Continuing to walk over the tree
eventually causes the walker to reach the leaf with the number 5. From there, the walker starts
with exiting the nodes. First, it exists the leaf with the number 5 in it, then it exits the atom
node. Upon exiting this node, the exitAtom function is called. This function first establishes
how many children it has and of what type, since, as can be seen in the grammar, the atom
rule has seven subrules. Due to the implementation of the grammar, each of these subrules
is unique, so the correct action for the correct subrule can be performed. In this case, its
only child is of the type NUMBER. It stores its context along with the value obtained from its
child, the number 5, in the dictionary. After this action, the walker continues and exits the
powExpr, which repeats the same action, but instead of retrieving the value from its child,
it retrieves its child’s set value from the dictionary. In this case, this node does not need to
do anything other than passing the value along to the top, as no power was parsed in this
expression. These actions are repeated by every node until the multExpr node at the top is
reached. It detects that it has three children. A multExpr, a * and a powExpr. Based on the
middle child being a *, it knows that it has to perform a multiplication. It retrieves the values
of the multExpr and powExpr from the dictionary and multiplies them with each other. The
result of this multiplication is once more stored in the dictionary under this multExpr’s context.

By using this concept throughout the entire tree, calculations can be performed in the middle
of the tree from which the answers can be passed along so they can be used for other calcula-
tions again. By storing this data somewhere it can be retrieved by the Parse class too, whereas
it could otherwise not reach anything stored in the parse trees. This concept is used in every
listener and influenced the structure of the grammar a lot, as the structure of the grammar
once again had an influence on if calculations would be performed correctly with the correct
children.

B.4 ANTLR

To simplify the amount of work that is required a tool called ANTLR, Another Tool for Language
Recognition is used. ANTLR can read in a grammar and derive lexers, parsers and template
listeners from it. Using ANTLR only leaves the user with the tasks to define a correct grammar
and eventually fill out the listeners based on what the user wants to do with the read input by
walking over the built Parse Trees. ANTLR, in this case, is only an example of a parser that can
be used, but the tool is not limited to ANTLR alone.
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C Grammar

C.1 Grammar Definition

� �
grammar Grammar;
entry : feature scenario+;
feature : ’Feature’ NAME methods;
scenario : ’Scenario’ NAME

(LPAR fVar (’,’ fVar)* RPAR)? given then+ |
imprt (LPAR fVar (’,’ fVar)* RPAR)?;

imprt : ’import’ (PATH | NAME);
methods : method*;
given : ’Given’ model settings*;
settings : (’for’ time) |

(’with’ initVars) |
(’in’ simulator) |
(’include ’ (PATH | NAME)) ;

time : expr ’nanoseconds’ |
expr ’microseconds’ |
expr ’milliseconds’ |
expr ’seconds’ |
expr ’minutes’ |
expr ’hours’;

initVars : initVar (’,’ initVar)*;
initVar : NAME ’=’ (expr | boolean);
boolean : ’False’ |

’True’ |
’true’ |
’false’;

simulator : ’20-sim’ | ’V-REP’;
then : ’Then’ constraint ;
model : PATH | NAME;
fVar : expr;
constraint : LPAR constraint op constraint RPAR |

tempSing LPAR constraint RPAR|
tempDouble |
CONSPATH |
’not’ constraint |
constraint ’for’ time |
equation |
methodCall;

tempDouble : LPAR constraint tempDoub tempDouble RPAR |
LPAR constraint tempDoub constraint RPAR;

func : ’max’ | ’min’ | ’abs’;
tempSing : ’F’|’G’|’X’ time |

’eventually’ | ’globally’ | ’next’ time;
tempDoub : ’U’|’R’|’W’ |

’until’ | ’release’ | ’weakrelease’;
op : ’and’ | ’or’ | ’->’ | ’<>’;
equation : cons EQ cons |

cons LT cons |
cons LTE cons |
cons GT cons |
cons GTE cons |
cons NOT cons;
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cons : function |
boolean |
methodCall;

function : func LPAR function RPAR |
expr;

methodCall : ID LPAR callArgs RPAR;
callArgs : expr (’,’ expr)*;
method : ’method’ ID LPAR args RPAR ’:’ constraint;
args : ID(’,’ ID)+;
fillVar : ’&’ NUMBER;
functionVar : ’%’ ID;
expr : expr (PLUS | MINUS) multExpr |

multExpr ;
multExpr : multExpr (TIMES | DIV) powExpr |

powExpr ;
powExpr : powExpr POW atom | atom;
atom : MINUS atom #negAtom |

LPAR atom RPAR #parAtom |
NUMBER #numAtom |
LPAR expr RPAR #exprPar |
fillVar #fVarAtom |
functionVar #funcVariable |
NAME #nameAtom;

LPAR : ’(’;
RPAR : ’)’;
PLUS : ’+’;
MINUS : ’-’;
DIV : ’/’;
TIMES : ’*’;
POW : ’^’;
SQRT : ’sqrt’;
LT : ’<’;
LTE : ’<=’;
GT : ’>’;
GTE : ’>=’;
NOT : ’!=’;
EQ : ’==’;
QUOTES : ’"’;
CONSPATH : QUOTES (’a’ ..’z’ | ’A’..’Z’ | ’0’..’9’ |

’(’ | ’)’ | ’.’ | ’\\’ | ’/’ | ’:’ | ’-’ |
’ ’ | ’_’ )+ ’.constraint’ QUOTES;

NAME : QUOTES (’a’ ..’z’ | ’A’..’Z’ | ’0’..’9’ |
’ ’ | ’.’ | ’_’)+ QUOTES;

PATH : QUOTES (’a’ ..’z’ | ’A’..’Z’ |
’0’..’9’ | ’(’ | ’)’ | ’.’ | ’\\’ |
’/’ | ’:’ | ’-’ | ’ ’ | ’_’ )+ QUOTES;

ID : (’a’..’z’ | ’A’..’Z’)+;
NUMBER : (’0’..’9’)+ (’.’ (’0’..’9’)+)?;
COMMENT : ’/*’ .*? ’*/’ -> skip;
LINE_COMMENT: ’//’ ~[\r\n]* -> skip;
WS : [ \t\r\n]+ -> skip;� �
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C.2 Grammar Rules

C.2.1 Grammar

The implementation of the grammar is based on the shape the eventual tree will have. Every
operator needs to have certain children. The LTL formulas are always performed over another
LTL formula or a constraint. These constraints are made up of equations and these equations
are made up of numbers and variables. Implementing the grammar this way allows for better
structure in the parse trees used by the listeners. The following sections will go through the
keywords and how they are used.

C.2.2 Expressions

At the bottom, it can be seen that mathematical expressions are supported. They follow the
correct mathematical rules within precedence and associativity. The leaves will always be or
become numbers. It is possible to make use of variables that are later filled out by the answers
given from the simulation, except when an expression is used for for example the time that the
simulation needs to run, as then the value needs to be known beforehand. Then, the grammar
follows the precedence rules by first calculating powers and square roots, followed by multipli-
cation and division followed by addition and subtraction. Working up the tree a rule function
can be found. This allows the user to call mathematical functions over an expression, such as
min, max and abs, as can be seen with the func rule.

C.2.3 Equations

These mathematical expressions can then be combined into an equation. Such an equation is a
boolean equation. The rule contains a few comparators such as ==,<,> and <=. A user can use
this rule to compare values, booleans and answers of methodcalls which are explained later.

C.2.4 LTL

The rules tempSing and tempDoub are in place to support the parsing of LTL formulas. Where
tempSing refers to LTL formulas with a single argument; F, G and X and tempDoub to LTL for-
mulas with two arguments; U, R and W. An extra rule tempDouble is in place to ensure the
right-associativity of the U, R and W formulas. For user-friendliness and readability the op-
tions to fully write out the keywords is supported too with eventually, globally, next, until,
release and weakuntil. An adaptation has been made to the X operator. Since the X operator
is supposed to denote the next state and robotic systems not having such distinctive states as
software programs have, it is decided to instead allow the user to define a time with the X oper-
ator. So, the user can define something along the lines of in the next 0.2 seconds, proposition a
needs to hold.

C.2.5 Constraints

All these rules are eventually combined in the constraint rule. A constraint can be just a
methodcall or equation, or a full LTL formula. Here, it is possible to compare entire constraints
with each other by using logical and, or, implication or equality.

Another operation that can be done is using the logical not over a constraint. Aside from that,
using the for keyword, the user can define for how long a constraint needs to hold for it to be
seen as True. Lastly, the user can create constraint files that can be imported to allow for easy
reuse of constraints by just giving the path pointing to a .constraint file.
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C.2.6 Settings

Three settings can be set for a simulation: for, with and in.

The for keyword determines how long the simulation needs to be run. If no time is given, the
default time of the simulator or model is used.

The with keyword allows the user to define initial variables within the simulation to easily
change the environment in which a test occurs. It is possible to set multiple variables by
repeating the with keyword or separating the variables with a comma.

The in keyword allows the user to define in which simulator the test should be run, allowing
the user to easily switch between simulators merely by typing in a different name. Due to
the modularity of the system, no other settings need to be changed or set when changing
simulator, given that the names of variables are correct.

The include keyword allows the user to reuse settings from an external file by stating either a
path pointing to such a file containing these settings or just the name of the file if it is stored in
the same folder as the rest of the test files.

C.2.7 Scenario

The scenario rule serves as the definition of a scenario. In a scenario all of the above rules
are packed together, allowing the user to define different constraints and settings per scenario
while working in one file. It is possible to have multiple then keywords to define more inde-
pendent constraints.

C.2.8 Feature

The entry rule then combines all these scenarios into one Feature to maintain the Gherkin-
based structure as explained before.

C.2.9 Methods

It is possible to define methods for a feature. An example of a test using methods can be seen
in Listing C.1.

� �
Feature "Demo Test "

method r e t ( a , b , c ) :
(%a < 10 and %b == %b )

Scenario " Overshoot t e s t e r "
Given " double_sl ider_control . emx"

in 20−sim f o r 1 seconds
with "mode .C" = 1
Then r e t ( 0 , 1 0 , " setpoint .C"� �

Listing C.1: Example method declaration and call.

The method needs to be defined at the very top of a feature. A function is declared according to
the method rule in the grammar. The body of a method is a constraint that can make use of the
provided arguments by using a % symbol followed by an identifier. The method can be called
from a constraint as is defined by the methodCall rule. It is possible to call a method multiple
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times with different arguments and since methods are in the scope of a feature, every scenario
can make a call to it.

C.2.10 Filler Vars

These variables are used to provide more ease to reusing tests. These variables can be declared
by using the & symbol followed by a number. This numbering starts at 0 and corresponds to
the index of the list of the given arguments. The actual values given for these variables can be
in the form of an expr, so a mathematical expression or variable. In Listing C.2 it can be seen
that the arguments are the variable "axis.position" and the number 20.

� �
Feature "Demo Test "

Scenario "Overshoot t e s t e r "
import " . / t e s t . f i l e " ( " axis . position " ,20)� �

Listing C.2: Test pre-substitution

In the "test" file that can be seen in Listing C.3 all the variables with &0 will be substituted with
"axis.position" and &1 with 20.

� �
Given " double_slider_control .emx"

in 20−sim for 1 seconds
with "mode.C" = 1
Then &0 < 10 and "motor . angle " == &1� �

Listing C.3: Test.file

The output then becomes as is displayed in Listing C.4.

� �
Feature "Demo Test "

Scenario "Overshoot t e s t e r "
Given " double_slider_control .emx"

in 20−sim for 1 seconds
with "mode.C" = 1
Then " axis . position " < 10 and "motor . angle " == 20� �

Listing C.4: After substitutions

C.2.11 Comments

Comments can be placed anywhere in the test. Line comments are preceded by //. Commenting
out a certain set of characters can be done by placing them between /* and */.
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D Implementation

D.1 Processing

Parse class The parse class functions as the wrapper around the listeners and interfaces
with the Core. This is put in place so that the listeners are built independent from each other
and only depend on information given by the Parse class, reflecting the responsibilities and
modularity of the system.

The parse class has eight functions in total. The first function called in the system is the pre-
proc function. Here, the class makes the Pre-processor’s listener go over the input provided
by the user. The model names, paths and filler vars stated in the user’s input are substituted
based on the values returned from the Pre-processor’s listener. This substituted input is then
put through to the Main processor’s listener. Since the input will not change anymore between
here and the Post-processor’s listener, the parse tree is saved. This means that values and an-
swers stored in the dictionary can be reused in the Post-processor’s listener since the contexts
of the nodes remain the same. This reduces the number of calculations that are required to be
performed. Based on method calls returned by the Main processor’s listener, the Parse class
produces methods, which is explained more in detail in Section D.2. With the returned test
data the Parse class builds Test classes.

Test class To improve interfacing and structure of the data passed between components, Test
classes are introduced. These Test classes contain:

• Modelname: The name of the model the test will be checked against.

• Test: A list of variables that need to be checked during the simulation.

• Result: A dictionary that maps these variables to their results.

• Time List: A list with all timestamps of the simulation.

• Init Vars: A list of variables that are initialized before simulation.

• Runtime: A number representing the length of the simulation.

• Simulator: The name of the simulator the test will be run in.

As this test class is passed through between components, each component can take out the
information that is required for their execution and fill out fields for which they have obtained
values after execution. This keeps all the data for one test contained, so when running multiple
tests at once, it can’t happen that results are mixed up.

When postproc is called in the Parse class with a list of filled out Test classes, the Parse class
handles the methods, runs the Post-processor’s listener and cleans up the output produced by
the Post-processor’s listener by removing any variables. This output is later used by the User
Interface to produce the output on the screen.

Expressions At the bottom of the tree are the expressions. With every variable filled out, these
can be calculated first. Timestamps do not yet matter at this point so they are not taken into
consideration yet.

It is possible to use three pre-defined functions over these expressions: abs, min, and max. The
abs function turns every value in the list into an absolute value. The min and max functions
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turn every value of the lists into what the minimum or maximum is respectively at that mo-
ment in time. For example, min([10,9,11,3,0,7,9]) will result in [10,9,9,3,0,0,0]. Even though the
minimum becomes 0 at a later point in time, that is not yet the case at t = 0. This is also applied
to the max function.

Equations When all expressions have been resolved, the boolean operators are reached
higher up in the tree under the equation rule. Implemented comparators are <,<=, >, >=,! =
and ==. Since from here and higher up the tree it only matters if statements are True or False
and at what timestamps, this equation returns a list with True or False on index 0 and a list of
timestamps for which the equation is True on index 1. Meaning that if the list of timestamps is
empty, then a statement is generally False. To better the performance of the tool, these times-
tamps are truncated to time ranges, reducing the sizes of the lists passed around within the
tree.

Constraints After all the equations have been resolved, constraints are the next step higher up
in the tree. Its main entry point is through equations, as the other rules are all recursive back to
the constraint rule, even method calls. Method calls are isolated constraints which are also at
some point down the tree built up of equations. Therefore at this point in the grammar, each
rule works with the same kind of data, allowing for recursion within the rule. That way, LTL
formulas, method calls, and boolean operators can be combined to create larger constraints.

Boolean Operators There are five logical operators implemented. And, or, not, implication
and biconditional. Each implemented function for these operators takes in two lists of time
ranges and returns one with time ranges for which the operator holds, except for the not op-
erator. The not operator takes just one list of time ranges and inverts it based on the full timelist.

The and operator is implemented through an intersection checker. This checks for overlap in
time ranges in the two provided lists. The returned list consists of time ranges for which both
sides of the and operator are True.

The or operator merges the two lists by checking for inclusive disjunction. Overlapping time
ranges are merged to just one time range to prevent duplications.

Implication and biconditional are implemented by combining the checkers mentioned before.
Implication has the following equivalence:

ϕ⇒ψ≡¬ϕ∨ψ

Therefore a combination of the inverter and inclusive disjunction checker can be used to pro-
duce an implication checker. Biconditional has the following equivalence:

ϕ⇔ψ≡ (¬ϕ∨ψ)∧ (¬ψ∨ϕ)

Therefore this checker can also consist of just inversions and inclusive disjunctions.

Timed Constraints When a constraint should not hold for just one moment in time, but for
a longer period, it is possible to use the for keyword. The time can be defined ranging from
nanoseconds to hours. A checker for this takes in a list of time ranges and checks if any of them
are longer than the time set for it to hold. If so, a list is returned consisting of time ranges for
which this holds.
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LTL Formulas The LTL formulas are split in two rules. One for the singular formulas F, G and
X and one for formulas that take in two arguments: U, R and W.

The F operator takes in a list of time ranges. If this list is empty, meaning that the statement
is never True, the list is returned as empty. If the list is not empty, then that means that the
operator holds from t = 0 until the last timestamp for which the provided proposition is True.
The returned values then are True, along with that time range.

The G operator checks if the provided list of time ranges consists of one entry that spans the
entire time for which the simulation has run by comparing it against the full timelist. If that
is the case, then True is returned along with the original list. If not, False is returned with an
empty list.

The X operator checks if a statement holds in the next given time. This is done by deducting
that time from the starting time of a provided time range, as this operator starts holding True
for that given time before the given proposition is True. True is returned along with the timelist
with deducted values. If ϕ is never True, then Xϕ returns False and an empty list.

The U operator is implemented using its recursive expansion:

ϕ U ψ=ψ∨ (ϕ ∧X (ϕ U ψ)).

Which can be interpreted as ψ needs to hold, or ϕ needs to hold given that in the next state ϕ
holds or ψ holds. This process is repeated until ψ finally holds and until that point, in every
preceding state ϕ has to hold. This X operator is different from the X operator used in the
grammar, as this one retrieves the state succeeding the current state and is not bound by any
time parameters.

The W operator is similar to the U operator. The difference is that withϕWψ,ψ does not neces-
sarily need to hold. If that is the case, then ϕ needs to hold globally. This leads to the following
equivalence:

ϕWψ≡ (ϕUψ)∨Gϕ≡ϕU(ψ∨Gϕ)

By reusing the already implemented U and G checker, the W operator is implemented.

A similar approach is taken for the R operator.

ϕRψ≡¬(¬ϕU¬ψ)

where a combination of the inverter and the U checker can be used.

Then, Scenario and Feature Rules The exit function of the then rule checks if the underlying
constraint has returned True or False. Since from this point on, timestamps are no longer rele-
vant, they are omitted. The top of a constraint may consist of just an equation, so no temporal
formulas. By default is this constraint checked with the G operator here to determine if True or
False will be returned. This is repeated by the exit function of the scenario rule, combining ev-
ery then it contains. It is repeated once more by the exit function of the feature rule, that applies
this process to every scenario it contains. This answer is also the final answer to the test.
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Output

When all scenarios have been completed, the results are accumulated and combined with a
logical and. The final result of the test then results in True or False. The output is extended
with a more elaborate output that has been logged during the walking of the tree. In each
equation, constraint and scenario, it is checked if a certain proposition holds. If it does, it is
checked with the G checker to see if something is Always True or just Sometimes True. This
output is eventually displayed on the screen as the final answer to the tests.

D.2 Method Handling

Methods consist of two parts. The definition and calls. Only one method can be defined under
a certain name, meaning method overloading does not work. A method can be called multiple
times, which means that a simple substitution does not work here. On one end are these calls
that provide arguments and expect an answer to this call in the same place. This needs to
be known before the simulation, therefore this data is retrieved by the Main processor. On
the other end is the definition of the method, which requires these arguments before it can
calculate and return an answer. Since substitution does not work, a better solution needs to be
implemented to bridge this gap. This is done by the Parse class in the following order:

1. It collects the calls and arguments lists from the Main processor.

2. It transforms these lists into one list consisting of the method’s name, locations of the
method calls, a mapping of a method’s arguments with the provided arguments from the
call and a scenario number.

3. Before the Post-processor is called, the answers to the methods are calculated, so the
Post-processor does not have to do anything special when reaching a method call.

Since it is not possible to tell the walker to re-walk a certain part from within the listener, the
Parse class has to do this from the outside. It only walks over the methods branch of the parse
tree to achieve this effect. Every method is walked as many times as it is called. For these calls,
the listener is provided with argument locations in the method along with their value. It works
with the results and timelist obtained from the simulation for the corresponding scenario, as
this influences in what environment the method is called.

Finally, when the answer for each call has been obtained, the Parse class combines the call lo-
cation and answer and passes it on to the Post-processor. By providing the exact location in the
parse tree along with the value, the Post-processor can use these answers for later calculations.

D.3 User Interface

The Graphical User Interface is created in Python, making use of the library Tkinter. Reiterating
from the requirements, the user interface should have the possibility to run, modify, add and
delete tests. In Figure D.1 below can be seen that buttons are in place to allow for this sort of
functionality, along with some extensions.
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Figure D.1: The GUI.

To the left is a list showing currently saved tests. The user can select any of these and then
click on Modify, Delete, Group or Run to do the corresponding action. Selecting two tests and
clicking the Group button allows the user to merge two tests into one, which is put in place so
that users can easily combine smaller tests to make a larger, more expansive test put together
in a single test file.

To the right are two text fields. The one at the top allows the user to define the name of the
test and below it is a field where the user can define the test itself. When the test has been fully
described by the user, they can press the Add button for the test to be saved under the given
name and will then be visible in the list to the left. When a test has been selected on the left
and the Run button is pressed, the simulation will be run and the answers to the test will be
returned. An example output can be seen in Figure D.2.

Figure D.2: Example output.

Where the test name is stated at the top, along with Always False, Sometimes True or Always
True, depending on the result. The deeper levels are indented to indicate their level, also fol-
lowed by their corresponding answer. The Settings button is put in place to lead to the dialog
in Figure D.3.

Figure D.3: Settings dialog.

These four settings are entirely optional and only intended to make the tool easier to use. Test
Path defines the location of the saved tests. Model Path and Constraint Path are two variables
used during testing to point to the locations of saved models and constraints, so that the user
does not have to type in full paths each time. Output Level is an option used by the User In-
terface detailing how verbose the output is preferred to be. These settings are stored in a small
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text file so that the settings are preserved between sessions and the user does not have to fill
them out again every time.

D.3.1 Command-line

Since the User Interface only needs to provide a path to the test file and optionally some settings
such as Model Path, Constraint Path and Output Level, a much simpler User Interface would
suffice. If the user does not feel like having to click through a GUI or wants to integrate the
tests into another system, the User Interface could be slimmed down to just a call from the
command-line, like in Figure D.4 below.

Figure D.4: Running a list of tests from command-line.

Here, multiple test files can be tested through at once by separating them with a comma. They
are followed by optional settings. The system provides two outputs. One textual output that
can be printed to the command-line window and a boolean which corresponds to the failing or
succeeding of a set of tests. This boolean could, for example, be used in more elaborate batch
scripting.

D.4 Dataflow

Putting all these components and responsibilities together in one picture gives what can be
seen in Figure D.5. The tool works as a long tube through which data passes and is transformed
in each component, going from user input to output without any branches.
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Figure D.5: Dataflow overview of the system.

Each transfer of data is marked with a number showing the steps it takes to be processed
through the tool.

1. Input is provided by the user.

2. The user pressed run and the test is forwarded to the Core.

3. The taken input is put through towards the Pre-processor in the Parser.

4. The test is put through to the Main processor after substitutions.

5. The Main processor produces a list of these Test classes that are returned to the Frame-
work.

6. This list of Tests is forwarded to the Simulation Control component.

7. The Simulation Control module provides the correct simulator interface with simulation
data.

8. Internal communication between the sim interface and the simulator itself.

9. Simulator returning requested data.

10. The sim interface returns the timestamped results of the tracked variables during the
simulation.

11. The Simulation Control component fills out these results into the Test classes in the orig-
inal list of tests and returns the list of Test classes to the Core.

12. This list of tests is provided to the Post-Processor.
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13. The Post-processor returns answers to all the tests.

14. The Core forwards these results to the User Interface.

15. The results are outputted.
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