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Summary

Field-Programmable Gate Arrays (FPGAs) are semiconductor devices that contain
programmable logic blocks and interconnection circuits. An FPGA can be pro-
grammed or reprogrammed to the required functionality after manufacturing. Dy-
namic Partial Reconfiguration (DPR) is a feature of FPGA devices that enables us
to change only a part of its configuration memory during run-time and not alter the
rest of the system. Normally, when using this feature, the FPGA fabric is separated
into two areas: static and partial. The static area of the FPGA fabric is used to im-
plement the functionality that is required all the time, where the partial area of the
FPGA fabric is used to configure functional blocks (modules) that can be used in a
time-multiplexed manner.

The leading FPGA manufactures, Xilinx and Intel, support DPR in their develop-
ment tools. By using these tools, we can configure only one module into the partial
area at a time. As a consequence, we cannot use the unutilized resources if a rel-
atively small module is configured within the partial area. Also, the complete partial
area is reconfigured despite the size of the module. Therefore, the time to recon-
figure a small module requires the same amount of time in comparison to a large
module. The reason is that the reconfiguration time is proportional to the area being
reconfigured. Another disadvantage of the vendor tools is that module relocation is
not supported. Module relocation means that the same module can be configured
onto multiple locations. This feature also allows us to instantiate a module multiple
times on the fabric of the FPGA.

In this work, we present a framework that overcomes the limitations of the vendor
tools. The framework supports the configuration of multiple modules in the partial
area simultaneously. Therefore, a large module can be replaced by multiple small
modules. Also, in this framework, we reconfigure only the resources that are re-
quired by the modules. As a result, we minimize the reconfiguration time. Finally,
module relocation is supported.

The academia presented some DPR architectures that divide the partial area into
two-dimensional slots. This construction is called grid-style reconfiguration. Grid-
style reconfiguration enhances the utilization efficiency of the resources within the
partial area. The reason is that multiple modules can be configured within the partial
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IV SUMMARY

area at the same time, and these modules occupy one or multiple slots according
to their resource requirements. Furthermore, in grid-style reconfiguration, only the
slots that are used by the modules are reconfigured. As a result, the reconfiguration
time is minimized, since not the complete partial area is reconfigured, but only the
slots that are occupied by the modules. Also, module relocation among slots is
feasible, which makes the placement of the modules in the grid very flexible.

The most challenging in grid-style systems is to establish communication be-
tween the static area and the partial area, and module-to-module communication.
The current academic tools that support grid-style reconfiguration are GoAhead and
Dreams. Both tools have their disadvantages. In GoAhead, the limits concern its
communication architecture, where Dreams has several restrictions in its design
flow. In this work, we adapt the communication architecture from Dreams and use
the GoAhead design flow to implement the grid-style system. We extend the GoA-
head tool such that we can implement the communication architecture of Dreams by
using the GoAhead tool.

At the beginning of our design flow, we use GoAhead to generate design tem-
plates and constraint files. The design templates must be merged within the existing
design files. Furthermore, the constraint files must be included in one of the vendor
tools to incorporate with the low-level device-dependent operations. The final result
is a full bitstream and a various number of partial bitstreams. The full bitstream rep-
resents the static system and should be configured on the FPGA first. Then, during
run-time, modules can be configured on the FPGA by using the partial bitstreams.

A case study demonstrates the framework. The aim of this case study is a coun-
termeasure against physical attacks. Usually, the goal of these physical attacks is
to extract the secret key from a cryptographic implementation on the FPGA. These
attacks are based on analyzing characteristics of a hardware implementation, such
as timing information, power consumption, or electromagnetic leaks. Now, by using
DPR, we reconfigure the cryptographic implementation continuously with its vari-
ants. These variants have the same functionality but have a different hardware
implementation. Consequently, the characteristics of the hardware implementation
become random, and therefore, the physical attacks become more difficult or even
impossible.

The result of this work is a development tool that enables us to use DPR more
efficiently. The system allows us to configure multiple modules in the partial at the
same time. Also, module relocation is supported, which gives us a lot of flexibility
in the placement of the modules. Finally, the reconfiguration time is minimized,
since we only reconfigure the slots that are occupied by the modules. For future
work, more steps in the design flow could be automated, and support for simulation
should be added.



Contents

Summary iii

List of acronyms vii

1 Introduction 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Report Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Field-Programmable Gate Arrays . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 General Architecture of FPGAs . . . . . . . . . . . . . . . . . . 5
2.1.2 General Design Flow of FPGAs . . . . . . . . . . . . . . . . . . 8
2.1.3 Xilinx FPGA Terminology . . . . . . . . . . . . . . . . . . . . . 9

2.2 Dynamic Partial Reconfiguration . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Benefits of DPR . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 DPR Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Commercial DPR Tools . . . . . . . . . . . . . . . . . . . . . . 19

3 Related Work 23
3.1 Academic DPR Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Comparison of DPR Tools . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Concept for Grid-Style Partial Reconfigurable System 29
4.1 Limits of the Current DPR Tools . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Proposed Grid-Style DPR System . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Static System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.3 Planning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Tool Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Implementation 49
5.1 Basics of GoAhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



VI CONTENTS

5.2 Implementing the Static System . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1 Synchronous Systems . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Interface Constraints . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 VHDL Templates . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.4 Placement Constraints . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.5 The Blocker Macro . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.6 Implementation in Vivado . . . . . . . . . . . . . . . . . . . . . 76

5.3 Implementing the Modules . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.1 Implementation in GoAhead . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Implementation in Vivado . . . . . . . . . . . . . . . . . . . . . 84
5.3.3 Creating Partial Bitstreams . . . . . . . . . . . . . . . . . . . . 84

6 Case Study: AES 87
6.1 AES Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Static/Partial Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Static System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Conclusions and Recommendations 101
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

References 103



List of acronyms

AES Advanced Encryption Standard

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

BEL Basic Element

BLE Basic Logic Element

BRAM Block RAM

CAD Computer-Aided Design

CLB Configurable Logic Block

DPR Dynamic Partial Reconfiguration

DR Dynamic Reconfiguration

DSP Digital Signal Processing

FF Flip-Flop

FPGA Field-Programmable Gate Array

GUI Graphical User Interface

HDL Hardware Description Language

I/O Input/Output

ICAP Internal Configuration Access Port

INT Interconnection

IOB Input/Output Block

LUT Lookup Table

vii



VIII LIST OF ACRONYMS

PIP Programmable Interconnect Point

PRC Partial Reconfiguration Controller

SDR Software-Defined Radio

SEU Single Event Upsets

SRAM Static Random-Access Memory

TCL Tool Command Language

VHDL VHSIC Hardware Description Language

XDL Xilinx Design Language



Chapter 1

Introduction

Field-Programmable Gate Arrays (FPGAs) are flexible general-purpose electronic
devices that can be used to implement digital circuits. FPGAs are composed of pro-
grammable logic blocks and routing interconnections. The logic blocks host logic
functions, where the routing interconnections connect these logic functions to build
large systems. The FPGA vendors offer Computer-Aided Design (CAD) tools to
develop custom applications for their FPGAs. Usually, the digital systems are de-
scribed by using a Hardware Description Language (HDL). Once the design is
finished, the CAD tools are used to translate the described digital system into a
bitstream. The bitstream contains the information for all the programmable logic
blocks and routing interconnections and can be loaded on the FPGA by using one
of the configuration interfaces.

In the early days of FPGAs, the available resources were limited. Therefore,
Dynamic Reconfiguration (DR) was suggested. In this approach, the configuration
memory is reconfigured during run-time. This allows us to build larger systems on
fewer resources. The reason is that in this technique, the resources on the FPGA
are used in a time-multiplexed manner. By configuring only the functional blocks that
are required at a certain point in time, we can build systems on fewer resources.

In DR, the complete FPGA is reconfigured. This has some disadvantages. First
of all, we require an external controller to reconfigure the FPGA. This controller
determines when and which bitstream is configured into the FPGA. Furthermore,
reconfiguring the complete FPGA erases all the memory bits. Therefore, the status
of state machines or any other data that should be retained must be stored in ex-
ternal memory before reconfiguring. Once the reconfiguration is finished, we have
to restore the status. Finally, the reconfiguration is rather slow since we reconfigure
the complete FPGA. The reason is that the reconfiguration time is proportional to
the size of the area being reconfigured.

In modern FPGAs, the configuration memory can be reconfigured in small por-
tions. Hereby, the rest of the system is not altered. Therefore, we can split the
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2 CHAPTER 1. INTRODUCTION

FPGA fabric into two regions: static and reconfigurable. In the static region, the
logic remains the same during run-time, where the reconfigurable region is used to
configure functional blocks (modules) that are needed at a certain moment. The
run-time reconfiguration on only a part of the FPGA fabric is called Dynamic Partial
Reconfiguration (DPR).

DPR offers some huge advantages over DR. By using DPR, we can build sys-
tems that can modify themselves autonomously. We can do this by locating the
controller in the static region of the FPGA fabric. The controller can use an internal
configuration interface to reconfigure the reconfigurable region on the FPGA struc-
ture. Furthermore, the down-time of the system due to reconfiguration decreases
significantly, since we reconfigure only a part of the whole FPGA fabric. In the litera-
ture, there are many applications demonstrated that benefit from DPR. One of them
is the instruction set architecture of a soft-processor. By using DPR, the system can
substantially enhance performance and area at the same time. Other examples are
database acceleration and security applications.

Previously, we have seen how we partition the FPGA fabric into two separate
regions in DPR. Now, we discuss the reconfigurable region in more detail. Usually,
we call the reconfigurable region the partial area. A system might provide multiple
partial areas. We can categorize the partial area in different reconfiguration styles.
The simplest form of reconfiguration is island-style. In this style, the partial area can
host only one module at the same time. It is not feasible to configure multiple mod-
ules simultaneously, even if there are unutilized resources within the partial area.
The resources that are available but cannot be used due to this method is called
internal fragmentation.

We can distinguish the island-style reconfiguration into two sub-categories: sin-
gle and multi island-style. In single island-style, a set of modules can only be config-
ured within one specific partial area, where multi island-style supports the placement
of a single module into two or more partial areas. This is called module relocation.
Module relocation means that the same module can be configured in different loca-
tions onto the FPGA fabric. Also, module relocation makes it possible to instantiate
a single module multiple times on the FPGA structure.

A more advanced reconfiguration style is slot-style. In slot-style, the partial area
is partitioned into one-dimensional slots. Modules can occupy the number of slots
according to their resource requirements, and multiple modules can be configured
within the partial area simultaneously. This style solves some problems that we
had in the island-style approach. Namely, by dividing the partial area into slots, we
decrease the internal fragmentation significantly. The reason is that the modules
only occupy the number of slots according to their resource requirements, and leave
the other slots free for other modules. Note that there is usually still a small portion of



1.1. PROBLEM DESCRIPTION 3

internal fragmentation since the modules might require only a part of the resources
in a slot. Therefore, the more fine-grained the partial area, the less the internal
fragmentation.

The most advanced reconfiguration style is grid-style. This style is similar to
slot-style. However, in grid-style, the partial area is partitioned into two-dimensional
slots. This allows us to build even more fine-grained partial areas and thus reduce
the internal fragmentation even more.

In the following, we discuss the existing tools to develop DPR applications. The
two leading FPGA vendors, Xilinx and Intel, provide CAD tools to develop DPR
applications. The design flow of these tools is very similar, and therefore, they have
the same restrictions.

The only reconfiguration style that these tools support is island-style. More pre-
cisely, module relocation is not supported, and therefore, only applications with sin-
gle island-style reconfiguration can be developed. Furthermore, the development of
the modules is dependent on the static region. As a consequence, any change in
the static region requires a complete reimplementation of the modules. Finally, the
way they implement the communication architecture between the static region and
the modules causes logic overhead.

1.1 Problem Description

As we have seen, the DPR tools have some significant limitations and in particular,
due to the single island-style reconfiguration. We cannot configure multiple modules
in the partial area, which causes a considerable amount of internal fragmentation
if we have modules with substantial differences in resource requirements. Further-
more, the whole partial area is reconfigured in island-style, despite the size of the
modules. As a consequence, the time to reconfigure a small module takes the same
amount of time in comparison to a large module. Especially, applications that re-
quire a fast context switch, it is essential that the reconfiguration time is as short as
possible (e.g., database acceleration).

Another disadvantage is that module relocation is not supported. Therefore, if
we would like to configure the same module in multiple partial areas, we require for
each partial area a separate bitstream, even if the size and footprint of the partial
areas are exactly the same. As a disadvantage, the development time increases
since we have to generate more bitstreams. Also, we require additional memory to
store all the bitstreams.

In this work, we present a development tool that enables us to build very flexi-
ble and fine-grained DPR systems. By using a fine-grained DPR system, we can
configure multiple modules at the same moment on a smaller area, since the inter-
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nal fragmentation is minimal. As a result, we can implement the system on smaller
devices with fewer resources, such as internet of things devices. Another essential
advantage of a fine-grained DPR system is that we minimize the area to reconfigure.
Therefore, we reduce the reconfiguration time. The reason is that we only have to
configure the slots that are occupied by the modules and not the whole partial area.

1.2 Report Organization

This section describes the structure of the report. In Chapter 2, we provide back-
ground information for the reader that is relevant for this research. The main topics
are FPGAs and DPR. More precisely, we describe the architecture of FPGAs in
more detail and introduce some terminology related to DPR. Furthermore, we have
a closer look at the implementation of the DPR applications by the vendor tools.

In the following, we discuss related work from academia. We describe the rel-
evant academic DPR tools and how they have overcome some of the limitations of
the vendor tools. Furthermore, we compare all the academic and vendor tools. This
is all part of Chapter 3.

In Chapter 4, we introduce our proposed DPR system and design flow. The im-
plementation of this system is described in Chapter 5. In the following, we demon-
strate our framework with a case study. This is part of Chapter 6. Finally, in Chap-
ter 7, we conclude the research and provide several recommendations for future
work.



Chapter 2

Background

This chapter provides the reader with the background information that is relevant for
this research. This chapter is organized as follows. In Section 2.1, we describe first
the general architecture and the design flow of FPGAs. At the end of this section,
we take a closer view at the FPGA architectures of Xilinx devices. DPR on FPGAs is
discussed in Section 2.2. In this section, we describe the potential benefits from us-
ing DPR on FPGAs. Furthermore, some terminology related to DPR is introduced.
The section concludes with a description of the current DPR development tools pro-
vided by the vendor tools and their limitations.

2.1 Field-Programmable Gate Arrays

Field-Programmable Gate Arrays (FPGAs) are semiconductor devices that are widely
used in electronic circuits. These devices are composed of programmable logic and
routing interconnections that can be programmed to implement digital designs. An
Application-Specific Integrated Circuit (ASIC) is similar to an FPGA, with the excep-
tion that it is fabricated as a custom circuit. In contrast to ASICs, FPGAs are repro-
grammable. This feature makes FPGAs very flexible and general-purpose. How-
ever, due to this feature, it makes them larger, slower, and more power-consuming
in comparison to ASICs. FPGA-based systems have lower development costs and
faster time-to-market compared to ASICs, which makes FPGAs very attractive to
use for small to medium volume productions.

2.1.1 General Architecture of FPGAs

A generalized architecture of FPGAs is shown in Figure 2.1. An FPGA is arranged
in the form of a two-dimensional array consisting of the following elements.

• Configurable Logic Blocks (CLBs) that implement logic functions.
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6 CHAPTER 2. BACKGROUND

• Programmable routing interconnections that connect these logic functions.

• Input/Output Blocks (IOBs) that are connected to logic blocks through routing
interconnects and make off-chip connections.

Figure 2.1: An FPGA comprises of CLBs, IOBs, and programmable routing inter-
connections. Logic functions are implemented on CLBs, where multiple
CLBs are connected through the routing interconnections. The IOBs
provide functionality for off-chip connections.

A CLB is a fundamental component of an FPGA that provides basic compu-
tation and storage elements in digital systems. CLBs should be a good trade-off
between too fine-grained and too coarse-grained logic blocks. On the one hand,
too fine-grained would require a lot of routing resources, which will suffer from area-
inefficiency, low performance, and high power consumption. On the other hand,
too coarse-grained would lead to a waste of resources if we implement small func-
tions on the CLB. Therefore, commercial FPGA vendors use Lookup Table (LUT)
based CLBs, as they provide a good trade-off between too fine-grained and too
coarse-grained logic blocks. In the purest form, the LUT comes in combination with
a flip-flop and multiplexer. This combination is called a Basic Logic Element (BLE).
A CLB can comprise of a single BLE or a cluster of locally interconnected BLEs.

Figure 2.2 illustrates a single BLE. A LUT with k inputs contains 2k Static
Random-Access Memory (SRAM) cells. In this figure, the SRAM cells can be pro-
grammed to implement any four inputs boolean function. The output of the LUT
is connected to an optional Flip-Flop (FF) to implement synchronous circuits. The
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configuration in the SRAM cell connected to the multiplexer determines the output
of the BLE. The multiplexer selects the BLE output to be either the output of the FF
or the LUT. Modern FPGAs typically contain 4 to 10 BLEs in a CLB.

Figure 2.2: A BLE contains a LUT that can be programmed to implement any k-
input boolean function. The FF is used to implement synchronous logic.

In Figure 2.1, the architecture is homogeneous. However, modern FPGAs con-
sist of a heterogeneous mixture of logic blocks. Besides the LUT-based CLBs, the
architecture contains other logic blocks for specific purposes. These particular pur-
poses blocks, also referred to as hard blocks, include Block RAM (BRAM) and Digital
Signal Processing (DSP) blocks. BRAM is used to store large amounts of data,
where DSP blocks perform complex arithmetic operations. Hard blocks are very effi-
cient at implementing particular functions as they are designed optimally to perform
these functions. However, they end up wasting considerable amounts of logic and
routing resources if they remain unused.

The programmable routing interconnections provide connections among CLBs
and IOBs to implement any user-defined circuit. The routing network consists of
wires and programmable switches that can be programmed to form the required link.
The routing interconnections must be very flexible so that they can accommodate a
wide variety of circuits with widely varying routing demands.

The IOBs provide off-chip connections. As there are a lot of interface standards,
the IOBs have to interface at many different speeds and voltages with the full range
of external components that may connect to an FPGA. Modern FPGAs use an
Input/Output (I/O) banking scheme in which I/O cells are grouped into predefined
banks. Each bank shares supply and reference voltage supplies. Therefore, a single
bank cannot support all the standards simultaneously, but different banks can have
various supplies to support otherwise incompatible standards.
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2.1.2 General Design Flow of FPGAs

Computer-Aided Design (CAD) tools are used to design digital circuits for FPGA
devices. These tools bridge the gap between the low-level implementation details of
FPGAs and describing digital circuits at a higher abstraction level. Figure 2.3 shows
the general design flow of these CAD tools.

Figure 2.3: The general design flow that is used to develop applications for FPGAs.

The design entry is the starting point to design a digital circuit for the target
FPGA. The functionality of the digital design can be described by using various
techniques, such as schematics or a Hardware Description Language (HDL). The
two most common HDLs are Verilog and VHSIC Hardware Description Language
(VHDL). Schemas and HDLs can also be combined to describe the digital system.
The behavior of the design can be verified by performing a behavioral simulation.
Usually, a test bench is written (in an HDL) to simulate the design. The test bench
drives the inputs of the model and compares the outputs of the model with the ex-
pected outputs.

The design is synthesized once the design passed the behavioral simulation
successfully. In synthesis, the design is translated into an actual circuit with logical
elements (e.g., LUTs and FFs) and their connectivity, which is called a netlist. The
netlist can be verified by performing a functional simulation, where the same test
bench can be used, as in the behavioral simulation.

The implementation is separated into three parts: translation, mapping, and
place and route. The translation process merges all the netlists and design con-
straint information into one large netlist. The design constraints can be regarding
pin assignments or timing requirements. The mapping process maps the translated
netlist to the target FPGA. Finally, the mapped netlist is placed and routed onto
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the FPGA fabric. After implementation, a timing simulation can be performed. This
simulation gives the most accurate impression of the design behavior.

Once all the simulations have passed successfully, the bitstream is generated.
The bitstream contains the information for all configuration cells of an FPGA to be
programmed to either 0 or 1. Finally, the bitstream is configured to the FPGA by
using one of the configuration interfaces.

2.1.3 Xilinx FPGA Terminology

Xilinx is one of the leading providers of FPGA devices and sells a large number of
different FPGAs. The FPGAs of Xilinx can be categorized into series, families, and
individual parts. At the highest level, a series defines a unique FPGA architecture.
The most recent series of Xilinx are Series7, UltraScale, and UltraScale+. Each se-
ries can be separated into a list of families. These families all use the architecture of
the series but are optimized for cost, power, performance, size, or another criterion.
Families can be further broken down into one or more parts, which are the actual
FPGA devices. In the following, we introduce the development tools of Xilinx and
the architecture of the Xilinx FPGAs.

Xilinx Development Tools

Xilinx provides CAD tools with similar design flows that are described in Section 2.1.2
to develop applications for their FPGAs. In recent years, Xilinx released a new tool
to design applications for their FPGAs: Vivado [26]. Vivado supersedes Xilinx ISE
(the previous tool) and is the only tool suite that supports the latest Xilinx series,
such as Series7, UltraScale, and UltraScale+. The most significant change with Vi-
vado is the introduction of a Tool Command Language (TCL) interface [33]. Using
the TCL commands, users of Vivado can write TCL code to script design flows, set
constraints on a design, and perform low-level design modifications.

Xilinx Architecture

We can break down the Xilinx FPGA devices into a hierarchy of internal components.
In Figure 2.4, the top-down hierarchy of Xilinx FPGAs is illustrated. On the top
level, we find the individual FPGA device, which is shown in Figure 2.4a. The figure
displays an FPGA model named XC7Z020-CLG484, which is a device from the Zynq
family. The Zynq family belongs to series Series7.

An individual device can be broken down into tiles, which in turn can be broken
down into sites. A single tile and site are shown in respectively Figure 2.4b and Fig-
ure 2.4c. In the following, we describe the tiles and sites in more detail individually.
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Figure 2.4: The Xilinx device hierarchy. (a) At the highest level of the hierarchy, we
find the FPGA part, which is an individual device. (b) The device can be
broken down into tiles, (c) which in turn can be broken down into sites.

A Xilinx FPGA is organized into a two-dimensional array of tiles. Each tile is
a rectangular component that performs a specific function, such as implementing
digital logic or providing routing interconnections. The tiles are located in a two-
dimensional grid on the FPGA fabric, and they are wired together by the general
routing fabric. All copies of a tile are identical or nearly identical (they might have
minor routing differences).

In Figure 2.5, a part of the FPGA fabric from the XC7Z020-CLG484 device is
shown. In this figure, multiple types of tiles are illustrated. We shortly introduce
these different types of tiles. The DSP tile provides the functionality to implement
complex arithmetic functions efficiently [28]. The interface tiles are used for wiring
signals between other tiles. These connections are not programmable. In contrast
to the interface tiles, the Interconnection (INT) tiles provide programmable intercon-
nections. The INT tiles allow a signal to be routed to various locations. The CLB
tiles are used to implement logic functions [29], where the BRAM tile is used to store
large amounts of data [27].

The size of the tile types vary. For example, the DSP and BRAM tiles take up five
slots, where all the other tiles fit within a single slot, as illustrated in Figure 2.5.

All these different types of tiles are arranged in columns onto the FPGA fabric,
which spans the full height of the FPGA. For the following, we separate the types of
tiles in two categories: the logic tiles (CLB, DSP, and BRAM) and the INT tiles. Now,
if we look in the horizontal direction, the resources on the FPGA alternate between
two logic tiles and two INT tiles. In the case of the hard blocks (DSP and BRAM),
there locate interface tiles between them to connect these tiles properly.

Each logic tile is connected to one or multiple adjacent INT tiles, and can only be
connected with the rest of the FPGA resources via these INT tiles. The CLB tiles are
connected to a single INT tile, where the hard blocks are linked to five INT tiles. For
example, in Figure 2.5, the DSP tile in the first column can only be connected to the
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rest of the system via the five INT tiles in the third column. Note that the interface
tiles in the second column are used to connect the DSP tile and INT tiles. As an
additional example, we take the CLB tile in the second row and the fifth column.
This tile can only be connected with the rest of the system via the INT tile on the
second row and the fourth column.

Figure 2.5: Xilinx FPGAs are organized as a two-dimensional array of tiles. The Xil-
inx devices contain different types of tiles and are arranged in columns
onto the FPGA fabric that spans the full height of an FPGA device.

Until this point, we have seen how the tiles are located onto the FPGA fabric.
In the following, we will have a more in-depth look into the INT tiles and the routing
fabric onto the FPGA fabric.

FPGA components are connected using wires, where wires are connected by
Programmable Interconnect Points (PIPs) to make the FPGA reconfigurable. Indi-
vidual PIPs can be enabled or disabled as the design is being routed, and a se-
quence of enabled PIPs uniquely identifies the used wires of a physical route. PIPs
are most commonly found in INT tiles, and enable a single wire to be routed to sev-
eral locations on the chip. An INT tile is illustrated in Figure 2.6. The source wire
(green) can be connected to one or multiple sink wires (red).

The entry point of a particular wire onto the INT tile is called a port. In Xilinx, the
INT tiles contain two types of ports: begin and end. These two types of ports are,
respectively, the sink and driver nodes. The PIP connections always direct from the
end ports towards the begin ports, as illustrated in Figure 2.6. Therefore, the wires
can only be used in one direction: unidirectional.

The INT tiles contain wires that are either connected to its corresponding logic
tile or other INT tiles. The INT tiles are directly connected to other INT tiles in all
cardinal and intercardinal directions. The connections in all the cardinal directions
are illustrated in Figure 2.7.
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Figure 2.6: An INT tile. The green wire represents one of the source wires on the
INT tile, where the red wires represent all possible sink wires that can
be connected to the source wire. The gray lines inside the INT tile are
the possible PIP connections.

As we have seen, the ports on a particular INT tile that are connected to other
INT tiles are either begin or end ports, and the wires connected to these ports have
a specific direction. The last property of a port is the length. This property defines
the length of the wire connected to the port. The range is expressed in the number
of INT tiles that the specific wire spans. For example, in Figure 2.7, the length of the
wires are two INT tiles.

Furthermore, the INT tiles include multiple wire lengths towards the same cardi-
nal direction. As we have seen in Figure 2.7, the INT tiles include wires in all the
cardinal directions with a distance of two INT tiles. However, in the Zynq architec-
ture, the INT tiles also contain wires that bridge a distance of four INT tiles in the
eastern and western directions, for example. As another example, in the northern
and southern direction, multiple wires span a distance of six INT tiles. The ports that
belong to the same INT tile and have the same direction and length are bundled in
groups of four ports.

The names of the ports on the INT tiles are used on a regular basis in this thesis.
Therefore, we shortly introduce how Xilinx names its ports. As described before,
the ports have three properties: port kind, direction, and length. The port kind is
indicated by P = {BEG,END}, where BEG and END refer respectively to the
begin and end ports. The notations to specify the direction for a particular port is
given by D = {EE,WW,NN, SS}. EE, WW, NN, and SS stands for respectively
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east, west, north, and south. Finally, the length is denoted as L ⊆ N∗. As mentioned
before, in the Zynq family, wires that are connected to the same INT tile with the
same properties appear in groups of four. In the port name, the index of these ports
with the same features is specified as I = {0, 1, 2, 3}. Now, the complete name
of the ports is constructed in the way as in Equation (2.1). The symbols d, l, p,
and i are elements from respectively the sets D, L, P , and I. The quotes around
the elements give us the name of the element in string format, where the plus-sign
behaves as a concatenation operator. For example, in Figure 2.7, the port names
of the begin ports in the eastern direction are EE2BEG0, EE2BEG1, EE2BEG2,
and EE2BEG3, where the port names of the end ports in the eastern direction are
EE2END0, EE2END1, EE2END2, and EE2END3.

port name = ”d” + ”l” + ”p” + ”i” (2.1)

Figure 2.7: The wires connect INT tiles in all cardinal directions.

Now, we continue with the device hierarchy. As mentioned before, tiles can be
broken down into sites. Tiles generally consist of one or multiple sites, which orga-
nize the hardware components of the tile into related groups. Specifically, sites are
the part of the tile that performs the functionality of the tile. The remainder of the tile
is used for wiring signals to and from its corresponding sites. The input and output
pins of a site are called site pins. In the Zynq family, CLB tiles contain two sites.
Figure 2.8 zooms in onto one of the two sites on the CLB. The name of this site is
SLICE. Basic Elements (BELs) are hardware components belonging to a site, such
as LUTs and FFs. In the Zynq family, each site of a CLB contains four BLEs. The
LUTs provide six input pins, therefore supporting any six inputs boolean expression.
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Figure 2.8: A tile usually consists of one or multiple sites. A CLB tile comprises of
two sites. The sites are called SLICE.

2.2 Dynamic Partial Reconfiguration

A popular research topic on FPGAs is Dynamic Partial Reconfiguration (DPR). In
Dynamic Reconfiguration (DR), the complete FPGA configuration is exchanged dur-
ing run-time, wherein DPR exchanges only a part of the configuration memory.
FPGA architectures allow us to change only a part of the configuration memory,
while not altering the other parts. As mentioned in Section 2.1.2, a bitstream has to
be loaded into the FPGA to change the implemented circuit. For Xilinx devices, ex-
ternal interfaces such as SelectMap or JTAG are used to load a bitstream [35]. Xilinx
introduced an internal configuration interface, called Internal Configuration Access
Port (ICAP) [30]. This internal interface makes it possible to load bitstreams from
within the FPGA without additional off-chip control. A soft-processor or a custom
state machine, also named as Partial Reconfiguration Controller (PRC) in Xilinx,
could fetch configuration information from external memory and write the configura-
tion memory through the ICAP [34]. Thereby allowing a circuit implemented on the
FPGA to modify itself autonomously.

2.2.1 Benefits of DPR

In the early days of FPGAs, the available logic resources were limited, and us-
ing run-time reconfiguration had been suggested to raise resource utilization or to
squeeze larger circuits into available logic. With the progress in silicon process
technology, logic capacity increased steadily while getting cheaper (and often more
power efficient per logic cell) at the same time. The explosion in capacity removed
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the pressure on the FPGA vendors to add better support for run-time reconfigura-
tion in their tools and devices. However, by heading towards devices with million
LUT FPGAs, things are changing dramatically at the moment.

For the present high capacity FPGAs, the configuration time required to write
tens of megabytes of initial configuration data is too long for many applications, and
DPR can be used to speed up the process. The reconfiguration time is proportional
to the size of the bitstream, which in turn is proportional to the area of the chip being
reconfigured.

A further consequence of having sizeable high-density FPGAs is their higher risk
of failure due to Single Event Upsets (SEU). SEUs are caused by ionizing radiation
strikes that discharge the charge in storage elements, such as configuration memory
cells, user memory, and registers. SEUs can be detected and compensated with the
help of DPR (e.g., using configuration scrubbing).

Another factor arising for current high capacity FPGAs is a substantial relative
increase in static power consumption. The static power consumption is related di-
rectly to the device capacity. With the help of DPRs, a system might be implemented
on a smaller and consequently less power-consuming device. An example of such
a system is illustrated in Figure 2.9. The system provides a Software-Defined Ra-
dio (SDR), different cryptographic modules, and protocol processing accelerators for
various protocols. Assume that the SDR part will be adjusted according to the avail-
able bandwidth and that the cryptographic and protocol processing accelerators are
changed on-demand. We can then save substantial FPGA resources by not provid-
ing all variants in parallel, but by only loading the currently required modules to the
device. In [7] and [31], more applications are discussed that can save a substantial
amount of resources (and thus reducing static power consumption) by using DPR.

The system in Figure 2.9 requires that the accelerator modules are either needed
exclusively or that the system can time-multiplex the modules by sufficient fast re-
configuration. However, for low power operations, it should be mentioned that recon-
figuring the FPGA requires some power. The additional energy required for recon-
figuration includes the power to fetch a module from the module repository and the
power required by the FPGA for the configuration process. Furthermore, we should
note that the reconfigurable part will consume static power without providing useful
work during the whole configuration process. If we assume that the system changes
its operation modes on human interaction, the update rate will be sufficiently low
such that it easily amortizes the configuration power.

DPR is also useful in scenarios where one part of the system is required to re-
main functional. Consider an FPGA system interfaced with a host computer via PCI
Express. Full reconfiguration of the FPGA breaks the communication link, which
may even require a host reboot to re-establish. DPR allows the link to be maintained
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by keeping the interface circuitry active while the accelerator portion undergoes re-
configuration.

Figure 2.9: Area saving by reconfiguring only the currently required accelerator
modules to the FPGA. Configurations are fetched from the module
repository at run-time. This figure is taken from [2].

2.2.2 DPR Terminology

In DPR, the area of the FPGA is distinguished into two parts. The region of the
FPGA that is reconfigurable during run-time is called the partial area (see Fig-
ure 2.10). A system might provide multiple partial areas. Modules can be loaded
into the partial area in a time-multiplexed manner. Every partial bitstream represents
a single module. The region of the FPGA fabric that remains the same during run-
time is called the static area. The PRC and the internal configuration interface of the
FPGA are often located in the static area. The PRC uses the internal configuration
interface (e.g., ICAP in Xilinx devices) to load modules onto the partial area during
run-time.

Figure 2.10: In DPR, the FPGA fabric is separated into two parts. The static area
remains unchanged during run-time, while the partial area can host
modules in a time-multiplexed manner.
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The reconfiguration of the partial areas can be categorized into multiple styles [2].
In island-style, only one module can be hosted on the partial area at the same
time. This style is illustrated in Figure 2.11a. For the following, suppose that a
system provides multiple islands (partial areas). If a set of modules can only be
configured on one specific island, we call this single island-style. In the case that
module relocation is feasible among different islands, we call this multi island-style.
Module relocation means that the same module can be loaded at various locations
on the FPGA fabric. Module relocation makes it also possible to instantiate a single
module multiple times on the FPGA fabric.

The size of a partial area should be at least the size of the most extensive mod-
ule. As a consequence, there is usually a waste of logic resources that arises if
modules with different resource requirements share the same island exclusively,
which is called internal fragmentation. The reason is that a large module cannot
be replaced by multiple smaller ones (to be hosted simultaneously). Therefore, the
utilization of the partial area becomes inefficient. In Figure 2.11, the white surfaces
in the partial areas indicate the unused reconfigurable area, and thus the internal
fragmentation.

Figure 2.11: (a) In island-style, the partial area can only host one module exclu-
sively at the same time. (b) In slot-style, the partial area is arranged in
one-dimensional slots. A various number of modules can occupy one
or multiple slots, according to their resource requirements. (c) In grid-
style, the partial area is partitioned into two-dimensional slots. Similar
to slot-style, one or multiple modules can take up the number of slots
according to their resource requirements. This figure is taken from [2].

A more advanced reconfiguration style is slot-style. In slot-style, we arrange
the partial area into one-dimensional slots to improve the internal fragmentation.
This style of reconfiguration is illustrated in Figure 2.11b. Multiple modules can be
hosted at the same time in the partial area, and the modules can occupy the number
of slots according to their resource requirements. Arranging the partial area in slots



18 CHAPTER 2. BACKGROUND

is considerably more complicated since the system has to provide communication
to and from reconfigurable modules and to determine the placement of the module.

Furthermore, it is important to note that the FPGA resources are heterogeneous.
As a consequence, depending on the present module layout, a partial area arranged
in slots might not provide all the free tiles as one continuous area. If this results in
slots that cannot be used, this overhead is called external fragmentation. These slots
are available for allocation of modules, but might be too small or have an unsuitable
footprint to be of any use.

The internal fragmentation of a partial area that is tiled into one-dimensional slots
can still be significant, and especially the hard blocks can be affected by this. The
reason is that these blocks waste a considerable amount of logic if they remain un-
used. As mentioned before, the resources are arranged in columns on the FPGA
fabric. If a module needs only a few of these resources, it is beneficial if another
module can use the remaining resources. This is possible in grid-style reconfigura-
tion. In grid-style reconfiguration, the slots are arranged in a two-dimensional fash-
ion, as illustrated in Figure 2.11c. The implementation and management of such a
system are even more complex than the slot-style reconfiguration approach.

Previously, we introduced module relocation. Module relocation is especially
useful in slot-style and grid-style reconfiguration. As mentioned before, in these
styles, the reconfiguration region is divided into multiple slots in either one or two-
dimensional. A various number of modules can be loaded simultaneously, and the
modules can take a variable number of slots to their own needs. Figure 2.12a shows
an example of a slot-style based reconfiguration without module relocation. The plot
illustrates when the modules are used during time and which slots are used to load
these modules. In the case module relocation is not supported, all slots Sn are
occupied by a single module during run-time.

Figure 2.12: Module relocation helps to fit modules into a reconfigurable region over
time better. This figure is taken from [2].
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As we can see in Figure 2.12b, we can save one slot by using module relocation.
This requires that we have spare time to reconfigure the modules such that they
are loaded when they are required. Altogether, module relocation, in combination
with slot-style or grid-style reconfiguration, allows us to build very flexible hardware
systems.

2.2.3 Commercial DPR Tools

The design flow of DPR systems is considerably more complicated compared to the
general design flow of FPGAs that is described in Section 2.1.2. The two leading
FPGA vendors, Xilinx and Intel (before Altera), provide CAD tools to implement DPR
systems. The tools offered by the two vendors have very similar design flows and
require low-level FPGA architecture knowledge to develop a reconfigurable system
efficiently.

Xilinx supports DPR through its PlanAhead [25] and Vivado Design Suite [31]
tools. In the PlanAhead tool flow, the DPR design is composed of the static de-
sign and several modules. The hardware layout is similar to that we discussed in
Section 2.2.2. In the following, we briefly describe the design flow to develop DPR
systems using PlanAhead.

The first step in the design flow is to determine the number of reconfigurable re-
gions and the modules allocated to these regions, which is called partitioning. After
partitioning the DPR design, the designer has to manually floorplan the locations
and bounding boxes of the reconfigurable regions on the FPGA fabric. These floor-
planning details are stored in a constraint file for incorporation in the implementation
stage. After floorplanning, the designer has to determine the configurations. A con-
figuration is a static design with one module in each reconfigurable region. In the
implementation stage, the static design is implemented with the first configuration as
a placeholder. The final placement and routing of the static region are preserved for
all other configurations. The partial modules are then implemented as an increment
to the static system. The static design can use the routing resources (but no logic
elements) inside the reconfigurable regions, but not vice versa. After the implemen-
tation, the tool generates full bitstreams for each configuration. Also, all the partial
bitstreams for each reconfigurable region are generated. At run-time, the FPGA is
configured with one of the full bitstreams. Later on, any single reconfigurable region
can be reconfigured by using the partial bitstreams.

Xilinx supports DPR for newer FPGAs through the Vivado Design Suite. This tool
flow is similar to PlanAhead. Intel provides almost identical tool flows (with different
terminology) compared to Xilinx for their FPGAs through the Quartus-II [36] and the
new Quartus Prime [37] design software. Besides the design flows; also, the way
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the vendor tools build the DPR systems is equivalent. In the continuation of this
section, we describe how DPR systems are constructed on FPGAs by the vendor
tools and discuss the drawbacks of these methods.

An essential part of DPR designs is the communication between the static de-
sign and the modules. The current vendor tools use proxy logic to establish the
connection to and from the modules. Proxy logic are anchor LUTs, which are placed
inside the partial area for each interface signal, as shown in Figure 2.13. The inter-
face signals are routed to the anchor LUTs during the implementation of the static
system. The partial modules are implemented as an increment to the static system
without modifying any of the already implemented static routings.

Figure 2.13: Partial module integration using proxy logic. After initial static imple-
mentation, the routing is used and preserved for incrementally building
all partial modules. This figure is taken from [2].

The routing to the anchor LUTs is not strictly constrained. Therefore, the routing
is usually different in each reconfigurable area. As a consequence, module reloca-
tion among different reconfigurable areas is not supported, even if the islands pro-
vide an identical footprint. The problem is illustrated in Figure 2.14a. The modules
m1 and m2 only take the routing inside their own reconfigurable region into account.
As a consequence, if the modules m1 and m2 are swapped, the static routing (routing
violations) will be cut. We can solve this problem by merging the routing violations of
both reconfigurable regions into one region, as shown in Figure 2.14b. This region is
then used for implementing the reconfigurable modules. The obtained modules are
illustrated in Figure 2.14c. If we configure the merged module m1 in the right-hand
reconfigurable region of Figure 2.14a, the static routing remains the same, and thus
module relocation is feasible. However, this is not applicable for systems with plenty
of partial areas (island-style) or slots (slot-style and grid-style), as most likely routing
congestion will occur when implementing the modules. The reason is that most of
the wires in the partial area are then occupied by the static routes, and therefore, the
modules cannot use them anymore. Also, merging the static routing may fail when
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multiple wires cross the same path, as shown in Figure 2.14d. The reason is that
a wire track can only implement one static routing path through the reconfigurable
area.

As we have seen, the vendor tools do not support module relocation due to the
routing violations. Another limitation of the proxy logic approach is that the routing
to the anchor LUTs will most likely change each time the static system is changed.
Consequently, all permutations of a module instance and placement position have
to be reimplemented on each change of the static system.

Figure 2.14: (a) The modules m1 and m2 cannot be swapped as this will cut the
static routes through the reconfigurable region. (a) We can solve this
by merging all the routing violations into one region and (c) use this
area to implement the modules. This way, module relocation becomes
possible. (d) However, merging the routing violations may fail on wire
conflicts. This figure is taken from [2].

Finally, a reconfigurable area can only host one module exclusively (island-style
reconfiguration) and is not supported to share a reconfigurable area by multiple
modules in a flexible manner at the same time. As a summary, the current limita-
tions/drawbacks of the vendor tools are the following.

• Implementation of DPR applications causes logic area overhead since each
signal wire costs one LUT using the proxy logic approach.

• Module relocation is not supported. The current vendor tools require to gener-
ate a partial bitstream for every reconfigurable module that is allocated in each
reconfigurable region. For example, if the system contains m modules that
should be relocatable in n different reconfigurable regions, it is necessary to
generate m ∗n partial bitstreams. As a consequence, the implementation time
and on-system memory requirements will increase. Module relocation would
allow us to produce a single bitstream of a module, which can be configured in
any compatible reconfigurable region.

• Any modification in the static region requires complete reimplementation of the
static region and all modules.
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• A reconfigurable region can only host one module exclusively (single island-
style).

As we have seen, the current DPR tools that are provided by the vendor tools
have considerable limits. In the next chapter, we will look at what the research
community has done to overcome these limitations.



Chapter 3

Related Work

In the previous chapter, we discussed the limitations of the current vendor DPR tools.
In this chapter, we describe some relevant open-source DPR tools developed by the
research community. The main objectives of these tools are to support module
relocation, independent design flow of the static system and the modules, and more
flexible architectures (e.g., slot-style and grid-style reconfiguration). Most of these
tools use vendor tools for low-level device-dependent operations such as placement,
routing, and bitstream generation. This chapter is organized as follows. In Section
3.1, we discuss relevant open-source DPR tools and their design flow. In the latter
section, Section 3.2, we compare the DPR tools.

3.1 Academic DPR Tools

OpenPR OpenPR is an open-source development environment to develop DPR
applications [6]. The tool provides similar functionality as the Xilinx design flow. The
first step in the tool flow is creating an XML project file, where the designer specifies
the design parameters. In the following, the designer has to manually floorplan the
reconfigurable regions with the Xilinx PlanAhead tool. The OpenPR design flow
generates the static design by using placement constraints and a blocker to prevent
routing through the reconfigurable regions. The placement constraints prohibit the
placer from placing any logic inside the reconfigurable region, where the blocker is
used to occupy all the wires inside the reconfigurable region. The latter ensures that
the router cannot route through the reconfigurable region. Once the static design
is routed, the blocker is removed, and the static bitstream is generated. Finally, the
partial bitstreams are generated by the use of Xilinx bitstream generation tools.

The main advantage of OpenPR is its availability as an open-source platform.
Therefore, researchers can extend the platform to explore other modes of DPR.
Another difference compared to the Xilinx design flow is that the tool blocks the

23
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static region from routing through the partial area. As a result, the static and partial
region can be implemented separately, and with changes in the static region, it is
not necessary to reimplement all the modules. Another advantage of preventing
the static design from routing through the partial region is that module relocation is
supported.

GoAhead GoAhead is another academic DPR tool to overcome some of the lim-
itations of the vendor tools [1]. The tool can implement DPR systems for all recent
Xilinx FPGAs. GoAhead assists during floorplanning and automates constraint gen-
eration for the place and route implementation phase. GoAhead provides an intuitive
Graphical User Interface (GUI) as well as a scripting interface. All the GUI actions
are recorded by the corresponding script commands. As a result, there is no need
to learn the GoAhead scripting language. The latter removes error sources and en-
sures reproducible results. GoAhead supports module relocation and integration of
partial modules without any logic overhead. Also, more advanced reconfiguration
styles are supported (e.g., slot-style and grid-style).

In the GoAhead design flow, the static design and modules are implemented
through independent design flows. The designer first has to determine the static
part of the system and the modules that will be reconfigurable. GoAhead offers a
GUI based tool to floorplan the design, which allows a designer to select one or
more areas on the FPGA fabric that will be used as reconfigurable regions. Based
on the floorplanning, the GoAhead tool generates constraints that prohibit to allocate
any static logic resources inside the partial areas. Also, the GoAhead tool creates
a blocker macro, which occupies all the wires within the partial region. This blocker
macro is used while routing the static system, so it prevents the static system to
route through the partial area. The implementation of the modules is similar, where
the blocker macros prevent routing from reconfigurable regions into the static area.
This way, the static and partial regions are entirely separated. Finally, vendor tools
are used to generate partial and full bitstreams from the placed and routed designs.

The design flows of OpenPR and GoAhead both use a blocker to prevent rout-
ing in the partial area. As a result, module relocation is supported, and the design
flow of the modules and the static design is separated. However, there are also
significant differences between these tools. OpenPR uses bus macros to integrate
reconfigurable modules into a system. In bus macros, one logic primitive is placed
in the static system, and another one in the reconfigurable area and wires between
them are used to carry out the routing between the static and partial part. By placing
the macro on the partial area border, an interface signal to wire binding is achieved
due to the internal bus macro routing that will be maintained through all implemen-
tation steps. Interface signals work similarly to a physical plug on a PCB, and the



3.1. ACADEMIC DPR TOOLS 25

binding of interface signals to wires has to be identical for the static system and all
the partial areas.

However, integrating partial modules using bus macros has several drawbacks,
such as logic overhead and additional latency. GoAhead provides an alternative
that circumvents these problems by binding the interface signals directly to the wires
crossing the border from static to partial (and vice versa) without the help of logic
resources. It is important to note that we cannot directly define the binding. In this
case, binding means that we cannot define a specific signal x that has to be routed
using certain wire y. GoAhead generates the blockers such that it leaves only one
available routing path between the static area and the partial area for each interface
signal. Therefore, each signal is forced to route via that particular path. As a result,
the signals are bind to the wires in this path.

Dreams As we have seen, OpenPR and GoAhead both use a blocker to prevent
routing in the reconfigurable region. In [4], an alternative tool called Dreams is
presented to support module relocation, and independent design flows of recon-
figurable modules and the rest of the system.

The tool flow starts with a conventional and independent placed and routed netlist
generation for each module. The generated netlists are transformed such that they
meet the specific requirements of the DPR system. Dreams uses a custom router
that constraints the routing, such as preventing static routing within the partial area.
The custom router is also used to guarantee that the interface signals of the modules
and the static design are bind to the same wires. As a result, there is no logic or
delay overhead.

The custom router is developed with the tool RapidSmith [14]. This tool provides
functions to change Xilinx Design Language (XDL) files. XDL offers a powerful in-
terface that allows access to virtually all features of Xilinx devices [13]. On one side,
this includes the generation of complete device descriptions containing information
about the FPGA primitives and the routing fabric. On the other side, XDL can be
used to constrain systems or to implement modules or macros for Xilinx FPGAs
directly.

Dreams supports the communication between the static area and partial area
without any logic overhead. Also, module relocation is supported. Furthermore,
the design flows of the modules and the static system are independent. Finally,
Dreams supports the design of highly flexible DPR architectures (e.g., slot-style and
grid-style).

CoPR In the previous tools, the main focus is on developing more flexible DPR
systems. In [3], the tool named CoPR is presented, where the primary purpose
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is to raise the abstraction level for developing DPR applications. Also, in this tool,
run-time management is supported.

The tool targets the Xilinx Zynq device. Zynq is a hybrid reconfigurable device,
which includes a processor, standard communication architecture, and integrated
reconfigurable fabric. The processor is used to implement the PRC, and the recon-
figurable regions are implemented in the FPGA structure.

The designer has to provide configuration and adaption specifications to the
tool. The configuration specification details the different valid system configurations
and the corresponding library modules present in each configuration. The adaption
specification contains software code (written by the designer) for changing configu-
rations at runtime. CoPR offers an Application Programming Interface (API) to help
the designer write the software without requiring knowledge of implementation de-
tails. The next steps are all automated. CoPR uses the vendor synthesis tool to
synthesize all modules for the target FPGA to determine resource requirements. In
the following, the partitioning step, the number of reconfigurable regions, and allo-
cated modules to them are resolved. Then, floorplanning is performed to determine
the locations of all reconfigurable areas. Finally, the Xilinx command-line tools are
used to implement the design and to generate the bitstreams.

3.2 Comparison of DPR Tools

In this section, we compare the Xilinx and academic DPR tools. We omit the DPR
tools from Intel since the academic DPR tools only target the FPGA devices from
Xilinx. In Table 3.1, the most important features are listed.

The first feature of the tools listed in Table 3.1 is the device support. We see that
GoAhead supports a large number of different device families. Remarkable is that
GoAhead supports even more devices than the Xilinx tools itself. CoPR targets only
one specific device family: Zynq.

The next feature covers the communication overhead of each DPR tool. Com-
munication in this context means how the interface signals of the modules bridge
between the static and partial regions. The communication method can cause logic
overhead. For example, proxy logic requires one LUT for each interface signal,
as we have seen in Section 2.2.3. In table 3.1, the number of LUTs required per
interface signal is listed. Especially applications with a relatively large amount of
interface signals compared to its resource usage, the logic area overhead is signifi-
cant. For these applications, GoAhead and Dreams are very promising, since these
tools support DPR applications without logic area overhead [9].

Module relocation, in combination with slot-style or grid-style reconfiguration, al-
lows us to build very flexible and fine-grained hardware systems. Table 3.1 lists
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whether the tool supports module relocation and lists the different reconfiguration
styles. GoAhead and Dreams both support all reconfiguration styles and module re-
location [12]. The tools from Xilinx and CoPR are the least flexible and fine-grained
since they only support single island-style.

In the static system, often, the PRC is located, which manages the reconfigura-
tion of the partial areas during run-time. The tools that support run-time manage-
ment are the Xilinx tools and CoPR, as illustrated in Table 3.1. Designers that use
one of the other tools are required to implement the run-time management them-
selves or using a third-party tool.

Table 3.1: Comparison between the Xilinx and academic DPR design tools.
Feature Xilinx tools GoAhead OpenPR Dreams CoPR
Supported devices V4, V5, V6,

V7, Zynq,
UltraScale

V4, V5,
V6, V7,
S6, Zynq,
UltraScale

V4, V5 V5, S6 Zynq

Communication overhead1 1 0 2 0 ?3

Module relocation No Yes Yes Yes No
Reconfiguration styles

Island-style Yes Yes Yes Yes Yes
Slot-style No Yes Yes Yes No
Grid-style No Yes No Yes No

Run-time management Yes No No No Yes
Resource budgeting No No No No Yes
Partitioning No No No No Yes
Floorplanning No Yes2 No No Yes
Independent design flow No Yes Yes Yes No

1 In terms of LUTs per interface signal.
2 Automatic floorplanning is only supported for island-style.
3 In [3], the communication method is not mentioned.

Automating steps increases the design productivity and makes implementing
DPR systems accessible for designers without low-level knowledge of FPGA ar-
chitectures. Table 3.1 lists whether the tools support automatic resource budgeting,
partitioning, and floorplanning. Resource budgeting is the calculation of resources
(e.g., LUT, DSP, and BRAM) that are used for each reconfigurable module. Parti-
tioning determines the number of reconfigurable regions that are used in the design
and its corresponding modules. Finally, floorplanning determines the location of the
reconfigurable regions onto the FPGA fabric. An intelligent arrangement and allo-
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cation of DPR regions can result in reduced area and hence allows designs to fit
on smaller devices (see Figure 2.12). Also, in the tools that block the reconfigurable
area while routing the static design, the partial region forms an obstacle for the static
router. As a consequence, poor placement of the partial regions might result in a tim-
ing violation. In the current tools, resource budgeting, partitioning, and floorplanning
must be performed manually, except the tool CoPR [15], [10]. GoAhead supports
automatic floorplanning, but only for island-style reconfiguration [8]. Note that in this
thesis, the main focus is on the reconfiguration style and not the abstraction level of
developing DPR systems. Therefore, most of these issues that are just mentioned
here will not be addressed. However, in Chapter 4, we provide several suggestions
to do these steps efficiently manually.

The last feature in Table 3.1 indicates whether the tools support an independent
design flow of the static part and the partial modules. A separate design flow allows
us to make changes in the static design without requiring to reimplement all the
modules. All academic tools support this feature, except CoPR.



Chapter 4

Concept for Grid-Style Partial
Reconfigurable System

In this chapter, we describe our proposed DPR system that supports fine-grained
DPR. In our contemplation, an efficient, flexible, and fine-grained DPR system
should include the following.

• Minimize internal and external fragmentation.

• Multiple modules configured within a partial area simultaneously.

• Modules with different dimensions and shapes.

• Module relocation.

• Minimize the reconfiguration time.

• Minimize delay and area overhead.

This chapter is organized as follows. In Section 4.1, we discuss the fine-grained
DPR systems of the current DPR tools and their limits. In the following, we introduce
our proposed DPR system to overcome some of these limitations. This system is
described in Section 4.2.

4.1 Limits of the Current DPR Tools

In Section 2.2.2, we discussed the concepts of internal and external fragmentation.
By using the grid-style reconfiguration style, we can minimize these concepts. In
Section 3.2, we have seen that only the tools GoAhead and Dreams support grid-
style reconfiguration. Therefore, in the continuation of this section, we will only
consider these two tools.

29
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GoAhead

In GoAhead, slot-style and grid-style reconfigurations are supported through I/O
bars [12]. I/O bars contain bundles of wires that are homogeneously routed among
the slots of the system. For slot-style reconfiguration, GoAhead uses a single I/O
bar, as illustrated in Figure 4.1. In this figure, the partial area is separated into
four slots. The modules are developed such that they can be configured in one or
multiple slots. The modules themselves must be a continuous area.

Figure 4.1: In GoAhead, I/O bars are used to support slot-style and grid-style recon-
figuration. A single I/O bar is used in slot-style reconfiguration. Modules
can be configured in free slots, and a single module can use one or
multiple slots.

In the partial area, for each slot, the I/O bar can be used in three different ways.
First, we can by-pass a slot, as illustrated in Figure 4.2a. In Figure 4.1, all the slots
are by-passed. In the case a module is configured in one or multiple slots, the I/O
bar is broken open and is connected to the module. This is shown in Figure 4.1b.
The upstream is directly connected to the input signals of the module, where the
output signals of the module are connected to the downstream. The downstream
propagates towards the following slots. Finally, the I/O bar can be used to tap the
signal, as illustrated in Figure 4.1c.

Figure 4.2: The I/O bars can be used in three different ways. (a) First, a slot might
be by-passed. (b) Secondly, a module might be configured in one or
multiple slots. (c) Finally, a module might tap the signal of the I/O bar.
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For the flexibility of the placement, each I/O bar is designed with a forward and
backward signal path. This removes communication-related placement restrictions
and allows us to communicate between two modules regardless if the second mod-
ule is located left or right beside the first module. For example, suppose that we
place module A at the left side of module B. Then, we can obtain both the output
O = A(B(I)) and O = B(A(I)), where I is the input signal.

The I/O bars contain a single input interface and a single output interface be-
tween the static system and the partial area. This can result in reconfiguration time
overhead, as is demonstrated in Figure 4.3.

Figure 4.3: (a) In the initial system, all the slots of the I/O bar are by-passed. (b)
Then, module A is configured in slot 3. (c) In the following, module B is
configured in slots 0 and 1. (d) Finally, module A must be reconfigured
such that it is by-passed to obtain the output of module B.

In this demonstration, all the slots are by-passed in the initial system, as illus-
trated in Figure 4.3a. Since all the slots are by-passed, the output is equivalent to
the input. As mentioned before, modules might be configured in any slot and can
occupy one or multiple slots. However, the modules are developed on a specific foot-
print. Therefore, the modules can only be configured in these slots if the footprint is
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similar.

In Figure 4.3b, module A is configured into the partial area at slot 3. For the
following, suppose that we would like to reconfigure the partial area with another
configuration. The configuration contains a single module B with a different footprint
compared to module A. Therefore, we have to configure module B on another lo-
cation than module A. Suppose that module B requires two slots and is configured
in slot 0 and slot 1. If we reconfigure just the module, we end up in the configura-
tion that is illustrated Figure 4.3c. In this case, the output is O = A(B(I)), which is
not the output that we desired. Therefore, we also have to reconfigure the modules
from the old configuration such that the communication link is restored. As a con-
sequence, we have to reconfigure significantly more area than just the slots we use
for the modules belonging to a particular configuration. In this example, we have
to reconfigure module A such that it is by-passed. In Figure 4.3d, the link of the
previous configuration is restored, and therefore, we obtain the desired output.

Now that we have seen how the slot-style reconfiguration is implemented in GoA-
head, we will discuss the grid-style implementation. In GoAhead, multiple I/O bars
are used to support grid-style reconfiguration. The I/O bars are stacked on top of
each other, and they are linked via multiplexers. The multiplexers are located in the
static system and perform the vertical routing, while the I/O bars carry out the routing
in the horizontal direction.

In Figure 4.4, a grid-style DPR system is illustrated. As usual, in grid-style ap-
plications, the partial area is partitioned in two-dimensional slots. The number of
columns in the grid is determined by the number of slots the I/O bar is divided. Each
I/O bar in the grid is partitioned in the same number of slots. For each row in the
partial area, a single I/O bar is used. Thus, if we would like to partition the partial
area in R×C slots, we have to use R I/O bars, and we have to divide these I/O bars
into C slots.

The grid-style system in Figure 4.4 contains a partial area that is divided into
4 × 2 slots. In the partial area, three modules are configured: A, B, and C. The
output of the partial area in this configuration is O = C(B(A(I))). The multiplexers
are controlled such that we obtain the correct flow of data. The flow of data is as
follows. The multiplexer at the top selects the signal input. This signal propagates
through the I/O bar at the top via modules A and B. Therefore, we obtain an inter-
mediate output Oi = B(A(I)). The output Oi is selected by the central multiplexer
and propagates through the I/O bar at the bottom via module C. Finally, the bottom
multiplexer is used to select which I/O bar should be connected to the final output.
In this case, the bottom multiplexer selects the output signal of the bottom I/O bar.

The modules that are configured in the partial area at the same time are often
dependent on each other. For example, in Figure 4.4, module B depends on mod-
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ule A, where module C depends on module B. Therefore, the modules should be
placed in consecutive fixed order. For the particular configuration in Figure 4.4, the
communication architecture is sufficient. However, the I/O bars, in combination with
the multiplexers, also have some limitations in flexibility for placing the modules in
the partial area. The reason is that I/O bars support only communication in the hor-
izontal directions, and therefore it is not feasible to route vertically within the partial
area. In the following, the problem is further described by using a concrete example.

Figure 4.4: By using I/O bars for grid-style applications, the placement of modules
in consecutive order is limited. The reason is that we can only commu-
nicate in the horizontal directions within the partial area.

In this example, we use the same grid and modules, as illustrated in Figure
4.4. We start with an initial grid, where all the slots are by-passed. Now, suppose
that the desired output is O = B(C(A(I))). Then, we have to place the modules
as follows. We have to put module A before module C. However, module A and
module C cannot be placed in the same I/O bar, since the I/O bar does not provide
enough slots. Therefore, module A and module C must be located in separate I/O
bars. Now, the multiplexers are configured such that the input signal first propagates
through module A and then through module C. Finally, module B must be placed
after module C. However, we cannot place module B in the same I/O bar as module
C, because all the slots are occupied by module C. Also, we cannot place module
B in the other I/O bar, because this will produce a wrong result. Thus, as we have
seen, there is no way to configure the system such that we obtain the correct flow
of data. Therefore, it is convenient to be able to route in both horizontal and vertical
directions. In this case, we have more flexibility in the placement of the modules.

The communication architecture of GoAhead has some more limitations. Namely,
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the multiplexers cause logic overhead to the DPR system. As already mentioned,
the number of I/O bars is equivalent to the number of rows R. The input interface of
each I/O bar is connected to one multiplexer, and there is one additional multiplexer
that selects the output of the partial area. Therefore, the total number of multiplex-
ers required by the grid-style system is R + 1. In the following, we distinguish the
multiplexers in two types. We call the multiplexers that are connected to the input
interfaces of the I/O bars MUX I, where the multiplexer that selects the output of the
partial area is called MUX O. The resource consumption of these multiplexers are
described in the following.

The input signal of an I/O bar is determined by its corresponding multiplexer
MUX I. The MUX I multiplexer selects one of its input signals, and these input sig-
nals include the signal input and the output signals of all the I/O bars, except the
output signal of its corresponding I/O bar. Therefore, the MUX I multiplexers contain
a total of R input signals. The multiplexer MUX O selects the final output from one
of the I/O bars. Also, the signal input can be directly connected to the signal output
without propagating through one of the I/O bars. Therefore, the MUX O multiplexer
comprises R + 1 input signals. The input signals on the multiplexers are vectors
of bits with length L. In principle, each I/O bar has the same input and output in-
terface. These interfaces include the interface signals of all the individual modules.
Consequently, modules can be placed in any I/O bar.

In the synthesis tools, LUTs belonging to the CLBs are used to implement mul-
tiplexers. For the following, assume that the LUTs contain six input ports. Then,
each LUT provides two select signals that select one of the four remaining input
signals. However, if we have more than four input signals, we require more than two
select signals. This results in a tree structure of LUTs. Therefore, the logic overhead
MUXoverhead in terms of LUTs by all the multiplexers is the following.

MUX Ioverhead = L ∗
⌈
R

4

⌉
(4.1)

MUX Ooverhead = L ∗
⌈
R + 1

4

⌉
(4.2)

MUXoverhead = R ∗MUX Ioverhead +MUX Ooverhead (4.3)

As we have seen, the multiplexers can cause significant logic overhead. Another
disadvantage of the multiplexers is that we require a substantial amount of control
signals. We need one control signal for each multiplexer in the DPR system. There-
fore, the total number of control signals is R + 1.

Finally, another disadvantage of implementing a grid-style DPR system using I/O
bars is the potential delay caused by the multiplexers (LUTs) and the length of the
wiring. This might be solved by pipelining the modules.
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Dreams

Dreams is another DPR tool that supports grid-style reconfiguration [4]. Note that
they call this reconfiguration style mesh-type architecture. Dreams uses a different
communication architecture compared to GoAhead. In contrast to GoAhead, there
is no communication bus within the partial area. The partial area contains only
interface wires at the borders. In Figure 4.5, this is illustrated. The modules are
developed such that they can communicate with these interfaces, but also with other
adjacent modules. Furthermore, the modules can occupy one or multiple slots. The
only constraint is that the shape of the modules must be rectangular.

Figure 4.5: The partial area is partitioned in two-dimensional slots. Modules are
developed such that they can communicate with the static area via the
interfaces at the boundary and other adjacent modules.

The communication direction of the interfaces at the border is unidirectional. In
Figure 4.5, the input signals of the modules can be connected to the interface signals
at the northern and western borders, where the output signals of the modules can
be connected to the interface signals on the other sides. As mentioned before,
the modules are developed such that they can communicate with other adjacent
modules. Adjacent modules have a direct connection, and they can communicate
with each other in all cardinal directions. Since there is no internal communication
bus, the modules must be placed such that they route the signal from one of the
inputs towards one of the outputs to have a complete connection between input and
output.

As a disadvantage, in Dreams, modules cannot communicate if they are non-
adjacent to each other. In GoAhead, this is feasible as there is a communication
bus within the partial area. For example, in Figure 4.3c, modules A and B can
communicate, although they do not locate adjacent. However, we have seen that
the communication bus in GoAhead must be restored if we configure modules at
other locations in comparison to the previous configuration (see Figure 4.3). In fact,
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we can do the same in the Dreams framework. If modules are nonadjacent, we
can configure the slots in between modules such that they connect these modules.
Later on in this section, we will introduce this construction as a by-pass module.
Since Dreams also supports vertical communication within the partial area, we have
significantly more flexibility in the placement of the modules.

Furthermore, the approach from Dreams prevents the use of all the MUX I mul-
tiplexers to control the data flow. We might require a multiplexer that selects one of
the outputs. In this case, we need only one control signal for the complete grid-style
system. Finally, in this system, we do not require the long wiring for vertical com-
munication and thus have a less potential delay. Therefore, we can obtain higher
throughputs.

Now that we have seen that the architecture of Dreams has more potential com-
pared to the architecture of GoAhead, we will discuss the tool flow of Dreams. As
mentioned in Section 3.1, Dreams uses a custom router to ensure that routing will
be compatible between any pair of adjacent modules or the static system. We cite
the following from [4]: ”Typically, the routing process is divided into two phases: a
global routing, which gathers nets together to balance all routing channels, and a
detailed routed, which finally assigns specific wires to each net. In this case, since
the number of signals to be routed is limited, just a detailed router has been im-
plemented, which routes sequentially every desired net.”. The latter raises some
questions. What will happen if the number of signals to be routed is significantly
large? Since the signals are routed sequentially, routing congestion could happen
most likely when having a significant number of interface wires.

Another huge disadvantage of Dreams is that the router is written by using Rapid-
Smith. RapidSmith modifies XDL files. However, XDL files are not supported by Vi-
vado anymore. Therefore, we cannot use Dreams for newer Xilinx devices. Note that
the successor of RapidSmith, RapidSmith2, supports the newer FPGAs of Xilinx.

4.2 Proposed Grid-Style DPR System

In this section, we discuss our proposed DPR system to overcome the limitations
that are described in the previous section. We adapt the architecture from Dreams.
As we have seen in the last section, the architecture of Dreams has more flexibility
in the placement of modules in comparison to GoAhead. Furthermore, the Dreams
framework requires fewer control signals and has a less potential delay.

In Figure 4.6, our grid-style system is illustrated. As an addition to the Dreams
framework, we use bi-directional communication interfaces at the borders. This in-
creases the flexibility of the module placement even more. The reason is that the
interface signals of the modules can enter and leave the partial area from each po-
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sition at the border. Furthermore, we add support for different shapes of modules,
such as L-shapes.

Although we use a similar architecture as Dreams, we will use a completely
different tool flow to overcome the limitations of the current tool flow of Dreams. As
mentioned in the previous section, the design flow of Dreams uses a custom router,
which causes several restrictions, such as the number of interface signals that can
be routed and the device support. In our design flow, we will use the vendor tools
for the low-level operations (e.g., routing). By doing this, we can make use of all the
built-in optimizations provided by the vendor tools. Also, we can then built grid-style
applications for newer FPGA devices.

In the continuation of this section, we discuss the static system and modules in
more detail. Finally, we describe which existing tools we use to develop the system
that is shown in Figure 4.6.

Figure 4.6: The partial area is partitioned in two-dimensional slots. Modules can
communicate with the static area by using the interfaces at the bound-
ary.

4.2.1 Static System

In the static system, we split the partial area into X ×Y slots. The partitioning of the
partial area in slots is illustrated in Figure 4.7. The slots can have arbitrary sizes.
However, the width and height should be equivalent for all slots. The dimension of
the slots is expressed in the number of INT tiles. Furthermore, the footprints can
vary among slots. As we have seen in Section 2.1.3, the resources of an FPGA are
arranged in columns that span the full height of the FPGA. Therefore, each slot that
shares the same column will have a similar footprint, but slots located in different
columns can vary. For example, in Figure 4.7, slot (0, 0) has an equivalent footprint
in comparison to slot (0, Y ). However, slot (0, 0) might have a different footprint
compared to slot (X, 0), since they are located in separate columns.
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The partial area can communicate with the static part through the interface wires
attached to all the slots at the border. Each of these slots contains an input signal,
named s2p. This signal name stands for static-to-partial, which indicates an inter-
face signal from the static area bridging to the partial area. These signals are bind
to physical wires and can be seen as a male connector. The modules have a female
connector and can be plugged into one of these male connectors. The corner slots
contain two inputs from the static area to the partial area and two outputs in the other
direction. The reason for this is to enhance module relocation, which is explained in
Section 4.2.2.

Furthermore, the interface signals from the partial area to the static part are
marked as p2s, which stands for partial-to-static. The interface signals of the mod-
ules can leave the partial area through one of these connections. Since all the p2s
signals should be connected to the same signal in the static area, the p2s signals
are connected to a multiplexer that selects the final output of the partial area. This is
illustrated in Figure 4.8. The figure shows a generic static system, where the partial
area is divided into X × Y slots. The partial area is located on the FPGA fabric,
and it is connected to the static area through the interface wires (the red and purple
wires). For convenience, we use the location of the slot as a prefix of the p2s signal
names. The postfix of the p2s signal names denotes the border side. Finally, the
signal select selects the output of the partial area.

Figure 4.7: The partial area is divided into X × Y slots when developing the static
system. The slots at the border contain the interface wires between the
static and partial area.

In Figure 4.8, we can use multiple inputs in parallel. However, it is not feasible to
produce results in parallel, since we have only a single output (p2s). Therefore, for
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parallel operations, the multiplexer must be duplicated. Thus, for N parallel opera-
tions, we require N multiplexers and N select signals.

Figure 4.8: The partial area is partitioned into X×Y slots. The purple wires are the
interface wires that connect the static area with the partial area, where
the red wires are the interface wires that connects the partial area with
the static area. The multiplexer selects the output slot of the partial area.

The multiplexers that select the outputs of the partial area locates within the
static area and cause logic overhead to the total system. The amount of logic cost
depends on the dimension of the partial area (in terms of slots) and the bus width of
the interface signals. In the partial area, each side on the border slots that adjoins
to the static area contains a p2s interface signal connected to the multiplexer, as
illustrated in Figure 4.8. The number of interface signals connected to the multiplexer
MUXnr of signals is the following.

MUXnr of signals = X ∗ 2 + Y ∗ 2 (4.4)

The p2s signal is a bus with width W . As mentioned in the previous section,
the multiplexers are implemented by using LUTs. Therefore, the logic overhead
MUXoverhead in terms of LUTs by the multiplexer is the following.

MUXoverhead = W ∗
⌈
MUXnr of signals

4

⌉
(4.5)

Note that if we use N parallel operations in the partial area, we require N mul-
tiplexers. The multiplexers are the only elements that cause logic overhead to the
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system. Therefore, the total system overhead SY STEMoverhead caused by the DPR
implementation is as follows.

SY STEMoverhead = MUXoverhead ∗N (4.6)

As we have seen, in both GoAhead and our proposed DPR system, we have
significant logic overhead due to the multiplexers. In the following, we make a com-
parison between the two architectures.

In Table 4.1, the logic overhead of both the GoAhead grid-style system and our
proposed grid-style system is illustrated. The numbers are derived from respective
Equation 4.3 and Equation 4.5. Note that the signal width in Equation 4.1 and Equa-
tion 4.2 is denoted by L, where the signal width in Equation 4.5 is indicated by W .
In Table 4.1, the signal width is kept variable and is denoted by w.

In Equation 4.3, we obtain that the logic overhead in the GoAhead approach is
only dependent on the number of rows. In our proposed grid-style system, the logic
overhead is dependent on both the number of rows and the number of columns, as
shown in Equation 4.5.

Table 4.1: Comparison of the logic overhead (in LUTs) between the GoAhead ap-
proach and our proposed DPR system.

Dimension Overhead

Rows Columns GoAhead Proposed system

2 2 w ∗ 3 w ∗ 2
3 3 w ∗ 4 w ∗ 3
4 4 w ∗ 5 w ∗ 4

3 2 w ∗ 4 w ∗ 3
4 2 w ∗ 5 w ∗ 3
5 2 w ∗ 7 w ∗ 4

2 3 w ∗ 3 w ∗ 3
2 4 w ∗ 3 w ∗ 3
2 5 w ∗ 3 w ∗ 4

Now, in Table 4.1, we separate the dimensions of the grid into three categories.
First of all, we have calculated the logic overhead for dimensions with the same
number of rows and columns. As we can see from the table, the GoAhead approach
requires more LUTs in comparison to our proposed system. In the following, we
calculated the overhead with a dominant number of rows in comparison to the num-
ber of columns. Also, in this case, the GoAhead approach requires more LUTs and



4.2. PROPOSED GRID-STYLE DPR SYSTEM 41

thus causes more logic overhead. Finally, we calculated the logic overhead with a
dominant number of columns in comparison to the number of rows. In this case,
our proposed system causes more logic overhead in comparison to the GoAhead
approach. As a conclusion, the dimension decides whether the implementation of
either GoAhead or our proposed system is more efficient in terms of logic overhead.

4.2.2 Modules

In the previous section, we have seen that the partial area is partitioned in slots. With
the knowledge of the slot sizes and the footprints of these slots, we can design the
modules. The modules must be a continuous area and can occupy one or multiple
slots. The modules can occur in different shapes.

The modules are developed such that they can communicate with the interface
signals in the static system. This is achieved by binding the interface signals of the
modules to the same relative wires as the interface signals in the static system. For
module-to-module communication, we use the same relative interface wires. Thus,
the interface signals on a module can communicate with both the static area and
other modules.

For each module, we define a varying number of cardinal input and output in-
terfaces (north, east, south, and west) on the module. However, for modules with
a single upstream, we can assign only a single input interface to the module. The
reason is that we cannot connect multiple driver signals to a single signal. A solution
to this problem is illustrated in Figure 4.9.

Figure 4.9: (a) For modules that require a single upstream, we can only assign a
single input interface to the module. (b) However, by using control sig-
nals and adding an internal multiplexer into the module, we can define
multiple input interfaces. (c) In the case that we have modules that
require multiple inputs, we can have multiple input interfaces without
additional logic and control signals.
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The figure demonstrates an example of a simple module that behaves as an
increment component, where the input signal is incremented by one. An increment
module contains a single upstream, and the output can be propagated to multiple
outputs, as illustrated in Figure 4.9a. In the case that we would like to have multiple
input interfaces to the module, we can add a multiplexer within the module, as shown
in Figure 4.9b. The multiplexer determines which input signal is connected to the
incrementer. Note that we require additional interface signals for this solution to
control the data flow in the module. Also, there is logic overhead because we add a
multiplexer to the module.

If a module requires multiple inputs, this is also feasible. For example, in sys-
tolic array applications, the modules usually require two or more input interfaces.
The components in a systolic array often contain simple basic operations, such as
addition and multiplication. An example module in a systolic array is illustrated in
Figure 4.9c.

We have seen that a module with a single upstream requires extra interface
signals and additional logic to support multiple input interfaces. Therefore, it is more
convenient to develop modules with a single input interface. As discussed in the
previous section, the corner slots in the partial area contain two input interfaces and
two output interfaces. This construction enhances module relocation. The reason
is described in the following. Assume that we provide two modules that have a size
of 1 × 1 slots, and one of these modules has an input at the northern border, and
the other module has an input at the western boundary. Then, both modules can
be configured in the top-left corner. Therefore, we have even more flexibility in the
placement of modules. Note that the same analogy applies to the other corner slots.

The communication between modules is only feasible if their respective input and
output interfaces are adjacent. Therefore, a set of modules that might be configured
at the same time must be developed such that all the input and output interfaces
match. However, if we have a lot of different combinations of modules that might be
configured in the partial area simultaneously, we might need to develop a module
with the same functionality many times, but with different interface layouts. There-
fore, it is convenient if there is support for module-to-module communication, even
if the interface signals are not adjacent. This feature is introduced in Figure 4.10.

In Figure 4.10a, the partial area is partitioned in 2× 5 slots. As described before,
the slots contain interface wires in both directions. A set of modules is illustrated
in Figure 4.10b. In this example, all the modules contain a single input and output
interface. Modules M1 and M3 have a dimension of 1 × 2 slots, where module M2

has a dimension of 2× 3 slots. Note that the modules can only be configured on the
locations with the same footprint (same color).
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Figure 4.10: (a) The partial area is partitioned in 2 × 5 slots. The slots in the first
and second columns contain different footprints. (b) We have a set
of modules with different dimensions in terms of slots. (c) In the first
configuration, the s2p signal enters module M1 and leaves the partial
area through the p2s signal via module M2. (d) In the next configura-
tion, M3 and M2 must be connected. However, their respective input
port and output port are not connected. Therefore, a by-pass module
is configured to connect the two modules.

In Figure 4.10c, two modules are configured. The s2p signal enters module M1,
which communicates with module M2 within the partial area. Finally, the output
of M2 is connected to the output signal of the partial area (p2s). In Figure 4.10d,
another configuration is illustrated. In this configuration, the upstream is connected
to module M3, which in turn is connected to module M2. Again, the output of M2 is
connected to the p2s signal. Module M2 contains only an input interface on the north
side. Therefore, module M3 must be located on top of M2. However, module M3 can
only be configured in the right-top corner of the partial area because of its footprint.
As a consequence, the modules cannot communicate since the interfaces of these
modules are not directly connected. Therefore, we have to configure a so-called
by-pass module that connects these modules. These modules are developed such
that their input is directly connected to their output. The by-pass modules require
only routing resources, and therefore, they can be developed on all footprints. Note
that by using by-pass modules, we require additional reconfiguration time, because
these modules need to be configured as well.

4.2.3 Planning Phase

In this work, we develop a framework to build DPR systems that are described in
the previous sections. However, before the designer can start developing such a
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DPR system, the designer has to consider several crucial aspects, which are the
following.

• What part of the system should be reconfigurable, and what part remains the
same during run-time?

• Which modules might be configured in the partial area at the same time?

• Where should the modules be located in the partial area?

• What should be the size of the partial area?

• Where should the partial area be located on the FPGA fabric?

• In how many slots should the partial area be partitioned?

• Which signals should the interface signals s2p and p2s include?

All these questions are part of the planning phase. The planning phase is the
first step when developing a DPR system using our tool flow. The planning phase
must be performed completely manually. For convenience, we categorize all the
questions stated above in the following five sub-phases.

1. Static/partial partitioning.

2. Configuration definitions.

3. Resource budgeting.

4. Floorplanning.

5. Interface specification.

In the continuation of this section, we provide suggestions and introduce sev-
eral formulas for all these sub-phases that might help the designer to complete the
planning phase.

Static/Partial Partitioning

In the static/partial partitioning phase, we examine the existing design. The parts
of the design that requires to be operational the whole time belong to the static
portion, where the parts of the design that are used mutually exclusively and can
share the same FPGA resources at different predefined times belong to the partial
part. Modules might be identified by multiplexers that are used to switch between
functional blocks. These modules are possible candidates to be shared in one partial
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area. Thus, instead of switching the multiplexer for selecting an exclusive mutual
function, DPR can be used for this purpose. However, while in most cases the
multiplexer can be switched within a single clock cycle, the reconfiguration takes
time in the range of many thousands to millions of clock cycles. The actual number
of clock cycles depends on the size of the module.

Configuration Definitions

In the following, we describe the configuration definitions phase. In Section 2.2.3,
we described a configuration as a complete design with one module for each re-
configurable region. However, in this chapter, we define a configuration as a set of
modules that are configured within the same partial area simultaneously. For the
following, assume that we have a set of modules M = {m1,m2, . . . ,mX} that are
used for a single partial area. The configurations C are then defined as follows.

C = {c1, c2, . . . , cY } (4.7)

c ⊆M (4.8)

Resource Budgeting

Now, to determine the size of the partial area that will host the partial modules, we
have to identify the resource consumption of each configuration in C. If we know
the maximum resource consumption of all the configurations, then we can calculate
the minimal required number of logic blocks and thus the minimal size of the partial
area. This phase is called resource budgeting. We define the function rm(m) that
returns the resource consumption of the given module. The function returns a triplet
r = (L,B,D). The symbols L, B, and D respectively indicate the number of LUTs,
BRAMs, and DSP blocks required by the module.

The resource consumption for each module can be determined by synthesizing
the module by using one of the vendor tools. We have to add the resource consump-
tion of all modules belonging to the particular configuration to get the total resource
consumption for a single configuration. We add the resource consumption of two
modules as follows.

rm(mi) + rm(mj) = {Li + Lj, Bi +Bj, Di +Dj} (4.9)

We define the function rc(c) that returns the resource consumption of a given
configuration. Similar to function rm(m), this function also returns a triplet r. The
resource consumption of a configuration is calculated as follows.
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rc(c) =
∑
∀m∈c

rm(m) (4.10)

After determining the resource requirements for each c ∈ C, we have to calcu-
late the maximal resource consumption among all configurations. We calculate the
maximal resource consumption for different configurations as follows.

max(ci, cj) = {max(Li, Lj),max(Bi, Bj),max(Di, Dj)} (4.11)

Finally, we use the following formula to calculate the minimal resource consump-
tion of the partial area.

AREA RESmin = max
∀c∈C

(rc(c)) (4.12)

Note that the way we calculate the minimal resource consumption for the partial
area AREA RESmin is only valid for a continuous area. The reason is that each
module in the partial area usually suffers from a small portion of internal fragmen-
tation, even if the partial area is partitioned in small slots. Therefore, the designer
has to consider to increase the size of the partial area to compensate for the internal
fragmentation. Also, usually, it is good practice to increase the partial area slightly
to avoid routing congestion.

Floorplanning

Now that we have determined resource consumption by the configurations, and thus
the minimum size of the partial area, we have to determine the location of the partial
area on the FPGA fabric: floorplanning. Floorplanning is a crucial step in DPR
systems as it influences the later placement and routing of both the static system and
the modules. In Chapter 3, we have seen that some academic DPR tools include
automated floorplanning. These tools calculate the most efficient placement of the
partial area onto the FPGA structure.

The proposed floorplanners by the academic DPR tools are designed for island-
style reconfiguration. As discussed in Section 2.2.2, in island-style, only one module
is hosted in the partial area exclusively. Although we use a grid-style approach, we
might use one of these floorplanners.

These floorplanners start by determining the resource consumption r for each
module individually. The minimal size of the partial area in island-style is defined
as the maximum number of each resource type (CLB, DSP, and BRAM) among all
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modules sharing the same area. Based on this information, the automated floor-
planners use built-in algorithms to calculate the location of the partial area onto the
FPGA fabric.

If we look at the perspective of the resource consumption of the partial area,
the difference of grid-style reconfiguration in comparison with island-style recon-
figuration is that we configure multiple modules in the partial area simultaneously.
Therefore, if we specify the minimal size of the partial area as AREA RESmin, we
can use one of these tools to determine the location of the partial area.

However, there are some crucial points not considered by the automated floor-
planners. First of all, in our DPR system, we partition the partial area into two-
dimensional slots. One of the features that our system supports is module relocation
among different slots. As already mentioned earlier in this chapter, the footprint of
the slots in the same column is equivalent. Thus, module relocation in the vertical
direction is always feasible. However, as the footprint in the horizontal direction is
heterogeneous, module relocation in the horizontal direction is not always possible.
Therefore, to enhance module relocation, it is crucial to maximize the consistency
among slots in the horizontal direction. This is not taken into account by the floor-
planners provided by the academic tools.

Another critical point that is not considered is the location of the modules in the
partial area that belongs to a single configuration. The modules must be placed such
that their footprint match with the location on the FPGA fabric. Also, the modules
must be located such that they are adjacent. Note that we might require by-pass
modules for this purpose. In [18], an algorithm is proposed that determines the
locations of modules into the grid-style framework provided by GoAhead. However,
as our grid-style framework has significant differences, this algorithm might be not
very useful, although the algorithm could be used as a starting point.

The last decision by the designer in the floorplanning phase is the partitioning of
the partial area. Usually, the goal is to partition the partial area in as many slots as
possible. This minimizes the internal fragmentation. However, the minimal size of
the slots is constrained by the architecture of FPGA. In Chapter 5, these constraints
will be discussed. Note that the minimum number of slots in the partial area should
be the maximum number of modules in a single configuration. The reason is that a
module occupies at least one slot, and in principle, modules cannot share a single
slot.

Interface Specifications

The interface signals s2p and p2s should contain all the different input and output
signals of the modules, respectively. This way, we can place a module at all slots
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that are adjacent to the static area. Note that this only holds if the footprint at that
particular location matches the hardware layout of the module.

We define the function im(m) that returns the interface signals of a given module.
Now, to determine all the different interface signals I for all modules belonging to M ,
we can use the following formula.

I =
⋃
∀m∈M

im(m) (4.13)

4.2.4 Tool Flow

As already mentioned, we will use the vendor tools for the low-level operations to
make use of the built-in optimizations by the vendor tools. GoAhead is such a
tool. GoAhead generates constraints that are passed into the vendor tools, and the
vendor tools perform the low-level operations. Also, GoAhead provides a GUI and
scripting language that makes the development of DPR systems more convenient.

Therefore, as a starting point, we will use GoAhead and use the GUI and a few
existing scripting commands to build our system. We extend the tool with several
custom commands. In the next chapter, the implementation of the system is de-
scribed.



Chapter 5

Implementation

This chapter describes the implementation of the proposed concept for a fine-grained
DPR system, as described in Chapter 4. The design flow of the static system and
the modules are completely separated. The basic idea of both design flows is to
use GoAhead to generate constraint files (in TCL format) and VHDL templates.
The VHDL templates must be merged with the existing design files. Furthermore,
the TCL files must be included in a Vivado project to incorporate with the low-level
device-dependent operations such as placement, routing, and bitstream generation.

The tool flow of both the static system and modules is illustrated in Figure 5.1.
Note that this design flow is similar to the design flow shown in [1]. However, the
generated constraint files by GoAhead will be different, since we build grid-style
systems with a completely different architecture.

As already discussed in the previous section, the tool flow starts with a plan-
ning phase. This phase must be performed entirely manually by the designer. In
Section 4.2.3, several suggestions and formulas are provided that might help the
designer to complete the planning phase. After the planning phase, the floorplan of
the static design and modules are created in GoAhead by using its GUI and scripting
language. Based on these floorplans, GoAhead generates the corresponding VHDL
templates and TCL scripts. These files are respectively merged into the existing
VHDL files and included in Vivado. Then, we provide TCL scripts to automate the
tool flow in Vivado. The final result is a full bitstream (static system) and a partial
bitstream for each module. The partial bitstreams are generated by using the tool
BitMan [17]. Once the bitstreams for the static system and modules are generated,
we can program the bitstreams into the FPGA. The full bitstream, which represents
the static system, should be configured first. Later on, during run-time, the modules
can be configured by using the partial bitstreams.

This chapter is organized as follows. In Section 5.1, we introduce the GUI and
scripting language of GoAhead. In the following, we describe the implementation
of the static system. We explain all the steps to develop the static system and
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provide the corresponding GoAhead commands for these steps. This is all part of
Section 5.2. Finally, in Section 5.3, we describe the implementation of the modules
and how we generate the partial bitstreams.

Figure 5.1: The design flow of both the static system and modules. The design flow
of the static system and modules is completely separated. In both flows,
we floorplan the design with GoAhead by using its GUI and scripting lan-
guage. Then, GoAhead generates the corresponding VHDL templates
and constraint files that are used in Vivado to perform all the low-level
operations. The final output is a full bitstream that represents the static
system and a partial bitstream for each module.
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5.1 Basics of GoAhead

GoAhead provides an intuitive GUI and a scripting language. For all the actions
performed by the user on the GUI, there exist corresponding scripting commands.
The corresponding commands are generated in an output window on the GUI, as
illustrated in Figure 5.2. We can reproduce results by copying/pasting the recorded
commands in a script file (extension .goa) and run this script with the GoAhead tool.

Language and GUI

GoAhead contains around 250 commands. In this work, we will use some existing
commands and add several new commands to the tool. These new commands
allow us to efficiently implement the proposed grid-style system that is described in
Chapter 4. The general structure of a command is as follows. The command starts
with the command name. The command names can be significantly long, but often
gives a clear indication of its functionality. A command might contain parameters.
The name of the parameters and their corresponding values are separated by an
equal sign. It is not allowed to use any white space between the parameter name,
equal sign, and the parameter value. White space indicates the separation of the
command name and its parameters. GoAhead also supports lists as value for the
parameters. The parser considers every comma as a separation between different
list items. Finally, the command ends with a semi-colon. The hash-sign (#) is used
to support comments in the script. An example command is shown in Listing 5.1.

1 # this is a comment

2 CommandName FirstParameter=Item1 ,Item2 SecondParameter=Second;

Listing 5.1: An example command in the GoAhead scripting language. The
command starts with the command name, then following the
parameters and ends with a semi-colon.

Usually, it is convenient to combine multiple commands, for example, in com-
mands that often occur in a fixed and consecutive order. We can build a new
command that merges multiple commands by using the command AddAlias. This
command takes two parameters: AliasName and Commands. The first parameter
specifies the name of the new command, where the second parameter includes all
the commands (with parameters) to execute. Note that we cannot add parameters
to this new command. Therefore, the parameters of the commands within the new
command are fixed.

Now that we have seen how the command script is organized, we will have a
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look at the GUI of GoAhead. Before we can start GoAhead, we first have to set one
environment variable to run GoAhead: GOAHEAD HOME. This variable points to
the home directory of GoAhead. In this directory, all the files related to GoAhead are
stored. We can start the GoAhead application by executing the command ”goahead”
in the command prompt (Windows).

Figure 5.2: The interface of GoAhead after loading a specific FPGA device. The
layout shows all the tiles of the device. Each type of tile has a unique
color. Recorded commands are displayed in the output window.

We see an empty (black) screen when we have started the GoAhead application
because we have not specified yet which FPGA device we work with. In this work,
we are using the ZedBoard, which includes an xc7z020clg484 device. We can load
a device by using the command OpenBinFPGA. Listing 5.2 shows the syntax to use
this particular command. After executing this command, the interface of GoAhead
shows all the tiles of the FPGA on the GUI, as illustrated in Figure 5.2. The different
primitives (e.g., CLBs, BRAMs, DSP48 blocks, etc.) have different colors such that
we have a clear overview of the internal structure of the FPGA.

GoAhead includes a specific script for each device family. The corresponding
family script of a device is executed when we load a particular FPGA device. For ex-
ample, if we load a device from the Zynq family, the GoAhead script named Zynq.goa
will be executed. This script contains commands that are family-related. Later on in
this chapter, we use this script to execute some particular commands to implement
our system for specific device families.
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1 # load device

2 OpenBinFPGA

3 FileName =% GOAHEAD_HOME %\ Devices\xc7z020clg484.binFPGA;

Listing 5.2: The command OpenBinFPGA is used to load a specific FPGA device.

Selection Commands

We mainly use the GUI to select parts of the FPGA fabric. In GoAhead, we can
choose clusters of tiles and store these selections. Later on, we can restore the
collection by a single command. In Listing 5.3, the commands are shown to select,
store, and restore the selection. In the following, the commands that perform these
actions are described.

1 # select and store the partial area

2 ClearSelection;

3 AddBlockToSelection

4 UpperLeftTile=INT_L_X26Y99

5 LowerRightTile=INT_R_X31Y0;

6 ExpandSelection;

7 StoreCurrentSelectionAs UserSelectionType=PartialArea;

8
9 # restore the partial area

10 ClearSelection;

11 SelectUserSelection UserSelectionType=PartialArea;

Listing 5.3: The commands in GoAhead to select, store, and restore a specific area
on the FPGA structure. In this example, the partial area is selected,
stored and restored.

• ClearSelection: This command clears the current selection of tiles.

• AddBlockToSelection: This command selects a rectangular group of tiles, where
the two parameters specify the upper-left and lower-right tile.

• ExpandSelection: This command expands the current selection of tiles. As
discussed in Section 2.1.3, the logic primitives are paired with one or multiple
INT tiles. By using this command, all the missing tiles from these pairs are
being added to the current selection.
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• StoreCurrentSelectionAs: This command is used to save the current selection.
We can give the selection a unique name by using the parameter UserSelec-
tionType.

• SelectUserSelection: This command is used to restore a particular selection.
The parameter UserSelectionType is used to specify the name of the selection
being restored.

File Generation Commands

As described before, we use GoAhead to generate specific files. The commands
that produce these files contain at least the following parameters: FileName, Ap-
pend, and CreateBackupFile. In the following, these parameters are described.

• FileName: This parameter specifies the name of the file.

• Append : This parameter is a boolean type. If the parameter is set to True,
GoAhead appends the content to the existing file. Otherwise, GoAhead will
clear the file before writing the new content.

• CreateBackupFile: This parameter is of type boolean, and specifies whether
to generate a backup of the old file. The extension of the backup file is .bak.

5.2 Implementing the Static System

The static design contains all the logic that remains unchanged during run-time. The
difference compared to the standard design flow, as discussed in Section 2.1.2, is
that we include a partial area in the static system. The static area and partial area
require interface signals for communication. The basic idea is that we add a black
box (in VHDL) to the top-level design that acts as the partial area. The black box
includes all the interface wires, such as in Figure 4.7. Another difference compared
to the standard design flow is that we have to constrain the placement and routing.
Namely, it is prohibited for the placer to place any logic belonging to the static system
within the partial area. Also, it is prohibited for the router to route signals belonging to
the static system through the partial area. We set this constraint to support module
relocation, as discussed in Section 2.2.3. The router also has to be instructed to
route the interface signals between the static and partial area correctly, such that
communication between these two regions is feasible.

We use the GoAhead tool to generate the VHDL templates and constraint files in
TCL format. The generated VHDL templates are merged within the existing design
files, where the TCL scripts are included in the Vivado project. Vivado is used to
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perform the low-level operations, such as synthesis, implementation, and bitstream
generation. In the continuation of this section, we describe the commands that we
use in GoAhead to generate the VHDL templates and constraint files. Furthermore,
we discuss the content of these files in more detail.

5.2.1 Synchronous Systems

In the design phase, we have determined the location of the partial area onto the
FPGA fabric. We have to define this location in GoAhead. This can be done by
using the GUI or scripting language. If the scripting language is used, we can use
the standard selection commands, as in Listing 5.3.

After we specified the location of the partial area in GoAhead, we connect the
BELs within the partial that contain a clock pin to the clock network. This way, we
can run synchronous circuits within the partial area. The way we implement the
clock routing towards the partial area is similar as in [1]. All the BELs that contain a
clock pin in the partial area are connected to the clock network. By doing this, we
make sure that all the clock paths towards all the BELs in the partial area are routed
in the static area.

The Command ConnectClockPins

The command that we use in GoAhead to connect all the BELs in the partial area
is ConnectClockPins. In Listing 5.5, the syntax of this command is shown. In the
following, the parameters of the command ConnectClockPins are described.

• ClockPin: This parameter specifies the name of the clock pin.

• BELs: This parameter specifies the names of the BELs that must be connected
to the clock net. The names of the BELs are specified in regular expression
format.

• ClockNetName: This parameter specifies the name of the clock net. The clock
pins will be connected to this clock net.

The command ConnectClockPins connects only the BELs in the currently se-
lected area. Therefore, we first have to select the tiles that belong to the partial area
before using ConnectClockPins command, as illustrated in Listing 5.5.

The TCL Commands

The command ConnectClockPins generates a TCL script that connects the clock
pins to the clock net. In Listing 5.4, the TCL commands are shown that connects the
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clock pin from a single FF to the clock net. The command create cell instantiates
one or multiple cells in the current design [33]. We instantiate an existing cell from
the library. The library cell of a FF is named FDRE. FDRE is a D-type FF. These
types of FFs have data, clock enable, and synchronous reset inputs and data output.
We can place a cell on the FPGA fabric with the command place cell. Once we have
placed the cell, we have to define the clock pin on the cell. We can define a pin on a
particular cell with the command create pin. Finally, we connect the clock net to the
defined clock pin with the command connect net. These four TCL commands are
repeated for all the BELs that match the regular expression of the parameter BELs
in the command ConnectClockPins. For example, in Listing 5.5, all the FFs in the
partial area are connected to the clock net.

1 # connect clock pin to clock net

2 create_cell -reference FDRE SLICE_X56Y49_DFF

3 place_cell SLICE_X56Y49_DFF SLICE_X56Y49/DFF

4 create_pin -direction IN SLICE_X56Y49_DFF/C

5 connect_net -hier -net clock_50MHz

6 -objects {SLICE_X56Y49_DFF/C}

Listing 5.4: The TCL commands to connect the clock net to the clock pin.

1 # select the partial area

2 ClearSelection;

3 SelectUserSelection UserSelectionType=PartialArea;

4
5 # connect clock pins in the current selected tiles

6 ConnectClockPins

7 ClockPin=C

8 BELs=[A-D]FF

9 ClockNetName=clock_50MHz

10 FileName=static_connect_clockpins.tcl

11 Append=False

12 CreateBackupFile=True;

Listing 5.5: In GoAhead, the command ConnectClockPins is used to connect all
the clock pins of the BELs to the clock net in the partial area.
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5.2.2 Interface Constraints

Until this point, we have defined the location of the partial area and generated a
TCL script to connect the clock pins of the BELs within the partial area. As a next
step, we create constraints for the interface signals between the partial area and the
static area. As illustrated in Figure 4.7, all the slots at the boundary of the partial area
contain interface signals. In the planning phase, we derived the unioned interface.
The input signals of the unioned interface are connected to each s2p signal, where
the output signals of the unioned interface are connected to each p2s signal.

Binding the Interface Signals

We bind the interface signals to the physical wires that cross the border from the
static area to the partial area and vice versa. As described in Section 2.1.3, the
wires are connected to the INT tiles. It is essential to keep in mind that the physical
wires itself are not programmable. However, the INT tiles contain PIPs that can be
enabled to route a particular signal to one or multiple locations. In Figure 5.3, we
demonstrate how we implement the static system and modules such that they can
communicate.

In Figure 5.3, we bind four interface signals to four physical wires. Each signal
has a different color (green, purple, red, or blue). In Figure 5.3a, we implement the
static system. In the static system, the router can freely route through the static area.
However, we make sure that the interface signals are routed through the specific
interface wires. We cannot leave a signal unconnected. This means that once we
have routed the signal through a particular interface wire, we have to connect the
signal to an element. Otherwise, it remains a partially routed signal. Therefore, we
use LUTs within the partial area to connect the interface signals.

In parallel with the static system, we can develop the modules. A module imple-
mentation is illustrated in Figure 5.3b. We specify a location on the complete FPGA
fabric that is used to implement the module. The logic elements and signals belong-
ing to a module are completely placed and routed within the module area. Note that
when designing the module, only the module area is of any importance. The reason
is that we create a partial bitstream only from this region. Consequently, the rest of
the FPGA fabric is not of any importance.

The interface signals are entering the module area the same way as in the static
system. In the static system, we used LUTs within the partial to connect the interface
signals. However, when developing modules, we use LUTs outside the module area
to connect the interface signals.

Now that we have developed the static system and one or multiple modules, we
configure these on the FPGA. First, we configure the static system. This means
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that the configuration onto the FPGA fabric is similar to the configuration shown in
Figure 5.3a. Next, we can reconfigure the partial area for one or multiple modules.
Note that we configure only the module area of Figure 5.3b in the partial area be-
cause the partial bitstream is generated from this region. Since the INT tiles and
CLBs are reconfigurable, only their configuration will change when reconfiguring the
FPGA. This will result in a configuration that is illustrated in Figure 5.3c. In fact,
we exchanged the partial area from Figure 5.3a with the module area from Figure
5.3b. The static system and module are properly connected since they use the same
interface wires.

Figure 5.3: (a) In the static system implementation, we bind the interface signals
to specific wires and connect them to LUTs within the partial area. (b)
In the module implementation, we bind the same interface signals to
the same specific wires and connect them to LUTs outside the module
area. (c) Now, if we configure a module into the partial area, the static
system and module are connected since they use the same interface
wires.
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Interface Wires Calculations

Now that we have seen how binding works, we will explain the number of interface
wires that can be used in a particular region. In Figure 5.3, we bound four interface
signals to four physical wires. Note that the physical wires are unidirectional. There-
fore, in this figure, the signals can only propagate from the static area towards the
partial area. Thus, we established a communication link in the eastern direction. We
can communicate in all the other cardinal directions as well by using wires that route
towards different directions.

As explained in Section 2.1.3, the INT tiles contain wires that route towards all
cardinal directions. Also, the INT tiles contain wires with different lengths that direct
to the same cardinal direction. The wires that route to the same cardinal direction
and span the same distance are bundled in groups of 4 wires.

In the following, we explain the number of interface wires that can be used based
on the available wire lengths onto the FPGA fabric. In this explanation, we use
Figure 5.4. In this figure, only the wires that point towards the eastern direction are
illustrated. Each INT tile contains the same wires. In this particular example, the
INT tiles contain wires in the east direction with a length of one and two. For binding
the interface signals, we use the wires that cross the border from the static area
(left-side) to the partial area (right-side).

Figure 5.4: We use the physical wires that bridge from the static to partial (and
vice versa) as an interface between the static and partial area. In this
example, 24 wires are crossing the border from the static area to the
partial area.
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Now that we have seen which wires we use for binding the interface signals, we
describe how to calculate the number of wires that bridge the border. In Figure 5.4,
the red wires have a length of one, and the purple wires have a range of two. We
can calculate the number of wires that cross the border for one row as follows. The
length of the purple wire is two. Therefore, we can use a maximum of two INT tiles
for these specific wires. Since wires of an INT tile with the same direction and length
are bundled in groups of four, we have 2 ∗ 4 = 8 wires that cross the border from the
static area to the partial area. In the same row, we also have wires in the eastern
direction with a length of one. For these specific wires, we can use only a single INT
tile in the same row. Therefore, the number of wires with a length of one that bridge
the border is 1 ∗ 4 = 4. Thus, the total number of wires that cross the border for a
single row is 4+8 = 12. However, we can repeat this for multiple rows. In Figure 5.4,
we have two rows. Therefore, we have a total of 2 ∗ 12 = 24 wires that we can use
for the interface between the static and the partial area in the eastern direction.

In the previous example, only wires in the eastern direction were considered.
However, we can apply similar calculations in the other cardinal directions, as well. In
the following, we provide some general formulas that designers can use to calculate
the number of wires that bridge the border in a particular direction.

Before we provide these formulas, we have to mention that the wire lengths in the
western and eastern directions are the same in the Series7 architecture. Also, the
lengths of the wires in the northern and southern directions are equally. Therefore,
we distinguish the lengths of the wires in the horizontal direction and the vertical
direction. The way we calculate the number of interface wires per row and column
is then as follows. We define sets Lh = {l1, l2, . . . , lX} and Lv = {l1, l2, . . . , lY } that
contain all the wire lengths in the respective horizontal and vertical direction. Then,
the maximum number of wires that cross the border in a single row max wiresrow

and column max wirescolumn is the following.

max wiresrow =

∑
∀l∈Lh

l

 ∗ 4 (5.1)

max wirescolumn =

∑
∀l∈Lv

l

 ∗ 4 (5.2)

Until this point, we have calculated the maximum number of wires per row and
column that we can use for the interface. By using these results, we can cal-
culate the minimal required number of rows and columns for a specific amount
of interface wires. As described in Section 4.2.3, in the planning phase, we de-
rive the unioned interface from all the interfaces of the modules. The total num-
ber of wires interface wirestotal can be derived from this unioned interface. Now,
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we can calculate the minimal required number of rows nr of rowsmin and columns
nr of columnsmin to bridge all the interface wires from the partial area to/from the
static area with the following formulas.

nr of rowsmin =

⌈
interface wirestotal

max wiresrow

⌉
(5.3)

nr of columnsmin =

⌈
interface wirestotal
max wirescolumn

⌉
(5.4)

As illustrated in Figure 4.7, we use the unioned interface for each slot at the
border. Consequently, nr of rowsmin and nr of columnsmin are respectively the
minimum height and width of the slots. However, there are more circumvents that
constrain the minimum width and height of the slots. One of them is the lengths of
the wires that are used for the interfaces. The width and height of the slots should be
equal or greater than the maximum length of the wires in the respective horizontal
and vertical directions. The reason is that if we use wires that are longer than the
width or height of the slots, the interface wires jump over the neighboring slots. As a
consequence, adjacent modules cannot communicate. For example, in Figure 5.4,
assume that we use slot sizes of 1 × 1 INT tiles. Consequently, the partial area is
divided into 2 × 2 slots. Now, suppose that we use wires with a length of two, and
we place modules with a dimension of 1 × 2 in the first and the second column.
Then, these modules cannot communicate, as the interface wires span over the slot
location of the other module.

Obvious, it is not required to use all the wires for the interfaces. The used
wire lengths in a particular application in the horizontal and vertical direction are
respectively lh ⊆ Lh and lv ⊆ Lv. Then, the maximum length in the horizontal di-
rection wire length horizontalmax and the maximum length in the vertical direction
wire length verticalmax of the wires that are used in a particular application for the
interface are the following.

wire length horizontalmax = max(lh) (5.5)

wire length verticalmax = max(lv) (5.6)

The final constraint for the minimum width and height of the slots is the gran-
ularity of configuration that is feasible by the architecture of the FPGAs. In the
modern FPGA series, the configuration memory is arranged in frames [31]. These
frames are the smallest addressable segments of the device configuration space. In
Section 2.1.3, we have seen that the Xilinx FPGAs are composed of tiles. For the
devices that belong to the Zynq family, the minimal region that can be configured
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onto the FPGA fabric is 1× 50 tiles. Therefore, the minimal logic resources that can
be configured are the following.

• CLB: 1× 50 tiles

• DSP: 1× 10 tiles

• BRAM: 1× 10 tiles

Now that we have seen all the circumvents that constrain the minimum width and
height of the slots, we can calculate the minimum width of a slot slot widthmin and
the minimum height of a slot slot heightmin as follows.

slot widthmin = max(nr of columnsmin, wire length horizontalmax, 1) (5.7)

slot heightmin = max(nr of rowsmin, wire length verticalmax, 50) (5.8)

The Command PrintInterfaceConstraintsForSelection

In the following, we will describe the implementation of the interfaces in GoAhead.
The command that we use to specify the interface wires is PrintInterfaceConstraints-
ForSelection. An example of this command is shown in Listing 5.6. Before we use
this command, we have to select the location of the interface. This location should
be within the partial area and located adjacent to the static area. We can use the
GUI or the usual selection commands for this purpose, as discussed in Section 5.1.
In Figure 5.5, an example is shown that selects the location of the interface in two
slots at the west border. In this example, the partial area is partitioned into four
imaginary slots. The reason that we say imaginary slots is because we select the
partial area as one large block. However, we have to keep the imaginary slots in
mind when defining the locations of the interfaces. The reason is that the interfaces
must be located at the same relative positions in all slots. By doing this, the inter-
faces of the modules are bound to the same relative wires. Therefore, modules that
communicate via an interface at one slot can also communicate via the interface at
the other slots. As a result, module relocation is feasible. As illustrated in Figure 5.5,
the interface at the west border in slot (0, 0) locates at the same relative position as
in the slot (0, 1).

Previously, we calculated the minimum width and height of the slots. We can
reuse a few of these formulas to calculate the size of the interface selection, as
well. First of all, we have to consider the maximum length of the wires that are
used. As illustrated in Figure 5.4, the maximum wire length constrains the maximum
number of INT tiles that we can use for the interface selection in the either horizontal
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or vertical direction. The reason is that if we use more INT tiles in a particular
direction, the wires are too short to bridge the border from the static area to the
partial area or vice versa. In the specific example of Figure 5.4, the maximum length
is two, and therefore, we can use a maximum of two INT tiles. Furthermore, we
might require multiple rows or columns to bridge all the interface wires from one
side of the border to the other side. These numbers are calculated in respectively
Equation 5.3 and Equation 5.4. Based on these conditions, the minimum width
vertical interface widthmin and the maximum height vertical interface heightmax

for the interface selection for communication in the vertical direction are as follows.

vertical interface widthmin = nr of columnsmin (5.9)

vertical interface heightmax = wire length verticalmax (5.10)

Furthermore, the maximum width horizontal interface widthmax and minimum
height horizontal interface heightmin for the interface selection for communication
in the horizontal direction is as follows.

horizontal interface widthmax = wire length horizontalmax (5.11)

horizontal interface heightmin = nr of rowsmin (5.12)

Figure 5.5: The partial area is divided into 2 × 2 slots. We have to select the area
where we would like to define the interface wires between the static and
partial area before using the command PrintInterfaceConstraintsForSe-
lection.
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The command PrintInterfaceConstraintsForSelection takes several parameters.
In the following, we describe the parameters of this command.

• SignalPrefix : This parameter specifies the prefix of the signal names from the
signals that are bound to the interface wires.

• InstanceName: This parameter specifies the instance name of the partial area
component in VHDL. Namely, later on, we generate a VHDL template that can
be added to the existing design files. This template contains all the interface
signals of the partial area, and the interface signals of this template are be-
ing constrained by the command PrintInterfaceConstraintsForSelection. See
Section 5.2.3 for more information.

• Border : This parameter specifies the boundary on the slot (North, East, South,
or West) that is used for the interface.

• NumberOfSignals: This parameter specifies the number of signals that are
used for the interface. If the selected region for the interface provides more
interface wires in comparison to this number, then the redundant wires will not
be used.

• PreventWiresFromBlocking: This parameter prevents the interface wires from
blocking. See Section 5.2.5 for more information.

• InterfaceSpecs: This parameter specifies the wires that should be used for the
interface. Furthermore, the parameter indicates the names of the signals that
must be bound to these wires. The parameter takes a list of values. Each
element of this list is separated into three components by the colon sign: I/O
direction, lengths of the wires, and the names of the signals. The I/O direction
in combination with the border indicates the cardinal direction of the signal,
where the direction is from the perspective of the slot. For example, if we
specify an interface on the west border of the slot and define it as an input
signal, then the signal direction is towards the east.

As mentioned before, the command PrintInterfaceConstraintsForSelection gen-
erates the interface constraints only for the current selection of tiles. Therefore, we
have to use this command multiple times. More specifically, we have to apply this
command to all locations where we would like to have an interface between the
static area and partial area. For the proposed fine-grained DPR system in Chapter
4, we have to apply this command for each side of the slots that are adjacent to the
static area, as illustrated in Figure 4.7. Therefore, we have to apply this command
X ∗ 2 + Y ∗ 2 times.
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1 # select interface border

2 ClearSelection;

3 AddBlockToSelection

4 UpperLeftTile=INT_L_X38Y15

5 LowerRightTile=INT_L_X38Y14;

6 StoreCurrentSelectionAs UserSelectionType=X0Y0_WestBorder;

7
8 # generate interface constraints

9 PrintInterfaceConstraintsForSelection

10 FileName =./ static_interface_constraints.tcl

11 Append=False

12 CreateBackupFile=False

13 SignalPrefix=x0y0

14 InstanceName=inst_PartialArea

15 Border=West

16 NumberOfSignals =16

17 PreventWiresFromBlocking=True

18 InterfaceSpecs=In:2-4:s2p_w ,Out:2-4: p2s_w;

Listing 5.6: The command PrintInterfaceConstraintsForSelection is used to
generate a TCL script that binds the interface signals to the interface
wires between the static area and partial area.

The command generates a TCL script with constraints for the interface. We use
the property HD.PARTPIN LOCS from Vivado to bind a specific signal to a particular
port on a INT tile [31]. The router is forced to route the specified signal through the
specific port. The syntax of this property is illustrated in Listing 5.7. The locations
of the INT tiles are obtained from the current selection in GoAhead, and the port
names are constructed by the specifications in the parameter InterfaceSpecs (see
also Section 2.1.3). For each interface signal, such property is generated.

1 # bind the signal to a particular port

2 set_property HD.PARTPIN_LOCS INT_L_X38Y15/EE2END0

3 [get_pins inst_PartialArea/x0y0_s2p_w [0]];

Listing 5.7: The property HD.PARTPIN LOCS is used to define a particular signal
to be routed through a specified INT tile and port.

In Chapter 3, we described that binding a specific signal x that has to be routed
using wire y is not possible. In the original tool flow of GoAhead, a workaround is
used for binding the signals to particular wires, which is explained in Section 5.2.5.
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However, the HD.PARTPIN LOCS property is a recent property added in Vivado. By
using this property, we can actually bind a signal to a wire.

The Command AddLUTConnectionPrimitive

By using the command PrintInterfaceConstrainsForSelection, we specify a particu-
lar signal to route through a specific port on the INT tile. However, in VHDL, we
cannot leave signals unconnected. Otherwise, they will be optimized away. There-
fore, we require an element to anchor the signal. In GoAhead, there is a library with
connection primitives that can be used to connect signals. These connection primi-
tives are BELs, such as LUTs and FFs. In this work, we will use LUTs to connect a
single input and output signal.

As mentioned before, when loading an FPGA device, the corresponding family
script is also executed. In this script, we run family-related commands. One of these
commands adds a connection primitive to the library. However, GoAhead currently
does not support a simple connection primitive of a LUT that connects a single input
and output. Therefore, we developed a new command that adds such a connection
primitive to the library. The name of this command is AddLUTConnectionPrimitive.
We call the connection primitive LUTConnectionPrimitive.

This command is included in the family scripts. Since the corresponding family
script is executed when a particular device is loaded in GoAhead, users of GoAhead
do not have to use this command but can use the created connection primitive from
the library, as we will see in the following.

The Command InstantiateConnectionPrimitives

As the connection primitive LUTConnectionPrimitive is now part of the library, we
can instantiate connection primitives of this type. We have to instantiate one LUT for
each input and output signal. In Listing 5.8, the GoAhead commands are shown to
instantiate LUTs and annotate signals to them. The name of the command to instan-
tiate LUTs is InstantiateConnectionPrimitives. We instantiate connection primitives
of the type LUTConnectionPrimitive. We also specify the number of connection
primitives (LUTs). For example, if we have an interface with 16 input signals and 16
output signals, we have to instantiate 16 LUTs. Furthermore, we give the instanti-
ated connection primitives a unique name by using the parameter InstanceName.
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The Command AnnotateSignalNamesToConnectionPrimitives

Once we have instantiated the LUTs, we use the command AnnotateSignalNamesTo-
ConnectionPrimitives to annotate signals to them, as illustrated in Listing 5.8. In the
following, we describe the parameters of this command.

• InstantiationFilter : This parameter specifies which connection primitive instan-
tiations should be annotated. This specification is a regular expression. In the
command InstantiateConnectionPrimitives, we gave a unique name to a col-
lection of connection primitives. Now, if we would like to annotate only these
instantiations, we have to filter on that particular instance name.

• InputMappingKind : This parameter specifies whether the input of the connec-
tion primitive (LUT) is used to connect a signal. In case we choose to leave the
input unconnected, we set this parameter to internal. Otherwise, we set it to
external. This terminology is inherited from the existing GoAhead commands.

• OutputMappingKind : This parameter specifies whether the output of the con-
nection primitive (LUT) is used to connect a signal. The way we use this pa-
rameter is similar to parameter InputMappingKind.

• SignalPrefix : This parameter specifies the prefix of the signal names from the
signals that are annotated to the connection primitives.

• InputSignalNames: This parameter specifies the name of the input signals that
are annotated to the connection primitives.

• OutputSignalNames: This parameter specifies the name of the output signals
that are annotated to the connection primitives.

• LookupTableInputPort : This parameter specifies the particular input port of the
LUT that is used to connect the signal. We will see in Section 5.2.5 why this is
relevant.

The input and output signals that are specified in the command AnnotateSig-
nalNamesToConnectionPrimitives must match with the interface signals from the
command PrintInterfaceConstraintsForSelection. In the latter command, we gener-
ated constraints that particular interface signals must be connected to specific wires.
Then, we instantiated connection primitives with the command InstantiateConnec-
tionPrimitives that are used to connect these interface signals. Moreover, we used
the command AnnotateSignalNamesToConnectionPrimitives to specify which inter-
face signals should be connected to which connection primitives. In the following,
we generate a VHDL template that contains all these connection primitives.
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1 # instantiate LUT connection primitives

2 InstantiateConnectionPrimitives

3 LibraryElementName=LUTConnectionPrimitive

4 InstanceName=inst_x0y0_w

5 NumberOfPrimitives =16;

6
7 # annotate signal names to the LUT connection primitives

8 AnnotateSignalNamesToConnectionPrimitives

9 InstantiationFilter=inst_x0y0_w .*

10 InputMappingKind=external

11 OutputMappingKind=external

12 SignalPrefix=x0y0

13 InputSignalName=s2p_w

14 OutputSignalName=p2s_w

15 LookupTableInputPort =3;

Listing 5.8: The commands InstantiateConnectionPrimitives and
AnnotateSignalNamesToConnectionPrimitives are used to instantiate
LUTs, which are placed within the partial area to connect the interface
signals between the partial and static area.

5.2.3 VHDL Templates

In the static system, we consider the partial area as a black-box component. In the
previous section, we specified the interface signals of the partial area and connected
them to the connection primitives. Now, in GoAhead, we generate a VHDL template
of the partial area. This template contains all the instantiated connection primitives.
Therefore, in the static system, the partial area is nothing more than some dummy
connection primitives. The VHDL template should be merged into the existing design
files. The command that we use in GoAhead to generate the VHDL template is
PrintVHDLWrapper. In Listing 5.9, the syntax of this command is shown.

The generalized component declaration of the partial area in VHDL is illustrated
in Listing 5.10. The component contains all the interface signals that we have de-
fined with the commands in Listing 5.8. For convenience, the prefix of the signal
names indicates to which slot location they belong (see Figure 4.7). Furthermore,
the postfix of the signal names specifies the side on the slot.

The VHDL template includes all the connection primitive (LUT) instantiations. In
Listing 5.11, a single instantiation is shown. The input signal is connected to input
pin 3 of the LUT, as specified in Listing 5.8.
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1 # print partial area module in VHDL

2 PrintVHDLWrapper

3 InstantiationFilter =.*

4 EntityName=PartialArea

5 FileName =/ PartialArea.vhd

6 Append=False

7 CreateBackupFile=True;

Listing 5.9: The command PrintVHDLWrapper is used to generate a VHDL
template of the instantiated connection primitives that match the filter.

1 component PartialArea is port (

2 x0y0_p2s_b : out std_logic_vector(n downto 0);

3 x0y0_s2p_b : in std_logic_vector(m downto 0);

4 x0y0_p2s_b : out std_logic_vector(n downto 0);

5 x0y0_s2p_b : in std_logic_vector(m downto 0);

6 -- ..

7 xXyY_p2s_b : out std_logic_vector(n downto 0);

8 xXyY_s2p_b : in std_logic_vector(m downto 0));

9 xXyY_p2s_b : out std_logic_vector(n downto 0);

10 xXyY_s2p_b : in std_logic_vector(m downto 0));

11 end component PartialArea;

Listing 5.10: The component declaration of the partial area.

1 inst_x0y0_n_0 : LUT6

2 generic map ( INIT => X"ABCDABCDABCDABCD" )

3 port map (

4 O => x0y0_p2s_n (0),

5 I0 => ’0’,

6 I1 => ’0’,

7 I2 => ’0’,

8 I3 => x0y0_s2p_n (0),

9 I4 => ’0’,

10 I5 => ’0’

11 );

Listing 5.11: A connection primitive instantiation in the VHDL template of the partial
area.
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5.2.4 Placement Constraints

The connection primitives are used to anchor the interface signals. However, after
placement and routing, they are no longer required, because the interface signals
are bound to the proper wires at this point. We constrain the placement of connec-
tion primitives within the partial area. The reason is that we reconfigure the partial
area with modules during run-time, and therefore we have no logic overhead due
to these connection primitives. This concept is demonstrated in Figure 5.3. As
illustrated in Figure 5.3a, the connection primitives (LUTs) within the partial area
are used to anchor the interface signals. Then, when we configure a module, the
connection primitives are reconfigured by the logic of the module, as illustrated in
Figure 5.3c. Therefore, the connection primitives do not cause any logic overhead
to the system.

In Vivado, we constrain the placement of the connection primitives by using
pblocks [33]. A pblock is a user-chosen area on the FPGA fabric. Logic cells (e.g.,
FFs and LUTs) can be assigned to the pblock. By default, the placement of the logic
cells belonging to the pblock is within its region.

By using GoAhead, we create a pblock on the same location as the partial area
and assign the connection primitives to the pblock. By doing this, we constrain
the placer to place all the connection primitives within the partial area. Another
placement constraint is that logic belonging to the static part of the system should
be placed outside the partial area. For this purpose, we use the property EX-
CLUDE PLACEMENT on the same pblock that we used to constrain the placement
of the connection primitives [32]. This property forces the placement of the logic
cells that do not belong to the pblock outside the pblock region. Therefore, logic
cells that belong to the static part of the system will not be placed within the partial
area.

The commands PrintAreaConstraint and PrintExcludePlacementProperty

The commands that we use in GoAhead to generate the placement constraints are
PrintAreaConstraint and PrintExcludePlacementProperty. The syntax of these com-
mands is illustrated in Listing 5.12. The command PrintAreaConstraint creates a
TCL script that defines a pblock in Vivado. The size and location of this pblock de-
pend on the current selection of tiles in GoAhead. Therefore, we have to select the
tiles of the partial area before we apply this command, as illustrated in Listing 5.12.

The command PrintExcludePlacementProperty generates a TCL script that ap-
plies the EXCLUDE PLACEMENT property on the pblock. Note that Append is set
to False in the command PrintAreaConstraint and set to True in the command Print-
ExcludePlacementProperty. By doing this, we can add content to the same file.
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Consequently, we avoid the generation of many separate files.

1 # select the partial area

2 ClearSelection;

3 SelectUserSelection UserSelectionType=PartialArea;

4
5 # place logic cells of the partial area within the partial area

6 PrintAreaConstraint

7 InstanceName=inst_PartialArea

8 FileName =./ static_placement_constraints.tcl

9 Append=False

10 CreateBackupFile=True;

11
12 # place all other logic cells outside the partial area

13 PrintExcludePlacementProperty

14 InstanceName=inst_PartialArea

15 FileName =./ static_placement_constraints.tcl

16 Append=True

17 CreateBackupFile=True;

Listing 5.12: The commands PrintAreaConstraint and PrintExcludePlacement-
Property are used to (1) constrain the logic cells of the partial area
being placed within the partial area and (2) exclude placement of logic
cells from the static part of the system within the partial area.

The TCL Commands

The GoAhead commands in Listing 5.12 generate a TCL script that constrains the
placement of the logic cells. This TCL script is illustrated in Figure 5.13. First,
the pblock is defined by the command create pblock. Then, we use the command
resize pblock to place the pblock onto the fabric of the FPGA. In this command, we
also specify the location and the size of the pblock.

In the following, we add the logic cells to the pblock by using the command
add cells to pblock. We use the command get cells to obtain all the logic cells from
a component instantiation in VHDL. As described in Section 5.2.3, the partial area
component contains all the connection primitives. Therefore, we add the logic cells
of the partial area to the pblock. Consequently, we assigned all the connection prim-
itives to the pblock. Finally, we apply the property EXCLUDE PLACEMENT on this
pblock.
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Note that the instantiation name of the partial area component is specified by
the parameter InstanceName in the GoAhead command PrintAreaConstraint. Also,
the name of the pblock is based on this parameter. Therefore, the parameter In-
stanceName must be the same in both commands PrintAreaConstraint and Print-
ExcludePlacementProperty. By doing this, we apply the generated commands and
properties in the TCL script on the same pblock.

1 create_pblock pb_inst_PartialArea;

2 # define location and size of the pblock

3 resize_pblock [get_pblocks pb_inst_PartialArea]

4 -add {SLICE_X36Y0:SLICE_X47Y99 };

5 # add logic cells to the pblock

6 add_cells_to_pblock [get_pblocks pb_inst_PartialArea]

7 [get_cells inst_PartialArea ];

8 # prevent placement of logic that is not assigned to the pblock

9 set_property EXCLUDE_PLACEMENT true

10 [get_pblocks pb_inst_PartialArea ];

Listing 5.13: In Vivado, we use pblocks to constrain the placement of logic cells.

5.2.5 The Blocker Macro

We use a blocker macro within the partial area to support module relocation. The
purpose of this blocker is to prevent the signals belonging to the static part of the
system route through the partial area. As illustrated in Figure 2.14, the static sig-
nals that route through the partial area will be cut when the partial area is being
reconfigured.

The blocker occupies wires within the partial area, such that the static signals
cannot enter the partial area. Therefore, the static signals are forced to route around
the partial area. This method is similar to the original design flow of GoAhead [1].
However, they occupy all the wires in the partial area by the blocker, except the tun-
nel wires. Tunnel wires are unblocked wires in the blocker that forms a path to the
connection primitives. By doing this, they force the interface signals to route through
particular wires (binding). They leave one particular routing path (tunnel) available
for each signal to reach the corresponding connection primitive. However, we use
property HD.PARTPIN LOCS to constrain the router to route a signal through a spe-
cific wire. Therefore, we only have to block the wires that cross the border between
the static area and partial area, except the interface wires. This concept is illustrated
in Figure 5.6. The reason that this method does not work in the original design flow
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of GoAhead is that the interface signals have then multiple routing options to the
connection primitives. Therefore, the binding might fail. Consequently, there might
be no proper communication.

Figure 5.6: The wires that cross the boundary between the partial and static areas
are blocked, except the interface wires. The interface signals can route
via the interface wires and free wires towards the connection primitives.

The TCL Commands

During the implementation of the static system in Vivado, the blocker is a signal that
is being routed via the wires that must be blocked. By doing this, the static signals
cannot use these wires, since they are occupied by the blocker. Consequently, the
static signals have to route via another (unblocked) wires.

The blocker is generated by using the ROUTE property [16]. This property is
also called the directed routing string. The directed routing string represents the
tree structure of a physical route by using nested brackets to represent branching.
As we have seen in Section 2.1.3, the INT tiles contain PIPs that can be enabled
to route a signal from one location to one or multiple other locations. By using the
property ROUTE, we can specify the physical route of a signal by defining the PIPs
connections.

Figure 5.7 illustrates the tree structure of the blocker signal. We use only a nest-
ing depth of two. Note that we start with a virtual node. This means that there is no
defined start location of the blocker signal. The rest of the tree comprises individual
PIP connections and, therefore, wires that are being blocked. The corresponding
routing string is the following.

”{begin port0 end port0}{begin port1 end port1} . . . {begin portn end portn}”
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Figure 5.7: The tree structure of the routing net for the blocker macro.

A PIP connection connects a begin port to an end port. Therefore, for each PIP
connection that we use in the directed routing string, we block two wires. This is
illustrated in Figure 5.8. In this figure, a single INT tile is shown that has several
blocked wires and several free wires, depending on the enabled PIPs. Note that
the ports that are connected to the logic tile are also used for the blocker macro. In
principle, we only have to block the wires that connect two INT tiles, because the
purpose of the blocker is to prevent routing within the partial area. However, we
require an end port and begin port to block wires. We might run out of these ports,
and therefore, we use the ports that are connected to the logic tile such that all the
desired wires can be blocked.

Figure 5.8: The blocker is a directed routing string that enables PIP connections,
which are used for the blocker signal. A PIP connects a begin port and
end port, and therefore, two wires are being blocked.
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1 set_property ROUTE "( \

2 { INT_L_X26Y99/LVB_L12 INT_L_X26Y99/WW4BEG2 } \

3 { INT_L_X26Y99/LVB_L0 INT_L_X26Y99/SW6BEG2 } \

4 ..

5 { INT_R_X31Y0/LOGIC_OUTS7 INT_R_X31Y0/EE2BEG3 } \

6 { INT_R_X31Y0/LOGIC_OUTS7 INT_R_X31Y0/EL1BEG2 } \

7 )" [get_nets blocker_net_BlockSelection]

Listing 5.14: The property ROUTE is used to generate the blocker.

The Commands BlockSelection and BlockWiresInSelection

The command BlockSelection is an existing command in GoAhead that blocks the
wires that are connected to an INT tile. By default, the command blocks all the
wires of the INT tiles in the current selection. However, in GoAhead, we can prevent
a particular port from blocking. As illustrated in Figure 5.6, the wires that do not
cross the border from the partial area to the static area should be prevented from
blocking in the partial area. The command in GoAhead that prevents these wires
from blocking is BlockWiresInSelection. Note that these commands are applied to
the current selection of tiles. Therefore, before using these commands, we have to
select the tiles belonging to the partial area, as illustrated in Listing 5.15.

The Commands BlockLUTInputPortsInSelection and SaveAsBlocker

The command BlockSelection does not only block wires between INT tiles but blocks
also the wires that are connected to the logic tiles. As mentioned before, we connect
a single input signal to the connection primitives. We use one of its input pins to
connect the input signal. Therefore, we have to prevent the path (wires) towards this
input pin from blocking. Otherwise, the particular input pin on the LUT cannot be
reached by the signal since the wire is occupied by the blocker. Note that there is
one unique path from the INT tile towards each input pin of the LUT.

We use the command BlockLUTInputPortsInSelection to prevent the path to-
wards the input port of the LUT from blocking. The parameter InputPortsRegex
specifies the port name on the INT tile that directs to the input pin of the LUT. This
port should be prevented from blocking. Note that there are different types of CLBs
on the FPGA fabric. Also, the LUTs belonging to these CLBs have different naming.
Therefore, the port names that direct to all these particular input pins of the LUTs
are also slightly different. Now, to prevent the particular input port of all the LUTs
from blocking, a regular expression is used to specify all these different port names.
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The last group of wires that must be prevented from blocking are the interface
wires. The unblocking of the interface wires is part of the PrintInterfaceConstraints-
ForSelection command, as illustrated in Listing 5.6. By setting the parameter Pre-
ventWiresFromBlocking to True, we prevent these specific wires from blocking.

Now that we defined which wires should be blocked and which wires should be
prevented from blocking in the partial area, we use the GoAhead command SaveAs-
Blocker to generate a TCL script that includes the blocker.

1 # select partial area

2 ClearSelection;

3 SelectUserSelection UserSelectionType=PartialArea;

4
5 # prevent wires within the partial area from blocking

6 BlockWiresInSelection;

7 BlockLUTInputPortsInSelection

8 InputPortsRegex =.*(L|M)*_(A|B|C|D)4;

9
10 # block all other wires

11 BlockSelection

12 NetlistContainerName=default_netlist_container;

13
14 # generate directed routing string

15 SaveAsBlocker

16 NetlistContainerNames=default_netlist_container

17 FileName =./ static_blocker.tcl;

Listing 5.15: The commands BlockWiresInSelection and
BlockLUTInputPortsInSelection are used to prevent blocking ports
within the partial area. The blocker net is generated by using the
commands BlockSelection and SaveAsBlocker.

5.2.6 Implementation in Vivado

Once we designed the DPR system in GoAhead, we have a total of five files with
constraints and VHDL templates. As a summary, GoAhead generated the following
files.

• static clock connections.tcl. This file contains TCL commands to connect
all the clock pins of BELs within the partial area.
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• static placement constraints.tcl. This file has restrictions for the floorplan-
ning of the partial area and makes sure that no logic from the static part of the
system is placed within the partial area.

• static interface constraints.tcl. This file contains constraints that binds the
interface signals between the partial area and the static area to specific wires.

• static blocker.tcl. This file contains the directed routing string to implement
the blocker.

• PartialArea.vhd. This file provides the LUT instantiations in VHDL. The inter-
face signals are connected to these LUTs.

The TCL scripts should be copied in the Vivado project, and the VHDL template
should be merged into the existing design files. We provide a TCL script (named
Run Static.tcl) to automize the whole design flow in Vivado. After each step, we
create a checkpoint to verify the design in each step. The steps in the TCL script
are the following.

1. Synthesize the design. The TCL command synth design is used [33].

2. Set placement constraints. The script static placement constraints.tcl is exe-
cuted.

3. Set interface constraints. The script static interface constraints.tcl is executed.

4. Optimize the design. The TCL command opt design is used.

5. Place the design. The TCL command place design is used.

6. Connect the clock pins in the partial area. The script static connect clock-
pins.tcl is executed.

7. Insert the blocker. The script static blocker.tcl is executed.

8. Route the design. The TCL command route design is used.

9. Remove the blocker. The TCL command route design is used. We use the
parameter unroute to unroute the blocker net.

10. Generate the bitstream. The TCL command write bitstream is used. The gen-
erated bitstream can be programmed on the FPGA by using one of the config-
uration interfaces.
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5.3 Implementing the Modules

The modules are developed independently from the static system. The design flow
of the modules is very similar to the design flow of the static system, as illustrated in
Figure 5.1. In both design flows, we generate constraint files and VHDL templates
by using GoAhead. The VHDL templates are merged within the existing design files,
and the constraint files are included in the Vivado project. Vivado performs the low-
level operations (e.g., synthesis, placement, routing, etc.), and the final result is a
bitstream. We use an external tool called BitMan to generate a partial bitstream
from the bitstream generated by Vivado.

Although the design flow of the modules is similar compared to the design flow
of the static system, the modules require a different floorplan in comparison to the
static system. However, we can use the GoAhead commands that are introduced in
the previous section to implement the modules, as well. Therefore, we discuss the
implementation of the modules in less detail.

5.3.1 Implementation in GoAhead

The implementation of the module starts by floorplanning the module area in GoA-
head. For this purpose, we can use the GUI or the usual selection commands, as
illustrated in Listing 5.3.

In the design phase, the designer should have determined the interface, shape,
size, and footprint of the modules. In principle, there is no constraint for the location
to develop the module on the FPGA fabric, as long the interface, shape, size, and
footprint matches with the module characteristics from the design phase. The rea-
son is that we can relocate the module to any position with a similar footprint later
on.

Interface Constraints

The interfaces of the modules should be located at the same relative position as in
the static system. By doing this, the static system and modules can communicate,
since their interface signals are bind to the same wires. In Figure 5.5, two interface
locations in the static system are illustrated. In this particular example of the static
system, we partitioned the partial area into 2 × 2 imaginary slots. In Figure 5.9, a
module floorplan in GoAhead for this partial area is shown. The size of the module
is 1 × 2 slots. As illustrated in this figure, the input interface is at the same relative
position as in the static system. As a result, the static system and module can
properly communicate when the module is configured within the partial area.



5.3. IMPLEMENTING THE MODULES 79

However, note that if we configure the module in the partial area, the output of the
module is not connected to the interface signals from the partial area to the static
area. Therefore, in this particular example, there is only a proper communication
from the static area to the partial area, but not vice versa. We have to configure
additional (by-pass) modules to make an appropriate connection from the partial
area to the static area, as well.

The way we implement the interfaces for the modules with GoAhead is the same
as we described in Section 5.2.2. We can use the GoAhead commands that are
illustrated in Listing 5.6.

Figure 5.9: The floorplan of the module area in GoAhead. The interface selections
should be at the same relative position as in the static system.

Placement Constraints

During the development of the modules, only the area of the module is essential.
Later on, we extract the module area out of the total FPGA fabric and generate a
partial bitstream from this area by using BitMan. However, in the module design,
we have to connect the interface signals with the logic primitives outside the module
area. The reason is that we cannot leave these signals unconnected. Therefore, we
use connection primitives. This concept is illustrated in Figure 5.10. The connection
primitives are used to anchor the interface signals. We can instantiate and annotate
signals to the connection primitives with the GoAhead commands in Listing 5.8.

The connection primitives should be placed outside the blocker area. Otherwise,
they are not reachable since almost all the wires in the blocker area are prohibited
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by the blocker. Therefore, in Vivado, we use pblocks. These pblocks are located
outside the module and blocker areas. We use the PrintAreaConstraint command
in GoAhead for every connection primitive block. The syntax of this command is
illustrated in Listing 5.12.

The logic cells that belong to the module should all be placed within the module
area. Therefore, in Vivado, we use a pblock to constrain the placement within the
module area. Again, we have to use the GoAhead commands in Listing 5.12 to
generate the TCL script that defines the pblock.

Figure 5.10: In the implementation of the modules, only the module area is essen-
tial. However, we have to connect the interface signals outside the
module area. We use connection primitives to connect the interface
signals. A blocker is used to prevent routing outside the module area.

Blocker

Another constraint when developing a module is that the signals of the module are
routed exclusively in the module area, except the interface signals. In Vivado, there
is a property named CONTAIN ROUTING [32]. This property can be used on a
pblock to use strictly routing resources within the area defined by the pblock. How-
ever, only signals that are entirely owned by the pblock cells will be contained within
the pblock. For example, the interface signals of the modules require to be routed
outside the module area and thus cannot be restricted to be in the module area.
Therefore, we use a blocker macro around the module area. This blocker macro
occupies all the wires around the module area. As a result, the signals belonging
to the module can only route within the module area. The size of the blocker macro
should be such that no signal can enter or leave the module area, besides the inter-
face signals. Therefore, the minimal width or height at the boundaries of the module
area is the maximal wire length in the respectively horizontal or vertical direction.
We can specify the blocker area in GoAhead by selecting the tiles with the GUI or
the usual selection commands, as illustrated in Listing 5.3.
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Tunnels

As mentioned before, the only signals that leave the module area are the interface
signals. We create tunnels in the blocker area such that the interface signals can
route through the blocker towards the connection primitives. These tunnels are illus-
trated in Figure 5.10.

In GoAhead, we use the command ExcludePortsFromBlockingInSelection for
creating tunnels. This command excludes a particular port from blocking on all INT
tiles in the current selection. The specific port to be blocked can be specified in the
parameter PortName. Before we explain which ports we use for creating the tunnels,
we have to note that each corresponding end and begin port can be directly con-
nected through a PIP. By the corresponding end and begin ports, we mean the ports
on the same INT tile with the same direction and length (see also Section 2.1.3). As
mentioned before, we bind the interface signals on wires in either the horizontal or
vertical direction. We use the same wires on the INT tiles in the blocker area to form
a horizontal or vertical path through the blocker area.

In Figure 5.11, an example of a tunnel in the eastern direction is illustrated. This
tunnel uses the wires with length two in the eastern direction. As we can see, the
corresponding begin and end ports are connected through a PIP. Note that the wires
with the same properties are bundled in groups of four. Each of these ports has a
slightly different name. Namely, the index of these ports is different. Consequently,
we have to use the command ExcludePortsFromBlockingInSelection reasonably of-
ten if we have many interface signals since we also use wires with varying properties
(e.g., wire lengths and directions) for the interface wires. Therefore, we use the Ad-
dAlias command to combine groups of ports (see Section 5.1).

Figure 5.11: The corresponding end ports and begin ports on the same INT tile
can be connected through a PIP. In this example, the EE2BEG* and
EE2END* ports are connected via PIPs. By using these ports, we can
construct a tunnel in the eastern direction.
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For convenience, we group the ports with the same length, cardinal direction,
and sort them as begin ports or end ports. The prefix of the command names that
creates a tunnel is DoNotBlock. In the following, the length and cardinal direction
are specified. Finally, the command name ends whether the group of ports are
begin ports or end ports. As an example, we use the commands DoNotBlockDou-
bleEastBegin and DoNotBlockDoubleEastEnd to create a tunnel such as illustrated
in Figure 5.11. In Listing 5.16, the GoAhead code to create the DoNotBlockDou-
bleEastBegin command is shown.

1 # prevent begin ports with a wire length of two from blocking

2 AddAlias

3 AliasName=DoNotBlockDoubleEastBegin

4
5 Commands =" ExcludePortsFromBlockingInSelection

6 PortName=EE2BEG0

7 CheckForExistence=False

8 IncludeAllPorts=True;

9
10 ExcludePortsFromBlockingInSelection

11 PortName=EE2BEG1

12 CheckForExistence=False

13 IncludeAllPorts=True;

14
15 ExcludePortsFromBlockingInSelection

16 PortName=EE2BEG2

17 CheckForExistence=False

18 IncludeAllPorts=True;

19
20 ExcludePortsFromBlockingInSelection

21 PortName=EE2BEG3

22 CheckForExistence=False

23 IncludeAllPorts=True ;";

Listing 5.16: The GoAhead command ExcludePortsFromBlockingInSelection is
used to create tunnels within the blocker area. For convenience,
we use the AddAlias command to combine ports that belong to a
particular tunnel.

We can also merge commands that are created by the AddAlias commands. For
convenience, we also create commands that combine the begin and end ports. For
example, for the tunnel illustrated in Figure 5.11, we combine the command DoNot-
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BlockDoubleEastBegin and DoNotBlockDoubleEastEnd to a new command named
DoNotBlockDoubleEast. We have done this for all cardinal directions and wiring
lengths. Therefore, users of our tool do not have to create the tunnel commands by
themselves. The tunnel commands are defined in the family script. Therefore, when
loading the device, the tunnel commands can be used by the designer.

Now that we have seen how the tunnels are constructed and which commands
we have to use to create tunnels, we have a look at the floorplan of the tunnels
in GoAhead. In Figure 5.12, the same module area and interface connections are
defined as in Figure 5.9. Around the module area, we defined the blocker area.
We use the usual selection commands to define the location of the blocker area.
Within the blocker area, we define the tunnels. The same selection commands are
used to specify the locations of the tunnels. The location of these tunnels must
be at the same height or width compared to the location of the interface. Note
that we have to apply the tunnel commands after we selected the location of the
tunnels. Furthermore, we defined the locations of the connection primitives outside
the module and blocker area.

Figure 5.12: The floorplanning of a module in GoAhead. We start by selecting the
module area. Around the module area, we define a blocker area to pre-
vent routing outside the module area. However, interface wires have
to leave the module area. Therefore, we define tunnels through the
blocker area. Finally, we select regions where the connection primi-
tives should be located. These must be located outside the module
and blocker area.
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After we generated the tunnels in the region of the blocker, the blocker and its
corresponding TCL file can be generated by using the commands BlockSelection
and SaveAsBlocker, as illustrated in Listing 5.15.

5.3.2 Implementation in Vivado

Once we designed a module in GoAhead, we have a total of four files with con-
straints and VHDL templates. As a summary, we generated the following files.

• module placement constraints.tcl. This file has restrictions for the floorplan-
ning of the module area and makes sure that all the logic is placed within the
module area. Also, the file contains constraints to place the connection primi-
tives outside the module area and blocker area.

• module interface constraints.tcl. This file contains constraints that define
the ports for the interface between the module area and the rest of the FPGA
fabric.

• module blocker.tcl. This file contains the directed routing string to implement
the blocker.

• ConnectionPrimitives.vhd. This file provides the LUT instantiations in VHDL.
The interface signals are connected to these LUTs.

The VHDL template should be merged into the top-level design, and the TCL
scripts should be copied in the Vivado project. Similar as in Section 5.2.6, we provide
a script to automize the whole design flow in Vivado. The steps of the module
implementation are very similar as in the static system implementation. We run the
same steps, besides step 6. An important note is that the output is still a complete
bitstream. Therefore, we have to transform it into a partial bitstream.

5.3.3 Creating Partial Bitstreams

The way we generate partial bitstreams is the same as in [11]. They also use BitMan
to generate partial bitstreams [17]. BitMan is a tool for creating and manipulating
bitstreams. BitMan supports all the recent Xilinx FPGAs.

We can use the tool by opening the command prompt in Windows. In List-
ing 5.17, the generalized command to generate a partial bitstream in BitMan is
shown. The parameters x0 and y0 denote the left-down corner of the module area,
where x1 and y1 indicate the upper-right corner of the module area. The parameters
new x and new y denote the left-down corner of the new position. In case we would
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like to implement the module on the same location as in the full bitstream, we can
use the same coordinates as denoted by x0 and y0. However, if we would like to
relocate the module, we have to specify the new location.

Note that by using this tool, we have to generate multiple bitstreams for the same
module if we would like to relocate the module. However, the PRC can be used to
change the location in the header of the .bit file. This allows us to only have one
instantiation for every module in external memory, and still instantiate the module on
multiple locations.

1 bitman.exe -x x0 y0 x1 y1 full.bit -M new_x new_y partial.bit

Listing 5.17: BitMan is used to generate partial bitstreams. The parameters x0, y0,
x1, and y1, specify the location of the module in the full bitstream. The
parameters new x and new y denote the offset position of the module
in the partial bitstream.
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Chapter 6

Case Study: AES

In this chapter, we demonstrate our framework by using a case study. In the follow-
ing, we shortly describe the case study. Nowadays, FPGAs are frequently used for
hosting cryptographic algorithms (e.g., Advanced Encryption Standard (AES) [24]),
as they represent an efficient platform. One reason is that FPGAs provide an ef-
ficient implementation of such streamed-based algorithms. Another reason is the
possibility to reconfigure and update the implementation in the application field after
the detection of security flaws, which is very valuable.

The deployment of security-relevant applications is not always in a trusted and
controlled environment. It is rather so that the FPGA-based implementation is ex-
posed to an environment that is under full control of an attacker, who can launch
physical attacks like manipulating the clock frequency, voltage levels, using radia-
tion and laser beams, and so on. These attacks are very powerful, and almost all
implementations suffer from these kinds of attacks. Therefore, measurements to
protect the implementation for physical attacks are essential and should be carried
out at run-time by the FPGA platform itself.

In this case study, we demonstrate a countermeasure against side-channel at-
tacks on cryptographic implementations by using DPR. Side-channel attacks are
one of these physical attacks and are based on gathering information from the im-
plementation of a system. Timing information, power consumption, or electromag-
netic leaks can provide information about the implemented system [20]–[23]. These
characteristics can be exploited, and usually, the goal is to get the secret key of the
cryptographic algorithm.

The idea is to develop multiple variants of the same cryptographic algorithm. All
these variants have the same functionality, but a different hardware implementation.
By using DPR, we continuously reconfigure these variants. Since each variant has a
different hardware layout, the timing, power, and electromagnetic characteristics per
variant vary. As a consequence, the characteristics become random, and therefore,
side-channel attacks become more difficult or even impossible.

87
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In this case study, we will explore one specific cryptographic algorithm: AES.
We will not develop variants of the complete AES algorithm, but we decompose the
algorithm in multiple modules. For each module, multiple variants will be generated.
For the following, assume that we decompose the AES algorithm in M modules,
and we develop for each module V variants. Then, the total number of variants for
the complete AES algorithm is V M . Thus, by doing this, we can compose a lot of
different variants of the complete AES algorithm. Another advantage of decompos-
ing the AES algorithm in multiple modules is that we do not have to reconfigure the
whole AES algorithm, but only a small portion. Therefore, the downtime of the AES
algorithm decreases. As a result, we can achieve higher throughputs.

Now that we introduced the aim of this case study, we discuss it in more detail
throughout this chapter. This chapter is organized as follows. In Section 6.1, we
have a closer look at the hardware implementation of the AES algorithm on FPGAs.
With this knowledge, we decompose the AES algorithm in a static part and sev-
eral modules. This is discussed in Section 6.2. Once we decomposed the AES
algorithm, we can develop the static system and the variants of the modules. The
implementation of the static system and modules is respectively described in Sec-
tion 6.3 and Section 6.4. Finally, after developing the static system and the variants,
we demonstrate several configurations and thus variants of the complete AES algo-
rithm. This is discussed in Section 6.5.

6.1 AES Hardware Implementation

In Figure 6.1, the hardware implementation of the AES algorithm on FPGAs is il-
lustrated. In cryptography, the plaintext is the unencrypted information, where ci-
phertext is the encrypted result. The AES algorithm exists of four main processing
steps: SubBytes, ShiftRows, MixColumns, and AddRoundKey. We shortly introduce
the processing steps individually. The SubBytes step replaces each byte of the mes-
sage by the corresponding value from the substitution box, which is often also called
S-box. The S-box is a LUT. In the following step, ShiftRows, the message is re-
distributed. The MixColumns performs a dot product and matrix multiplication on
the data. Finally, the AddRoundKey performs an XOR-operation with the message
and the key. Furthermore, the State is a register and is used to store intermediate
results.

In this case study, we use a 128-bit encryption key. Therefore, we have to perform
ten rounds of encryption. In a single round, the State is processed by all the four
main processing steps, except in the last round. In the final round, the MixColumns
step is by-passed. This flow of data is controlled by a state machine that controls
the multiplexers (the rectangles with rounded corners).
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Figure 6.1: The AES implementation on the FPGA. The AES algorithm has four
main processing steps: SubBytes, ShiftRows, MixColumns, and Ad-
dRoundKey, where State is a register. The multiplexers control the flow
of data.

6.2 Static/Partial Partitioning

The four main processing steps are excellent candidates to divide the AES algorithm
in multiple modules. The SubBytes, ShiftRows, and MixColumns all have the same
interface layout. These interfaces contain 128 input bits and 128 output bits. These
modules must be placed in consecutive order, and their output is the input of the
next module. The AddRoundKey has a different interface. This module requires 256
input bits and produces 128 output bits.

In Chapter 4, we discussed that the interface of the slots in the partial area re-
quires a unioned interface of the different inputs and outputs. In the case we use
all the four main processing steps, we need 256 bits of input signals and 128 bits
output signals. The number of interface signals constrains the minimal size of the
slots in the partial area. Therefore, we choose to keep the AddRoundKey within the
static system. As a result, we only require 128 input signals and thus can build a
more fine-grained partial area.

The new hardware layout of the total system is shown in Figure 6.2. In the static
system, the SubBytes, ShiftRows, and MixColumns are replaced by the partial area.
Also, we add two multiplexers to the system that select the outputs of the ShiftRows
and MixColumns modules (see also Section 4.2.1).
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We develop several variants of the SubBytes, ShiftRows, and MixColumns mod-
ules that can be configured in the partial area during run-time to make the AES
algorithm complete again.

Figure 6.2: The separation of the static system and the reconfigurable parts. We
replace the SubBytes, ShiftRows, and MixColumns for the partial area
and two multiplexers. Furthermore, we develop variants of the Sub-
Bytes, ShiftRows, and MixColumns modules that can be configured
within the partial area during run-time, such that the AES flow is com-
plete again.

6.3 Static System

As described in Section 4.2.3, we first perform a planning phase. The sub-steps
of the planning phase are static/partial partitioning, define configurations, resource
budgeting, floorplanning, and interface specification. In the previous section, we
already partitioned the static and partial parts of the system. Namely, we use the
SubBytes, ShiftRows, and MixColumns blocks as modules and the rest of the AES
algorithm will be located in the static part. Furthermore, we defined the interface
specification. Namely, we connect the output of State to the s2p signals, and we
connect two outputs from the partial area p2s to the 3:1 multiplexer. In the following,
we perform the resource budgeting step.

We extract the resource requirements of the modules by using the synthesis tool
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from Vivado. In Table 6.1, the resource consumption of each module in configura-
tion c1 is shown. The SubBytes and MixColumns modules require respectively 640
and 128 LUTs. The ShiftRows module does not need any logic resources but only
routing resources.

In Table 6.2, the resource budgeting of configuration c2 is illustrated. In this con-
figuration, we use the same SubBytes and ShiftRows modules compared to con-
figuration c1. However, the MixColumns module in this configuration has a different
hardware layout. The MixColumns module requires in this variant 2048 LUTs.

Module #LUT #DSP #BRAM
SubBytes 640 0 0
ShiftRows 0 0 0
MixColumns 128 0 0

Table 6.1: Resource budgeting for configuration c1.

Module #LUT #DSP #BRAM
SubBytes 640 0 0
ShiftRows 0 0 0
MixColumns 2048 0 0

Table 6.2: Resource budgeting for configuration c2.

We use the formulas that are provided in Section 4.2.3 to determine the minimal
size of the partial area (in terms of logic resources). First, we use Equation 4.10 to
perform the resource budgeting for each configuration.

rc(c1) = {768, 0, 0} (6.1)

rc(c2) = {2688, 0, 0} (6.2)

Now, we use Equation 4.12 to calculate the minimal required resources by the
partial area.

AREA RESmin = {2688, 0, 0} (6.3)

Now that we know the minimal size of the partial area, we have to calculate the
minimum slot sizes. Since we have three modules, we have to divide the partial area
into at least three slots, because each module occupies at least one slot. We use
the formulas from Section 5.2.2 to determine the minimal slot sizes.
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We use a device from the Zynq family. In the Zynq family, the currently supported
wire lengths in the horizontal and vertical direction are respectively Lh = {2, 4} and
Lv = {2, 6}. Now, to calculate the maximum number of interfaces wires that we can
use per row and column, we use respectively Equation 5.1 and Equation 5.2.

max wiresrow = 24 (6.4)

max wirescolumn = 32 (6.5)

Previously, we determined that we have 128 interface wires for both input and
output. Therefore, the minimal numbers of rows and columns that are required by
the slots are calculated by respectively Equation 5.3 and Equation 5.4.

nr of rowsmin = 6 (6.6)

nr of columnsmin = 4 (6.7)

As mentioned in Section 5.2.2, we also have to take into account the wire lengths
and the granularity of reconfiguration to determine the minimum width and height of
the slots within the partial area. We use Equation 5.7 and Equation 5.8 to calculate
the respectively minimum width and height of the slots.

slot widthmin = max(4, 4, 1) = 4 (6.8)

slot heightmin = max(6, 6, 50) = 50 (6.9)

In Equation 6.3, we calculated that we only require CLB tiles, which contains
the LUTs. Each CLB tile contains 8 LUTs. Now, since the logic resources are
arranged in columns onto the FPGA fabric, and the minimum height of a slot is 50,
each column with CLB tiles has 50 ∗ 8 = 400 LUTs in a single slot. The minimum
width of the slot is four columns. Therefore, the total number of LUTs per slot is
4 ∗ 400 = 1600. Note that this only holds if we locate the partial area on the part of
the FPGA fabric with only CLB tiles.

The modules that we have fit all in one slot, except the MixColumns module from
configuration c2. This module requires two slots. Therefore, we need a total of 4
slots.

As already mentioned in Section 4.2.3, maximizing the consistency of the foot-
prints among slots allows us to have high flexibility of module relocation. However,
on the device that we use, there is not a region that has eight columns of CLB tiles.

In Figure 6.3, the footprint of our chosen partial area is shown. We have selected
this region since this area contains many CLB columns. Note that there are two
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types of CLB tiles: CLBLM and CLBLL. As mentioned in Section 2.1.3, the CLBs
include two sites. In the CLBLM type, there is one site that provides only logic
functionality and one site that offers both logic and memory functionality. The sites
of CLBLL only provide logic functionality. Furthermore, the footprint of the partial
area also contains a BRAM column. The BRAM resources are not used since the
modules do not require this type of logic resource.

Each slot in the partial area provides enough LUTs for each module, except the
MixColumns module from configuration c2. Therefore, each of these modules can
be developed in a single slot. Note that module relocation into the vertical direction
is feasible, as the footprints match. However, the footprints of the first column and
the second column are different. Therefore, we cannot relocate a module from the
first column to the second column and vice versa.

Figure 6.3: In this DPR system, we separate the static area in 2× 2 slots. Each slot
has a dimension of 4 × 50 logic tiles. The first column of the slots con-
tains a different footprint in comparison to the second column. There-
fore, modules with a similar footprint as in the first column cannot be
relocated to the second column, and vice versa.

In Figure 6.4, the floorplanning of the partial area in the static system using
GoAhead is illustrated. Note that the footprint of the partial area is the same as that
is shown in Figure 6.3. Also, the relative positions of the interfaces are the same
among all slots. For example, the interface at the west border of slot (0, 0) locates at
the same relative position in the slot as the interface at the west border of slot (0, 1).
This makes module relocation feasible. In Figure 6.5, the static implementation in
Vivado is illustrated. Note that the locations of the partial area and the interfaces
are the same as in Figure 6.4. Also, there is no static routing (green lines) within the
partial area. This allows module relocation without breaking the static system, as
described in Section 2.2.3.
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Figure 6.4: The floorplanning of the partial area and the interface locations in GoA-
head.

Figure 6.5: The result of the static system after implementation in Vivado.
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6.4 Modules

Now that we have developed the static system, we create modules that can be con-
figured within the partial area. In Figure 6.6, the set of modules in configuration c1 is
illustrated. All the modules have the size of one slot. Also, all the modules contain
one input interface and three output interfaces. The MixColumns module includes
the input interface at the southern border, where the ShiftRows and SubBytes mod-
ules have an input interface at the west border. The output interfaces are located on
the other sides of the modules.

Furthermore, the MixColumns and ShiftRows modules have similar footprints,
where SubBytes has a different footprint in comparison to the other two. Note that
the footprint of MixColumns and ShiftRows modules is equal to the footprint of the
second column in the partial area, where the hardware layout of SubBytes is equiv-
alent to the footprint of the first column in the partial area. Therefore, MixColumns
and ShiftRows can only be configured within the slots located in the second col-
umn, where SubBytes can only be configured within the slots located in the first
column. Note that the interface positions and the footprints are chosen such that
after placement in the partial area, they can properly communicate.

Figure 6.6: A set of modules that can be configured within the partial area. The
modules can only be configured within the slots on the partial area
where the footprint is equivalent.

The implementation of the SubBytes module in GoAhead is illustrated in Fig-
ure 6.7. Note that the structure is similar in comparison to the structure in Figure
5.10. Although, for the SubBytes module shown in Figure 6.6, we define three out-
put interfaces, and therefore, we floorplanned three connection primitive blocks for
the outputs. Similar as in Figure 5.10, we floorplan one connection primitive block
for the input. In Figure 6.8, the final implementation result of the SubBytes module
in Vivado is illustrated. All the signals and logic resources belonging to the module
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are routed and placed within the module area, except the interface wires. The inter-
face wires are connected to the connection primitives, which are located outside the
module area. We use BitMan to cut out the module area and to generate the corre-
sponding partial bitstream. During run-time, we can configure the partial bitstream
in the partial area by using one of the configuration interfaces on the FPGA. The
other modules are implemented in the same way.

Figure 6.7: The floorplan of the module area and the connection primitives in GoA-
head. Furthermore, the blocker area is defined around the module area
to prevent routing outside the module area.

Figure 6.8: The result of module SubBytes after implementation in Vivado.
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6.5 Configurations

Now that we have developed the modules, we can configure them into the partial
area. In Figure 6.9, the placement of modules from configuration c1 is illustrated.
Note that with the footprints and input and output interfaces that we defined for the
modules, this is the only feasible placement of the modules. The SubBytes module
is connected to the s2p signal. The ShiftRows is internally connected to SubBytes,
where MixColumns is internally connected to ShiftRows. In Figure 6.9, we also
obtain two outputs: one output from ShiftRows and one from MixColumns. In fact, all
the slots have outputs. However, these two outputs are selected by the multiplexers
(see also Figure 4.8).

Figure 6.9: The placement of modules from configuration c1. Module SubBytes is
located in the slot (0, 1), module ShiftRows in the slot (1, 1), and mod-
ule MixColumns in the slot (1, 0). The two outputs are selected by the
multiplexers.

In Figure 6.10, the placement of modules from configuration c2 is shown. In this
configuration, we use the same SubBytes and ShiftRows modules as that we used
in configuration c1. We relocate these modules to the respective location (0, 0) and
(1, 0). This will change the hardware layout in comparison to the first configuration.
Also, we use a variant of the MixColumns module to bring even more variation in the
implementation.

This variant is illustrated in Figure 6.10. The module has an input interface at the
northern border and an output interface on the west side. Furthermore, the module
occupies two slots. We added a lot of dummy LUTs to this module to increase the
power consumption. As illustrated in Table 6.2, the MixColumns module requires
2048 LUTs. Therefore, we need two slots. Note that the multiplexers have to select
different outputs from the partial area in comparison to the previous configuration
since the output of ShiftRows and MixColumns modules are located in different lo-
cations.
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Until this point, we only developed two configurations. However, we should pro-
duce many more, such that we can configure the AES implementation continuously
with variants. Also, the configuration that we have shown so far require reconfigura-
tion of all the modules. It would be more beneficial to move from one configuration
to the next one by configuring only one module. This decreases the reconfiguration
time significantly, and therefore, we can obtain higher throughputs.

Figure 6.10: The placement of modules from configuration c2. Modules SubBytes
and ShiftRows from configuration c1 are relocated to the top row, where
a variant of MixColumns is configured in the bottom row.

6.6 Results

In this section, we shortly discuss the results. We implemented the two configu-
rations that were discussed in the previous sections for the ZedBoard. We used
several switches on this development board to make the input data (plaintext) vari-
able, and we used several LEDs on the ZedBoard to obtain the result (ciphertext).
We used a hardcoded key. Both configurations gave us the desired result.

The system runs on 20 MHz. In the first instance, we tried to run it on 100 MHz.
However, by using this clock frequency, the system produced the wrong results.
Then, we clocked the system down to 20 MHz, which provided the correct answers.
We did not try to run the system on another frequency. Note that for our current
framework, timing simulation is not supported. We discuss this in more detail in the
next chapter.

Furthermore, as mentioned in Chapter 4, the only logic overhead of our DPR
system are the multiplexers. As illustrated in Figure 6.3, we have six p2s signals.
Moreover, each p2s signal has a bus width of 128 bits. Now, by using Equation 4.5,
the overhead of a single multiplexer in terms of LUTs is the following.

MUXoverhead = 128 ∗
⌈
6

4

⌉
= 256 (6.10)
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As we have seen, a single multiplexer in this system uses 256 LUTs. However,
since we use two multiplexers in this application, the logic overhead is 256 ∗ 2 = 512

LUTs (see Equation 4.6).
Unfortunately, while writing this thesis, we were not able to do measurements

of this system. Therefore, we cannot conclude anything whether this approach is a
sufficient countermeasure against physical attacks.
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Chapter 7

Conclusions and Recommendations

In this chapter, we conclude the research and provide several recommendations for
future work. This chapter consists of two sections. In Section 7.1, we state the
conclusions, and in the next section, we describe the recommendations.

7.1 Conclusions

In this work, we introduced a framework that enables us to develop fine-grained DPR
systems. The partial area is divided into two-dimensional slots, where modules can
occupy one or multiple slots according to their resource requirement. The modules
can communicate bi-directionally with the static area throughout all the slots that are
adjacent to the static region. Moreover, adjacent modules can communicate, and
non-adjacent modules can be linked by using by-pass modules. Furthermore, mod-
ule relocation is supported, which makes the placement of modules very flexible.

The framework is demonstrated by a case study. In this case study, we show
how the framework can be used for countermeasures against side-channel attacks.

7.2 Recommendations

Currently, the partial bitstreams are generated by using the tool BitMan. The partial
bitstreams itself contain the information that specifies their location on the FPGA
fabric. We use BitMan to cut out the module area from the full bitstream, and thus
generate a partial bitstream. Also, we use the tool to specify their location on the
FPGA structure. Since BitMan is an external tool, we have to generate partial bit-
streams for each position on the FPGA fabric that we desire to configure a particular
module. Therefore, this functionality should be implemented into the PRC. In this
case, we still use BitMan to cut out the module area and generate a partial bitstream
from this module area. However, we can change the location of this partial bitstream
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in the PRC. Therefore, we require for each module only a single partial bitstream in
the module repository.

Another missing aspect is the ability to perform a timing simulation. The reason
is that we separate the static system and modules in different projects. Therefore,
we have not a complete placed and routed netlist (static system and the modules
in the partial area) and thus cannot perform a valid timing simulation. A solution to
this problem could be to use external tools that can modify the placed and routed
netlist. We could replace the slots of the partial area in the static system with the
modules belonging to a particular configuration. By doing this, we obtain the placed
and routed netlist of a specific configuration. Therefore, we can apply the timing
simulation onto this design by using one of the vendor tools.

Finally, throughout this thesis, we suggested several points that must be consid-
ered during the floorplanning of the partial area. In island-style applications, it is
rather easy. However, in grid-style applications, it becomes a lot more complicated.
First of all, the footprint of the slots should be consistent, such that module reloca-
tion is supported among different slots. Furthermore, the designer has to consider
in which slots of the partial area the module must be placed in a particular config-
uration. Also, modules can have different shapes and interface layouts. Therefore,
an algorithm that calculates the most efficient placement of the partial area and
modules is very convenient.
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