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Abstract

The stochasticity of urgent patient arrivals provides a challenge in scheduling them
into dedicated operating rooms (ORs). In our study, there are three categories of
urgent patients: 30-minute, 6-hour, and 24-hour, distinguished by the maximum
waiting time. We divide each day into 4 shifts, and we assume that the 30-minute
patients are scheduled in the current shift. We determine the required capacity for
the 6-hour and 24-hour patients using two queueing models: M/M/1/K and M/M/1
with priority. We perform a case study for various dedicated capacity levels and ar-
rival rates. To schedule the admitted urgent patients in the dedicated capacity three
Markov decision processes (MDP) based models are proposed. In the first MDP
model we keep track of the target time of each admitted patient. For this model, it is
optimal to treat the patients from the higher urgency levels first. In the next model,
we modify the first model by allowing the OR manager to defer some 24-hour pa-
tients to another resource, e.g., elective ORs. While treating patients using the same
policy as the previous model, the number of deferred patients depends on the costs.
In the last model we assign newly arrived patients to a time-slot directly upon arrival.
The optimal policy is to schedule 6-hour patients on the next shift, while 24-hour
patients are scheduled somewhere before their deadline. As we cannot alter the
assignment of the already scheduled patients to admit patients of higher urgency
level, this model is less flexible than the other two models. The optimal policy of
the proposed models boils down to simple rules that can be implemented easily by
hospitals to treat urgent patients before their deadline.
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Chapter 1

Introduction

In a hospital, we can distinguish several types of surgeries based on the urgency
level. Each urgency type has a maximum internal access time to the operating room
(OR). The internal access time to the OR is defined as the time elapsed between
the moment a doctor decides that a patient should have surgery and the moment
the patient goes to the OR for the surgery [2]. In this report, the maximum allowed
internal access time will be called the deadline (for patients to receive treatment). In
this thesis, we consider the urgency category of the surgeries that are executed in a
Dutch hospital, i.e., urgent and elective patients. Urgent patients are distinguished
based on their deadlines. The deadlines of each category is given in the table below.

Urgency class Deadline to be treated upon arrival
Elective 1 month
24-hour 24 hours
6-hour 6 hours
30-minute 30 minutes

Table 1.1: Patient urgency classes

The data analysis from a large Dutch teaching hospital shows that only a small
percentage of urgent surgeries need to be performed within 30 minutes upon their
arrival and most of the urgent cases can be delayed for either 6 or 24 hours.

We should note that the patients who need urgent surgeries have adverse condi-
tions and should be treated soon in order to minimize the fatality risk. A study has
shown that surgical delay for urgent patients and their mortality risks have close
correlation [3]. In The Ottawa Hospital (Canada), McIsaac et al. [3] present that
mortality risk for the delayed urgent patients is around 5%, compared to a 3.5% risk
of death for those who receive the treatment in time. The study also presents that
on average, the delays in urgent surgeries result in a longer length of stay for the
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patients and a larger operational cost for the hospital than when they are scheduled
in time. This implies that finding the optimal schedule for urgent surgeries is pivotal
for both the patients and the hospitals.

On the other hand, an operating room is one of the most expensive and scarce
resources in the hospital [4], [5]. For this reason, each hospital wants to maximize
their OR utilization. Consequently, during office hours, the ORs are booked for elec-
tive surgeries to a large extent. In addition to that, in most of the hospitals, some
ORs are open outside the office hours, where surgical teams are on standby. In this
out-of-office-hours time, the available ORs are dedicated for the emergency patients
that need to be treated within 30 minutes upon their arrivals. As the number of these
emergency patients is low, the standby resources in the overtime are not fully uti-
lized. The unused standby resources incur an extra cost. To minimize this cost, we
can increase the OR utilization by using the standby resources to perform 6-hour
and 24-hour surgeries. However, a smart way to schedule the 6-hour and 24-hour
surgeries is required, so that the 30-minute patients can be operated in time.

In scheduling urgent surgeries, every time a patient arrives, the OR coordinator has
to decide when it should be performed. We call the OR that is dedicated to do the
non-elective patients the dedicated OR, and the ones to perform elective surgeries
the elective OR. While assigning a 6-hour or 24-hour patient to the dedicated OR
can result in a delay in the 30-minute case, allocating this patient to an elective OR
during the office hours may result in some cancellations of the elective surgeries.
Hence, a hospital needs to schedule urgent patients carefully to treat the patients in
time without resulting in excessive elective cancellations.

The existing literature in operations research on scheduling urgent surgeries are
scarce. Cardoen et al. [5] show that there are only 20 papers that discuss about
non-elective patients (urgent, semi-urgent, and emergency patients). Guerriero and
Guido [6] mention in their survey on operating room management (in operations re-
search framework) that scheduling of urgent cases upon their arrivals is interesting
for further research. The closest work related to our research is on planning and
scheduling semi-urgent patients by Zonderland et al. [7].

In the next section, the questions addressed in this research are presented. Then,
the research methodology is given afterwards.
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1.1 Research Questions

The goal of this research is to schedule urgent surgeries (6-hour and 24-hour pa-
tients) such that the patients receive their treatment in time and OR utilization is
maximized. Therefore, the aim is to investigate:

How should urgent surgeries be scheduled in time such that they are not often re-
jected while also maximizing the OR utilization?

Note that the urgent patients that we consider on this research are the 6-hour and
24-hour patients. Next, by considering the research goal above, we first need to es-
timate the capacity level that is dedicated for urgent patients. This step is included in
the planning of urgent surgeries. Next, in scheduling the urgent surgeries, we only
look at the dedicated capacity that we have determined. This implies that the urgent
surgeries schedule is independent of the elective patients schedule. The research
questions of the scenarios above are formulated as follows:

1. How much capacity should be dedicated for urgent patients such that the OR
utilization is optimal?

2. When to schedule an urgent patient in the dedicated capacity such that they
are treated in a timely manner?

To answer the research questions above, the research methodology given in the
next section is followed.

1.2 Research Methodology

Initially, a literature study is conducted to gain knowledge related to the focus of the
research. The studied literature is related to urgent patient planning and scheduling,
for example, reserving capacity using queueing theory approach; scheduling emer-
gency, urgent, or semi-urgent surgeries using Integer Linear Programming (ILP) or
Markov decision processes (MDP) models. This step gives us a better viewpoint of
the possible approaches that can be used to answer our research questions. Then,
by looking at our problems, we build two queueing models to determine the dedi-
cated capacity for urgent surgeries and MDP-based models to schedule them. After
proposing the solution methods, we conduct numerical experiments which are in-
spired by the cases in Jeroen Bosch Ziekenhuis (JBZ), Den Bosch, the Netherlands
and RSUP dr. Sardjito (Hospital), Yogyakarta, Indonesia. The Hospital in Indonesia:
RSUP dr.Sarjito is further referred as RSUP Sardjito.
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1.3 Thesis Outline

The organization of this report is as follows. In Chapter 1, the background of the
research as well as the research questions have been presented. In Chapter 2, we
give an overview of the related literature studied. Chapter 3 describes M/M/1/K

and M/M/1 with priority queueuing models to estimate the dedicated capacity level
needed to treat urgent patients. Chapter 4 describes the Markov decision processes
(MDP) based models to schedule urgent surgeries. In Chapter 5, we present the re-
sults of the numerical experiments that are inspired by the cases in the two hospitals:
JBZ and RSUP dr.Sardjito using the MDP models. Finally, in Chapter 6 we give the
conclusions of our research and the future work.



Chapter 2

Literature review

The concern on healthcare logistics management has increased for the past twenty
years. With the growing number of research publications in this field, Cardoen et al.
[5] summarize the studies on operating room planning and scheduling in a literature
review. More detailed taxonomy classification in healthcare management is done by
Hulshof et al. [8].

2.1 Decision Making in Operating Management

A survey on the operational research on operating management by Guerriero and
Guido [6] categorizes the literature based on hierarchical decision levels, i.e., strate-
gic, tactical, followed by operational level, which is illustrated by the diagram below.

Figure 2.1: Decision levels in planning and scheduling operating room

Further, Gupta [9] mentions elaborated steps in each decision level regarding elec-
tive surgeries scheduling, shown in Figure 2.2. Gupta [9] mentions two ways of
scheduling elective surgeries, i.e., block- and open scheduling. In block-scheduling,
surgeons are assigned blocks of operating room (OR) time in a periodic schedule.
Meanwhile, open scheduling allows surgeons to request for OR time. After that, an
OR schedule is constructed before the day of the surgery. This step is included in
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the tactical level of the decision making process.

Regarding the operational level, Hans et al. [10] split it into off-line and on-line op-
erational level. The off-line operational level deals with constructing robust elective
surgical schedules, while the online one takes care of the real-time rescheduling due
to unpredictable events, for example, emergency and urgent cases arrivals [10]. As
we deal with the online scheduling for urgent surgeries, the focus of this research
will be on the tactical level, namely determining the time allocation for urgent surg-
eries, and online operational level, i.e., scheduling urgent surgeries.

Figure 2.2: Decision levels in elective surgery planning and scheduling

From the literature review by Cardoen et al. [5] and Hulshof et al. [8], we see that in
the operating room planning and scheduling the most frequently used technique is
mathematical programming, followed by simulation, heuristics, Markov processes,
and queueing theory. The scenarios where each technique is used will be explained
in this chapter. In Section 2.2, we present the literature on the mathematical tech-
niques that are used in surgeries planning and scheduling.

2.2 Operating Room Planning and Scheduling

In this section, we consider the surgery classification given in Table 1.1. Recall
that 24-hour, 6-hour, and 30-minute patients fall into urgent patients category that in
most of the literature is also called by non-elective surgery. However, the literature
on non-elective surgery is scarce [1].

Further, as indicated by the decision levels in Figure 2.1 and 2.2, operating room
planning falls into the tactical level and operating room scheduling falls into the op-
erational level. Operating room planning includes the allocation of the resources,
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such as OR time, staff and beds. In the first subsection, we address the approaches
used to allocate time for urgent patients.

2.2.1 Time Allocation for Urgent Surgeries

The surgeries can be categorized either by the medical specialty (the type of pro-
cedures needed) or by the urgency level. Several hospitals allocate OR time based
on the surgeons’ medical specialty, while others decide the time allocation based on
the patients’ urgency levels. In this report, we consider the time allocation based on
patients’ urgency levels.

Van Riet and Demeulemeester [1] illustrated three policies in the research which
are used to handle non-elective surgeries, i.e., dedicated, flexible, and hybrid policy.
However, as hybrid policy is not widely studied, we do not discuss it here. To make
the first two policies clearer, the authors demonstrate the idea in the figure below.

Figure 2.3: Two policies in handling urgent surgeries [1]

About the two policies in Figure 2.3, Ferrand et al. [11] make a comparison on the
waiting time of both elective and non-elective (emergent) cases as well as the over-
time. In the dedicated policy, the waiting time and overtime on elective cases are
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lower than those in the flexible policy as their schedule is not disturbed by the non-
elective cases. On the contrary, the waiting time for the non-elective case in the
dedicated policy is higher than in the flexible one. This is because the non-elective
surgeries cannot disrupt the elective OR time and have to wait until the procedure in
the dedicated OR is finished.

With regard to the use of dedicated policy in treating the non-elective patients, Zon-
derland et al. [7] focus on the semi-urgent patients that are distinguished based
on their maximum waiting time: 1-week and 2-week semi urgent patients. The au-
thors use a queueing theory framework to evaluate the reserved OR time for the
semi-urgent patients in the long term. However, due to unpredictability of the semi-
urgent patients, reserving OR time may yield in unused OR time due to overbooking
reserved OR time and elective cancellations due to semi-urgent patients. To tackle
this problem, another queueing model is proposed to balance the number of elective
cancellations and unused reserved OR time. Using a different approach, Gerchak
et al. [12] take into account open scheduling. They look at the case where the OR
capacity utilization by the elective and emergency cases is uncertain. In this paper,
new requests to book the OR time arrive every day. A stochastic dynamic pro-
gramme is constructed to calculate the amount of OR time that should be reserved
for the elective cases such that the hospital can perform possible emergent surgery.

As for the flexible policy, Van Riet and Demeulemeester [1] explain that the amount
of slack for option 1 of the flexible policy (shown in Figure 2.3) can be determined
using a queueing theory framework as done by Zonderland et al. [7]. Meanwhile,
van Essen et al. [13] use BIM optimization to insert emergency surgery in between
the elective surgeries. This idea is similar to the left part of option 2 in the flexible
policy.

By considering add-on surgeries as the surgeries that need to be performed on the
arrival day (emergency and urgent cases), Zhou and Dexter [14] predict the upper
bound of the total add-on surgical duration. By assuming that the case duration fol-
lows a log-normal distribution, they could predict the maximum slack to allocate for
add-on surgeries. After analyzing the possible way of allocating time for urgent surg-
eries, we examine the tactical level in decision making, namely scheduling surgery.

2.2.2 Scheduling Urgent Surgeries

One of the approaches in scheduling elective patients is by using a Master Surgery
Schedule (MSS). In the decision making, this part is categorized in off-line tactical
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level. There are many studies with various mathematical techniques employed to
build an optimal MSS. Among the literature on MSS are Beliën et al. [15] who em-
ploy Mixed Integer Programming (MIP) by taking the daily mean and variance of the
bed occupancy. The authors also aim to centralized the surgeons that belong in one
group (one medical specialty) in one operating room, as well as making the sched-
ule as repetitive as possible in order to form a cyclic schedule. The three objectives
all together build a large MIP that leads to the use of a heuristic method to obtain
a solution. The heuristic method results in a trade-off between bed occupancy and
operating room centralization based on surgeons’ medical specialty.

Focusing on urgent surgeries, Dexter et al. [16] propose ILP models to sequence
urgent surgeries by considering the medical procedure needed, estimated surgery
duration and the deadline. The estimated surgery duration is obtained from his-
torical data. Also, the urgency level of the urgent patient is determined from the
evidence in medical literature. There are three objectives addressed, i.e., minimiz-
ing the average waiting time of the urgent patient, sequencing urgent patients when
the First-Come, First-Served (FCFS) rule is used, and sequencing patients based
on the urgency level (medical priority). These three objectives are studied sepa-
rately with only one constraint, namely the starting time of the surgery should not
exceed the deadline.

As the literature on scheduling urgent surgery is scarce, we explore papers on semi-
urgent and emergency cases, as both are included in the non-elective patient cate-
gory. Concerning emergency patients, some hospitals enable them to be performed
in the elective ORs which causes elective surgery cancellations. Employing this pol-
licy, Erdem et al. [17] propose a mixed integer linear programming (MILP) model to
reschedule the cancelled elective surgeries.

Our work is related to the paper of Zonderland et al. [7] where 1- and 2-week semi-
urgent patients are the focus. After determining the reserved OR time for semi-
urgent patients using queuing models, Zonderland et al. [7] develop a model based
on Markov decision processes (MDP) to schedule the elective and semi-urgent
cases. In this model, the elective case can be cancelled to perform semi-urgent
surgeries. The cancelled electives then become 1-week semi urgent surgeries. The
authors apply the models in the dataset from a neurosurgery department of a Dutch
academic hospital. In our work, the MDP approach is used in our models to sched-
ule the urgent patients.



Chapter 3

Dedicating capacity for urgent
surgeries

At the strategic level of operating room management, the operating room (OR) man-
ager needs to determine the dedicated capacity level for the urgent patients in the
long run. In this chapter, we use two queuing models for this goal. Based on the
results of these models, the OR manager can decide the dedicated capacity level
to handle the arriving urgent patients by considering the OR utilization and patients’
waiting times. In the next section we present the assumptions employed in the
queueing models.

3.1 Assumptions

Recall that in this research, we consider the 6-hour and 24-hour urgent patients. We
describe the arrival process of the urgent patients in the following assumption.

Assumption 3.1.1. Each type of urgent patient arrives according to a Poisson pro-
cess. The interarrival times are exponentially distributed and independent of each
other.

Hence, the arrival process of the urgent patients is a Poisson process. Regarding
the OR day and the dedicated OR, we have the following assumptions.

Assumption 3.1.2. OR day is divided into 4 shifts, where in each shift, the number
of patients that can be treated is the same, i.e., s patients per shift.

Assumption 3.1.3. There is one dedicated OR to perform urgent surgeries.

In this report, the server is the dedicated OR and the service rate is the number of
surgeries performed in each OR per shift.
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Assumption 3.1.4. The service rate is exponentially distributed and independent of
the arrival process.

In the next part of the report, we use the Kendall’s notation on the queueing model,
i.e., A/B/X/Y/Z, where A indicates distribution of the interarrival time, B shows
the distribution of the service time, X is the number of the parallel servers, Y is the
maximum capacity of the queue, and Z is the service discipline. For exponentially
distributed interarrival and service times it is denoted by M for memoryless in the
Kendall’s notation. Some alternatives of the service discipline are first come, first
served (FCFS); last come, first served (LCFS); priorities.

3.2 Queueing models to dedicate capacity for urgent
patients

Using the assumptions given in the previous section, in this section, we look at
two queueing models and conduct a case study that is inspired by the cases in
Jeroen Bosch Ziekenhuis(JBZ), Den Bosch and RSUP Sardjito, Yogyakarta, Indone-
sia. First, we look at the case where the hospital set a maximum number of urgent
patients that can be admitted to the system. Denote K patients as the maximum
number of urgent patients in the system. For this scenario, we look at the M/M/1/K

queueing model.

3.2.1 M/M/1/K queueing model

In this model, the arriving patients are rejected when there are K patients in the
system. From Assumptions 3.1.2 and 3.1.3, denoting the dedicated capacity level
by s patients per shift, we have µ = s in this model. For this case, µ is the service
rate. Next, the occupation rate of this queueing model is given by:

ρ =
λ

µ
, (3.1)

where λ is the total arrival rates of the urgent patients per shift, µ is the service rate
(number of urgent surgeries performed) per shift. Hence, have the probability of
having n patients in the system as follows :

pn =
λn

µn
p0 , 0 ≤ n ≤ K. (3.2)
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Using normalization, we obtain:

p0 =

(
K∑
n=0

λn

µn

)−1

=

 1
K+1

, ρ = 1

1−ρ
1−ρK+1 , ρ 6= 1.

(3.3)

The expected queue length is given by [18]:

E(Lq) = p0
λ ρ

µ (1− ρ)2
[1− ρK − (1− ρ)(K)ρK−1]. (3.4)

We should keep in mind that in M/M/1/K queueing model the capacity of the sys-
tem is finite and bounded by K. Thus, a fraction of arrivals cannot enter the system
(denoted by pK), because they arrive when the system is full. In this report, the
arrivals that can enter the system are called effective arrivals. The effective arrival,
denoted by λeff , takes place when there are less than K patients in the system.
Using PASTA property (Poisson arrivals see time averages), the effective arrival rate
seen by the servers is λeff = λ(1− pK). Using λeff , we obtain the expected number
of patients in the system as follows:

E(L) = E(Lq) +
λeff
µ

= E(Lq) +
λ(1− pK)

µ
. (3.5)

In the formula above, λeff
µ

shows the number of patient that is currently performed.
This implies λeff

µ
< 1 because the average number of surgeries performed cannot

exceed the available OR capacity. Next, using Little’s formula we obtain the following
expected time a patient spends in the system:

E(W ) =
E(L)

λeff

=
E(L)

λ(1− pK)
, (3.6)

and the expected waiting time :

E(Wq) =
E(Lq)

λeff

=
E(Lq)

λ(1− pK)
. (3.7)

More detailed and general formulas of this model can be found in Shortle et al. [18].
In M/M/1/K queueing model the patients are treated according to First Come First
Served (FCFS) rule. This means that the 6-hour patients do not have priority over
the 24-hour patients. Next, we compare this model to the M/M/1 queueing model
with priority rule in giving the treatment.
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3.2.2 M/M/1 with priority rule queueing model

In this model, we look at two types of patients: 6-hour and 24-hour patients. The
6-hour patients have priority over the 24-hour patients. We employ non-preemptive
priority where the 6-hour patients may not interrupt the surgery time (service time)
of the 24-hour patients.

Employing Assumption 3.1.1, the 6-hour and 24-hour patients arrive according to
a Poisson process with rate λ6 and λ24, respectively. The service rate for both pa-
tient types are identical, i.e., µ patients per shift. The occupation rate of the system
due to the 6-hour patients is:

ρ6 =
λ6

µ
. (3.8)

Next, due to the 24-hour, the occupation rate is as follows:

ρ24 =
λ24

µ
. (3.9)

From Equations (3.8) and (3.9), the occupation rate of the system is ρ = ρ6 + ρ24.
The system is stable when ρ < 1. For the queueing analysis, we have the expected
time that a patient spends in the system (waiting in the queue and being treated)
formulated below [19]:

E(W6) =
(1 + ρ24)/µ

1− ρ6

. (3.10)

Using the Little’s law, we obtain the expected number of 6-hour patients in the sys-
tem, formulated by:

E(L6) =
(1 + ρ24)/ρ6

1− ρ6

. (3.11)

The expected number of 24-hour patients in the system in the system is:

E(L24) =
(1− ρ6(1− ρ6 − ρ24))ρ24

(1− ρ6)(1− ρ6 − ρ24)
. (3.12)

Using the Little’s law, we obtain expected time the 24-hour patients spend in the
system, formulated by:

E(W24) =
E(L24)

λ24

=
(1− ρ6(1− ρ6 − ρ24))/µ

(1− ρ6)(1− ρ6 − ρ24)
. (3.13)

For the expected time 6-hour patients spend in the queue, we have the following
formula:

E(Wq6) = E(W6)− 1

µ
=

1

µ

(
1 + ρ24

1− ρ6

− 1

)
. (3.14)

Next, using Little’s law the expected number of 6-hour patients spend in the queue
is:

E(Lq6) = λ6 . E(Wq6) = ρ6

(
1 + ρ24

1− ρ6

− 1

)
. (3.15)
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Using the similar way, we obtain the expected time 24-hour patients spend in the
queue, we have the following formula:

E(Wq24) = E(W24)− 1

µ
=

1

µ

(
(1− ρ6(1− ρ6 − ρ24))

(1− ρ6)(1− ρ6 − ρ24)
− 1

)
. (3.16)

Next, according to Little’s law, we obtain:

E(Lq24) = λ24 . E(Wq24) = ρ24

(
(1− ρ6(1− ρ6 − ρ24))

(1− ρ6)(1− ρ6 − ρ24)
− 1

)
. (3.17)

In the next section, we conduct a case study for a various dedicated capacity levels
using the queueing models in Section 3.2.

3.3 Case study of queueing models to dedicate ca-
pacity for urgent patients

In this section, we present the results of the case study on the M/M/1/4s and
M/M/1 with priority rule queueing models conducted using Qtsplus 3.0 on a Lenovo
ThinkPad E550 with Intel(R) Core(TM) i5-5200 CPU @ 2.20GHz processor (8GB
RAM). We use the parameters that are inspired by the cases in Jeroen Bosch
Ziekenhuis (JBZ), Den Bosch in 2017 and RSUP Sardjito (Hospital), Yogyakarta,
Indonesia in May-August 2019. For both hospitals, we look at the data where each
OR day is divided into 4 shifts, each of 6-hour length. We calculate the arrival rate
of each patient type per shift. The arrival rates of the 6-hour and 24-hour patients at
JBZ in 2017 are given in the following table.

6-hour 24-hour
λ̄ 0.54 1.52
λh 0.9 3.03

*λ̄= average arrival rates
λh= highest arrival rates

(no.of patients/shift)

Table 3.1: Arrival rates of the 6-hour and 24-hour patients in the JBZ dataset

Considering the arrival rates in the table above, for JBZ case, the sensitivity analysis
is conducted using the following arrival rates.
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No Arr. rate (patients/shift)

1
6-hour patients : 0.54
24-hour patients : 1.2

2
6-hour patients : 0.54

24-hour patients : 1.52

3
6-hour patients : 0.9

24-hour patients : 3.03
*Arr. rate = arrival rate of each patient type per shift (no.of patients/shift);

s = the maximum number of surgeries that can be performed in the dedicated capacity.

Table 3.2: The various arrival rates for case study on queueing models based on
JBZ dataset

In the next parts, we conduct numerical experiments for the cases above using
M/M/1/4s and M/M/1 with priority rule queueing models.

Whereas in RSUP Sardjito, only arrivals of the 24-hour patients take place. The
arrival rate is 0.817 patients per shift in average, where 1.82 patients per shift is the
highest arrival rate. For this case, we only conduct a case study using M/M/1/4s

queueing model as there is only one type patient in the system.

3.3.1 Case study on M/M/1/4s queueing model

In M/M/1/4s queueing model, the dedicated OR has a capacity of µ = s surgeries
per shift. The maximum number of patients in the system, 4s, is obtained by con-
sidering that the 24-hour patients can afford to wait up to 4 shifts upon their arrivals.
The case study is conducted for the arrival rates given in Table 5.4. For each case,
we look at the server utilization compared to the expected number of rejected pa-
tients, queue length and waiting time in the queue.

For the first case, where λ6 = 0.54 and λ24 = 1.2, the sensitivity analysis is per-
formed by taking s = 2 to s = 8. The chart in Figure 3.1 shows the server utilization
along with the expected number of rejected patients, queue length and waiting time
length in each shift. We can observe that the higher server utilization yields in the
larger queue length, which implies a longer waiting time and more rejected patients.
For example, take the case where s = 2.The server utilization is around 0.8, while
the expected queue length is around 2.3 patients per shift (≈ 8 patients a day) and
the expected waiting time is 1.4 shifts where in average 0.1 patients are rejected per
shift. The maximum capacity that we test is not larger than s = 8, because we can
see that from s = 3 to s = 8 no patients are rejected (all arrivals can be admitted).

For the total arrival rates of λ = 2.06 and λ = 3.93, the charts in Figures 3.2 and
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Figure 3.1: Sensitivity analysis for λ6 = 0.54 and λ24 = 1.2

3.3 respectively illustrate the server utilization along with the expected number of
rejected patients, queue length, and waiting time length in each shift for different
capacity s. Similar with the first case, in these two cases, the higher utilization yields
in larger expected queue length and longer expected waiting time. The highest

Figure 3.2: Sensitivity analysis for λ6 = 0.54 and λ24 = 1.52

server utilization of arund 0.9 is reached for s = 4. However, for this case, the ex-
pected number of patients waiting in a shift is 6.6 and in average we reject around
0.3 patient in a shift (≈ 2 patients in a day). The expected queue length drops to 2.7
patients a shift when s = 5. This affects the expected rejections and waiting length
to be 0 patients per shift and around 0.9 shift, respectively.
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Figure 3.3: Sensitivity analysis for λ6 = 0.9 and λ24 = 3.03

Next, the results of the case study for the dataset from RSUP Sardjito are pre-
sented in Figures 3.4 and 3.5 for λ = 0.817 and λ = 1.82, respectively. Same as the

Figure 3.4: Sensitivity analysis for λ24 = 0.817

previous results on JBZ dataset, the higher utilization results in larger mean queue
length and longer mean waiting time.

Finally, it depends on which parameters hospitals focus on to decide the suitable
dedicated capacity. In the next part, we use the parameters from JBZ dataset to
perform sensitivity analysis using M/M/1 with priority queueing model.
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Figure 3.5: Sensitivity analysis for λ24 = 1.82

3.3.2 Case study on M/M/1 with priority rule queueing model

In M/M/1 with priority queueing model, the queue has one dedicated OR (server)
with service rate of µ patients per shift. By looking at Assumption 3.1.2, we have
µ = s patients per shift. The two type patients are treated using non-preemptive
priority rule, where the 6-hour patients have priority over the 24-hour patients.

First, we look at the server utilization and expected waiting time for 6-hour and 24-
hour patients, where λ = 1.74 and s = 2 to s = 8 given in Figure 3.6. We also
observe the server utilization and expected queue length for 6-hour and 24-hour
patients for this case in Figure 3.7. The sensitivity analysis results using other pa-
rameters in Table 5.4 for this model are given in the Appendix A.

Recall that in the data from RSUP Sardjito there is no 6-hour patient arrivals, i.e.,
λ6 = 0. Hence, the M/M/1 with priority queueing model is not suitable for this data
as we only have one patient type: 24-hour patients.

Last, we compare the mean waiting time in M/M/1/4s and M/M/1 priority queue-
ing models for the parameters in Table 5.4. The comparison of these models when
λ6 = 0.54, λ24 = 1.2 is given in the following chart. We can see from the chart in Fig-
ure 3.8 that for s = 2 in the M/M/1 priority queueing model the waiting time of the
6-hour patients improves by around 0.5 shift. However, due to the priority rule, the
waiting time of the 24-hour patients gets worse by 3 shifts in average. The expected
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Figure 3.6: Sensitivity analysis on the mean waiting time for λ6 = 0.54 ; λ24 = 1.2 using

priority rule

Figure 3.7: Sensitivity analysis on the mean queue length λ = 1.74 using priority rule

waiting times of both patients drop when the hospital has a capacity of at least s = 3.
For s = 4, the mean waiting times of both patient types in the two queueing models
are close, where the gaps are getting smaller as s gets larger.

Next, we see the average waiting times for λ6 = 0.54 and λ24 = 1.52 in the two
queueing models.
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Figure 3.8: Expected waiting time for λ6 = 0.54 and λ24 = 1.2 in M/M/1/4s and M/M/1 priority

queueing models

Figure 3.9: Expected waiting time for λ6 = 0.54 and λ24 = 1.52 in M/M/1/4s and M/M/1

priority queueing models

From the results in the two queueing models in the three last figures, we can con-
clude that high utilization results in large queue length and waiting time (other figures
are attached in Appendix A).

Hence, the results from the two queueing models can be used to balance the OR
utilization, and patients’ waiting times or queue length of each patient type or the
number of rejected patients, depending on the hospital’s preferences. The queue-
ing model used also depends on the patient arrivals. In the case of RSUP Sardjito
where we consider that only 24-hour patients arrive to the system, M/M/1 with pri-
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Figure 3.10: Expected waiting time for λ6 = 0.9 and λ24 = 3.03 in M/M/1/4s and M/M/1

priority queueing models

ority queueing model cannot be used as there is only one type of patient. Thus,
for such case, M/M/1/4s queueing model is suitable to determine the dedicated
capacity level needed for the urgent surgeries.



Chapter 4

Model for scheduling urgent
surgeries independent of elective
surgeries

This chapter formulates four models to schedule urgent surgeries independent of
the elective patients based on Markov decision processes (MDP) which employs
the infinite planning horizon for the hospital that uses dedicated operating rooms to
perform urgent surgeries.

This chapter is structured as follows: Section 4.1 describes what Markov decision
processes is, Section 4.2 gives the assumptions that are used to formulate the mod-
els, Section 4.3 describes the MDP to decide the number of urgent surgeries per-
formed in each part of the day along with the MDP that allows deferring the patients
to other resources in Subsection 4.3.1, Section 4.4 explains the MDP to assign a
number of urgent surgeries to the appropriate time.

4.1 Markov decision processes (MDP)

In Markov decision processes (MDP) we observe a process at discrete time points
in infinite horizon. At each time point, the system is at one of the possible states.
Transition probabilities among states only depend on the current state and not the
previous states. By considering the transition probabilities among states for each
possible action as well as the direct costs corresponding to it, an optimal action is
chosen at each point of time. In the subsequent time point the decision maker have
to chose the optimal action. The discrete time points where an action should be
chosen are called decision epochs. In the proposed models, we decide the optimal
action by considering the costs incurred in the current time point as being more im-



Assumptions 23

portant than those incurred in the future. More about MDP can be found in [20].

In the next sections, as we build the model using a Markov decision processes
(MDP), the following elements are needed [20]:

1. Decision epochs.
2. States.
3. Actions.
4. Transition probabilities.
5. Direct costs.

In formulating the models, the assumptions used are explained in the next section.

4.2 Assumptions

This section explains the assumptions made to build the models. Recall the urgent
patients categories in Table 1.1. Assumption 4.2.1 gives the policy to handle the
30-minute surgeries.

Assumption 4.2.1. 30-minute surgeries are performed within the shift where they
arrive.

Assumption 4.2.1 implies that the 30-minute surgeries are scheduled and hence will
not be considered in the models. Assumption 4.2.2 gives the distribution of urgent
patient arrivals.

Assumption 4.2.2. Each type of urgent patient arrives at a shift according to a
Poisson process. The arrival process within a shift is independent of the arrival
processes in other shifts.

A Poisson process is a counting process. The definition of a counting process is
shown in Definition 4.2.3. The definition of a Poisson process is shown in Definition
4.2.4.

Definition 4.2.3. [21] A stochastic process {N(t), t ≥ 0} is said to be a counting
process if N(t) represents the total number of events that occur by time t.

Definition 4.2.4. [21] The counting process {N(t), t ≥ 0} is said to be a Poisson
process having rate λ > 0 if

1. N(0) = 0

2. The process has independent increments (the number of events that occur in
disjoint time intervals are independent)



Assigning a number of urgent patients in each shift (Model 1) 24

3. The number of events in any interval of length t is Poisson distributed with
mean λ t. That is, for all s, t ≥ 0

P(N(t+ s)−N(s) = n) = eλ.t
(λ.t)n

n!
, n = 0, 1, 2, . . . . (4.1)

In further part of this report, the Poisson probability above is denoted by

Poi(n, λ.t).

The daily OR time is divided into four shifts: morning, afternoon, evening and night.
Assumption 4.2.5 is needed to make the decision for each urgent surgery type.

Assumption 4.2.5. The 6-hour patients should be scheduled one shift ahead of the
arriving shift and the 24-hour patients can wait up to four shifts upon the arriving
shift.

The models are constructed for hospitals that dedicate some capacity for urgent pa-
tients. Let sn denote the maximum number of urgent patients that can be performed
in shift n using the dedicated capacity. Assumption 4.2.6 gives the maximum num-
ber of surgeries that can be performed in each shift that we take into account in the
models.

Assumption 4.2.6. The maximum number of urgent surgeries that can be per-
formed within each shift is identical, regardless of the type of surgeries. Hence,
we have sn = s for all n ∈ N.

In Sections 4.3 and 4.4 we describe the MDP model to schedule the urgent patients
by observing the arrivals until the end of each shift where an action should be taken.

4.3 Assigning a number of urgent patients in each
shift (Model 1)

In this section we describe the MDP model to schedule urgent patients, where in
each shift we determine the number urgent surgeries of each type that are assigned
in the next shift.

Decision epochs

Decision epoch is the moment when an action should be taken. In this case, the
action is taken at the end of each shift and shown in Figure 4.1.
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Figure 4.1: Decision epoch

The notation for the decision epoch is given by:

N = {1, 2, 3, . . .},
n ∈ N.

State space

The state at the end of shift n ∈ N is the number of urgent cases that can wait for
a maximum of t more shifts upon its arrival. By employing Assumption 4.2.5, the
definition below is given to model the state space.

Definition 4.3.1. Let a stochastic process {Un, n = 1, 2, 3, . . .}, where

Un = (U1,n, U2,n, U3,n, U4,n) ,∀n ∈ N

and Ut,n records the number of urgent patients that are allowed to wait for t shifts in
the system at the end of shift n,∀n ∈ N, t = 1, 2, 3, 4.

Let u denote the realization of the random variable U in Definition 4.3.1. Hence, the
state at the end of shift n is denoted by:

un = (u1,n ; u2,n ; u3,n ; u4,n).

All possible states at decision epoch n build the entire state space S, which is given
by:

S = {Sn}n∈N,

where

Sn = {un = (u1,n ; u2,n ; u3,n ; u4,n) |u1,n, u2,n, u3,n, u4,n = 0, 1, 2, . . . <∞} ∀n ∈ N.
(4.2)

Boundary of the states

By looking at the definition of the states above and Assumption 4.2.6, the total num-
ber of surgeries in the system within each shift should not exceed 4s, which is for-
mulated in the following equation:

4∑
t=1

ut,n ≤ 4s, ∀n ∈ N. (4.3)
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Decisions

The decision in each shift is to determine the number of urgent surgeries that are
performed in the next shift. Other than the maximum waiting time of urgent surgeries
that is given by Assumption 4.2.5, the decisions should satisfy the conditions below:

1. If some surgeries are not yet assigned, then they can wait for one shift less.
For example, if in shift n ∈ N the state is given by un = (0, 1, 1, 1) and no
surgeries are assigned to the next shift, then in the next shift the state is
un+1 = (1, 1, 1, 0).

2. The sum of the surgeries that are assigned in each shift should not exceed the
dedicated capacity.

The notation for the action is as follows:

Au,n = {an = (a1,n, a2,n, a3,n, a4,n) = (do at,n surgery out of ut,n, t = 1, 2, 3, 4),

∀n ∈ N | at,n ≤ ut,n,
4∑
t=1

at,n ≤ s, t = 1, 2, 3, 4, ∀n ∈ N},

A =
⋃

u∈S,n∈N

Au,n.

Transition probabilities

In formulating the transition probabilities, we take patient arrivals into account. Let
random variable Rp,n denote the number of type p patients that arrive to the system
at shift n, where p = 6 and p = 24 represent the 6-hour and 24-hour surgeries, re-
spectively. Using Assumption 4.2.2, Rp,n follows a Poisson process with an arrival
rate of λp, where p = 6, 24, for all n ∈ N.

The evolution of the states given by the diagram in Figure 4.2 is used to construct
the transition probability. Also, based on Assumption 4.2.6, the following assumption
describes the policy to admit the arriving patients.

Assumption 4.3.2. First, the maximum number of 6-hour patients are admitted to
fill the slot s. Next, the 24-hour patients are admitted such that the total number of
patients within a shift does not exceed 4s. In case the system is full, i.e., there are
4s patients in the system, we reject all arrivals from entering the system.

Let R̄p,n denote the number of type p patient arrivals that are admitted at shift n,
where p = 6, 24 denoting 6-hour and 24-hour patients, respectively. Next, from
Figure 4.2 and Assumption 4.3.2, we admit R̄6,n 6-hour arrivals, where R̄6,n =

min{R6,n, s − u2,n−1 + a2,n−1}. Hence, u1,n = min{u2,n−1 − a2,n−1 + R6,n, s}. Next,
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Figure 4.2: State evolution from shift n− 1 to shift n

we admit R̄24,n 24-hour arrivals, where R̄24,n = min{R24,n, 4s − (u1,n + u2,n + u3,n)}.
Hence, u4,n = min{R24,n, 4s− (u1,n + u2,n + u3,n)}.

To formulate the transition probability further, the definition of the exponential dis-
tribution is given in Definition 4.3.3. The definition of the Erlang distribution is shown
in Definition 4.3.4.

Definition 4.3.3. [21] A continuous random variable X is said to have an exponen-
tial distribution with parameter λ, λ > 0 if its probability density function is given by

f(x) = λ e−λx, x ≥ 0 (4.4)

or, equivalently, if its cumulative distribution function is given by

F (x) =

∫ x

−∞
f(y) dy = 1− e−λx, x ≥ 0. (4.5)

Definition 4.3.4. A random variableX has an Erlang-k (k = 1, 2, . . .) distribution with
mean k/λ, if X is the sum of k independent random variables X1, . . . , Xk having an
exponential distribution with mean 1/λ and the probability density function is given
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by

fErl(x; k, λ) = λ
(λx)k−1

(k − 1)!
e−λx, x ≥ 0. (4.6)

The cumulative distribution function is given by

FErl(x; k, λ) = 1−
k−1∑
j=0

(λx)j

j!
e−λx, x ≥ 0. (4.7)

The parameter λ is called the scale parameter, k is the shape parameter.

For the transition probability, we use the notation below:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1))

=P(u1,n = min{u2,n−1 − a2,n−1 +R6,n, s}, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1, u4,n = min{R24,n, 4s− (u1,n + u2,n + u3,n)}|
R6,n ≥ 0, R24,n ≥ 0). (4.8)

Employing Assumption 4.3.2 and state evolution in Figure 4.2, we build the transition
probabilities based on the patient arrivals.

If u2,n−1 − a2,n−1 + R6,n < s, then at the end of shift n the first element of the state is
u1,n = u2,n−1−a2,n−1 +R6,n < s. After that, if u1,n+u2,n+u3,n+R24,n < 4s then u4,n =

R24,n. Hence, the state at the end of shift n is u1,n < s, u1,n + u2,n + u3,n + u4,n < 4s,
which transition probability is as follows:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1))

=P(u1,n = u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1, u4,n = R24,n)

=P(R6,n = u1,n − u2,n−1 + a2,n−1 , R24,n = u4,n)

=P(R6,n = u1,n − u2,n−1 + a2,n−1) × P(R24,n = u4,n)

=e−λ6 e−λ24
λ
u1,n−u2,n−1+a2,n−1

6

(u1,n − u2,n−1 + a2,n−1)!
.
λ
u4,n
24

u4,n!
,

=Poi(u1,n − u2,n−1 + a2,n−1, λ6) . Poi(u4,n, λ24) (4.9)

u1,n < s ; u1,n + u2,n + u3,n + u4,n < 4s.

If u2,n−1 − a2,n−1 + R6,n < s, then at the end of shift n the first element of the state is
u1,n = u2,n−1 − a2,n−1 + R6,n < s. Next, if u1,n + u2,n + u3,n + R24,n ≥ 4s, then at the
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end of shift n, the state is given by u1,n < s, u1,n + u2,n + u3,n + u4,n = 4s, which is
equivalent to u1,n < s, u4,n = 4s− (u1,n + u2,n + u3,n). Thus, for this case we have the
following transition probability:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1))

=P(u1,n = u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1, u4,n = 4s− (u1,n + u2,n + u3,n))

=P(R6,n = u1,n − u2,n−1 + a2,n−1 , u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 , R24,n ≥ 4s− (u1,n + u2,n + u3,n))

=P(R6,n = u1,n − u2,n−1 + a2,n−1 ,

R24,n ≥ 4s− (u1,n + u2,n + u3,n))

=P(R6,n = u1,n − u2,n−1 + a2,n−1)

× P(R24,n ≥ 4s− (u1,n + u2,n + u3,n))

=e−λ6
λ
u1,n−u2,n−1+a2,n−1

6

(u1,n − u2,n−1 + a2,n−1)!
.

∞∑
r24=4s−(u1,n+u2,n+u3,n)

e−λ24
λr2424

r24!

=e−λ6
λ
u1,n−u2,n−1+a2,n−1

6

(u1,n − u2,n−1 + a2,n−1)!
.

1−
4s−(u1,n+u2,n+u3,n)−1∑

r24=0

e−λ24
λr2424

r24!


=Poi(u1,n − u2,n−1 + a2,n−1, λ6) . FErl (4s− (u1,n + u2,n + u3,n), λ24) ,

(4.10)

u1,n < s ; u1,n + u2,n + u3,n + u4,n = 4s,

where FErl(k, λ) is the cumulative distribution function of the Erlang-k distribution
with scale parameter λ.

If u2,n−1 − a2,n−1 + R6,n ≥ s, then at the end of shift n the first element of the state
is u1,n = s. Next, if u1,n + u2,n + u3,n + R24,n < 4s, then at the end of shift n the
last element of the state is u4,n = R24,n. Hence, the state at the end of shift n is
u1,n = s, u1,n + u2,n + u3,n + u4,n < 4s and the transition probability is given by:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1))
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=P(u1,n = s, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1, u4,n = R24,n)

=P(s ≤ u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1, u4,n = R24,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1 , R24,n = u4,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1) × P(R24,n = u4,n)

=e−λ24
∞∑

r6=s−u2,n−1+a2,n−1

e−λ6
λr66

r6!
.
λ
u4,n
24

u4,n!

=e−λ24
λ
u4,n
24

u4,n!

(
1−

s−u2,n−1+a2,n−1−1∑
r6=0

e−λ6
λr66

r6!

)
=Poi(u4,n, λ24) . FErl (s− u2,n−1 + a2,n−1, λ6) (4.11)

u1,n = s ; u1,n + u2,n + u3,n + u4,n < 4s.

If u2,n−1 − a2,n−1 + R6,n ≥ s, then at the end of shift n the first element of the state
is u1,n = s. Next, if u1,n + u2,n + u3,n + R24,n ≥ 4s, then at the end of shift n the
state is given by u1,n = s, u1,n + u2,n + u3,n + u4,n = 4s, which is equivalent to
u1,n = s, u4,n = 3s− (u2,n + u3,n) and the transition probability is given by:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1))

=P(u1,n = s, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1, u4,n = 3s− (u2,n + u3,n))

=P(s ≤ u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1, 3s− (u2,n + u3,n) ≤ R24,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1 , R24,n ≥ 3s− u2,n − u3,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1) × P(R24,n ≥ 3s− u2,n − u3,n)

=e−λ6 e−λ24
∞∑

r6=s−u2,n−1+a2,n−1

λr66

r6!
.

∞∑
r24=3s−u2,n−u3,n

λr2424

r24!

=

(
1−

s−u2,n−1+a2,n−1−1∑
r6=0

e−λ6
λr66

r6!

)
.

(
1−

3s−u2,n−u3,n−1∑
r24=0

e−λ24
λr2424

r24!

)
=FErl (s− u2,n−1 + a2,n−1, λ6) . FErl (3s− u2,n − u3,n, λ24) ,

(4.12)

u1,n = s ; u1,n + u2,n + u3,n + u4,n = 4s.
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Direct cost

The first cost incurred because of the rejections of the 6-hour patient arrivals from
entering the system. From Assumption 4.3.2 we know that if u1,n ≤ s, all 6-hour pa-
tients can be treated in the dedicated capacity. If u2,n−1 − a2,n−1 + R6,n > s we need
to reject u2,n−1 − a2,n−1 + R6,n − s patients. Note that at shift n, u1,n depends on the
state and action at shift n−1 as u1,n = min{u2,n−1−a2,n−1 +R6,n, s}, where R6,n is the
6-hour patient arrivals at shift n. Denoting the number of 6-hour surgeries being re-
jected at shift n by Ne,n, the formula to compute its expectation, E[Ne,n|un−1, an−1],
is:

E[Ne,n|un−1, an−1] = E[u2,n−1 − a2,n−1 +R6,n − s]+

=
∞∑
r6=0

(u2,n−1 − a2,n−1 + r6 − s)+ P(R6,n = r6)

=
∞∑

r6=s−u2,n−1+a2,n−1+1

(u2,n−1 − a2,n−1 + r6 − s)P(R6,n = r6)

=
∞∑

r6=s−u2,n−1+a2,n−1+1

(u2,n−1 − a2,n−1 − s)P(R6,n = r6)

+
∞∑

r6=s−u2,n−1+a2,n−1+1

r6 P(R6,n = r6)

= (u2,n−1 − a2,n−1 − s)

(
1−

s−u2,n−1+a2,n−1∑
r6=0

P(R6,n = r6)

)

+
∞∑
r6=0

r6 P(R6,n = r6)−
s−u2,n−1+a2,n−1∑

r6=0

r6 P(R6,n = r6)

= (u2,n−1 − a2,n−1 − s)

(
1−

s−u2,n−1+a2,n−1∑
r6=0

e−λ6
λr66

r6!

)
+ E[R6,n]

−
s−u2,n−1+a2,n−1∑

r6=0

r6 e
−λ6 λ

r6
6

r6!

= (u2,n−1 − a2,n−1 − s)

(
1−

s−u2,n−1+a2,n−1∑
r6=0

e−λ6
λr66

r6!

)
+ λ6

−
s−u2,n−1+a2,n−1∑

r6=0

r6 e
−λ6 λ

r6
6

r6!
.

(4.13)

Let N = u2,n−1 − a2,n−1 − s. We have:
s−u2,n−1+a2,n−1∑

r6=0

r6 e
−λ6 λ

r6
6

r6!
=

N∑
n=0

n e−λ6
λn6
n!
, (4.14)
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and is elaborated as follows:

N∑
n=0

n e−λ6
λn6
n!

=
N∑
n=1

n e−λ6
λn6
n!

=
N∑
n=1

e−λ6
λn6

(n− 1)!

=λ6

N∑
n=1

e−λ6
λn−1

6

(n− 1)!

=λ6

N∑
n=1

e−λ6
λn−1

6

(n− 1)!

=λ6

N−1∑
m=0

e−λ6
λm6
m!

=λ6(1− FErl(N, λ6)). (4.15)

Substituting Equation (4.15) to Equation (4.13), we obtain:

E[Ne,n|un−1, an−1] = (u2,n−1 − a2,n−1 − s)

(
1−

s−u2,n−1+a2,n−1∑
r6=0

e−λ6
λr66

r6!

)
+ λ6

− λ6(1− FErl(s− u2,n−1 + a2,n−1, λ6))

= (u2,n−1 − a2,n−1 − s)FErl(s− u2,n−1 + a2,n−1 + 1, λ6)

+ λ6 FErl(s− u2,n−1 + a2,n−1, λ6),∀n ∈ N.
(4.16)

Another cost is incurred from rejecting the 24-hour surgeries because of the bound-
ary of the state. Denoting the number of 24-hour surgeries being rejected at shift n
by N̂e,n, it is formulated as follows:

N̂e,n = (u1,n + u2,n + u3,n +R24,n − 4s)+,∀n ∈ N. (4.17)

Recall that the state at shift n depends on the state un−1 and action an−1. Hence,
E[N̂e,n|un−1, an−1] is formulated as follows.

E[N̂e,n|un−1, an−1] = E[(u1,n + u2,n + u3,n +R24,n − 4s)+|un−1, an−1]

= E[(u2,n−1 − a2,n−1 +R6,n + u2,n + u3,n +R24,n − 4s)+]

=
∞∑
r6=0

∞∑
r24=0

(u2,n−1 − a2,n−1 + r6 + u2,n + u3,n + r24 − 4s)+

P(R6,n = r6)P(R24,n = r24)
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=

s−(u2,n−1

−a2,n−1)−1∑
r6=0

∞∑
r24=4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)+1

(u2,n−1 − a2,n−1 + r6 + u2,n + u3,n

+ r24 − 4s)P(R6,n = r6) P(R24,n = r24)

+
∞∑

r6=s−(u2,n−1−a2,n−1)

∞∑
r24=3s−(u2,n

+u3,n)+1

(s+ u2,n + u3,n

+ r24 − 4s)P(R6,n = r6) P(R24,n = r24)

= (u2,n−1 − a2,n−1 + u2,n + u3,n − 4s)

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)

∞∑
r24=4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)+1

P(R24,n = r24)

+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

∞∑
r24=4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)+1

r6 P(R6,n = r6)P(R24,n = r24)

+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

∞∑
r24=4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)+1

r24 P(R6,n = r6)P(R24,n = r24)

+ (s+ u2,n + u3,n − 4s)
∞∑

r6=s−(u2,n−1−a2,n−1)

∞∑
r24=3s−(u2,n

+u3,n)+1

P(R6,n = r6)P(R24,n = r24)

+
∞∑

r6=s−(u2,n−1−a2,n−1)

P(R6,n = r6)
∞∑

r24=3s−(u2,n
+u3,n)+1

r24 P(R24,n = r24)

= (u2,n−1 − a2,n−1 + u2,n + u3,n − 4s)

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)

1−

4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)∑
r24=0

P(R24,n = r24)
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+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

r6 P(R6,n = r6)

1−

4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)∑
r24=0

P(R24,n = r24)



+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)


∞∑

r24=0

r24 P(R24,n = r24)−

4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)+1∑
r24=0

r24 P(R24,n = r24)



+ (u2,n + u3,n − 3s)

1−

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)


1−

3s−(u2,n
+u3,n)∑
r24=0

P(R24,n = r24



+

1−

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)


 ∞∑
r24=0

r24 P(R24,n = r24)−

3s−(u2,n
+u3,n)∑
r24=0

r24 P(R24,n = r24)



= (u2,n−1 − a2,n−1 + u2,n + u3,n − 4s)

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)

1−

4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)∑
r24=0

P(R24,n = r24)



+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

r6 P(R6,n = r6)

1−

4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)∑
r24=0

P(R24,n = r24)



+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)

λ24 −

4s−(u2,n−1
−a2,n−1+r6+u2,n

+u3,n)+1∑
r24=0

r24 P(R24,n = r24)



+ (u2,n + u3,n − 3s)

1−

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)


1−

3s−(u2,n
+u3,n)∑
r24=0

P(R24,n = r24



+

1−

s−(u2,n−1

−a2,n−1)−1∑
r6=0

P(R6,n = r6)


λ24 −

3s−(u2,n
+u3,n)∑
r24=0

r24 P(R24,n = r24)
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= (u2,n−1 − a2,n−1 + u2,n + u3,n − 4s)

s−(u2,n−1

−a2,n−1)−1∑
r6=0

Poi(r6, λ6)

FErl(4s− (u2,n−1 − a2,n−1 + r6 + u2,n + u3,n) + 1, λ24)

+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

r6 Poi(r6, λ6)FErl(4s− (u2,n−1 − a2,n−1 + r6 + u2,n + u3,n) + 1, λ24)

+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

Poi(r6, λ6)(λ24 − λ24(1− FErl(4s− (u2,n−1 − a2,n−1 + r6 + u2,n + u3,n) + 1,

λ24))) + (u2,n + u3,n − 3s)FErl(s− (u2,n−1 − a2,n−1), λ6)FErl(3s− (u2,n + u3,n) + 1,

λ24) + FErl(s− (u2,n−1 − a2,n−1), λ6)(λ24 − λ24(1− FErl(3s− (u2,n + u3,n), λ24)))

= (u2,n−1 − a2,n−1 + u2,n + u3,n − 4s)

s−(u2,n−1

−a2,n−1)−1∑
r6=0

Poi(r6, λ6)

FErl(4s− (u2,n−1 − a2,n−1 + r6 + u2,n + u3,n) + 1, λ24)

+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

r6 Poi(r6, λ6)FErl(4s− (u2,n−1 − a2,n−1 + r6 + u2,n + u3,n) + 1, λ24)

+

s−(u2,n−1

−a2,n−1)−1∑
r6=0

Poi(r6, λ6)λ24 FErl(4s− (u2,n−1 − a2,n−1 + r6 + u2,n + u3,n) + 1, λ24)

+ (u2,n + u3,n − 3s)FErl(s− (u2,n−1 − a2,n−1), λ6)FErl(3s− (u2,n + u3,n) + 1, λ24)

+ FErl(s− (u2,n−1 − a2,n−1), λ6)λ24 FErl(3s− (u2,n + u3,n), λ24).

(4.18)

Given the state un and action an the number of unused capacity Nu,n can be formu-
lated as follows:

Nu,n =

(
s−

4∑
t=1

at,n

)+

1

(
4∑
t=1

ut,n > 0

)
,∀n ∈ N. (4.19)

Let ce, ĉe, and cu denote the cost of one rejected 6-hour patient, one rejected 24-
hour patient, and one unused dedicated capacity, respectively. Henceforth, by using
Equations (4.16), (4.19) and (4.18) we obtain the expected total costs in shift n is:

E[cn] = ce E[Ne,n] + ĉe E[N̂e,n] + cu E[Nu,n], ∀n ∈ N. (4.20)
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Optimality equation

We consider the costs incurred today to be more important than those that are in-
curred tomorrow. Therefore we use discount factor α, α ∈ [0, 1) to recalculate the
future costs to the cost level today. The goal is to minimize the rejected patients
and utilize the dedicated capacity optimally. This can be done by minimizing the
expected discounted cost over an infinite horizon, because the costs are incurred
from the unused dedicated capacity and rejecting patients from entering the sys-
tem. Therefore, the optimality equation is as follows:

V (u) = min
a∈A

{
c(u,a0) + α

∑
u′

P(u′|u,a)V (u′)

}
. (4.21)

The optimal policy A∗ consists of the values of a that solve the optimality equation in
each state. We use the policy iteration algorithm to find the optimal policy A∗.

Algorithm 1 Policy iteration algorithm
1: i← 0

2: A0 ← Ā . Choose an arbitrary policy Ā ∈ A
3: while Ai+1 6= Ai do
4: for each state un ∈ S do
5: Policy Evaluation : Vi(un) = c(un, Ai) + α

∑
u′
n
P (u′n|un,Ai)V (u′n)

6: Policy improvement :
7: Ai+1 ∈ arg min

A
{c(un, A) + α

∑
u′
n
P(u′n|un, A)Vi(u

′
n)}

8: end for
9: i← i+ 1

10: end while
11: return A∗ = Ai . The optimal policy A∗

4.3.1 Enable deferring the 24-hour patients to another resource
(Model 1b)

In the model explained before, we determine the number of surgeries that are per-
formed in every shift in the dedicated capacity. To extend that model, in this part
we allow some of the 24-hour patients are deferred to other resources, such as the
elective operating rooms. Deferring 24-hour patients to another resource incurs a
certain cost. Deferring too many 24-hour patients to other resources incurs a big
cost and might leave the dedicated capacity unused, while deferring too few of them
causes more 6-hour patients to be rejected from the dedicated capacity.
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In this part the state of the system is described by Equation (4.2). The decisions
now include deferring the 24-hour patients to another resource, denoted by b4,n.

Note that the total 24-hour surgeries that are performed and deferred to other re-
source should not exceed the existing 24-hour patients in the system, formulated by
a4,n + b4,n ≤ u4,n. With this modification, the decisions are denoted as follows:

Au,n = {an = (a1,n, a2,n, a3,n, a4,n, b4,n) = (do at,n surgery out of ut,n, t = 1, 2, 3,

deferring b4,n 24-hour patients) | at,n ≤ ut,n, t = 1, 2, 3 ; a4,n + b4,n ≤ u4,n,

4∑
t=1

at,n ≤ s, ∀n ∈ N},

A =
⋃

u∈S,n∈N

Au,n.

The evolution of the states is given in the diagram in Figure 4.3.

Figure 4.3: State evolution from the beginning of shift n − 1 to the end of shift n
while allowing 24-hour patients to be deferred

Considering Assumption 4.3.2 and the state evolution in Figure 4.3, we construct
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the transition probability. The following notation is used :

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, b4,n−1))

=P(u1,n = min{u2,n−1 − a2,n−1 +R6,n, s}, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1, u4,n = min{R24,n, 4s− (u1,n+

u2,n + u3,n)}|R6,n ≥ 0, R24,n ≥ 0). (4.22)

Based on the arrivals, if u2,n−1 − a2,n−1 + R6,n < s, then at the end of shift n the
first element of the state is u1,n = u2,n−1 − a2,n−1 + R6,n < s. After that, if u1,n +

u2,n + u3,n + R24,n < 4s then u4,n = R24,n. Hence, the state at the end of shift n is
u1,n < s, u1,n + u2,n + u3,n + u4,n < 4s, which transition probability is as follows:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, b4,n−1))

=P(u1,n = u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1, u4,n = R24,n)

=P(R6,n = u1,n − u2,n−1 + a2,n−1 , R24,n = u4,n)

=P(R6,n = u1,n − u2,n−1 + a2,n−1) × P(R24,n = u4,n)

=e−λ6 e−λ24
λ
u1,n−u2,n−1+a2,n−1

6

(u1,n − u2,n−1 + a2,n−1)!
.
λ
u4,n
24

u4,n!
,

=Poi(u1,n − u2,n−1 + a2,n−1, λ6) . Poi(u4,n, λ24) (4.23)

u1,n < s ; u1,n + u2,n + u3,n + u4,n < 4s.

If u2,n−1 − a2,n−1 + R6,n < s, then at the end of shift n the first element of the state is
u1,n = u2,n−1 − a2,n−1 + R6,n < s. Next, if u1,n + u2,n + u3,n + R24,n ≥ 4s, then at the
end of shift n, the state is given by u1,n < s, u1,n + u2,n + u3,n + u4,n = 4s, which is
equivalent to u1,n < s, u4,n = 4s− (u1,n + u2,n + u3,n). Thus, for this case we have the
following transition probability:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, b4,n−1))

=P(u1,n = u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1, u4,n = 4s− (u1,n + u2,n + u3,n))
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=P(R6,n = u1,n − u2,n−1 + a2,n−1 , u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1 , R24,n ≥ 4s− (u1,n + u2,n + u3,n))

=P(R6,n = u1,n − u2,n−1 + a2,n−1 ,

R24,n ≥ 4s− (u1,n + u2,n + u3,n))

=P(R6,n = u1,n − u2,n−1 + a2,n−1)

× P(R24,n ≥ 4s− (u1,n + u2,n + u3,n))

=e−λ6
λ
u1,n−u2,n−1+a2,n−1

6

(u1,n − u2,n−1 + a2,n−1)!
.

∞∑
r24=4s−(u1,n+u2,n+u3,n)

e−λ24
λr2424

r24!

=e−λ6
λ
u1,n−u2,n−1+a2,n−1

6

(u1,n − u2,n−1 + a2,n−1)!
.

1−
4s−(u1,n+u2,n+u3,n)−1∑

r24=0

e−λ24
λr2424

r24!


=Poi(u1,n − u2,n−1 + a2,n−1, λ6) . FErl (4s− (u1,n + u2,n + u3,n), λ24) , (4.24)

u1,n < s ; u1,n + u2,n + u3,n + u4,n = 4s,

where FErl(k, λ) is the cumulative distribution function of the Erlang-k distribution
with scale parameter of λ.

If u2,n−1 − a2,n−1 + R6,n ≥ s, then at the end of shift n the first element of the state
is u1,n = s. Next, if u1,n + u2,n + u3,n + R24,n < 4s, then at the end of shift n the
last element of the state is u4,n = R24,n. Hence, the state at the end of shift n is
u1,n = s, u1,n + u2,n + u3,n + u4,n < 4s and the transition probability is given by:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, b4,n−1))

=P(u1,n = s, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1, u4,n = R24,n)

=P(s ≤ u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1, u4,n = R24,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1 , R24,n = u4,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1) × P(R24,n = u4,n)

=e−λ24
∞∑

r6=s−u2,n−1+a2,n−1

e−λ6
λr66

r6!
.
λ
u4,n
24

u4,n!

=e−λ24
λ
u4,n
24

u4,n!

(
1−

s−u2,n−1+a2,n−1−1∑
r6=0

e−λ6
λr66

r6!

)
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P(un |un−1,an−1) =Poi(u4,n, λ24) . FErl (s− u2,n−1 + a2,n−1, λ6) (4.25)

u1,n = s ; u1,n + u2,n + u3,n + u4,n < 4s.

If u2,n−1 − a2,n−1 + R6,n ≥ s, then at the end of shift n the first element of the state
is u1,n = s. Next, if u1,n + u2,n + u3,n + R24,n ≥ 4s, then at the end of shift n the
state is given by u1,n = s, u1,n + u2,n + u3,n + u4,n = 4s, which is equivalent to
u1,n = s, u4,n = 3s− (u2,n + u3,n) and the transition probability is given by:

P(un |un−1,an−1) =P(U1,n = u1,n, U2,n = u2,n, U3,n = u3,n, U4,n = u4,n|
U1,n−1 = u1,n−1, U2,n−1 = u2,n−1, U3,n−1 = u3,n−1, U4,n−1 = u4,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, b4,n−1))

=P(u1,n = s, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1, u4,n = 3s− (u2,n + u3,n))

=P(s ≤ u2,n−1 − a2,n−1 +R6,n, u2,n = u3,n−1 − a3,n−1,

u3,n = u4,n−1 − a4,n−1 − b4,n−1, 3s− (u2,n + u3,n) ≤ R24,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1 , R24,n ≥ 3s− u2,n − u3,n)

=P(R6,n ≥ s− u2,n−1 + a2,n−1) × P(R24,n ≥ 3s− u2,n − u3,n)

=e−λ6 e−λ24
∞∑

r6=s−u2,n−1+a2,n−1

λr66

r6!
.

∞∑
r24=3s−u2,n−u3,n

λr2424

r24!

=

(
1−

s−u2,n−1+a2,n−1−1∑
r6=0

e−λ6
λr66

r6!

)
.

(
1−

3s−u2,n−u3,n−1∑
r24=0

e−λ24
λr2424

r24!

)
=FErl (s− u2,n−1 + a2,n−1, λ6) . FErl (3s− u2,n − u3,n, λ24) ,

(4.26)

u1,n = s ; u1,n + u2,n + u3,n + u4,n = 4s.

We adapt the direct cost regarding the rejected 6-hour and 24-hour patients and
the unused dedicated capacity, which are shown by Equations (4.16), (4.18) and
(4.19). We introduce cb as the cost of each 24-hour patient that is deferred to another
resource. Hence, for this model, the expected total costs in shift n is:

E[cn] = ce E[Ne,n] + ĉe E[N̂e,n] + cu E[Nu,n] + cb . b4,n, ∀n ∈ N. (4.27)

Optimality equation

We want to minimize the rejected patients, use the dedicated capacity optimally
and defer the newly admitted 24-hour patients accordingly. This can be done by
minimizing the expected discounted cost (using the discount factor discussed in the
previous model) over an infinite horizon, as the costs are incurred from the unused
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dedicated capacity, rejecting patients from entering the system and deferring the
newly admitted 24-hour patients to another resource. The optimality equation is
then the same as discussed in the previous model (Equation 4.21). To find the
optimal policy, we use the policy iteration algorithm given as Algorithm 1.

4.4 Assigning urgent patients to the appropriate shift
(Model 2)

In this section we describe the MDP model to schedule urgent patients, where the
action in each shift is to decide in which shifts the arriving patients are scheduled.
Further elements of the model are explained in the next parts.

Decision epochs

Similar to the first model, the decision on how many shift(s) ahead the operations
are scheduled, is taken at the end of each shift, which is illustrated by Figure 4.1.
The notation for the decision epoch is given by:

N = {1, 2, . . .},
n ∈ N.

State space

The state in the end of shift n ∈ N is the number of patients scheduled t shifts ahead
along with the patient arrivals of each type. By employing Assumption 4.2.5, the
definition below is given to model the state space.

Definition 4.4.1. Let a stochastic process {Hn, n = 1, 2, 3, . . .}, where

Hn =
(
H1,n, H2,n, H3,n, H4,n, R̄6,n, R̄24,n

)
,∀n ∈ N

and Ht,n records the number of urgent patients at shift n that are scheduled t shifts
ahead, where t = 1, 2, 3, 4, R̄6,n and R̄24,n record the number of 6-hour and 24-hour
patient admitted at shift n, respectively.

Let η and r̄ denote the realizations of the random variable H and R̄, respectively, in
Definition 4.4.1. Hence, the state at the end of shift n is denoted as:

ηn = (η1,n ; η2,n ; η3,n ; η4,n ; r̄6,n ; r̄24,n).
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The number of patients admitted depends on the number of patient arrivals. All
possible state spaces at decision epoch n build the entire state space S, which is
given by:

S = {Sn}n∈N,

where

Sn = {ηn = (η1,n ; η2,n ; η3,n ; η4,n ; r̄6,n ; r̄24,n) |η1,n, η2,n, η3,n, η4,n = 0, 1, 2, . . . <∞;

r̄6,n = min{R6,n, s− η1,n} ; r̄24,n = min{R24,n, 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n)}}.
(4.28)

Boundary of the states

By looking at the definition of the states above and Assumption 4.2.5, the maximum
number of surgeries that are scheduled up to 4 shifts ahead is 4s, shown in the
equation below:

4∑
t=1

ηt,n ≤ 4s, ∀n ∈ N,where (4.29)

ηt,n ≤ s, t = 1, . . . , 5, ∀n ∈ N. (4.30)

Other than that, restriction on the admitted patients is applied according to Assump-
tion 4.3.2. The values of r̄6,n and r̄24,n given in Equation (4.28) depend on the dedi-
cated capacity. Based on Assumption 4.3.2, the boundaries for the admitted patients
are 0 ≤ r̄6,n ≤ s− η1,n and 0 ≤ r̄24,n ≤ 4s−

(∑4
t=1 ηt,n + r̄6,n

)
for the admitted 6-hour

and 24-hour patients, respectively. In the next part, the decision in each shift is
explained.

Decisions

The decision is the number of patients scheduled in each shift up to five shifts ahead.
Other than the maximum waiting time of urgent surgeries that is given by Assumption
4.2.5, the decisions should satisfy the conditions below:

1. If in shift n, the surgeries that are scheduled i shifts ahead become the surg-
eries that are scheduled i− 1 shifts ahead at shift n + 1, where 1 < i ≤ 4. For
example, if in shift n ∈ N we have state ηn = (η1,n ; η2,n ; η3,n ; η4,n ; r̄6,n ; r̄24,n) =

(0, 1, 1, 1, 0, 0) and no arrivals at shift n, then at shift n + 1 we have state
ηn+1 = (1, 1, 1, 0, 0, 0) in case of no arrivals at shift n+ 1.

2. The sum of the surgeries that are scheduled in each shift equals to the number
of admitted patients in that shift.
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The notation for the actions is given below.

Au,n = {an = (a1,n, a2,n, a3,n, a4,n, a5,n) = ( schedule at,n surgeries t shifts ahead ,

t = 1, 2, 3, 4, 5 |
5∑
t=1

at,n = r̄6,n + r̄24,n, ∀n ∈ N},

A =
⋃

u∈S,n∈N

Au,n.

Based on the states and the action in each shift, the state evolution from shift n− 1

to shift n is given in the diagram in Figure 4.4.

Figure 4.4: State evolution from the beginning of shift n − 1 to the end of shift n to
assign surgeries to the appropriate shifts
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Transition probabilities

Considering Assumption 4.3.2 and the state evolution in Figure 4.4, we construct
the transition probability. The following notation is used :

P(ηn |ηn−1,an−1) =P(H1,n = η1,n, H2,n = η2,n, H3,n = η3,n, H4,n = η4,n, R̄6,n = r̄6,n,

R̄24,n = r̄24,n |H1,n−1 = η1,n−1, H2,n−1 = η2,n−1, H3,n−1 = η3,n−1,

H4,n−1 = η4,n−1, R̄6,n−1 = r̄6,n−1, R̄24,n−1 = r̄24,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, a5,n−1))

=P(η1,n = η2,n−1 + a2,n−1, η2,n = η3,n−1 + a3,n−1,

η3,n = η4,n−1 + a4,n−1, η4,n = a5,n−1, r̄6,n = min{R6,n, s− η1,n},
r̄24,n = min{R24,n, 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n)}).

(4.31)

Based on the arrivals, if R6,n < s−η1,n, then at the end of shift n we have r̄6,n = R6,n.
After that, if R24,n < 4s − (r̄6,n + η1,n + η2,n + η3,n + η4,n), then r̄24,n = R24,n. Hence,
the state at the end of shift n is (η1,n ; η2,n ; η3,n ; η4,n ; r̄6,n ; r̄24,n), where η1,n < s− r̄6,n

and r̄6,n+η1,n+η2,n+η3,n+η4,n+ r̄24,n < 4s, which transition probability is as follows:

P(ηn |ηn−1,an−1) =P(H1,n = η1,n, H2,n = η2,n, H3,n = η3,n, H4,n = η4,n, R̄6,n = r̄6,n,

R̄24,n = r̄24,n |H1,n−1 = η1,n−1, H2,n−1 = η2,n−1, H3,n−1 = η3,n−1,

H4,n−1 = η4,n−1, R̄6,n−1 = r̄6,n−1, R̄24,n−1 = r̄24,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, a5,n−1))

=P(η1,n = η2,n−1 + a2,n−1, η2,n = η3,n−1 + a3,n−1,

η3,n = η4,n−1 + a4,n−1, η4,n = a5,n−1, r̄6,n = R6,n, r̄24,n = R24,n)

=P(R6,n = r̄6,n , R24,n = r̄24,n)

=P(R6,n = r̄6,n) × P(R24,n = r̄24,n)

=e−λ6 e−λ24
λ
r̄6,n
6

r̄6,n!
.
λ
r̄24,n
24

r̄24,n!
,

=Poi(r̄6,n, λ6) . Poi(r̄24,n, λ24) (4.32)

η1,n < s− r̄6,n ; r̄6,n + η1,n + η2,n + η3,n + η4,n + r̄24,n < 4s.

If R6,n < s − η1,n, then at the end of shift n we have r̄6,n = R6,n. After that, if
4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n) ≤ R24,n, then r̄24,n = 4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n).
Hence, the state at the end of shift n is (η1,n ; η2,n ; η3,n ; η4,n ; r̄6,n ; r̄24,n), where η1,n <

s − r̄6,n and r̄6,n + η1,n + η2,n + η3,n + η4,n + r̄24,n = 4s, which transition probability is
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as follows:

P(ηn |ηn−1,an−1) =P(H1,n = η1,n, H2,n = η2,n, H3,n = η3,n, H4,n = η4,n, R̄6,n = r̄6,n,

R̄24,n = r̄24,n |H1,n−1 = η1,n−1, H2,n−1 = η2,n−1, H3,n−1 = η3,n−1,

H4,n−1 = η4,n−1, R̄6,n−1 = r̄6,n−1, R̄24,n−1 = r̄24,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, a5,n−1))

=P(η1,n = η2,n−1 + a2,n−1, η2,n = η3,n−1 + a3,n−1,

η3,n = η4,n−1 + a4,n−1, η4,n = a5,n−1, r̄6,n = R6,n,

r̄24,n = 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n))

=P(R6,n = r̄6,n , R24,n ≥ 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n))

=P(R6,n = r̄6,n)

× P(R24,n ≥ 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n))

=e−λ6
λ
r̄6,n
6

r̄6,n!
.

∞∑
r24=4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n)

e−λ24
λr2424

r24!

=e−λ6
λ
r̄6,n
6

r̄6,n!
.

1−
4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n)−1∑

r24=0

e−λ24
λr2424

r24!


=Poi(r̄6,n, λ6) . FErl(4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n), λ24) (4.33)

η1,n < s− r̄6,n ; r̄6,n + η1,n + η2,n + η3,n + η4,n + r̄24,n = 4s.

where FErl(k, λ) is the cumulative distribution function of the Erlang-k distribution
with scale parameter of λ.

If R6,n ≥ s − η1,n, then at the end of shift n we have r̄6,n = s − η1,n. After that, if
R24,n < 4s − (r̄6,n + η1,n + η2,n + η3,n + η4,n), then r̄24,n = R24,n. Hence, the state
at the end of shift n is (η1,n ; η2,n ; η3,n ; η4,n ; r̄6,n ; r̄24,n), where η1,n = s − r̄6,n and
r̄6,n + η1,n + η2,n + η3,n + η4,n + r̄24,n < 4s, which transition probability is as follows:

P(ηn |ηn−1,an−1) =P(H1,n = η1,n, H2,n = η2,n, H3,n = η3,n, H4,n = η4,n, R̄6,n = r̄6,n,

R̄24,n = r̄24,n |H1,n−1 = η1,n−1, H2,n−1 = η2,n−1, H3,n−1 = η3,n−1,

H4,n−1 = η4,n−1, R̄6,n−1 = r̄6,n−1, R̄24,n−1 = r̄24,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, a5,n−1))

=P(η1,n = η2,n−1 + a2,n−1, η2,n = η3,n−1 + a3,n−1,

η3,n = η4,n−1 + a4,n−1, η4,n = a5,n−1, r̄6,n = s− η1,n, r̄24,n = R24,n)

=P(R6,n ≥ s− η1,n , R24,n = r̄24,n)
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=P(R6,n ≥ s− η1,n) × P(R24,n = r̄24,n)

=
∞∑

r6=s−η1,n

e−λ6
λr66

r6!
. e−λ24

λ
r̄24,n
24

r̄24,n!
,

=

(
1−

s−η1,n−1∑
r6=0

e−λ6
λr66

r6!

)
. e−λ24

λ
r̄24,n
24

r̄24,n!
,

=FErl(s− η1,n, λ6) . Poi(r̄24,n, λ24) (4.34)

η1,n = s− r̄6,n ; r̄6,n + η1,n + η2,n + η3,n + η4,n + r̄24,n < 4s.

If R6,n ≥ s − η1,n, then at the end of shift n we have r̄6,n = s − η1,n. After that, if
4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n) ≤ R24,n, then r̄24,n = 4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n).
Hence, the state at the end of shift n is (η1,n ; η2,n ; η3,n ; η4,n ; r̄6,n ; r̄24,n), where η1,n =

s − r̄6,n and r̄6,n + η1,n + η2,n + η3,n + η4,n + r̄24,n = 4s, which transition probability is
as follows:

P(ηn |ηn−1,an−1) =P(H1,n = η1,n, H2,n = η2,n, H3,n = η3,n, H4,n = η4,n, R̄6,n = r̄6,n,

R̄24,n = r̄24,n |H1,n−1 = η1,n−1, H2,n−1 = η2,n−1, H3,n−1 = η3,n−1,

H4,n−1 = η4,n−1, R̄6,n−1 = r̄6,n−1, R̄24,n−1 = r̄24,n−1,

an−1 = (a1,n−1, a2,n−1, a3,n−1, a4,n−1, a5,n−1))

=P(η1,n = η2,n−1 + a2,n−1, η2,n = η3,n−1 + a3,n−1,

η3,n = η4,n−1 + a4,n−1, η4,n = a5,n−1, r̄6,n = s− η1,n,

r̄24,n = 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n))

=P(R6,n ≥ s− η1,n , R24,n ≥ 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n))

=P(R6,n ≥ s− η1,n)

× P(R24,n ≥ 4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n))

=
∞∑

r6=s−η1,n

e−λ6
λr66

r6!
.

∞∑
r24=4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n)

e−λ24
λr2424

r24!
,

=

(
1−

s−η1,n−1∑
r6=0

e−λ6
λr66

r6!

)
1−

4s−(r̄6,n+η1,n+η2,n+η3,n+η4,n)−1∑
r24=0

e−λ24
λr2424

r24!


=FErl(s− η1,n, λ6) . FErl(4s− (r̄6,n + η1,n + η2,n + η3,n + η4,n), λ24)

(4.35)

η1,n = s− r̄6,n ; r̄6,n + η1,n + η2,n + η3,n + η4,n + r̄24,n = 4s.

In the next part, we will address the cost corresponding to the action that we take on
each shift.
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Direct cost

The first cost incurred because of the rejections of the 6-hour patient arrivals from
entering the system. From Assumption 4.3.2 and the boundary of the states in
Equation (4.30), we know that if R6,n > s − η1,n, we admit r̄6,n = s − η1,n and reject
R6,n − r̄6,n 6-hour patients. Considering η1,n = η2,n−1 + a2,n−1 we need to reject
R6,n − r̄6,n = R6,n − (s − η2,n−1 − a2,n−1) patients. Denoting the number of 6-hour
surgeries being rejected at shift n by Nr,n, the formula to compute its expectation,
E[Nr,n|ηn−1, an−1], is:

E[Nr,n|ηn−1, an−1] = E[R6,n − (s− η2,n−1 − a2,n−1)]+

=
∞∑
r6=0

[(r6 − (s− η2,n−1 − a2,n−1)]+ P(R6,n = r6)

=
∞∑

r6=s−η2,n−1−a2,n−1+1

[r6 − (s− η2,n−1 − a2,n−1)]P(R6,n = r6)

=
∞∑

r6=s−η2,n−1−a2,n−1+1

r6 P(R6,n = r6)

−
∞∑

r6=s−η2,n−1−a2,n−1+1

(s− η2,n−1 − a2,n−1) P(R6,n = r6)

=
∞∑
r6=0

r6 P(R6,n = r6)−
s−η2,n−1−a2,n−1∑

r6=0

r6 P(R6,n = r6)

− (s− η2,n−1 − a2,n−1)

(
1−

s−η2,n−1−a2,n−1∑
r6=0

P(R6,n = r6)

)

= E[R6,n]−
s−η2,n−1−a2,n−1∑

r6=0

r6 e
−λ6 λ

r6
6

r6!

− (s− η2,n−1 − a2,n−1)

(
1−

s−η2,n−1−a2,n−1∑
r6=0

P(R6,n = r6)

)

= λ6 −
s−η2,n−1−a2,n−1∑

r6=0

r6 e
−λ6 λ

r6
6

r6!

− (s− η2,n−1 − a2,n−1)

(
1−

s−η2,n−1−a2,n−1∑
r6=0

e−λ6
λr66

r6!

)
= λ6 − λ6(1− FErl(s− η2,n−1 − a2,n−1, λ6))

− (s− η2,n−1 − a2,n−1)

(
1−

s−η2,n−1−a2,n−1∑
r6=0

e−λ6
λr66

r6!

)
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E[Nr,n|ηn−1, an−1] = FErl(s− η2,n−1 − a2,n−1, λ6)

− (s− η2,n−1 − a2,n−1)FErl(s− η2,n−1 − a2,n−1, λ6),∀n ∈ N.
(4.36)

Another cost is incurred from rejecting the 24-hour surgeries because of the bound-
ary of the state given in Equation (4.29). Denoting the number of 24-hour surgeries
being rejected at shift n by N̂r,n, it is formulated as follows:

N̂r,n = (r̄6,n + η1,n + η2,n + η3,n + η4,n +R24,n − 4s)+,∀n ∈ N. (4.37)

Recall that the state at shift n depends on the state un−1 and action an−1. Hence,
E[N̂r,n|ηn−1, an−1] is formulated as follows.

E[N̂r,n|ηn−1, an−1] = E[(r̄6,n + η1,n + η2,n + η3,n + η4,n +R24,n − 4s)+|ηn−1, an−1]

= E[(η1,n +R6,n + η2,n + η3,n + η4,n +R24,n − 4s)+]

=
∞∑
r6=0

∞∑
r24=0

(η1,n + r6 + η2,n + η3,n + η4,n + r24 − 4s)+

P(R6,n = r6)P(R24,n = r24)

=

s−η1,n−1∑
r6=0

∞∑
r24=4s−(r6+

∑4
t=1 ηt,n)+1

(r6 +
4∑
t=1

ηt,n + r24 − 4s)

P(R6,n = r6) P(R24,n = r24)

+
∞∑

r6=s−η1,n

∞∑
r24=3s−

∑4
t=2 ηt,n+1

(
4∑
t=2

ηt,n + r24 − 3s

)

P(R6,n = r6) P(R24,n = r24)

=

(
4∑
t=1

ηt,n − 4s

)
s−η1,n−1∑
r6=0

P(R6,n = r6)1−
4s−(r6+

∑4
t=1 ηt,n)∑

r24=0

P(R24,n = r24)


+

s−η1,n−1∑
r6=0

∞∑
r24=4s−(r6+

∑4
t=1 ηt,n)+1

(r6 + r24)

P(R6,n = r6) P(R24,n = r24)

+

(
4∑
t=2

ηt,n − 3s

)(
1−

s−η1,n−1∑
r6=0

P(R6,n = r6)

)
1−

3s−
∑4

t=2 ηt,n∑
r24=0

P(R24,n = r24)
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+
∞∑

r6=s−η1,n

∞∑
r24=3s−

∑4
t=2 ηt,n+1

r24P(R6,n = r6) P(R24,n = r24)

=

(
4∑
t=1

ηt,n − 4s

)
s−η1,n−1∑
r6=0

Poi(r6, λ6)1−
4s−(r6+

∑4
t=1 ηt,n)∑

r24=0

Poi(r24, λ24)


+

s−η1,n−1∑
r6=0

r6 Poi(r6, λ6)

1−
4s−(r6+

∑4
t=1 ηt,n)∑

r24=0

Poi(r24, λ24)


+

s−η1,n−1∑
r6=0

Poi(r6, λ6)

λ24 −
4s−(r6+

∑4
t=1 ηt,n)∑

r24=0

r24Poi(r24, λ24)


+

(
4∑
t=2

ηt,n − 3s

)
FErl(s− η1,n, λ6)FErl

(
3s−

4∑
t=2

ηt,n + 1, λ24

)

+ FErl(s− η1,n−1, λ6)

λ24 −
3s−(

∑4
t=2 ηt,n)∑

r24=0

r24Poi(r24, λ24)

 . (4.38)

We introduce cp as a shift-unit delay cost when a 6-hour patient is scheduled later
than the deadline. This cost incurs when we admit 6-hour patients (r̄6,n > 0) and do
not assign them on the next shift (a1,n < r̄6,n). The delay cost is denoted by Np,n and
formulated as follows:

Np,n = k. (r̄6,n − a1,n)+ , (4.39)

where k is the delay, k = 1, 2, 3. Also, let ĉp denote the delay cost when a 24-hour
patient is scheduled later than the deadline. This cost incurs when we have r̄24,n > 0

and
∑4

t=1 at,n − r̄6,n < r̄24,n which is denoted by N̂p,n and formulated as follows:

N̂p,n =

(
r̄24,n −

4∑
t=1

at,n + r̄6,n

)+

. (4.40)

Let cr and ĉr denote the cost of each rejected 6-hour patient and each rejected 24-
hour patient, respectively. Henceforth, by using Equations (4.36), (4.38), (4.39), and
(4.40) as the cost components we obtain the expected total costs in shift n is:

E[cn] = cr E[Nr,n] + ĉr E[N̂r,n] + cp E[Np,n] + ĉp E[N̂p,n], ∀n ∈ N. (4.41)

Optimality equation

We want to minimize the rejected patients and schedule the urgent surgeries in time.
This can be done by minimizing the expected discounted cost (using the discount
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factor discussed in the first model) over an infinite horizon, as the costs are incurred
from rejecting patients from entering the system and delaying the urgent surgeries.
The optimality equation is then the same as discussed in Model 1 (Equation 4.21).
To find the optimal policy, we use the policy iteration algorithm given as Algorithm 1.



Chapter 5

Numerical experiments and results

The models shown in Chapter 4 are programmed in the 64 bits version of MAT-
LAB on a Lenovo ThinkPad E550 with Intel(R) Core(TM) i5-5200 CPU @ 2.20GHz
processor (8GB RAM) and 64 bits Windows 10. In Section 5.1, we apply Model 1
to cases that are inspired by the case of the Jeroen Bosch Ziekenhuis (JBZ), Den
Bosch in 2017 and RSUP Sardjito, Indonesia in 2019.

We validate our MDP models using some methods: (1) building a Discrete Event
Simulation (DES) for Model 1, (2) setting one of either 6-hour or 24-hour patient ar-
rival rates equals 0 in the numerical experiments, (3) setting the dedicated capacity
s equals 1 in the numerical experiments, (4) varying the cost combinations in the
numerical experiments. From, method (2)-(4) we can check whether the optimal
policy makes sense or not. Also, we can check by hand, the results of method (3),
i.e., setting dedicated capacity, s, equals 1 in the numerical experiment.

5.1 Numerical experiment of Model 1

In this section, we explore the behaviour of the optimal policy as we vary the arrival
rates and the maximum number of each surgery type that can be performed in the
dedicated capacity. We try cases where the arrival rates are close to the ones in
JBZ. The average arrival rate for the 6-hour and the 24-hour patients in JBZ are
0.54 and 1.52 patients per shift, respectively. By calculating the arrival rate per shift,
we obtain that the busiest shift is between 6 AM and 12 PM with arrival rates for the
6-hour and 24-hour patients of 0.9 and 3.03 patients per shift, respectively. Next,
the cost combinations used in this numerical experiment are given by the following
table.
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ce ĉe cu

CC1 200 100 200
CC2 200 100 0

Table 5.1: Cost components in the numerical experiment of Model 1

The MDP provides optimal policy with the corresponding total cost. Using cost com-
bination CC1, the total cost and running time of each observed case are given in
Table 5.2.

No Arr. rate (patients/shift) s Dim Tot.cost Runtime (h)

1
6-hour patients : 0

1 70× 70× 5 890, 900 0.02
24-hour patients : 0.817

2
6-hour patients : 0

2 495× 495× 15 11, 800, 000 0.62
24-hour patients : 1.82

3
6-hour patients : 0.54

2 495× 495× 15 1, 432, 800 0.56
24-hour patients : 1.2

4
6-hour patients : 0.54

3 1820× 1820× 35 9, 277, 600 6.36
24-hour patients : 1.52

5
6-hour patients : 0.9

4 4845× 4845× 70 26, 810, 000 40.74
24-hour patients : 3.03

*Arr. rate = arrival rate of each patient type per shift (no.of patients/shift) ; s = the maximum number of surgeries that
can be performed in the dedicated capacity ; Dim = dimension of the transition probability matrix ; Tot. cost = total cost
incurred ; Runtime (h) = running time of the simulation in hour.

Table 5.2: The results of the numerical experiment on Model 1

Further, in Table 5.3 part of the optimal policy for the first case is given. The rest of
the optimal policy for this case is provided in Appendix B.

States Optimal policy
2 3 0 0 2 0 0 0
1 0 1 0 1 0 1 0

States Optimal policy
0 1 1 1 0 1 1 0
0 1 0 1 0 1 0 1

Table 5.3: Model1’s optimal policy using CC1 for some states where λ6 = 0.54;λ24 = 1.2

The rest of the optimal policy for the case above is given in Appendix B. Using cost
combination CC2, we have the same optimal policy as generated using cost combi-
nation CC1 for every case in Table 5.2. This means that when ce > ĉe, the cost of
the unused capacity does not affect the optimal policy, i.e., the dedicated capacity is
used maximally, where the patients are treated from higher urgency levels.

We conduct a sensitivity analysis to observe the optimal policy for the cases where
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the arrival rates are either really close to or really far from the capacity s. Consider-
ing the length of the running time, the sensitivity analysis is performed on the case
where s equals 2, using cost combination CC1 (CC2 result in the same optimal policy
as CC1). The cases and results are shown in the following table.

No Arr. rate (patients/shift) s Dim Tot.cost Runtime (h)

1
6-hour patients : 0.54

2 495× 495× 15 1, 432, 800 0.56
24-hour patients : 1.2

4
6-hour patients : 0.54

2 495× 495× 15 1, 360, 100 0.52
24-hour patients : 1.45

5
6-hour patients : 1.45

2 495× 495× 15 1, 508, 000 0.56
24-hour patients : 0.54

6
6-hour patients : 0.05

2 495× 495× 15 1, 8124, 00 0.55
24-hour patients : 0.2

7
6-hour patients : 0.05

2 495× 495× 15 1, 820, 400 0.59
24-hour patients : 0.05

*Arr. rate = arrival rate of each patient type per shift (no.of patients/shift) ; s = the maximum number of surgeries that
can be performed in the dedicated capacity ; Dim = dimension of the transition probability matrix ; Tot. cost = total cost
incurred ; Runtime (h) = running time of the simulation in hour.

Table 5.4: Sensitivity analysis by varying arrival rates while s = 2 on Model 1

As depicted in Table 5.4, the costs get larger as the gaps between the arrival rates
and the capacity s grow. This occurs due to the cost of the unused capacity because
a larger gap between the arrival rate and s results in more unused capacity.

As for the optimal policies of the cases in Tables 5.2 and 5.4, they follow the same
rule as the optimal policy of the first case that is given in Appendix B. The various
arrival rates do not result in different optimal policies. We also conduct a numerical
experiment for the arrival rates presented in Table 5.2 using cost combination CC2

where unused capacity costs 0. The optimal policies are the same as the results
from cost combination CC1. From these results, we can conclude that the optimal
policy is to treat patients in decreasing order of urgency level, until the dedicated ca-
pacity is used up or all patients are treated. First, we prove that it is optimal to treat
the maximum number of the 6-hour patients in the dedicated capacity as introduced
by Theorem 5.1.1.

Theorem 5.1.1. If ce > ĉe, then it is optimal to treat as many 6-hour patients as
possible in the dedicated capacity in each shift n ∈ N.

Proof. Assume that at shift n we reject a 6-hour patient from using the dedicated ca-
pacity when it is not needed as the dedicated capacity is still available. This incurs
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a cost of ce. Now we consider two cases.

Case 1. All 24-hour patient arrivals at shift n (R24,n) can be treated in the rest of
the dedicated capacity.
Rejecting a 6-hour patient does not make any improvements, as there are no extra
24-hour patients that can be treated in the dedicated capacity. Here, the total cost
incurred is ce.

Case 2. Some 24-hour patient arrivals at shift n (R24,n) are rejected because of
the dedicated capacity constraint.
As there are 24-hour patients that are rejected, removing a 6-hour patient from the
dedicated capacity allows the system to treat an extra 24-hour patient in the ded-
icated capacity. This means we reject one 24-hour patient less, which saves as a
cost of ĉe. Thus, in this case, the total cost is ce − ĉe.

Whether a 6-hour patient is rejected to let a 24-hour patient being treated in the
dedicated capacity or not, at the beginning of the next shift we start with the same
number of surgeries in the system, formulated by

∑4
t=2(ut,n − at,n). Also, we incur a

cost of ce for Case 1 or ce− ĉe > 0 for Case 2. By looking at the number of surgeries
left in the system and the total cost incurred, we can conclude that there are no
improvements made by rejecting a 6-hour patient from using the dedicated capacity.
This means treating as many 6-hour patients as possible in the dedicated capacity
in each shift n ∈ N is the optimal action.

From Theorem 5.1.1, in case the 6-hour patients do not use up the dedicated capac-
ity s (u1,n < s), then all of the 6-hour patients are treated in the dedicated capacity
(a1,n = u1,n < s). The following theorem gives further detail of the policy on perform-
ing the urgent surgeries.

Theorem 5.1.2. If at shift n all 6-hour patients do not fully occupy the dedicated
capacity s, then other surgeries are treated in the rest of the dedicated capacity, i.e.,
a2,n + a3,n + a4,n > 0, in the decreasing order of urgency levels to use the dedicated
capacity maximally.

Proof. Assume without loss of generality, in shift n the state is ut,n > 0, t = 1, 2, 3, 4.

Given u1,n < s, then based on Theorem 5.1.1 we have a1,n = u1,n < s, meaning
some dedicated capacity is unused.

If a2,n+a3,n+a4,n = 0, then the unused dedicated capacity is E[Nu,n] = s−
∑4

t=1 at,n =

s− a1,n > 0. According to Equation (4.27), this causes a cost of cu E[Nu,n] = cu . (s−
a1,n). By setting a2,n+a3,n+a4,n > 0, we minimize this cost as s−

∑4
t=1 at,n < s−a1,n
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for a1,n < s; a2,n+a3,n+a4,n > 0. Other than that, not treating patients while the ded-
icated capacity is still available, i.e., at,n = 0, t = 2, 3, 4; causes a higher expected
number of rejected 6-hour patients in the future shifts, given by the equations below.

E[Ne,n+1|un, an] = (u2,n − s)FErl(s− u2,n + 1, λ6) + λ6 FErl(s− u2,n, λ6)

> (u2,n − a2,n − s)FErl(s− u2,n + a2,n + 1, λ6)

+ λ6 FErl(s− u2,n + a2,n, λ6),where a2,n > 0. (5.1)

Next, we will prove that the patients are treated in decreasing order of urgency level.

Assume that instead of treating the patients in u2,n, we treat those in u3,n or u4,n.
By looking at Equation (4.16), the expected number of the rejected 6-hour patients
in shift n+ 1 is:

E[Ne,n+1|un, an] = (u2,n − s)FErl(s− u2,n + 1, λ6) + λ6 FErl(s− u2,n, λ6)

> (u2,n − a2,n − s)FErl(s− u2,n + a2,n + 1, λ6)

+ λ6 FErl(s− u2,n + a2,n, λ6),where a2,n > 0. (5.2)

By looking at Equations (5.2), we can see that having a2,n = 0 increases the ex-
pected number of 6-hour patient rejections in shift n + 1 which incurs a larger cost
than having a2,n > 0. Hence, to minimize the total cost, we should treat the maxi-
mum a2,n > 0 out of u2,n patients first after treating u1,n patients.

Next, consider the case where we still have dedicated capacity left after treating
u1,n + u2,n surgeries, i.e., a1,n + a2,n = u1,n + u2,n < s. Based on Equation (4.19), to
minimize E[Nu,n] = s −

∑4
t=1 at,n we set a3,n + a4,n > 0. In the next part, we prove

that we treat the patients in u3,n first before treating those in u4,n.

Assume that a3,n = 0, a4,n > 0 for every shift n. We have u2,n+1 = u3,n and u3,n+1 =

u4,n − a4,n. Next, according to the assumption before, at shift n + 1 the action is
a3,n+1 = 0, a4,n+1 > 0, which implies u2,n+2 = u3,n+1 and u3,n+2 = u4,n+1 − a4,n+1.

The action taken at shift n and n + 1 affects the expected number of 6-hour patient
rejections in shift n+ 2 below:

E[Ne,n+2|un+1, an+1] = (u2,n+1 − a2,n+1 − s)FErl(s− u2,n+1 + a2,n+1 + 1, λ6)

+ λ6 FErl(s− u2,n+1 + a2,n+1, λ6)

= (u3,n − a2,n+1 − s)FErl(s− u3,n + a2,n+1 + 1, λ6)

+ λ6 FErl(s− u3,n + a2,n+1, λ6)

> (u3,n − a3,n − a2,n+1 − s)FErl(s− u3,n + a3,n + a2,n+1 + 1, λ6)

+ λ6 FErl(s− u3,n + a3,n + a2,n+1, λ6),where a3,n > 0. (5.3)
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From the equation above, we can conclude that treating the patients in u4,n first be-
fore those in u3,n incurs a larger cost from rejecting the 6-hour patients from entering
the system in shift n + 2. This cost can be minimized by treating as many patients
as possible out of u3,n patients first, because having a3,n = 0 and a4,n > 0 causes a
larger cost as ce > ĉe. Hence, we treat the maximum a3,n > 0 out of u3,n patients first
after treating u1,n + u2,n patients.

Next, consider the case where we still have dedicated capacity left after treating
u1,n + u2,n + u3,n surgeries, i.e., a1,n + a2,n + a3,n = u1,n + u2,n + u3,n < s. Based
on Equation (4.19), to minimize E[Nu,n] = s −

∑4
t=1 at,n we should take the action

a4,n > 0. Hence, the maximum utilization of the dedicated capacity is obtained.
Other than that, not treating any of the u4,n patients yields in the expected number
of rejected 6-hour patients in shift n+ 3 as follows:

E[Ne,n+3|un+2, an+2] = (u2,n+2 − a2,n+2 − s)FErl(s− u2,n+2 + a2,n+2 + 1, λ6)

+ λ6 FErl(s− u2,n+2 + a2,n+2, λ6)

= (u3,n+1 − a2,n+2 − s)FErl(s− u3,n+1 + a2,n+2 + 1, λ6)

+ λ6 FErl(s− u3,n+1 + a2,n+2, λ6)

= (u4,n − a2,n+2 − s)FErl(s− u4,n + a2,n+2 + 1, λ6)

+ λ6 FErl(s− u4,n + a2,n+2, λ6)

> (u4,n − a4,n − a2,n+2 − s)FErl(s− u4,n + a4,n + a2,n+2 + 1, λ6)

+ λ6 FErl(s− u4,n + a4,n + a2,n+2, λ6),where a4,n > 0. (5.4)

Hence, in every shift n ∈ N it is optimal to treat the surgeries from a higher urgency
level for the purpose of using the dedicated capacity maximally.

Remark: Even if the cost of the unused dedicated capacity is zero, Theorem 5.1.2
is still valid. This is also demonstrated by the fact that the optimal policy from CC1

(cu > 0) and CC2 (cu = 0) are the same. Further, the proof would still hold as we
have the cost of rejecting 6-hour patients (ce > 0), regardless of the unused dedi-
cated capacity cost. Note that neglected the cost of rejecting the 24-hour patients.
Incorporating it would only strengthen the proof of the theorem.

5.2 Numerical experiment of Model 1b

The numerical experiment is conducted to observe how the optimal policy obtained
with Model 1b changes for various arrival rates and dedicated capacity levels. We
use the same parameters as employed in Model 1. Also, the sensitivity analysis is
conducted using cost components presented in the table below.
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ce ĉe cu cb

CC1 200 100 200 70
CC2 200 100 200 100
CC3 200 100 200 0
CC4 200 100 200 200
CC5 200 100 200 250

Table 5.5: Cost components in the numerical experiment of Model 1b

Using CC1, the results of the numerical experiment using different arrival rates are
given in Table 5.6.

No Arr. rate (patients/shift) s Dim Tot.cost Runtime (h)

1
6-hour patients : 0

1 70× 70× 24 100, 790 0.095
24-hour patients : 0.817

2
6-hour patients : 0

2 495× 495× 129 1, 278, 500 4.77
24-hour patients : 1.82

3
6-hour patients : 0.54

2 495× 495× 129 1, 438, 572 5.06
24-hour patients : 1.45

4
6-hour patients : 0.54

3 1820× 1820× 434 8, 490, 700 76.88
24-hour patients : 1.52

*Arr. rate = arrival rate of each patient type per shift (no.of patients/shift) ; s = the maximum number of surgeries that
can be performed in the dedicated capacity ; Dim = dimension of the transition probability matrix ; Tot. cost = total cost
incurred ; Runtime (h) = running time of the simulation in hour.

Table 5.6: The results of the numerical experiment on Model 1b

Using CC1, part of the optimal policy for the third case of the table above (the total
arrival rates is close to s) are given in the table below. We can see that for this case,
the 24-hour patients are not always deferred even though the system is full.

States Optimal policy
1 1 0 1 1 1 0 0 0
0 2 0 2 0 2 0 0 0
2 4 0 2 2 0 0 0 0

States Optimal policy
1 1 3 3 1 1 0 0 1
2 0 1 5 2 0 0 0 1
0 0 2 6 0 0 2 0 1

Table 5.7: Model 1b’s optimal policy for some states using CC1 on Case 3

Further, employing CC2 for the same case, some of the optimal policy are given in
the following table.
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States Optimal policy
1 1 0 1 1 1 0 0 0
0 2 0 2 0 2 0 0 0
2 4 0 2 2 0 0 0 0

States Optimal policy
1 1 3 3 1 1 0 0 0
2 0 1 5 2 0 0 0 0
0 0 2 6 0 0 2 0 0

Table 5.8: Model 1b’s optimal policy for some states using CC2 on Case 3

From the results above we can see that the cost combination affects the optimal
policy. For example, with CC1, in state (0, 0, 2, 6) we defer one 24-hour patient, while
in CC2 we do not defer any patients. This result is intuitive as we do not defer any
newly admitted 24-hour patients when the deferring cost is higher than the rejecting
cost, which is the case in CC2.

We also perform a numerical analysis using various arrival rates. Due to the running
time, in the case study we use s = 2 with cost combination CC1. The arrival rates,
total costs and running times are shown in the following table.

No Arr. rate (patients/shift) s Dim Tot.cost Runtime (h)

1
6-hour patients : 0.54

2 495× 495× 129 1, 531, 600 5.36
24-hour patients : 1.2

2
6-hour patients : 1.45

2 495× 495× 129 2, 351, 300 5.38
24-hour patients : 0.54

3
6-hour patients : 0.05

2 495× 495× 129 2, 203, 800 5.49
24-hour patients : 0.2

4
6-hour patients : 0.05

2 495× 495× 129 2, 204, 300 5.49
24-hour patients : 0.05

*Arr. rate = arrival rate of each patient type per shift (no.of patients/shift) ; s = the maximum number of surgeries that
can be performed in the dedicated capacity ; Dim = dimension of the transition probability matrix ; Tot. cost = total cost
incurred ; Runtime (h) = running time of the simulation in hour.

Table 5.9: Sensitivity analysis by varying arrival rates while s = 2 on Model 1b

Regarding the optimal policy, the first four elements of it for Model 1b are the same
as the optimal policy of Model 1, given by Theorems 5.1.1 and 5.1.2, i.e., treating
patients from the higher urgency levels to use the dedicated capacity maximally.
Next, recall that in the previous model, having unused capacity costs 0, i.e., cu = 0,
results in the same optimal policy as when cu 6= 0. Hence, for Model 1b, setting cu =

0 in the cost combination in Table 5.5 results in the same first four elements of the
optimal policy. Regarding the last element of the optimal policy, i.e., the number 24-
hour patients being deferred, based on the numerical experiment results we propose
the following theorem.
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Theorem 5.2.1. If ĉe < cb, then it is optimal not to defer any 24-hour patients in each
shift n ∈ N.

Proof. Assume that at shift n a 24-hour patient is deferred when the dedicated ca-
pacity is still available. This causes a cost of cb. Note that deferring a 24-hour patient
at shift n affects the number of 24-hour patients admitted at shift n + 1. Now we
consider two possible events at shift n+ 1.

Case 1. All 24-hour arrivals can be admitted to the system.
In this case, deferring a 24-hour patient at shift n does not make any improvement
as no extra patients can be admitted. Hence, the total cost is cb.

Case 2. Some 24-hour arrivals are rejected.
As there are rejected 24-hour arrivals at shift n + 1, deferring a 24-hour patient at
shift n allows one extra 24-hour patient to be admitted at shift n+ 1. This saves us a
cost of ĉe. Hence, the total cost is cb − ĉe > 0.

From the cases above, we can conclude that when ĉe < cb, it is optimal not to
defer 24-hour patients.

We present the optimal policy for the case where λ6 = 0, λ24 = 0.817, s = 1 using
CC1 in Appendix C. We also give the limiting distribution of the system that results
from the optimal policy for some of the studied cases above in Appendix E.2.

5.3 Numerical experiment of Model 2

In this section, we present the numerical experiment of Model 2 using a cost combi-
nation where ce = 200 ; ĉe = 100 ; cp = 200 ; ĉp = 200. The arrival rates and dedicated
capacity along with the results are shown in the table below.

No Arr. rate (patients/shift) s Dim Tot.cost Runtime (h)

1
6-hour patients : 0.45

1 80× 80× 31 65, 231 0.11
24-hour patients : 0.5

2
6-hour patients : 0

1 80× 80× 31 25, 184 0.12
24-hour patients : 0.817

3
6-hour patients : 0

2 973× 973× 237 798, 010 15.55
24-hour patients : 1.82

4
6-hour patients : 0.54

2 973× 973× 237 851, 590 15.9
24-hour patients : 1.2
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5
6-hour patients : 0.54

2 973× 973× 237 1, 007, 200 15.99
24-hour patients : 1.45

6
6-hour patients : 1.45

2 973× 973× 237 1, 017, 300 15.6
24-hour patients : 0.54

*Arr. rate = arrival rate of each patient type per shift (no.of patients/shift) ; s = the maximum number of surgeries that
can be performed in the dedicated capacity ; Dim = dimension of the transition probability matrix ; Tot. cost = total cost
incurred ; Runtime (h) = running time of the simulation in hour.

Table 5.10: The results of the numerical experiment on Model 2

Part of the optimal policy when λ6 = 0.54;λ24 = 1.45; s = 2 is presented in the
following table.

States Optimal policy
1 1 0 0 1 0 1 0 0 0 0
0 1 0 2 1 0 1 0 0 0 0
0 1 2 1 2 0 2 0 0 0 0

States Optimal policy
0 1 0 0 1 1 1 0 0 1 0
0 1 2 1 0 1 1 0 0 0 0
0 1 2 2 2 1 2 1 0 0 0

Table 5.11: Model 2’s optimal policy for some states when λ6 = 0.54;λ24 = 1.45; s = 2

For this model, when there is 6-hour patients waiting, the optimal policy is to sched-
ule them in the earliest available capacity. Meanwhile, there is no strict rule to sched-
ule the 24-hour patients as long as they are assigned within the deadline.

In Model 2, the numerical experiments take longer (in running time) than those in the
first two models, due to the larger state space. For this reason, we do not include
the case where λ6 = 0.54;λ24 = 1.52; s = 3 that have been observed using the two
previous models.

Next, a sensitivity analysis is conducted by varying the arrival rates. Due to the
running time, the dedicated capacity s of 1 is employed in this sensitivity analysis.
Using the same cost combination as given in the beginning of this section, the fol-
lowing table shows the results of the sensitivity analysis.

No Arr. rate (patients/shift) s Dim Tot.cost Runtime (h)

1
6-hour patients : 0.45

1 80× 80× 31 65, 231 0.11
24-hour patients : 0.5

2
6-hour patients : 0.05

1 80× 80× 31 17, 470 0.15
24-hour patients : 0.05
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3
6-hour patients : 0.05

1 80× 80× 31 17, 243 0.13
24-hour patients : 0

4
6-hour patients : 0.05

1 80× 80× 31 40, 195 0.13
24-hour patients : 0.94

*Arr. rate = arrival rate of each patient type per shift (no.of patients/shift) ; s = the maximum number of surgeries that
can be performed in the dedicated capacity ; Dim = dimension of the transition probability matrix ; Tot. cost = total cost
incurred ; Runtime (h) = running time of the simulation in hour.

Table 5.12: Sensitivity analysis by varying arrival rates while s = 1 in Model 2

We also perform a case study where cp > ĉp, which results in the same optimal
policy compared to when cp = ĉp. Next, in scheduling the 6-hour patients the next
two theorems describe the optimal policy.

Theorem 5.3.1. If ce > ĉe, then it is optimal to treat as many 6-hour patients as
possible in the dedicated capacity at each shift n ∈ N.

Proof. Assume that at shift n a 6-hour patient is rejected when it is not needed as
the dedicated capacity is still available. This decision incurs a cost of ce. Next, there
are two possible events for the 24-hour arrivals at shift n:

Case 1. All 24-hour patient arrivals can be treated in the dedicated capacity.
In this case, rejecting 6-hour patients makes no improvement as no extra 24-hour
patient can be admitted to the dedicated capacity system. Hence, in Case 1, the
total cost is ce.

Case 2. Some 24-hour arrivals are rejected because of capacity constraint.
In this case, rejecting a 6-hour patient allows an extra 24-hour patient to be admitted
in the dedicated capacity. This saves us a cost of ĉe. Hence, for this case, the total
cost incurred is ce − ĉe > 0.

Further, whether a 6-hour patient is rejected or not, in the next shift all admitted pa-
tients are scheduled and we end up with the same number of patients waiting. Thus,
no improvements are made by rejecting a 6-hour patient when it is not needed.

Theorem 5.3.2. If cp > 0, then it is optimal to schedule the 6-hour patients as soon
as possible.

Proof. In this model, when there are 6-hour patients waiting, the number of pa-
tients that are scheduled on the next shift (η1,n) is less than the capacity s (Equation
(4.28)). This also means that some dedicated capacity is available on the next shift.
Delaying a 6-hour patient at shift n by k shifts costs k · cp, k = 1, 2, 3. In case a
24-hour patient is waiting, this allows us to treat him in the dedicated capacity that
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was initially assigned to the 6-hour patient. However, this action does not save us
any costs.

Take k = 1. In shift n + 1, if all arrivals can be admitted, then no improvements
are made. However, if in shift n + 1 an arrival is rejected because of the delay, then
we incur a cost of ce (for a rejected 6-hour patient) or ĉe (for a rejected 24-hour pa-
tient).

Similar with the previous case, for 2 ≤ k ≤ 3, if all arrivals can be admitted in
shift n + 1 up to n + k, then there is no improvement. However, if in any shift within
interval of n + 1 up to n + k we reject an arrival, then it costs us ce (for a rejected
6-hour patient) or ĉe (for a rejected 24-hour patient) on the shift where the rejection
take place.

Hence, delaying a 6-hour patient by k shifts costs us k · cp, cp 6= 0, k = 1, 2, 3,

while in the next k shifts no extra patients can be admitted and even a cost of at
least ce or ĉe may be incurred.

Further, by looking at the delay cost for the 24-hour patient, the following theorem
gives the optimal policy in scheduling the 24-hour patients.

Theorem 5.3.3. if ĉp > 0, then it is optimal to have none of the 24-hour patients
delayed.

Proof. In this model, the total number of patients in the system (the scheduled and
newly admitted ones) up to 4 shifts ahead is 4s (Equation (4.30)). Hence, all admit-
ted patients can be treated in the dedicated capacity within 4 shifts.

Assume that a 24-hour patient is delayed, i.e., treated 5 shifts ahead upon its ar-
rival. It incurs a cost of ĉp. In case in the next shift, up to 4 shift ahead no 24-hour
arrivals are rejected, then the total cost is ĉp. However, if in any of the shifts from
the next shift up to 4 shifts ahead an arrival is rejected, then in the corresponding
shift a cost of ce (for rejecting a 6-hour patient) or ĉe (for rejecting a 24-hour patient)
is incurred.

We also analyze a case study where ce = ĉe = 200, while other cost components
stay the same. It is interesting to see that the 24-hour patients are scheduled in
the fastest available capacity after assigning the 6-hour patients. This matches with
the intuition as in this case there is no preference in rejection (initially is given by
the different rejection costs). Hence, the model does not try to prevent the 6-hour
rejections by scheduling the 24-hour patient to the later shifts (within the target time)
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anymore.

In the next part, we present the fraction of time where the patients are rejected
in each MDP model.

5.4 Fraction of time patients are rejected

In this section we present the fraction of time where patients are rejected in each
MDP model. Recall that in Model 1 and 1b, the maximum number of patients that
can wait up to the next shift is s and the maximum number of patients in the system
is 4s. Based on this, if the first element of the state is at least s, then the 6-hour
patients are rejected. Also, if the total number of patients in the system is 4s, the
24-hour patients are rejected. Meanwhile, in Model 2, the newly arriving 6-hour pa-
tients plus the patients scheduled in the next shift should not exceed s. Also, the
24-hour patients are admitted such that the total number of patients (the scheduled
and newly admitted) in the system is a maximum of 4s.

First, we look at the case where the total arrival rate is much less from the dedi-
cated capacity: λ6 = 0.05;λ24 = 0.05; s = 1. Using Model 1 and 1b and CC1 of each
model, the fraction of time where we reject 6-hour and 24-hour patients are 0.049
and 2.055 × 10−6, respectively, for both models. The results from Model 1 and 1b
are the same as the first four elements of the optimal policy provided by Model 1b
are the same as those from Model 1 and in Model 1b we do not defer any 24-hour
patients as the dedicated capacity can handle arrivals without deferring any 24-hour
patients, also as ĉe > cb in CC1 (Theorem 5.2.1). Also, intuitively, as the total ar-
rival rate is much less than s, we can handle all arrivals in the dedicated capacity
which results in no deferred 24-hour patients. For the same total arrival rates, using
Model 2 with ce > ĉe (same as in CC1 of the previous models), the fraction of time
where we reject 6-hour and 24-hour patients are 0.052 and 2.421×10−6, respectively.

Next, we observe the case where the total arrival rate is close to the dedicated
capacity: λ6 = 0.54;λ24 = 1.45; s = 2. Using CC1 in Model 1, the 6-hour and 24-hour
patients are rejected 22.8% and 9% of the time, respectively. Next, using CC1 in
Model 1b result in rejecting 6-hour and 24-hour patients 14% and 1.6% of the time,
respectively. For the same amount of total arrival rate, using Model 2 with ce > ĉe

(same as in CC1 of the previous models), we reject 6-hour and 24-hour patients
23.3% and 6.4% of the time, respectively.

When the total arrival rate is close to the dedicated capacity level (s), employing
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Model 1b results in less fraction of time rejecting patients than when we use Model
1. This is because in Model 1b we defer 24-hour patients to another resource when
the system is full (considering in CC1 the cost of rejecting 24-hour patients is higher
than the cost of deferring newly admitted 24-hour patients). Recall that the goal of
Model 1b is to reject less 6-hour patients by deferring 24-hour patients beforehand.
By looking at the fraction of time where the 6-hour patients are rejected, this goal is
achieved as in Model 1b the 6-hour patient rejection is decreased by 9% compared
to when we use Model 1.

In Model 2, we inform urgent patients immediately when they are scheduled. How-
ever, compared to Model 1, employing Model 2 has around 1% higher fraction of the
time where the 6-hour patients are rejected (same results for both cases where the
total arrival rate is much less than and close to the dedicated capacity level, s).

In the Appendix D the limiting probability of for some other cases of each model
is presented.



Chapter 6

Conclusions and recommendations

In this chapter, we present the conclusions and future research on the topic we
discussed in the previous chapters. First, the conclusions are presented in Section
6.1. Then Section 6.2 consists of our recommendations.

6.1 Conclusions

In determining the dedicated capacity, when we have arrivals of both 6-hour and
24-hour patients (as in the JBZ case), we can compare the results from M/M/1/4s

and M/M/1 with priority queueing models. In the M/M/1/4s queueing model, we
observe that the 6-hour patients do not have priority over the 24-hour patients as
all patients are treated according to the First-Come First-Served (FCFS) rule. In the
M/M/1 with priority queueing model, the 6-hour patients have priority over the 24-
hour patients. The models provide some variables to be considered when hospitals
decide the amount of dedicated capacity. In general, higher operating room (OR)
utilization results in longer waiting times. Using the results of the queueing models,
OR managers can balance the OR utilization and patients’ waiting time according to
their preferences or the hospital guidelines. Besides, when the dedicated capacity
level has the closest value to the total arrival rate, on average the 6-hour patients wait
longer in M/M/1/4s model than in M/M/1 with priority queueing model because of
the priority rule. For the same case, due to the priority rule, the 24-hour patients wait
longer in M/M/1 with priority queueing model than in M/M/1/4s queueing model.
Hence, in this case, the OR manager can decide upon whether to give the 6-hour pa-
tients priority (using M/M/1 with priority queueing model) or not (using M/M/1/4s

queueing model). For the case where s is much larger than the total arrival rate,
giving the 6-hour patients priority over the 24-hour patients does not matter. This is
because in this case, using any of the two queueing models results in the same pa-
tients’ waiting times. However, maintaining such a large dedicated capacity results
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in a low OR utilization (high idle time).

After determining the dedicated capacity level, we proposed three Markov decision
processes (MDP) based models to schedule the urgent patients. In these models,
the 6-hour patients can afford to wait up to 1 shift ahead, while the 24-hour can wait
up to 4 shifts ahead. In the first MDP model, in each shift we determine which pa-
tients waiting will get their surgery in the next shift. This way, the model provides a
high flexibility for the hospital to schedule patients. This is because we keep track of
the deadline of each patient and the MDP model results in optimal policy to schedule
the urgent patients from the earliest deadlines to the later ones. The 6-hour patients
that arrive later than the waiting 24-hour patients can be treated earlier by consid-
ering their deadlines. This implies that sometimes the 24-hour patients have to stay
sober for a long time, because they are treated when the dedicated capacity is still
available after treating the 6-hour patients, which depends on the arriving 6-hour
patients.

In the MDP Model 1b, we modify the first model such that the 24-hour patients
can be deferred to another resource. The 24-hour patients may be deferred from
using the dedicated capacity to let extra patients enter the system. This decision
depends on the costs. Similar to the first model, patients are treated from the earlier
deadlines to the later ones. Thus, this model provides a higher flexibility for the hos-
pital to schedule the 6-hour patients. In practice, deferring the 24-hour patients may
cause elective cancellations, which is represented by the deferring cost in our model.

Note that the 6-hour patients are more important than the 24-hour patients as finding
alternative capacity is more difficult and diverting them to another resource results
in a higher medical risk. In the last MDP model (Model 2), we keep track of the
number of urgent patients that are scheduled as well as the number of new urgent
patient admissions. We decide the schedule of the new admissions as soon as they
arrive based on their deadlines. This way the hospital does not keep the patients
sober for an unnecessary period of time. However, the hospital looses its flexibility
in scheduling urgent patients because in this model we reject 6-hour patients (and
may still be able to admit 24-hour patients) when the schedule on the next shift is
full, despite of the fact that the 6-hour patients are more important than the 24-hour
patients.

In handling the total arrival rate that is much less than the dedicated capacity level,
our numerical experiments show that Model 1 and 1b result in the same fraction of
time where urgent patients are rejected. Meanwhile, for the case where the total
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arrival rate is close to the dedicated capacity level, the urgent patients are less often
rejected in Model 1b than in Model 1. For Model 2, the fraction of time where the
6-hour patients are rejected is around 1% higher than the result from Model 1.

6.2 Recommendations

We recommend hospitals to use the queueing models to determine the optimal ded-
icated capacity levels. The hospitals can observe the system utilization, mean wait-
ing times and queue length of the urgent patients for various dedicated capacity
level using an M/M/1/4s queueing model (if urgent patients are treated according
to FCFS discipline) and an M/M/1 with priority queueing model (if urgent patients
are treated using the priority rule). Next, assuming that the 30-minute patients are
always scheduled in the shift where they arrive, it is recommended to schedule pa-
tients in the order of decreasing urgency levels (from Model 1) and defer newly ad-
mitted 24-hour patients when the system is full (depends on the costs; from Model
1b). Another recommendation is to schedule the 6-hour patients as soon as possi-
ble and schedule the 24-hour patients in time (from Model 2).

In future research, a Discrete Event Simulation (DES) of the models can be de-
veloped to observe the behaviour of the system when the optimal policy from the
MDP model is applied. Further for practical use, some heuristics can be developed
based on our MDP models and the DES. Other than that, Model 1b can be modi-
fied by not only deferring the newly admitted 24-hour patients, but also the patients
who can afford to wait up to t shifts ahead, t = 1, 2, 3. As this modification may re-
sult in a high-dimensional action, the appropriate algorithm to solve the MDP should
be studied further. Hyeong Soo et al. [22] provide some alternatives algorithms to
solve this kind of MDP problem. Also, using an Approximate Dynamic Programming
(ADP) approach, cancelling elective patients to schedule the urgent patients can be
incorporated. ADP is used to tackle the high-dimensional state that is required to
model the dynamic capacity that results from cancelling the elective patients (which
is too complicated for the MDP model).
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Appendix A

Sensitivity analysis on the M/M/1

with priority queueing model

In this appendix, we present the sensitivity analysis results for Case 2 and 3 of Table
3.2. In Figure A.1, the server utilization and expected waiting time for λ6 = 0.54 ;
λ24 = 1.52 on M/M/1 with priority rule queueuing model is shown.

Figure A.1: Sensitivity analysis on the mean waiting time λ6 = 0.54 ; λ24 = 1.52 using

priority rule

Next, Figure A.2 represents the server utilization and expected queue length for this
case.
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Figure A.2: Sensitivity analysis on the mean queue length λ6 = 0.54 ; λ24 = 1.52 using

priority rule

Next, we present the sensitivity analysis results for Case 3 λ6 = 0.9 ; λ24 = 3.03 in
the following figures.

Figure A.3: Sensitivity analysis on the mean waiting time λ6 = 0.9 ; λ24 = 3.03 using

priority rule
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Figure A.4: Sensitivity analysis on the mean queue length λ6 = 0.9 ; λ24 = 3.03 using

priority rule

We can see that higher utilization results in longer waiting times and queues. The
24-hour patients wait longer than the 6-hour patients due to the priority rule. Also,
because of the priority rule, there are more 24-hour patients than the 6-hour patients
in the queue.



Appendix B

Optimal policy of Model 1

In this appendix, the optimal policy for Model 1 when λ6 = 0.54, λ24 = 1.2, s = 2

using CC1 (of Model 1) is shown.

Table B.1: Optimal policy Model 1 when λ6 = 0.54, λ24 = 1.2, s = 2 using CC1

STATES OPTIMAL POLICY
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
2 0 0 0 2 0 0 0
3 0 0 0 2 0 0 0
4 0 0 0 2 0 0 0
5 0 0 0 2 0 0 0
6 0 0 0 2 0 0 0
7 0 0 0 2 0 0 0
8 0 0 0 2 0 0 0
0 1 0 0 0 1 0 0
1 1 0 0 1 1 0 0
2 1 0 0 2 0 0 0
3 1 0 0 2 0 0 0
4 1 0 0 2 0 0 0
5 1 0 0 2 0 0 0
6 1 0 0 2 0 0 0
7 1 0 0 2 0 0 0
0 2 0 0 0 2 0 0
1 2 0 0 1 1 0 0
2 2 0 0 2 0 0 0
3 2 0 0 2 0 0 0
4 2 0 0 2 0 0 0
5 2 0 0 2 0 0 0
6 2 0 0 2 0 0 0
0 3 0 0 0 2 0 0
1 3 0 0 1 1 0 0
2 3 0 0 2 0 0 0
3 3 0 0 2 0 0 0
4 3 0 0 2 0 0 0

STATES OPTIMAL POLICY
5 3 0 0 2 0 0 0
0 4 0 0 0 2 0 0
1 4 0 0 1 1 0 0
2 4 0 0 2 0 0 0
3 4 0 0 2 0 0 0
4 4 0 0 2 0 0 0
0 5 0 0 0 2 0 0
1 5 0 0 1 1 0 0
2 5 0 0 2 0 0 0
3 5 0 0 2 0 0 0
0 6 0 0 0 2 0 0
1 6 0 0 1 1 0 0
2 6 0 0 2 0 0 0
0 7 0 0 0 2 0 0
1 7 0 0 1 1 0 0
0 8 0 0 0 2 0 0
0 0 1 0 0 0 1 0
1 0 1 0 1 0 1 0
2 0 1 0 2 0 0 0
3 0 1 0 2 0 0 0
4 0 1 0 2 0 0 0
5 0 1 0 2 0 0 0
6 0 1 0 2 0 0 0
7 0 1 0 2 0 0 0
0 1 1 0 0 1 1 0
1 1 1 0 1 1 0 0
2 1 1 0 2 0 0 0
3 1 1 0 2 0 0 0
4 1 1 0 2 0 0 0
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STATES OPTIMAL POLICY
5 1 1 0 2 0 0 0
6 1 1 0 2 0 0 0
0 2 1 0 0 2 0 0
1 2 1 0 1 1 0 0
2 2 1 0 2 0 0 0
3 2 1 0 2 0 0 0
4 2 1 0 2 0 0 0
5 2 1 0 2 0 0 0
0 3 1 0 0 2 0 0
1 3 1 0 1 1 0 0
2 3 1 0 2 0 0 0
3 3 1 0 2 0 0 0
4 3 1 0 2 0 0 0
0 4 1 0 0 2 0 0
1 4 1 0 1 1 0 0
2 4 1 0 2 0 0 0
3 4 1 0 2 0 0 0
0 5 1 0 0 2 0 0
1 5 1 0 1 1 0 0
2 5 1 0 2 0 0 0
0 6 1 0 0 2 0 0
1 6 1 0 1 1 0 0
0 7 1 0 0 2 0 0
0 0 2 0 0 0 2 0
1 0 2 0 1 0 1 0
2 0 2 0 2 0 0 0
3 0 2 0 2 0 0 0
4 0 2 0 2 0 0 0
5 0 2 0 2 0 0 0
6 0 2 0 2 0 0 0
0 1 2 0 0 1 1 0
1 1 2 0 1 1 0 0
2 1 2 0 2 0 0 0
3 1 2 0 2 0 0 0
4 1 2 0 2 0 0 0
5 1 2 0 2 0 0 0
0 2 2 0 0 2 0 0
1 2 2 0 1 1 0 0
2 2 2 0 2 0 0 0
3 2 2 0 2 0 0 0
4 2 2 0 2 0 0 0
0 3 2 0 0 2 0 0
1 3 2 0 1 1 0 0
2 3 2 0 2 0 0 0
3 3 2 0 2 0 0 0
0 4 2 0 0 2 0 0
1 4 2 0 1 1 0 0
2 4 2 0 2 0 0 0
0 5 2 0 0 2 0 0
1 5 2 0 1 1 0 0
0 6 2 0 0 2 0 0
0 0 3 0 0 0 2 0
1 0 3 0 1 0 1 0
2 0 3 0 2 0 0 0
3 0 3 0 2 0 0 0
4 0 3 0 2 0 0 0

STATES OPTIMAL POLICY
5 0 3 0 2 0 0 0
0 1 3 0 0 1 1 0
1 1 3 0 1 1 0 0
2 1 3 0 2 0 0 0
3 1 3 0 2 0 0 0
4 1 3 0 2 0 0 0
0 2 3 0 0 2 0 0
1 2 3 0 1 1 0 0
2 2 3 0 2 0 0 0
3 2 3 0 2 0 0 0
0 3 3 0 0 2 0 0
1 3 3 0 1 1 0 0
2 3 3 0 2 0 0 0
0 4 3 0 0 2 0 0
1 4 3 0 1 1 0 0
0 5 3 0 0 2 0 0
0 0 4 0 0 0 2 0
1 0 4 0 1 0 1 0
2 0 4 0 2 0 0 0
3 0 4 0 2 0 0 0
4 0 4 0 2 0 0 0
0 1 4 0 0 1 1 0
1 1 4 0 1 1 0 0
2 1 4 0 2 0 0 0
3 1 4 0 2 0 0 0
0 2 4 0 0 2 0 0
1 2 4 0 1 1 0 0
2 2 4 0 2 0 0 0
0 3 4 0 0 2 0 0
1 3 4 0 1 1 0 0
0 4 4 0 0 2 0 0
0 0 5 0 0 0 2 0
1 0 5 0 1 0 1 0
2 0 5 0 2 0 0 0
3 0 5 0 2 0 0 0
0 1 5 0 0 1 1 0
1 1 5 0 1 1 0 0
2 1 5 0 2 0 0 0
0 2 5 0 0 2 0 0
1 2 5 0 1 1 0 0
0 3 5 0 0 2 0 0
0 0 6 0 0 0 2 0
1 0 6 0 1 0 1 0
2 0 6 0 2 0 0 0
0 1 6 0 0 1 1 0
1 1 6 0 1 1 0 0
0 2 6 0 0 2 0 0
0 0 7 0 0 0 2 0
1 0 7 0 1 0 1 0
0 1 7 0 0 1 1 0
0 0 8 0 0 0 2 0
0 0 0 1 0 0 0 1
1 0 0 1 1 0 0 1
2 0 0 1 2 0 0 0
3 0 0 1 2 0 0 0
4 0 0 1 2 0 0 0
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STATES OPTIMAL POLICY
5 0 0 1 2 0 0 0
6 0 0 1 2 0 0 0
7 0 0 1 2 0 0 0
0 1 0 1 0 1 0 1
1 1 0 1 1 1 0 0
2 1 0 1 2 0 0 0
3 1 0 1 2 0 0 0
4 1 0 1 2 0 0 0
5 1 0 1 2 0 0 0
6 1 0 1 2 0 0 0
0 2 0 1 0 2 0 0
1 2 0 1 1 1 0 0
2 2 0 1 2 0 0 0
3 2 0 1 2 0 0 0
4 2 0 1 2 0 0 0
5 2 0 1 2 0 0 0
0 3 0 1 0 2 0 0
1 3 0 1 1 1 0 0
2 3 0 1 2 0 0 0
3 3 0 1 2 0 0 0
4 3 0 1 2 0 0 0
0 4 0 1 0 2 0 0
1 4 0 1 1 1 0 0
2 4 0 1 2 0 0 0
3 4 0 1 2 0 0 0
0 5 0 1 0 2 0 0
1 5 0 1 1 1 0 0
2 5 0 1 2 0 0 0
0 6 0 1 0 2 0 0
1 6 0 1 1 1 0 0
0 7 0 1 0 2 0 0
0 0 1 1 0 0 1 1
1 0 1 1 1 0 1 0
2 0 1 1 2 0 0 0
3 0 1 1 2 0 0 0
4 0 1 1 2 0 0 0
5 0 1 1 2 0 0 0
6 0 1 1 2 0 0 0
0 1 1 1 0 1 1 0
1 1 1 1 1 1 0 0
2 1 1 1 2 0 0 0
3 1 1 1 2 0 0 0
4 1 1 1 2 0 0 0
5 1 1 1 2 0 0 0
0 2 1 1 0 2 0 0
1 2 1 1 1 1 0 0
2 2 1 1 2 0 0 0
3 2 1 1 2 0 0 0
4 2 1 1 2 0 0 0
0 3 1 1 0 2 0 0
1 3 1 1 1 1 0 0
2 3 1 1 2 0 0 0
3 3 1 1 2 0 0 0
0 4 1 1 0 2 0 0
1 4 1 1 1 1 0 0

STATES OPTIMAL POLICY
2 4 1 1 2 0 0 0
0 5 1 1 0 2 0 0
1 5 1 1 1 1 0 0
0 6 1 1 0 2 0 0
0 0 2 1 0 0 2 0
1 0 2 1 1 0 1 0
2 0 2 1 2 0 0 0
3 0 2 1 2 0 0 0
4 0 2 1 2 0 0 0
5 0 2 1 2 0 0 0
0 1 2 1 0 1 1 0
1 1 2 1 1 1 0 0
2 1 2 1 2 0 0 0
3 1 2 1 2 0 0 0
4 1 2 1 2 0 0 0
0 2 2 1 0 2 0 0
1 2 2 1 1 1 0 0
2 2 2 1 2 0 0 0
3 2 2 1 2 0 0 0
0 3 2 1 0 2 0 0
1 3 2 1 1 1 0 0
2 3 2 1 2 0 0 0
0 4 2 1 0 2 0 0
1 4 2 1 1 1 0 0
0 5 2 1 0 2 0 0
0 0 3 1 0 0 2 0
1 0 3 1 1 0 1 0
2 0 3 1 2 0 0 0
3 0 3 1 2 0 0 0
4 0 3 1 2 0 0 0
0 1 3 1 0 1 1 0
1 1 3 1 1 1 0 0
2 1 3 1 2 0 0 0
3 1 3 1 2 0 0 0
0 2 3 1 0 2 0 0
1 2 3 1 1 1 0 0
2 2 3 1 2 0 0 0
0 3 3 1 0 2 0 0
1 3 3 1 1 1 0 0
0 4 3 1 0 2 0 0
0 0 4 1 0 0 2 0
1 0 4 1 1 0 1 0
2 0 4 1 2 0 0 0
3 0 4 1 2 0 0 0
0 1 4 1 0 1 1 0
1 1 4 1 1 1 0 0
2 1 4 1 2 0 0 0
0 2 4 1 0 2 0 0
1 2 4 1 1 1 0 0
0 3 4 1 0 2 0 0
0 0 5 1 0 0 2 0
1 0 5 1 1 0 1 0
2 0 5 1 2 0 0 0
0 1 5 1 0 1 1 0
1 1 5 1 1 1 0 0
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STATES OPTIMAL POLICY
0 2 5 1 0 2 0 0
0 0 6 1 0 0 2 0
1 0 6 1 1 0 1 0
0 1 6 1 0 1 1 0
0 0 7 1 0 0 2 0
0 0 0 2 0 0 0 2
1 0 0 2 1 0 0 1
2 0 0 2 2 0 0 0
3 0 0 2 2 0 0 0
4 0 0 2 2 0 0 0
5 0 0 2 2 0 0 0
6 0 0 2 2 0 0 0
0 1 0 2 0 1 0 1
1 1 0 2 1 1 0 0
2 1 0 2 2 0 0 0
3 1 0 2 2 0 0 0
4 1 0 2 2 0 0 0
5 1 0 2 2 0 0 0
0 2 0 2 0 2 0 0
1 2 0 2 1 1 0 0
2 2 0 2 2 0 0 0
3 2 0 2 2 0 0 0
4 2 0 2 2 0 0 0
0 3 0 2 0 2 0 0
1 3 0 2 1 1 0 0
2 3 0 2 2 0 0 0
3 3 0 2 2 0 0 0
0 4 0 2 0 2 0 0
1 4 0 2 1 1 0 0
2 4 0 2 2 0 0 0
0 5 0 2 0 2 0 0
1 5 0 2 1 1 0 0
0 6 0 2 0 2 0 0
0 0 1 2 0 0 1 1
1 0 1 2 1 0 1 0
2 0 1 2 2 0 0 0
3 0 1 2 2 0 0 0
4 0 1 2 2 0 0 0
5 0 1 2 2 0 0 0
0 1 1 2 0 1 1 0
1 1 1 2 1 1 0 0
2 1 1 2 2 0 0 0
3 1 1 2 2 0 0 0
4 1 1 2 2 0 0 0
0 2 1 2 0 2 0 0
1 2 1 2 1 1 0 0
2 2 1 2 2 0 0 0
3 2 1 2 2 0 0 0
0 3 1 2 0 2 0 0
1 3 1 2 1 1 0 0
2 3 1 2 2 0 0 0
0 4 1 2 0 2 0 0
1 4 1 2 1 1 0 0
0 5 1 2 0 2 0 0
0 0 2 2 0 0 2 0
1 0 2 2 1 0 1 0
2 0 2 2 2 0 0 0
3 0 2 2 2 0 0 0

STATES OPTIMAL POLICY
4 0 2 2 2 0 0 0
0 1 2 2 0 1 1 0
1 1 2 2 1 1 0 0
2 1 2 2 2 0 0 0
3 1 2 2 2 0 0 0
0 2 2 2 0 2 0 0
1 2 2 2 1 1 0 0
2 2 2 2 2 0 0 0
0 3 2 2 0 2 0 0
1 3 2 2 1 1 0 0
0 4 2 2 0 2 0 0
0 0 3 2 0 0 2 0
1 0 3 2 1 0 1 0
2 0 3 2 2 0 0 0
3 0 3 2 2 0 0 0
0 1 3 2 0 1 1 0
1 1 3 2 1 1 0 0
2 1 3 2 2 0 0 0
0 2 3 2 0 2 0 0
1 2 3 2 1 1 0 0
0 3 3 2 0 2 0 0
0 0 4 2 0 0 2 0
1 0 4 2 1 0 1 0
2 0 4 2 2 0 0 0
0 1 4 2 0 1 1 0
1 1 4 2 1 1 0 0
0 2 4 2 0 2 0 0
0 0 5 2 0 0 2 0
1 0 5 2 1 0 1 0
0 1 5 2 0 1 1 0
0 0 6 2 0 0 2 0
0 0 0 3 0 0 0 2
1 0 0 3 1 0 0 1
2 0 0 3 2 0 0 0
3 0 0 3 2 0 0 0
4 0 0 3 2 0 0 0
5 0 0 3 2 0 0 0
0 1 0 3 0 1 0 1
1 1 0 3 1 1 0 0
2 1 0 3 2 0 0 0
3 1 0 3 2 0 0 0
4 1 0 3 2 0 0 0
0 2 0 3 0 2 0 0
1 2 0 3 1 1 0 0
2 2 0 3 2 0 0 0
3 2 0 3 2 0 0 0
0 3 0 3 0 2 0 0
1 3 0 3 1 1 0 0
2 3 0 3 2 0 0 0
0 4 0 3 0 2 0 0
1 4 0 3 1 1 0 0
0 5 0 3 0 2 0 0
0 0 1 3 0 0 1 1
1 0 1 3 1 0 1 0
2 0 1 3 2 0 0 0
3 0 1 3 2 0 0 0
4 0 1 3 2 0 0 0
0 1 1 3 0 1 1 0
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STATES OPTIMAL POLICY
1 1 1 3 1 1 0 0
2 1 1 3 2 0 0 0
3 1 1 3 2 0 0 0
0 2 1 3 0 2 0 0
1 2 1 3 1 1 0 0
2 2 1 3 2 0 0 0
0 3 1 3 0 2 0 0
1 3 1 3 1 1 0 0
0 4 1 3 0 2 0 0
0 0 2 3 0 0 2 0
1 0 2 3 1 0 1 0
2 0 2 3 2 0 0 0
3 0 2 3 2 0 0 0
0 1 2 3 0 1 1 0
1 1 2 3 1 1 0 0
2 1 2 3 2 0 0 0
0 2 2 3 0 2 0 0
1 2 2 3 1 1 0 0
0 3 2 3 0 2 0 0
0 0 3 3 0 0 2 0
1 0 3 3 1 0 1 0
2 0 3 3 2 0 0 0
0 1 3 3 0 1 1 0
1 1 3 3 1 1 0 0
0 2 3 3 0 2 0 0
0 0 4 3 0 0 2 0
1 0 4 3 1 0 1 0
0 1 4 3 0 1 1 0
0 0 5 3 0 0 2 0
0 0 0 4 0 0 0 2
1 0 0 4 1 0 0 1
2 0 0 4 2 0 0 0
3 0 0 4 2 0 0 0
4 0 0 4 2 0 0 0
0 1 0 4 0 1 0 1
1 1 0 4 1 1 0 0
2 1 0 4 2 0 0 0
3 1 0 4 2 0 0 0
0 2 0 4 0 2 0 0
1 2 0 4 1 1 0 0
2 2 0 4 2 0 0 0
0 3 0 4 0 2 0 0
1 3 0 4 1 1 0 0
0 4 0 4 0 2 0 0
0 0 1 4 0 0 1 1
1 0 1 4 1 0 1 0
2 0 1 4 2 0 0 0
3 0 1 4 2 0 0 0
0 1 1 4 0 1 1 0
1 1 1 4 1 1 0 0

STATES OPTIMAL POLICY
2 1 1 4 2 0 0 0
0 2 1 4 0 2 0 0
1 2 1 4 1 1 0 0
0 3 1 4 0 2 0 0
0 0 2 4 0 0 2 0
1 0 2 4 1 0 1 0
2 0 2 4 2 0 0 0
0 1 2 4 0 1 1 0
1 1 2 4 1 1 0 0
0 2 2 4 0 2 0 0
0 0 3 4 0 0 2 0
1 0 3 4 1 0 1 0
0 1 3 4 0 1 1 0
0 0 4 4 0 0 2 0
0 0 0 5 0 0 0 2
1 0 0 5 1 0 0 1
2 0 0 5 2 0 0 0
3 0 0 5 2 0 0 0
0 1 0 5 0 1 0 1
1 1 0 5 1 1 0 0
2 1 0 5 2 0 0 0
0 2 0 5 0 2 0 0
1 2 0 5 1 1 0 0
0 3 0 5 0 2 0 0
0 0 1 5 0 0 1 1
1 0 1 5 1 0 1 0
2 0 1 5 2 0 0 0
0 1 1 5 0 1 1 0
1 1 1 5 1 1 0 0
0 2 1 5 0 2 0 0
0 0 2 5 0 0 2 0
1 0 2 5 1 0 1 0
0 1 2 5 0 1 1 0
0 0 3 5 0 0 2 0
0 0 0 6 0 0 0 2
1 0 0 6 1 0 0 1
2 0 0 6 2 0 0 0
0 1 0 6 0 1 0 1
1 1 0 6 1 1 0 0
0 2 0 6 0 2 0 0
0 0 1 6 0 0 1 1
1 0 1 6 1 0 1 0
0 1 1 6 0 1 1 0
0 0 2 6 0 0 2 0
0 0 0 7 0 0 0 2
1 0 0 7 1 0 0 1
0 1 0 7 0 1 0 1
0 0 1 7 0 0 1 1
0 0 0 8 0 0 0 2
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Optimal policy of Model 1b

In this appendix, the optimal policy for Model 1b when λ6 = 0, λ24 = 0.817, s = 1

using CC1 (of Model 1b) is shown in the table below.

Table C.1: Optimal policy Model 1b when λ6 = 0, λ24 = 0.817, s = 1 using CC1

STATES OPTIMAL POLICY
0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
2 0 0 0 1 0 0 0 0
3 0 0 0 1 0 0 0 0
4 0 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 0
2 1 0 0 1 0 0 0 0
3 1 0 0 1 0 0 0 0
0 2 0 0 0 1 0 0 0
1 2 0 0 1 0 0 0 0
2 2 0 0 1 0 0 0 0
0 3 0 0 0 1 0 0 0
1 3 0 0 0 1 0 0 0
0 4 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0
2 0 1 0 1 0 0 0 0
3 0 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0
1 1 1 0 1 0 0 0 0
2 1 1 0 1 0 0 0 0
0 2 1 0 0 1 0 0 0
1 2 1 0 1 0 0 0 0
0 3 1 0 0 1 0 0 0
0 0 2 0 0 0 1 0 0
1 0 2 0 1 0 0 0 0
2 0 2 0 1 0 0 0 0

STATES OPTIMAL POLICY
0 1 2 0 0 1 0 0 0
1 1 2 0 1 0 0 0 0
0 2 2 0 0 1 0 0 0
0 0 3 0 0 0 1 0 0
1 0 3 0 1 0 0 0 0
0 1 3 0 0 1 0 0 0
0 0 4 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0
1 0 0 1 1 0 0 0 0
2 0 0 1 1 0 0 0 0
3 0 0 1 1 0 0 0 0
0 1 0 1 0 1 0 0 0
1 1 0 1 1 0 0 0 0
2 1 0 1 1 0 0 0 0
0 2 0 1 0 1 0 0 0
1 2 0 1 1 0 0 0 0
0 3 0 1 0 1 0 0 0
0 0 1 1 0 0 1 0 0
1 0 1 1 1 0 0 0 0
2 0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0
0 2 1 1 0 1 0 0 0
0 0 2 1 0 0 0 1 0
1 0 2 1 1 0 0 0 0
0 1 2 1 0 1 0 0 0
0 0 3 1 0 0 1 0 0
0 0 0 2 0 0 0 1 0



Appendix C. Optimal policy of Model 1b 80

STATES OPTIMAL POLICY
1 0 0 2 1 0 0 0 0
2 0 0 2 1 0 0 0 0
0 1 0 2 0 1 0 0 0
1 1 0 2 1 0 0 0 0
0 2 0 2 0 1 0 0 0
0 0 1 2 0 0 1 0 0
1 0 1 2 1 0 0 0 0

STATES OPTIMAL POLICY
0 1 1 2 0 1 0 0 0
0 0 2 2 0 0 1 0 0
0 0 0 3 0 0 0 1 0
1 0 0 3 1 0 0 0 0
0 1 0 3 0 1 0 0 0
0 0 1 3 0 0 1 0 0
0 0 0 4 0 0 0 1 0



Appendix D

Optimal policy of Model 2

In this chapter, we present the optimal policy for Model 2 when λ6 = 0.45, λ24 = 0.5,

s = 1 and ce > ĉe in the following table.

Table D.1: Optimal policy Model 2 when λ6 = 0.45, λ24 = 0.5, s = 1 and ce > ĉe
STATES OPTIMAL POLICY

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0
1 1 0 0 1 0 0 0 1 0 0
0 0 1 0 1 0 1 0 0 0 0
1 0 1 0 1 0 0 1 0 0 0
0 1 1 0 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0 0 1 0
1 0 0 1 1 0 0 1 0 0 0
0 1 0 1 1 0 1 0 0 0 0
1 1 0 1 1 0 0 0 1 0 0
0 0 1 1 1 0 1 0 0 0 0
1 0 1 1 1 0 0 1 0 0 0
0 1 1 1 1 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
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STATES OPTIMAL POLICY
1 0 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 0
1 1 0 0 0 1 0 0 0 1 0
0 0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 1 0 0 0 1 0
0 1 1 0 0 1 1 0 0 0 0
1 1 1 0 0 1 0 0 0 1 0
0 0 0 1 0 1 1 0 0 0 0
1 0 0 1 0 1 0 0 1 0 0
0 1 0 1 0 1 1 0 0 0 0
1 1 0 1 0 1 0 0 1 0 0
0 0 1 1 0 1 1 0 0 0 0
1 0 1 1 0 1 0 1 0 0 0
0 1 1 1 0 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 1 0
1 0 0 0 1 1 0 1 0 1 0
0 1 0 0 1 1 1 0 0 1 0
1 1 0 0 1 1 0 0 1 1 0
0 0 1 0 1 1 1 0 0 1 0
1 0 1 0 1 1 0 1 0 1 0
0 1 1 0 1 1 1 0 0 1 0
0 0 0 1 1 1 1 0 1 0 0
1 0 0 1 1 1 0 1 1 0 0
0 1 0 1 1 1 1 0 1 0 0
0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 2 1 0 0 1 0
1 0 0 0 0 2 0 0 1 1 0
0 1 0 0 0 2 1 0 0 1 0
1 1 0 0 0 2 0 0 1 1 0
0 0 1 0 0 2 1 0 0 1 0
1 0 1 0 0 2 0 1 0 1 0
0 1 1 0 0 2 1 0 0 1 0
0 0 0 1 0 2 1 0 1 0 0
1 0 0 1 0 2 0 1 1 0 0
0 1 0 1 0 2 1 0 1 0 0
0 0 1 1 0 2 1 1 0 0 0
0 0 0 0 1 2 1 0 1 1 0
1 0 0 0 1 2 0 1 1 1 0
0 1 0 0 1 2 1 0 1 1 0
0 0 1 0 1 2 1 1 0 1 0
0 0 0 1 1 2 1 1 1 0 0
0 0 0 0 0 3 1 0 1 1 0
1 0 0 0 0 3 0 1 1 1 0
0 1 0 0 0 3 1 0 1 1 0
0 0 1 0 0 3 1 1 0 1 0
0 0 0 1 0 3 1 1 1 0 0
0 0 0 0 1 3 1 1 1 1 0
0 0 0 0 0 4 1 1 1 1 0
0 0 0 1 1 0 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0
0 0 1 0 1 1 1 0 0 1 0
1 0 1 0 1 1 0 1 0 1 0
0 1 1 0 1 1 1 0 0 1 0
0 0 0 1 1 1 1 0 1 0 0
1 0 0 1 1 1 0 1 1 0 0
0 1 0 1 1 1 1 0 1 0 0
0 0 1 1 1 1 1 1 0 0 0
0 0 0 0 0 2 1 0 0 1 0
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STATES OPTIMAL POLICY
1 0 0 0 0 2 0 0 1 1 0
0 1 0 0 0 2 1 0 0 1 0
1 1 0 0 0 2 0 0 1 1 0
0 0 1 0 0 2 1 0 0 1 0
1 0 1 0 0 2 0 1 0 1 0
0 1 1 0 0 2 1 0 0 1 0
0 0 0 1 0 2 1 0 1 0 0
1 0 0 1 0 2 0 1 1 0 0
0 1 0 1 0 2 1 0 1 0 0
0 0 1 1 0 2 1 1 0 0 0
0 0 0 0 1 2 1 0 1 1 0
1 0 0 0 1 2 0 1 1 1 0
0 1 0 0 1 2 1 0 1 1 0
0 0 1 0 1 2 1 1 0 1 0
0 0 0 1 1 2 1 1 1 0 0
0 0 0 0 0 3 1 0 1 1 0
1 0 0 0 0 3 0 1 1 1 0
0 1 0 0 0 3 1 0 1 1 0
0 0 1 0 0 3 1 1 0 1 0
0 0 0 1 0 3 1 1 1 0 0
0 0 0 0 1 3 1 1 1 1 0
0 0 0 0 0 4 1 1 1 1 0
0 0 0 1 1 0 1 0 0 0 0



Appendix E

Limiting distribution of the optimal
policy

In this appendix, we present the limiting distribution resulted from using the optimal
policy in each MDP model that we proposed in Chapter 4. Limiting distribution shows
the stationary probability we end up in each state when we schedule the surgeries
according to the optimal policy.

E.1 Limiting distribution Model 1

In this section, we present the limiting distribution from the optimal policy of Model
1. First, we present the top five limiting probability of the optimal policy resulting
from Model 1 for some cases where the arrival rates are close to s. Consider λ6 =

0.05;λ24 = 0.05; s = 1, using cost combination CC1 in Table 5.1, we have five largest
limiting probabilities in the following table.

State Limiting probability
0 0 0 0 0.901
1 0 0 0 0.046
0 0 0 1 0.045
0 0 1 0 0.003
1 0 0 1 0.002

Table E.1: Top 5 limiting probability of Model 1’s optimal policy for λ6 = 0.05;λ24 = 0.05; s = 1

Recall that in Model 1 rejecting 6-hour patient arrivals happens when the first ele-
ment of the state is equal to s. Meanwhile, the 24-hour patient arrivals are rejected
when the total number of patients in the system is 4s. In this case, the probabilities
of rejecting 6-hour and 24-hour patients are 0.049 and 2.055× 10−6., respectively.
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Next, we consider the cases where arrival rates are close to s. For λ6 = 0;λ24 =

0.817; s = 1 using CC1 the highest five limiting probability is in the following table.

State Limiting probability
0 0 0 0 0.901
1 0 0 0 0.046
0 0 0 1 0.045
0 0 1 0 0.003
1 0 0 1 0.002

Table E.2: Top 5 limiting probability of Model 1’s optimal policy for λ6 = 0;λ24 = 0.817; s = 1

The probabilities of rejecting 6-hour and 24-hour patients are 0.378 and 0.053, re-
spectively.

The five highest limiting probability for λ6 = 0.45;λ24 = 0.5; s = 1 using CC1 is in
the following table.

State Limiting probability
0 0 0 0 0.214
1 0 0 0 0.144
0 0 0 1 0.107
1 0 0 1 0.072
0 0 1 0 0.055

Table E.3: Top 5 limiting probability of Model 1’s optimal policy for λ6 = 0.45;λ24 = 0.5; s = 1

The probabilities of rejecting 6-hour and 24-hour patients are 0.423 and 0.064, re-
spectively.

Another case where the total arrival rates is really close to s is λ6 = 0.54;λ24 =

1.45; s = 2. Using CC1, the following table shows the five highest limiting probability
for that case.
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State Limiting probability
0 0 0 1 0.056
0 0 0 2 0.043
0 0 0 0 0.036
1 0 0 1 0.026
0 0 1 1 0.025

Table E.4: Top 5 limiting probability of Model 1’s optimal policy for λ6 = 0.54;λ24 = 1.54; s = 2

For this case, the probabilities of rejecting 6-hour and 24-hour patients are 0.228

and 0.088, respectively. Next, we present the limiting distribution resulted from the
optimal policy of Model 1b.

E.2 Limiting distribution Model 1b

We provide the limiting probability of the optimal policy in Model 1b for some cases
where the arrival rates are both close to s and far from s. First, for λ6 = 0.05;λ24 =

0.2, using cost combination CC1 in Table 5.5, we have five largest limiting probabili-
ties in the following table.

State Limiting probability
0 0 0 0 0.777
0 0 0 1 0.155
1 0 0 0 0.039
0 0 0 2 0.016
1 0 0 1 0.008

Table E.5: Top 5 limiting probability of Model 1b’s optimal policy for λ6 = 0.05;λ24 = 0.2; s = 2

From the table above, we can see that using the optimal policy from Model 1b,
around 78% of the time, we have no surgeries waiting. It is a large probability of be-
ing in the state that is empty. Hence, in this case, the optimal policy provides a good
scheduling considering the arrival rates and the dedicated capacity, as no patients
are piled up most of the time.

Another case where the arrival rates are close to s, we look at the limiting prob-
ability for λ6 = 0.05;λ24 = 0.05; s = 1 using CC1 in the following table.
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State Limiting probability
0 0 0 0 0.901
1 0 0 0 0.046
0 0 0 1 0.045
0 0 1 0 0.003
1 0 0 1 0.002

Table E.6: Top 5 limiting probability of Model 1b’s optimal policy for λ6 = 0.05;λ24 = 0.05; s = 1

From the limiting probability, we also obtain that the probability of 6-hour patients
being rejected is 0.049, while the 24-hour patients are rejected with probability of
2.055× 10−6.

Next, using CC1 and CC3 the following table shows the limiting probability when
λ6 = 0.54;λ24 = 1.45 and s = 2. We can see that for CC3, where the cost of defer-

State Limiting probability
0 0 0 1 0.198
0 0 0 2 0.144
0 0 0 0 0.137
1 0 0 1 0.107
1 0 0 2 0.078

Table E.7: Limiting probability: Case 3;CC3

State Limiting probability
0 0 0 1 0.069
0 0 0 2 0.050
0 0 0 0 0.047
1 0 0 1 0.038
0 0 1 1 0.030

Table E.8: Limiting probability: Case 3;CC1

Table E.9: Top 5 limiting probability of Model 1b’s optimal policy for λ6 = 0.54;λ24 = 1.45 and s = 2

ring 24-hour patients is zero, the probabilities of ending up in the states where the
system is not full is higher than those of CC1. For example, using cost combination
CC3, there is around 14% chance of being in empty state, while for CC1, the chance
of being in this state is only 4.7%. This results match with intuition as in CC3, the
24-hour patients that can not be treated in the dedicated capacity are deferred to
another resource. Meanwhile, in CC1 less 24-hour patients are deferred due to the
non-zero cost of deferring patients.

In cost combinations CC1 and CC2 the deferring costs are non-zero. For these
cases, the five states with the largest limiting probabilities are the same (Table E.12).
Similar to the previous tables, the higher deferring cost results in lower limiting prob-
abilities. This is because in CC2 less 24-hour patients are deferred due to the higher
cost. Hence, the probabilities of being in the more crowded states are higher than
those in CC1 case.
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State Limiting probability
0 0 0 1 0.069
0 0 0 2 0.050
0 0 0 0 0.047
1 0 0 1 0.038
0 0 1 1 0.030

Table E.10: Limiting probability: Case 3;CC1

State Limiting probability
0 0 0 1 0.060
0 0 0 2 0.043
0 0 0 0 0.041
1 0 0 1 0.034
0 0 1 1 0.027

Table E.11: Limiting probability: Case 3;CC2

Table E.12: Top 5 limiting probability of Model 1b’s optimal policy for λ6 = 0.54;λ24 = 1.45 and

s = 2

Using CC1, 0.138 of the time 6-hour patients are rejected, while 0.016 of the time
24-hour patients are rejected.

E.3 Limiting distribution Model 2

First, we look at the limiting probability where the arrival rates are far from s using
cost combination where ce > ĉe. For λ6 = 0.05 and λ24 = 0.05, the optimal policy
which yield in five largest limiting probabilities given in the following table.

State Limiting probability
0 0 0 0 0 0 0.895
0 0 0 0 1 0 0.046
0 0 0 0 0 1 0.045
1 0 0 0 0 0 0.003
0 1 0 0 0 0 0.003

Table E.13: Top 5 limiting probability of Model 2’s optimal policy for λ6 = 0.05;λ24 = 0.05 and s = 1

We reject 6-hour arrivals when dedicated capacity s is fully used in the next shift.
From this limiting probability, we also obtain that with probability of 0.052 the 6-
hour patients are rejected, while the 24-hour patients are rejected with probability of
2.421× 10−6.

Next, for λ6 = 0;λ24 = 0.05 and s = 1, where ce > ĉe results in optimal policy
with the top five limiting probability in the following table.
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State Limiting probability
0 0 0 0 0 0 0.950
0 0 0 0 0 1 0.048
1 0 0 0 0 0 0.001
0 0 0 0 0 2 0.001
1 0 0 0 0 1 0.00006≈0

Table E.14: Top 5 limiting probability of Model 2’s optimal policy for λ6 = 0;λ24 = 0.05 and s = 1

For the case above the probability of rejecting 6-hour patients is 0.001. Meanwhile,
we reject the 24-hour patients when the system is full, i.e., there are 4s patients
in the system (both the scheduled and the new admitted ones). The probability of
rejecting 24-hour patients for the case above is 3.183 × 10−7. From the two cases
above, we can see that when the arrival rates and s have larger gaps, the possibility
of staying in an empty state is high, i.e., more than 85%.

Afterwards, we look at the limiting probability for the case where the arrival rates
are close to s. For λ6 = 0.45; λ24 = 0.5 and s = 1, the optimal policy which yield in
five largest limiting probabilities given in Table E.15.

State Limiting probability
0 0 0 0 0 0 0.169
0 0 0 0 1 0 0.096
1 0 0 0 0 0 0.087
0 0 0 0 0 1 0.084
1 1 0 0 0 0 0.051

Table E.15: Top 5 limiting probability of Model 2’s optimal policy for λ6 = 0.45;λ24 = 0.5 and s = 1

For the case above, the limiting probabilities of rejecting 6-hour and 24-hour patients
are 0.315 and 0.058, respectively. Next, the optimal policy of Model 1b for the case
where λ6 = 0;λ24 = 0.817 and s = 1 result in the five highest limiting distribution
given in the table below.

State Limiting probability
0 0 0 0 0 0 0.224
0 0 0 0 0 1 0.183
1 0 0 0 0 0 0.100
1 0 0 0 0 1 0.082
0 0 0 0 0 2 0.075

Table E.16: Top 5 limiting probability of Model 2’s optimal policy for λ6 = 0;λ24 = 0.817 and s = 1
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Next, we look at the limiting probability for λ6 = 0.45;λ24 = 1.54 : s = 2 both when
ce = ĉe and ce > ĉe in Table E.17 and E.18, respectively.

State Limiting probability

2 1 1 0 0 1 0.034
0 0 0 0 0 1 0.031
1 1 1 0 0 1 0.028
2 1 1 0 0 2 0.025
1 1 0 0 0 1 0.024

Table E.17: Top 5 limiting probability of Model 2’s optimal policy for λ6 = 0.45;λ24 = 1.54 and s = 2

when ce = ĉe

State Limiting probability

2 2 2 0 0 2 0.027
0 0 0 0 0 1 0.026
2 2 2 0 0 1 0.022
1 1 1 0 0 1 0.021
0 0 0 0 0 2 0.019

Table E.18: Top 5 limiting probability of Model 2’s optimal policy for λ6 = 0.45;λ24 = 1.54 and s = 2

when ce > ĉe

Recall that the 6-hour patient arrivals are rejected when the capacity in the next shift
is fully used, which in this case is when the number of patients scheduled next shift
is 2. Using the limiting probabilities of the last case where ce > ĉe and ce = ĉe,
the probabilities of 6-hour patients being rejected are 0.233 and 0.241, respectively.
Meanwhile, the 24-hour patients are rejected with probabilities of 0.064 and 0.045,
for ce > ĉe and ce = ĉe, respectively.
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