

MASTER THESIS

DECISION-MAKING
IN A MICROSERVICE
ARCHITECTURE

Bjorn Goossens
EEMCS Faculty

Master Business Information Technology

Graduation Committee

Dr. Ir. M.J. van Sinderen

Dr. A.B.J.M. Wijnhoven

External Supervisor

H.W.K. Boenink

27/11/2019

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 2/130

COLOFON

DATE

27/11/2019

VERSION
1.0

STATUS
Final

AUTHOR
Bjorn Goossens

E-MAIL
b.goossens@alumnus.utwente.nl

ADDRESS
Postbus 217

7500 AE Enschede

WEBSITE
www.utwente.nl

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 3/130

MANAGEMENT SUMMARY

In recent years, the subject of microservices has gained increasing popularity with software

engineering practitioners and academics. The decomposition of system parts into separate

services imposes new challenges, many of which related to how to manage the increased

complexity in networking and communication between these services. In general,

microservice architectures are considered to be confronted with a number of “nontrivial design

challenges that are intrinsic to any distributed system” as well as others specific to

microservices. Because of microservices’ unique characteristics, new challenges arise on how

to make microservices communicate, integrate and be managed effectively. A main question

for organisations aiming to implement a microservice architecture is how to make well-

supported software architecture design decisions regarding these categories of challenges.

The aim of this work is to research and design a first step towards a decision-making

framework backed by academic literature as well as insights from practice to help

organisations better manage these challenges.

Through a structured literature review, an overview of microservice challenges found in

academia was constructed. Challenges ranged from purely technical considerations to high-

level management-related questions. These challenges were then mapped to the topics of

communication, integration and management. The resulting challenges are used as a

technical basis for the designed framework. A practical view on these challenges was then

gathered through interviews with practitioners at Thales Naval to understand their view on

microservice challenges. In general, they recognised the challenges found in literature, though

for their organisation some challenges did receive more attention than they did in academia.

The categories of challenges that were considered as hardest to manage were also identified,

which showed to largely concur with the communication, integration and management

challenge categories that were emphasised.

Through searching academic works and sources from practice, challenges were

characterised, their dependencies shown, and possible decision alternatives and guidelines

were documented. This overview of challenges and their dependencies is used in the

framework design as reference for which challenges to consider, and in what order. A

comparison of decision-making methodologies for selecting between solution alternatives to

these challenges was made. From this, the most suitable methodology was chosen to serve

as a theoretical foundation for establishing a decision-making process. Subsequently, the new

decision-making framework was designed. It involves making decisions by choosing between

solution alternatives and following guidelines where applicable to find the best way for

addressing the identified microservice challenges. The Analytic Hierarchy Process was used

to support decision-making by making pairwise comparisons; enabling more precise outcomes

than competing approaches.

Two single-case mechanism experiments were done to validate whether the goals set for the

design were accomplished. The outcome of the first case study suggested that the artifact was

somewhat usable and useful, but decision-quality and perceived practicality were lacking.

Additions to the artifact in the form of more guidance on what requirements to select and how

to weigh them when comparing were made. The second case study showed minor

improvements in usability and usefulness, but a significant improvement in decision-quality

and perceived practicality. Though it cannot be said definitively that these increased ratings

were due to the changes to the artifact, it is expected that a fair conclusion would be that on

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 4/130

average, the participants were neutral to somewhat confident about the quality of the decision

outcomes and the framework’s practicality. Qualitative observations show that the tooling used

during the case studies had the biggest potential for improvement. Nevertheless, the

framework, and in particular its use of pairwise comparisons and its contribution to evoking

discussion, were viewed favourably.

Through this research, several contributions to academia and practice have been made:

- Scientific: A previously not found overview of microservice challenges has been

constructed through literature research.

- Scientific: Knowledge on decision-making methodologies for software architecture

design has been applied to a practical case in the field of microservices, providing

insights in the behaviour of such methodologies in this context.

- Practical: Academic literature has been used to characterise microservice challenges

in a clear and consistent way, providing insights in what challenges can be

encountered when designing a microservice architecture, as well as possible decision

alternatives and guidelines to consider.

- Practical: A previously non-existent decision-making framework to be used for

managing microservice challenges in practice has been designed based on an

academic foundation.

The findings are mainly limited by the fact that the case studies used for validation included

few participants, and not all microservice challenges could be considered during these. Future

research should focus on highlighting microservice challenges that were not included in the

current design of the decision-making framework, comparing it to other methodologies and

translating the decisions made to actual software architecture designs.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 5/130

PREFACE

With the completion of this thesis, my time as a student at the University of Twente has come

to an end. After completing the bachelor programme for Business & IT, I pursued the master

programme of Business Information Technology with a specialisation in IT Management and

Innovation. Throughout this time, I have always continued to be inspired by the intersection of

the fields of business and IT. Bridging the gap between both has been a central theme in my

studies and I truly believe that by combining those perspectives, real impact can be made in

tackling challenges that businesses face today and tomorrow. In this thesis, I tried to do just

that. I am happy with the results of this and inspired by how my findings have been received.

Many people have contributed to completing this research, for which I would like to thank

them:

First, I would like to thank my supervisors Marten van Sinderen and Fons Wijnhoven.

Throughout this research, they have helped me to put my thoughts and ideas into perspective,

find ways to approach my work and they have provided me with valuable feedback. Thank

you for the interesting discussions we had, and the time you spent on supporting me during

the writing of my thesis.

I would also like to thank the people at Thales for their interest in my research and for helping

me find insights from practice through many discussions and coffee-machine talks. I am also

inspired by their dedication to keep innovating and be at the forefront of using the newest

available technologies in IT, despite the challenges that may come with using technologies

that are not mainstream yet. In particular, I would like to thank my supervisor Willy Boenink for

finding time to guide me during this research in his already full calendar, and his continued

motivation to help me complete it. I would also like to specifically thank the Thales employees

that participated in the interviews and case studies in this research. The insights from practice

that arose from these, helped me in putting my theoretical findings in context.

Finally, I would like to thank my family and friends for supporting me during my studies. Your

support has been invaluable throughout the past few years.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 6/130

TABLE OF CONTENTS

1 Introduction 9
1.1 Report Structure 9

2 Research Design 11
2.1 Research Goals and Questions 11

3 Problem Investigation 13
3.1 Motivation and Scope 13
3.2 Stakeholders 15
3.3 Decision-Making Framework Goals 16
3.4 Problem Overview 18

4 Microservices 21
4.1 General Overview 21
4.2 Challenges in Literature 25
4.3 Challenges in Practice 36

5 Challenge Dependencies and Possible Solutions 46
5.1 Management 46
5.2 Integration 53
5.3 Communication 57

6 Treatment Design 63
6.1 Requirements 63
6.2 Contribution to Goals 66
6.3 Available Treatments 68
6.4 Overview of ArchDesigner 74

7 Artifact Design 77
7.1 Design Decisions 77
7.2 Process Overview and Meta-Model 80
7.3 Fulfilment of Requirements 82
7.4 Usage Requirements 83
7.5 Tooling 84

8 Validation 88
8.1 Validation Methodology 88
8.2 Case Study 1 90
8.3 Changes to the Artifact Design 96
8.4 Case Study 2 98
8.5 Discussion and Conclusions 104

9 Discussion 108
9.1 Implications and Contributions 108
9.2 Research Quality 109
9.3 Validity and Reliability 110
9.4 Future Work 112
9.5 Further Recommendations 113

10 Conclusions 115
10.1 Research Questions 115
10.2 Key Contributions and Findings 116

Bibliography 118

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 7/130

Appendices 122

Appendix A – Selected Publications 123

Appendix B – Literature Review Diagrams 125

Appendix C – Decision-Making Model 126

Appendix D – Case Study Questionnaire 127

Appendix E – Case Study Survey Outcome Comparisons 128

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 8/130

ACRONYMS

AHP Analytic Hierarchy Process
API Application Programming

Interface
CMS Combat Management System
CNCF Cloud Native Computing

Foundation
CQRS Command Query

Responsibility Segregation
CR Consistency Ratio
CS Combat System
DDD Domain-Driven Design
DDS Data Distribution Service
DSM Design Science Methodology
EQ Exploratory Question
GDSS Group Decision Support

System
HMI Human Machine Interface
HTTP Hypertext Transfer Protocol
IDL Interface Description Language

MADM Multi-Attribute Decision Making
MS Mission System
OS Operating System
OSGI Open Services Gateway

Initiative
OSS Open Source Software
OTS Off-the-shelf
PaaS Platform as a Service
QA Quality Attribute
REST Representational State

Transfer
RPC Remote Procedure Call
RPI Remote Procedure Invocation
RQ Research Question
SA Software Architecture
SaaS Software as a Service
SOA Service-Oriented Architecture
TAM Technology Acceptance Model
UA User Adaptation

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 9/130

1 INTRODUCTION

In recent years, the subject of microservices has gained increasing popularity with software

engineering practitioners and academics. A microservice can on a high level be defined as a

“cohesive, independent process interacting via messages” [1]. A characteristic practice in

microservices is to decompose a system into small services that are built around business

capabilities and communicate through a standardised interface or API [2]. This decomposition

of system parts into separate services imposes new challenges, many of which related to how

to manage the increased complexity in networking and communication between these

services. In a microservice architecture, information that needs to be passed between services

is sent over the network connecting these services, rather than accessed in the shared

memory of a single application. In general, microservice architectures are considered to be

confronted with a number of “nontrivial design challenges that are intrinsic to any distributed

system” [3] as well as others specific to microservices. The implications of using this

architectural style should be carefully considered when developing a solution.

Because of microservices’ unique characteristics, new challenges arise on how to make

microservices communicate, integrate and be managed effectively. Challenges in this sense

refer to difficulties encountered when developing microservices that need to be overcome for

organisations to be able to realise their possible benefits. A main question for organisations

aiming to implement a microservice architecture is how to make well-supported software

architecture design decisions regarding these categories of challenges. In academia, a

straight-forward answer to this seems to be lacking. Even though more and more works on

microservices are being published and substantial academic knowledge already exists with

regards to decision-making in software architecture design, none of these works seem to

combine the two fields. That is; there is currently no common, comprehensive decision-making

framework to assist software engineering practitioners seeking to overcome the

communication, integration and management challenges of microservices. The aim of present

work is to research and design a first step towards such a framework backed by academic

literature as well as insights from practice. For any such framework to be of any use in practice,

organisations should be willing to adopt it. In its application it should be usable, require limited

effort, and preferably offer highly practical insights to organisations.

Part of the practical motivation to conduct this research originates from Thales Netherlands

B.V. that mainly develops radar, communication and command & control systems for naval

ships. Part of their product range is the TACTICOS Combat Management System (CMS) for

combat operations and maritime security, for which a microservice architecture is being

considered in its future development. The aim of including Thales in this research is to gain

insights from practice to support the academic findings. This way, the relevant research can

be compared to real-world scenarios to ultimately better align academic and practical views

on the topics at hand.

1.1 Report Structure

This report is structured as follows:

• Chapter 2 describes the research design used in this report, and the design goals as

well as the research questions that will be addressed.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 10/130

• Chapter 3 discusses the problem investigation phase of the design, including

motivations for conducting this research, stakeholders and their goals.

• Chapter 4 gives a general overview of the concept of microservices, as well as the

challenges that arise in the development of systems involving microservices through a

structured literature review and interviews with practitioners.

• Chapter 5 goes into more detail about the challenges relevant to this research, along

with identifying possible solution alternatives and guidelines to address these.

• Chapter 6 details the start of the treatment design step in this research, including an

overview of decision-making, and selecting a base methodology and requirements for

the decision-making framework’s design.

• Chapter 7 discusses the design of the decision-making framework in detail.

• Chapter 8 concerns the validation of the designed framework through two case studies

carried out in practice.

• Chapter 9 discusses the implications of this research, evaluates their validity and

reliability and limitations.

• Chapter 10 concludes this research.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 11/130

2 RESEARCH DESIGN

Since the main goal of this research is to design and verify a first step towards a methodology

to overcome challenges related to microservices, the research resides largely in the field of

design science. To structure the design process, the Design Science Methodology (DSM)

developed by Wieringa [4] will be used. Wieringa describes a design project in terms of

designing an artifact that contributes to stakeholder goals. Such an artifact always interacts

with a problem context to produce effects. The so-called engineering cycle as described in the

DSM is used to structure the design process. A schematic overview of it is shown in Figure 1.

Figure 1 - DSM Engineering Cycle - Adopted from [4]

In this figure, question marks indicate knowledge questions and exclamation marks design

problems. As can be seen, in the problem investigation step of the cycle, knowledge questions

are used to clarify the problem which serves as input for the treatment design. These take the

form of Research Questions (RQs) In the treatment design phase, the actual artifact is

designed, of which the effects are then analysed in the treatment validation phase.

2.1 Research Goals and Questions

Wieringa identifies several different goals that a design science research project can have.

The overall research goal can be seen as an artifact design goal. Underlying this can be

several knowledge goals to describe so-called phenomena and to explain them [4]. A template

for formulating design problems is also proposed, which is shown in Table 1. The different

parts of this template can be filled in to determine the design goals for this project.

Table 1 – DSM template for design problems, adopted from [4]

Improve <a problem context>

by <(re)designing an artefact>

that satisfies <some requirements>

in order to <help stakeholders achieve some goals>

First is the artefact; i.e. what will be designed. This is the prospective decision-making

framework. This artefact interacts with a context, being the design of a microservice software

architecture. The interaction between the artefact and the context is captured by the

requirement for confidence, effort and practicality. This interaction is useful to fulfil the goals

of allowing software architects to better manage the design challenges related to

communication between, integration and management of microservices. Putting this all

together in the template above, the following design problem results:

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 12/130

Improve the design of a microservice architecture

by designing a decision-making framework

that gives confidence in its results, and satisfies effort and practicality
requirements

so that decision-makers can better manage the design challenges related to
communication between, integration and management of microservices

This design problem will be central in this project. To be able to formulate this as a RQ, it is

proposed to rephrase this problem as a technical research problem [4]. This can be done as

follows:

How to design a decision-making framework that gives confidence in its results, and

satisfies effort and practicality requirements so that decision-makers can better

manage the design challenges related to communication between, integration and

management of microservices in the design of a microservice software architecture?

Underlying this design problem are several open descriptive knowledge questions. The RQs

for this project are as follows:

RQ-1 What common design challenges related to communication between, integration and
management of microservices can be found in academic literature?

RQ-2 What common design challenges related to communication between, integration and

management of microservices can be found in practice?

RQ-3 What are the dependencies between the identified challenges and what possible

alternatives and guidelines are available as solutions?

RQ-4 What decision-making methodology for selecting between design alternatives can

serve as conceptual foundation for the framework to be designed?

RQ-5 How can the designed framework’s fitness for purpose best be validated?

To illustrate the steps taken in this research to answer these RQs, a research model as

described by [5] is shown in Figure 2. This model shows which parts of this report address

what RQ, as well as how these steps relate to the stages in the aforementioned DSM that is

used to structure the design process.

Figure 2 - Research Model as described by [5]

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 13/130

3 PROBLEM INVESTIGATION

To further understand the problem at hand, in this section the stakeholders, goals and context

of the problem are analysed. This serves as the first step in the DSM – the problem

investigation. This way, the involved stakeholders, their goals, the underlying problem and the

motivation behind addressing it can be better understood.

3.1 Motivation and Scope

As said, the motivation to conduct this research originates from both an academic ambition to

further investigate and aid in mitigating challenges when designing a microservice

architecture, as well as a practical need to improve this process. It is essential to consider

what distinctive types of challenges most set apart and complicate the design of a microservice

architecture from other architectures to understand why this need for improvement exists.

Part of the practical motivation to conduct this research originates from Thales Netherlands

B.V. – part of the worldwide Thales Group; one of the largest defence contractors worldwide

[6]. Thales Netherlands B.V. – from here on referred to as Thales – mainly develops radar,

communication and command & control systems for naval ships in this field. Part of their

product range is the TACTICOS Combat Management System (CMS) for combat operations

and maritime security, which is developed by the Thales Naval department. A microservice

architecture is being considered in the future development of TACTICOS and is now the focus

of Thales Naval for future development of the combat system.

From a practical point of view, Thales Naval asked the following question in the exploratory

phase leading up to this research:

“How to do API Management in a Microservice Architecture within the Naval Domain?”

This question can be broken down into three parts. In discussion with infrastructure architect

Mr. H.W.K. Boenink regarding this case, several parts were explained in more detail.

“How to do API Management…” refers to the expected outcome of the research assignment;

a design, guideline or other artefact that describes in what way to manage APIs. An

unequivocal definition that can be directly applied to this case seems to be lacking in academic

literature. However, its characteristics have been described in technical writings from practice.

One organisation describes API management as “the process of publishing, documenting and

overseeing APIs in a secure, scalable environment” [7]. A report sponsored by Microsoft also

mentions several characteristics that API management entails such as API definition, lifecycle

management, decoupling APIs from service implementations, facilitating developer use of

APIs, securing access and providing analytics and metrics of API use [8]. From this it can be

seen that not only the technical workings of connecting and integrating services is considered,

but also the use of managerial tools to facilitate the use of APIs. Nevertheless, in practical

sources API management is mostly described in the context of organisations providing

functionalities to third parties through web APIs. Hence, an unequivocal definition that can be

directly applied to this case seems to be lacking. In this case, the focus lies on enabling API

management functionalities mainly within the organisation itself. Many challenges are similar,

though more focussed on the use of APIs within a system or microservice architecture rather

than exposing functionalities to the outside world. Therefore, in this setting API management

is considered to concern the approach of managing the design challenges related to

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 14/130

communication between, integration and management of microservices. Examples of this are

how to manage interface design and extensibility, service discovery and communication

mechanisms. It is still unclear though which specific challenges are the main focus for Thales

Naval in this research.

“…in a Microservice Architecture…” identifies part of the context described in the previous

paragraph. The choice has been made by Thales Naval to focus on a microservice

architecture for future system development. Even though other architectural styles might also

to an extent be suited for this system, microservices are seen as the most promising means

to implement a SOA. As stated before, microservice architectures are considered to be

confronted with a number of “nontrivial design challenges that are intrinsic to any distributed

system” [3] as well as others specific to microservices. The implications of using this

architectural style should be carefully considered when developing a solution.

“…within the Naval Domain?” also describes context to be considered in the research

assignment. This identifies the setting in which the system is used. The fact that the system is

used in the Naval domain has consequences for the requirements of the design. For example,

security and latency are possible concerns that are more prevalent in this domain because of

its nature. Furthermore, the Combat System can be considered a real-time system [9],

because of the inclusion of sensors like radars. This has implications for the required system

performance and responsiveness.

Considering these case specifics, it can be seen that some of the challenges that Thales Naval

faces might be generalisable, whereas others are unique to their specific domain. Solutions to

these challenges might thus also be in the form of generally applicable practices as well as

less widely used ones.

The view from literature seems to largely support the notion that most difficulty lies in the

communication between, integration and management of microservices. In a seminal work by

Dragoni et al. [1], the authors discuss the past, present and future of microservices in the

software engineering field. When discussing the impact of current microservice development

practices, they touch upon implications for availability, reliability, maintainability, performance,

security and testability that arise from microservices’ characteristics. Examples of such

implications are:

“Even if a single service is not available to satisfy a request, the whole system may be
compromised and experience direct consequences.”

“Spawning an increasing number of services will make the system fault-prone on the
integration level.”

“Particular attention should be paid to the reliability of message passing mechanisms
between services and to the reliability of the services themselves.”

“The greatest threat to microservices reliability lies in the domain of integration.”

“Prominent factor that negatively impacts performance in the microservices
architecture is communication over a network.”

“In order to achieve higher reliability, one must find a way to manage the complexities
of a large system”

Examples of microservice concerns described in [1]

Even though these are just a few of the concerns that are described by the authors, they do

support the notion that microservice-specific challenges often touch upon aforementioned

communication, integration and management categories. These categories will be the main

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 15/130

focus for the decision-making framework to be designed. The exact challenges that fit in these

categories are still unknown though and will be further investigated through a structured

literature research and interviews with practitioners.

3.2 Stakeholders

As a means of understanding the problem better, interviews with involved stakeholders will be

conducted. For this it is important to first generate an overview of the foreseen stakeholders

in this project. In a paper by Alexander [29], several possible stakeholders with their different

roles are identified. These roles will be used to identify the stakeholders involved in this project.

They also document the use of the so-called Onion Model to represent these stakeholders in

different layers. An overview of the possible stakeholders identified based on the initial case

description and context is shown in Figure 3.

Figure 3 - Stakeholder Overview

The different layers or circles in this figure represent different stakeholder contexts. The inner

circle is the artifact under development; the decision-making framework to be designed. The

system circle contains stakeholders that directly interact with this artifact. The circle after that

is the containing system, consisting of stakeholders that influence or are influenced by but do

not directly interact with the artifact. Finally, there is the wider environment circle, to contain

stakeholders situated in the environment that the artifact is part of.

The first and foremost stakeholders that will interact with the artifact are software architects.

They act as normal operators with respect to the artifact and interact with the system on a day-

to-day basis. The majority of the decision-making framework’s usage will consist of them using

it to make substantiated decisions on the topics of communication, integration and

management of microservices. The main challenge for them is that there are many ways of

implementing a microservice architecture and many tools and software solutions available to

help solve this. There is no common or reference architecture that immediately suits their

needs, and so they need guidance in deciding which combination of tools to use. They might

also have conflicting objectives. E.g. one software architect might prefer a certain solution for

communicating between services because it is easy to implement, whilst another architect

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 16/130

could find this solution unsuitable since it makes communication with interfacing systems more

difficult.

These stakeholders may, however, not be the only decision-maker in this process; since

stakeholders such as product owners, project managers, and a software department manager

might also have a say in this process. Such software architecture decisions involve “involve

several stakeholders with different knowledge, views, and responsibilities for the system” [10].

There may even be a wide range of stakeholders that influence what decisions are made in

this respect. However, they are not always directly present in the decision-making process.

Software architects try to capture and understand their needs and translate this to software

architecture design decisions. Product owners can also act on behalf of stakeholders to

represent their views. Another part of these stakeholders’ involvement is when looking back

to past architectural decisions and the rationale behind them. The steps taken in the

framework can be analysed to retrieve this rationale behind past decisions. Together, these

stakeholders in the system layer can be referred to as decision-makers. From them, software

architects are often the most involved stakeholders when making decisions with implications

on software architecture. They will therefore be regarded as the primary stakeholders.

The next layer – the containing system – is where the stakeholders that deal with the choices

made using the decision-making framework by the immediate stakeholders reside. Their goal

is to transform these architectural decisions into a working system. The stakeholders shown

in Figure 3 are the most notable ones. Their role in this overview is that of functional beneficiary

as they benefit from the output of the system. When more effective architectural decisions are

made, they get better input for their work.

In the wider environment are stakeholders that do not interact with the artifact directly but are

influenced by it. For instance, an organisation’s management will benefit from a more effective

design of a software architecture by being able to offer better products to their customers,

more quickly delivering these or having a more future-proof product to sell. They act as

sponsor and financial beneficiary as the changes to the architecture will possibly put the

organisation at a competitive advantage. These advantages also influence suppliers, that for

instance might need to integrate with a system produced by the organisation. Customers will

on their turn receive a better solution, and as such act as political beneficiary. This is in contrast

to an organisation’s competitors, that are a negative stakeholder in this context.

Knowing which stakeholders are involved with this case helps to understand what topics affect

whom and how their different views on the same topic might differ. This supports formulation

of the research goals for this project.

3.3 Decision-Making Framework Goals

A sound decision-making framework should support decision-makers’ work in the best way

possible. A software architect’s work plays a vital role in software development, as they are

the main stakeholders in this case. Even though not all design decisions are by definition

purely software architecture decisions, these do make up a large part of them. It is therefore

useful to consider how software architecture decisions are made. Some insight in this is given

by Falessi et al. [10]:

“Architectural decisions are crucial to the success of a software-intensive project. […]

Therefore, software architects need a reliable and rigorous process for selecting

architectural alternatives and ensuring that the decisions made mitigate risks and

maximize profit.”

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 17/130

The authors explain several main influencing factors on software architecture design that are

addressed by decision-making methodologies – or as they call it; techniques. They should

deal with multiple stakeholders, competing and conflicting objectives, uncertainty both in the

descriptions of requirements and in their associated solutions, and interdependencies

between decisions [10].

By following a predefined process or structure to generate architectural decisions, one can

have more confidence in the choices made during software architecture design. This is shown

by the need for a reliable process. This also means that the process should be repeatable with

similar results. The fact that a process should be rigorous shows that it should be

comprehensive; all important aspects should be considered. The authors’ view of a good

decision-making technique is one that “guides the user toward better, perhaps optimal,

alternatives, and, at the same time, is easy to use” [10]. There are a few parts about this quote

that have implications for the decision-making framework to be designed. First, a main goal is

to select between alternatives. This means that the alternatives to be considered should be

discovered beforehand. Second, it cannot always be guaranteed that an optimal alternative

will be found. ‘Optimal’ is defined by certain quality attributes and desired properties per

alternative. Finally, there is a possible trade-off with ease-of-use in selecting an alternative. A

technique that is hard to use, will likely not be utilised by software architects in practice.

In discussions with several Thales Naval employees working in the software architecture

design field about the challenges that they face and goals during decision-making, many of

the aforementioned characteristics could be recognised. A main desire that was indicated for

such a framework was that it should be practical; focused at the actual software architecture

design work rather than only concerning theory and ideas. In line with this were comments

that the process should be understandable; software architects should be able to easily

understand how a certain decision came to be. The output should be of direct value to software

architects. In line with this, almost all employees saw a limited effort to use a framework as

vital for its success. Furthermore, the used methodology should give confidence in its results.

As one employee noted; that is not to say that the outcome should always be the perfect

combination of alternatives but give alternatives as input to confidently make decisions on

architecturally significant aspects. Many practitioners noted that it is to be expected that the

process of synthesizing a software architecture is iterative, as decisions made in a later stage

can change their view on those made earlier. More notably, most respondents felt that the

main goal of any framework to help in decision-making should not be to impose too strict of a

process or way of working, but rather guide the discussion on the challenges that are

encountered when designing a microservice architecture. Having a predefined set of steps,

clues and checks to use during this design process is seen as possibly being of great help.

Nonetheless, not all challenges are purely of a software architectural nature, and some also

do not have clearly distinguishable alternatives to choose between. Therefore, some

challenges may be better addressed by defining guidelines or finding industry practices. An

example of this is deciding on service granularity; i.e. the ‘size’ and scope of a microservice.

This challenge will be discussed further later on. This challenge is not solved by for example

defining how many lines of code or function points a microservice should be. There are,

however, guidelines and techniques to decide on this. A goal of the framework is to also

provide guidance in solving these challenges; where no clear-cut decision can be made, but

solution guidelines or common practices are available.

Also note that in order for the prospective decision-making framework to be useful, decision-

makers need not necessarily have already encountered a problem during the design of a

microservice architecture before applying it. The goal is to help practitioners from the

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 18/130

beginning of the design of a microservice architecture by showing the challenges they may

encounter and hopefully address these before they become a problem in the first place.

All this gives rise to high-level goals of the decision-making framework to be designed.

Whereas the DSM [4] does not yet prescribe to define requirements in this problem

investigation stage, these goals can already be seen as goal-level requirements in terms of

the goal-design scale as described by Lauesen [11]. They are shown in Table 2. These goal-

level requirements are each assigned a number G(n) for future reference.

Table 2 - Decision-Making Framework Goals

Goal-level requirements

G1 The framework shall improve decision-makers’ work in managing design
challenges related to communication between, integration and management
of microservices.

G2 The framework shall give confidence in its outcomes.

G3 The framework shall require limited effort in its use.

G4 The framework and its outcomes shall be practical.

These goals help in filling out the DSM template by showing which aspects are to be

addressed by the designed framework. Of these goals, G1 is the main goal that should be

contributed to by the future artifact designed in present research.

3.4 Problem Overview

To understand how all the facets of this assignment interact, a problem overview as described

in [12] was created. This is shown in Figure 4. The aim of constructing a problem overview

like this is to show the core problems that needs solving. The image illustrates how two sides

of the preceding research come together to form the single question of how to design a

microservice software architecture. This question arises from a lack of knowledge on how to

solve the challenges related to communication, integration and management.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 19/130

Figure 4 - Problem Overview

For a start, there are the microservice challenge categories. These arise from the inherent

complexity of a microservice architecture as described. A further complication is the novelty

of the concept of microservices, which results in little academic literature being available on

the topic. Because of this novelty, there is also no de-facto way of dealing with such challenges

when constructing a microservice architecture. This contributes to the stated lack of

knowledge.

The intricacies of software architecture design also contribute to the existence of this problem.

Software architects have to deal with multiple goals of different stakeholders that quite often

are not aligned. Conflicting objectives and interdependencies between choices further

complicate their work. Finally, there are often also organisation-specific requirements that

need to be taken into account. These challenges contribute to the fact that there is no common

and comprehensive solution to overcome the challenges when designing a microservice

software architecture.

Heerkens [12] describes how the core problems can be found by tracing problems in this

overview back to their roots and selecting problems that can be changed and are expected to

have a sizeable impact on those further down the chain. When tracing back the core problems

related to microservices, it seems clear that the inherent complexity to a microservice

architecture cannot directly be solved. However, an attempt can be made to investigate the

challenges on communication, integration and management to improve the knowledge on how

to solve them. Therefore, these are seen as the three first core problems and are shown in

bold text in the overview. As for the novelty of microservices; this will change in the future as

more research is done but cannot be directly influenced by this research. The software

architecture design specific requirements can also not easily be mitigated since these will

expectedly always exist. Nevertheless, it can be studied how the complex system

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 20/130

requirements influence the design of a microservice architecture, and in what way they interact

with the challenges in microservices. Therefore, the fact that there is no de-facto solution to

solve architecture design challenges this chosen as the fourth core problem. This is also

shown in bold text in Figure 4.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 21/130

4 MICROSERVICES

In this section, the characteristics and challenges of microservices as described in academia

are discussed. The goal of this is to understand what defining characteristics microservices

have, and which challenges come with this. The overview of challenges from literature and

practice will serve as the solution to RQ-1 and RQ-2.

4.1 General Overview

Microservices are a relatively new concept in the software engineering field and even more so

in the academic research field on this subject. In 2014, Fowler and Lewis formalised

microservices as an architectural term by describing common characteristics and industry

practices [2]. These characteristics gave a first notion of what was considered a microservice

at the time. In one of the first books published on the design of microservices, Newman [13]

described microservices as “small autonomous services that work together”. A few years later,

Dragoni et al. [1] wrote an article about the past, present and future of microservices in which

they proposed to define a microservice as “a cohesive, independent process interacting via

messages”. They describe a microservice architecture relatively straight forward as “a

distributed application in which all its modules are microservices” [1].

In the early days of software engineering, many software systems used to be built as a

monolithic system whose modules cannot be executed independently [1]. Over time, several

approaches emerged to decompose systems into smaller parts, such as object-oriented

programming or component-based software engineering. A Service-Oriented Architecture

builds upon these concepts by using making application components provide services to and

consume services of other components over a network interface. Although this statement is

debated, microservices can be regarded as a particular implementation approach to SOA. In

2016, Zimmermann published a comprehensive analysis comparing the characteristics

ascribed to microservices with SOA principles and patterns [3]. Through a viewpoint-based

analysis they support the position that “microservices are not entirely new, but qualify as “SOA

[implementation] done right”. More precisely, microservices comprise an organic

implementation approach to SOA (just like Scrum is one, but not the only way to practice agile

development).” The emphasis on ‘SOA done right’ is central to this, as they further explain

how “microservices implementations have the potential to overcome the deficiencies of earlier

approaches to SOA realizations by employing modern software engineering paradigms and

Web technologies” [3].

A further indication that the microservices architectural style is currently undergoing a reality

check comes from the Gartner Hype Cycle industry reports for the application architecture

domain [14]. In these reports, Gartner uses their so-called Hype Cycles to help organisations

and practitioners “get educated about the promise of an emerging technology within the

context of their industry”. Their reasoning is that innovations tend to follow a predictable path

of expectations over time in which their expectations are first inflated, they then move through

a trough of disillusionment, after which they move onto mainstream adoption. In the report of

2015, microservices first appeared and were immediately considered to be at the peak of

inflated expectations. This is not to say that they came out of thin air, but probably likely reflects

the fact that only in 2014 the term was formalised to refer to this concept. Microservices stayed

at this peak in the years 2016 and 2017. However, in 2018 they are first seen as on their way

of “sliding into the through [of disillusionment]” [15]–[18]. A graphic representation of the

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 22/130

Gartner Hype Cycle including indications of where microservices were in 2015 through 2018

is shown in Figure 5.

Figure 5 - Microservices on the Gartner Hype Cycle - Base image adopted from [14].

All this can be seen as supportive of the notion that microservices are a new and seemingly

somewhat hyped approach to implementing SOA-like applications and architectures while

using modern technologies. This view is also taken in this research. Using this viewpoint

allows one to see microservices in perspective, and possibly use academic literature related

to SOA as a secondary source of knowledge to gain a better understanding of their traits.

4.1.1 Characteristics

The different terms used in the aforementioned definitions imply certain characteristics that a

microservice will typically possess. One of the most fundamental characteristics of

microservices is that of componentisation via services. Even though a monolithic application

can use some form of componentisation, “all too often these arbitrary in-process boundaries

[i.e. boundaries between components] break down” [13]. According to Fowler and Lewis, “over

time it's often hard to keep a good modular structure, making it harder to keep changes that

ought to only affect one module within that module” [2]. Because of this, there are limits to the

flexibility with which an application can be built or changed. By using services as a means of

componentisation, these difficulties can be reduced.

Microservices are meant to be a separate entity. This enables microservices to be deployed

in isolation and independent of other services, for example in containers or another type of

platform as a service (PaaS). Newman states that “services need to be able to change

independently of each other and be deployed by themselves without requiring consumers to

change” [13]. This refers to ‘autonomous’ in the definition by Newman [13] and ‘independent’

in that of Dragoni et al. [1]. The design of APIs by which services communicate is an important

factor here. The aim is to achieve a high degree of decoupling [2]. Newman again refers to

the question of whether changes in a service can be made and deployed without changing

other services [13] to show that decoupling is imperative to get microservices right. Often,

communication between services is done by means of RESTful API requests. This is reflected

in the definition by Dragoni et al. [1] in the part ‘via messages’.

What makes microservices ‘micro’ is the scope that a single service encompasses.

Microservices are relatively small compared to a typical service found in a SOA. The focus is

on having each microservice provide a single business capability and be as cohesive as

possible [1], [2]. This reflects the characteristics ‘small’ and ‘cohesive’ in the definitions by

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 23/130

Newman and Dragoni et al., respectively [1], [13]. To further explain the term ‘cohesive’,

Dragoni et al. state that this indicates that “a service implements only functionalities strongly

related to the concern that it is meant to model” [1].

Furthermore, services can also be composed of other, often smaller, services. For example,

a service providing customer data could in turn request a user’s profile image and other details

from two different underlying services. Another example is that of displaying a product page

in a web shop. The service serving the page might invoke separate services to provide product

images, prices, specifications, reviews and so forth. The part ‘that work together’ from

Newman’s definition [13] reflects this. This also touches upon the characteristic of

decentralised data management that microservices often incorporate. Whereas a monolith

would often use a single database for data storage and retrieval, microservices regularly make

each service manage its own database [2]. This way, multiple applications that might require

customer data can request this data from the same service. Also, since data is requested

through a service’s interface, the consumer of this data is not concerned with the underlying

database system. These concepts are neatly depicted in Figure 6 by Richardson [19], a

microservice practitioner and advocate.

Figure 6 - Example microservice e-commerce application. Adopted from [19]

4.1.2 Motivations

For the same reason of a system being divided into microservices and data being requested

through a service’s interface, a consumer is often also unconcerned about the inner workings

of a service. Or as described before; interfaces should be decoupled from the programming

logic. Therefore, developers have a choice of programming language, styles and standards to

build a service as fits best. Services that could have specific advantages by using a certain

programming language are free to use this even if none of the other services use this language

as long as they provide a valid response to a request. Fowler and Lewis do indicate though,

that “just because you can do something [i.e. use various programming approaches], doesn't

mean you should” [2]. Sharing useful tools to battle similar problems between services can be

of great value, but the door is left open to choose another approach.

This independence of microservices also helps resilience of a system. Whereas an application

error could make an entire monolithic system crash, if a microservice fails this should not

directly impact other services, enabled by the aim for de coupling. Nevertheless, the

unavailability of a single service should be properly handled to prevent cascading failures [13].

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 24/130

Microservices can furthermore be scaled independently. This means that when one service

requires more resources than another, these can be allocated to those specific instances. This

elasticity is especially advantageous when using cloud platforms such as Amazon Web

Services1 in which pricing is done based on dynamic resource usage.

4.1.3 Deployment

Microservices enable new ways of application deployment. In this scenario, a single service

can be upgraded without directly affecting other services. This is a vast change from a typical

deployment of a monolithic application in which “a one-line change […] requires the whole

application to be deployed in order to release the change” [13]. Because of this, changes are

often grouped for a planned release once in a while. Microservices enable continuous delivery

and continuous integration [1], which in practice means that changes can be released more

frequently.

A common practice in deploying microservices is to use containerisation solutions like Docker

[20] as a deployment model, since they naturally lend themselves to this [1]. A service runs in

a container that isolates it from the underlying operating system and hardware. This use of

containers enables the aforementioned benefits of deploying and scaling parts of a system.

Furthermore, by using containers, separation of different services is realised. For example, it

tackles the problem of ‘dependency hell’ [20] that can arise when libraries or frameworks that

services are built on top of are shared or missing. Finally, containers are portable and can be

moved from one system to another. In the example of Docker, a container will run on any

system that supports the Docker platform.

Moreover, microservices enable more flexible ways of deploying new functionality to a

production environment. Therefore, downtime and service interruptions can be minimised or

in some scenarios almost eliminated. One example is part of Netflix’s delivery pipeline as

described on their tech blog by Ben Schmaus [21]. After testing of a service when changes

have been committed, they first deploy it as a so-called canary. In a canary release, new code

(the canary) is run on a small subset of production infrastructure and is then compared to the

old – baseline – code [21]. When the canary is considered to work as expected, it is then

further deployed on the production infrastructure. Because microservices are independent

entities, this can be a gradual process. Containers with the new code can be instantiated, after

which a load balancer can seamlessly direct more and more traffic to this new version of a

service. This way, downtime is mitigated.

4.1.4 Considerations

As is to be expected, microservices are no universal solution – or so-called ‘silver bullet’ – for

all types of applications. Depending on the type of system that is being developed, choosing

for a microservice architecture might introduce a substantial amount of complexity. This is

because a microservice architecture comes with all the associated complexities of a

distributed system [3], [13]. Therefore, in some cases – especially in less-complex systems –

it might make more sense to build a monolithic system as less productivity is lost to the so-

called ‘microservices-premium’ [22]. Furthermore, any organisation planning to run a

microservices system successfully, should have the knowledge, tools and culture to support

it. Prerequisites for this have also been described by Fowler and Lewis in [22].

1 https://aws.amazon.com/

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 25/130

Fowler also goes into more detail about the possible trade-offs in developing microservices

[23]. Complexity due to distribution is also seen as a main concern. Fowler states that “as

soon as you play the distribution card, you incur a whole host of complexities”. Challenges of

performance, asynchrony and reliability can come into play. Consistency issues are seen as

a further hindrance, as is operational management of the typically many microservices.

Many of microservices’ advantages stated are also not straight-forward to realise. For

example, the flexible ways of deployment that microservices allow must still be designed,

implemented and managed properly by organisations. As Newman puts it: “if you’re coming

from a monolithic system point of view, you’ll have to get much better at handling deployment,

testing, and monitoring to unlock the benefits [of microservices]” [13].

This all demonstrates the decision to newly develop or embark on a transition towards a

microservice architecture should not be taken lightly. There might be reasons to just stick with

a monolith and in other cases the organisation requires just as much redesigning as their

system’s architecture.

4.2 Challenges in Literature

As stated before, deciding to use microservices in a system’s architecture comes with certain

challenges that are not straight-forward to solve. To identify what challenges exist, a

systematic literature review was conducted. The aim is to answer RQ-1; What common design

challenges related to communication between, integration and management of microservices

can be found in academic literature? The literature review aims at giving insight in the

academic part of this question.

At first, the search for challenges will not yet be limited to the challenge categories in RQ-1.

This means that all the challenges found in the searched literature are considered and

determining which of those are in and out of scope is done afterwards. This is done to not

possibly miss any challenges of interest by overly restricting the search criteria. Since this

report is aimed at formulating a research proposal any proposed solutions to the challenges

found will not yet be considered in-depth. The focus is first on understanding the academic

context of what challenges are commonly encountered when implementing microservices, to

get a broad view of the problem. This provides a background to appropriately position the final

research project.

4.2.1 Literature Review Process

The challenges will be identified using a systematic literature review. The PRISMA guidelines

[24] are used to structure this process. Scopus2 will be used as primary search engine for

searching the top 25 IS journals described in [25]. Two of these top journals are not indexed

by Scopus, namely Journal of MIS and Communications of the AIS. These will be searched

independently.

The query used to search publications are as follows:

TITLE-ABS-KEY(microservice OR “micro service”) AND PUBYEAR > 2013

The TITLE-ABS-KEY field code indicates that the title, abstract and keywords of a publication

should be searched. The key terms microservice and micro service are sufficient to select all

publications because Scopus automatically ignores punctuation and includes plurals and

2 https://scopus.com

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 26/130

spelling variants. Similar approaches were taken when searching the two journals not covered

by Scopus. The results were limited to publications from 2014 onward, as the term

‘microservices’ is only consistently used since then [26]. This is reflected in the PUBYEAR

constraint. Online sources, books, theses, talks and presentations were excluded for the

literature review in order to keep a consistent and comparable view of microservices as a

research area.

To first assess the usefulness of the found publications, their titles, abstracts and keywords

were read. Based on the contents of these, the decision whether or not to consider a

publication was made based on the selection criteria outlined in Table 3.

Table 3 - Selection Criteria

 Criteria

Inclusion • Abstract or keywords include key terms.

• Studies indicating a contribution towards discussing challenges in
communication between and integration of microservices.

• Studies focussing on specific challenges in microservices.

• Studies describing challenges in distributed systems and how they
relate to microservices.

Exclusion • Studies using key terms but not referring to the microservices
architectural style described in section 4.1

• Studies only in the form of abstracts, workshops or presentations.

• Studies that do not have microservices as their primary research
topic or analysis.

• Mere mapping studies.

• Studies primarily describing a solution design without explicitly
discussing challenges in microservices.

• Studies not written in English.

After this first pass, 43 studies of potential interest were selected. Then a backward search

was done to identify studies that were referenced in those already found. This resulted in an

additional 8 studies to be considered. For these 50 studies, the full text was screened to

assess whether their contents matched the expectations after the first selection. Ten studies

were removed from the selection for several reasons. Some turned out to not make an effort

to discuss challenges in microservices. Others did not support the claims that were made

about such challenges. A few studies from lower-ranked journals were of questionable quality

and also lacked in evidence supporting claims. This resulted in a selection of 40 studies. An

overview of the selection process is shown in Figure 7 and the full list of selected publications

is available in Appendix A.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 27/130

Figure 7 - Study selection process

Next, all publications were screened and parts discussing challenges in microservices were

identified. These parts were then thoroughly read to find which challenges were discussed.

This was done by assigning keywords to them and creating a list of these. For example,

discussions on ‘service discoverability’ and ‘how to discover services’ were given the keyword

Service Discovery. This was first done to find all keywords that appeared in the selected

publications. After this, a second pass of reading was done to identify any challenges that

might have been missed now that the list of keywords was complete. These keywords were

then classified into eight categories to indicate the high-level topics that they mainly concern.

An overview of this classification along with the amount of times a keyword occurred in the

searched literature is shown in Table 4. Whereas some challenges might fall into multiple

categories, the choice was made to assign them a main category for clarity. Furthermore, the

‘performance’ category could logically be seen as a subset of ‘quality’. However, because

many studies specifically discuss microservices’ performance, this category was added to

emphasize the prevalence of these challenges in literature. Appendix B contains Figure 44

visualising the occurrence of these different keywords and Figure 45 showing the prevalence

of the different categories based the occurrences of their corresponding challenge keywords.

When referring to one of the studies, a number sign following the corresponding entry in Table

4 are used in brackets. E.g. [#1].

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 28/130

Table 4 - Challenge Categories and Keywords with Occurrence

Service Management # Quality # Performance # Organisation #

Service granularity 13 Fault-tolerance 7
Network performance
overhead 6

Organisational structure
and culture 5

Service logging and
monitoring 11 Security 4 Memory consumption 3 Team composition 5

Service management 5 Reliability 3 Quality of Service 3 Legal responsibility 1

Service evolution 4 Maintainability 2
Performance isolation and
characterisation 2

Service boundaries 3 Availability 1

Communication #
Service
Development # Deployment # Development Process #

Communication
mechanisms 11

Service
orchestration 12

Automated deployment
mechanisms 8 Monolith migration 11

Service discovery 9
Service
composition 11 Deployment methods 7 Integration testing 5

Interface design 6 Data distribution 8 Service scheduling 7 Development process 3

Service interconnection 5
Number of
services 3 Resource management 4 Resilience testing 3

Networking complexity 3
Service
specification 2 Multi-cloud deployment 1 Development setup 1

Service contracts 2 Statefulness 2

 Multi-tenancy 1

Service
choreography 1

 Vendor lock-in 1

4.2.2 Results and Discussion

While Table 4 gives an overview of the challenges that were mentioned in the selected studies

and which of these are most prominent in each category, this is just quantitative data. The

identified keywords concern challenges with many different subtleties to them. In this section,

the challenges in each category are discussed with regard to their meanings, viewpoints from

the searched literature, as well as their possible implications on the development of

microservices.

Service Management

A central concern in any microservice architecture is Service Management. In general, this

category contains challenges concerning high-level reasoning about services. The most

abstract keyword found in this category is identically named service management. This

basically entails the supporting activities to guide the design, development and delivery of

services. This is especially important because a microservice architecture inherently consists

of many individual services. The studies that identified this as a challenge, mentioned several

activities related to it such as the creation of an “enterprise wide service repository of all the

microservices specifications” [#39]. Service management is also seen in the sense of lifecycle

management [#8, #39], which ties in with service evolution. As indicated in [#29], “Determining

compatibility and consistency between microservice versions is a continuous challenge for

developers”. When developing microservices, this should be done in a way that allows for

future changes to these services. Put differently, “a system should stay maintainable while

constantly evolving and adding new features” [#7]. Challenges in operational management of

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 29/130

services are mainly expressed as service logging and monitoring concerns. The complex

interactions between many microservices can be hard to comprehend, therefore making it

harder to trace errors and understand the overall system health. Collecting logging and

monitoring data from individual services is relatively straight-forward, but aggregating this data

to create meaningful, actionable insight is far from it.

A step above all of this are the challenges concerning service granularity and service

boundaries. As stated before, microservices are meant to be developed around business

capabilities [6]. However, translating this guideline to practice often proves to be difficult.

Granularity of services refers to “the trade-off between size and number of microservices” [#5],

while service boundaries concerns the decision of what functions are in and out of scope for

a certain service. Questions of how to divide functions between services, how many functions

a service should offer and whether to subdivide certain functions into more, even smaller

functions are seen as hard to answer in practice by organisations. This is reflected by service

granularity being the most mentioned challenge in this overall literature review.

Quality

As with any software system, there are several Quality requirements that must be satisfied

before it can be used in production. Systems consisting of microservices do, however, impose

new challenges to managing these requirements. Fault-tolerance is the most common

challenge discussed in the searched literature. A fault-tolerant system is one that keeps

functioning even in the presence of failing parts such as unresponsive services. As mentioned

in [#7], “even if a single service is not available to satisfy a request, the whole system may be

compromised and experience direct consequences”. It is also stated that “spawning an

increasing number of services will make the system fault-prone on the integration level”.

Similar concerns were raised in other studies discussing this challenge. Also, because of the

generally complex interactions between different microservices, there is a possibility of

cascading failures. In this case, if a single service fails it can trigger the failure of others. Failure

of components should be foreseen and even embraced during the design and development

process of a microservice system, so that the focus shifts from how to prevent failures to how

to best deal with failures when they will unavoidably occur. Reliability and availability are both

related to fault-tolerance. An exemplary definition of these terms and explanation of their

differences is given in [#8]: “Reliability is not to be confused with availability which has a slightly

different meaning, indeed an application may be able to answer requests (it is available), but

its responses are not what should be expected for such requests according to its specification

(it is unreliable)”. They also state that “an application cannot be reliable if it is unavailable,

which means that reliability combines both constraints and is thus a stronger requirement on

a service” [#8]. The challenge of maintaining a highly reliable and available system is

complicated by the fact that microservices are often deployed in a cloud environment, which

is naturally unreliable [#8].

Security is another concern that should be considered very closely. The complexity of a

microservice system “can result in security vulnerabilities affecting one or more vectors in the

architecture” [#9]. Because the amount of services and connections between them, the

amount of attack vectors in the system greatly increases. Part of the security concerns is how

to deal with trust. As also stated by [#9], in a typical microservice architecture “there’s a real

risk that attacks can be easily propagated due to the microservices’ dependencies and (blind)

trust of peer components”. In other words, if one service would be compromised but all other

services trust it nevertheless, the entire system is vulnerable. As mentioned in [#7],

“Considering a microservice trustworthy represents an extremely strong assumption in the

“connectivity era”, where microservices can interact with each other in a heterogeneous and

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 30/130

open way”. They proceed to discuss an example of the Netflix infrastructure being

compromised because of a single vulnerability in a subdomain.

A final challenge is that of maintainability. Because of the aim for loose coupling between

microservices, a microservice architecture should inherently be more maintainable than a

‘traditional’ monolith. However, it is still completely possible to write microservices tha t despite

this characteristic are hard to maintain by for instance writing obscure and counterintuitive

code [#7]. The lesson here is that even though a microservice architecture enables the

development of more maintainable services, this trait does not come ‘for free’. In line with the

recently popular DevOps movement [27], a useful tool to manage maintainability is the use of

the “you build it, you run it” principle [28].

Performance

There are several challenges related to system Performance in a microservice architecture

that have been identified in literature. Network performance overhead is the most prominent

one. Microservices mostly talk to one another over a network interface. The overhead comes

from the fact that because a microservice architecture consists of many small services, all

calls to different parts of an application – other services – happen over the network. Previously

these calls would be in-memory calls to other application components of the same application.

Because accessing a server’s memory is significantly faster and happens with less latency

than having to communicate over the network, this overhead can cause performance issues.

A real-world example of this is given in [#36], in which the authors deploy the same application

as both a monolithic and microservice architecture. They reported having observed “a

significant overhead due to the microservice architecture”. In [#19] the link is made between

service size and network communication overhead. They state that “communication between

multiple microservices can introduce performance issues if the services are too fine-grained”.

The logic is simple, when a service is decomposed into more smaller services, more

communication between parts of this aggregate service happens over the network. Memory

consumption is also mentioned in [#36] as being higher in the microservice setting compared

to a monolithic system. Part of the reason for this is the need for each service to have its own

memory address space [#24]. The overall quality of service (QoS) is also seen as being harder

to manage when for instance using the common HTTP protocol for communication. Many of

the protocols often used for communications between microservices lack QoS guarantees with

regards to transaction management, atomicity, reliable delivery of messages, once-only

delivery and broadcast event-driven actions” [#39]. A final performance concern identified in

literature is that of performance isolation and characterisation. This challenge is raised

because of the de facto way that microservices are deployed; using containers. Compared to

using virtual machines to deploy services, containers give less performance overhead.

However, because multiple containers can run on a single host and thus share resources,

performance isolation is weaker. That is, when different types of microservices are run on the

same physical machine, they might differ in their performance needs. In [#10] the example is

given of one microservice having dominating storage requirements, whereas another service

might be more computation or communication intensive. They state that “balancing resource

consumption and performance is critical in deciding where to deploy microservices”.

Organisation

It is always important to consider the context in which a microservice architecture is developed.

This is where the Organisation category comes in. Apart from the technical challenges related

to microservices, there are organisational aspects that have to be managed to either support

the development of microservice architectures in the first place, and to deal with the

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 31/130

requirements that operating and maintaining such an architecture involves. For a start, having

an organisational structure and culture that is in line with the work practices commonly

attributed to developing microservices is seen as vital to successfully do so. In [#19] a quote

from Newman [13] is used to illustrate this: “In order to develop good application, the

organization must align their structure with the structure of the application architecture”. They

also mention Conway’s law which states that “the organisation which designs the system will

produce a system which structure is a copy of the organisations structure” [29]. This is in line

with [#27], in which a practitioner claims that “domains evolve or are given by the

organizational structure, which eventually matches the system structure”. A common way of

creating an organisational environment suitable for microservice development is the adoption

of DevOps practices. Part of the discussed structural alignment is the team composition of

development teams. It is stated that cross-functional teams are vital for the development of a

microservice architecture to be successful. Previously an organisation could have teams each

specialised in a certain area such as database, UI or backend. However, given that

microservices are built around business functions, it makes sense to build teams to focus on

certain domains such as finance or accounting that consist of developers with all the required

specialisations to build and also operate the services.

A further organisational challenge identified by the searched literature is that of legal

responsibility. In [#9] this challenge is described in the light of security concerns regarding

microservices. They state that because there are more attack vectors when operating a

microservice architecture and because these are commonly deployed in a cloud environment

– often at a third-party supplier – it is unclear who is responsible for a cybersecurity incident

under the current legal framework. Even though this is a real concern, this is the only study

eliciting this concern, and it is questionable to what extent it influences the actual development

of microservices.

Communication

Because of their nature, Communication between services is a fundamental part in

microservice architectures, or any distributed system for that matter. Microservice

architectures generally consist of many services, all connected over the network. A first and

rather general challenge that was mentioned in literature is the network complexity that this

brings. The most important challenge related to communication is the choice of communication

mechanisms. The question of how to conceptually deal with system-wide communication on

a high-level is one that transcends and precedes any technology choices. The decisions made

with regards to this should be well-considered as they affect the entire system. At this level,

decisions such as the choice for synchronous versus asynchronous communication or

request-response versus publish-subscribe patterns are made. In an aim to obtain a high

degree of decoupling of microservices, asynchronous communication is mostly seen as

preferable. However, as stated in [#12], “interestingly, microservices are most suitable for

asynchronous communication, bringing performance, decoupling and fault-tolerance, but the

paradigm shift implied has not been overtaken yet in practice”. Another implication of

microservices to the choice of a communication paradigm is that one “shou ld also take in to

consideration the possibility that a service might not respond” [#19]. The authors in [#24]

discuss choices of inter-service communication patterns that are common in microservice

architectures. The three that they mention are direct calls to services, using a gateway or using

a message or service bus, each with their own advantages and disadvantages.

The technical patterns for enabling this communication between services are also broadly

discussed. A main concern in this is service discovery; the question of how certain services

know about the existence of other services and how to connect to these. As described in many

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 32/130

of the studies such as [#22, #28, #31], service discovery mechanisms are an essential part of

microservice architectures and often prove to be the greatest challenge to successfully

implement such an architecture. This involves implementing a means of discovering which

application instances – such as machines or containers – offer what services and keeping a

service registry of this. When an application or service then wants to connect to another

service, the available instances along with their addresses and exposed interfaces can then

be read from this registry. The function of deciding which instance to connect to can then be

made by the service itself or be taken care of by a load balancer. Besides such service

interconnection challenges, another challenge is how to achieve the integration of services

without being restricted by to some specific technology [#19] such as a certain programming

language. However, as also discussed in [#19], other aspects such as interface design are

also part of enabling this integration. Challenges in interface design are for example

extensibility, backwards compatibility and abstraction of implementation details. Service

contracts are sometimes seen as a means to aid this by defining standard communication

patterns that services should adhere to. The overall goal in all these challenges is to ensure

that changes to one service do not cause system failure and require as little effort as possible

for adapting other services to for instance use new functionalities.

Service Development

Further challenges are seen when making decisions regarding Service Development. When

services are being developed to be microservices, certain challenges become prominent.

Within this category, service orchestration is the most frequently mentioned challenge in the

searched literature. Orchestration involves the arrangement, coordination and management

of interactions between services to allow for execution of higher-level functions. This is a

critical function in operating a microservice architecture. Orchestration is done in a central

way, requiring a conductor that “that will send requests to other services and oversee the

process by receiving responses” [#7]. The contrary of service orchestration is service

choreography, which imposes a decentralised structure to this and “uses events and

publish/subscribe mechanisms in order to establish collaboration” [#7]. From literature it

seems that orchestration is the dominant approach of the two.

A next concern – just as in almost all distributed systems – is data distribution in this new

setting. Often a sharding pattern is used to implement this [#9]. Data consistency and

distributed transactions are not always straight-forward to manage and these challenges are

amplified by the number of services that microservice architectures generally consist of. The

number of services also “poses challenges to evolving microservice-based applications” [#29].

Because system functionality now often requires multiple services to work together to

complete a task, service composition is also identified as a challenge. It is for instance

proposed that a microservices composition framework could be developed, which would

“facilitate knowledge reuse and make it simpler for application engineers to interact with a

complex computing platform” [#10]. The question is how services integrate functionally and

fulfil complex tasks together and how to achieve the integration of services without being

restricted by to some specific technology such as a certain programming language [#19]. In

line with this is the question of how to describe services and their functionalities; i.e. how to

do service specification. This should be done in a standardised way to also facilitate

composition. As stated in [#10], “the topology specification and composition need to cover the

whole life cycle […] of each microservice as well as the application as a whole”. Further

development concerns for microservices identified in literature are statefulness and multi-

tenancy. Ideal microservices are stateless [#11], thus enabling them to be started scaled and

stopped on the fly. Often though, especially when migrating from a monolithic system, some

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 33/130

services need to retain their state. To not interfere with the flexibility of stateless services, one

could decompose an application in stateful and stateless services [#35]. Multi-tenancy is only

mentioned in one publication, but an interesting challenge, nevertheless. It is described as “a

system’s ability to fulfil the requirements of multiple groups of service consumers,

organisations, and even competitors in an industry” [#11]. In other words, it is a challenge to

serve multiple (types of) users with the same system instance. Finally, there is the risk of

possible vendor lock-in when deploying microservices on a commercial third-party platform or

using other proprietary technologies. An example of this could be having an application talk to

a PaaS vendor’s proprietary API directly to request resources. This would inhibit the

deployment of this same application on the platform of another vendor without changing any

code. Another example is using a certain vendor’s software to facilitate service orchestration,

which could lead to a dependency on this technology.

Deployment

After considering the development of services, their Deployment becomes the next

challenging topic. A first challenge is the deployment method used to operationalise services.

Because microservices may each be built differently and even use a different language, the

chosen deployment method should provide support for these multiple types of services. While

using virtual machines to deploy a microservice architecture is possible, using container-

based solutions like Docker [20] is considerably more wide-spread. Microservices are also

commonly deployed on third-party cloud platforms. The choice of deployment method is not

to be made lightly, as “a poor deployment choice can increase cost, and hurt performance,

scalability, and fault tolerance” [#29]. Furthermore, automated deployment mechanisms are

ideally in place to deploy services. Because of the many services that a microservice

architecture can consist of, managing deployments manually can require a lot of effort and be

error-prone. Examples of such deployment automation are tools that enable continuous

delivery and continuous integration practices. Ideally, also rolling upgrades should be

supported [#8]. All of these requirements are important to fully utilise the benefits of a

microservice architecture and to “save time and gain agility” [#37].

Resource management and service scheduling are somewhat related. Resource

management is needed to allocate appropriate resources to a microservice application.

Because of the complexity of interactions between services in such a system, this is no

straight-forward task. Allocating resources should be done dynamically to ensure system

performance under varying load but also reduce operational costs by downscaling when

possible. Scheduling deals with the question of where to deploy what microservices and in

what configuration. Here, there are also many dependencies to keep in mind, such as the

technology heterogeneity, required functionalities such as a load balancer and control and

data flow dependencies [#10]. Because of this complexity, “the mapping of microservices to

datacentres demands selecting bespoke configurations from an abundance of possibilities,

which is impossible to resolve manually” [#10]. These challenges become even more

prominent when considering a multi-cloud deployment setup, in which a microservice

architecture might be distributed over multiple data centres, possibly in different regions. While

a multi-cloud or multi-region setup might be beneficial to for instance serve geographically

distributed users, any communication that needs to happen between these regions “runs the

risk of increasing the application execution time” [#15].

Development Process

Apart from the challenges related to the development and deployment of microservices, the

supporting Development Process should provide the right support to achieve successful

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 34/130

implementation. A main concern seen in literature is how to deal with monolith migration. Quite

often, organisations aspiring to develop a microservice architecture are redesigning an

existing, monolithic system. An important question here is how to decompose this existing

system into microservices. Frequently there is no clear-cut way of dividing application parts

and multiple theoretical approaches are mentioned in the searched literature to tackle this

challenge. This is for example expressed in [#23], in which the authors state that “identifying

components of monolithic applications that can be turned into cohesive, standalone services

is a tedious manual effort that encompasses the analysis of many dimensions of software

architecture views”. Furthermore, a transition away from a monolith and towards a

microservice architecture is not merely technical. As also stated in the Organisation category,

an organisational structure and culture should be in place to support this new paradigm of

developing applications. This is especially important with regards to the development process

used to implement such systems. As mentioned previously, working with DevOps practices is

seen as a means of supporting this transformation and fully embracing the requirements to

the development process that a microservice architecture demands.

There are also technical implications for the development process. In one study the authors

mention the difficulty of deploying a microservice architecture in a development setup.

“Although the application code is now in isolated services, developers must also deploy the

dependent services to run the isolated services on their machine” [#2]. Other challenges relate

to the testing of microservices. As stated before, microservice architectures can be fault-prone

at the integration level. This is why integration testing now becomes one of the most vital parts

in an application’s testing process besides for instance unit testing. However, as stated in

[#18], “unit and integration tests are insufficient to catch […] bugs”. They propose to perform

resilience testing – “testing the application’s ability to recover from failures commonly

encountered in the cloud”. This way, one can better test the behaviour of a microservice

application to be certain that it behaves as required.

4.2.3 Scope and Conclusions

For the literature research, the aim was to first get a general overview of all types of challenges

that could be found and to help answer RQ-1. For this, the appropriate challenges that relate

to communication between, integration and management of microservices need to be

selected. Some challenge categories correspond directly with these subjects, some partially

and others are considered out of scope.

For a start, the Service Management category can be fully considered within the management

scope of RQ-1. As for communication, all challenges in the identically named challenge

category can be also considered here. The one exception here is service integration.

Integration is a part of RQ-1 that was not identified as a separate challenge category during

the literature review, mainly because challenges related to this topic often fit in different, larger

categories. It is possible to select the right challenges for this, though. These are service

composition, specification, the integration and resilience testing of microservices and the

aforementioned service integration. Testing is considered to be in the scope of integration

because – as mentioned before – microservices tend to be error-prone on the integration level.

A mapping of the challenges per category of RQ-1 is shown in Table 5. In this, blue, red and

green identify the Communication, Integration and Management categories, respectively.

Table 6 gives a single overview of these selected challenges.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 35/130

Table 5 - Challenge mapping per category

Service Management # Quality # Performance # Organisation #

[M] Service granularity 13 Fault-tolerance 7
Network performance
overhead 6

Organisational
structure and culture 5

[M] Service logging and
monitoring 11 Security 4 Memory consumption 3 Team composition 5

[M] Service
management 5 Reliability 3 Quality of Service 3 Legal responsibility 1

[M] Service evolution 4 Maintainability 2
Performance isolation and
characterisation 2

[M] Service boundaries 3 Availability 1

Communication #
Service
Development # Deployment #

Development
Process #

[C] Communication
mechanisms 11

Service
orchestration 12

Automated deployment
mechanisms 8 Monolith migration 11

[C] Service discovery 9
[I] Service
composition 11 Deployment methods 7 [I] Integration testing 5

[C] Interface design 6 Data distribution 8 Service scheduling 7 Development process 3

[C] Service
interconnection 5

Number of
services 3 Resource management 4 [I] Resilience testing 3

[C] Networking
complexity 3

[I] Service
specification 2 Multi-cloud deployment 1 Development setup 1

[C] Service contracts 2 Statefulness 2

 Multi-tenancy 1

Service
choreography 1

 Vendor lock-in 1

Table 6 - Challenges per topic of RQ-1

[C] Communication # [I] Integration # [M] Management #

Communication mechanisms 11 Service composition 11 Service granularity 13

Service discovery 9 Integration testing 5 Service logging and monitoring 11

Interface design 6 Resilience testing 3 Service management 5

Service interconnection 5 Service specification 2 Service evolution 4

Networking complexity 3 Service boundaries 3

Service contracts 2

Part of RQ-1 is the search for common challenges. When evaluating the number of times each

of the challenges in Table 6 is mentioned in the searched literature, one could think that a

challenge that is only mentioned twice is uncommon. However, given that the topic of

microservices has only recently attracted significant interest in the academic community, many

challenges have a rather low occurrence. In Figure 8 a histogram is shown of how many of

the challenges occur a certain number of times which demonstrates this. In fact, almost half

of the identified challenges are mentioned three times or less. Therefore, no challenges will

be disregarded based on their occurrence since this might cause important challenges that

have just not gotten enough attention in academic literature to be overlooked.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 36/130

Figure 8 - Frequencies of Occurrences per Challenge

The challenges that are not directly linked to one of the aforementioned topics, are not

necessarily of no importance to the project. Challenges related to deployment, security,

quality, performance and monolith migration should be considered as context to those that are

focussed on. For example, performance considerations could influence the choice of

communication mechanism, but are not the primary focus in this research. Therefore, these

challenges will not be explored in-depth as they are out of the primary scope.

Altogether, the challenges in Table 6 provide the answer to RQ-1: What common design

challenges related to communication between, integration and management of microservices

can be found in academic literature?

4.3 Challenges in Practice

To gain an appreciation of how decision-makers in practice view the challenges related to

communication between, integration and management of microservices, interviews were

conducted with Thales employees. To better interpret their views and opinions, first an

overview of the organisational context is given. This demonstrates the current challenges that

the organisation faces. This should help in answering RQ-2.

4.3.1 Context

In this section, first the systems landscape is examined to find out what complicating factors

might be in place that complicate implementing a microservice architecture. After this, the

motivations that drive Thales Naval to pursue this goal are discussed, followed by a

preliminary stakeholder analysis to guide the exploration process. As discussed in these

sections, there are many factors that make this project unique.

As stated before, the goal of Thales Naval is to transform the TACTICOS CMS to a

microservices architecture. However, this system is no standalone entity as it has to interface

with many connected systems that can be both physical and software systems. Together this

forms a so-called Combat System of a naval vessel. This is contained in the Mission System

(MS) which also includes other systems like communication and navigation. Added to this are

the integration services that facilitate the interfaces with subsystems to end up with a complete

Naval Mission Solution. The goal to move to a more flexible architecture also exists for the

MS. However, for the scope of this assignment, only the CS is to be considered as this is also

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 37/130

the scope of development for Thales Naval. A high-level overview of the components of the

entire system and how they relate to each other adopted from [30] is shown in Figure 9.

Figure 9 – Thales Naval Systems Overview – Adopted from [30]

The TACTICOS CMS is the central command and decision-making element of the CS aboard

a naval vessel. It supports the sensor management, picture compilation, situation assessment,

action support and weapon control functions of this system [9]. The current TACTICOS

architecture has been in service since 1993 [31] and is used on board 160 ships that are

operated by 20 navies [32]. The different applications in this system are distributed over

several operator consoles – also called Human Computer Interfaces (HMIs).

A central part in the current architecture is the use of Data Distribution Service (DDS)

middleware for Real-Time Systems standard, partially developed by Thales Group and

approved by the Object Management Group [33]. Thales Naval uses Vortex OpenSplice [34]

as implementation of this DDS standard that is commercially available from ADLINK

Technology IST. The DDS is a data-centric publish and subscribe style of communications

standard that “enables scalable, real-time, reliable, high performance and interoperable data

exchanges between publishers and subscribers” [35]. This DDS is designed to be data-centric;

rather than focussing on delivering messages regardless of the payload, in this system there

is a data model in place. “The middleware understands the context of the data and ensures

that all interested subscribers have a consistent view of the data“ [35]. The widespread use of

this DDS throughout TACTICOS has considerable implications on its architecture. For

example, it dictates a publish/subscribe structure for communication between components.

Also, all components need to implement the communication with DDS endpoints. Figure 10

illustrates how publishers of and subscribers to data communicate through a so-called global

data space that allows the aforementioned consistent view of data.

Figure 10 - DDS Structure – adopted from [36].

Figure 11 - OSGI Architecture - adopted from [37].

Many parts of the current implementation of TACTICOS are already built in a modular fashion.

A main part of this is the implementation of the Open Services Gateway Initiative (OSGI)

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 38/130

specification that defines a dynamic component system for Java [37]. Modularisation is

achieved by packaging application components as bundles. Underlying service, life cycle and

module layers allow for dynamic connection between bundles, life cycle management and

encapsulation of bundles. These layers are shown in Figure 11. As can be seen, the OSGI

implementation runs on top of Java Virtual Machines. The OpenSplice DDS is used to facilitate

communication between these instances. The fact that Thales Naval is already building

modular software using the OSGI specification should help in a future transition towards

microservices.

As shown in Figure 9, the CMS has to interface with so-called sensors and effectors. These

are the physical devices used aboard a naval ship. Sensors are devices that monitor the

environment, effector can interact with the environment. Examples of this are radar and sonar

(sensors) as well as guns and missiles (effectors). Thales Naval manufactures some of these

devices and often they are used together with the TACTICOS CMS. However, these sensors

and effectors can also be sold separately to a navy that might use another CMS. Devices

connected to TACTICOS might also be from other manufacturers. Therefore, the specification,

design and management of interfaces in both the devices as well as TACTICOS is essential.

This part of the system’s communication structure is one of the most critical elements. It is

also indicated that the question that Thales Naval asks largely originated from this work area.

Connecting to devices is often done by adapting any proprietary interfaces to a standard

format. When devices from external suppliers need to be adapted towards TACTICOS, their

interfaces are adapted to a generic format understood by the CMS first. The internally

standardised format that Thales Naval uses in the devices they manufacture is called the Open

Sensor Interface (OSI). It consists of different components to specify functionalities. Different

components together make a composition of functionalities that altogether facilitate the

functionality of a device. For example, certain functionalities between radar and sonar devices

may be similar. The components for these base functionalities can then be shared and

together with device-specific components form a composition. External customers often

require an adaptation from this standard interface to their dedicated interface, controlled by

themselves.

Thus far, Thales Naval has started several initiatives to investigate how a microservices

architecture can be implemented for TACTICOS and the combat system in a broader sense.

Apart from small-scale internal trials, there have also been larger, inter-organisational projects.

The most prominent example of this is the INAETICS architecture project [38] with the goal to

“define and demonstrate a dynamic service oriented reference architecture” that fits the

requirements that real-time systems like TACTICOS face. This project is a collaboration

between – among others – Thales Netherlands, OpenSplice and the University of Twente.

This architecture’s basic goals are to be technology agnostic, open and in the case of Thales

Naval supports migration from the system currently in place. It is built upon principles of

software modularity, a dynamic component architecture, dynamic application assembly and

deployment, technology abstraction, service-based interaction and risk-adaptive security.

Please note that these principles could be assigned to the basic principles of a microservice

architecture as well. Even though in the INAETICS architecture microservices are not primarily

considered, they are most certainly not ruled out.

Another current initiative is the GAUDI project with the goal to integrate the several self-

contained systems such as the Combat, Platform and Bridge Management Systems and make

all information aboard a naval vessel more easily accessible [39]. The aim is to also have a

shared hardware platform and shared software services. This is seen as a way to increase

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 39/130

scalability of the systems and reduce life cycle costs. In this project, a SOA as well as

microservices are considered as implementation approaches.

4.3.2 Interview Process

Seven employees of Thales Naval were interviewed in order to answer RQ-2. Respondents

with different functions and hierarchical positions were chosen to get a situational overview

that was as broad as possible. An overview of the different – anonymised – respondents is

shown in Table 7.

Table 7 - Interview respondents

Function Main Focus Areas

1 Chief Architect CMS, microservices, interfaces

2 Chief Architect Sensors, interfaces

3 Infrastructure Architect Infrastructure, microservices, interfaces

4 Infrastructure Architect Infrastructure, microservices, interfaces

5 Cloud Architect Cloud Infrastructure, APIs

6 Software Architect Service-orientation, interfaces

7 Software Architect Sensors, service-orientation, interfaces

The interviews were conducted in a semi-structured qualitative way. Respondents were all

asked several predefined questions and depending on their answers, follow-up questions

were asked. The overall goal of the interviews was to get an in-depth insight in the challenges

related to microservices that are perceived at Thales Naval. For this reason, the analysis of

these interviews will also be done in a qualitative way. Just as in the literature review, the

scope of the interviews was not limited to the challenge categories found when answering RQ-

1 on beforehand so that no challenges would be missed. In line with the recommendations in

[40], the interviews were not recorded as to not influence the respondents’ answers and give

them the feeling that they could talk freely.

The interview structure was as follows:

- First this study and its goal were introduced, as well as what the respondent’s

contribution to the research would be.

- Then a few basic questions were asked to the respondent such as their background,

function and what they do in their daily work. This is to understand the context from

which they view the discussed subjects.

Questions:

“What is your function within the organisation?”

“What other functions have you had before this, and how did these influence

your current work?”

- After this, a baseline was set on what was meant with microservices. The respondent

was asked if they were familiar with the subject and if so what their understanding of it

was. If this differed significantly from what is understood by microservices in this study,

or if they were not familiar with the subject, microservices’ main characteristics were

introduced to them. This way, all interviews started with a similar understanding of the

subject for all respondents.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 40/130

Questions:

“To what extent are you familiar with the term microservices?”

“How would you best describe the subject of microservices?”

“Could you name any defining characteristics of microservices?”

“To what extent have you encountered microservices in your daily work?”

- First the respondent’s views on the proposed transition toward a microservice

architecture were discussed. This could both include motivations for this shift as well

as possible discouraging factors. Obviously, when a respondent would mention

hindrances for moving to microservices these could already be seen as challenges.

Questions:

“Are you aware of a possible future transition of TACTICOS towards a

microservice architecture?”

“What is your view on this transition?”

“What limitations do you see in the current system that might lead to this

transition?”

“What further motivations for moving to a microservice architecture would you

consider?”

- If the conversation on challenges had not yet started during the discussion following

the previous question, the respondent was explicitly asked for any challenges that they

foresaw or possibly have already encountered when considering a transition to a

microservice architecture. The respondents were first free to speak their mind on the

different types of challenges that they envisioned. This was done to not limit the

discussed challenges to those already identified through literature research.

Question:

“What possible challenges do you foresee when transitioning TACTICOS

towards a microservice architecture?”

- After this, any categories of challenges that were not yet considered were discussed

with the respondent. The categories from the literature review were used for this, along

with the individual challenges in these categories. This way, it was possible to get the

respondent’s view on any challenges that they had not yet considered by themselves.

Questions:

“Would you consider challenges related to <category> as difficult in this

transition?”

- For the challenges identified in these discussions, the respondent was also asked why

they felt like it was a challenge in the first place, as well as in what way they thought

this would impact the implementation of a microservice architecture.

Questions:

“Why do you think <challenge> is a challenge in the first place?”

“In what ways do you think <challenge> might affect the transition of

TACTICOS towards a microservice architecture?”

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 41/130

- During the interview, notes about the occurrence and difficulty of discussed challenges

and categories were made. Before finishing the interview, the respondent was asked

to verify whether these represented their views correctly.

- Finally, the respondent was of course thanked for their participation.

The challenges will be discussed using the categories identified in the literature review. Due

to the qualitative nature of the interviews, each challenge category will be discussed

qualitatively rather than counting how many respondents recognised each single challenge.

For each category it is also indicated whether it was seen as challenging to identify the ones

that have the highest priority for Thales Naval. This can then be used to answer RQ-2: What

common design challenges related to communication between, integration and management

of microservices can be found in practice?

4.3.3 Interview Results and Discussion

In general, all respondents were familiar with the concept of microservices. There was a small

difference though in their nature of understanding; those with a more managerial function

would describe microservices on a more abstract level and by their conceptual traits, whereas

others would describe them in a more technical way. The concept of microservices as

described in this study was discussed with all respondents, and they all agreed that this fit

with their understanding. Some also indicated to have already had hands-on experience with

implementing microservices through for instance pilot projects. All of them were also aware

that moving towards a microservice architecture was considered as a future objective for

TACTICOS. The respondents’ opinions on this differed somewhat, with some considering it

as a logical goal and others indicating that there were still many challenges ahead. This was

where the discussion on challenges naturally started with those respondents. The limitation in

the current system that was described most was inflexibility in development and configuration.

Increased opportunity for modularisation and designing generic modules, as well as isolation

through containerisation were seen as important motivations for the evolution of TACTICOS.

To follow the same order of challenge categories as in the literature review, Service

Management is first discussed. All respondents indicated that a certain degree of management

would be necessary to successfully operationalise and maintain a microservice architecture.

Especially centralised specification and reasoning about service evolution are seen as

challenges. One respondent mentioned service evolution early on in the interview as vital due

to their experience with a pilot system using microservices. Other respondents indicated the

importance and difficulty of logging and monitoring. One interesting notion with this challenge

was that, while respondents understood the choice of including it in the service management

category, many felt that a separation between the actual tools to implement logging and

monitoring, and the managerial challenge of system observability should be kept separate.

Observability in this case refers to the extent in which a system’s state can be inferred and

analysed from the logging and monitoring output. Furthermore, it was indicated that current

systems already use some degree of componentisation. Nevertheless, service granularity was

still seen as a possible challenge because of the generally narrow scope of a single

microservice. Overall this category was considered to be important and challenging and

therefore a priority.

As for Quality aspects of a microservice architecture, security is seen as the most important

challenge to solve. This is mainly due to the nature of the software systems built by Thales

Naval. Certain challenges such as how to deal with security zones and managing encryption

certificates are not straight-forward to figure out in this new architecture. Maintainability is also

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 42/130

seen as difficult to get right, but the respondents’ overall opinion is that this can be partially

managed by managerial measures. The other challenges in the quality category are also seen

as important, but not too challenging to solve. Rather, the general opinion is that when

microservices’ traits are embraced, they should be in a good position to ensure fault-tolerance,

reliability and availability. Because of this, the priority of this category is neutral.

Respondents had mixed opinions on the challenges related to Performance. On the one hand,

several respondents indicated to foresee or have already encountered noticeable network

performance overhead. This challenge was seen as most prominent and impactful. However,

while the importance of the several performance-related challenges was recognised,

respondents also indicated that these would probably not cause many difficulties. If for

instance any excessive network performance overhead would be encountered in the transition

towards microservices, this could be fixed by improving the networking infrastructure to handle

more load. The cost of fixing such performance challenges was not seen as impeding this

transition. Therefore, managing performance-related concerns is not seen as a main priority.

Next there are the Organisational challenges. When discussing this topic, one respondent

immediately mentioned the importance of ensuring that people have the right mindset when

embarking on this transition to microservices. The challenges of organisational structure and

culture as well as team composition were seen as important and somewhat challenging.

Respondents acknowledge that in their case the right structure and culture should at least be

in place in their department, and that building the right teams is key in enabling the

microservice transition. Thales Naval already implements agile practices in their development

process. Therefore, they are already off to a good start in this regard and this category is not

seen as too challenging. They could also see ways in which the legal responsibility challenge

would be applicable, but this challenge was not discussed in-depth because of its mainly legal

nature.

The Communication category was seen as both important and challenging by the respondents

and is therefore a main priority. Respondents often indicated that the choices made on for

example the communication mechanisms topic have a large impact on the overall system

structure and behaviour. Also, when considering the transition from Thales Naval’s current

systems, it was indicated that the current widespread implementation of the OpenSplice DDS

might complicate the move to microservices. This is because many decisions about

communication mechanisms, interface design and interconnection of system components are

currently constrained by this underlying middleware. Furthermore, interface design is seen as

a challenge, especially considering that some services should provide multiple different

interfaces and the system should support future changes well. Thus, an adaptable and

extensible interface is required. Networking complexity was specifically mentioned as a

challenge by one respondent, after their experience in a pilot project concerning

microservices.

Participants indicated that the concerns related to Service Development were also challenging

to manage and that this category was of high priority. One respondent said that in a way

currently there is a set of fixed patterns, assumptions and choices - a kind of ‘recipe’ of doing

things in system development. This will obviously become obsolete when developing

microservices. There are now also more challenges related to distribution of data and the flow

of data through the system will change drastically. Furthermore, it is indicated that even though

applications are already developed to be modular, individual modules are generally still

relatively ‘large’. Statefulness is also considered hard to minimise. In contrast, service

specification is not seen as particularly challenging by the respondents because of experience

with this from previous projects. Service orchestration was furthermore seen as vital to get

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 43/130

right, but through previous projects there was already a lot of knowledge about this challenge.

Interestingly, even though the challenge of vendor lock-in was only sparsely mentioned in

literature, many of the interview respondents thought that this challenge was of high

importance. The concern was not as much about being dependent on a single vendor, but

rather a single technology. Because Thales Naval’s systems generally are expected to have

a long lifespan, it is seen as important to use proven technologies that are expected to be

supported well in the future either by their vendor or developer community.

Deployment was seen as important to get right, but not highly challenging. Thales Naval has

already been working on multiple pilot projects that use a distributed, containerised service

architecture. From this there is already a lot of knowledge on challenges such as automated

deployment mechanisms and deployment methods. A recurring requirement to the chosen

solutions is their ‘maturity’; i.e. how stable and production-ready technologies are. One

respondent described another pilot project in which service scheduling and resource

management aspects were also investigated. These examples demonstrate that Thales Naval

already has certain experience with the challenges in this category.

Challenges related to the Development Process were also considered of high importance but

not all too difficult. Just as in literature, monolith migration was by far considered the hardest

challenge in this category. Because of for example the aforementioned existing technology

choices and communication structures, it is not straight-forward to plan a migration process

from the current systems to a microservice architecture. The development process itself is

expected to be easily adaptable to support microservice development. Currently, Thales Naval

is already following many agile practices in their process. This is not to say that no changes

are needed, but these will probably be easy to implement. Several changes will have to be

made to the process for testing though. These are seen as possibly difficult to solve by the

participants.

4.3.4 Conclusions

As stated, some challenge categories were considered more important than others by the

interview respondents. Due to the qualitative nature of the interviews, the results will also be

discussed in a qualitative way in order to answer RQ-2.

A so-called PICK-chart is used to show the results graphically in Figure 8. This chart has its

origins in Lean Six Sigma (LSS) literature, where it is used to prioritise solution ideas. As

described in [41], these ideas or solutions are represented in four quadrants; possible,

implement, challenge or kill. Their classification depends on the expected effort required to

implement it and the expected payoff. It is important to note that items are merely classified in

one of these quadrants and the axes do not represent a continuous scale. The foreseen use

in LSS literature is to first implement those solutions that maximise payoff while requiring

limited implementation effort. These would fall in the implement quadrant. The addition of ‘Just

do it’ in this quadrant has become common in practice to show that these solutions can be

accomplished immediately with little difficulty [42]. In the case of representing the interview

outcomes, chis chart can be read as a classification of a category’s importance (payoff) and

difficulty (implementation effort) by participants.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 44/130

Figure 12 - PICK Chart of Challenges from Interviews

In general, it can be seen that all categories were seen as important to consider by the

participants. They recognise that in order to successfully implement and transition to a

microservice architecture, none of the categories should be discarded. There are, however,

several categories that are seen as more challenging than others by the respondents. The

most notable categories are Service Management, Communication and Service Development.

These categories concern challenges and design decisions that are generally difficult to solve

and have a notable impact on the overall system design. Therefore, they are seen as a first

priority to figure out. That is not to say that the challenges in other categories are easy to

resolve; they are just considered less of a priority than those in the aforementioned categories.

In some categories there were also individual challenges that were seen as particularly

challenging, apart from the category as a whole.

The view that arose from the interviews is that the success with which the challenges in the

categories that have a high payoff but are hard to implement are addressed, can make or

break the success of transitioning TACTICOS to a microservice architecture.

When comparing Thales Naval’s view on challenges from the interviews with that from the

literature review, several details stand out. A first interesting insight is that the aforementioned

categories that were seen as challenging in the interviews, also accounted for a large part of

the challenges found in literature. When looking at Figure 45 in Appendix B, it can be seen

that these categories cover almost half of the occurrence of the found challenges. On the

contrary, other prominent categories such as Deployment and Development Process were not

seen as highly challenging by the respondents. This can probably be explained by current

experience in these areas or the fact that Thales Naval has already taken steps to facilitate

certain of these challenges. As stated before, for deployment there have already been some

pilot projects and they are already implementing agile practices in their development process.

Nonetheless, it should be considered that because these categories are well-represented in

literature, those challenges might be harder to solve than is currently thought.

Some individual challenges also stood out during the interviews. While these were not always

found to be present in much literature, they do illustrate what difficulties respondents foresee

in the process of implementing a microservice architecture. These can largely be explained

by the business context that Thales Naval operates in. For instance, security is naturally a

prominent in naval systems engineering. As was also described, the long lifespan of the

systems developed by Thales Naval cloud make for the need to avoid vendor lock-in more

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 45/130

than in other types of organisations. Furthermore, the suggestion of adding observability as

an additional Service Management challenge seems to make sense, since this builds on top

of output of monitoring and logging tools. In the description of the logging and monitoring

challenge from literature, the focus on creating meaningful and actionable insight was already

noted. By splitting up this challenge in a management-related one that can use guidelines for

the observability aspect and choose between software alternatives to implement logging and

monitoring, both challenges can likely be better addressed. The logging and monitoring

challenge can then be placed in the integration category. A revised version of Table 6 is shown

in Table 8 below. The occurrence for the challenge of observability is kept empty, since this

was not directly counted during the literature review.

Through these interviews, a view from practice at Thales Naval on the challenges when

implementing microservices could be compared to that from literature. This helps to better

understand the practical context and nuances surrounding these challenges.

Table 8 - Final Challenges Overview

[C] Communication # [I] Integration # [M] Management #

Communication mechanisms 11 Service logging and monitoring 11 Service granularity 13

Service discovery 9 Service composition 11 Observability

Interface design 6 Integration testing 5 Service management 5

Service interconnection 5 Resilience testing 3 Service evolution 4

Networking complexity 3 Service specification 2 Service boundaries 3

Service contracts 2

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 46/130

5 CHALLENGE DEPENDENCIES AND POSSIBLE
SOLUTIONS

To enable the decision-making framework to be adapted and used to make decisions related

to communication between, integration and management of microservices, the dependencies

between challenges related to these categories must be established. Also, to help give

practical insights about the alternatives and guidelines available for managing these

challenges, possible solutions should be investigated. By giving examples of solution domains

to these challenges, decision-makers have a starting point for solving them. To end up with

possible decision alternatives and their characteristics, it is first important to gain an

understanding of the conceptual aspects of each challenge and what high-level,

architecturally-important decisions can be made regarding them. There might also be general

guidelines that are important to consider regardless of how a challenge is dealt with.

Furthermore, it is important to note the related concepts to these decisions and guidelines to

facilitate the search for solution alternatives. Therefore, for each challenge a set of possible

decision alternatives, guidelines and related keywords for further searching for solutions are

established. If any dependencies on superior choices are found, these are also documented.

Note that this overview is not exhaustive, as there are too many possible alternatives and

guidelines available to document in a coherent way. It should rather serve as a starting point

from which solution alternatives and guidelines can be searched and selected.

In the preceding literature research, many academic papers were searched for microservice

challenges. The descriptions in these papers serve as a starting point for explaining each

challenge in more detail and finding possible solutions to them. Often, descriptions and

solutions are also described in practice, through sources such as technical blogs, large-scale

software development organisations or collaborations between organisations through for

instance the Cloud Native Computing Foundation3 (CNCF). Even though these practical

sources might not give information as objective as in academia, their input can enhance the

challenge descriptions with practical insights. Together with academic literature, this should

make for a well-balanced starting point for describing these challenges and their possible

solutions. The CNCF claims to be vendor-neutral and is part of the non-profit Linux

Foundation. It has also been referenced in microservice-related academic works such as [43],

[44]. CNCF also maintains a so-called landscape [45] to show what software solutions can be

used for different parts of a microservice architecture. This can serve as a viable source of

solutions that are used for different challenges in practice.

The descriptions in this chapter form the answer to RQ-3: What are the dependencies between

the identified challenges and what possible alternatives and guidelines are available as

solutions? This can then be used as theoretical input for the artifact to be designed.

5.1 Management

Even though microservice challenges are often seen as rather technical, many deal with

management-level decisions to be made in organisations. Several challenges for which this is

true have been identified through the preceding literature research and are described in this

section. A neat example of a management-related challenge is that of service evolution; i.e.

3 https://www.cncf.io/

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 47/130

how to build microservices so that future changes can easily be made. Even though this

challenge is partially of influence on the actual implementation of a microservice, the bigger

question is what process is used to facilitate these changes and how to agree on the way of

implementing new functionalities. Zimmermann puts it in these words: “such architecture

design issues transcend both style and technology debates” [3]. Generally, there seem to be

no clear-cut decisions to choose between for addressing these management challenges.

Therefore, for the five challenges in this category guidelines are provided to help manage

them. An overview of the management challenges is shown in Figure 13. The challenges are

not connected by arrows indicating dependencies, since no clear dependencies between them

could be found. This is most likely due to the absence of distinct decisions to be made for each

challenge.

Figure 13 - Management-related Challenges

Service Granularity

The most mentioned challenge in the preceding literature research was that of service

granularity; i.e. how ‘big’ individual services should be. Microservices are meant to be

developed around business capabilities [6], though translating this guideline to practice often

proves to be difficult. In a paper discussing this challenge, Hassan and Bahsoon [46] identify

two main trade-offs that are made when determining a granularity level. The first is that of the

size versus number of microservices in a system. On one hand, it could be said that more

services should allow for more separation of business functionalities. On the other hand, this

also implies that as services get more numerous, increased communication between

individual services is required. The next trade-off identified by the authors is between satisfying

local versus global non-functional requirements. The example given here is that of minimal

performance requirements such as load time for a system as a whole, as well as for an

interaction between two services. The overall system load time is dependent on the speed of

underlying service communication, which in turn is influenced by the number and size of

services. The authors take the view that “aggressive isolation of business functionalities is not

necessarily ideal for all scenarios of the [system] environment” [46]. Dragoni et al. explain how

service granularity is supposed to be preserved even in an evolving system. “Idiomatic use of

the microservices architecture suggests that if a service is too large, it should be split into two

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 48/130

or more services, thus preserving granularity and maintaining focus on providing only a single

business capability” [1].

What makes addressing this challenge so hard is that one cannot easily give a number of

function points or lines of code that a service should be limited to for ‘optimal granularity’. As

Gouigoux and Tamzalit outline: “there is currently no commonly-accepted definition of the

desired size of a microservice” [47]. This is also highly dependent on the context a system is

developed in, an organisation’s goals for the system, as well as development and operational

trade-offs. Besides this is the cost factor of testing and operating a microservice architecture.

Service granularity affects these costs as shown in Figure 14 adopted from [47].

Figure 14 - Service Granularity versus Costs - adopted from [47]

On the top, there is a range of granularity levels for microservices. The extremes are shown

as monolithic and lambda. The finest-grained example of Lambda comes from Amazon’s

Lambda4 service in Amazon Web Services and describes so-called “nanoservices” which are

functions executed in a serverless fashion in response to events. As a concept, these are out

of scope for present research. The main point here is that they are an example of an extremely

fine-grained architecture. The three lines in this graph each represent cost. The blue line refers

to cost of quality assurance. The authors argue that as microservices become more fine-

grained, the costs of testing and validating services decrease as this can now be done one-

by-one. The red and green lines illustrate costs involved with deploying and operating

microservice architectures with a certain granularity level. In the case of the red line, no

deployment automation for automatically managing and assigning resources to services is in

place, whereas with the green line there is. This graph first of all suggests that deployment

automation definitely pays off when developing a microservice architecture and is required to

keep deployment costs in check with increased granularity. Also, higher granularity only

marginally increases deployment costs from a certain point.

4 https://aws.amazon.com/lambda/

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 49/130

Guidelines:

- Consider the balance of the size versus the number of microservices

- Assess the implications on non-functional requirements and costs of different

granularity levels

- Ensure deployment automation is in place to make more fine-grained microservices

economically feasible

Keywords: service granularity, service size, number of services

Service Boundaries

While service granularity focusses on the size and number of services, service boundaries

concerns the decision of what functions are in and out of scope for a certain service. Questions

of how to divide functions between services, how many functions a service should offer and

whether to subdivide certain functions into more, even smaller functions are seen as hard to

answer in practice by organisations. When cutting up a system into microservices, basically

service granularity deals with how many cuts to make, and service boundaries with where to

make these cuts.

As previously described, microservices are often built around business capabilities.

Richardson [48] discusses how to do this, stating that “an organization’s business capabilities

are identified by analyzing the organization’s purpose, structure, and business processes”.

Each business capability can have several sub-capabilities. These can then be mapped to

services. This is not always one-to-one, as business context can influence when it is logical to

develop separate services for several sub-capabilities or capturing these in one service if they

are similar. Also, service granularity can come into play in the decision whether to split up a

service. This mapping can also change over time as the system evolves and functionalities

change.

Another approach to this that is well-known and widely used in the microservice field is that of

Domain Driven Design (DDD), outlined by Evans [49]. DDD defines a separate domain model

for each subdomain which are established similarly to the approach to decomposing around

business capabilities. The scope of such a domain model is referred to a bounded context.

According to Richardson [48], each bounded context can then be mapped to a service or set

of services. In their view, DDD and the microservice architecture are in almost perfect

alignment because of the easy mapping from bounded context to microservices and the

similarity between autonomous teams that own services (proposed in microservice literature)

and DDD prescribing that each domain model should have its own team.

Guidelines:

- Use a structured approach to define service boundaries

- Ensure that the approach used aligns with microservice objectives

- Consider using Domain-Driven Design, as it is widely known and used in the

microservice field

Keywords: service boundaries, business capabilities, domain-driven design

Observability

The complex interactions between many microservices can be hard to comprehend, therefore

making it harder to trace errors and understand the overall system health. Collecting logging

and monitoring data from individual services is relatively straight-forward, but aggregating this

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 50/130

data to create meaningful, actionable insight is far from it. Observability refers to the extent in

which a system’s state can be inferred and analysed from the logging and monitoring output.

The actual tools to support gathering information about a system’s state and enabling such

analyses are part of the integration category of challenges. On a management-level, it is

important to determine the patterns used to enable observability in a microservice architecture.

The behaviour of microservice architectures is intrinsically hard to keep track of. In his book,

Newman states: “We cannot rely on observing the behaviour of a single service instance or

the status of a single machine to see if the system is functioning correctly. Instead, we need a

joined-up view of what is happening” [13]. Different patterns to enable this are outlined by

Richardson [48]. Commonly used first steps are to have services provide health check APIs,

and aggregating system-wide logging output. Health check APIs are useful for keeping track

of whether a single service is able to fulfil requests. The implementation of such health checks

can be tailored to fit with a service’s functionality. The tests that are done to assess a service’s

health can for instance differ between a service that accesses a database and an upstream

service that aggregates data from multiple underlying APIs. In the event of a failure, these

health check APIs could also provide more information about what is going wrong, which is

useful for observability. Log aggregation is aimed at understanding the system-wide status.

Logs of all services are aggregated in a centralised database and can then be searched and

used for alerts about unexpected system behaviour.

More advanced patterns are also outlined by Richardson [48]. Distributed tracing is a pattern

in which each external request is assigned a unique identifier and its flow through the system

is recorded by a centralised server. Subsequently, the flow of this request can then be

analysed and visualised through special tooling. This approach is popular in the microservice

field, as it allows to get a better understanding of the dynamic behaviour of a microservice

architecture. Other patterns for observability include reporting application-specific metrics to a

centralised system and exception tracing. Audit logging is a final example discussed by

Richardson and is aimed to help customer support, ensuring compliance and detecting

suspicious behaviour by recording user actions in a database.

Industry reports also shed some light on realising observability in practice. Engineers Lew and

Narayanan at Netflix share their lessons learned from building observability in practice in a

tech blog article [50]. Several examples are relevant in this context. First, on the scale at which

Netflix operates, aggregating all raw logging information was seen as not scalable enough.

This resulted in a switch to analysing streaming logs, filtering and analysing these and only

storing relevant information for longer. They also argue that distributed tracing should be

augmented with additional information to truly be able to understand the behaviour of their

microservices-based system. Furthermore, when alerting based on metrics, the engineers

argue for focussing on anomaly detection and analysis of metrics correlation to focus on truly

relevant system behaviour, rather than just alerting when a certain threshold for a metric is

exceeded.

Guidelines:

- Determine which observability patters best fit with the system’s characteristics

- Aim at understanding the system’s behaviour to generate actionable insights

- Check whether the observability patterns used support the scaling requirements to a

system

Keywords: observability, service health, service health checks, log aggregation, distributed

tracing, application metrics logging, exception tracing, audit logging

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 51/130

Service Management

One of the most abstract challenges found in this category is service management. This entails

the supporting activities to guide the design, development and delivery of microservices.

Because a microservice architecture inherently consists of many individual services, their

management becomes increasingly important. As Yu states: “Microservices though

independent, do not exist in silos. […] They are part of the enterprise landscape and need to

participate in the enterprise business process” [51]. In several studies discussing this

challenge, various activities related to it were mentioned. One example is the creation of an

organisation-wide service repository of all the microservices specifications. Additional

information like status, ownership, can also be included. Such activities would improve

organisation-wide understanding of what services exist and are used, and facilitate reuse of

existing services where possible [51]. Furthermore, information on services’ lifecycle status

can also be included in this repository. Also, best practices and organisation-specific

knowledge on the development and deployment of services should be accessible to the

development teams concerned. This way, the development of new functionalities can be

accelerated. In these aspects, the requirements for management of microservices are

somewhat similar to those of managing a SOA. Though, given that a microservice architecture

typically consists of many services, these activities become all the more important. Also,

service management related activities need not always be standalone initiatives. For example,

organisations developing a microservice architecture can already be using a DevOps

approach to software development. Zimmermann call this a form of “lean but comprehensive

system/service management” [3]. In this case, activities related to service management are

already being put into place.

Guidelines:

- Ensure an organisation-wide service repository is in place

- Develop best practices for developing and operating a microservice architecture

Keywords: service repository, service management, system management, service lifecycle

management

Service Evolution

Changes to a system during its time in operation are almost inevitable. Industries change, as

do business goals and requirements to a software system. The fact that microservices

generally exhibit a high degree of decoupling [2] – i.e. changes in a service can be made and

deployed without changing other services [13] – enables organisations to more easily change

the functionality of individual services. However, microservice architectures are more

dependent on the interactions between such individual services. As stated in [52] by Sampaio

et al.: “Determining compatibility and consistency between microservice versions is a

continuous challenge for developers”. Put differently, “a system should stay maintainable while

constantly evolving and adding new features” [1]. Other services can – when developed well

– be largely unaffected by changes in one. However, this means that providing new or

deprecating old functionalities in which multiple services are involved requires coordination

between the teams that developed them. This question is therefore not limited to merely

technical solutions. It also concerns the process that is used to facilitate these changes and

how to agree on the way of implementing new functionalities.

Several approaches exist to managing changes in software development. In the field of

microservice design, much emphasis is already put on mechanisms to tolerate changes in

services without directly influencing others. The goal is to anticipate that other services will

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 52/130

change or malfunction and figure out how to handle this. Generally, changes to services will

translate in their APIs changing, as these are the primary means of communication with other

services. Richardson [48] puts forward some strategies to manage evolving these APIs, such

as Semantic Versioning and aiming to make changes as backwards-compatible as possible.

Services should be built following the so-called Robustness principle, originally written by

Postel in the specification for TCP: “Be conservative in what you do, be liberal in what you

accept from others” [53]. In practice, this translates in ‘older’ clients ignoring any unknown

extra information in an API call’s response, as well as services offering default values when

certain request attributes are missing. On the other hand, Fowler proposes that it is best to

“only use versioning as a last resort” [2]. In their view, “versioning can significantly complicate

understanding, testing, and troubleshooting a system”. Nevertheless, they describe similar

approaches to ensuring compatibility as Richardson, including following the Robustness

principle. Thus, both authors share similar ideas about handling service evolution.

In the case of having to make major, breaking changes, offering different API versions or

endpoints simultaneously is seen as a way to ensure that older clients keep functioning as

expected [19]. Breaking changes cannot always be avoided at all costs. Subsequently, the

way and timeline for deprecating the old major version of the API should be coordinated within

the organisation. For example, it can be agreed upon that all existing services should

implement the new API within a certain amount of time.

More detailed theoretical approaches are also available, such as the one by Sampaio et al.

[52]. In their paper, the authors propose a service evolution model in which they “combine

static and dynamic information to generate an accurate representation of the evolving

microservice-based system”. This should for example help practitioners manage service

upgrades and architectural evolution. Other insights from practice are described by Bogner et

al. [54] in a paper on the evolvability of microservices. Through interviews they found that

generally “there were two different approaches for assuring evolvability: very decentralized

with very autonomous teams […] vs. centralized governance for macroarchitecture,

technologies, and assurance combined with a varying degree of team autonomy for

microarchitecture […]” [54]. The former approach focusses on individual responsibility for

assuring evolvability by for instance relying on the “you build it, you run it” principle [28]. The

latter focusses more on guidelines, principles or standardisations that software engineers

have to take into account.

Guidelines:

- Ensure service robustness to anticipate changes to services when developing a

microservice architecture

- Coordinate the implementation and timeline of major, breaking changes

- Decide and communicate where the responsibility for assuring service evolvability lies

- Consider tools for gaining insight in service evolvability

Keywords: service evolution, service evolvability, API evolution, robustness principle

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 53/130

5.2 Integration

Challenges related to integration consider the not merely technical behaviour and design of a

microservice architecture. For example, the service composition challenge is just as much a

challenge related to the theoretically designing how services work together as it is a technical

challenge of how to accomplish this. The challenges and dependencies and are shown in

Figure 15.

Figure 15 - Integration-related Challenges and their Dependencies

Service Composition

The challenge of service composition deals with the question of how services integrate

functionally and fulfil complex tasks together. Because in a microservice architecture, system

functionality often requires multiple services to work together to complete a task, service

composition an often-mentioned challenge. One challenge is how to achieve the integration

and composition of services without being restricted by to some specific technology such as

a certain programming language [55]. It is for instance proposed that a microservices

composition framework could be developed, which would “facilitate knowledge reuse and

make it simpler for application engineers to interact with a complex computing platform” [56].

However, such a framework is currently non-existent.

A paper by Dustdar and Schreiner [57] goes into detail about the different strategies to service

composition one can take. It is an often-cited work that explains and describes these strategies

based on existing technologies. Dynamic composition is one such strategy. Static composition

is also a thing, but given the aim for flexibility by using microservices, this is out of scope.

Dynamic composition is based on the premise that services should automatically adapt to

unpredictable changes. Services composition is realised in a way that is not predetermined,

by for instance using frameworks to describe the interactions between services. Model-driven

service composition builds on top of this and aims to define interactions through high-level

languages such as UML or OCL. There are also approaches that aim to automate

compositions by extending service descriptions or specifications. Context-based approaches

also exist that for instance take into account information and requirements from a client to

change the composition of services. An example of this is using a different composition of

services to serve clients using one operating system versus another. The authors describe

various frameworks used in practice that each use a unique approach to enabling service

composition.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 54/130

Besides the descriptions by Dustdar and Schreiner, a more recent work by Sheng et al. [58]

goes into great detail about subsequent developments to service composition and describes

standardisation efforts to service composition, research prototypes and platforms used in

practice today. Given that this paper is more recent, it can serve as a good starting point for

finding service composition alternatives. However, potentially not all commercially available

solutions support microservices as well, as they can impose quite rigid constraints to a

system’s design, thus possibly limiting the benefits of using a microservice architecture.

In practice, often rather ‘lean’ approaches to enabling service composition are used in

microservice architectures. Richardson describes the API composition pattern [48], with three

options of implementing it. In the first case, a client service aggregates requests to different

services. So basically, a service makes multiple requests and aggregates the results itself. An

alternative is to make these requests through an API gateway. This way, the service receives

the same data, it just makes these requests through a single gateway. This is often used in

exposing service functionalities to an external client [48]. A third option shown by Richardson

is to implement a separate service that acts as composer. This service can query the

necessary data and output this as a single response to other services. When such aggregated

functionality is used multiple times in a system, it may make sense to implement service

composition this way. However, Richardson also notes that these approaches come with

certain drawbacks, such as a risk of increased overhead, less availability and transactional

data consistency problems. An alternative to this is the Command Query Responsibility

Segregation (CQRS) pattern, which is alike a Relational Database Management System

(RDBMS). This pattern is built around “the notion that you can use a different model to update

information than the model you use to read information” [59]. When queries get more complex,

a service using the API composition pattern could be inefficient since possibly not all data can

be retrieved in similar ways. This leads to receiving and joining large data sets and other

concerns. By using CQRS, such issues can be resolved. However, it does make the

architecture more complex, and replication lag for data can be in play.

Decision alternatives:

- API composition / CQRS pattern

Keywords: API composition, CQRS, web service composition, service composition.

Service Specification

In line with this is the question of how to describe services and their functionalities; i.e. how to

do service specification. This should be done in a standardised way to also facilitate

composition. As stated in [56], “the topology specification and composition need to cover the

whole life cycle […] of each microservice as well as the application as a whole”. Two main

alternatives can be found for this; defining services by business capability or by sub-domain

[48].

When using business capabilities as a driver, services are defined by the capabilities or

activities a business does in order to generate value. Definition by subdomain largely revolves

around using Domain-Driven Design (DDD) described by Evans [49]. In this case, building

services is centered around the development of an object-oriented domain model.

In terms of ways to implement such specifications, the CNCF lists solutions to facilitate this.

In their landscape [45], solutions related to App Definition and Development can be

investigated for use in a microservice architecture.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 55/130

Decision alternatives:

- Define by Business Capability / Define by Sub-Domain

Keywords: Service specification, web service specification, domain-driven design.

Service Logging and Monitoring

The complex interactions between many microservices can be hard to comprehend, therefore

making it harder to trace errors and understand the overall system health. Collecting logging

and monitoring data from individual services is relatively straight-forward, but aggregating this

data to create meaningful, actionable insight is far from it. Possibly due to the fact that this is

a prominent challenge in microservice architectures, many existing software solutions are

available to support the logging and monitoring. Service Logging and Monitoring is mainly

dependent on Service Composition because of its impact on the overall system architecture.

Tools specifically developed for microservice logging and monitoring may be required, since

existing tools are often not built with the number of services and possible architectural

complexity of a microservice architecture in mind. Given that microservices often assume that

services can fail, makes the need for insight in a systems behaviour even more prominent

since system’s behaviour can be less predictable.

In the CNCF landscape’s [45] Observability and Analysis category, more than 70 monitoring,

logging and tracing solutions are available. Prominent examples that are often mentioned in

practical sources are Prometheus or Grafana for system monitoring, Fluentd for logging and

Jaeger for tracing to get information about service operations. Not coincidentally, these

projects are ones that have been labelled as rather mature by the CNCF and are thus more

and more often already seen in production use. Many tools each have their own advantages

and disadvantages, and are often built with a specific purpose, type of system or use case in

mind. Therefore, no high-level choices on this can directly be identified. Nevertheless,

alternatives can be compared based on criteria set during decision-making to ensure that the

right one is chosen. Also note that the CNCF is not the only source of possible alternatives,

though it is a good place to start for the search of logging and monitoring solutions.

Decision alternatives:

- Choose between alternatives, likely from CNCF

Dependent on:

- Service Composition

Keywords: Service monitoring, service logging, tracing.

Testing

Microservice architectures can be fault-prone at the integration level [1]. This is why testing

now becomes one of the most vital parts in an application’s testing process besides for

instance integration testing. However, in [60] it is proposed to perform resilience testing –

“testing the application’s ability to recover from failures commonly encountered in the cloud”

since the authors argue that “unit and integration tests are insufficient to catch […] bugs”.

In the literature review, two separate types of testing were identified; integration and resilience

testing. However, since these challenges have no clear-cut alternatives, they are described

by guidelines for testing. These guidelines do not differ too much between the two types of

testing, it is just important to understand that they are different and may both be used. For this

reason, they are discussed together and from here on out will be treated as a single challenge.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 56/130

Based on the guidelines, a testing strategy can be developed. Testing is also mainly

dependent on Service Composition for the same reason that Service Composition has a large

impact on the overall system architecture.

A first and foremost guideline to be given here is to automate testing as much as possible. By

doing this, testing can happen continuously and any changes being deployed can be tested

quickly and be put into production. Richardson describes the need for automation very well:

“Automated testing is the key foundation of rapid, safe delivery of software. What’s more,

because of its inherent complexity, to fully benefit from the microservice architecture you must

automate your tests” [48].

As said before, pay close attention to integration testing, since in this regard a microservice

architecture is most different from a SOA [1]. When looking at the so-called test pyramid –

shown in Figure 16 – that Richardson [48] uses, integration test are a level above unit-tests.

This focus on integration is not to say that unit-tests are not important, though. It is assumed

that standard unit tests are in place. Testing a system’s behaviour can be done through an

end-to-end test, in which all services are launched and tested through their APIs, but this takes

substantial effort. Integration tests are more lightweight, while still considering the interactions

between separate services by focussing on specific interactions.

Figure 16 - Test Pyramid – adopted from [48]

Testing does not stop there, however. Heorhiadi et al. [60] argue that resilience testing should

be in place for “testing the application’s ability to recover from failures commonly encountered

in the cloud”. The authors propose a tool called Gremlin 5 to facilitate such testing. This tool

mainly introduces failures in the network and tests if services handle this well. It can suddenly

inject faults in application interactions to find out what this does to their behaviour. Similar to

this is an approach – though a bit more risky – used in practice by Netflix called Chaos Monkey

[61]. This tool randomly terminates services in production use. Netflix’ motivation behind this

is that “exposing engineers to failures more frequently incentivizes them to build resilient

services”. The thought is that when engineers know and anticipate that services can terminate

at any point in time in production use, they will program services in a way that can handle this.

The assumption that well-developed services will not crash does not hold up, especially in a

microservice architecture. This approach can be generalised as a form of chaos engineering

[62].

5 https://www.gremlin.com/

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 57/130

This approach is also used in other organisations and could be of value when developing a

microservice architecture. However, there may also be reasons for organisations to not want

to introduce deliberate failures in their system. The guideline here is therefore to consider this

approach, but not by all means.

Guidelines:

- Automate testing as much as possible

- Focus on thorough integration testing

- Use resilience testing to be more confident about how microservices handle failures

- Possibly consider chaos engineering type approaches

Dependent on:
- Service Composition

Keywords: Integration testing, resilience testing, chaos engineering, automated testing.

5.3 Communication

The communication-related challenges are those that touch upon the most technical parts of

the microservice architecture. These choices do, however, have a large impact on how the

eventual system behaves and performs. In Figure 17, the challenges in this category along

with their dependencies and outputs are depicted. Note that the challenge of networking

complexity is not included in this overview. When investigating this challenge further, it was

concluded that it arises from several choices made in this category and cannot be solved by

deciding between certain alternatives or following guidelines. The combination of choices

made in the communication category determine the extent to which networking complexity is

a challenge. It could therefore be used as a criterium in decision-making, to express how

certain alternatives improve upon it or not. Furthermore, service contracts have been included

in the interface design challenge because of their overlap and the similar considerations

involved.

Figure 17 - Communication-related Challenges and their Dependencies

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 58/130

Communication Mechanisms

The question of how to conceptually deal with system-wide communication on a high-level is

one that transcends and precedes any technology choices. The decisions made with regards

to this should be well-considered as they affect the entire system. As Richardson [48]

describes, “thinking first about the interaction style will help you focus on the requirements and

avoid getting mired in the details of a particular IPC [Inter-process Communication]

technology.” They categorise the possible interaction styles in two dimensions. Interactions

can differ in multiplicity; i.e. be one-to-one or one-to-many. They can also be either

synchronous or asynchronous. Richardson proceeds to give an overview of interaction styles

that fit with certain characteristics as shown in Table 9 below.

Table 9 - Service Communication Mechanisms - Adopted from [48]

 One-to-one One-to-many

Synchronous Request/response -

Asynchronous
Asynchronous request/response

One-way notifications
Publish/subscribe

Publish/asynchronous responses

In one-to-one communication, exactly one service is invoked by a client request. When using

one-to-many communication, obviously more than one service can be involved. The main

difference between synchronous and asynchronous communication is that in the first case,

the client invoking a service waits and possibly blocks while waiting for a response. Because

of this, synchronous messaging can typically only occur in a one-to-one fashion, using the

ubiquitous request/response interaction style.

When using asynchronous communication, the client does not block and the response might

come at a later point in time, or not at all. The asynchronous request/response interaction style

is basically a request/response mechanism in which the client does not block but does wait

for a response for a certain amount of time. The one-way notifications interaction style on the

other hand is self-explanatory; a client invokes a service but does not require or process a

response.

A further well-known interaction style is that of publish/subscribe, in which clients can publish

messages which are then communicated to any number of services subscribed to them. This

approach is used widely in distributed systems. Publish/asynchronous responses is a variation

to this, in which the client sending the message waits for some time to receive responses from

subscribed services.

Richardson further argues that “synchronous communication with other services as part of

request handling reduces application availability. As a result, you should design your services

to use asynchronous messaging whenever possible” [48]. However, as stated in [63],

“interestingly, microservices are most suitable for asynchronous communication, bringing

performance, decoupling and fault-tolerance, but the paradigm shift implied has not been

overtaken yet in practice”. Another implication of microservices to the choice of a

communication paradigm is that one “should also take in to consideration the poss ibility that

a service might not respond” [55].

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 59/130

Decision alternatives:

- One-to-one / one-to-many communication

- Synchronous / asynchronous communication

Keywords: one-to-one, one-to-many, synchronous, asynchronous, request/response,
asynchronous request/response, one-way notifications, publish/subscribe,
publish/asynchronous response.

Service Interconnection

The concern of service interconnection deals with the implementation connecting services to

each other and exchanging data. The choices that can be made with regards to this depend

on the choice of Communication Mechanism. Especially the choice of whether communication

is done in a synchronous or asynchronous way is decisive. The authors in [64] discuss choices

of inter-service communication patterns that are common in microservice architectures. The

three that they mention are direct calls to services, using a gateway, or using a message or

service bus, each with their own advantages and disadvantages. In his book on microservice

patterns, Richardson [48] describes two main alternatives; synchronous ‘Remote Procedure

Invocation’ (RPI) – conceptually analogous to RPC (invoking a function in another service) –

and asynchronous messaging.

When using synchronous or request/response style communication, invoking a microservice

is most commonly done over either REST, which uses HTTP, or a binary RPC protocol such

as gRPC. REST stands for Representational State Transfer and is built around resources that

typically are business objects such as orders or users. REST uses the default HTTP request

methods such as GET, POST and DELETE to perform operations. This way of communication

is popular in the microservice field because of its simplicity, familiarity, easy to test and directly

supports the request/response style of communication. This last point is also one of its

drawbacks, as this is in fact the only style of communication that it supports [48]. Furthermore,

updating multiple entries at once is seen as difficult using REST. This limitation is addressed

by opting for a protocol such as gRPC which addresses this, and also has a more extensive

set of update operations as compared to the HTTP operations used by REST. Since gRPC is

a binary protocol, it is able to provide more efficient communication between services.

However, it does require adding code to services for consuming and serialising requests and

responses. There are off-the-shelf solutions available for this serialisation, such as the popular

Protocol Buffers solution developed by Google6. A further advantage of gRPC is that besides

supporting request/response style communication, it can also be used in messaging-based

communication [48]. Furthermore, to facilitate failures and provide resilience against

unresponsive or unavailable services in this style of communication, a gateway can be put in

place. By implementing functionalities like these, this logic does not need to be part of a service

itself. However, this is yet another component in the architecture program and maintain.

In asynchronous communication, services no longer synchronously receive responses to their

requests, but rather exchange messages. As such, a messaging pattern should be used to

facilitate this exchange. Richardson [48] refers to work by Hohpe and Woolf [65] to help

describe messaging using channels. “A sender (an application or service) writes a message

to a channel, and a receiver (an application or service) reads messages from a channel” [48].

Such a message channel is an abstraction of the actual messaging infrastructure. Message

channels can be either point-to-point for one-to-one interactions or of a publish/subscribe

6 https://developers.google.com/protocol-buffers

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 60/130

nature for one-to-many communication. The underlying messaging infrastructure is often

implemented in the form of a message broker. This takes some implementation effort of the

development of the actual microservices, at the expense of introducing a possible single point

of failure in the architecture. A brokerless approach can also be used, in which services

exchange messages without the additional service broker component. Other advantages of

brokerless messaging are less network traffic and no potential performance bottleneck that a

message broker could introduce. However, this approach also comes with its own drawbacks

such as the lack of message buffering capabilities that message brokers often implement and

the need for services to be aware of each other’s locations through service discovery (to be

discussed further). Furthermore, in a brokerless setup the availability can be reduced since

both the sending and receiving service must be available at the time of exchanging a message.

Richardson concludes that “because of these limitations, most enterprise applications use a

message broker-based architecture” [48].

As said, the style of service interconnection is dependent on the chosen communication

mechanism. When using asynchronous communication, a REST approach cannot be used.

The same goes for one-to-many interactions. Conversely, a messaging pattern can still

support one-to-one styles of interaction and even mimic a request/response pattern to an

extent in the case a client blocks while waiting for an asynchronous message as response to

its request.

Decision alternatives:

- RPC / messaging

o In case of RPC:

▪ REST / gRPC mechanisms

▪ Gateways

o In case of messaging:

▪ Point-to-point / publish/subscribe

▪ Message-broker / brokerless

Dependent on:

- Communication Mechanisms

Keywords: RPC, messaging, REST, gRPC, point-to-point, publish-subscribe, message-

broker, brokerless.

Service Discovery

A main concern in this is service discovery; the question of how certain services know about

the existence of other services and how to connect to these. As described in many of the

studies such as [66]–[68], service discovery mechanisms are an essential part of microservice

architectures and often prove to be the greatest challenge to successfully implement such an

architecture. This involves implementing a means of discovering which application instances

– such as machines or containers – offer what services and keeping a service registry of this.

When an application or service then wants to connect to another service, the available

instances along with their addresses and exposed interfaces can then be read from this

registry. The function of deciding which instance to connect to can then be made by the service

itself or be taken care of by a load balancer.

The difference between service discovery approaches is in how a client finds out the location

of a service and how it connects to it. There are two main means of accomplishing this; client-

side or server-side discovery [63]. Client-side discovery works by having a client request the

locations of services from a service registry. The client then selects an instance and directly

connects to it. When using server-side discovery, the client makes a request to a service

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 61/130

through a server, which is commonly a gateway or load balancer. This then selects an instance

and forwards the client’s request.

The decision of whether service discovery is needed, depends on the type of service

interconnection that is being used. For example, service discovery is common when using

RPC-type interaction, but in a messaging-based setup with a message broker it is redundant

since the message broker already facilitates this functionality. On the other hand, when using

brokerless messaging, service discovery is needed again. Therefore, decisions on service

discovery are not directly dependent on communication mechanisms, but rather service

interconnection style.

Decision alternatives:

- Client-side / server-side discovery

Dependent on:

- Service Interconnection

Keywords: service discovery, load balancer, gateway, client-side discovery, server-side

discovery.

Interface Design

The aspect of interface or API design is part of enabling service integration. Challenges in

interface design are for example extensibility, backwards compatibility and abstraction of

implementation details. Service contracts are sometimes seen as a means to aid this by

defining standard communication patterns that services should adhere to. The overall goal in

all these challenges is to ensure that changes to one service do not cause system failure and

require as little effort as possible for adapting other services to for instance use new

functionalities. In the end, the API specification, defines what a service does and in what way.

“A well-designed interface exposes useful functionality while hiding the implementation” [48].

A so-called Interface Description Language (IDL) should be used to specify an API. Such a

language describes an API in a language-independent way. The use of and IDL is both vital

as there are typically many services involved and key in enabling organisations to make full

use of the advantages of a microservice architecture. For REST, a common IDL is the Open

API specification [69]. Other examples include – but are not limited to – the RESTful API

Modelling Language (RAML) [70] and the Web Services Description Language (WSDL) [71].

A further advantage of specifying an API using a standardised IDL is that often there are tools

available to help implementing it. For example, Swagger [72] provides solutions to help design

and build APIs based on the OpenAPI standard. When using a gRPC approach, the

specification for how to design an API is already set as the Protocol Buffers-based IDL [73]

should be used.

When describing an asynchronous message-based API, the message channels, message

types distributed over these channels and their formats should be specified. There is, however,

no widely adopted standard for this and thus this is done rather informally [48]. Besides this,

the available operations that clients can invoke should be described as well as the events that

services can emit.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 62/130

In general, literature seems to agree that whenever possible, a standardised IDL should be

used to design and document APIs. Given that the options to do so are rather constrained by

the choice of service interconnection style and the fact that the different available IDLs are

quite similar apart from the actual representation of the API specification, there are no high-

level choices to be made in this regard.

Guidelines:

- Use a standardised IDL whenever possible

- Consider using provided tooling for these IDLs

Dependent on:

- Service Interconnection

Keywords: interface design, IDL, API design

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 63/130

6 TREATMENT DESIGN

In the description of the Design Science Methodology, Wieringa [4] refers to the artifact to be

designed as a treatment, which interacts with the problem context. In their words: “the design

science researcher designs not just an artifact, but designs a desired interaction between the

artifact and the problem context, designed to treat the problem” [4]. For this research, this

respectively refers to the interaction between the decision-making framework and the design

of a microservice architecture. This section discusses the first steps in the design of this

interaction. A first step in this is the definition of requirements, showing their link to the

stakeholder goals, and researching any available (partial) treatments to the problem.

6.1 Requirements

To explore the requirements that need to be fulfilled in order to fulfil the stakeholders’ goals,

first the software architecture design process and its interaction with decision-making should

be understood. As said, not all challenges are merely architecture-design problems, but many

of them are. It is therefore useful to consider what a software architecture design process

looks like in general, and how the practice of decision-making fits into this. The prospective

decision-making framework will need to support this process, but not necessarily be limited by

it.

6.1.1 Software Architecture Design and Decision-Making Process

In software engineering, software architectures are used to design and analyse software

systems. This is done on a high level, so that one can reason about the structures of large

and complex systems. It describes such structures by their elements, relations and the

properties of these elements and relations [74]. As Kruchten et al. state, this is “the key to

achieving intellectual control over a sophisticated system’s enormous complexity” [75] and

facilitates both system design and maintenance [74]. When used at the start of a system’s

design process, a software architecture “significantly constrains and facilitates the

achievement of requirements and business goals” [10]. Therefore it can be used to validate

whether a system being developed is adhering to the set objectives [76]. Falessi et al. [10]

also rightly indicate that every software system has a software architecture; implicit or explicit.

The driving factors behind software architecture design were described by Kruchten [77] as

reuse, method and intuition. They state that many software architects rely on their own

experience and intuition when designing software architecture elements. Some follow a

certain method – i.e. language or process model – to help designing a software architecture.

Reuse is also used quite broadly; both in the sense of reusing parts of previous or similar

systems, as well as organisation-wide experience and domain-specific knowledge. A driving

force behind reuse is that it can help simplify the difficult task of architecting [77].

The possible designs of a software (sub)architecture are also referred to as architectural

alternatives [10]. Often, there are multiple viable ways to design part of a software architecture.

Such possible designs of software architectures are also influenced by the means by which

they can be implemented and the required effort to do so. There might also be (commercial)

off-the-shelf (OTS) solutions that can solve specific challenges in a (sub)architecture –

possibly in conjunction with other solutions. ‘Commercial’ is optional here, since the nowadays

there are many Open Source Software (OSS) solutions [78] to architectural challenges

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 64/130

available, sometimes for free. Such solutions could be used by multiple organisations facing

similar challenges, and these same organisations can in their turn sometimes also contribute

to the development of this software. Depending on the available solutions for architectural

challenges and the requirements and constraints to a system, the decision to either develop

part of a software system from the ground up or use an OTS solution can be made.

With usually many possible architectural alternatives for solving an architectural problem, the

question becomes how to choose between them. This is where decision-making techniques

become relevant to help software architects choose between architectural alternatives by

describing a process and methodology to systematically compare options.

The basic process of deciding between architectural alternatives is relatively straight-forward.

Falessi et al. [10] describe it on a high level using three main phases in an iterative process.

A schematic representation of this is shown in Figure 18.

Figure 18 - Software Architecture Design Process - Adopted from [10].

First is the requirements analysis phase, in which a software architect aims to develop an

understanding of the problem by “extracting the most critical needs from the big, ambiguous

problem description”. These system requirements are influenced by the project context. Also,

an organisation’s business strategy or goals may be of influence [79]. The output of this

process should be requirements that are architecturally significant. Quality attributes are

determined which together with business goals form the basis for architectural decisions. In

the next phase of decision-making, the solutions that fulfil the established requirements are

sought. The properties of different available options and their relationships are defined to allow

comparing these options. This results in candidate solutions. Finally, the question of how well

these alternative solutions solves the problem is answered in the architectural evaluation

phase. The process can then be repeated if the end result is not an acceptable architecture.

While this process description given by Falessi et al. [10] is clear and highlights the main

activities, it is not explained in too much detail. A work by Kontio [80], in which they describe

the so-called OTSO process for reusable (OTS) component selection, gives more

comprehensive though still high-level guidance on the decision-making process. For example,

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 65/130

they explicitly address the searching and selection process of possible architectural

alternatives. An overview of the main phases they define is shown in Figure 19.

Figure 19 - Main Phases in Reusable Component Selection Process - adopted from [80].

In this graph-like overview, the vertical axis is used to show the number of alternatives being

considered in a phase and the horizontal axis to show time progression throughout the

selection process. During the search phase, there can be many alternatives that arise from

literature, the internet, vendors, experts and many more sources. The goal here is to identify

all possible candidates. These are then put through a screening process to determine which

of the found alternatives are worth to consider in a more detailed evaluation. These are then

– similar to what was described by Falessi et al. [10] – evaluated and analysed to select the

most promising alternative. After this, Kontio also puts emphasis on assessing how successful

the selected alternative or component was in solving the given problem after deployment. This

might impact the potential further reuse of this same alternative. Besides this, the design

process can be further improved given the experiences of the just completed selection

process. As stated before in section 3.3, decision-making techniques used in this process

should deal with multiple stakeholders, competing and conflicting objectives, uncertainty both

in the descriptions of requirements and in their associated solutions, and interdependencies

between decisions [10].

To show where these decision-making processes fit in the overall processes for software

architecture design exist, a general model of software architecture design – shown in Figure

20 – developed by Hofmeister et al. [81] is used. This model is based on five approaches from

industry, for which the commonalities were analysed.

Figure 20 - Architectural Design Activities - adopted from [81]

The decision-making process used to decide between architectural alternatives largely lies in

the Architectural Synthesis step in this model. Requirements are used as input to select

between alternatives. However, the view shown before from work by Falessi et al. [10] shows

that in general, most methodologies aimed at choosing between architectural alternatives take

into account more than the mere decision-making step. Often, they also describe how to

identify and formulate relevant requirements as well. As for analysis of the choices made; this

is mostly done in the form of comparing the decisions made with the requirements and

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 66/130

constraints set at the start of the process. If these are fulfilled, the process is seen as complete.

That still leaves out the actual implementation and operational evaluation to assess how well

these decisions perform into practice. Furthermore, the Architectural Analysis step generally

not given too much detail. How to arrive at the architecturally significant requirements used as

input for the decision-making process is often not described in too much detail. Therefore, the

main focus of these decision-making methodologies can be said to be on the Architectural

Synthesis part of software architecture design.

6.1.2 Requirements Definition

These descriptions together with those given in the Problem Investigation stage can be

translated into requirements for the decision-making framework to be designed. The goal is

that in fulfilling these requirements, the desired interaction between the artifact and the

problem context can be created. As was done before for the goal-level requirements, the

requirements are subdivided according to the goal-design scale formalised by Lauesen [11]

and are shown in Table 10. The initial goal-level requirements are also included in this table

for completeness.

Table 10 - Decision-Making Framework Requirements

Goal-level requirements

G1 The framework shall improve decision-makers’ work in managing design
challenges related to communication between, integration and management
of microservices.

G2 The framework shall give confidence in its outcomes.

G3 The framework shall require limited effort in its use.

G4 The framework and its outcomes shall be practical.

Domain-level requirements

D1 The framework shall support the selection of optimal architectural
alternatives.

D2 The framework shall support the use of quality attributes for rating
alternatives.

D3 The framework shall support input from multiple stakeholders.

D4 The framework shall deal with competing and conflicting objectives.

D5 The framework shall take into account uncertainty both in the descriptions of
requirements and in their associated solutions.

D6 The framework shall deal with interdependencies between decisions.

D7 The framework shall support providing guidelines and industry practices
when no clear decision can be made for managing a challenge.

6.2 Contribution to Goals

The DSM prescribes that the set requirements should be justified by providing a contribution

argument in the following form [4]:

(Artifact Requirements) x (Context Assumptions) contribute to (Stakeholder Goal)

For the justification of requirements G2 through G4 in their contribution to G1, the following

argument can be given:

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 67/130

- If the designed decision-making framework gives confidence in its outcomes, requires
limited effort in its use and is practical in use,

- and assuming that it is used in the design of a microservice architecture as described
in this project,

- then the framework contributes to decision-makers’ goal of better managing design
challenges related to communication between, integration and management of
microservices.

As described in section 3.3, goals 2 through 4 are vital to fulfil in order to ensure that

stakeholders will find the framework useful and be inclined to use it in practice. These

requirements describe non-functional properties of the artifact. These should be made

measurable when validating the artifact. The question is how to measure confidence, ease of

use, usefulness and practicality? In other words, indicators for these properties should be

defined. For measuring usefulness and ease of use, the questions defined by Davis [82] in

their paper describing the Technology Acceptance Model (TAM) can be used. The question

of confidence comes down to measuring decision quality. This can be done using the six

elements of decision quality described by Spetzler et al. [83]. The authors argue that decision

quality has six requirements, shown in Figure 21. These can be used to phrase questions to

assess the decision quality indicator.

Figure 21 - "The Decision Quality Chain" by Spetzler et al. [83]

Practicality can be hard to measure, and mostly comes down to how practical stakeholders

find the artifact and its outcomes to use. In interviews, this can for example be operationalised

by requiring that interviewed stakeholders must not find any elements of the framework and

its outcomes that inhibit their usefulness in practice. This then acts as an acceptance norm.

The domain-level requirements are of a functional nature and their fulfilment can therefore be

tested by observing the interaction between an artifact and its context that contributes to a

service to a stakeholder [4]. The fulfilment of D1 through D7 can be measured by observing

this interaction. These requirements were set based on information from literature as well as

insights from practice that indicate what functions the decision-making framework should

support. The contribution argument that can be given here is as follows:

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 68/130

- If the designed decision-making framework satisfies the domain-level requirements,

- and assuming that it is used in the design of a microservice architecture as described
in this project,

- then the framework supports the required functions indicated by literature and practice,
and thus contributes to decision-makers’ goal of better managing design challenges
related to communication between, integration and management of microservices.

6.3 Available Treatments

The next step in the DSM is to search for any already available treatments to the design

problem. A logical first step here is to explore what decision-making methodologies used in

software architecture design are already available. As said before, a large part of managing

microservice challenges involves choosing between software architecture alternatives but is

not necessarily limited to it. Therefore, an existing decision-making methodology might serve

as a conceptual foundation to build upon. This search should answer RQ-4: What decision-

making methodology for selecting between design alternatives can serve as conceptual

foundation for the framework to be designed?

6.3.1 Decision-Making

There are many different decision-making methodologies for selecting between architectural

alternatives in existence, each with their own strengths and weaknesses. In the

aforementioned paper by Falessi et al. [10], the authors provide a very thorough comparison

to help software architects decide between these methodologies. They also elicit the

conceptual elements and possible difficulties that come with each methodology in great detail.

Even though the authors compared 15 different decision-making methodologies, they found

that all follow the basic process described previously and shown in Figure 18 and have a lot

in common at the conceptual level, even though they might look quite different [81]. All these

methodologies incorporate multiattribute decision-making methods to select between a finite

number of alternatives.

Falessi et al. [10] go on to describe the various elements that the selected decision-making

methodologies comprise and the mechanisms of implementing these elements they found in

the methodologies. The first is how quality attribute description is done to facilitate a clear

understanding of each attribute by all involved stakeholders. Quality attributes’ performance

can also be expressed in various ways to show which are most important to stakeholders. The

description of fulfilment is used to communicate how well alternatives fulfil the previously

described attributes. This fulfilment can come with an uncertainty description to quantify risks

associated with a certain choice of alternative. Together, these elements are used to classify

and compare the selected methodologies.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 69/130

Table 11 - Elements and Mechanisms of Decision-Making Methodologies as described by [10]

Element Mechanism Example

Quality
attribute
description

Just a term Performance
Term and use case Performance to perform <function>
Term and measure Performance in seconds
Term, measure, use case Performance to perform <function> in seconds

Quality
attribute
importance

No articulation -
Direct weight Weight rating 5/10
Elicited weight Weight rating compared to other attributes
Utility curve Weight depending on fulfilment

Description
of
fulfilment

On/Off Satisfies <attribute>
Order Medium/good/excellent fulfilment of

<attribute>
Direct ratio Score 0.5 of fulfilment of <attribute>
Elicited ratio Fulfilment level compared to other alternatives

Uncertainty
description

Not expressed -
Inferred from
disagreement

Uncertainty if stakeholder 1 and 2 disagree on
how well <alternative> satisfies <attribute>

Related to quality
attributes

Alternative certain to fulfil <attribute 1>, but
uncertain to fulfil <attribute 2>

Included as quality
attribute

Alternative inherently has low uncertainty

The authors describe their view of a good decision-making methodology as “one that avoids

the selection of a worse alternative and, at the same time, is easy to use” [10]. This is partially

because all researched methodologies share the characteristics that they:

- involve several stakeholders,
- deal with competing and conflicting objectives,
- show a level of uncertainty in both the description of requirements as well as in their

associated solutions,
- show that the decisions taken have strong interdependencies.

Because of these similarities, the authors compare the methodologies based on certain

difficulties that might arise based on the mechanisms in which they implement the various

elements shown in Table 11. Hence, the authors conclude that “there is no ‘best’ decision-

making technique; however, some techniques are more susceptible to specific difficulties”

[10]. They therefore argue that architects should compare decision-making methodologies

based on the difficulties that they wish to avoid. The authors ranked the methodologies based

on the susceptibility to each difficulty to facilitate this. They further state that some

methodologies are merely more susceptible to certain difficulties, and that these can be

overcome by adopting or tuning a methodology to reduce the impact of these difficulties.

6.3.2 Decision-Making Methodology Selection

Before relying on this comparison made by Falessi et al. [10] for selection of a decision-making

methodology as conceptual basis, one should consider whether any new methodologies

treating these decision-making problems have been published since the publication of their

paper in 2011. When searching academic literature on this topic on Scopus7 the search query

used was as follows:

7 https://scopus.com

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 70/130

TITLE-ABS-KEY(software architecture decision making) AND PUBYEAR > 2010 AND

(LIMIT-TO (SUBJAREA,"COMP"))

As can be seen, the search was limited to the field of computer science. From these results,

the title, abstracts and keywords of any works that had been cited more than 10 times were

analysed to see if they were concerned with decision-making in software architecture design

by selecting between architectural alternatives. No such methodologies were found.

Therefore, the works discussed by Falessi et al. are considered as possible options to base

the framework design of present work on.

Going with the authors’ advice of selecting a decision-making methodology based on

difficulties, the question first becomes which of these to avoid. In their paper, Falessi et al. [10]

define 9 difficulties based on related literature to the susceptibility of researched decision-

making methodologies’ characteristics to difficulties.

As stated in section 6.1, the goal is to design a decision-making framework that is practical,

requires limited effort and gives confidence in its results, while supporting a group decision

process and dealing with competing objectives and interdependencies between decisions.

Fortunately, the requirements of facilitating group decision making and dealing with competing

objectives and interdependencies between decisions are often all addressed by the

methodologies selected in the study by Falessi et al. [10]. This leaves the main characteristics

of practicality, required effort and confidence as the primary factors for identifying candidate

methodologies. These will be used to identify the difficulties that are most important to avoid.

From the difficulties identified by the authors, there are some that show a wide disparity in

susceptibility of different methodologies to them. The first two are the either a too complex or

too simple description of a solution [10]. The example given of a too complex situation are

having to select between many alternatives using many quality attributes with many rating

options. The opposite is the case for a too simple situation, few alternatives, quality attributes

and rating options. Both extremes are detrimental to making the right decisions. Given the

requirements, a logical decision is to aim at finding a technique that balances these difficulties.

Intuitively, those methodologies that are least susceptible to describing solutions too simple,

might be more prone to use overly-complex descriptions.

The next difficulty that distinguished the researched methodologies most is coarse-grained

indication of stakeholders’ satisfaction of alternatives or fulfilment levels. If this indication is

too coarse, relevant details can be neglected [10]. The example given here is how a yes/no

scale for indicating whether a solution’s costs are acceptable can neglect the fact that, whilst

both acceptable, some solutions can be considerably less expensive than others. This

situation is undesirable from a confidence perspective, as likely not all relevant quality

attributes of solutions are compared well enough. This again possibly results in sub-optimal

decisions being made.

Furthermore, the methodologies show some variation in the susceptibility to the difficulty of

having insufficient time to analyse a decision. As in many situations there are time constraints

to finding a solution, a methodology should limit the time – or effort – required for analysis.

This difficulty also has interdependencies with others, where a methodology requiring less

time to carry out, can increase the risk of evoking other difficulties. For instance, the

methodology described as least susceptible to having insufficient time available showed to be

highly susceptible to utilizing a too simple description of solutions [10].

To compare the various methodologies, the ranking table as by Falessi et al. [10] was altered

to highlight those that are least susceptible to difficulties overall, as well as to those discussed.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 71/130

This was done by first calculating the methodologies’ sum of rankings as indicated by SUM.

Another attribute – SUM’ – was assigned to show their rankings on the discussed challenges

that most divide the methodologies; too complex or too simple description, coarse-grained

indication and insufficient time. In both the SUM and SUM’ ratings, a lower number means

less overall susceptibility to the associated challenges. The methodologies were then sorted

first by SUM, then by SUM’ to end up with the ranking in Table 12. The variation between

rankings is shown at the bottom of the table and the ranking scores are emphasised by

showing methodologies with a worse ranking on a criterium in a darker colour. Also, even

though the other identified difficulties showed less differences between methodologies’

susceptibility to them, they are nevertheless important to consider. These will therefore be

used in further comparing the selected methodologies in-depth.

Table 12 - Annotated Comparison of Methodologies – adopted from [10]

When weighing all rankings, the OTSO methodology by Kontio [80] shows the least overall

susceptibility to any difficulties. However, this methodology does have a high susceptibility to

the difficulty of a too complex description of a solution. The same is true for two of the three

next best ranked ones; namely the methodologies by Svahnberg et al. [84] and Moore et al.

[85]. As stated before, the aim is to balance the risks of having a too-complex and too-simple

description of solutions. Furthermore, the methodology by Moore et al. shows to be highly

susceptible to having insufficient time to carry out the analysis.

The Impact Estimation methodology by Gilb and Brodie [86] seems promising though, and so

does the quality-driven method by Al-Naeem et al. [87]. These both have the lowest found

score for SUM’. The methodology by Gilb and Brodie ranks better for avoiding a too complex

description, whereas that by Al-Naeem et al. is less susceptible to coarse-grained indication

of stakeholders’ satisfaction. They further differ in that Al-Naeem et al.’s methodology

introduces a risk of underestimating uncertainty, but that by Gilb and Brodie scores worse on

susceptibility to linear and monotonic satisfaction. The uncertainty is important to keep in mind

as this says something about the risks involved with a certain solution. The risk of linear and

monotonic satisfaction can occur when, in order to cope with complexity, “the satisfaction of

each quality attribute is modeled to grow linearly as its fulfillment grows” [88]. An example

would be when a network solution that provides a data throughput rate that is significantly

higher than needed, while scoring worse on other attributes such as latency. When satisfaction

is modelled in a linear way as described, this solution could get a higher score because of it –

unnecessarily – outperforming other solutions performance, therefore increasing the risk of

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 72/130

neglecting other solutions that provide lower but adequate data throughput rates at a lower

latency.

To elicit where these differences in ranking come from, the so-called ‘Impact Estimation’ by

Gilb and Brodie [86] and ‘ArchDesigner’ by Al-Naeem et al. [87] methodologies were studied

in more detail. A first difference is the description quality attributes that are used; ArchDesigner

uses just a term, whereas Impact Estimation adopts a term and a measure. According to the

comparison by Falessi et al. [10], this decision influences the methodologies’ rankings on the

insufficient time and perception of a term difficulties. Both rank equal on the perception of

terms, but the approach in Impact Estimation scores worse on insufficient time. Further

differences arise in the mechanisms by which quality attributes’ importance and the description

of fulfilment are determined. Impact Estimation uses a direct weight and ratio approach to

these, respectively. ArchDesigner elicits these elements by using pairwise comparisons

following the Analytic Hierarchy Process (AHP) as described by Saaty [89], and as such its

mechanisms are classified as an elicited weight and elicited ratio. Falessi et al. describe that

AHP generally yields more precise results, albeit with an increase in required effort. Refer to

Table 11 to for examples of these mechanisms. This difference in mechanisms influences

many of the methodologies’ rankings on difficulties described by Falessi et al. [10], with the

elicited weight and ratio mechanisms generally being more susceptible to having insufficient

time and having a too complex description, but being less susceptible to the linear and

monotonic satisfaction, coarse-grained indication and too simple description difficulties.

The argument given by Saaty [89] against directly assigning scores using absolute judgement

is subjective and can therefore be error-prone, stating it is “considered to be a questionable

practice when objectivity is the norm”. Using pairwise comparisons in the form of the AHP for

decision making is seen as a means to aid these shortcomings. Instead of asking “how good

is alternative A at fulfilling quality attribute X?”, the question becomes “how much better or

worse is alternative A at fulfilling quality attribute X compared to alternative B?”. By comparing

all possible combinations, an overall score can be assigned to each alternative for its fulfilment

of quality attributes.

When choosing between the approaches in the two decision-making methodologies, the

weights of conflicting requirements of required effort and confidence needs to be considered.

I.e. is the extra confidence that using elicited weight and ratio mechanisms provide by

implementing the AHP worth the required additional effort? Given that both Impact Estimation

and ArchDesigner show a moderate ranking of being susceptible to having insufficient time in

the comparison by Falessi et al. [10], the choice for the more systematic AHP approach that

yields more precise results seems justifiable.

However, in the description of uncertainty to quantify risks the ArchDesigner methodology

differs vastly from Impact Estimation in the fact that it incorporates no mechanism to express

uncertainty, whereas Impact Estimation expresses it by relating uncertainty to each quality

attribute. As can be seen in Table 12, this makes the methodology by Al-Naeem et al. highly

susceptible to underestimating uncertainty about the risks involved with a certain solution. The

approach by Impact Estimation is ranked as second-best with regards to this difficulty.

Disregarding the chance of underestimating uncertainty would be risky and would harm the

confidence in the methodologies’ outcome. This point is also addressed by the authors when

discussing the limitations of their methodology as they state that “Judgment consistency level

was not measured before computing value scores” and “measuring the consistency level of

stakeholders’ judgements would help ensure the accuracy of the judgements” [87]. With this,

they seem to propose a mechanism of determining uncertainty by inferring this from

disagreement between stakeholders. The methodology described by Svahnberg et al. [84],

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 73/130

helps in clarifying how to manage this uncertainty. After all, Falessi et al. propose that a

selected decision-making methodology can be adopted and tuned to reduce the risk of any

identified difficulties [10]. On a high level, the approach by Svahnberg et al. follows a process

similar to that by Al-Naeem et al; also incorporating the AHP as main supporting method of

prioritisation and selecting architecture candidates. To elicit any uncertainty in these

outcomes, they propose calculating the variance in scores given by different stakeholders to

have a measure of disagreement. Because of the methodologies’ similarities, this technique

could also be applied to ArchDesigner, therefore reducing the risk of underestimating

uncertainty.

A valid question then is: if the techniques by Al-Naeem et al. and Svahnberg et al. are largely

similar, why not choose that by Svahnberg et al. in the first place? A first argument in this is

that the approach taken by Al-Naeem et al. in creating ArchDesigner is intended to be more

practical. This is motivated by the requirement of practicality for selecting the right decision-

making methodology. The authors state that previous approaches – in which they also refer

to the work of Svahnberg et al. – “evaluate and select among given coarse-grained SAs

[software architectures] without giving guidance on how to arrive at these architectures” [87].

ArchDesigner is said to be aimed at evaluating and selecting candidates in a fine-grained

fashion, which should help stakeholders at arriving at a suitable SA solution. The authors say

that similar techniques often assume that a small set of architecture candidates have already

been created without giving any guidance on how to arrive at these architectures.

ArchDesigner is said to offer “guidance quite early during the architectural design process.

This is achieved through the evaluation of various fine-grained design options, which together

produce the resulting SA” [87]. Furthermore, the solution of using stakeholder disagreement

to manage the difficulty of underestimating uncertainty when using this approach is straight-

forward to adopt, whereas it is unclear to what extent the methodology by Svahnberg et al.

can be altered to be more practical in nature.

Given the ease with which the risk of underestimating uncertainty can be reduced, the use of

a more precise mechanism for determining quality attribute importance and description of

fulfilment and a more practical attitude to decision-making by the authors, ArchDesigner by

Al-Naeem et al. [87] is thus considered the best decision-making methodology to serve as

conceptual basis for the design of the artifact, and is thus the answer to RQ-4. This

methodology will be adapted to reduce the risk of encountering the difficulties it is most

susceptible to. It will need to be further adapted and built upon to realise the requirements and

goals set in this research, as the prospective artifact needs to address microservice

architectures, and in particular the selected management, integration and communication

categories of challenges.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 74/130

6.4 Overview of ArchDesigner

Al-Naeem et al. [87] structure the ArchDesigner methodology in several distinct steps. These

steps are shown in Figure 22 below. One can see how each design decision is treated

separately in the first steps, but ultimately the process leads to an optimisation problem that

attempts to find the best overall solution across multiple design decisions. The authors also

describe how the overall solution can be subject to certain constraints such as cost or time.

Figure 22 - ArchDesigner Process – Adopted from [87]

The ArchDesigner methodology essentially comes down to first identifying which requirements

or Quality Attributes (QAs) should be considered and what alternatives are available, as well

as their interdependencies. These QAs are then ranked to establish their comparative

importance or weights. The identified alternatives are then compared based on how well they

fulfil the selected QAs. After this, each alternative is assigned an overall score based on the

fulfilment of the QAs combined with each QA’s weight. Alternatives’ scores are then

normalised in order to express which decisions are more important than others. For example,

an architectural choice that has great impact on other decisions might be given a relatively

high weight in this step. The authors propose to ultimately formulate the scores obtained in

the first steps towards an optimisation problem and subsequently try and solve this problem.

This gives an indication of the optimal alternative for each decision made based on the scores

assigned to them when applying the methodology. Constraints to the overall solution can also

be expressed when solving this optimisation problem; for instance, that the overall should not

exceed a certain cost.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 75/130

Even though – according to the authors – others methods could be used, the ArchDesigner

methodology relies heavily on the use of the AHP described by Saaty [89] as Multi-Attribute

Decision Making (MADM) method. Central in AHP is the pairwise comparison between items

to establish their relative significance. For defining the overall importance of QAs, each is

compared to all others and assigned a number to show its relative importance. In practice one

could ask:

- When comparing QA 1 and QA 2, which one is more important, and to what extent?

The extent to which one QA is more important than another is expressed on a 1-9 scale, where

1 means both are equally important, 3 means one is moderately more important, up to 9 which

signifies one requirement as being extremely more important than another. The AHP then

describes how to aggregate these pairwise scores to arrive at an overall ranking of

requirements.

The same pairwise comparison is done when evaluating alternatives, only this time both sides

are compared in relation to a QA to assess their fulfilment of this QA. For example:

- When comparing Alternative A and Alternative B, which one fulfils QA 1 best, and to

what extent?

Each pair of alternatives is compared in relation to each significant QA. After also aggregating

these rankings, this gives an overview of how well each alternative fulfils – or rather, is

expected to fulfil – each QA. Combined with the established weights of QAs, the highest

scoring alternatives can then be determined.

As said in section 6.3, ArchDesigner was susceptible to underestimating uncertainty according

to the findings of Falessi et al. [10]. It was proposed that including a variance calculation as

done by Svahnberg et al. [84] in scores given by different stakeholders to have a measure of

disagreement. Even though this number on its own does not have direct implications for the

choices made, it can be indicative of uncertainties in the rankings. As Svanhberg et al. state:

“If there is high uncertainty, this may indicate that the architecture candidates and quality

attributes are not so well understood, and that further investigations are necessary before the

final architecture decision is taken.” [84] This advice can also be incorporated when applying

ArchDesigner.

6.4.1 Applicability in Practice

Before embracing ArchDesigner as conceptual foundation to build a decision-making

framework with, some expert interviews were conducted to get a first indication of its

applicability in practice. Practitioners that would be prospective stakeholders of the framework

at Thales Naval were asked to comment on the ArchDesigner methodology and how it could

be used in practice. The overall process proposed by the authors was described to interview

respondents at a high level – leaving out details like score calculation methods that

stakeholders would not directly be concerned with in day-to-day use. Practitioners indicated

particular interest in the pairwise comparisons between QAs and alternatives and thought that

this might give them more consistency in their rankings. They recognised that this could

reduce bias as compared to directly ranking options.

A concern that was often voiced was distrust in the way that ArchDesigner treats

interdependencies between decisions as an optimisation problem that should be solved at

once. Respondents feared that there might be many dependencies to take into account, and

that solving the whole as one optimisation problem, even taking into account the normalisation

step, would lead to encountering a ‘dependency hell’, and would decrease the

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 76/130

understandability and thus confidence in the process. They did however indicate that the main

dependencies between decisions should be taken into account, but just were not sure whether

creating one big optimisation problem including all of them was the best way to do this. Another

concern was that in practice, people might not trust a single number or ranking in their decision

to choose one alternative over the other, especially when two alternatives’ scores are close to

each other. This might partially be due to a distrust in the quality of the rankings given by

stakeholders and possible inconsistencies between them and a perceived unclarity in how the

scores are aggregated. However, with for example measures of variance and explaining how

overall results are generated from individual comparisons, this could be treated. Nevertheless,

some practitioners felt like they missed a kind of ‘sanity check’ at the end of the process. This

initial feedback indicates some possible strong and weak points to the ArchDesigner

methodology when used in practice and will be taken into account in the design of the artifact.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 77/130

7 ARTIFACT DESIGN

Now that the problem investigation is complete, the requirements have been set and the

available alternatives have been considered, the design of the artifact commences. In this

section, the first artifact design is explained along with the integration of parts of ArchDesigner.

Some artifact design decisions are motivated by academic literature, whereas others are

mainly inspired by insights from practice. Together, this should allow for creating a framework

that is well-grounded in theory and also easily applicable in practice.

7.1 Design Decisions

With the ArchDesigner methodology [10] as a conceptual

basis and the knowledge of microservice challenges from

literature in practice, the design of the artifact to treat the

problem of designing a microservice architecture starts.

First, the high-level process was defined as shown in Figure 23. A more extensive model, also

showing the challenges involved is shown in Figure 24. In this process, clues were taken from

ArchDesigner, but made more explicit to show the different steps more clearly. It was also

extended to specifically show discussion and evaluation steps – which will be discussed in

more detail – to be taken, as well as an arrow looping back to the first step to indicate that the

process is often iterative.

Figure 23 – High-Level Artifact Decision-Making Process

The first step is to capture requirements that are

significant for the decisions to be made. As said before,

these can be given at the start of the project, and also be

influenced by a project context and the business strategy

of an organisation. There can be many requirements, so it is vital to select those that are of

most importance and have most implications on the system design when making decisions.

The goal is to select those requirements and QAs that are most impactful and most distinguish

possible alternatives from each other. As described by Lindblom [90] in their paper on the

Science of Muddling Through, often many of the alternatives under consideration all fulfil a

large part of the requirements. The alternatives then differ only on a marginal number of

requirements. Therefore, it is important to focus on those requirements that best set the

alternatives apart. That is not to say, though, that selecting between alternatives this way is

promoting an informal evaluation process. In terms of different evaluation modes described

by Mintzberg [91], the decision-making process should still mainly be done by analysis. In

some cases, though, support for certain QAs can be hard to quantify. An example of this is

maintainability. In this case some judgement by decision-makers can still be involved, making

the process more bargaining-like. As Mintzberg also points out in their research, “judgement

seems to be the favoured mode of selection, perhaps because it is the fastest, most

convenient and least stressfull of the three [evaluation modes]” [91].

Design decision:

Explicitly show detailed overview

of steps to be taken

Design decision:

Focus on selecting impactful and

distinguishing requirements

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 78/130

Whereas functional requirements can often either be fulfilled or not, QAs are generally

expressed with a measure and possibly a norm. For QAs, it is again important to select those

that mostly distinguish the different alternatives from each other and leave out those that are

only important as constraint. For example, if latency would be a distinguishing factor between

alternatives, then it should be considered. If, however, the only requirement to latency is that

a system should respond within a set amount of time, this can be seen as a constraint and

therefore it need not necessarily be included in the requirements by which to compare

alternatives.

In the next step, the requirements are prioritised. This is done in a pairwise manner as

described by ArchDesigner using the AHP. These pairwise comparisons ultimately result in a

weight assigned to each requirement. Refer to [89] for a more detailed explanation of how

such calculations are done. It is proposed to allow

multiple decision-makers to first make their own

comparisons, and then aggregate these to a consolidated

list of requirements and weights. This is in an effort to

reduce bias that could be introduced when communally deciding on relative weights in a group

setting. In group settings, certain decision-makers could also be more forward about their

views and aiming to convince the group of these. Another possible bias is that of Groupthink

[92]; the phenomenon in which judgements are altered because of a desire for harmony and

conformity within a group. One other possible source of bias is the phenomenon of anchoring

– described by Kahneman et al. [93]. A description given by the authors is as follows: “[…]

different starting points yield different estimates, which are biased toward the initial values.

We call this phenomenon anchoring” [93]. In this case, it concerns the situation in which group

members might subconsciously make their judgements depend on a weight suggested by one

group member. E.g. when decision-makers are unsure about what weight to assign to a certain

comparison and are still undecided, one decision-maker might say that they believe it should

be a certain value. At this point, the other decision-makers start comparing their views with

this set value – the anchor – and depend on it to compare their own weight ranking. This way,

the value that a decision-maker assigns to a comparison may be different than the one they

would have assigned without having first been presented with an anchor.

After establishing a prioritised list of requirements, the previously mentioned constraints to

alternatives should be identified. These can be used to include or exclude candidate

alternatives for comparison. In terms described by Kontio [80], these can be used in the

screening stage of finding suitable alternatives. Constraints can be in the form of a QA as

described before, but also other motivation that are not always captured in the requirements

of a project. One example of this might be an organisation not selecting alternatives made by

a certain supplier for competitive reasons. With these constraints in mind, the actual search

for alternatives can start. Kontio describes several sources where alternatives can come from,

such as in-house libraries, online sources, magazines and journals, vendor offerings,

experience, colleagues, experts and consultants [80]. These alternatives are searched for

each decision to be made.

Then comes the decision-making part. The challenges

that need to be considered in the case of a microservice

architecture arise from the literature research as well as

interviews from practice as discussed in chapter 4. They

are subdivided by their categories: management, integration and communication. In order to

show the dependencies between decisions, further research was done to each challenge and

how they relate to one another. This was discussed in chapter 5. The outcomes for each

Design decision:

Allow for prioritisation input from

multiple decision-makers

Design decision:

Initially make decisions one-by-

one

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 79/130

decision are the highest scoring solution alternatives, each serving as a building block for the

microservice architecture to be designed. Because of the number of challenges that need to

be addressed, and when considering the unfavourable feedback from practitioners on dealing

with interdependencies by merely solving an optimisation problem, the choice was made to

approach these decisions as a process in which decisions are initially treated one-by-one.

When one decision influences another, that first decision is first made and then used as input

for the next decision. This way, the results are consolidated before moving on to each next

decision. This does however imply that now sub-optimisation is happening; having the optimal

alternative for each decision does not guarantee the best overall solution. To deal with this,

the next step is introduced.

In step 6, the decisions are discussed to see how they fit

together. Practitioners indicated that they would likely not

take the best alternative at face value based on merely a

ranking. Therefore, it is proposed that the outcome of

each decision to be made are one or more best alternatives instead of a single optimal one.

In the discussion stage, these are then combined to an overall solution to the problem.

Guidance in determining the interdependencies between decisions is given through their

descriptions as was discussed in chapter 5. This way, decision-makers can combine

alternatives in a way that makes most sense to them. Recall that during the problem

investigation phase (chapter 3) of present research, practitioners indicated that the framework

should in their view mainly guide the discussion on the challenges that are encountered when

designing a microservice architecture. The goal is to achieve this by including this distinct

discussion phase in the process. Together with considering one or more best alternatives

instead of a single optimal one, the goal is to also increase practitioners’ confidence in the

framework by making it more transparent and not deciding on the overall solution merely by

solving an optimisation problem.

Finally, there is the evaluation stage. In this stage, the

outcome of the decision-making process is put into

practice and the quality of the solution is assessed. The

outcome of this evaluation can serve as new input for

next iterations. This step is crucial in both improving

future outcomes as well as the decision-making framework itself. First, the decision-making

process is iterative. If during evaluation it turns out that the outcomes are not sufficient, the

lessons learnt from one iteration can be used to improve the next one. For example, the

selected requirements could be altered, their relative weights, the alternatives under

consideration and so on. On the other hand, if it turns out that certain parts of the decision-

making framework itself can be improved, this could also be considered.

As stated before, not all challenges found in literature and

practice translate to decisions with clear alternatives to

choose between. One example used before is that of

service granularity – how ‘big’ a single microservice

should be. The solution to this challenge cannot just be

expressed as a number of lines of code or function points that are optimal. There are, however,

guidelines and techniques to decide on this. While such challenges have less to do with the

main decision-making process put forward by this framework, the goal is to also provide

guidance on managing these challenges. To accomplish this, first a distinction should be made

between challenges that can be decided upon by selecting between alternatives, and those

for which this is not the case. For each challenge that comes with guidelines instead of

Design decision:

Discuss best decision alternatives

to define the overall solution

Design decision:

Evaluate outcomes and iterate to

improve outcomes and framework

Design decision:

Find solutions in guidelines and

techniques when no clear decision

between alternatives can be made

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 80/130

alternatives, solution examples are given to help practitioners toward finding a way to manage

these challenges as well. It can also be foreseen that the framework is used in cases where

some decisions are already set. For example, if the communication mechanism used in a

system is predetermined by for example external compatibility requirements, this challenge

might not need further addressing and can be filled out with this choice. Another example is

the case in which only changes to part of a system need to be made without completely

overhauling its implementation of service interconnection.

To assess how reliable the decision outcomes are, the aforementioned advice by Svahnberg

et al. [84] of assessing uncertainty can be incorporated. Saaty [89] describes the use of a

Consistency Ratio (CR) for this to assess how well pairwise comparisons are in line with one

another. If this ratio becomes too large – higher than 0.1 according to Saaty – then the

comparisons can be inconsistent or contradicting. In this case, possibly the comparisons may

need adjustment or need to be re-done as continuing with inconsistent rankings as input can

make for unreliable decision outcomes.

7.2 Process Overview and Meta-Model

To make the theoretical description of the decision-making framework usable in practice,

thought must be put into how to present and communicate it. This way, decision-makers can

more easily get an overview of the different parts of the framework and the steps involved. A

first step in this is to explain the different steps in the process, as previously depicted in Figure

23. Next, a process overview – shown in Figure 24 – was created to show how all parts in this

process interact with one another.

Figure 24 - Decision-Making Process Overview

As can be seen, central at the start of the process are the requirements to the solution that is

worked towards using the decision-making framework. These can be defined by the decision-

makers themselves, as well as other stakeholders that may not necessarily be directly involved

with decision-making. When referring to the stakeholders as discussed in chapter 3, the ones

in the system layer of the stakeholder overview are most likely to be directly involved as

decision-maker. The requirements are also dependent on the project context; each system

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 81/130

has its own intricacies, and these are reflected in the requirements that decision-makers

should take into account. A business’ strategy that supersedes a single project, including

business-specific requirements and goals can also be of influence [79].

Next are the challenges, each with their own category.

These are the final challenges from Table 8 in chapter 4

These categories are depicted as three distinct groups of

decisions to be made. Between the challenges in each

category are arrows showing the dependencies between them. For example, in the

communication category, the communication mechanisms challenge should be addressed

before service interconnection, as the choice of communication mechanism – i.e. how to

structure communication – restricts the alternatives that are available for service

interconnection – i.e. how to implement this style communication. This is called an Alternative-

Based Dependency in the work by Al-Naeem et al. [87]. In this case, the communication

mechanism decision is superior to service interconnection. The authors propose that there

can also be Context-Based Dependencies; in which an alternative’s support for a certain

quality attribute can change based on the alternative chosen in a superior decision. The

challenges along with their interdependencies are discussed in chapter 5. There could also

be interdependencies between challenges outside of a single category. In fact, the complete

dependency graph could become fairly intricate fast with this number of challenges. This is

one of the reasons the choice was made to not decide on all of the challenges in one go as a

single optimisation problem. The aim is to address such category-transcending dependencies

in the discussion stage within the framework. This way, the framework should be more

practical and transparent to practitioners, expectantly increasing their confidence in it.

The challenges are not solved by choosing between alternatives but rather by incorporating

guidelines or industry practices are also shown in this overview. The distinction between

decisions and guidelines is made by showing them as a question or exclamation mark,

respectively. The output of this process are decisions and guidelines that each act as a

building block in the overall design for managing the design challenges related to the

communication between, integration and management of microservices.

To further explain how all parts of the process interact and which actors are involved in what

activities of the decision-making activities, a meta-model was created. This is shown in Figure

25.

Design decision:

Focus on dependencies within

category

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 82/130

Figure 25 - Artifact Meta-Model

In this model, certain parts of the process overview can be recognised. The requirements are

still central at the start of the process, along with the actors, and influencing factors. Also, this

picture makes the separate steps as previously shown in Figure 23 explicit; showing how each

step influences another along with the inputs and outputs of each step. This way, the

interactions between all parts of the framework are made clear.

Several Thales Naval practitioners were asked for initial feedback on these descriptions and

figures. They were presented with the figures in this chapter and an explanation was given on

how it all fits together. Most were interested in the artifact and were interested in how it could

help them in their day-to-day work. The overview of challenges also looked correct and

complete to them. They did have a hard time imagining how it would work in practice. They

indicated that this was in part due to them not having seen it be used in a real-life setting yet,

but also because the theoretical description was not practical enough yet in their view.

Practitioners indicated that a simplified explanation outlining the steps to be taken, why and in

what way would probably be helpful in making the framework more usable in practice.

Therefore, this was provided in presentation-form during the case studies, as well as a short

cheat-sheet-style manual to explain the main ideas and goals of the artifact together with

descriptions of the challenges and their possible solutions.

7.3 Fulfilment of Requirements

The goal-level requirements set in section 6.1 will be assessed through validation later in this

research. However, the domain-level requirements can already be discussed based on the

current artifact description. The domain-level requirements previously described are repeated

in Table 13.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 83/130

Table 13 - Domain-Level Requirements to the Artifact

Domain-level requirements

D1 The framework shall support the selection of optimal architectural
alternatives.

D2 The framework shall support the use of quality attributes for rating
alternatives.

D3 The framework shall support input from multiple stakeholders.

D4 The framework shall deal with competing and conflicting objectives.

D5 The framework shall take into account uncertainty both in the descriptions of
requirements and in their associated solutions.

D6 The framework shall deal with interdependencies between decisions.

D7 The framework shall support providing guidelines and industry practices
when no clear decision can be made for managing a challenge.

D1 and D2 are addressed since they are intrinsic to the ArchDesigner [87] methodology, and

this functionality is kept in the artifact design. As described by Falessi et al. [10], all decision-

making methodologies considered in their comparisons support D3 through D6. Thus, this is

also the case for ArchDesigner. The artifact design again includes these functionalities as well.

The most notable addition that was not previously found in software architecture decision-

making methodologies is that of D7; the support for providing guidelines. These have been

described in section 5 and are incorporated into the challenge overview used in the artifact.

Therefore, the artifact fulfils the seven domain-level requirements that were set. However, the

goal-level requirements are harder to measure. Through thorough validation research, these

will be addressed.

7.4 Usage Requirements

Besides the theoretical design of the artifact, it is important to determine when the framework

can be used. By having a population predicate it can be assessed whether cases fall into the

intended use or not. Making sure that the situation in which it is applied helps in enabling its

full potential. A first aspect to this is the organisational culture that it is used in. Given that the

decision-making framework is meant to be iterative, it is probably best used in organisations

that apply an iterative or agile-like software development process. When using waterfall-like

approaches, the goal is often to finish a certain design phase and not change its products in

a later stage. This conflicts with one of the goals for which the artifact was developed; not

always aiming for the perfect combination of alternatives, but helping organisations make

decisions on architecturally significant aspects with confidence, then evaluate and iterate.

Also, the business strategy and especially project context should be clear beforehand, since

the artifact does not give guidance on these subjects. Because they can influence the

requirements and their prioritisation quite substantially, it is vital that the goals for the system

are clear. That is not to say that there can be a case in which such goals only become apparent

when selecting requirements or even during the actual decision-making, though. However,

when are clear from the start, better decisions can be made earlier; thus, reducing the time or

number of iterations needed. Besides this, it is imperative that decision-making can be done

by selecting between architectural alternatives and using quality attributes to express the

extent to which these alternatives are suitable for their intended use.

It is proposed that the decision-making process be guided by a group facilitator. Their role is

to guide the process itself; not actually be a leader in deciding the decision outcomes. It would

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 84/130

be unnecessary to always have all decision-makers know the particulars of the artifact. Only

one decision-maker needs to be knowledgeable about how to execute the process and

calculate the appropriate scores for the group to be able to use it. Some introduction to for

example the details of pairwise comparisons can be given, but after that the group can focus

on the actual decisions. The group facilitator can choose to also act as decision-maker besides

only guiding the process. This choice largely depends on whether they are directly involved

with the project – and thus are a direct stakeholder.

7.5 Tooling

Given the involvement of the AHP by Saaty [89] during the decision-making process, specific

tooling is recommended – if not necessary – to calculate the weights, scores and priorities

related all requirements and alternatives. Because AHP is widely known and used, some

software made specifically for it is available. These are often in the form of a Group Decision

Support System (GDSS). A GDSS “combines communication, computing, and decision

support technologies to facilitate formulation and solution of unstructured problems by a group

of people” [94]. Examples of such software that can be used to perform calculations following

the AHP process are summarised in work by Pólkowski [95]. When deciding on what tooling

to use, many of the tools in this paper were examined, along with those found when searching

online. There are a few commercial software products available, of which some seem useful.

There are also a few free software packages which offer basic functionality, but do not always

excel in usability. Furthermore, as software vendors are increasingly offering their services

online using a subscription-model; some that previously offered standalone software have now

migrated to offering Software as a Service (SaaS). At their core, all software for use with the

AHP support pairwise comparisons of requirements and alternatives, as well as prioritisation

of both based on these scores. Many also offer support for involving multiple decision-makers.

One notable example of a free online tool is AHP-OS8, mainly developed and even

academically documented very well by Goepel [96]. This software’s user interface is fairly

basic but clear to understand and use. It supports all necessary functionalities, along with

options for sharing links for group members to fill out their pairwise comparisons for a given

project set up by a group facilitator. Furthermore, it supports in-depth analysis of the results.

Of the tools found during this research, AHP-OS seems like one of the best starting points for

academics working with the AHP method.

So, if organisations that aim to utilise the decision-making framework want to adopt tooling to

help with AHP-related calculations, plenty of options are available. However, not all tools are

suitable for all organisations. For example, when discussing with Thales Naval practitioners

about what software would best fit their needs, most pointed out that using SaaS solutions

was unpreferable since often sensitive information needs to be processed during decision-

making. This restricts the available alternatives. For the scope of the case studies to be

conducted, it was also not feasible to purchase a software product already. Some software

vendors offered trial versions of their software, but these were severely limited in their

functionality by for example imposing a limit of the number of alternatives or requirements that

could be considered. This would be detrimental to the case studies since the tooling used

should not be limiting the participants in working with the artifact. An effort was made to use

free software packages such as Super Decisions9, but while its support for the required

8 http://bpmsg.com/ahp/

9 https://www.superdecisions.com/

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 85/130

functionalities was there, the user-interface was too complicated, to an extent it would be

unlikely that it would ever be used in practice.

To be able to conduct case studies for validation of the artifact, tooling was needed that is free

or could be trialled for free, would not impose limitations that would inhibit the proper execution

of the decision-making process, and could be used offline. This resulted in two types of tooling

being chosen to be used when conducting the case studies. The first one is a Microsoft Excel

template developed Goepel [97] – the author and developer of the aforementioned online

AHP-OS system. This template can be used to specify requirements or alternatives, have

multiple decision-makers input pairwise comparisons, calculate their individual rankings and

also consolidating these into a unified ranking. The template also shows useful statistical data

such as a consistency ratio (CR) to assess the amount of contradictions and inconsistencies

between pairwise comparisons. The advantage of using such an excel template would be that

it would probably be easy to learn for practitioners, since generally many are already familiar

with how to use Microsoft Excel. A further benefit is that the template shows results

immediately, thus helping decision-makers understand how their inputs change the outcomes.

A large downside, however, is that this template only supports these calculations for one set

of comparisons at a time. For example, it can be used to calculate priorities of requirements,

but the outcome of this cannot directly be used as weighing factors when comparing decision

alternatives. Nevertheless, it is seen as a useful tool to experiment with pairwise comparison

by multiple decision-makers and subsequently calculating consolidated priorities or weights

for requirements or alternatives.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 86/130

Regardless of the potential that such an Excel template can have, it was still seen as too

limiting to only use this during the case studies. An abundance of manual work would be

involved to calculate intermediate results between steps or decisions. An alternative that was

more technical to use, but with a far better feature set was found in the form of an open-source

R package called AHP [98], which is developed by Christoph Glur and available through

GitHub. R is a programming language for statistical computing. Packages or libraries such as

AHP can be developed to provide specific functionalities and calculations that can easily be

used by the end-user. In the case of the AHP package, many helpful features are added,

including a GUI to display a systematic overview of how requirements and decisions relate to

each other, and to show the numerical outputs including extensive statistical data to easily

show how the scores for alternatives are constructed. A very helpful addition to this is that

alongside with the package, a file format was created to systematically express decision-

making problem. This AHP file format [99] is then used as input for the calculations to be done.

An example given by the author of this file format is as follows:

Several entries in this example have been highlighted to show the main parts to defining an

AHP problem using this file format. At the Alternatives section, alternatives for a given decision

can be specified. Optionally, each alternative can be assigned certain properties that can later

be used in optional calculation functions for determining their score on a certain requirement.

Individual decision-makers can also be specified using this format, including the option of

giving certain decision-makers a higher weight in the overall score calculation. Under

Preferences, the requirements – called criteria here – and their pairwise comparison can be

Version
Alternatives
 alternative 1
 property 1 (optional)
 property 2 (o)
 ...
 alternative 2
 property 1 (o)
 property 2 (o)
 ...
Goal
 decision-makers (o)
 preferences
 decision maker 1 (o)
 scoreFunction or
 score or
 pairwiseFunction or
 pairwise or
 priority
 decision maker 2
 ...
 children
 criteria 1
 preferences
 children
 sub-criteria 1.1
 sub-criteria 1.2
 children: *alternatives
 ...
 criteria 2
 ...

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 87/130

expressed per decision-maker. Other functions such as direct weighting of requirements are

also supported, but are out of scope for the sake of this research. Under Children, for each

criterium the scores per alternative can be expressed using pairwise comparisons per

decision-maker. Again, other modes of calculation are also supported. For example, when

measuring latency, decision-makers could compare alternatives in a pairwise fashion as

described before, but using this package, a score can also be calculated based on latency

defined as a number as alternative property. E.g. a latency between 0 and 10ms gets a score

of 9, 10-20ms gets assigned 7 etc. Such functions are not the main focus of present research,

but possibly a helpful addition in practice, nonetheless. Still, this example is quite abstract.

During the execution of the case studies, real-life examples will be given to make it easier to

understand how this AHP file format can be used in practice.

The fact that the AHP package needs to be used in R and comes with its own file format that

needs to be used makes this solution harder to learn by practitioners aiming to use it for

supporting the decision-making process in the future. However, for the sake of this research

and carrying out case studies to assess the artifact’s validity, the AHP package is deemed

more useful because of its functional superiority over the aforementioned Excel templates.

Furthermore, while defining a decision-making problem in the AHP file format can be time-

consuming, the fact that after completion the prioritisation of requirements and scoring of

alternatives are integrated makes for the expectation that ultimately it should be the easier to

use solution in practice. Thus, using the AHP R package is selected as most viable option to

implement tooling during the case studies.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 88/130

8 VALIDATION

With the first artifact design complete, its fitness for purpose can be assessed in order to

answer RQ-5: “How can the designed framework’s fitness for purpose best be validated?”. To

accomplish this, two case studies will be conducted with Thales Naval for validation. This

chapter describes the set-up and scope of each case study, observations, their outcomes and

changes made to the artifact design based on these.

8.1 Validation Methodology

As Wieringa states, “To validate a treatment is to justify that it would contribute to stakeholder

goals when implemented in the problem context” [4]. For this, a model of the artefact interacts

with a model of the intended context that both resemble their real-world counterparts. This is

illustrated in Figure 26. The interaction between the model of the artifact and the model of the

context is then observed to build a theory about how this interaction would work in real-world

scenarios. This theory can then be used to make generalisations and predictions about the

observed phenomena.

Figure 26 - Relation between Validation Model and Target - Adopted from [4]

The validation will be done through two case studies in the form of single-case mechanism

experiments. For the case studies at Thales Naval, several software architects were asked

about what current projects they and their team were currently working on that involved

decision-making in microservice architectures, and which of those they would see fit to serve

as model case for this research. The current description of the artefact acts as model of the

future implemented artifact and is applied to two cases that resemble practical scenarios that

will be used as models of the intended context. The guidance given in chapter 18 in Wieringa’s

book [4] on how to structure such experiments will be used to design the case studies. Those

parts that both case studies share are discussed together, and case-study specific aspects –

mainly the model of the context – will be explained in their respective sections.

The knowledge goal in these case studies is validation of the designed artifact or treatment.

The higher-level goal of the treatment is to improve decision-makers’ work in managing design

challenges related to communication between, integration and management of microservices.

The knowledge context consists of the problem overview, background literature and treatment

design discussed in present research.

The conceptual framework of this validation research consists of the problem description,

theoretical background and artifact design as well as the measures for operationalising

indicators described in this research. The generalisation is that the steps in the decision-

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 89/130

making framework contribute towards decision-makers’ goal of better managing microservice

design challenges. The generalization predicts that this will happen when the decision-making

framework is used. Knowledge questions that need to be answered in these case studies are

about whether the designed artifact satisfies the goal-level requirements described in section

6.1.2. Besides this, there is the question of whether decisions on the identified microservice

challenges can actually be made using this decision-making framework; i.e. the functional

correctness needs to be verified. The designed framework’s usefulness, ease of use and the

quality of the decision outcome are the main factors in contributing to the stakeholders’ goal

of better managing design challenges related to communication between, integration and

management of microservices. These can be expressed as follows:

- Can the artifact be used to support decision-making in a microservice architecture?

- To what extent do decision-makers find the artifact useful?

- To what extent do decision-makers find the artifact usable?

- How confident are decision-makers about the artifact’s decision outcomes?

- To what extent do decision-makers find the artifact and its outcomes usable in

practice?

The intended population is the set of microservice architecture design projects that:

- Are executed in an organisation with an iterative or agile-like software development

process;

- Have a clear business strategy and project goals set at the start of the project;

- Employ a group facilitator to lead the decision-making process.

The object of study is the first design of the artifact and will be applied in two different but fairly

similar case studies, the specific of which will be described in their respective sections. These

cases do not support directly gathering data for mathematical analysis. Questionnaires to be

filled out by participants can be used to get an overview of the outcomes of using the artifact.

Furthermore, qualitative data such as the decisions itself, as well as remarks by the

participants during the process can be used to describe and possibly explain some of the

outcomes. The model will abstract from the real world in a number of ways. First, the number

of participants, requirements, decisions and solutions to be considered will be limited because

of time constraints. Ideally, one would ask an entire team to join and make decisions for an

entire microservice architecture in as much time as needed. However, such a commitment of

organisation resources cannot easily be expected for this experiment. Furthermore, the case

studies will be conducted at Thales Naval. Even though the organisation is part of the intended

population, it is not necessarily the de-facto model for the population. Nevertheless, it is

expected that many of the observations done in the Thales Naval context can be generalised.

Both case studies reside in a context that resembles a real-world scenario. The decisions to

be made are similar to those that decision-makers face more often, but this time the designed

decision-making framework will be used to structure this process. The process will be guided

by the researcher, who will act as facilitator. An introduction to the decision-making framework

will be given in a presentation. The actual decision-making is supported with the tooling

described in section 7.5. Little control was exerted over the treatment; the role of the

researcher, materials and tooling will be to educate participants about the decision-making

framework and show its intended use, but not restrict them or intervene in their actual use

during decision-making. This should best support analogic inference to the real world.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 90/130

The case studies will start with an introduction by the researcher, explaining the decision-

making framework and its intended use as well as the concept of pairwise comparisons

through a presentation. The goal of the artifact to mainly be of a supportive role in the

participants’ day-to-day work will also be highlighted. This is done to clarify that it would not

tell them how to do their job but aims to make it easier. The case to be studied will be explained

to ensure that all participants would be on the same page about the system to be discussed.

A check will also be done to assess whether all participants are familiar with microservices.

Finally, the participants are informed that because of the limited time available for these case

studies, the number of requirements, decisions and alternatives to be considered would be

limited. Nevertheless, they will be encouraged to approach the process in a way that they also

would in the real world, to make it as true-to-life as possible.

In both case studies, data on usefulness, ease of use and decision-quality will be gathered by

letting participants fill out questionnaires. The questions defined by Davis [82] in their paper

describing the Technology Acceptance Model (TAM) can be used for measuring the first two

variables. The question of confidence comes down to measuring decision quality. No detailed

information about previously made decisions in microservice architectures and their

performance is available. It is therefore hard to objectively judge decision quality based on the

performance of decision outcomes in practice. As an alternative, this can be done using the

six elements of decision quality described by Spetzler [83]. These questions have been

augmented with three additional ones, directly asking participants about how confident they

feel about decisions, the practicality of the decisions and about the contribution of the artifact

to making these decisions. The question about the perceived practicality, together with asking

about the framework’s technical correctness are used to assess practicality. An overview of

the questions used for these measurements can be found in Appendix D. From this data,

descriptive statistics can be derived to gain insights in the participants’ views on the decision-

making framework. The data from the questionnaires will be mainly used to support descriptive

inference. Furthermore, the events, remarks and outcomes of the decision-making process

can be used to further analyse the model artifact’s effects in the model context. An attempt

will then be made to generalise from this.

8.2 Case Study 1

The first case study involves the design of a control system that on one side communicates

with one or more client systems, and on the other side instructs external input and output

devices and gathers data from these devices. As per request by Thales Naval, the precise

description and application of this system will not be discussed beyond those aspects relevant

to this case study. This is in no way limiting though, as many of the requirements and

challenges found in this system could also occur in systems with similar functions in other

types of businesses. Refer to Figure 27 for a schematic overview of the system that is central

in this case study.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 91/130

Figure 27 - Schematic Overview of Case Study 1 System

As can be seen, communication between the control system and client systems happens

through a gateway. The gateway provides a standard interface that clients can integrate with,

and this way abstracts away the external devices’ specific interfaces. However, not all

communication from this client system to the external devices need necessarily run through

this gateway; as for some use cases direct communication may be necessary or preferred.

For example, client systems might still use legacy code that cannot communicate with the

client gateway yet, or some device-specific functionality unsupported by the client gateway

can be needed by the client system in certain cases. The data sent between the different parts

in this system can consists of both request/response-style communication – e.g. requesting

an action to be performed by an external device – and notification-style communication – e.g.

an external device announcing a change in its state. This control system will be newly built,

using a microservice architecture.

Since time would not allow the design of the entire control system to be defined with help of

the decision-making framework, the decision was made to focus on the part that connects to

the external input and output devices. Services in the control system would together provide

functionalities accessed through the gateway and would need to connect with possibly

proprietary interfaces of these external devices. Beforehand, it was also expected that there

would also not be enough time to consider all the decisions captured in the artifact.

Practitioners indicated that most of the challenges they expected to face were of technical,

communication-related nature. Therefore, the challenges in the communication category were

selected to be focussed on in this case study. These are shown in Figure 28 below. The team

consisted of six participants, from varying age, experience and function. Four participants were

involved with software architecture design in their day-to-day work, and the two others were

lead software engineers. Of them, four participants – three software architects and one lead

software engineer – were able to attend the case study. Having more participants would have

been preferable, but this was not possible at the time due to planning constraints. The total

time available for this case study was roughly two hours.

Figure 28 - Challenges in the Communication Category

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 92/130

8.2.1 Observations

First, a discussion was held about what requirements to involve. The participants were

instructed to try and select those that they would consider the best for differentiating between

alternatives for the subsequent ranking of alternatives. This resulted in seven main

requirements that would be considered. Consequently, these requirements were ranked by

the participants using pairwise comparisons as described. This resulted in the prioritisation of

criteria shown in Figure 29. Besides the four quality attributes of reliability, availability,

performance and security, there are three functional requirements present. The

Device_Access criterium captures the need for support of direct connections between a client

system and an external device. The Subsystem_Var and Feature_Var criteria are specified to

show that alternatives should support variability or changes in both the kinds of external

devices (subsystems) that are connected, as well as the features from these that are

supported by the control system. It can be seen that the first two functional requirements make

for a large portion of the overall weight of criteria. Please also note that a small weight for an

individual criterium does not necessarily imply that it is of low overall importance to the project.

This ranking merely shows the relative importance of the criteria.

One constraint to the overall solution was that its performance needed to meet a certain level.

At the time of the case study, the participants could not immediately assign a measure and

norm to this, but they indicated that in the real-world this could well be done. Performance is

also present as criterium, since better performance is seen as always preferred. Therefore, it

can be used to compare alternatives, with the constraint that it should at least be within a

certain threshold.

Figure 29 – First Prioritisation of Criteria

Figure 30 - Adjusted Criteria

The first decision of Communication Mechanisms was then considered. Within the scope of

the case study, the search for alternatives involved practitioners’ experience or previously

used approaches. Some examples were also suggested by the researcher, but the ultimate

selection was up to the participants. For communication mechanisms, two alternatives were

deemed as possible candidates; a publish/subscribe (PubSub) or publish/asynchronous

(PubAsync) response mechanism. These two alternatives were then ranked using pairwise

comparisons for each criterium, resulting in the ranking shown in Figure 31.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 93/130

Figure 31 - First Ranking of Communication Mechanism Alternatives

When this outcome was shown to the participants, they indicated that they largely felt that the

outcome fitted with their beliefs. However, upon seeing the differences in weight that now exist

because of the large influence of the top two functional requirements, the participants felt that

these were too influential. When for instance looking at the support for Device_Access

between PubAsync and PubSub, the difference felt superficial to participants. They indicated

that there could indeed be differences in the support for this requirement between the two

alternatives, but that in practice they expected that they could make both alternatives support

this function. They felt the same for the other Subsystem_Var and Feature_Var functional

requirements; as long as these features were supported, the relative differences between

alternatives with regards to these were not as important for the comparisons as the quality

criteria. Because of this, the choice was made to omit the functional requirements from the

comparisons and keep the requirements for support of these functions as constraints. The

ranking of criteria and alternatives for communication mechanisms could then be recalculated.

The results of this are shown in Figure 30 and Figure 32. The participants indicated that the

new comparison between alternatives was better suited with their beliefs and gave them more

insight. As can be seen, the publish/asynchronous response mechanism has the highest score

in this case, though not by much. The practitioners were confident though that they should

choose PubAsync for this decision and continue.

Figure 32 - Adjusted Ranking of Communication Mechanism Alternatives

The next decision to be made would normally be Service Interconnection. However, at this

point in the case study, there was not much time left since the discussion on and adjustment

of the requirements took quite some time. Participants indicated that they were highly

interested in looking at the Service Discovery decision, as they were encountering it in their

daily work at the time. The decision was therefore made to move on and focus on that decision.

Two feasible alternatives as way of implementing service discovery were selected; either

client-side or server-side discovery. The choice between these was not constrained by the

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 94/130

choice of communication mechanism. The same pairwise comparisons with regards to criteria

were then made, resulting in the ranking shown in Figure 33.

Figure 33 - Ranking of Service Discovery Alternatives

In this case, a clear preference for server-side discovery is observed. Participants felt that this

outcome fitted well with their views and scores given during comparisons.

Another step in the communication category is to consider interface design; which is shown

as a guideline in the decision-making overview. The main guideline here is to use a

standardised IDL whenever possible. Participants were asked whether it would make sense

to include this in the overall decision-making process and whether the guideline is usable.

They indicated that both were indeed the case.

The next step would then be to discuss the decision made. Putting the separate chosen

alternatives together to form a coherent solution requires some discussion and a reality-check.

With the limited decisions made in this case study, this discussion by the participants was

quite short. They felt that the best scoring alternatives were a good fit for the system and were

confident that they could also find a solution to the service interconnection challenge that fit

with the others. The final step of evaluating the decision outcomes by putting the solutions into

practice was obviously out of scope for this case study, but participants indicated that they felt

this was a logical and necessary step in the process. Especially since they use an agile

software development method, this step felt natural.

8.2.2 Results

After the execution of the case study, the participants were first asked to comment on how

they felt about the use of the decision-making framework for making these decisions. The first

and foremost remark made by most participants is that they liked the use of the pairwise

comparisons by the AHP method a lot and were pleasantly surprised by it. They felt that by

comparing requirements and alternatives in pairs, the discussion about why one is better than

another is stimulated as opposed to having to rank all options by direct scoring. The fact that

each participant could input their own comparisons and eventually consolidate all into a single

overview was also seen as helpful. Participants recognised the possible sources of bias that

could be present when this would be done in a plenary fashion. One software architect

indicated that this could also be very useful as justification for the choices made for a certain

system, as these are now made explicit and after analysis give good insights. Participants

were also asked about whether they thought the overview and dependencies between

challenges in the artifact were technically correct. They indicated that they could not find any

apparent shortcomings in both.

Points of improvement that were mentioned at this point were mainly about tooling; this was

seen as still too ad-hoc and of a quite technical nature. Participants indicated that it might help

to make the entire process a bit more ‘hands-on’ by for example creating a planning-poker-

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 95/130

like approach to the pairwise comparisons or using post-its on a whiteboard to show pairwise

rankings. Besides this, participants indicated that they would have liked a more practical

description of what decisions to make and how to make them. Having a short and to the point

‘how-to’ guide would in their opinion help to make it easier to use for practitioners.

The most notable observation during this case study was the fact that the requirements

selection and prioritisation needed to be changed during decision-making. This is contrary to

the intention of prioritising requirements and only changing them in subsequent iterations of

decision-making. When participants were asked about why they thought the requirement

selection was off in the beginning, they indicated that they probably needed more information

about how to select the most architecturally significant requirements. They also noted that

after they became more familiar with the decision-making framework, they felt that they could

better foresee how the requirements would be used later in the process. Thus, better

explanation beforehand and practice with the framework could also aid in improving

requirement selection and prioritisation. Furthermore, participants indicated that they had

some trouble in deciding what weight to give in comparisons. The 1-9 scale used here was

not completely clear; especially the question of when to give a score of 9. More guidance on

this would expectedly also help them make better judgements according to the participants.

In short, observations from practice can be summed up as follows:

- Allowing each participant to give their own rankings and then consolidating was seen

as helpful to reduce biases present in collective decision-making;

- The outcome of the decision-making process can possibly be used to document and

justify the decisions made;

- No shortcomings could be found in the overview of and dependencies between

challenges;

- The requirements selection process in this case study was suboptimal, resulting in

having to change the considered requirements during its execution;

- The tooling used during the case study was seen as too complicated and could be

more ‘hands-on’;

- More guidance may be needed to explain the selection and ranking of requirements

and alternatives;

- The use of AHP for comparisons was received well and thought to be useful for evoking

discussions.

All four participants filled out the survey to assess usefulness, ease of use and decision quality.

The scores for each question in Appendix D were recorded and then processed to show

overviews of the scores for each indicator. No data was missing, and no outliers were

removed. All answers were coded on a scale of -3 through 3. Corresponding answers are

shown in Appendix D. The average score per question is shown by a bar, and the overall

average for the indicator is shown on top of the diagram. It can be seen that the participants

ranked the usefulness and usability of the artifact somewhat favourably. The decision quality

indicator received a low score, though, meaning that participants on average neither agree

nor disagree on the questions regarding this. It must be noted though that the scale used for

measuring these questions was different from that for usefulness and usability, so these

scores cannot directly be compared. These two were measured by asking about the likeliness

that certain statements would apply to the respondent, whereas decision quality was

measured by asking about the extent to which respondents agree with statements. The

average score that participants gave about perceived practicality of the outcomes was -0,25,

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 96/130

though no technical shortcomings inhibiting practicality of the framework were found during

the case study.

When asked about why participants gave the decision-quality and practicality related

indicators low scores, the consensus was that they were hesitant to trust their judgements

because during the process the requirements and their prioritisation had changed. Participants

expected that when they were more comfortable with the use of the framework, and had more

guidance in requirements selection and prioritisation, they expect to be more convinced that

the choices made are the right ones.

Figure 34 - Survey Results Case Study 1

8.3 Changes to the Artifact Design

Based on the observations and feedback in the first case study, the choice was made to

improve on the artifact design by including more guidance on how to select the r ight

requirements to include during decision-making. The scale of weights to be assigned to

comparisons is also explained in more detail.

Without additional guidance, it may still be hard to determine which requirements to take into

account. Chen et al. [100] aim to explain what characterises architecturally significant

requirements through a framework developed in an empirical study with practitioners. In Figure

35, a graphical depiction of the framework in question is shown. As can be seen, the authors

define an architecturally significant requirement as one that has “a measurable impact on the

software system’s architecture” [100]. Significance, in their view, is measured by “high cost of

change” – either monetary or not.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 97/130

Figure 35 – “A framework of the characteristics of architecturally significant

requirements” - described in [100]

Figure 36 - Software Systems' Quality Attributes found in

[100]

The authors go on to explain the different characteristics

that can make a requirement likely to be architecturally

significant; through their descriptions, indicators and

heuristics [100]. The items shown in the framework can

help recognise architecturally significant requirements. For example: if a certain requirement

is described vaguely, has a wide impact on a system’s design and touches upon a system’s

core features, there is a high likelihood that this requirement is architecturally significant. Even

though not all decisions that the artifact concerns are of a purely architectural nature, the

insights from this work can help in identifying those requirements that are most impactful.

Therefore, the framework by Chen et al. [100] is used to help explain to decision-makers which

requirements to focus on. In their paper, the authors also give concrete examples of quality

attributes that practitioners mentioned in their study. These could be used as examples to

possibly be used in the decision-making framework. Other sources of possible quality

attributes also exist, such as the FURPS+ classification system by Robert Grady at Hewlett-

Packard [101] or the ISO/IEC 25010:2011 standard [102].

To give more guidance on the weights to be assigned to

pairwise comparisons of requirements and alternatives,

the scale described by Saaty [89] – shown in Figure 37

by Al-Naeem et al. – is included explicitly so practitioners

can get a better feeling for when to choose what weight. As for the question of what

comparison warrants the extreme weight of 9, Saaty describes the justification for this weight

as follows: “The evidence favouring one activity [in this case; alternative or requirement] over

another is of the highest possible order of affirmation” [89]. Saaty also suggest that the higher

the weight assigned to a comparison; the more evidence should be in place to support this

judgement. When describing weights 3 and 5, Saaty talks in terms of experience and

judgement, whereas with 7 the explanation includes demonstrated dominance in practice and

as stated for 9 the highest order of affirmation.

Design decision:

Explain what makes an impactful

requirement

Design decision:

Provide guidance on how to

assign weights in comparisons

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 98/130

Figure 37 - AHP Weighting Scale - Adopted from [87]

With these clarifications in place, the expectation is that the requirements selection and

prioritisation steps at the start of the decision-making framework give better results on the first

execution. This should help practitioners in making logical choices here and thus better trust

the decisions made accordingly.

8.4 Case Study 2

In the second case study, the same general set up as case study 1 was used. The first

meaningful difference was the system to be studied and make decisions about. This time, a

system is investigated that facilitates connecting several applications to a data store through

services that provide specialised functionality. Just as in the first case study, the precise

description and application of this system will not be discussed beyond those aspects relevant

to this case study.

The services that implement this functionality are being designed as microservices. In the

schematic overview shown in Figure 38, the data access service is used to interact with the

data store, and to abstract away the direct control of this store. Other microservices connect

to this and provide several types of information and functionality for use in different kinds of

applications. One part of this is the system configuration service – also called SysConf by the

participants. Applications or upstream services can request information about the system that

they are running on such as system state and user info (request/response). Another part to

this interaction is that the system configuration service can send notifications to these

applications when something in the system configuration changes and they are subscribed to

be notified of it.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 99/130

Figure 38 - Schematic Overview of Case Study 2 System

Several aspects to this case study are similar to the first one. Again, the time available for the

case study was limited. Therefore, the decision was made to focus on the part where the

system configuration connects to applications. Also, practitioners again indicated a strong

preference to first consider the technical, communication-related challenges. This category

(previously shown in Figure 28) was therefore selected to be focussed on in this case study

also. This time, again four participants were available. More would have been better, but this

was wat time and planning constraints allowed for. This case study was also conducted in two

hours.

8.4.1 Observations

The second case study started off with capturing requirements and selecting those that are

expected to be most impactful when making decisions. The requirements were as follows:

▪ Support for enabling High Availability

▪ Support for Third Party Access to the service

▪ Support for Polyglot programming

▪ Support for Technology Agnostic development

▪ Support for evolution → in this case regarded as interchangeable with being

technology agnostic

▪ Support for accountability on user → for now seen as constraint; probably able to make

this work with many if not all options

▪ Support for health checks → required in all cases, so seen as constraint

The first four were used as input for this case study, since others could be regarded as

constraints that were expected to not contribute much towards distinguishing decision

alternatives. Polyglot programming and Technology Agnostic development seem to be alike

but are intended to specifically refer to the programming language, and the technology stack

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 100/130

used, respectively. The support for being able to easily evolve the service in the future was for

this case study regarded as interchangeable with being technology agnostic. The required

support for accountability on a user was a constraint that arose from the project and business

context. As indicated, participants were convinced that this could be implemented in most – if

not all – cases and therefore chose to not involve this requirement for comparisons.

Furthermore, the required support for health checks of the service was non-negotiable and

thus also seen as constraint. This could be taken into account when searching for alternatives

to consider for each decision. The first four requirements were then prioritised by making

pairwise comparisons. The outcomes of this are shown in Figure 39.

Figure 39 - Prioritisation of Criteria

The first decision in this was that of communication mechanisms. This deals with the choice

between synchronous and asynchronous communication, as well as one-to-one and one-to-

many styles. When discussing this decision for the SysConf interface, it became clear that for

some functionalities a synchronous approach would fit best, whereas for others asynchronous

communication was more natural. For example; to request certain data on demand, a

request/response pattern would suffice, but to notify services of a change in system state

when for instance a user logs in with another role, a publish/subscribe mechanism would be

better suited. This resulted in a discussion about how to combine the two functionalities in one

service. At that point, it became clear that there was no consensus yet as to whether this

should be handled by a single service, or multiple. To not overcomplicate the case study within

the limited time, the choice was made to focus on the use case of notifying services of a

change in system state. In line with this, for communication mechanism publish/subscribe was

selected by the participants as it was seen as the only viable alternative in this case and thus

no comparisons were necessary. One nice insight from this was that this distinction was big

enough to warrant the use of two (or more) interfaces. Thinking of microservices, these could

also be implemented using two separate services, each providing their own different interface.

The next step was to look at how to implement this service interconnection. Several

alternatives were considered here. ActiveMQ and ZeroMQ are well-known implementations of

messaging, with a broker-based and brokerless approach respectively. A native DDS solution

and the java-based HazelCast were also included as alternatives. An overview of the

considered requirements and decision alternatives as output by the AHP R library is shown in

Figure 40. The alternatives were then ranked using pairwise comparisons. It turned out that in

this comparison, the TechnAgnos requirement did not meaningfully divide the alternatives. In

line with how such a situation is handled in ArchDesigner [87], the comparisons regarding this

requirement were all assigned the weight 1 – with the assumption that they were equally strong

in supporting this requirement. Furthermore, the Polyglot requirement was seen as an all-or-

nothing requirement; it is supported or not. This resulted in ranking of alternatives using the

extreme ends of the scale; when one supported Polyglot and another did not, the highest

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 101/130

rating was assigned and so forth. In other requirements, more nuance could be shown in the

comparisons. The outcomes were as shown in Figure 41.

Figure 40 - Decision Overview for Service Interconnection

Figure 41 - Ranking of Service Interconnection Alternatives

As can be seen, ZeroMQ is highly preferred over other solutions based on the comparisons

with regards to the four set requirements. A large part in this decision was the fact that ZeroMQ

uses a brokerless model, which was seen as positively influencing the high availability

requirement. Since this requirement has much weight in the overall decision, this is of great

influence.

After this decision, the time was almost up. This meant that there was no more time to choose

between alternatives for service discovery. In order to verify that providing guidelines was also

seen as helpful by participants, the interface design aspect was briefly discussed. The same

guideline of using an IDL whenever possible was presented, and participants indicated that

they would find such guidelines helpful, as long as they were to-the-point; i.e. gave advice that

could quickly be used in practice.

The next step would then be to discuss the decision made. Putting the separate chosen

alternatives together to form a coherent solution requires some discussion and a reality-check.

With the limited decisions made in this case study, this discussion by the participants was

quite short. They felt that the best scoring alternatives were a good fit for the system and were

confident that they could also find a solution to the service interconnection challenge that fit

with the others. The final step of evaluating the decision outcomes by putting the solutions into

practice was obviously out of scope for this case study, but participants indicated that they felt

this was a logical and necessary step in the process. Especially since they use an agile

software development method, this step felt natural.

In the discussion step, the question is how to combine the alternatives in a way that makes

sense for the entire system. This discussion was brief, since not too many decisions were

made. The two decisions that were made on the use case of the SysConf container notifying

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 102/130

services when the system state is changed were clear and usable in practice: utilise a

publish/subscribe mechanism and implement this using ZeroMQ. Practitioners indicated that

it would be likely that this combination would also be used in practice later on. When asked

whether feedback of a future implementation could be used in the evaluation stage,

participants noted that this could indeed be the case, but that they might need guidance in

how to use this feedback in a next iteration of the decision-making framework. For example, if

a certain alternative is found to eventually be of insufficient quality, it could of course be

removed from the comparisons for a particular decision. However, the underlying reasons

behind this could be numerous. It might be that the requirements and their prioritisation have

been off, or the scoring of alternatives in different comparisons were based on inaccurate

estimates for how well alternatives supported criteria. These would therefore probably also

have to be revisited to ensure that future decisions are based on reliable inputs.

8.4.2 Results

After the execution of this second case study, the participants were again asked to comment

on how they felt about the use of the decision-making framework. The general consensus was

that they felt that it could be a supportive tool to support decision-making. Participants

indicated that they liked the use of pairwise comparisons, as they felt this would help them

make more informed decisions. Participants again indicated that they could not find any

apparent shortcomings in the overview and dependencies between challenges in the artifact.

Another insight was that it would be nice to document the rationale between certain

comparisons. E.g. why is option A better than B with regard to a certain requirement? By

documenting this during decision-making, a large part of the design-rationale can be

established according to the participants.

Further insights came from the discussion of what requirements were more important than

others. Often, the practitioners questioned what requirements were more important on the

short or long term. I.e. when looking at the short term, some requirements might be more

important whereas this importance might change when considering long-term development

and use of the system. It also turned out that during the decision-making process, sometimes

the choice and ranking of requirements was questioned. This was not necessarily due to a

distrust in the way these rankings were calculated, but rather the participants asking

themselves whether they gave the right weights when comparing criteria. Some indicated that

maybe after having some practice with how it all works, in a next iteration the requirements to

include and their ranking may be changed by decision-makers. Furthermore, the consensus

was that probably more than one interface would be needed to support all the SysConf

functionalities. It is to be decided whether these are split up into multiple services. This

discussion was not foreseen and could have maybe been avoided by first considering the

service granularity challenge from the Management category in the overview of challenges.

Other remarks made by participants were that they found the artifact practical and well-

structured. They also particularly liked the fact that it forced them to think about the rationale

behind decisions, partially thanks to making pairwise decisions, and avoid inconsistent

decisions. Points of improvement focussed on the tooling that was not mature yet, as well as

that it could take quite some time to apply the decision-making framework for a large project.

Participants also foresaw cases in which part of the framework could also be used to make

specific choices when needed. For example, in an existing system, certain decisions may have

already been made. When for instance a system’s communication mechanism and service

interconnection implementation are already determined, these can be filled in. A subsequent

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 103/130

choice on the service discovery decision can then use the input from these already made

decisions.

To sum up, the practical observations from this case study were:

- Making pairwise comparisons using the AHP was received favourably and seen as

supportive in making more informed decisions;

- The overview of and dependencies between decisions showed no shortcomings to the

participants;

- Documenting the reasoning behind a certain pairwise comparison could be useful for

establishing design-rationale;

- Certain requirements can be more or less important when comparing short- and long-

term implications to decisions made;

- At times, participants were uncertain about their rankings of requirements. It was

indicated that this was likely to change with more practice;

- Sometimes, there can be dependencies with challenges in other categories;

- The artifact was seen as practical and well-structured;

- Participants liked that they were ‘forced’ to think about the rationale behind their

decisions;

- The tooling was seen as not ready for use in practice yet;

- The use case of using part of the framework when a system needs to be changed and

certain decisions are already set was also foreseen by participants.

The participants were asked to fill out the same survey as the one used in the first case study.

The aggregated results are shown in Figure 42. It can be seen that – on average – the

participants ranked all three of the investigated indicators of the artifact favourably. The

decision quality indicator stands out most, since this shows a high improvement over that in

the first case study. The lowest scores in the usefulness category were assigned to questions

about whether the artifact could help participants accomplish their tasks more quickly and be

more productive in their job. The lower scores here likely arise from the fact that decisions

took quite some time during the case study, and therefore not many actual decisions could be

made within the time available. The average score that participants gave about perceived

practicality was 1.5, so the outcomes were seen as applicable in practice. Again, no technical

shortcomings inhibiting practicality of the framework were found during the case study.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 104/130

Figure 42 - Survey Results Case Study 2

8.5 Discussion and Conclusions

With the case studies complete, their results can be analysed. In this section, the knowledge

questions set for validating the artifact are answered based on these results. Given the limited

number of practitioners that participated in these case studies, no purely statistical analysis

can be done. To assess the expected usefulness, usability and decision quality for decision-

makers, the data gathered through the surveys in these case studies is used. Graphs

summarising the outcomes for these indicators and their average scores have already been

shown when discussing the individual case studies in Figure 34 and Figure 42. Refer to

Appendix E for combined views of these indicators in both case studies. Histograms are also

included to show the spread of answers given by participants. These give more insight beyond

the mere average scores per indicator, such as insight in the spread of individual responses.

These histograms have been normalised, meaning that they show relative frequencies. This

denotes the proportion of responses that were assigned a certain value. The sum of the

heights equal 1 for each data series. Note that the question scale used in the decision-quality

related questions was different from the other indicators. This asked about agreement with

statements rather than likeliness that a situation would be true in practice. The number of

options and coding of scores was identical though. Nevertheless, an individual score regarding

usefulness or usability can probably not be directly compared to a score for decision quality.

The first and main question to be answered is about functional correctness: can the artifact be

used to support decision-making in a microservice architecture? During the case studies,

participants were indeed able to make decisions using the framework about several

microservice-related challenges. These decisions were based on real-world scenarios, and

only the number of variables involved were limited due to time constraints. Participants were

not limited in the actual requirements and alternatives to be considered in their decision-

making. Furthermore, no indications were found that the overview of challenges and their

relations were incorrect. Participants understood the structure and steps involved and found

these well-structured and compatible with their software development process. Given these

outcomes, it is expected that the decision-making methodology of the artifact can indeed be

used to support decision-making in a microservice architecture. A notable limitation to this

generalisation is that not all challenges could be addressed in the two case studies. Even

though the process of decision-making is the same for all these challenges, no empirical data

is available yet to validate whether the findings in these case studies hold true for all

challenges within the scope of the artifact.

In the case studies, the average scores given to questions about the perceived usefulness of

the artifact were 1.00 and 0.96, respectively. This corresponds with the answer option of

‘somewhat likely’. In terms stated by Davis [82], this would mean that the participants thought

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 105/130

it is somewhat likely that using the artifact would enhance their job performance. The

observations from the case studies seem to be in line with this score. Participants indicated

that they thought the artifact could indeed support discussions about managing challenges in

a microservice architecture and had favourable opinions about the pairwise decision-making

and structured approach. On the other hand, decisions did in many cases take a considerable

amount of time. This likely inhibited the perceived usefulness, thus contributing to the score

on this subject not being higher.

The average scores regarding usability were somewhat higher; 1.29 and 1.50, respectively.

Again, this most closely corresponds with the ‘somewhat likely’ answer option but is leaning a

bit more towards ‘quite likely’ than the scores for usefulness. Therefore, looking at the

definition given by Davis [82], it can be said that on average participants thought it is somewhat

likely that using the artifact would be free from effort. The perception of usability was likely

helped by the fact that participants recognised the clear steps in the decision-making process

and the fact that the process is meant to be iterative as this closely resembled their day-to-

day work activities. Participants also indicated that after some practice, they would likely be

able to use the artifact in a real-world scenario. The biggest inhibitor to the usability score was

tooling, as many participants indicated that more mature tools to guide the decision-making

process would likely improve it.

The indicator that showed most difference between the two case studies is decision quality.

The results of the first case study were somewhat disappointing in this regard, with an average

score, yielding an average score of 0,00. As described, this was expected to be caused by

unclarity about the selection and prioritisation of requirements during this case study. The

artifact was changed to include more guidance on how to select the right architecturally

significant requirements, and how to assign scores in pairwise comparisons. The expectation

was that this would improve decision quality. The second case study – conducted with these

clarifications in place – showed an improvement in the perceived decision quality with an

average score of 1.21. Besides this, whereas in the results from case study 1 more than half

of the responses given regarding decision-quality were negative or neutral, all scores given in

case study 2 are neutral or positive. Furthermore, in the second case study there was also

more consistency in the answers, showing a sample variance of 0.69 as compared to 2.74 in

case study 1. This means that the average reported for case study 2 is more indicative of the

dataset than that for case study 1, which showed much dispersion of answers. The more

favourable score from case study 2 is no definitive proof that the additions to the artifact have

improved the perceived decision quality by participants on their own. The score can be

indicative of some improvement in this regard. It must be noted though that, even though the

case study execution was kept as consistent as possible between the two case studies, the

actual case used for decision-making did differ. This resulted in different decision being made,

which may have also caused a difference in decision quality scores. Nevertheless, the

observation that in case study 1 the requirements selection and prioritisation had to be redone

and in case study 2 this was not needed, while in case study 2 the additions to the artifact

aimed at improving these steps were in place, can be a sign of improvement. A fair conclusion

to be drawn than is that on average, the participants were neutral to somewhat confident about

the quality of the decision outcomes. Scores on perceived practicality were also low in the first

case study, but better in the second one, with averages of -0.25 and 1.5, respectively. This

difference can likely also be attributed to the uncertainty in the requirements selection and

prioritisation in the first case study. During both case studies, no technical shortcomings to the

framework were found. This also gives a favourable view of the usability in practice of the

decision-making framework.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 106/130

In section 8.1 the knowledge goals to be answered through the case studies were defined.

These were as follows:

- Can the artifact be used to support decision-making in a microservice architecture?

- To what extent do decision-makers find the artifact useful?

- To what extent do decision-makers find the artifact usable?

- How confident are decision-makers about the artifact’s decision outcomes?

- To what extent do decision-makers find the artifact and its outcomes usable in

practice?

As discussed in this section, the observations and results from the two case studies give

reason to believe that the artifact can indeed be used to support decision-making in a

microservice architecture. Participants on average found the artifact somewhat useful, and

somewhat to quite usable. They were on average neutral to somewhat confident about the

decision outcomes and practicality, with indications to believe that the changes to the artifact

to improve on this yielded more favourable results. No technical shortcomings that would

inhibit the decision-making frameworks use in practice were found.

It is expected that these findings can be generalised to real-world use of the artifact, because

of the case studies’ similarity to conditions of practice. The case studies were set up to be as

similar to the real world as possible, and real scenarios were used as cases to be studied.

Participants were merely limited in the number of variables involved, such as requirements

and alternatives to be considered, not in their choice of these. As said before, little control was

exerted over the treatment; the role of the researcher, materials and tooling was to educate

participants about the decision-making framework and show its intended use, but not restrict

them or intervene in their actual use during decision-making. In the case studies, not all

identified microservice challenges could be considered. However, given that the process of

decision-making is the same for all these challenges, and participants indicated no technical

shortcomings to the overview of challenges, it is expected that the artifact is functionally

correct for real-world scenarios.

The case studies and the answers to the knowledge questions presented in this chapter serve

as the answer to RQ-5: How can the designed framework’s fitness for purpose best be

validated?

Besides this, there were some qualitative insights that arose when running the case studies:

- Allowing each participant to give their own rankings and then consolidating was seen

as helpful to reduce biases present in collective decision-making;

- Making pairwise comparisons using the AHP was received favourably and seen as

supportive in making more informed decisions and evoking discussions;

- The outcome of the decision-making process can possibly be used to document and

justify the decisions made – establishing design-rationale;

- The tooling used during the case study was seen as too complicated and could be

more ‘hands-on’;

- The artifact was seen as practical and well-structured;

- The use case of using part of the framework when a system needs to be changed and

certain decisions are already set was also foreseen by participants.

- Participants liked that they were ‘forced’ to think about the rationale behind their

decisions.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 107/130

These insights, together with the outcomes of the surveys and the observations done during

the case studies can be used to further improve upon the artifact in the future. Most often, the

need for better tooling was mentioned as inhibiting the decision-making framework’s potential

to be shown. Nevertheless, participants were convinced that many parts of the framework

would be useful for helping them manage challenges when developing microservice

architectures.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 108/130

9 DISCUSSION

9.1 Implications and Contributions

The main goal of this research was to design a decision-making framework to better manage

the design challenges related to communication between, integration and management of

microservices in the design of a microservice software architecture. To accomplish this,

microservice challenges in literature and practice as well as decision-making methodologies

for software architecture design have been researched. The combination of these two in the

subsequently designed decision-making framework have implications for both organisations

and future research.

Insights in microservice challenges for academia and practice

The topic of microservices has been evolving continuously and in a fast pace throughout the

past few years. Many definitions, opinions and descriptions of the concept and its

characteristics exist in both academia and practice. Finding clear and practical information on

the challenges involved when implementing a microservice architecture can be hard and

overwhelming for practitioners. In practical sources, much is written about all kinds of new

tools and software solutions that will solve all kinds of challenges around microservices.

Countless tools try to tackle as many problems as they can and are aiming to become the new

‘go-to’ solution to be used by organisations aiming to develop a microservice architecture.

These are all solution-driven descriptions, though, and by only basing architectural decisions

on such descriptions, unexpected challenges can be encountered down the road. The

overview of challenges from academic literature can be used to give practitioners a clear and

consistent insight into what they can expect to come across when designing such a system.

Having a reference that originated from academic work can be valuable in this situation.

Conversely, the academic field to an extent seems to be lacking some practical insight into

microservice challenges. Numerous academic works exist that discuss certain specific

challenges, but only few exist that aim to summarise challenges and explain what this means

for practice. Furthermore, the academic field researching microservices seems to be lagging

behind due to the industry moving rather rapidly. No longer are software engineering problems

related to microservice always first discussed in research, after which the outcomes can be

translated into software solutions. Nowadays, the reverse is often true; new solutions are

sometimes being used widely in practice, only to have academia catch up and try to

understand what happened. The overview of challenges from literature as well as practice is

useful in introducing more practical insights into the field of microservices research.

Combining the fields of decision-making and microservices

Decision-making is a well-researched topic in academia. Many tools and frameworks exist that

describe general decision-making techniques such as the aforementioned AHP, as well as

works aimed at software engineering specifically. However, no frameworks were found that

were specifically tailored to help make decisions on microservice challenges. In combining the

somewhat theoretical field of decision-making with the more practical field of microservice

research, a decision-making framework has been created that builds upon a strong theoretical

foundation but can easily be used in practice. Added to this is the inclusion of guidelines for

certain microservice challenges. Not every challenge could be captured as a simple decision

between alternatives, though they might influence other decisions.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 109/130

Practical views on decision-making on microservice challenges

Throughout this research, the aim was to include practical insights with academic findings on

the topics discussed. The research was conducted in collaboration with Thales Netherlands

B.V., that had a desire to improve on the process of deciding on and managing challenges in

a microservice architecture. The contributions from practice in present research helped shed

a real-world light on motivations to conduct this research, identifying challenges and decision-

making techniques. For example, the decision to not consider dependencies between all

challenges when making decisions but rather divide them up in categories originated from

feedback by practitioners. This decision was not made lightly, as it would fundamentally

change the decision-making process. During these discussions the real goal for the decision-

making framework also became clear; it was not to try and replace the process, but rather

facilitate the discussion on microservice challenges. This switched the process from a tools-

first focussed one to one that was specifically designed to help improve decision-makers’ day-

to-day work, not to replace it.

9.2 Research Quality

To reflect on the quality of the design research documented in this thesis, guidelines by Hevner

et al. [103] are used. The authors propose seven guidelines that quality design research

should incorporate. The guidelines, description and execution are shown in Table 14. When

comparing these guidelines with present research, it can be seen that all have been fulfilled.

Weak parts that can be identified are mainly the limited number of participants in the case

studies used for validation, and the fact that only marginal changes to the artifact have been

made within the scope of this research. Future changes are anticipated, but not included. The

next step to improve on this is to implement the artifact in practice, evaluate upon this and

make changes accordingly. Nevertheless, all other guidelines have been adhered to,

suggesting that the research overall is reliable.

Table 14 - Guidelines for Desing Science - Adopted from [103]

Guideline Description Execution

1: Design as an
Artifact

Design-science research must
produce a viable artifact in the
form of a construct, a model, a
method or an instantiation.

An artifact in the form of a
decision-making framework for
managing microservice
challenges was developed.

2: Problem
Relevance

The objective of design-science
research is to develop
technology-based solutions to
important and relevant
business problems.

The motivation for this research
in part directly originates from a
business, and the research
benefits businesses by helping
manage technical challenges.

3: Design
Evaluation

The utility, quality, and efficacy
of a design artifact must be
rigorously demonstrated via
well-executed evaluation
methods.

Various methods of validation
including interviews on the
challenges and single case
mechanism experiments for the
artifact were conducted.

4: Research
Contributions

Effective design science
research must provide clear
and verifiable contributions in
the areas of the design artifact,

Practical and theoretical
insights on microservices and
decision-making were
generated, along with a

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 110/130

design foundations and/or
design methodologies.

decision-making framework
that can be used in practice.

5: Research
Rigor

Design-science research relies
upon the application of rigorous
methods in both the
construction and evaluation of
the design artifact.

The DSM by Wieringa was
followed to structure the
research. This methodology
guided the design and
evaluation of the artifact.

6: Design as a
Search Process

The search for an effective
artifact requires utilizing
available means to reach
desired ends while satisfying
laws in the problem
environment.

The validated design
represents a first step in an
iterative process of
improvement. It is
acknowledged that real-world
use is needed to further assess
its fitness for purpose, and
possible future changes are
also considered.

7: Communication
of Research

Design-science research must
be presented effectively both to
technology-oriented as well as
management-oriented
audiences.

The descriptions and
representations of the artifact
were made to be
communicated effectively to
both academics and
professionals involved with
decision-making in
microservices.

9.3 Validity and Reliability

When talking about research validity, Gregor and Hevner give a clear description: “validity

means that the artifact works and does what it is meant to do; that it is dependable in

operational terms in achieving its goals” [104]. Wieringa [4] describes different types of validity

that are involved in design science research. Those applicable to this research and in

particular its validation are construct validity, descriptive validity, internal validity and external

validity.

“A conceptual framework is a set of definitions of concepts, often called constructs” [4].

Construct validity is defined by Wieringa as “the degree to which the application of constructs

to phenomena is warranted with respect to the research goals and questions” [4]. The

constructs of the conceptual framework can be subject to certain threats to their validity.

Wieringa discusses several of these. A first threat is inadequate definition; constructs should

be clearly defined to be able to distinguish instances of a concept from those that are not.

Effort has been put in defining the concepts involved in the conceptual framework based on

related literature. For instance, a meta-model was included in the artifact to clearly show the

different entities and their interactions during decision making. Through these measures,

inadequate definition is avoided as much as possible. Construct confounding is another threat;

in which instances of use cases can be ambiguous. An example to help aid in this is the

inclusion of usage requirements to the artifact. These describe the cases in which it should be

applicable, to rule out cases that it is not. These also help in defining the population to which

the findings can be generalised. Another possible threat is that of mono-operation bias; in

which the indicators defined for a concept do not fully capture it. This was avoided as much

as possible; by for instance measuring indicators on usability, usefulness and decision quality

in the case studies by using measurement questions from academic research. This way,

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 111/130

participants would not only be directly asked to comment on these indicators, but its value is

determined by multiple different measurements. Mono-method bias can also be at play here,

when for instance all indicators are measured in the same way. This is why besides the

surveys in the case studies, also qualitative feedback and details about the decision-making

process were gathered to find out if the views from both are aligned. That is not to say that

qualitative feedback may not introduce other biases, but the combination of both should

mitigate this as much as possible. With these measures against threats to construct validity in

place, the aim is to make the constructs as valid as possible.

Descriptive validity is relevant for assessing the support for descriptive inferences made in this

research. Checklists that Wieringa [4] proposed for designing the validation methodology can

be looked back at after execution of the research to assess the descriptive validity of the

inferences. For instance, questions like whether prepared data represents the same

phenomena as the ‘raw’ results, as well as whether scientific peers would be able to make the

same interpretations from the data presented. The measurements and descriptions of the

outcomes have been prepared with descriptive validity in mind. In the interviews on

challenges, for example, participants were asked whether the interpretations of their answers

matched their beliefs (member checking). Another example is that during the case study no

data was removed, results were discussed qualitatively to give more context for interpretation

(triangulation), and the statistical procedures applied to data were straight-forward and could

be reproduced by others.

Internal validity refers to the support of any abductive inferences done in this research.

Wieringa [4] describes that the single case mechanism case studies that were conducted can

support abductive inference. Again, threats to internal validity are listed. A main concern is

possible sampling influence that can introduce biases in the results. For example, there can

be a selection effect by which subjects participating in a case study can act differently just

because they have been chosen to participate. Besides random selection of subjects, it is hard

to control this effect. No direct indications were found during the case studies that participants

altered their behaviour, but there is also no evidence to definitively say that this cannot have

been the case. It was found that participants were not hesitant to voice any concerns during

the case study, indicating that they were not likely to be less critical to satisfy the researcher.

Treatment must also be controlled, by for instance randomly selecting subjects, or at least as

random as possible. Practitioners were asked about possible case studies and the teams

involved, but after selection of the case studies, no deliberate selection between team

members were made; all were asked and free to participate. The experimental set up was also

made to resemble working conditions from practice closely, as to reduce any responses based

on the set up alone. It is possible that subjects have responded to the novelty of the artifact

under study in these case studies. While no direct indications were found for this, there is a

chance that participants responded more favourably to the artifact just because it was novel.

Influences by the experimenter were also avoided as much as possible by being aware of the

possible threats of experimenter expectation – bias through hope for a particular experiment

outcome – and experimenter compensation – when experimenters treat subjects differently

based on their interaction with the treatment. Awareness of these threats helped in the

experimenter not blindly making the mistakes described.

External validity comes into play when generalising about findings beyond the cases in which

it has been tested. Wieringa describes requirements for this [4]. Validation cases were chosen

that fulfilled the usage requirements outlined in the artifact design. When searching for cases,

practitioners were explicitly asked for real-world cases that were currently being considered.

This was done to ensure they were a representative sample of the target population, thus

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 112/130

helping support analogous inference. The treatment was also kept as similar to the intended

use in practice as possible, by for instance only limiting the number of requirements and

alternatives considered, but not the decision-making process and options itself. One notable

inhibitor for validity is the limited number of participants during validation, which makes for less

certainty about the generalisability of the findings. The artifact behaved as intended during the

case studies. By controlling as many factors as possible to create an environment similar to

the intended environment for use in practice, generalisations are supported as well as

possible.

As for the question of how reliable present research is, we must look at the extent to which

the operations of the study can be repeated with the same results [105]. The research followed

Wieringa’s DSM [4] as design research protocol. The steps taken in this process have been

described as detailed as possible. The fact that practical insights from the case study largely

originate from Thales Naval does somewhat inhibit repeatability. While for many practical

insights it is expected that they also occur in similarly sized and structured organisations, every

organisation is different. It is expected that if this research were to be conducted in

collaboration with another company, similar general findings will likely be found.

As Wieringa [4] states; constructs and inferences are never totally valid, since science is

fallible. This is true for all described types of validity. No major threats to the types described

have been found. Nevertheless, case study research can be limited in especially construct

validity because the measurements are inherently subjective to an extent [105]. Instruments

such as multi-method measurements and using multiple measurements per indicator have

been put into place to limit subjectivity. Still, the number of participants was a notable limiting

factor for validity. Overall, care has been taken to have as little threats to research validity and

reliability as possible. It is expected that the general findings are supported well through the

conducted research, and that these are replicable in future research.

9.4 Future Work

In this thesis, one particular decision-making framework for managing microservice challenges

related to communication, integration and management has been designed and validated.

This leaves multiple opportunities for future research to be conducted. First and foremost,

other categories of microservice challenges can be researched to investigate whether they

can also be incorporated in the design of the artifact. While it is expected that many challenges

can be addressed in similar ways as described in this research, there may be exceptions.

Furthermore, the research field on the topic of microservices is still under constant

development because only recently it has gained much attention, and its current popularity.

Therefore, it can be expected that in the future, additions to the overview of challenges may

need to be made. Conversely, as technology advances, some challenges may become easier

to solve in the near future. The rapid development of the microservices field can open up new

research opportunities just as quickly as it evolves.

Besides this, the artifact has been validated for its fitness for purpose. The design was based

on a base methodology selected in comparison with other decision-making methodologies to

minimise the involved expected difficulties. The validation suggests that the artifact may be

used in practice. However, it has not yet been compared to other decision-making approaches.

Its design is tailored specifically to suit the identified microservice challenges, but there may

also be a way to incorporate said challenges in existing general decision-making

methodologies. Research that compares the use of the current artifact with that of pre-existing

methodologies in combination with microservices could help further identify strengths and

weaknesses of the artifact. This then gives opportunities for future development of the artifact.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 113/130

Furthermore, when using the decision-making framework, decision-makers end up with

decisions on what alternatives to choose for certain challenges, and information about the

guidelines available in practice to help solve them. This information then still needs to be

translated to an actual microservice architecture design before it can be implemented. The

focus of the artifact is on finding out how to solve challenges on a conceptual level but is not

involved with translating these findings to eventually end up with a working system. Future

research should focus on the incorporation of these decisions in software architecture design

and their implications.

Wieringa also describes the scaling up approach of research. This is illustrated in Figure 43.

One goal is to “test an increasingly realistic model of the artifact under increasingly realistic

conditions of practice” [4]. This so-called case-based inference can gain plausibility when

research conditions increasingly approach practice. Sample-based inference on the other

hand, can be used to generalise towards the intended population. The different types of

experiments shown can be used to ‘scale up’ the research on a topic. In this research, single-

case mechanism experiments were employed. This makes for the recommendation to include

expert opinion, tactical action research or statistical difference-making experiments in future

research to approach conditions of practice and the intended population for more robust

inferences.

Figure 43 - Scaling Up Approach in Design Science Research - Adopted from [4]

9.5 Further Recommendations

A large inhibiting factor to realising the artifact’s true potential in practice was found to be the

tooling used to support the decision-making. Given the constraints to the case studies and the

organisational context, tooling was chosen that best fit with this. However, during the case

studies it turned out that using this tooling was rather cumbersome, and that while it worked

for running the case studies by the researcher, it would be unsuitable for use in practice. In

the search for tooling, many alternatives were found that supported the AHP decision-making

process. Many of these were in the form of specialised SaaS products. While offline tools exist

that could possibly be used with success after training to become familiar with them, these

generally did not seem as easy to use and learn as the online offerings. It is therefore strongly

recommended that organisations aiming to use the decision-making framework in practice,

make use of one of the SaaS offerings by various vendors.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 114/130

A possibly highly valuable outcome of making decisions using the artifact designed in this

research, is that its decision-outcomes and pairwise comparisons used to arrive at these

decisions can be used for establishing the design rationale behind these decisions. This way,

the outcomes can become part of a business’ organizational memory. Wijnhoven [106]

describes different functions of such memory. The investigated and chosen alternatives for

challenges in this decision-making methodology can function as know-how information about

what solutions are used in practice. The comparisons made and the reasoning behind them

can serve as know-why; why certain decisions were made and what the reasoning behind

them was. Furthermore, application of the framework can help in externalising tacit memory –

e.g. software architects’ experience – into explicit memory when design rationale is

systematically documented.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 115/130

10 CONCLUSIONS

10.1 Research Questions

The motivation to conduct this research originated from both an academic ambition to further

investigate and aid in mitigating challenges when designing a microservice architecture, as

well as a practical need to improve this process. The main technical research problem set

during this research was:

How to design a decision-making framework that gives confidence in its results, and

satisfies effort and practicality requirements so that decision-makers can better

manage the design challenges related to communication between, integration and

management of microservices in the design of a microservice software architecture?

For this problem to be addressed, several open descriptive knowledge questions were

defined. The first question aimed at investigating microservice challenges in academia:

RQ-1 What common design challenges related to communication between, integration and
management of microservices can be found in academic literature?

Through a structured literature review of 40 selected academic works, a total of 42 challenges

in 8 categories have been identified. Individual challenges occurrences ranged from 1 to 13

times. No challenges were disregarded for being uncommon. These were then mapped to the

topics of communication, integration and management, resulting in 15 challenges being

proposed to be used in the artifact design. Challenges ranged from purely technical

considerations to high-level management-related questions. A practical view on these

challenges was then gathered through interviews aiming to answer the second question:

RQ-2 What common design challenges related to communication between, integration and

management of microservices can be found in practice?

A total of seven practitioners at Thales Naval were interviewed to understand their view on

microservice challenges. In general, they recognised the challenges found in literature, though

for their organisation some challenges did receive more attention than they did in academia.

The categories of challenges that were considered as hardest to manage were also identified,

which showed to largely concur with the communication, integration and management-related

challenges that were emphasised. Minor changes to the challenge overview were made based

on these interviews; most notably the splitting of one challenge into two to better be able to

address different aspects of it. With a set of challenges as input, the next question was:

RQ-3 What are the dependencies between the identified challenges and what possible

alternatives and guidelines are available as solutions?

Through searching academic works and sources from practice, challenges were

characterised, their dependencies shown, and possible decision alternatives and guidelines

were documented. It must be noted that these descriptions are not exhaustive, nor intended

to – given that the field of microservices is under constant development. This overview of

challenges and their dependencies can be used in the artifact design as reference for which

challenges to consider, and in what order. After this, the treatment design could start. The

decision-making framework to be designed would build upon existing work in the decision-

making field of research. Therefore, the question was:

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 116/130

RQ-4 What decision-making methodology for selecting between design alternatives can

serve as conceptual foundation for the framework to be designed?

A comparison of decision-making methodologies for selecting between software architecture

alternatives was made to find the most suitable methodology to be used as theoretical

foundation for the artifact design. The ArchDesigner methodology by Al-Naeem et al. [87] was

selected for this, after which the artifact design commenced. The design was made to best

fulfil the requirements set at the start of this research. To validate whether the goals set for

the design were accomplished, validation research was done to answer the last question:

RQ-5 How can the designed framework’s fitness for purpose best be validated?

Through two case studies in the form of single-case mechanism experiments, this validation

was done. Two different cases were considered, and in each case study conditions of practice

were replicated as closely as possible. In both case studies, four practitioners participated.

The outcome of the first case study suggested that the artifact was somewhat usable and

useful, but decision-quality was lacking. Additions to the artifact in the form of more guidance

on what requirements to select and how to weigh them when comparing were made. The

second case study showed minor improvements in usability and usefulness, but a significant

improvement in decision-quality. Though it cannot be said definitively that the increase

decision-quality rating was due to the changes to the artifact, it is expected that a fair

conclusion would be that on average, the participants were neutral to somewhat confident

about the quality of the decision outcomes.

10.2 Key Contributions and Findings

During this research, the aim was to base the artifact’s on academic literature as well as

insights from practice. The research was conducted at Thales naval to ultimately better align

academic and practical views on the topics at hand. Through answering the RQs set in this

research, and the design of the artifact itself, several contributions to academia and practice

have been made:

- Scientific: A previously not found overview of microservice challenges has been

constructed through literature research.

- Scientific: Knowledge on decision-making methodologies for software architecture

design has been applied to a practical case in the field of microservices, providing

insights in the behaviour of such methodologies in this context.

- Practical: Academic literature has been used to characterise microservice challenges

in a clear and consistent way, providing insights in what challenges can be

encountered when designing a microservice architecture, as well as possible decision

alternatives and guidelines to consider.

- Practical: A previously non-existent decision-making framework to be used for

managing microservice challenges in practice has been designed based on an

academic foundation and was validated in practice.

Through several statements, the most important findings of this research are discussed next.

Microservice challenges are numerous and touch upon all parts of an organisation.

Through the conducted literature research and subsequent interviews with practitioners, it

became clear that using a microservice architecture comes with many challenges that are not

straight-forward to solve. It can be hard to find out which ones to consider, because they are

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 117/130

so various. Challenges range from service discovery to organisational structure and culture,

and from memory consumption to the development process used.

Not all microservice challenges have clear alternatives to decide between for managing it;

sometimes guidelines are necessary.

Microservices are a rather opinionated subject; practical sources that lead to their recent

popularity are vocal about characteristics that microservice architectures are supposed to

possess. In line with this, for certain challenges certain guidelines are given to solve it in a

microservices-fashion. For other challenges, clear and distinct alternatives are available to

choose between. This is different for each challenge, but both types of challenges may

influence each other. It is therefore important to consider both when designing a microservice

architecture.

Merely expressing optimal alternatives numerically in decision-making is not always trusted in

practice.

A further main insight that had a large impact in the artifact design was that practitioners

indicated that they would not easily trust a single ranking or score to determine a definitive set

of alternatives to be used in a microservice architecture. Creating a decision-tree like structure

can also become cumbersome quickly and can reduce insight and thus confidence in the

results of decision-making. By employing a decision-making process structured in categories

and focussing on finding the best few alternatives for each decision, a final discussion can

take place to assemble these pieces into a complete solution. This sanity-check as it was

called by practitioners was in their view of vital importance in providing confidence in the

framework’s outcomes.

A decision-making framework need not always replace a way of working; it can also be used

for guidance in existing work practices.

Throughout this research, practitioners involved with decision-making and software

architecture design were vocal about the role that the decision-making framework should take;

it should be used to help support discussions on how to manage microservice challenges.

This approach of putting practice before tools turned out to be viable, since the designed

artifact with this in mind was received favourably by practitioners. In qualitative feedback, the

general consensus was the fact that it was practical and could easily fit in with their current

day-to-day work was an advantage to them.

Insights gathered during the decision-making process can be just as valuable as its outcomes.

Feedback by practitioners during the case studies suggests that by documenting the

reasoning and considerations made during the decision-making process, valuable information

on why certain decisions were made and on what assumptions weights given in comparisons

are based can be gathered. By doing this in a structured way, it was seen as possibly valuable

input for establishing design rationale behind a microservice architecture design.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 118/130

BIBLIOGRAPHY

[1] N. Dragoni et al., “Microservices: yesterday, today, and tomorrow,” pp. 1–17, 2016.

[2] M. Fowler and J. Lewis, “Microservices,” 2014. [Online]. Available:

https://martinfowler.com/articles/microservices.html. [Accessed: 20-Feb-2018].

[3] O. Zimmermann, “Microservices tenets: Agile approach to service development and

deployment,” Comput. Sci. - Res. Dev., vol. 32, no. 3–4, pp. 301–310, 2017.

[4] R. Wieringa, Design Science Methodology for Information Systems and Software Engineering.

2014.

[5] P. J. M. Verschuren and J. A. C. M. Doorewaard, “Het ontwerpen van een onderzoek.”

Utrecht : Lemma, 1995.

[6] SIPRI, “The SIPRI Top 100 arms-producing companies, 2008, SIPRI Fact Sheet,” 2010.

[7] TechTarget, “API management,” 2018. [Online]. Available:

https://searchmicroservices.techtarget.com/definition/API-management. [Accessed: 12-Sep-

2018].

[8] CITO Research, “Cloud-based API Management: Harnessing the Power of APIs,” 2015.

[9] Thales Group, “TACTICOS - Worlds’ favourite Combat Management System - The best got

better,” 2015.

[10] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques for

software architecture design,” ACM Comput. Surv., vol. 43, no. 4, pp. 1–28, 2011.

[11] S. Lauesen, “Software requirements styles and techniques,” Neurosurgery clinics of North

America, vol. 20, no. 2. pp. 179–86, 2009.

[12] H. Heerkens and A. Van Winden, Geen Probleem. Nieuwegein: Van Winden Communicatie,

2012.

[13] S. Newman, Buiding Microservices. O’Reilly Media Inc., 2015.

[14] Gartner, “Hype Cycle Research Methodology.” [Online]. Available:

https://www.gartner.com/en/research/methodologies/gartner-hype-cycle. [Accessed: 21-Nov-

2018].

[15] Gartner, “Hype Cycle for Application Architecture, 2015.” [Online]. Available:

https://www.gartner.com/doc/3102217/hype-cycle-application-architecture-. [Accessed: 21-

Nov-2018].

[16] Gartner, “Hype Cycle for Application Architecture, 2016.” [Online]. Available:

https://www.gartner.com/doc/3392818/hype-cycle-application-architecture-. [Accessed: 21-

Nov-2018].

[17] Gartner, “Hype Cycle for Application Architecture, 2017.” [Online]. Available:

https://www.gartner.com/doc/3763463/hype-cycle-application-architecture-. [Accessed: 21-

Nov-2018].

[18] Gartner, “Hype Cycle for Application Architecture, 2018.” [Online]. Available:

https://www.gartner.com/doc/3886164/hype-cycle-application-architecture-. [Accessed: 21-

Nov-2018].

[19] C. Richardson, “Microservices,” 2017. [Online]. Available: http://microservices.io/. [Accessed:

12-Apr-2018].

[20] D. Merkel, “Docker: Lightweight Linux Containers for Consistent Development and

Deployment,” Linux J., vol. 2, no. 239, 2014.

[21] B. Schmaus, “Deploying the Netflix API – Netflix TechBlog – Medium,” 2013.

[22] M. Fowler and J. Lewis, “Microservices Guide.” [Online]. Available:

https://martinfowler.com/microservices/. [Accessed: 20-Mar-2018].

[23] M. Fowler, “Microservice Trade-Offs,” 2015. [Online]. Available:

https://www.martinfowler.com/articles/microservice-trade-offs.html. [Accessed: 07-Aug-2018].

[24] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Guidelines and Guidance Preferred

Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement.”

[25] R. B. Schwartz and M. C. Russo, “How to Quickly Find Articles in the Top IS Journals,”

Commun. ACM, vol. 47, no. 2, 2004.

[26] C. Pahl and P. Jamshidi, “Microservices: A Systematic Mapping Study.”

[27] L. Bass, I. M. Weber, and L. Zhu, DevOps : a software architect’s perspective. .

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 119/130

[28] J. Gray, “A conversation with Werner Vogels,” ACM Queue, vol. 4, no. 4, pp. 14–22, 2006.

[29] M. E. Conway, “How do Committees Invent?,” Datamation, vol. 14, no. 4, pp. 28–31, 1968.

[30] Thales Group, “Naval Mission Solutions - Guaranteed mission system performance with

Thales on Board,” 2012.

[31] Thales Group, “TACTICOS Combat Management System - Exploiting the Full DDS Potential,”

2006.

[32] Thales Group, “Tacticos | CMS | Thales Group,” 2018. [Online]. Available:

https://www.thalesgroup.com/en/tacticos-combat-management-system. [Accessed: 20-Feb-

2018].

[33] Object Management Group, “DDS Specification,” 2015. [Online]. Available:

https://www.omg.org/spec/DDS/About-DDS/. [Accessed: 23-Mar-2018].

[34] ADLINK Technology IST, “Vortex OpenSplice.” [Online]. Available:

http://www.prismtech.com/vortex/vortex-opensplice. [Accessed: 23-Mar-2018].

[35] ADLINK Technology IST, “Data Distribution Service.” [Online]. Available:

http://www.prismtech.com/vortex/technologies/data-distribution-service. [Accessed: 26-Mar-

2018].

[36] A. Corsaro, “OpenSplice DDS - A Gentle Introduction,” 2009.

[37] OSGi Alliance, “OSGi Architecture.” [Online]. Available:

https://www.osgi.org/developer/architecture/. [Accessed: 07-Nov-2018].

[38] H. Bossenbroek and R. Van Hees, “The INAETICS architecture - Introducing INAETICS,”

2015.

[39] B. Kool, “Integrated Mission Management, een onderzoek door prototyping,” Marineblad, pp.

11–15, Oct-2017.

[40] R. van (Robertus J. M. Tulder, Skill sheets : an integrated approach to research, study and

management. Pearson, 2012.

[41] M. L. George, Lean Six Sigma for Service. 2003.

[42] J. W. Wittwer, “PICK Chart for Lean Six Sigma,” 2017. [Online]. Available:

https://www.vertex42.com/ExcelTemplates/PICK-chart.html. [Accessed: 24-Oct-2018].

[43] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud Container Technologies: a State-of-the-

Art Review,” IEEE Trans. Cloud Comput., 2017.

[44] A. Sill, “The Design and Architecture of Microservices,” IEEE Cloud Comput., 2016.

[45] Cloud Native Computing Foundation, “CNCF Cloud Native Interactive Landscape.” [Online].

Available: https://landscape.cncf.io/. [Accessed: 19-Oct-2019].

[46] S. Hassan and R. Bahsoon, “Microservices and their design trade-offs: A self-adaptive

roadmap,” in Proceedings - 2016 IEEE International Conference on Services Computing, SCC

2016, 2016.

[47] J. P. Gouigoux and D. Tamzalit, “From monolith to microservices: Lessons learned on an

industrial migration to a web oriented architecture,” in Proceedings - 2017 IEEE International

Conference on Software Architecture Workshops, ICSAW 2017: Side Track Proceedings,

2017, pp. 62–65.

[48] C. Richardson, Microservices Patterns. Manning Publications, 2017.

[49] E. Evans, “Domain-Driven Design: Tackling Complexity in the Heart of Software: Amazon.de:

Eric J. Evans: Fremdsprachige Bücher,” vol. 7873, no. 415, p. 529, 2003.

[50] K. Lew and S. Narayanan, “Lessons from Building Observability Tools at Netflix,” 2018.

[Online]. Available: https://medium.com/netflix-techblog/lessons-from-building-observability-

tools-at-netflix-7cfafed6ab17. [Accessed: 20-Nov-2019].

[51] Y. Yu, H. Silveira, M. Sundaram, Y. Yale, H. Silveira, and M. Sundaram, “A microservice

based reference architecture model in the context of enterprise architecture,” 2016 IEEE Adv.

Inf. Manag. Commun. Electron. Autom. Control Conf., pp. 1856–1860, 2016.

[52] A. R. Sampaio et al., “Supporting microservice evolution,” in 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME), 2017, pp. 539–543.

[53] J. Postel, “DOD standard transmission control protocol,” ACM SIGCOMM Comput. Commun.

Rev., vol. 10, no. 4, pp. 52–132, 1980.

[54] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Assuring the Evolvability of

Microservices: Insights into Industry Practices and Challenges,” pp. 1–11, 2019.

[55] M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges When Moving from Monolith to

Microservice Architecture,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 7703, pp. 189–203, 2012.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 120/130

[56] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open Issues in Scheduling

Microservices in the Cloud,” IEEE Cloud Comput., vol. 3, no. 5, pp. 81–88, 2016.

[57] S. Dustdar and W. Schreiner, “A survey on web services composition,” Int. J. Web Grid Serv.,

vol. 1, no. 1, pp. 1–30, 2005.

[58] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu, “Web services

composition: A decade’s overview,” Inf. Sci. (Ny)., vol. 280, pp. 218–238, 2014.

[59] M. Fowler, “CQRS.” [Online]. Available: https://martinfowler.com/bliki/CQRS.html. [Accessed:

21-Oct-2019].

[60] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar, “Gremlin: Systematic

Resilience Testing of Microservices,” in Proceedings - International Conference on Distributed

Computing Systems, 2016, vol. 2016-Augus, pp. 57–66.

[61] Netflix, “GitHub - Netflix/chaosmonkey: Chaos Monkey is a resiliency tool that helps

applications tolerate random instance failures.” [Online]. Available:

https://github.com/Netflix/chaosmonkey. [Accessed: 21-Oct-2019].

[62] “Principles of Chaos Engineering.” [Online]. Available:

https://principlesofchaos.org/?lang=ENcontent. [Accessed: 21-Oct-2019].

[63] M. Garriga, “Towards a Taxonomy of Microservices Architectures,” in SEFM 2017 Workshops,

2016, vol. 9763, pp. 203–218.

[64] D. Namiot and M. Sneps-Sneppe, “On Micro-services Architecture,” 2014.

[65] G. Hohpe and B. Woolf, Enterprise integration patterns : designing, building, and deploying

messaging solutions. Addison-Wesley, 2004.

[66] K. B. Long, H. Yang, and Y. Kim, “ICN-based service discovery mechanism for microservice

architecture,” in International Conference on Ubiquitous and Future Networks, ICUFN, 2017,

pp. 773–775.

[67] C. Rotter, J. Illes, G. Nyiri, L. Farkas, G. Csatari, and G. Huszty, “Telecom strategies for

service discovery in microservice environments,” in Proceedings of the 2017 20th Conference

on Innovations in Clouds, Internet and Networks, ICIN 2017, 2017, pp. 214–218.

[68] J. Stubbs, W. Moreira, and R. Dooley, “Distributed Systems of Microservices Using Docker

and Serfnode,” in Proceedings - 7th International Workshop on Science Gateways, IWSG

2015, 2015, pp. 34–39.

[69] OpenAPI Initiative, “OpenAPI Specification | Swagger.” [Online]. Available:

https://swagger.io/specification/. [Accessed: 19-Oct-2019].

[70] RAML Workgroup, “raml-spec/raml-10.md at master · raml-org/raml-spec · GitHub.” [Online].

Available: https://github.com/raml-org/raml-spec/blob/master/versions/raml-10/raml-10.md/.

[Accessed: 19-Oct-2019].

[71] W3C, “Web Services Description Language (WSDL) Version 2.0 Part 0: Primer.” [Online].

Available: https://www.w3.org/TR/wsdl20-primer/. [Accessed: 19-Oct-2019].

[72] SmartBear Software, “The Best APIs are Built with Swagger Tools | Swagger.” [Online].

Available: https://swagger.io/. [Accessed: 19-Oct-2019].

[73] Google, “Protocol Buffers | Google Developers.” [Online]. Available:

https://developers.google.com/protocol-buffers. [Accessed: 19-Oct-2019].

[74] P. Clements et al., Documenting software architectures : views and beyond. Addison-Wesley,

2003.

[75] P. Kruchten, H. Obbink, and J. Stafford, “The Past, Present, and Future for Software

Architecture,” IEEE Softw., vol. 23, no. 2, pp. 22–30, Mar. 2006.

[76] J. F. Maranzano, S. A. Rozsypal, G. H. Zimmerman, G. W. Warnken, P. E. Wirth, and D. M.

Weiss, “Architecture Reviews: Practice and Experience,” IEEE Softw., vol. 22, no. 2, pp. 34–

43, Mar. 2005.

[77] P. Kruchten, “Mommy, Where Do Software architectures Come from?,” 1999.

[78] Fitzgerald, “The Transformation of Open Source Software,” MIS Q., 2006.

[79] W. Engelsmana, D. Quartelc, H. Jonkersa, and M. van Sinderen, “Extending enterprise

architecture modelling with business goals and requirements,” Enterp. Inf. Syst., vol. 5, no. 1,

pp. 9–36, 2011.

[80] J. Kontio, “OTSO: A Systematic Process for Reusable Software Component Selection,” 1995.

[81] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America, “A general model

of software architecture design derived from five industrial approaches,” J. Syst. Softw., 2007.

[82] F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of

Information Technology,” MIS Q., vol. 13, no. 0, pp. 319–340, 1989.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 121/130

[83] C. S. Spetzler, H. Winter, and J. Meyer, Decision Quality Value Creation from Better Business

Decisions. 2016.

[84] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson, “A Quality-Driven Decision-Support

Method For Identifying Software Architecture Candidates,” Int. J. Softw. Eng. Knowl. Eng., vol.

13, no. 05, pp. 547–573, 2003.

[85] M. Moore, R. Kaman, M. Klein, and J. Asundi, “Quantifying the value of architecture design

decisions: lessons from the field,” 25th Int. Conf. Softw. Eng. 2003. Proceedings., pp. 557–

562, 2003.

[86] T. Gilb, Competitive Engineering - A handbook for systems engineering, requirements

engineering, and software engineering using planguage. Butterworth-Heinemann, 2005.

[87] T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, and B. Benatallah, “A quality-driven systematic

approach for architecting distributed software applications,” in Proceedings of the 27th

international conference on Software engineering - ICSE ’05, 2005.

[88] R. Keeney and H. Raiffa, Decisions with Multiple Consequences: Preferences and Value

Tradeoffs. Cambridge: Cambridge University Press, 1976.

[89] T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. J. Serv. Sci., vol. 1, no.

1, p. 83, 2008.

[90] C. E. Lindblom, “The science of ‘muddling through,’” in Performance Based Budgeting, 2018.

[91] H. Mintzberg, D. Raisinghani, and A. Theoret, “The Structure of ‘Unstructured’ Decision

Processes,” Adm. Sci. Q., vol. 21, no. 2, p. 246, 1976.

[92] I. L. Janis, “Groupthink,” Psychology Today Magazine, pp. 84–90, 1971.

[93] D. Kahneman, P. Slovic, and A. Tversky, “Judgment under uncertainty: Heuristics and Biases

Amos,” Sci. new Ser., vol. 185, no. 4157, pp. 1124–1131, 1974.

[94] G. DeSanctis and R. B. Gallupe, “Foundation for the Study of Group Decision Support

Systems,” Manage. Sci., 1987.

[95] Z. PÓLKOWSKI, “Online Gdss With the Ahp Method To Facilitate Decision Making.,” Online

Gdss Z Metod. Ahp Dla Ułatwienia Pod. Decyz., no. 72, pp. 50–61, 2014.

[96] K. D. Goepel, “Implementation of an Online Software Tool for the Analytic Hierarchy Process –

Challenges and Practical Experiences,” pp. 1–20, 2017.

[97] K. D. Goepel, “Implementing the Analytic Hierarchy Process as a Standard Method for Multi-

Criteria Decision Making in Corporate Enterprises – A New AHP Excel Template with Multiple

Inputs,” Proc. Int. Symp. Anal. Hierarchy Process, vol. 2, no. 10, pp. 1–10, 2013.

[98] C. Glur, “GitHub - gluc/ahp: Analytical Hierarchy Process (AHP) with R.” [Online]. Available:

https://github.com/gluc/ahp. [Accessed: 21-Mar-2019].

[99] C. Glur, “AHP File Format.” [Online]. Available: https://cran.r-

project.org/web/packages/ahp/vignettes/file-format.html. [Accessed: 21-Mar-2019].

[100] L. Chen, M. A. Babar, and B. Nuseibeh, “Characterizing architecturally significant

requirements,” IEEE Softw., vol. 30, no. 2, pp. 38–45, 2013.

[101] R. B. Grady and R. B., Practical software metrics for project management and process

improvement. Prentice Hall, 1992.

[102] “ISO - ISO/IEC 25010:2011 - Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — System and software quality models.”

[Online]. Available: https://www.iso.org/standard/35733.html. [Accessed: 17-Oct-2019].

[103] A. R. Hevner, S. T. March, J. Park, S. Ram, and S. Ram, “Design Science in Information

Systems Research,” MIS Q., vol. 28, no. 1, pp. 75–105, 2004.

[104] S. Gregor and A. R. Hevner, “Positioning and presenting design science research for

maximum impact,” MIS Q. Manag. Inf. Syst., vol. 37, no. 2, pp. 337–355, 2013.

[105] R. K. Yin, Case Study Research Design and Methods, Third Edition, Applied Social Research

Methods Series, Vol 5 2002. 2003.

[106] F. Wijnhoven, Managing dynamic organizational memories: Instruments for knowledge

management. 1999.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 122/130

APPENDICES

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 123/130

APPENDIX A – SELECTED PUBLICATIONS

ID Publication

1
M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder, “Performance evaluation of
microservices architectures using containers” in Proceedings - 2015 IEEE 14th International Symposium on
Network Computing and Applications, NCA 2015, pp. 27–34, 2016.

2
A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architecture Enables DevOps: Migration to a
Cloud-Native Architecture” 2016.

3 A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Migration Patterns” no. 1, pp. 1–21, 2015.

4
I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian, N. Mitchell, V. Muthusamy, R. Rabbah, A.
Slominski, and P. Suter, “Serverless computing: Current trends and open problems” Research Advances in
Cloud Computing, pp. 1–20, 2017.

5
L. Baresi, M. Garriga, and A. De Renzis, “Microservices identification through interface analysis” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) (J. E. B. Schulte S. De Paoli F., ed.), vol. 10465 LNCS, pp. 19–33, Springer Verlag, 2017.

6
D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan, “Multi-objective scheduling of micro-
services for optimal service function chains” in IEEE International Conference on Communications, 2017.

7
N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Safina, “Microservices:
yesterday, today, and tomorrow” pp. 1–17, 2016.

8
F. Dudouet, A. Edmonds, and M. Erne, “Reliable cloud-applications” in Proceedings of the 1st International
Workshop on Automated Incident Management in Cloud - AIMC ’15, pp. 1–6, 2015.

9
C. Esposito, A. Castiglione, and K. K. R. Choo, “Challenges in Delivering Software in the Cloud as
Microservices” IEEE Cloud Computing, vol. 3, no. 5, pp. 10–14, 2016.

10
M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open Issues in Scheduling Microservices in the
Cloud” IEEE Cloud Computing, vol. 3, no. 5, pp. 81–88, 2016.

11
A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros, “Migrating Enterprise Legacy Source Code to
Microservices: On Multi-Tenancy, Statefulness and Data Consistency” IEEE Software, pp. 1–1, dec 2017.

12
M. Garriga, “Towards a Taxonomy of Microservices Architectures” in SEFM 2017 Workshops, vol. 9763, pp.
203–218, 2016.

13
B. Götz, D. Schel, D. Bauer, C. Henkel, P. Einberger, and T. Bauernhansl, “Challenges of Production
Microservices” Procedia CIRP, vol. 67, pp. 167–172, 2018.

14
J. P. Gouigoux and D. Tamzalit, “From monolith to microservices: Lessons learned on an industrial migration to
a web oriented architecture” in Proceedings - 2017 IEEE International Conference on Software Architecture
Workshops, ICSAW 2017: Side Track Proceedings, pp. 62–65, 2017.

15
C. Guerrero, I. Lera, and C. Juiz, “Resource optimization of container orchestration: a case study in multi-cloud
microservices-based applications” The Journal of Supercomputing, pp. 1–28, 2018.

16
S. Haselböck, R. Weinreich, and G. Buchgeher, “Decision Guidance Models for Microservices Requirements
and Use Cases” Proceedings of the Fifth European Conference on the Engineering of Computer-Based
Systems - ECBS ’17, pp. 1–10, 2017.

17
S. Hassan and R. Bahsoon, “Microservices and their design trade-offs: A self-adaptive roadmap” in
Proceedings - 2016 IEEE International Conference on Services Computing, SCC 2016, pp. 813–818, 2016.

18
V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. Reiter, and V. Sekar, “Gremlin: Systematic Resilience Testing of
Microservices” in Proceedings - International Conference on Distributed Computing Systems, vol. 2016-Augus,
pp. 57–66, 2016.

19
M. Kalske, N. Mäkitalo, and T. Mikkonen, “Challenges When Moving from Monolith to Microservice
Architecture” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 7703, pp. 189–203, 2012.

20

H. Kang, M. Le, and S. Tao, “Container and microservice driven design for cloud infrastructure DevOps” in
Proceedings - 2016 IEEE International Conference on Cloud Engineering, 1 2 IC2E 2016: Co-located with the
1st IEEE International Conference on Internet-of-Things Design and Implementation, IoTDI 2016, pp. 202–211,
2016.

21
N. Kratzke and P. C. Quint, “Investigation of impacts on network performance in the advance of a microservice
design” in Communications in Computer and Information Science (C. J. M. M. V. Ferguson D. Helfert M., ed.),
vol. 740, pp. 187–208, Springer Verlag, 2017.

22
K. B. Long, H. Yang, and Y. Kim, “ICN-based service discovery mechanism for microservice architecture” in
International Conference on Ubiquitous and Future Networks, ICUFN, pp. 773–775, IEEE Computer Society,
jul 2017.

23
G. Mazlami, J. Cito, and P. Leitner, “Extraction of Microservices from Monolithic Software Architectures” in
Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017, pp. 524–531, 2017.

24 D. Namiot and M. Sneps-Sneppe, “On Micro-services Architecture” 2014.

25
C. Pahl and P. Jamshidi, “Software architecture for the cloud A roadmap towards controltheoretic, model-based
cloud architecture” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9278, pp. 212–220, 2015.

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 124/130

26
C. Pahl, P. Jamshidi, and O. Zimmermann, “Architectural Principles for Cloud Software” ACM Transactions on
Internet Technology, vol. 18, no. 2, pp. 1–23, 2018.

27
C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis, “Microservices in Practice, Part 1:
Reality Check and Service Design” IEEE Software, vol. 34, no. 1, pp. 91–98, 2017.

28
C. Rotter, J. Illes, G. Nyiri, L. Farkas, G. Csatari, and G. Huszty, “Telecom strategies for service discovery in
microservice environments” in Proceedings of the 2017 20th Conference on Innovations in Clouds, Internet and
Networks, ICIN 2017, pp. 214–218, 2017.

29
A. R. Sampaio, H. Kadiyala, B. Hu, J. Steinbacher, T. Erwin, N. Rosa, I. Beschastnikh, and J. Rubin,
“Supporting microservice evolution” in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 539–543, Institute of Electrical and Electronics Engineers Inc., nov 2017.

30
D. Savchenko and G. Radchenko, “Microservices validation: Methodology and implementation” in CEUR
Workshop Proceedings, vol. 1513, pp. 21–28, 2015.

31
J. Stubbs, W. Moreira, and R. Dooley, “Distributed Systems of Microservices Using Docker and Serfnode” in
Proceedings - 7th International Workshop on Science Gateways, IWSG 2015, pp. 34–39, 2015.

32
Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-service for microservices-based cloud applications” in
Proceedings - IEEE 7th International Conference on Cloud Computing Technology and Science, CloudCom
2015, pp. 50–57, 2016.

33
D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, Motivations, and Issues for Migrating to Microservices
Architectures: An Empirical Investigation” IEEE Cloud Computing, vol. 4, pp. 22–32, sep 2017.

34 J. Thönes, “Microservices” 2015.

35
G. Toffetti, S. Brunner, M. Bl, J. Spillner, and T. M. Bohnert, “Self-managing cloud-native applications : design ,
implementation , and experience” Future Generation Computer Systems, vol. 72, pp. 165–179, 2016.

36
T. Ueda, T. Nakaike, and M. Ohara, “Workload Characterization for Microservices Limited Distribution Notice
Workload Characterization for Microservices” Proceedings of the 2016 IEEE International Symposium on
Workload Characterization, IISWC 2016, pp. 85–94, 2016.

37
M. Villamizar, O. Garces, H. Castro, M. Verano, L. Salamanca, R. Casallas, and S. Gil, “Evaluating the
monolithic and the microservice architecture pattern to deploy web applications in the cloud” in 2015 10th
Colombian Computing Conference, 10CCC 2015, pp. 583–590, 2015.

38

M. Villamizar, O. Garces, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil, C. Valencia, A.
Zambrano, and M. Lang, “Infrastructure Cost Comparison of Running Web 3 Applications in the Cloud Using
AWS Lambda and Monolithic and Microservice Architectures” in Proceedings - 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2016, pp. 179–182, 2016.

39
Y. Yu, H. Silveira, M. Sundaram, Y. Yale, H. Silveira, and M. Sundaram, “A microservice based reference
architecture model in the context of enterprise architecture” 2016 IEEE Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC), pp. 1856–1860, 2016.

40
O. Zimmermann, “Microservices tenets: Agile approach to service development and deployment” Computer
Science - Research and Development, vol. 32, no. 3-4, pp. 301–310, 2017

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 125/130

APPENDIX B – LITERATURE REVIEW DIAGRAMS

Figure 44 - Absolute Occurrence of Challenge Keywords

Figure 45 - Division of Challenge Categories based on Total Count

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 126/130

APPENDIX C – DECISION-MAKING MODEL

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 127/130

APPENDIX D – CASE STUDY QUESTIONNAIRE

Usefulness
Scale: extremely unlikely, quite unlikely, somewhat unlikely, neither, somewhat likely, quite
likely, extremely likely; coded -3 through 3

- USEFUL_1: Using the framework in my job would enable me to accomplish tasks
more quickly

- USEFUL_2: Using the framework would improve my job performance
- USEFUL_3: Using the framework in my job would increase my productivity
- USEFUL_4: Using the framework would enhance my effectiveness on the job
- USEFUL_5: Using the framework would make it easier to do my job
- USEFUL_6: I would find the framework useful in my job

Usability
Scale: extremely unlikely, quite unlikely, somewhat unlikely, neither, somewhat likely, quite
likely, extremely likely; coded -3 through 3

- USABLE_1: Learning to operate the framework would be easy for me
- USABLE_2: I would find it easy to get the framework to do what I want it to do
- USABLE_3: My interaction with the framework would be clear and understandable
- USABLE_4: I would find the framework to be flexible to interact with
- USABLE_5: It would be easy for me to become skilful at using the framework
- USABLE_6: I would find the framework easy to use

Decision Quality
Scale: -3 - fully disagree - through 3 - fully agree

- DECISION_1: When making decisions, their purpose, perspective and scope were
clear to me

- DECISION_2: When making decisions, I had appropriate and feasible options to
choose between

- DECISION_3: When making decisions, I had enough information to inform the
decision

- DECISION_4: When making decisions, I the values and trade-offs between options
were clear to me

- DECISION_5: I feel that using the framework has given me more insight in the
decision problems

- DECISION_6: I feel that relevant stakeholders could commit to the decisions made
using the framework

- DECISION_7: I feel confident about the decision outcomes
- DECISION_8: I believe that the decision outcomes are easy to put into practice
- DECISION_9: I believe that the framework is useful for supporting decision-making

conversations

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 128/130

APPENDIX E – CASE STUDY SURVEY OUTCOME
COMPARISONS

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 129/130

DECISION-MAKING IN A MICROSERVICE ARCHITECTURE PAGE 130/130

	1 Introduction
	1.1 Report Structure

	2 Research Design
	2.1 Research Goals and Questions

	3 Problem Investigation
	3.1 Motivation and Scope
	3.2 Stakeholders
	3.3 Decision-Making Framework Goals
	3.4 Problem Overview

	4 Microservices
	4.1 General Overview
	4.1.1 Characteristics
	4.1.2 Motivations
	4.1.3 Deployment
	4.1.4 Considerations

	4.2 Challenges in Literature
	4.2.1 Literature Review Process
	4.2.2 Results and Discussion
	4.2.3 Scope and Conclusions

	4.3 Challenges in Practice
	4.3.1 Context
	4.3.2 Interview Process
	4.3.3 Interview Results and Discussion
	4.3.4 Conclusions

	5 Challenge Dependencies and Possible Solutions
	5.1 Management
	5.2 Integration
	5.3 Communication

	6 Treatment Design
	6.1 Requirements
	6.1.1 Software Architecture Design and Decision-Making Process
	6.1.2 Requirements Definition

	6.2 Contribution to Goals
	6.3 Available Treatments
	6.3.1 Decision-Making
	6.3.2 Decision-Making Methodology Selection

	6.4 Overview of ArchDesigner
	6.4.1 Applicability in Practice

	7 Artifact Design
	7.1 Design Decisions
	7.2 Process Overview and Meta-Model
	7.3 Fulfilment of Requirements
	7.4 Usage Requirements
	7.5 Tooling

	8 Validation
	8.1 Validation Methodology
	8.2 Case Study 1
	8.2.1 Observations
	8.2.2 Results

	8.3 Changes to the Artifact Design
	8.4 Case Study 2
	8.4.1 Observations
	8.4.2 Results

	8.5 Discussion and Conclusions

	9 Discussion
	9.1 Implications and Contributions
	9.2 Research Quality
	9.3 Validity and Reliability
	9.4 Future Work
	9.5 Further Recommendations

	10 Conclusions
	10.1 Research Questions
	10.2 Key Contributions and Findings

	Bibliography
	Appendices
	Appendix A – Selected Publications
	Appendix B – Literature Review Diagrams
	Appendix C – Decision-Making Model
	Appendix D – Case Study Questionnaire
	Appendix E – Case Study Survey Outcome Comparisons

