
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The adoption of reinforcement learning 
in the logistics industry:  A case study 

at a large international retailer 

MSc Business Information Technology 
 

M.W.T. Gemmink 



 

 
 

Master thesis 

The adoption of reinforcement learning in 
the logistics industry: A case study at a 

large international retailer 
November 2019 

 
Author 
Name M.W.T. Gemmink (Martijn) 
Programme MSc Business Information Technology 
Institute University of Twente 

PO Box 217 
7500 AE Enschede 
The Netherlands 

Email address M.W.T.GEMMINK@ALUMNUS.UTWENTE.NL 

 

Graduation committee 
First supervisor Dr. Maria-Eugenia Iacob 

Department of Industrial Engineering and Business 
Information Systems 
University of Twente, Enschede, The Netherlands 
M.E.IACOB@UTWENTE.NL 

 
Second supervisor Dr. Marten van Sinderen 

Faculty of Electrical Engineering, Mathematics and 
Computer Science 
University of Twente, Enschede, The Netherlands 
M.J.VANSINDEREN@UTWENTE.NL 

 
Company supervisor Pieter Meints MSc. 

Logistics Support 
Albert Heijn, Zaandam, The Netherlands 
PIETER.MEINTS@AH.NL 

 
Daily supervisor Ing. Jean Paul Sebastian Piest MSCM 

Department of Industrial Engineering and Business 
Information Systems 
University of Twente, Enschede, The Netherlands 
J.P.S.PIEST@UTWENTE.NL 

mailto:M.W.T.GEMMINK@ALUMNUS.UTWENTE.NL
mailto:M.E.IACOB@UTWENTE.NL
mailto:M.J.VANSINDEREN@UTWENTE.NL
mailto:PIETER.MEINTS@AH.NL
mailto:J.P.S.PIEST@UTWENTE.NL


 

Preface 



 

 



 

 

   
 
 
 
 
 
 

Whereas supervised and unsupervised learning has already reached widespread 
adoption within the logistics industry, reinforcement learning remains largely un- 
charted territory. Reinforcement learning is particularly interesting as agents can 
learn based on experience in a real-world or simulated environment. Current 
applications of the technique focuses primarily on games, however reinforcement 
learning could also be implemented within the business processes of logistic or- 
ganizations. Because no clear and concise model for reinforcement learning 
adoption exists, this thesis is aimed at developing one. The main research question 
is therefore: 

 
How can logistic organizations effectively assess and adopt reinforcement learn- 
ing into their business processes? 

 
Conducting exploratory research and a literature review formed the basis for    
a business process model aimed at logistic organizations in order to implement 
reinforcement learning. The exploratory research was an attempt to design and 
develop a reinforcement learning agent that could solve (a part of) the product 
allocation problem within the warehouses of Albert Heijn, also called slotting. The 
agent successfully learned how to allocate products according to the require- 
ments as prioritized by the company. The insights of both the literature body and 
the creation of the agent were used to create the model to re-engineer business 
processes in the logistics industry using reinforcement learning. 

 
The model was validated using expert opinions and the performance of the agent 
gives logistic organizations an idea about whether and how to use reinforcement 
learning in their business processes. The agent achieves high scores in the product 
allocation problem, but members of the Logistics Support department are still able 
to outperform the agent. Using intelligence amplification however, the cooper- 
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ation between the agent and the operational employees, the performance in 
terms of time and score of the slotting increased. 

 
The contribution of this thesis to practice is that the model supports AI novice and 
AI ready departments within logistic organizations to re-engineer their business 
processes using reinforcement learning. Because these organizations have limited 
skills to implement a reinforced agent themselves, an example agent is provided 
that is ready to be used and experiment with. The scientific relevance is twofold. 
Current adoption models lack the unique determinants for artificial intelligence 
and reinforcement learning, the methodology of this research could alleviate 
this problem for future research. Secondly, this research also indicates that using 
intelligence amplification, agents using reinforcement learning also benefit from 
the cooperation between a human and the agent. The model can be considered 
a first step in taking reinforcement learning beyond simple games and towards 
actual business processes. 
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1. Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 

Modern artificial intelligence enables computers not only to solve problems based 
on human instructions but to solve them on their own [15]. Many believe that the 
future of AI is filled with potential and that it will become an important part of the 
logistics industry [6]. According to McKinsey the AI revolution is not in its infancy, but 
the majority of the economic impact is yet to come [9]. In recent years artificial 
intelligence has been studied intensively leading to a much better understanding 
of the technology. Artificial intelligence research has been around for 50 years and 
marketing has reached an all-time high [20, 26]. Because of modern computer 
power and large amounts of data, artificial intelligence is becoming increasingly 
interesting for logistic organizations that now can (partially) automate tasks that 
require a decent level of intelligence [6, 9]. 

 
"Artificial intelligence (AI) is once again set to thrive; unlike past waves of hype and 
disillusionment, today’s current technology, business, and societal conditions have 
never been more favorable to widespread use and adoption of AI." [6]. 

 
Almost everything we currently hear from in the field is thanks to deep learning. 
Deep learning works by using statistics to find patterns in data and it has proven 
to be successful in recent years. The sudden rise and fall of different techniques 
have characterized research for a long time and an analysis of more than sixteen 
thousand papers suggests the same could happen to deep learning in the near 
future. The research also identified upcoming trends in the field, one that keeps 
coming up is reinforced learning1. Reinforced learning gained momentum in Oc- 
tober 2015, when DeepMind’s AlphaGo defeated the world champion in a game 
of Go. With reinforced learning an agent is trained using punishments and rewards, 
much like how humans learn in the real world [19]. 

 
1Reinforced and reinforcement learning are used interchangeably throughout the thesis, but are 

the same. 
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AI has become more favorable than ever before because of Big Data, cloud 
computing and processing power. AI is becoming an integral part of the future 
of logistic organizations. AI has the potential to "fundamentally extend human 
efficiency in terms of reach, quality, and speed by eliminating mundane and 
routine work" [6]. Logistics is becoming an AI-driven industry and there are already 
many examples such as autonomous guided vehicles (AGVs), intelligent robot 
sorting, predictive demand, capacity planning and many more [6]. 

 

1.1 Background 
This research has been conducted over an eight month period at the Logistics 
Support department of Albert Heijn. The department ensures that the processes in 
the distribution centers run smoothly. 

 
1.1.1 Albert Heijn 

The organization is named after its founder Albert Heijn (1865 
– 1945). Albert Heijn took over the small grocery store of his 
father Jan Heijn in Oostzaan, a municipality and a town in 
the Zaanstreek, The Netherlands. A few years later Albert 
Heijn opened its second store in Purmerend and started with 
its own production companies which roasted coffee beans 
and baked cookies to be sold in the expanding number of 
stores. In 1927 the number of stores reached 107. Albert 
Heijn passed away in 1945 and three years later the com- 
pany went public. 

 
Albert Heijn wanted its stores to be accessible to both the wealthy and the poor, his 
motto was: “The everyday affordable, the special accessible.” The mission of Albert 
Heijn is to offer all ingredients for a better life. Bringing good, safe, sustainable and 
healthy food to millions of customers. The stores have a wide range of high-quality 
items and friendly, helpful service, long opening hours and online ordering enable 
customers to shop for groceries around the clock. Albert Heijn (AH) is currently 
the largest and oldest food retailer in the Netherlands. Albert Heijn has more 
than a thousand shops across the Netherlands and another 40 in Belgium. The 
organization is owned by Ahold Delhaize. 

 
1.1.2 Ahold Delhaize 

Ahold Delhaize is the result of a merger in 2016 be- 
tween the Dutch Ahold and the Belgian Delhaize. 
The headquarters of the organization is located  
in Zaandam, The Netherlands. The organization 
operates retail companies across 11 countries, em- 
ploying over 372 thousand people in more than 6 
thousand stores. Last year in 2018, the net sales 
were 62.8 billion euro. Every week 50 million cus- 
tomers are served at the supermarkets, drug stores, convenience stores and liquor 
stores in one of the 19 local brands of Ahold Delhaize, of which Albert Heijn is one. 
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1.2 Motivation 
Whereas supervised and unsupervised learning have been studied extensively, 
reinforcement learning kept a low profile over the years. Recently reinforcement 
learning gained momentum due to breakthroughs such as defeating the world 
champion in a game of Go. There is not much literature connecting reinforcement 
learning to practice that goes beyond games and towards actual implementation 
in a large industry such as logistics. 

 
 

1.3 Problem definition 
Logistic organizations lack the tools to effectively identify whether (parts) of their 
business processes are suitable for reinforcement learning. But even when these 
processes are identified, the implementation is not as straightforward as supervised 
and unsupervised learning. 

 
 

1.4 Research goal 
This thesis aims at easing the adoption of reinforcement learning in the logistics 
industry with a clear and concise model that is on a business process level that 
helps these organizations to effectively implement reinforcement learning. 

 
 

1.5 Research questions 
Based on the problem statement the main research question that has been identi- 
fied is: 

 
RQ How can logistic organizations effectively assess and adopt reinforce- 

ment learning into their business processes? 
 

To be able to answer the research question the following sub-questions have been 
formulated: 

 
SQ1 What is the current state of artificial intelligence and especially deep and 

reinforcement learning in the logistics industry? 
 

SQ2 What are the most important artificial intelligence adoption models and 
frameworks in the logistics industry? 

 
SQ3 Which types of business processes are suitable for reinforcement learn- 

ing? 
 

SQ4 Which steps help logistic organizations in successfully implementing rein- 
forcement learning? 

 
SQ5 To what extent can the developed model help logistic organizations in 

the adoption of reinforcement learning? 
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1.6 Report contents 
The structure of this thesis is build around the different phases of the Design Sci- 
ence Methodology of Wieringa [46]. First the background information on the two 
main topics, technology adoption and reinforcement learning is considered in the 
problem investigation. The exploratory research implementation of reinforcement 
learning at Albert Heijn is also considered in Part II. Part III and IV are part of the 
design cycle in designing and validation the treatment. Part V includes both the 
conclusion and the discussion. In Table 1.1 the part(s) and their relation to the 
research questions is depicted. 

 
 

Question Type Methodology Part(s) 
SQ1 Knowledge Problem investigation Part II 
SQ2 Knowledge Problem investigation Part II 
SQ3 Design Exploratory research / treatment design Part II & III 
SQ4 Design Exploratory research / treatment design Part III & IV 
SQ5 Design Treatment validation Part IV 

  
Table 1.1: The report contents 

 



 

2. Methodology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 

The method of research will be based on the Design Science Methodology of 
Wieringa [46], which is about studying an artifact in context. The goal is to de- 
velop a model that helps logistic organizations to effectively adopt reinforcement 
learning. This design problem, according to Wieringa, can be formulated as follows: 

 
Improve the adoption of reinforcement learning in logistic organizations by de- 
signing a model that is on a business process level in order to effectively utilize its 
potential [46]. 

 
The engineering cycle is a rational problem-solving process which contains the 
task to carry out design science research. The engineering cycle is depicted in 
Figure 2.1. The cycle provides a logical structure of tasks and tells us that in order 
to justify a treatment we must understand the problem [46]. In design science, 
only the first three tasks of the engineering cycle are performed, starting with the 
problem investigation. 

 
 

Treatment implementation Implementation evaluation / 
Problem investigation 

 
 
 
 

Treatment validation Treatment design 
 
 

Figure 2.1: The engineering cycle [46] 
 

For this thesis an approach will be taken that consists of the design cycle appended 
by exploratory research that has similarities to systems engineering, see Figure 2.2. 
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Exploratory research 

First a number of iterations are performed in an attempt to adopt reinforcement 
learning at the Logistics Support department of Albert Heijn, the largest food 
retailer in the Netherlands. The exploratory research together with a structured 
literature review will form a solid foundation for the problem investigation discussed 
in section 2.1. The next step is the treatment design, in which the requirements for 
the to be developed model are specified and the treatment(s) are discussed. The 
treatment design can be found in section 2.2. The final step of the design cycle is 
the treatment validation discussed in section 2.3. 

 
 
 
 
 

Treatment implementation Implementation evaluation / 
Problem investigation 

 
 
 

Treatment validation Treatment design 
 
 

Figure 2.2: Research methodology 
 
 

2.1 Problem investigation 
The task is to investigate a problematic situation, starting with identifying, describ- 
ing, explaining and evaluating the problem to be treated [46]. The problem 
investigation is twofold, both a structured literature review (SLR) found in section 
2.1.1 and exploratory research in section 2.1.2 is considered. The goal of the 
exploratory research is to start the treatment design task with a strong literature 
foundation and the experience of actually carrying out a reinforcement learning 
adoption project at a large logistic organisation. 

 
2.1.1 Structured literature review 

This literature review aims to identify the problems, approaches, tools and applica- 
tions of artificial intelligence and especially reinforcement learning as well as its 
adoption in logistic organizations in an attempt to identify what hinders progress in 
this regard. Both the scientific body as well as material from the logistics field will 
be considered. 

 
An effective literature review creates a firm foundation for advancing knowledge 
[45]. First the literature search and selection will be discussed which also addresses 
the structured literature review and how the literature will be reviewed. For both 
main topics, a different search strategy was used. 
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Literature search and selection 

Based on the research questions two main top-  
ics have been identified, reinforcement learn- 
ing and technology adoption. Artificial intel- 
ligence is huge and  during  the  last  50  years  
the  field  has  become  very   disparate   mak-   
ing it difficult to grasp [8].  The  field  of  
technology adoption  and  acceptance  is  on 
the other side of the spectrum  being  much  
more  clear  and  concise.  Because  of  the 
nature of the fields two separate  methodolo-  
gies were used.  The  specifics  of  each  re-  
search method  are  discussed  at  the  begin- 
ning of appendix A and B. The method of 
research for the structured literature review is 
based  on  the  guidelines  of   Kitchenham   et   
al.    [22].     The  two   topics  formed  the  basis   
for a systematic literature review (SLR). A SLR 
makes the review more valuable because it re- 
quires a  legitimization  for  every  choice  made  
in the search process [47]. Before commenc- 
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n1 

Inclusion and 
exclusion criteria 

 
n2 

Refine sample 
based on title 
and abstract 

n3 
 

Refine sample 
based on full text 

n4 
Forward and 

backward 
citations 

n5 

ing with the  review,  first  the  sources  have  to  
be  identified. The following sources will be 

Final       
sample New articles? 

used: 
 

• Scopus WWW.SCOPUS.COM 
• Web of Science WWW.WEBOFKNOWLEDGE.COM 

Figure 2.3: The literature selec- 
tion process, based on Wolf- 
swinkel et al. [47] 

• IEEE Explore WWW.IEEE.ORG/WEB/PUBLICATIONS/XPLORE 
• Research Gate WWW.RESEARCHGATE.NET 
• Springer Links WWW.SPRINGERLINK.COM 
• Science Direct WWW.SCIENCEDIRECT.COM 
• Google Scholar WWW.SCHOLAR.GOOGLE.COM 

• University of Twente Library WWW.UTWENTE.NL/EN/LISA/LIBRARY 

First Scopus and Web of Science were used for a preliminary search for the title, 
keywords and abstract. The selection of the final sample will be based on the 
selection process of Wolfswinkel et al. [47]. An iterative selection process that 
starts with filtering out the doubles. For every topic there will be inclusion and 
exclusion criteria that limits and improves the quality of articles found. From the 
remaining sample the title and abstract will be read and when relevant, the full 
text also. Forward and backward citations are used to evaluate the foundation on 
which the author(s) statements are based and to find more relevant articles. The 
literature selection process can be found in Figure 2.3. 

 
Reviewing the literature 

With the final selection of articles the next step is to review the literature and to 
identify the key concepts that arise. Webster & Watson recommend using a con- 
cept matrix when reviewing the articles, synthesizing the literature by discussing 
each identified concept. The concept matrix can be found in Table 2.1. 

http://www.scopus.com/
http://www.webofknowledge.com/
http://www.ieee.org/WEB/PUBLICATIONS/XPLORE
http://www.researchgate.net/
http://www.springerlink.com/
http://www.sciencedirect.com/
http://www.scholar.google.com/
http://www.utwente.nl/EN/LISA/LIBRARY
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Articles Concepts 
A B C D . . . 

1 x x 
2 x x 

. . . x x 

Table 2.1: The concept matrix by Webster & Watson [45] 
 
 

Articles Concepts 
 

A AB B C . . . 
1 x x 
2 x x 

. . . x x 

Table 2.2: The advanced concept matrix by Wolfswinkel et al. [47] 
 

In order to expose potential relevant relations between concepts and their proper- 
ties the concept matrix can be extended by merging concepts. Identifying what 
concepts to merge is a continuous process during the analysis. The advanced 
concept matrix proposed by Wolfswinkel et al. can be found in Table 2.2. 

 
 

2.1.2 Exploratory research 
The technology adoption models, combined with the specifications of reinforce- 
ment learning from literature will be the starting point of a small engineering cycle 
within the Logistics Support department of Albert Heijn. The goal of this exploratory 
research is to explore to what extent reinforcement learning can be adopted. 
The results of this exploratory research will be used as input for the model. The 
exploratory research consists of three phases. 

 
Identifying suitable business processes 
Based on the determinants of reinforcement learning and the puzzles it is able to 
solve one can identify which business processes are suitable for the technique. 
Three potential business processes will be identified based on unstructured inter- 
views with employees of the LS department. One business process will be picked 
based on criteria defined before selecting the processes. The criteria are based 
on the literature body of RL. 

 
Implementation of reinforcement learning 
In this phase an attempt will be made to automate (a part of) the business process 
using reinforcement learning. Multiple experiments will be conducted to test 
different algorithms in order to get an understanding about what their advantages 
and drawbacks are in terms of performance and ease-of-use, starting with the 
most basic algorithm and scaling up from there. The implementation attempt will 
also give an idea about the performance of RL in a business process. 



 

2.2 Treatment design 31 

Adoption within the LS department 
A single technical implementation is not sufficient for actual adoption, the organi- 
zational aspects of the adoption of reinforcement learning need to be considered. 
The aim is to determine what makes a logistic organization adopt a new tech- 
nology such as artificial intelligence and in particular reinforcement learning. A 
logbook will be kept on all actions taken and whether or not they contributed to 
the adoption. 

 
2.2 Treatment design 

In this step of the design cycle the requirements are identified and how they 
contribute to the goals of the artifact [46]. The requirements are defined based 
on the experience gained by the exploratory implementation of RL in the LS 
department. The validity of the treatment design will also be assessed. 

 
2.3 Treatment validation 

The final step is the validation of the model. The aim of the validation is to "develop 
a design theory of an artifact in context that allows us to predict what would 
happen if the artifact were transferred to its intended problem context" [46]. The 
experimental research is also part of the validation. With the validation complete, 
an assessment can be made to what extent the model is able to help logistics 
organizations in adopting reinforcement learning into their business processes. 
And secondly to what extent RL is able to solve the problems it faces. Finally the 
limitations of the model and directions for future work are identified. 

 
2.3.1 Single-case mechanism experiments 

Single-case mechanism experiments are conducted for the exploratory implemen- 
tation of a real-world business process at the LS department. These experiments 
will be carried out with multiple types of agents and environments to assess if the 
agents are able to perform in the business process identified in the exploratory 
research. 

 
2.3.2 Expert opinions 

Both the exploratory implementation of RL in a business process and the model 
itself will be validated by expert opinions. Employees of the LS department have 
the ability to imagine how the developed agent will interact inside the business 
process and what effects this would have. They will also validate whether the 
model could help the LS department to effectively utilize reinforcement learning 
into their business processes. 
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Reinforcement learning is a field within artificial intelligence. Intelligence is our 
important ability to perceive, understand, predict and manipulate a world that is 
far more complicated than ourselves. AI is not only concerned with understanding 
but also with building intelligent entities.   Definitions of AI can be categorized   
in four categories, see Figure 3.1. The top dimensions are about reasoning and 
the bottom ones address behaviour. The definitions on the left are concerned 
with human performance whereas the right ones address rationality.  A system  
is considered rational when it does the "right thing", given what it knows. Russell 
and Norvig define AI as the study of intelligent agents that receive percepts from 
the environment and perform actions [35]. This chapter starts with the general 
concept of AI, the importance of deep learning and finally dives into reinforcement 
learning. 

 

Figure 3.1: Definitions of AI in four dimensions [35] 
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3.1 Artificial intelligence 
AI was first mentioned at a conference in July 1956, but research into the na- 
ture of intelligence goes back to the Greeks and other philosophers [8]. In the 
1980s researchers were finding out that creating AI was more complicated than 
anticipated and many companies failed to deliver on their promises, leading to 
the so-called "AI Winter" [8, 35]. Recently due to the greater use of the scientific 
method in experimenting with and comparing approaches AI has advanced more 
rapidly. Sub-fields of AI are more integrated and AI has found common ground 
with other disciplines [35]. 

 
Deng et al. identified three main waves in the world of AI. The first wave in the 
1960s was based on expert knowledge engineering - often symbolic logic rules - 
on very narrow application domains. The second wave which came around in 
the 1980s was based on machine learning or shallow  learning due to the lack  
of abstractions [15]. AI has seen a large resurgence over the past ten years and 
deep learning - the current wave - is one of the most contributing factors [9]. This is 
visualized in Figure 3.2. Other important factors are big data and technological 
advances in creating general AI [48]. Currently we are able to create narrow  
AI, which is able to solve specific problems, general AI is able to solve multiple 
problems, like humans. The stage in which AI exceeds humans significantly super 
AI can be reached [6]. 

 

Figure 3.2: Artificial Intelligence overview [6] 
 

3.1.1 Intelligent agents 
Agents help in representing, analyzing, designing and implementing complex 
software systems [20]. According to Russel and Norvig: "An agent is anything that 
can be viewed as perceiving its environment through sensors and acting upon that 
environment trough actuators", this is visualized in Figure 3.3. The agent percepts 
inputs from its sensors and the history of what the agent has perceived is called 
the percept sequence. An agent’s behavior is described by the agent function 
that maps any given percept sequence to an action. For complex problems this 
will be a very large - often infinite - table so often there is a bound to the length of 
sequences to consider. The agent program is the actual implementation of the 
agent function [35]. 
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Figure 3.3: Agents interact with environments through sensors and actuators [35] 
 
 

Rationality is an important concept in the book because it answers the question 
whether an agent is good or bad, intelligent or stupid. Whether an agent is ra- 
tional is assessed by considering the consequences of the agent’s behavior. The 
definition of a rational agent, according to Russel and Norvig: 

 
"For each possible percept sequence, a rational agent should select an action 
that is expected to maximize its performance measure, given the evidence pro- 
vided by the percept sequence and whatever built-in knowledge the agent has" 
[35]. 

 
The environment states whether the agent’s actions were rational. It is difficult to 
construct performance measures, both because "success" is often not clear. The 
authors state that "it is better to design performance measures according to what 
one actually wants in the environment, rather than according to how one thinks 
the agent should behave". Rationality is not perfect, because there is a level of 
uncertainty in the outcome. Omniscience is when the outcome is known before- 
hand, but this is impossible in reality. Agents sometimes have to perform certain 
actions to maximize the expected outcome, also called information gathering. 
In uncharted territory an agent might also perform some exploration in order to 
get familiar with the environment. The extent to which an agent is dependent 
on prior knowledge rather than its own percepts tells something about its level of 
autonomy [35]. 

 
3.1.2 Task environments 

When designing an agent the environment needs to be specified as fully as pos- 
sible. The authors define the task environment as the performance measure, 
environment, actuators and sensors. An example of a performance measure for a 
self-driving car is whether it is driving safe. The environment is the road, pedestrians 
and other traffic. The actuators can be the gas and brake pedal. Finally the 
sensors can be the cameras that register the road [35]. 

 
When describing a task environment the following dimensions need to be taken 
into account: 
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Fully observable vs. partially observable: Whether the agent’s sensors give 
the agent the complete state. 
Single agent vs. multiagent: If the performance of an agent is dependent 
on the behaviour of another, the task environment is multiagent. Agents can 
both cooperate and compete to a certain level. 
Deterministic vs. stochastic: When the next state of the environment is com- 
pletely determined by the current state and the action by the agent, it is 
deterministic. 
Episodic vs. sequential: When an agent performs a single action and its 
actions are based on previous ones, it is episodic. An agent’s short-term 
actions in a sequential environment can have long-term consequences. 
Static vs. dynamic: In static environments the environment does not change 
while an agent is considering an action. Dynamic environments continuously 
require the agent to take actions, even if it is still deciding. 
Discrete vs. continuous: When the environment has a finite number of states 
and potential actions, it is considered discrete. Continuous environments 
handle environments that have infinite distinct states. 

 
3.1.3 Agent programs 

Russel and Norvig identify four basic kinds of agent programs, each program is 
considered below. 

Simple reflex agents 
As the name implies this is the simplest type of agents. An agent selects actions 
based only on the current percept, ignoring the percept history. Based on sensor 
data and condition-action rules the agent takes actions. The schematic overview 
of a simple reflex agent is shown in Figure 3.4. Simple reflex agents work best when 
the task environment is fully observable [35]. 

 

Figure 3.4: Schematic diagram of a simple reflex agent [35] 
 

Model-based reflex agents 
Model-based reflex agents can handle partial observability because they keep 
track of parts of the environment it cannot see. These agents maintain an internal 
state based on the percept history. The agent requires knowledge to be encoded 
into the agent program, how the environment evolves independently of the agent 

• 

• 

• 

• 

• 

• 
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Figure 3.5: Schematic diagram of a model-based reflex agent [35] 
 

Figure 3.6: Schematic diagram of a goal-based agent [35] 
 

and how the agent’s own actions affect the world. A model is created that 
attempts to describe the environment on which the agent decides its actions [35]. 
The model-based reflex agent is shown in Figure 3.5. 

 
Goal-based agents 
Having knowledge about the environment is not always sufficient to know what 
to do. Here goal-based agents come into the equation. The agent has some 
sort of goal that help in deciding an action that is desirable. The goal can be 
straightforward when it is short term or immediately after an action but can be 
complex when it is achieved in the long run [35]. The schematic representation of 
a goal-based agent can be found in Figure 3.6. 

 
Utility-based agents 
In order to generate high-quality behaviour in most environments, goals are not 
sufficient. Considering rationality, the goal does not always justify the means. 
Utility-based agents therefore also take into account utility, which is essentially 
an internalization of the performance measure.   When multiple actions result    
in the same goal or the goals are uncertain, a utility function can produce an 
appropriate trade-off [35]. The schematic overview of a utility-based agent is 
shown in Figure 3.7. 
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Figure 3.7: Schematic diagram of a utility-based agent [35] 
 

Figure 3.8: A general learning agent [35] 
 

Learning 
Agents can improve through learning. In creating state-of-the-art systems the 
preferred method is to build learning machines and then to teach them. Learning 
also has the advantage that it is allows agents to operate in unknown environments. 
The learning element is responsible for making improvements and the performance 
element  is responsible for  selecting actions,  the previously considered agent.  
A fixed performance standard, called a critic, is used as an indication for the 
learning element for the agent’s success. A learning agent could also have a 
problem generator, which suggests actions that lead to new and informative 
experiences. According to Russel and Norvig: "Learning in intelligent agents can 
be summarized as a process of modification of each component of the agent 
to bring the components into closer agreement with the available feedback 
information, thereby improving the overall performance of the agent" [35]. A 
general learning agent is visualized in Figure 3.8. 

 
Representation of states and transitions 
So far different agent programs have been discussed but not the representation 
of the state and its transitions. In an atomic representation each state of the 
world has no internal structure. A factored representation splits up each state 
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Figure 3.9: Representation of states and transitions [35] 

 
into a fixed set of variables and attributes, each of which can have a value. In 
a factored representation states can share attributes. Structured representation 
is the most expressive of the three because it can explicitly describe various and 
varying relationships [35]. The representation of states and transitions in increasing 
expressiveness are shown in Figure 3.9. 

 
Most of the time the more expressive language is much more concise, however 
learning and reasoning become more complex as the expressive power of the 
representation increases. "To gain the benefits of expressive representations while 
avoiding their drawbacks, intelligent systems for the real world may need to oper- 
ate at all points along the axis simultaneously" [35]. 

 
3.1.4 Problem-solving 

This section deals with the numerous ways in which agents can achieve its goals 
when no single action will do. Simple reflex agents cannot operate effectively in 
environments which are large and where it would take too long to learn. Goal- 
based agents consider actions and their outcomes however before searching for 
a solution, a goal as well as the problem must be identified. The decisions which 
the agent needs to make to reach the goal state is called the solution. An agent 
searches for the optimal (or most shallow) path towards the solution. There are 
numerous uniformed and informed search methods. Uninformed search is when 
only the problem definition is considered whereas informed search also considers 
the solution [35]. 

 
Searching for a solution works only for a single category of problems. When the 
problem is observable, deterministic in which the solution is a number of actions. 
When the problem is does not meet that requirements, different search techniques 
are needed. Online search is when an agent is faced with a state space that is 
unknown and must be explored [35]. 

 
In an environment in which an agent is trying to plan ahead and other agents are 
planning against us, for example in a game of chess, again other strategies are 
needed which work in competitive environments [35]. 

 
3.1.5 Learning techniques 

There are multiple techniques to make an agent learn. Learning improves the 
agent performance on future tasks after making observations about the world. 
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· ∗ 
→ ∗ → ∗ 

Any component of an agent can be improved, the improvements depend on four 
major factors: 

 
• Which component to improve. 
• What prior knowledge the agent has. 
• The representation of the component and its data. 
• The feedback available to learn from. 

There are three types of feedback that correspond to the three types of learning. 
Unsupervised learning means the agent is learning patterns even though no 
feedback is supplied, this often involves clustering. In supervised learning the agent 
observes inputs and the corresponding outputs and maps those in a function. The 
distinction is not always clear in real-world cases, e.g. semi-supervised learning in 
which is a combination of both supervised and unsupervised learning [35]. The 
final type of feedback is reinforcement learning, discussed in detail in section 3.3. 

 
3.2 Deep learning 

The "deep" in deep learning (DL) means that it uses one or multiple neural networks 
[35]. In this section neural networks are introduced as well as its importance in 
terms of recent developments. 

 
3.2.1 Neural networks 

As mentioned before a neural network consists of neurons (or nodes). A node 
takes inputs, performs some calculations and produces an output. An example of 
a node with two inputs x1 and x2 can be found in Figure 3.10 [35]. The calculation 
that happens in the example are: 

 
1. Each input is multiplied by the weight. So x1 x1   w1 and x2 x2 w2. 
2. The weighted inputs are added together with a bias b such that (x1 w1)+ (x2 w2)+ b. 
3. Finally the sum is passed through an activation function in such a way that 

y = f (x1 ∗ w1 + x2 ∗ w2 + b). 

The activation function is used to turn an un- 
bounded input into an output that has a 
predictable form. There are multiple acti- 
vation functions but one of the most com- 
mon is the Sigmoid function. The Sigmoid 
function only outputs numbers in the range 
(0, 1), it compresses values [35]. There are 
multiple activation functions, an overview of 
the most common can be found in Figure 
3.11. 

Figure 3.10: Representation of a 
node inside a neural network 

 

A neural network (NN) consists of many connected neurons, each producing a 
sequence of real-valued activations. The first layer is called the input layer which 
is a number of neurons which get activated through sensors perceiving the envi- 
ronment. When the input neurons get activated the other layer(s) get activated 
using weighted connections from the previous layer. The credit assignment is the 

x1 w1 

y 
x2 w2 
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Figure 3.11: The most common activation functions 
 

problem of finding the right weights that make the NN work properly. Deep learn- 
ing (DL) is the process of creating NNs with many layers and accurately assigning 
credit to those layers [37]. An example of a neural network can be found in Figure 
3.12. A hidden layer is any layer between the input and the output, the number of 
hidden layers can vary [35]. 

 

Input layer Output 
layer 

Hidden 
x1  layers y1 

h1 h3 

x2 y2 

h2 h4 

x3 y3 
 

Figure 3.12: A neural network 
 
 

Figure 3.13: A small neural network including the weights 
 

Imagine a small neural network with two nodes in the input layer, one node in the 
output layer and one hidden layer in between with two nodes. The resulting neural 
network is depicted in Figure 3.13. Consider w = [0.5, 1, 0.8, 0.4, 0.3, 0.8], so w1 = 0.5 
and w6 = 0.8. The processes of passing inputs forward in order to get an output is 
called feedforward. b = [1, 0.1, 6] which are the respective biases in each node [35]. 
If we input x = [4, 2] into the network with Sigmoid sa(x) with a = 1 as its activation 

x1 w1 h1 w5 
w2 

w3 
y 

x2 w4 h2 w6 
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∂w 1 

n 

function the result can be calculated using the following equations: 

 
h1 = f ((w1 ∗ x1)+ (w2 ∗ x2)+ b1) 

= f ((0.5 ∗ 4)+ (1 ∗ 2)+ 1) 
= f (5) 
= 0.99 

 
h2 = f ((w3 ∗ x1)+ (w4 ∗ x2)+ b2) 

= f ((0.8 ∗ 4)+ (0.4 ∗ 2)+ 0.1) 
= f (4.1) 
= 0.98 

 
y = f ((w5 ∗ h1)+ (w6 ∗ h2)+ b3) 

= f ((0.3 ∗ 0.99)+ (0.8 ∗ 0.98)+ 6) 
= f (7.08) 
= 0.99 

When training a neural network, one attempts to minimize the loss. The lower the 
loss, the better are the predictions the network makes. A loss function often used is 
the mean squared error (MSE) [35]. The MSE can be denoted as: 

 

MSE = 1 (y y 2 

∑ 
i=1 

true − pred ) 

n = number of samples 
y = the variable being predicted 

ytrue = the actual variable 
ypred = the predicted variable output from the network 

With a clear goal of minimizing the loss we can write the loss as a multivariable 
function L(w1, w2, w3, w4, w5, w6, b1, b2, b3). When we want to tweak for example w2 
and want to know how the loss L would change we need the partial derivative 
 ∂L [35]. Using the chain rule, this partial derivative can be written in the following 
formula: 

 
∂L ∂L ∂ypred 

∂w1 
= 

∂ypred 
∗
 

∂L 

 
 

∂w1 
∂ypred ∂h1 

= 
∂ypred 

∗
 ∂h1 

∗ 
∂w1 

The system of calculating partial derivatives starting from the back is called back- 
propagation. Using backpropagation one knows how to change the weights and 
biases in a network to make a better prediction. To train a network an optimization 
algorithm called stochastic gradient descent (SGD) is used that determines exactly 
how much the weights and biases need to change [35]. The update equation of 

n 
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∂w1 

SGD looks like: 

 
w1 ← w1 − η ∂L 

 

The learning rate is denoted as η which controls how fast we train. These steps are 
repeated for every sample we train on and slowly the network will improve [35]. 

 
3.2.2 The need for DL 

DL already plays an important role in our lives and this is constantly increasing. 
Some of the application areas currently using DL are cancer diagnosis, custom 
made medicine, self-driving cars and forecasting. DL is about using optimizing 
techniques in order improve the accuracy and reduce the training time of neural 
networks. Shrestha et al. reviewed multiple optimization methods for different types 
of architectures. Their review includes convolutional neural networks (CNN), deep 
residual neural networks (DRN), recurrent neural networks (RNN) and reinforced 
learning (RL) [39]. The building blocks for simple NNs have been around for many 
decades but only recently they have attracted wide-spread attention by outper- 
forming alternative methods. There are two types of NNs: feed-forward (FNN) and 
recurrent (RNN), both of which have been successful in the past. RNNs are the 
deepest of all NNs but also require much more powerful computers that FNNs 
because of their cyclic nature [37]. A feed-forward network has connections in 
one directions whereas a recurrent network feeds outputs back to its inputs. Neural 
networks are often used when more than one output needs to be considered [35]. 

 
When shallow neural networks were not capable in replicating human intelligence 
the machine learning community started focusing on DL [32]. It is not always clear 
when and if DL will outperform shallow NNs. Similarly there is no clear winner on 
which type of NN is best [39]. Poggio et al. reviewed and extended the theoretical 
literature about the conditions under which DL can be exponentially better than 
shallow learning [30]. 

 
An application in literature is enhancing transportation systems using DL. Wang et 
al. provide a comprehensive survey that focuses on the utilization of DL models 
to enhance the intelligence of the transportation systems. The authors identified 
which type of DL was best suited for the task at hand. Based on their results the 
authors identified a common pattern in applying DL models, starting with a simple 
DNN and slowly moving towards more sophisticated models. To reduce overfitting, 
a common problem on DL models, a useful strategy is to apply dropout which 
randomly ignores parameters during training [43]. Sze et al. wrote a review paper 
about the efficient processing of deep neural networks. DNNs deliver high accu- 
racy on many AI tasks however the computational complexity and therefore its 
costs are high. The authors highlight important benchmarking metrics for practi- 
tioners to use [40]. 

 
DL has proven to be extremely successful however big challenges await. DL 
currently lacks interpretability and often require much more training than humans 
[15]. In the near future Deep Neural Networks will be able to - just like humans - 
actively perceive patterns by sequentially direction attention to relevant parts of 
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the data [37]. To tackle these problems both fundamental and applied research 
is needed, a new wave  will not come without one or more breakthroughs in  
this regard. One of the potential breakthroughs Deng et al. mention is deep 
reinforced learning [15]. Garnelo et al. argue that a key objective for DL is to 
develop architectures capable of discovering objects and relations in raw data 
and to be able to represent them in ways that are useful for downstream processing 
[18]. During the next 5 to 10 years human level AI could be constructed, a thought 
based on thorough analysis of current rends in DL and brain reverse engineering 
[38]. 

 

3.3 Reinforcement learning 
By using reinforced learning, an agent can learn what to do in the absence of 
feedback of a teacher. Without feedback, the agent does not know what actions 
are good and bad. Instead of learning an agent good and bad actions, one 
could also let it explore on its own and provide a reward when the agent attempts 
a good action. Rewards in environments can come at the end,  immediately  
or anywhere in between depending on the problem. When playing a game of 
chess, it is difficult to reward individual actions but it is clear that checkmate is 
the goal [35]. Reinforced learning (RL) is a technique that can learn to predict 
consequences of behaviour in environments in order to optimize its actions [14]. 

 
"The task of reinforced learning is to use observed rewards to learn an optimal (or 
nearly optimal) policy for the environment." [35] 

 
Reinforced learning encompasses all of AI, an agent is placed in an environment 
and must learn to behave successfully. Reinforced learning can be passive, where 
the policy is fixed and the task is to learn the utilities of states. Another possibility 
is active learning, where the agent must also learn what to do. In order for an 
agent to gain a lot of valuable experience exploration is used. An example of 
exploring is when an agent takes an action it has not taken before to learn. An 
agent that explores more contributes to the learning and therefore increasing its 
rewards in the future. Exploitation is when an agent takes an action that - given its 
current knowledge - maximizes its utility [35]. RL is trained based on a simulation 
and therefore the underlying models used by most RL algorithms assume noise-free 
state information, whereas in practice the feedback is buried in noise and prone 
to delays [10]. Despite the difficulties deep reinforced learning enables scaling to 
problems that were previously unthinkable [3]. 

 
3.3.1 Core concepts of RL 

In this section the core building blocks of reinforcement learning will be discussed, 
these concepts are used for RL algorithms and are not mutually exclusive. 

Markov decision process 
Reinforced learning is based on the Markov decision process (MDP) mathemati- 
cal framework to tackle its problems. The MDP - introduced by Bellman in 1957 - 
produces an easy framework to model complex problems. The framework is used 
to model decision making in situations where outcomes are controlled partially 
random and partially by the decision maker [5]. 
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A MDP is denoted as (S, A, Pa, Ra) [4], where: 

S is the set of states. 
A is the set of actions. 
Pa(s, st) = Pr(st+1 = st st = s, at = a) is the probability that the action a in state s 
at time t will result in state st. 

• Ra(s, st) is the reward received by the transition from state s to st, by action a. 

The problem of a MDP is to find an 
optimal policy. A function π(s) that 
specifies which action to take in 
state s. The MDP in which an agent 
is interacting can be found in Fig- 
ure 3.14. An action can be any- 
thing from a chess move or control- 
ling a steering wheel. Rewards can 
be sparse, for example in a game 
of chess when they will come at 
the end or immediate in a game 
of pong. With sparse rewards it is 
often difficult to untangle what ac- 
tions contributed to the final result. 

Figure 3.14: Reinforcement learning, derived from 
the MDP 

In order to reward immediate rewards more than potential future rewards a dis- 
count factor γ can be used. The learning rate α is often used as a step size to 
determine to what extent newly acquired information overwrites old information. 
The horizon H tells us something about whether actions can take on forever or at a 
number of timesteps, it describes when the agent is finished [35]. 

 
Reinforced learning can solve MDPs without explicit specification of the transition 
probabilities. In reinforcement learning, instead of explicit specification of the 
transition probabilities, the transition probabilities are accessed through a simulator 
that is typically restarted many times from a uniformly random initial state [35]. 

 

Dynamic programming 
Dynamic programming (DP) refers to a collection of algorithms that can be used 
to compute an optimal policy given a perfect model, such as a MDP [35]. DP uses 
a value function to structure and organize the search for good policies. Policy 
evaluation refers to the iterative computation of value functions for a given policy. 
And policy improvement is the computation of an improved policy given the value 
function for that policy. When combining these methods we obtain policy iteration 
and value iteration, the most popular DP methods. DP is not very practical for 
large problems, but are quite efficient for solving deterministic MDPs [4]. 

 
Monte Carlo methods 
This learning method estimates value functions and discovers optimal policies 
without having complete knowledge about the environment. Mote Carlo methods 
only require experiences consisting of states, actions and rewards from interactions 
with the (simulated) environment. As Andrew et al. put it: "Learning from actual 

• 
• 
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experience is striking because it requires no prior knowledge of the environment’s 
dynamics,  yet is can still attain optimal behaviour".  The methods are solving   
RL problems based on averaging sample returns. The underlying concept of 
Monte Carlo methods is to use randomness to solve problems that might be 
deterministic in principle. In off-policy methods, the agent also explores, but learns 
a deterministic policy that can be different from the policy followed. With on-policy 
methods the agent attempts to find the best policy that still explores [4]. 

 
Temporal-difference learning 

Solving the underlying MDP is not the only way to tackle a learning problem. An- 
other way is to use temporal-difference (TD) learning. TD is a model-free approach 
to learning how to predict a quantity that depends on future values. TD is a com- 
bination of Monte Carlo and dynamic programming (DP) ideas. TD methods can 
learn directly from raw experience without a model. TD methods learn based on 
estimates, "they learn a guess from a guess" also called boostrapping. Imagine 
updating Fridays weather forecast made on Monday when it is Wednesday and a 
much more accurate forecast can be made. With Monte Carlo methods one must 
wait until the end of an episode, because only then is the return known, whereas 
with TD methods one need wait only one timestep. In Monte Carlo methods in 
which experimental actions are taken, the learning is slowed down significantly. 
This is not such a big problem in TD methods because they learn after every action. 
Even though TD methods learn from immediate actions they still converge. It is still 
not clear whether Monte Carlo or TD methods converge faster but in practice TD 
methods usually converge faster [4]. 

 
3.3.2 RL approaches 

There are numerous approaches used for RL, most can be categorized in the 
following approaches: 

 
1. Model-based learning, use a model to find actions that have maximum 

rewards. 
2. Value learning, estimating how good it is to take an action or reach a certain 

state. 
3. Policy gradient, deriving a policy directly. 

 
These approaches are not mutually exclusive but provide a way to classify the RL 
algorithms discussed in section 3.3.3. 

 
Model-based RL 

The idea of model-based RL is using a model and cost function to identify the 
optimal path of actions. A model predicts the next state after taking an action 
based on a model that is being optimized. Model-based RL agents are reflex- 
agents in which sensory input is processed and results in an action. Model-based 
RL has a strong competitive edge over other RL approaches because of its sample 
efficiency. The drawback however is that is is limited to the task it is designed for 
[35]. If physical simulation takes time, for example in robotics, model-based RL is a 
popular approach. 
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Value learning 
This model-free method uses experience to learn directly based on state/action 
values or policies without the need of a world model [14]. Model-free methods 
are not as efficient as the model-based methods, because information from the 
environment is being combined with previous beliefs about state values, rather 
than being used directly. Sometimes it is difficult to determine which actions are 
responsible for the final result. For example when the rules of a game are clear, 
the optimal strategy cannot easily be determined. Using the Monte Carlo method 
one can calculate the value of a certain action or episode. Using DP the policy 
can be improved [35]. 

Policy gradient 
As the name suggests, this approach focuses on the policy. Many human controls 
are very intuitive, without thorough planning finding the maximum return. Policy 
gradient works by making better rewards more likely to happen [4]. The reward 
function is defined as: 

 
J(θ ) = ∑ dπ (s)Vπ (s) = ∑ dπ (s) ∑ πθ (a|s)Qπ (s, a) 

s∈S s∈S a∈A 

dπ (s) is the stationary distribution of a MDP. Policy-based methods are very useful in 
continuous tasks. Using gradient ascent, one can move θ towards the direction 
suggested by the gradient ∇θ J(θ ) to find the best θ for πθ that results in the highest 
return [4]. In order to compute ∇θ J(θ ) the policy gradient theorem is used, which 
simplifies the gradient computation: 

 
∇θ J(θ ) = ∇θ ∑ Qπ (s, a)πθ (a|s) 

a∈A 
 

3.3.3 RL algorithms 
Because of the huge array of RL algorithms in the literature only the ones used in 
this thesis are discussed. 

Q-learning 
In 1989 Watkins introduced Q-learning, which is a form of model-free reinforce- 
ment learning. Model-free reinforcement learning means that after learning, it 
can be viewed as a method of asynchronous DP. Q-learning enabled agents to 
learn how to act optimally in a fixed MDP by  experiencing the consequences  
of actions without having to know the environment the agent is acting in. The 
learning process works by having an agent trying different actions in a particular 
state and evaluating the rewards and or penalties it receives, which is similar to the 
TD method. The rewards and penalties the agent receives can be infrequent and 
delayed. A long delayed reward can make it difficult to untangle the information 
and traceback what sequence of actions contributed to the reward [44]. 

 
The "Q" in Q-learning stands for the quality of an action taken in a given state. 
These states and their actions can be visualized in a so-called Q-table. An example 
of an initial Q-table with x states and 4 actions is depicted in Table 3.1 and after 
training in Table 3.2. 
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 a1 a2 a3 a4 

s0 0 0 0 0 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
sx 0 0 0 0 

Table 3.1: Initial Q-learning table 
 

The algorithm calculates the quality of an action and updates the value inside the 
Q-table. At each timestep t the agents selects an action at and observes reward 
rt and enters a new state st+1. The new Q-value is calculated using the following 
formula: 

Qnew(st , at ) ← (1 − α) ∗ Q(st , at )+ α ∗ (rt + γ ∗ Qmax(st+1,a)) 

The formula uses TD learning to look one step ahead by taking into account the 
maximum Q-value in the next state st+1 [44]. 

 
 a1 a2 a3 a4 

s0 0.1 0.3 6.4 -8.5 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 
sx -2.3 0.4 5 -3.1 

Table 3.2: Q-learning table after training 
 

Deep Q-learning (DQN) 
Q-learning is not very scalable and a different approach was needed to accom- 
modate large and possibly even infinite state/action spaces. This is because the 
Q-table stores every state/action pair, imagine an environment with 10.000 states 
and 1.000 actions per state, the Q-table needs to hold 10 million cells. Here Deep 
Q-learning (DQN) comes in, because we can use a neural network to approx- 
imate the quality of an action [27]. To take advantage of the way neural nets 
work the Q-values are calculated for a specific state (called the Q-network), not a 
state-action pair. This is visualized in Figure 3.15. 

 
DQN works by storing all past experiences of an agent in memory, determine the 
next action by the Q-network and by minimizing the loss function. The loss function 
in DQN is the mean squared error (MSE) of the TD part (rt + γ Qmax(st+1,a)) in the for- 
mula. Because Rt+1 is the actual reward, the network - through backpropagation - 
is going to converge. 

 
In order for agents to converge faster, a technique often used is experience replay. 
Which basically lets the agent reuse previous experiences in order to learn more 
from them. An important requirement for experience replay is that the laws of the 
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Figure 3.15: Differences between Q-table and the Q-network 
 

environment do not change that result in past experiences becoming irrelevant 
[25]. Because some experiences are more valuable than others, a way to improve 
DQN agents is by using prioritized experience replay. Whereas in experience replay 
experiences are uniformly sampled from from the experience memory, prioritized 
experience replay attempts to replay important transitions more frequently. Schaul 
et al. extended DQN with prioritized experience replay and outperformed the 
standard DQN in 41 out of 49 games tested [36]. 

 
Although its great performance, DQN suffers from overestimating the Q-values. 
This is because the calculation of Qnew consists of its own prediction. It is therefore 
chasing a moving target which makes it slower to converge and because the 
prediction is based on the Qmax - the highest predicted next Q-value - it is over- 
estimating. In an attempt to counter this problem, the Double Deep Q-learning 
algorithm (DDQN) was introduced by Van Hasselt et al. in 2016. The algorithm 
basically works with two neural networks, one for action selection and one for 
action evaluation. At an interval of n the evaluation NN is set equal to the ac- 
tion selection NN. Qmax is therefore not changing allowing for faster convergence. 
DDQN outperformed DQN on almost all 57 games tested by the authors [41]. 

 
Actor-Critic 
Whereas policy gradient methods only update at the end of an episode, Actor- 
Critic methods uses TD learning to update at each timestep. This prevents that 
both good and bad actions are averaged as good when the final result is good. 
As a consequence policy gradients need a lot of samples. Actor-critic combines 
both policy gradients as well as the value function to increase efficiency [4]. 

 
The policy structure is known as the actor, because it is used to select actions, 
and the estimated value function is known as the critic, because it criticizes the 
actions made by the actor. Learning is always on-policy: the critic must learn 

Q(s, a1) 

Q(s, a2) 

Q(s, a3) 

Q(s, a4) 

Q(s, a2) 
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about and critique whatever policy is currently being followed by the actor [4]. 
This is visualized in Figure 3.16. 

 
 

Figure 3.16: The Actor-Critic architecture [4] 
 

Actor-critic methods consist of two models, which may optionally share parame- 
ters: 

 
Critic updates the value function parameters w and depending on the algo- 
rithm it could be action-value Qw(a s) or state-value Vw(s). 
Actor updates the policy parameters θ for πθ (a s), in the direction suggested 
by the critic. 

 
Advantage Actor-Critic (A2C) 
The advantage Actor-Critic (A2C) is a synchronous version of its asynchronous 
counterpart and is based on the Actor-Critic approach. A2C is an attempt to 
reduce the noisy gradients and the high variance of the basic actor-critic method. 
The actor-critic algorithm works with an advantage instead of the value function: 

A(s, a) = Q(s, a) − V (s) 

The advantage is the Q-value for a particular state minus the average value of that 
state. This function therefore tells us the improvement compared to the average 
action taken at that state. If A(s, a) > 0 the gradient is pushed in that direction, 
opposite when A(s, a) < 0. The advantage function can be estimated using the TD 
error, denoted as: 

A(s, a) = r + γV (st) − V (s) 

A3C focuses on parallel training in which multiple actors are trained in parallel and 
get synced with global parameters after a number of timesteps [28]. Although 
being faster, because actors train independently on an "outdated" version of the 
global parameters the update is not as efficient compared to A2C. A2C also has 

• 
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shown to utilize GPUs more efficiently and work better with small batch sizes while 
achieving similar or better performance than A3C [28]. 

 
3.3.4 Challenges of RL 

Bus¸oniu et al. wrote a review that covers AI approaches to RL, from the viewpoint 
of the control engineer. The authors argue that stability is the main concern and 
that deep RL has been extremely promising in in recent years. This is because RL 
is particularly powerful in solving the function approximation and thus increasing 
accuracy [10]. 

 
There are numerous challenges in the field of RL from a neurobiology viewpoint 
according to Dayan et al. Model-free methods are less efficient than model-based 
methods but provide greater flexibility. RL agents focus on exploitation - using past 
experiences to optimize outcomes - however exploration could also be beneficial 
to find potential benefits that increase the long-term gain. This balancing act 
however is very difficult. The same holds for the degree in which new information 
should overwrite old information [14]. RL is not as stable as its supervised and 
unsupervised counterparts because it is presented with different experiences 
every time it is trained, its reproducibility therefore is low. Good practice therefore 
is to have fallbacks and check in place to verify the agent has learned the correct 
strategy [10]. 



 

 



 

4. Technology adoption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 

Information technology (IT) is considered to be an essential tool in improving the 
competitiveness of organizations. In order to utilize the potential benefits of IT it 
needs to be adopted [34]. The explosive rise in technologies revolutionized the way 
in which businesses operate and the pace at which these activities take place. 
These innovations continue to have a profound impact on business processes 
across the entire organization [26]. 

 

4.1 Adoption models 
In this section numerous adoption models are discussed that can be considered 
the foundation of the technology adoption field. 

 
4.1.1 Technology Acceptance Model (TAM) 

In 1967 Ajzen and Fishbein introduced the Theory of Reasoned Action (TRA) based 
on the theory that a person’s behaviour is a function of his behavioural intention 
[2]. TRA suggests that stronger intentions lead to increased effort to perform the 
behaviour, which increases the likelihood for the behaviour to be performed. Tech- 
nology adoption is concerned with the action of using technology and which 
elements influence this usage. Information systems can only improve organizational 
performance if used, hence the importance of a technology acceptance model. 
TRA is general and not designed to apply only to computer usage behaviour, 
therefore Davis et al. proposed a model tailored to computer usage. found that 
resistance of these systems by managers and professionals is a big problem. The 
authors aimed at predicting people’s acceptance of computers from a measure 
of intentions, therefore building on the theoretical basis of TRA. The intentions 
considered were attitudes, subjective norms, perceived usefulness and perceived 
ease of use. This resulted in the technology acceptance model (TAM) visualized 
in Figure 4.1 [12]. A comparison was made on the two theoretical models and 
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resulted in the identification of a more powerful causal structure in predicting and 
explaining user behaviour [13]. 

 
 
 

 
 

Figure 4.1: Technology Acceptance Model [12, 13] 
 

In 1991 Moore et al. saw that in the technology adoption field there were a lot of 
mixed and inconclusive outcomes. The authors considered the various perceptions 
an individual may have towards an IT innovation [29]. Karahanna et al. conducted 
a study to find out whether or not pre-adoption and post-adoption beliefs are 
different. The authors also provide preliminary evidence suggesting that these are 
indeed not the same [21]. 

 
4.1.2 Diffusion of Innovations (DOI) 

Another angle at explaining, how, why and at what rate new ideas and technology 
spread Rogers introduced the Diffusion of Innovations theory (DOI) [33]. Diffusion is 
the process by which an innovation is communicated through certain channels 
over time among the members of a social system. Diffusion is a kind of social 
change, a process in which the structure and function of a social system changes. 
When new ideas are invented, diffused, and are adopted or rejected, leading 
to certain consequences, social change occurs. Diffusion can be both planned 
and spontaneous but is often a combination of the two. Rogers distinguishes two 
types of diffusion systems, centralized and decentralized. When a small number of 
officials decide when and how to diffuse an innovation as well as to evaluate it, 
the diffusion system is considered to be centralized. When potential adopters are 
solely responsible for the diffusion of an innovation the system is considered to be 
decentralized [33]. 

 
There are four elements in the DOI, the first being the innovation itself which is "an 
idea, practice, or object that is perceived as new by an individual or other unit 
of adoption". New does not imply new knowledge, someone may have known 
about an innovation for some time but stills needs to develop an attitude towards 
it and potentially adopt it. The characteristics as perceived by the members of a 
social system are: 

 
1. Relative advantage, the degree to which an innovation is perceived to be 

better. 
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2. Compatibility, the degree to which an innovation is consistent with existing 
values, the past and needs. 

3. Complexity, the degree to which an innovation is perceived to be difficult. 
4. Trailability, the degree to which an innovation may be experimented with on 

a limited basis. 
5. Observability, the degree to which the result of the innovation is visible to 

others. 
 
 

The second element are the communication channels, which are the means by 
which the messages get from one individual to another. The information-exchange 
relationship between the individuals determine whether and to what extent the 
source will transmit the innovation to the receiver. Examples of channels are Social 
Media for rapidly inform a big audience or a face-to-face exchange on an inter- 
personal level. Most individuals make innovation adoption decisions based mainly 
upon subjective evaluation, instead of a scientific evaluation. Primarily the very 
first adopters also use a scientific approach to evaluate an innovation. The transfer 
of an idea between individuals occur more frequently when they are alike, the 
degree of homophily. One of the most distinctive problems in the communication 
of innovations is that individuals are heterophilous. For example some people are 
more technically competent than others, often leading to ineffective communi- 
cation. However, without some degree of heterophily no diffusion can occur, as 
there is no new information to exchange. 

 
 
 

 
Figure 4.2: Diffusion of Innovations (DOI) [33] 

 
Time is the third element 
of the diffusion process, of- 
ten measured in how long 
it takes for a particular inno- 
vation to reach a certain 
amount of adopters. The 
DOI is visualized in Figure 
4.2. 

 
The final element of the 
DOI are the members of a 
social system, which is de- 
fined by Rogers et al. as  
"a set of interrelated units 
that are engaged in joint 
problem solving to accom- 
plish a common goal". Dif- 
fusion occurs within a so- 
cial system and the struc- 
ture of the system consti- 

tutes a boundary in which an innovation diffuses. The structure allows one to 
predict behaviour to a certain degree and thus decreasing uncertainty [33]. 
Damanpour et al. used a sample of 1200 public organizations in the United States 
and found that organizational characteristics and top managers’ attitudes toward 
an innovation have a strong influence [11]. 
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Figure 4.3: Unified Theory of Acceptance and Use of Technology (UTAUT) [42] 
 
 

4.1.3 Unified Theory of Acceptance and Use of Technology (UTAUT) 

TAM has been extensively studied and expanded but the most influential update 
was the Unified Theory of Acceptance and Use of Technology (UTAUT model con- 
sidered next. In 2003, there was already a huge array of information technology 
acceptance models and Venkatesh et al. aimed at creating an unified view of 
those models [42]. 

 
The authors compared the following eight models; TRA, TAM, the motivational 
model, the theory of planned behaviour (TPB), a combination of TAM and TPB, 
the model of PC utilization, DOI and the social cognitive theory. The models were 
reviewed over a period of six months at four organizations in which their predictive 
power was assessed. 

 
Venkatesh et al. formulated the Unified Theory of Acceptance and Use of Technol- 
ogy (UTAUT) which is visualized in Figure 4.3. 

 
4.1.4 Technology-Organization-Environment (TOE) 

The technology-organization-environment (TOE) framework was first mentioned 
in Torznatzky and Fleischer’s The Processes of Technological Innovation in 1990. 
Whereas the book describes the entire process of innovation, the focus will be on 
the adoption chapter from DePietro et al. [16]. Since the book was published it 
remains among the most prominent and widely used theories of innovation adop- 
tion in organizations. The framework consists of three elements, the technological 
context, the organizational context and the environmental context. The contexts 
influence technological innovation, as shown in Figure 4.4. 
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Figure 4.4: The technology-organization-environment (TOE) framework [16] 
 

4.2 Intelligence amplification 
In the core concept op AI, the 
machine mimics and replaces the 
cognitive abilities of the human 
brain. Dobrkovic et al. argue that 
there is a fundamental difference in 
the type of tasks intelligent agents 
excel at and the type of tasks hu- 
mans do well. This difference is vi- 
sualized in Figure 4.5. Dobrkovic et 
al. define intelligence amplification 
(IA) as "enhancing human decision 
making abilities through a symbi- 
otic relationship between a human 
and an intelligent agent". When im- 
plementing AI in business processes 
it can be very helpful to identify the 
type of task and whether or not an 
AI agent is the way forward [17]. 

 
 
 
 

Figure 4.5: Decision making according to problem 
complexity and workload [17] 

 

4.3 AI adoption in logistics 
Not every innovation can be considered equivalent, an over-simplification some- 
times made in the past [33]. This is especially true for AI because it has the potential 
to learn and develop intelligence that can imitate humans and solve complex 
problems. Whereas previous literature primarily focused on the adoption of tech- 
nologies, the specific determinants of AI adoption are easily overlooked. Mahroof 
therefore aimed at exploring the barriers and opportunities of AI adoption con- 
ducting a case study at the warehouse of a major food retailer. The focus of the 
research was to explore the AI readiness of a large retailer from a human-centric 
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perspective. Using semi-structured interviews and TOE as the conceptual basis, the 
opportunities and barriers of AI adoption in the warehouse were identified. TOE is 
often extended with ’perceived benefits’ which refers to the relative advantage 
that AI technology can provide to the organization. According to Mahroof, the 
TOE framework with the extension provides the ideal lenses for assessing AI readi- 
ness [26]. 

 
A part of the adoption is the potential to deliver the perceived benefits. Leung et 
al. used AI to support decision makers in generating wave picking sequences to 
handle e-commerce shipments. Considering that order picking is one of the most 
costly activities in a warehouse, efficient wave picking was crucial for reducing 
the costs. A pilot study at a logistic service provider (LSP) showed that the order 
processing efficiency was greatly enhanced [24]. 

 
Klumpp et al. presented a literature review on the development of AI applications 
and outlined potential risks to social sustainability of an artificial divide between 
employees and the organization. The conclusion is that in order to get a fully 
automated supply chain there needs to be sufficient attention for the human 
interaction factor [23]. 

 
"In summary, the future competitiveness and logistics performance will significantly 
depend on the described factors regarding human work motivation as well as 
human–machine cooperation and acceptance." [23] 

 
 

4.4 AI in practice 
DHL and IBM have jointly written a report on AI in logistics in which the impact on 
logistical organizations is assessed, as well as best practices from other industries 
that can be applied to logistics [6]. Accenture wrote a report on AI maturity and 
models for success [1]. 

 
It is not a simple task to shift current logistics operating models to models which 
incorporate AI. Because of the abundance of machine learning methodologies it 
is difficult to find the right one for the problem at hand. DHL and IBM created an 
overview to aid the search which is visualized in Figure 4.6. 

 
It is useful to identify what business problems could be solved by, and demands AI. 
When a business problem that can be improved by AI is identified, the next step 
is to cautiously assess the potential value drivers such as cost reduction and an 
improved customer experience. Before commencing with the implementation 
the available and required data has to be considered as well as how clean it is, 
how often it is collected and how it can be accessed. Depending on the project 
time span and the AI skills available in the organization it may be better to start a 
one-off project instead of a long-term initiative that requires changes in the core 
of the organization. When AI skills are lacking within an organization, it could be 
necessary to outsource projects [6]. 

 
In their report DHL and IBM also identify two types of AI projects, cost reduction and 
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Figure 4.6: Machine learning taxonomies [6] 

 
new value creation. For cost reduction projects they provide a framework which 
can help in deciding whether a project is a classical analytics project, machine 
learning project or an AI + human project. The cost reduction decision tree for AI 
projects can be found in Figure 4.7 [6]. 

 
 

 

Figure 4.7: Decision tree for cost reduction [6] 
 

The culture of an organization is also a big factor in the adoption of AI. The 
adoption and its required cultural shift could be more difficult than the technical 
implementation challenges. Job loss is often the biggest fear and having leaders 
in an organization that are supportive of new technologies and who are able to 
bring change is crucial for success [1, 6]. 

 
An agile approach in an organization enables employees to learn and evolve 
with new AI systems. Data is important and the initial quality of the AI agents 
can be lower than currently however over time the agent has the potential to 
surpass it. The question that arises is what quality standard do we accept for it be 
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Figure 4.8: Decision tree for insight generation [6] 
 

economically viable [6]. 
 

When an approach is identified the next step is the actual implementation. There 
are numerous ways to carry out the implementation, some recommendations from 
DHL and IBM are: 

 
Design thinking to reveal unmet needs of users. 
Traditional IT project management to scope the system(s). 
AI-specific methodologies for creating and training the models. 
Agile methodologies for continuous development and improvement after 
deployment. 

 
According to Accenture nearly 20% of leaders identify resistance from employees 
due to concerns about job security [1]. 

 
 

4.5 Maturity models 
When organizations want to know how far they are in terms of becoming an "AI-first" 
organization, an assessment is often made using a maturity model. Numerous 
models and assessment techniques exist online, some of them are discussed in 
more detail here. 

 
In their report Accenture describes emerging best practices regarding the imple- 
mentation of AI. When considering the more successful AI deployments the most 
contributing factors are: 

 
Reviewing AI output on a weekly basis. 
Making sure there are processes in place to override questionable results 
from AI agents. 
Anticipation that more than 25% of processes being improved by AI in the 
next three years. 

• Conducting ethics training. 

• 
• 
• 
• 

• 
• 

• 
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Figure 4.9: Level of AI competency [31] 

 
• Connecting analytics to AI. 
• Having faith in AI agents. 

Based on the survey of Accenture there are no clear guidelines for success in AI, 
but that it is crucial for successfully managing the powerful potential of AI [1]. 

 
Other maturity models can be found online such as the model of Pringle et al. as 
shown in Figure 4.9 [31]. The model was written for communication and media 
service providers but the idea could be applied to the logistics industry. The au- 
thors identified the core pillars and assessment criteria needed for an AI maturity 
model, including strategy, organization, data, technology and operations. These 
core pillars contain a detailed set of criteria and associated questions designed to 
assess the AI maturity [31]. 

 
Whereas there are numerous maturity models and AI readiness scans to be found 
on the world wide web, the number of models tailored towards the logistic industry 
remains limited. Organizations have no clue whether or not a model is suited for 
their industry. The models are often very high level, useful for setting and managing 
goals, however they lack a clear method when starting to implement AI and 
identify potential low-hanging fruit. 



 

 



 

5. Exploratory research 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 

The literature review on reinforcement learning and technology adoption is impor- 
tant when creating a model, however having actual implementation experience 
is even more valuable. As Benjamin Franklin once said: "Well done, is better than 
well said". In this research an attempt will be made to implement reinforcement 
learning at the LS department. First the background is discussed in section 5.1 to 
get an idea about the supply chain and the department, as well as its readiness 
towards AI. Multiple business processes are identified in section 5.3 and for each 
the applicability of RL is discussed. Finally the actual implementation is discussed 
in terms of the organizational and technological aspects. This exploratory work 
helps in establishing priorities, establish definitions and together with the literature 
review forms the starting point for the treatment design. 

 
5.1 Background 

In this section the most important stakeholders within the supply chain are dis- 
cussed. 

 
5.1.1 Replenishment 

This department is responsible for ensuring product availability in the stores by 
planning and controlling the flow of goods. Flow managers make sure that the 
supply chain operates smoothly. They make agreements with manufacturers, 
suppliers, logistic organizations and internal departments to reach this goal. The 
planners within the replenishment department constantly monitor the automatic 
orders and act when needed. 

 
5.1.2 Distribution centers 

Albert Heijn has several distribution centers (DCs) across the Netherlands. The 
national DC (LDC) is located in Geldermalsen and contains around 12 thou- 
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sand products such as slow-moving products, tobacco, dangerous goods and 
medicines. There are also four regional DCs (RDCs) which contain close to 4 
thousand products which include fast-moving products including cooled products. 
There are also six DCs outsourced to logistic service providers (LSP). The remainder 
of product types such as (slow-moving) cooled products, flowers, non-food and 
frozen products are managed by those LSPs. The overview of DCs in the supply 
chain of Albert Heijn can be found in Table 5.1. 

 
 

Type Abbreviation Operator Location 
National DC LDC Albert Heijn Geldermalsen 
Regional DC DCP  Pijnacker 

 DCT  Tilburg 
 DCZ  Zaandam 
 DCO  Zwolle 
Shared Fresh Center SFC XPO Logistics Nieuwegein 
XPO Oss (non-food)   Oss 
Frozen products   Hoogeveen 

Shared warehouse cheese SWK Bakker Logistiek Zeewolde 
Returns  Kuenhe + Nagel Pijnacker 

   Tilburg 
   Zaandam 
   Zwolle 

Flowers  GIST Bleiswijk 

Table 5.1: Locations and types of DCs of Albert Heijn 
 
 

5.1.3 Logistics Support 

The logistics support (LS) department of Albert Heijn is responsible for ensuring that 
the processes in the distribution centers run smoothly. The main responsibilities of 
the team, among other things, are: 

1. Making substantiated decisions about where to place certain types of racks 
within a warehouse. 

2. Slotting products within the warehouse for a smooth picking process. 
3. The distribution of articles to stores in a way that is beneficial for both stores 

and DCs. 
4. Ordering different types of load carriers to make sure there are no bottle- 

necks. 
5. Ensure that pick orders are in the WMS in time. 
6. Monitoring forecasts for the coming days/weeks or even months to make sure 

the DCs are prepared. 

 
5.1.4 Transport 

The department of transport is responsible for facilitating the transportation of 
products to distribution centers and shops. 
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5.1.5 Stores 
The stores are responsible for selling products to the consumers of Albert Heijn. The 
shops make sure that products are in the shelves in time. 

 
5.2 AI maturity at the department 

The LS department has yet to start with artificial intelligence and therefore could 
be ranked "AI novice" in the maturity model of Pringle et al. [31]. Within other 
departments of Albert Heijn AI has already been successfully implemented such as 
personal discounts based on your personal buying behaviour and dynamic pricing 
to reduce wasting products that almost reached their best before date. In order to 
increase the awareness within the department and to be able to generate ideas 
suitable for AI and RL a team day was organized around this theme. To build upon 
that day a series of presentations was held to show the potential of RL and how 
the department could adopt this technology. 

 
5.2.1 Team day at the university 

On Friday the 24th of May the entire logistics support department of Albert Heijn 
went to the University of Twente for its annual team day. The team day is about 
learning something having some fun along the way. This time it was about inspiring 
colleagues into the world of artificial intelligence and other innovations such as 
drones. It is a great way to reach the entire audience including slotters, planners, 
managers and IT experts to get the dialog about AI started. 

 
Sebastian Piest gave a presentation about what artificial intelligence is and its 
possibilities. This gave the team members a first impression of the technology and 
its capabilities. After the presentation the team members were first asked about 
potential uses of AI in the warehouses and logistics of Albert Heijn, this was done 
individually. After that the employees split into different groups to discuss their ideas 
and to also think about the consequences that AI could have on the department 
and the employees in particular. 

 
Interesting questions that arose were: 

Where is the line between AI and an advanced algorithm? 
As the middle-man between transport and replenishment, with an AI agent 
making the decisions, are we still able to substantiate its decisions? 
If we rely on an AI agent to make important decisions, how can we make 
sure we are able to intervene when needed? 
Will AI replace or change my job? 
How do we get the knowledge to an adequate level to be able to maintain 
and improve the agents? 

 
This event was an opportunity to identify opportunities and concerns of the differ- 
ent stakeholders at the logistics support department. The questions formulated 
above could hinder the adoption and tackling those is extremely important for the 
adoption of AI. The ideas that the members came up with for the logistics support 
department were: 

 
• Automated slotting 

• 
• 

• 

• 
• 
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• 

 
 

 

• Indoor real-time positioning with dynamic orders 
• Smart voice-picking using conversations 
• Automatic stacking quality assessment 
• AGV transito 
• Automatic inbound classification 
• Using drones for safety and automatically checking the inventory levels 
• Store demand forecast automatic outlier detection 
• Automatic dock assignment, a smart control tower 
• Creating a virtual distribution center, where realistic simulations can be run 

The ideas were discussed in the groups and this automatically led to some addi- 
tional concerns: 

 
• Do we want to be an ‘owner’ of an intelligent agent? 
• Do we still go to the sites if decisions are made by an agent? 
• What is the right moment to get into AI? Developments are going fast. 

5.2.2 Demonstration agent 
During a weekly meeting on the Friday afternoon the entire department is brought 
up-to-speed with the newest developments within the supply chain of Albert Heijn. 
In order to answer some of the concerns of team members and bring the AI 
discussion closer to the department I decided to give a demonstration of a simple 
reinforcement learning agent that was able to solve a small slotting puzzle. The 
demonstration was  based on a Q-learning algorithm which is not scalable but  
it helped the team members to look beyond the state-of-the-art examples of AI 
and closer towards their own work. Because the department knew the potential 
applications of RL a suitable business process could be identified. 

 
5.3 Identifying a suitable business process 

The operational staff at the Logistics Department is most likely to perform repetitive 
and labour-intensive activities. Therefore a selection of those employees were 
asked about activities they perform often that could be suitable for reinforcement 
learning. Based on those talks three important business processes that could be 
suitable for RL in the Logistics Support department of Albert Heijn were identified: 

 
1. The estimation of order pickers needed for production per shift. 
2. The slotting process in the warehouses. 
3. The identification of optimal locations for racks in a warehouse. 

Each process was then ranked based on the following criteria: 

How crucial is this process for the operation? 
– Is there a fallback in case the agent does not perform? 

How labour-intensive is the task in daily operations? 
To what extent does the task environment fit a RL approach? 

– Can the task environment be simulated? 
– How big is the state-action space? 
– Are the rewards sparse, immediate or somewhere in between? 

• 
• 
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– How effective should the agent be? 
What are the potential gains in terms of effectiveness given the current situa- 
tion? 

 
The criteria are based on the strengths and weaknesses of reinforcement learn- 
ing. A reinforced learning agent is not as stable as its super- and unsupervised 
counterparts and therefore it is valuable to assess the importance of the process. 
If there is a fallback in place this could alleviate this problem to some extent. If a 
task is very labour-intensive an agent could save the employees a lot of time and 
thus costs making the potential rewards worth the risk. The task environment says 
something about the fit with reinforcement learning as well as the complexity of 
the problem the agent attempts to solve. In the next sections each case will be 
evaluated based on these criteria. 

 
5.3.1 Estimating the number of order pickers per shift 

Order picking at the DCs of Albert Heijn requires proper planning to make sure the 
orders are ready for transport in time to (a regional DC or) the supermarkets across 
the country. Because this operation runs 24 hours a day, order pickers can also 
work during the night. A RL agent could decide the most optimal ratio of day night 
workers. This is important because having to many order pickers at any time leads 
to congestion in the warehouse and thus to lower productivity, working during 
the night however is more expensive. This business process however is difficult to 
simulate as the penalties (such as congestion) can be the result of various external 
factors. The state-actions space depends hugely on what variables one takes into 
account, but selecting those variables is not straightforward. Making this planning 
is not very time-consuming as the operational staff already has tools that ease the 
decision-making process. This problem is not particularly suited for RL, a supervised 
learning agent could also be used to predict the productivity based on historical 
data. 

 
5.3.2 Optimal rack locations 

There are numerous location types available in the warehouses of Albert Heijn, such 
as regular pallet locations and flow racks. Flow racks consists of multiple smaller 
locations that are great for products that are not sold very often, this reduces the 
required area that the product occupies and therefore the distance the order 
pickers have to travel to complete their order. Deciding where which type of 
location goes is a complex task, having to many flow racks at the beginning of 
the circuit limits the number of products allowed in those locations. The major 
downside of this business process is its occurrence frequency. Only when a (part of 
a) DC is remodelled, the rack locations are identified and therefore the agent is 
needed. Similar to estimating the order pickers per shift, this problem is difficult to 
simulate. The layout of the DC needs to be combined with the products that have 
to be allocated and this is based an a lot of assumptions that could alter the results. 
The actual results of the agent are also difficult to measure, as the performance of 
order pickers after a remodeling does take some time. Order pickers need to get 
accustomed to the new layout and tuning and improving the agent would take a 
lot of time. Although an RL agent could be used for this problem, it is unsuitable for 
an initial implementation that requires a lot of iterations. 

• 
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5.3.3 Slotting 
Slotting is the process of organizing inventory in a warehouse or DC. It is an impor- 
tant tool to create an effective warehouse by maximizing the use of available 
space within a warehouse by more efficient picking and storage. There is a huge 
array of strategies for product allocation but those strategies focus on heuristics 
but maybe an RL agent can achieve similar results even being much simpler. The 
product allocation problem can easily be scaled down and the Logistics Support 
department already has a good idea about what factors make a "good" slotting, 
this makes it suitable for an approach that starts small and to slowly scales up from 
there. Slotting is also very labour-intensive and often comes down to solving a 
large number of small tasks such as adjusting the number of locations - also called 
facings - for a product. This makes the potential gains much larger. Compared to 
the other two problems and according to the criteria defined at the beginning 
of this section, the product allocation problem was picked for an implementation 
attempt. 

 
5.4 Automating the slotting process 

Before commencing with the technical implementation the task environment 
needs to be assessed. Based on the actual slotting at Albert Heijn the environ- 
ment has been made and multiple scenarios, action sets and credit assignment 
strategies have been formulated in order to test the agent. 

 
5.4.1 Task environment 

To test whether an agent is able to solve real-world logistical challenges multiple 
realistic scenarios are considered. The following scenarios are tested, visualized in 
Figure 5.1: 

 
Scenario A The most basic scenario with 10 pallet locations with locations on 

two sides of the path. 
 

Scenario B This scenario contains 20 locations in order to assess the impact 
of having a DC that is double the size in terms of locations and 
products to slot. 

 
Scenario C This scenario contains 42 locations and also contains a flow rack 

location in which slow-moving products can be slotted efficiently. 
Flow racks are only accessible from one side. 

 
The layout of the task environment can also be visualized in a tabular view, ordered 
on the pick sequence. This is a simplified version of the layout the slotters use in 
their work. The tabular view can be found in Table 5.2. The last two columns are 
used to monitor which products were slotted initially and currently. 

 
With the environment in place, one can consider the actions the agent can take 
(also denoted as S). In order to assess whether less possible actions result in faster 
training and better results, three types of agents will be considered. The agent 
types are: 
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A B C 

1 

3 

5 

7 

9 

 

2 19  20 21 

4 17  18 23 

6 15  16 25 

8 13  14 27 

10 11  12 37 

 

22 42 

24 41 

26 40 

28 - 36 

38 39 

 

Sequential The agent sequentially makes decisions. When a decision has 
been made for every location the agent is finished. The num- 
ber of possible actions is equal to the number of products. 

 
Partially autonomous The agent makes decisions for every product and every loca- 

tion. When a decision for every location has been made, the 
agent is finished. The number of actions are the number of 
products times the number of locations. 

 
Fully autonomous The agent makes decisions for every product and every loca- 

tion and it decides when it is finished. The number of actions 
are the number of products times the number of locations 
plus one finished action. 

 
 
 
 
 
 

 
 
 

Pallet location Flow rack 
 

Figure 5.1: The task environment and the scenarios 
 
 

Location Next location Flow rack Slotted initially* Slotted* 
1 3 False - Coffee 
2 4 False - - 
3 5 False - Cookies 
4 6 False - Soup 
5 7 False - - 
6 8 False - Soup 
7 9 False - - 
8 10 False - Rice 
9 - False - Toilet paper 
10 - False - Toilet paper 

Table 5.2: An example of the locations for scenario A 
 

For every scenario a list of products is available that need to be slotted. The 
product details include variables such as how many products fit in a pallet location 
and how many in a flow rack. The store demand forecast (SDF) of the next three 
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days is also taken into account so the agent can make decisions that also take into 
account the days to come. The products that need to be slotted are visualized in 
Table 5.3. 

 
 
 
 
 
 
 
 
 

Cookies 220 20 1500 2200 2200 D 14000 
Soup 180 12 700 500 600 C 35000 
Beer 40 - 800 800 1000 A 10000 
Toilet paper 24 - 250 200 300 C 40000 
Rice 120 20 700 700 550 D 60000 
Coffee 150 15 1000 800 900 B 12000 

Table 5.3: An example of the products for scenario A 
 
 

5.4.2 Reward function 
Designing a reward function is one of the most difficult tasks within RL. Both primary 
as well as secondary goals should be taken into account when designing the 
function because an agent will not find the optimal policy. The reward function is 
the sum of rewards minus the penalties. 

 
Rewards 
The following rewards can be scored by the agent: 

 
Product slotted When the agent should always try to slot all products, be- 

cause otherwise the product cannot be delivered to the 
stores around the country. 

 
Free locations  Locations are limited and new products are coming to the 

warehouse each day, therefore it is important to keep as 
many free locations as possible so these can be slotted with 
minimal movements. 

 
Matching SDF When the agent reserves sufficient locations for the products 

to be slotted it gets a higher score. When there are also 
enough locations for the next two days additional points 
are scored. This way the agent creates an slotting that can 
requires minimal movements at the next iteration. The number 
of locations is determined by the estimated store demand 
forecast (SDF), the location type and the maximum number 
of replenishments per day. For pallet locations this is set at 7 
times a day while for flow racks this is only 2 times a day. 
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Penalties 

The rewards are complemented by penalties in order to make sure that an optimal 
slotting also receives the optimal score. The penalties used are: 

 
Movement Every location with a different product means a move- 

ment, which takes time and therefore should be mini- 
mized as much as possible. 

 
Facings not adjacent Due to limitations in the WMS of Albert Heijn, facing lo- 

cations can only be adjacent. A penalty is therefore 
imposed when the agent attempts to slot products on 
two separate locations. 

 
Stacking group violation Stacking groups are important to ensure containers are 

stacked correctly without damaging goods. The stacking 
groups make sure that heavy beer crates are on the bot- 
tom of the containers whereas light products are used 
on top. 

 
Stacking class violation The stacking class is a number that should be ascending 

when following the pick sequence to ensure products of 
similar dimensions are slotted near each other for easier 
and more stable stacking by the order pickers. 

 

Albert Heijn recently implemented a special load 
carrier algorithm (LCA) to increase the load factor 
on its containers. Where previously the maximum 
weight of containers was easily reached with heavy 
bottles of soda, resulting in containers that were not 
full, the LCA now smartly distributes the weight over 
multiple load carriers. The stacking groups were 
implemented for the LCA and the slotting needs 
to make sure these groups are in a specific order 
while also take into account the stacking class. The 
stacking class is a number that is build up by multiple 
factors like weight, dimensions and whether the box 
is fragile or not. With a correct slotting, the resulting 
containers look like the one depicted in Figure 5.2. 
The stacking groups are "A", "B", "C" and "D". Beer 
crates are "A", "B" are black crates that have famil- 
iar dimensions and can easily be stacked on top 
of beer crates. "C" are the cover groups which are 
boxes that create a nice cover from which every- 
thing else - stacking group "D" - can be stacked. "A", 
"B" and "C" products all need to be slotted adjacent 

 
 

Figure 5.2: Sample container 
with correct stacking group and 
class 

without an interruption in alphabetical order. "D" can be slotted everywhere in 
between as long as it does not interrupt a sequence of the other groups. An 
example of a correct slotting looks like: [A, A, B, B, D, D, C, D], incorrect is: [A, A, D, 
D, A, A, B, C] because stacking group "A" is not slotted adjacent. 
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Verifying the reward function 
To verify whether this combination of rewards and penalties yield the desired result 
the score is verified. For each scenario an optimal slotting was made that has 
no penalties, maximum rewards, maximum free locations and a limited number 
of movements. For scenario A, the example slotting in Table 5.2 will result in the 
scoreboard found in Figure 5.4. 

 
Reward Score Occurrences Total 
Product slotted +15 5 75 
Free locations +2 3 6 
Matching SDF (+1) +15 5 75 
Matching SDF (+2) +10 4 40 
Matching SDF (+3) +5 4 20 
Free locations +2 3 6 
Movement -1 7 -7 
Facings not adjacent -15 1 -15 
Stacking group violation -15 0 0 
Stacking class violation -10 0 0 

   200 

Table 5.4: The scoreboard for the slotting as shown in Table 5.2 
 
 

Credit assignment 
The credit assignment problem is one of the most difficult problems in the RL field. 
Primarily because it is very difficult to assess the value of an action.  Because  
the slotting process can have both immediate as well as sparse rewards, both 
strategies will be used. This will also be valuable with the different types of agents, 
e.g. whether the fully autonomous agent will learn whether or not to decide when 
it is finished. The credit assignment strategies are: 

 
Immediate The agent gets an immediate reward after every action and noth- 

ing when finished. 
 

Sparse  The agent receives no immediate rewards but only the full reward 
when finished. 

 
 

5.4.3 Implementation 
First the state is discussed and how it is passed to the agent. Finally an algorithm 
was selected, the agent is discussed and how its (hyper)parameters were tuned. 

 
Passing the state to the agent 
Based on the state, the agent should take actions. When for example the task is 
identifying handwritten digits in an image the agent is served with a low resolution 
grayscale multidimensional array with the intensities of white as a float between 0 
and 1. This array is flattened, which just transforms this array [[0.6, 0.2, 0.3], [0.1, 0.2, 
0.3]] to [0.6, 0.2, 0.3, 0.1, 0.2, 0.3]. Each value in the flattened array will be the input 
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layer on which the network will learn. 
 

For the slotting we want a similar flattened array that is able to describe exactly 
what the current slotting looks like. For this "one hot encoding" will be used. Every 
product that can be slotted including an empty spot will be encoded as an array 
of the same length containing a single 1. This is done for every location in the 
warehouse, resulting in similar multidimensional array as with the digits example. An 
example of one hot encoding can be found in Table 5.5. When one hot encoding 
the following state: [bread, soup, -, -] the following multidimensional array will be 
created: [[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 1]]. When flattened this can be 
used as input for the neural network and every possible state can be described. 

 
Product One hot encoded 

 

- [0, 0, 0, 1] 
Soup [0, 0, 1, 0] 
Deodorant [0, 1, 0, 0] 
Bread [1, 0, 0, 0] 

Table 5.5: One hot encoding on 3 products. 
 
 

Selecting an algorithm 
The first attempt for automating the slotting was made with Q-learning. This algo- 
rithm, developed by Watkins in 1989 works by assessing the quality of an action [44]. 
The Q-learning algorithm performed well in the small scenario that it was able to 
hold in memory. Q-learning is very precise but therefore not scalable beyond small 
task environments. The next step was to introduce neural networks and sacrifice 
precision for scalability. 

 
With DQN the task environment could grow larger to around 20 locations without 
sacrificing precision. But there was another problem that with larger task environ- 
ments after extensive training the agent started to overestimate the Q-values. This 
was especially difficult for the fully autonomous agents which never learned to 
finish the slotting because its belief of always having great alternatives. The over- 
estimation for the other types agents did not suffer in terms of its policy, however 
it made validation particularly difficult. After long training the Q-values were no 
longer realistic and optimizations made were greatly influenced by the number of 
episodes the agents were trained for. 

 
To counter the effect of overestimation of Q-values the Double DQN (DDQN) was 
implemented. Because DQN is chasing a moving target, the DDQN resulted in 
lower estimations but its results remained volatile, especially when scaling up to- 
wards larger task environments such as scenario B and C. 

 
Beyond scenario A and B, the DDQN was not able to reach the optimal slotting 
with a reasonable amount of training. Therefore the Advantage Actor-Critic (A2C) 
algorithm was implemented. A2C outperformed DDQN in terms of training time 
and accuracy. Because this implementation showed the most potential, it has 
been used for the remainder of the implementation. 
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A2C agent design 
The neural network structure of the A2C agent can be found in Figure 5.3. The input 
layer, the body and the output layer can all be adjusted to fit the environment. 
When working with imagery data it is possible there are one or more convolutional 
layers before the input layer. The neural network calculates multiple values, the 
Q-values for an action given state Q(s, a1) and the value of a certain state V (s). The 
actor uses the Q-values to decide which action to take whereas the critic evalu- 
ates the current state. Combined the agent is able to calculate its advantage. If 
the actual reward turns out to be better or worse than expected, the weights of 
the network are adjusted accordingly. The agent has been implemented using 
Python and Tensorflow 2 and can be found in appendix D. 

 

 
Q(s, a1) 

 
Q(s, a2) 

 
Q(s, a3) 

 
 
 

V(s) 

Actor 
 
 
 
 
 
 
 

Critic 
 
 
 
 

Figure 5.3: The neural network of A2C 
 

Tuning the (hyper)parameters 
Multiple (hyper)parameters can be tuned in the model the agent uses to increase 
its performance. For the A2C algorithm an attempt is made to tune the parameters 
and increase the performance compared to a baseline. In order to see the impact 
on performance when the task environment doubles in size and complexity all 
tests are ran on both scenario A and B. Every test is ran at least three times for 
each scenario to reduce the problem of reproducibility. 

 
First a comparison between the different types of agents was made to see how 
these performed. The semi and fully autonomous agents were not always able to 
perform well and in some attempts the agents never completed the slotting when 
tested. Both agents sometimes got stuck trying to perform an action that had 
no effect in the environment, for example placing a product on a location that 
was already slotted with that particular product, this leads to a loop which takes 
a lot of time to get out of. The semi autonomous agent was required to make a 
product allocation decision for each location, because the agent has no prior 
knowledge it took a lot of updates to finish the same amount of episodes as the 
sequential agent. A similar behaviour was found for the fully autonomous agent 
as it has to decide when it has completed allocating products. For the analysis 

Input Body 
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the sequential agent will be used as it has proven to be most stable and has a 
fixed number of actions that is required to complete an episode, which eases 
the comparison on tuning various (hyper)parameters. For comparison, the results 
of the semi autonomous agent can be found in Figure 5.4, the fully autonomous 
agent in Figure 5.5 and for the sequential agent in Figure 5.8. 

 
 
 

Figure 5.4: Results for semi autonomous agent for scenario A 

 
Figure 5.5: Results for fully autonomous agent for scenario A 

 
 

Having immediate or sparse rewards can also have impact on the performance 
of the agents to be trained. In general, having immediate results is beneficial for 
RL because it allows the agent to learn which actions have lead to the final result 
instead of evaluating all preceeding actions equally. The precondition is that the 
reward function is able to take future actions into account. To test which reward 
function works best for the product allocation problem, both reward functions 
were tested for scenario A and B. The results are depicted in Figure 5.6 and 5.7. In 
scenario A, the results are clearly in favor of immediate rewards in terms of rewards 
however a sparse reward function seems to be more stable during training. In 
scenario B the results are very similar, when increasing the task environment the 
difference between the reward functions was not significant. For the remainder 
of the analysis, the immediate reward function will be used. In the following para- 
graphs each (hyper)parameter is discussed. The default values used in the tests 
can be found in Table 5.6. 
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Figure 5.6: Results based on sparse and immediate rewards for scenario A 

Figure 5.7: Results based on sparse and immediate rewards for scenario B 
 
 
 
 
 

Parameter Default value 
Agent type Sequential 
Reward function Immediate 
Updates 2500 
Batch size 20 
Number of nodes 512 
Hidden layers 2 
Entropy 0.001 
Gamma 0.95 
Learning rate 0.0005 

Table 5.6: Default parameters for the A2C algorithm 
 
 

The results of the baseline tests for scenario A and B can be found in Figure 5.8 and 
5.9. The baseline for scenario A took twice as long as scenario B, which makes 
sense because the task environment is double the size. Each graph shown in this 
section the Y-axis is set so that reaching the upper value means the agent performs 
optimally, the lowest Y-value corresponds to the starting score. For scenario A the 
Y-axis of (-40, 255) was used and for scenario B (-90, 545) respectively. 
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Figure 5.8: Baseline results for scenario A 

Figure 5.9: Baseline results for scenario B 

 
Figure 5.10: Rewards with various batch sizes for scenario A 

Figure 5.11: Rewards with various batch sizes for scenario B 
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Deep neural networks improve by feeding them more data. When reducing the 
batch size, the network inside the agent is updated more frequently (with a higher 
number of updates), increasing the load on the graphics processing unit (GPU). 
Depending on the GPU capacity of the machine, a lower batch size could speed 
up learning. The goal is to find a batch size that leads to optimal learning that the 
GPU is able to handle. The batch sizes tested were 10, 20 and 40. In scenario A, 
found in Figure 5.10, both batch size 10 and 20 perform better than the largest 
batch size however batch size 10 reached the local optimum faster although being 
more volatile in the process. In scenario B, found in Figure 5.11, the difference in 
batch sizes is limited. The impact of larger batch sizes in a bigger environment are 
limited. 

 
Increasing the number of nodes and layers enables the agent to learn more com- 
plex problems but increases the likelihood of overfitting, making perfect decisions in 
a known state, but having no clue in a state seen for the first time. When the agent 
used 4 hidden layers the performance decreased both in scenario A and B. In 
scenario A having 0 or 2 layers made almost no difference in the final performance 
however having 2 layers looks more unstable, as can be found in Figure 5.12. The 
most stable learning also seems to be the case when the agent attempted to 
solve the product allocation problem in scenario B depicted in Figure 5.13. 

 
 

Figure 5.12: Rewards with 0, 2 and 4 hidden layers in scenario A 

 
Figure 5.13: Rewards with 0, 2 and 4 hidden layers in scenario B 

 
Apart from the number of layers, the number of nodes per layer can also be ad- 
justed. In order to assess whether more nodes per layer increases the performance 
a test with 256, 512 and 1024 nodes was performed on both scenario A and B. In 
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the smaller scenario A, having less nodes (256) made the learning more stable 
compared to having more nodes, see Figure 5.14. Shown in Figure 5.15, when 
the scenario gets larger the differences between having 256 or 1024 are lower 
compared to scenario A however having 256 and 512 nodes still outperformed 
having 1024 nodes per layer in scenario B. 

 
 
 
 
 
 

Figure 5.14: Rewards with 256, 512 and 1024 nodes per layer in scenario A 

 
Figure 5.15: Rewards with 256, 512 and 1024 nodes per layer in scenario B 

 
 
 
 

The learning rate in neural networks decide how much a the old value is overwrit- 
ten by the new value. Doubling the learning rate makes the agent "learn" twice as 
fast. The problem with having a large learning rate is that the agent could slowly 
forget important older experiences. Various learning rates were tested for scenario 
A in Figure 5.16 and scenario B in Figure 5.17. In scenario A having a larger learning 
rate made the agent learn fast sometimes but after 2500 episodes its average 
performance did no longer improve whereas the lower learning rate agents kept 
on improving. In scenario B the lowest learning rate performed best overall but 
the agent with a high learning rate learned faster in the first 1500 episodes before 
dropping back down again. 
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Figure 5.16: Rewards with various learning rates in scenario A 

Figure 5.17: Rewards with various learning rates in scenario B 

 
Figure 5.18: Rewards with various entropy values in scenario A 

Figure 5.19: Rewards with various entropy values in scenario B 
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Despite the fast convergence of the agent, it failed to reach the maximum score. 
The exploration of the agent might need to improve, here is where the entropy 
comes in. Entropy is an important aspect in the A2C algorithm, because it provides 
a bonus for when the agent explores. This bonus encourages the agent to take 
actions more unpredictably, and potentially discover another better solution. A 
low entropy value makes the agent stubborn and take actions it took before,    
a high entropy makes the agent try different actions. In scenario A the default 
entropy made the agent learn the most stable, comparable to a high entropy of 
0.1, see Figure 5.18. With the lowest entropy the agent learns in a similar fashion 
however there are some noticeable drops during training and after 2000 episodes 
the agent fails to keep up and learn something new. In scenario B, shown in Figure 
5.19, the differences are almost unnoticeable, this is largely because the agents 
are still learning about the environment even when always picking actions the 
agent took before. More episodes could eventually show similar results to scenario 
A. 

 
Gamma (γ) is used to discount future values. Getting a lower reward immediately 
could be more valuable than being uncertain a larger reward will be reached 
later on. This is were gamma comes in and tweaking it could lead to the agent 
making different decisions. For scenario A, found in Figure 5.20, a gamma of 1 
resulted in the highest rewards and the rewards dropped when gamma was lower. 
This can be explained due to the fact that future rewards in the product allocation 
problem do not change, there is not another agent changing the environment 
that makes it important to discount future values. In a larger scenario discounting 
is valuable as the agent is less certain about rewards it is going to get all the way 
at the end of the puzzle. In scenario B, depicted in Figure 5.21, a lower gamma is 
beneficial. Gamma is also more important for the fully-autonomous agents as it 
can overwrite its own actions, without a discount factor it could slot forever without 
making the decision to end the process. 
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Figure 5.20: Rewards with various gamma values in scenario A 

Figure 5.21: Rewards with various gamma values in scenario B 
 
 

Parameter Scenario A Scenario B Scenario C 
Agent type Sequential Sequential Sequential 
Reward function Immediate Immediate Immediate 
Updates 10000 20000 20000 
Batch size 10 20 42 
Number of nodes 256 512 1024 
Hidden layers 0 0 0 
Entropy 0.001 0.005 0.01 
Gamma 0.95 0.95 0.95 
Learning rate 0.0001 0.0005 0.001 

Table 5.7: Optimized (hyper)parameters used per scenario 
 

Based on the (hyper)parameter tuning performed for each scenario the default 
parameters have been identified. These parameters will be used in the experiment 
in the next section. The parameters can be found in Table 5.7. 

 
5.5 Intelligence amplification 

So far only the performance of the agent is considered, in this section the human 
performance is also taken into account. Intelligence amplification is the symbiotic 
relationship between an human and an intelligent system. The general idea is 
that humans excel at creative tasks whereas artificial agents excel at computa- 
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tionally intensive tasks [17]. This symbiotic relationship between the human and 
the agent could also be applicable to reinforcement learning. The aim of this 
section is therefore to find out to what extent a reinforcement learning agent can 
support the operational staff in allocating products in the warehouses of Albert 
Heijn. When the agent attempts to solve the slotting puzzle on its own it learns 
and finds a local optimum, this is however not always the global optimum (the 
most desirable outcome). The slotter should be able to find the optimum, when 
given enough time. An experiment has been developed to identify whether a 
partnership that emphasizes the strength of the slotter and the agent is beneficial 
in terms of performance, quality being the score of the slotting and time being the 
time the slotter has devoted to the product allocation problem. The idea is that 
the slotter starts with partially allocating products to locations and then letting the 
agent complete the task. 

 
 

5.5.1 Experiment setup 
To validate whether intelligence amplification is able to improve the performance 
of the slotters the following experiment was created. 50% of the target population 
(4 participants) of slotters were asked to take part. The slotters had to solve one 
or multiple slotting puzzles that correspond to the scenarios considered at the 
beginning of this chapter. First a baseline was established by slotters that were 
asked to complete a randomly assigned scenario without the help of an agent. 
Other slotters then got the same scenario however this time they were able to use 
an agent. Finally the agents ran the scenarios without the slotters. Time spent by 
the agents is not taken into account as this is hugely dependent on the available 
hardware and the costs of hardware is beyond the scope of this research. 

 
Validation research goal 
The following knowledge questions have been identified to find out whether or not 
intelligence amplification increases the performance of slotters: 

 
How does the slotter with the agent compare to the baseline in terms of time 
and quality? (Trade-off question) 
What effects are produced by the interaction between the slotter and the 
agent? (Effect question) 
What happens when the problem context becomes bigger? (Sensitivity ques- 
tion) 

 
The first question is essential as it gives an idea about whether the agent can 
achieve similar quality in less time than the the slotter. The second question fo- 
cuses on the partnership between the agent and the slotter and the relationship 
between the two. The final research goal question is whether the intelligence ampli- 
fication scales when the environment gets bigger. Combined these questions give 
a good idea about whether or not intelligence amplification with reinforcement 
learning can be beneficial and to what extent. 

 
Samples 
The slotters that got the baseline experiment were asked to solve a small slotting 
puzzle similar to their daily work although being much smaller. The scenarios used 

• 

• 

• 
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can be found in appendix C. The slotters are asked to solve these small puzzles by 
hand starting with an empty warehouse. The slotters first get an explanation of 
the goal of the task which is to solve the puzzle as good as possible in the least 
amount of time. An small example is presented to the slotters before commencing 
to make sure they are prepared and understand the task. With the example 
completed the actual experiment can start. The experiment is carried out on 
paper to make solving it easy and understandable. The actual puzzle to solve is on 
the back of the paper and when turned the experiment starts. When the slotter 
is finished with the task the paper is turned on its back again and the start and 
end time is noted. The quality of the slotting will be assessed by the rewards and 
penalties used throughout this thesis. The rewards and penalties are discussed with 
the slotter beforehand to make sure they know where to pay attention to when 
solving the puzzle. The participants are also asked to solve one ore more different 
scenarios with the agent used for a comparison later. The slotter with the agent 
does not have to finish the puzzle, as it has an agent to do that. An example of 
the experiment is discussed in the next section. 

 

Example experiment 

Because there were multiple experiments for 
each scenario, a small example is presented 
here. The participant first gets a schematic 
overview of the DC. In Figure 5.22 a schematic 
overview of a DC with 6 locations is de- 
picted. 

 
In Table 5.8 the products are listed that need 
to be allocated to one or multiple locations. 
The store demand forecast (SDF) for the coming 
three days as well as the stacking group and 
stacking class are listed. The maximum number 
of replenishments for a pallet location is 7 times 
a day and for a flow rack this is 2. This can be 
used to calculate how many locations need to 
be allocated for each product. 

 
 
 
 

 E  

1  2 

3  4 

5  6 

 
 

Figure 5.22: The circuit for scenario E 

 
 

 

 
 
 
 
 
 
 
 

Toilet paper 24 - 120 140 160 D 60000 ■ 
Soda 40 - 400 800 700 B 11000 D 
Soup 180 12 1000 2500 2500 C 25000 D 
Beer 40 - 800 800 1000 A 10000 ■ 

Table 5.8: Products to slot in scenario E 

Pr
od

uc
t 

Un
its

 p
er

 p
al

le
t 

Un
its

 in
 fl

ow
 ra

ck
 

SD
F 

(+
1)

 

SD
F 

(+
2)

 

SD
F 

(+
3)

 

St
ac

ki
ng

 g
ro

up
 

St
ac

ki
ng

 c
la

ss
 

Lo
ck

 fo
r a

ge
nt

? 



5.6 Conclusion 87 
 

Depending on the experiment the participant has one of the following assign- 
ments: 

 
1. Allocate the product as optimally as possible while using as little time as 

possible. 
2. Allocate the product as optimally as possible while using as little time as 

possible. But this time the participants do not have to finish the entire puzzle. 
After partially solving the puzzle, they can lock products and locations they 
know are allocated correctly. The agent takes over and finishes the puzzle on 
its own. 

 

 
 
 
 
 
 
 

1 False 3 - Beer ■ 
2 False 4 - Soda D 
3 False 5 - Beer D 
4 False 6 - Soda ■ 
5 False 7 - Beer D 
6 False 8 - Soda D 

Table 5.9: Locations and optimal slotting for scenario E 
 
 

5.5.2 Results 
The results of the experiment are presented in Table 5.10. The results of the agent 
on scenario A, B and C can be found in Figure 5.23, 5.24 and 5.25 respectively. 
The (hyper)parameter tuning really paid off as in all scenarios the learning is very 
consistent and all agents converge towards a local optimum. Without the agent, 
the participants are able to get the maximum reward however when supported by 
an agent the time could be reduced without the quality of the slotting reducing 
substantially. By locking both locations and products the actions required to be 
considered by the agent dropped significantly, making it more likely to find a local 
optimum closer to the maximum reward. 

 

5.6 Conclusion 
The department of Logistics Support is AI novice and numerous activities have 
resulted in more knowledge about AI and the impact it could have on the de- 
partment. Multiple business processes have been assessed and together with 
the department the slotting has been identified as a process that is most labour- 
intensive and would benefit from an agent supporting the slotter in the daily 
operations. When trying multiple algorithms the A2C achieved the highest sample 
efficiency and performance. The (hyper)parameters of the algorithm were tested 
on two scenarios to get an initial idea about their impact when scaling up towards 
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∆ 
- Agent A - - - 202 +242 
Participant 1 Employee A 5 minutes 230 +270 - - 
Participant 3 Employee A 11 minutes 255 +295 - - 
Participant 4 Employee A 10 minutes 255 +295 - - 
Participant 2 Combination A 7 minutes 60 +100 235 +175 
- Agent B - - - 438 +528 
Participant 2 Employee B 16 minutes 545 +355 - - 
Participant 3 Combination B 7 minutes 30 +120 488 +458 
Participant 1 Combination B 7 minutes 245 +355 502 +257 
- Agent C - - - 729 +935 
Participant 2 Employee C 34 minutes 1193 +1399 - - 
Participant 4 Combination C 7 minutes -60 +146 822 +882 

Table 5.10: Performance of the participants for different actors and scenarios 

 
the puzzle the agent has to solve in a real-world scenario. The experiment aimed 
at intelligence amplification resulted in a higher overall performance for slotters 
using the agent. 
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Figure 5.23: Rewards of the agent with optimized parameters in scenario A 

Figure 5.24: Rewards of the agent with optimized parameters in scenario B 

 
 

Figure 5.25: Rewards of the agent with optimized parameters in scenario C 
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In order to transfer the experience and knowledge of the exploratory research, 
requirements have been identified for the model. Defining requirements helps  
in deriving useful guidelines for possible treatments [46]. In this chapter the re- 
quirements for the model are identified as properties desired by stakeholders. The 
stakeholders are identified in section 6.1. The requirements are based on contri- 
bution arguments which are a result of design choices made on behalf of the 
stakeholders. The goal of the model is to enable logistic organizations to effectively 
implement reinforcement learning. 

 
 

6.1 Stakeholders 

Based on the exploratory research and the parties involved in implementing 
reinforcement learning the following stakeholders have been identified. The stake- 
holders have been generalized to enable other logistic organizations in mapping 
slightly different positions onto these. The stakeholders and their goals are: 

 
Team lead The member that is responsible for the operational staff and con- 

tinuously improving the efficiency and quality of the operational 
staff. 

 
Operational staff The employees responsible for carrying out the daily logistic op- 

erations, such as slotting, order picking and planning. 
 

Developers The developers are responsible for developing and maintaining 
the software to support the operational staff. These developers 
do not necessarily have in-depth machine learning knowledge. 

6. Requirements specification 
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6.2 Requirements 
The requirements of the model are properties desired by some stakeholder, who 
committed resources and time to realize the property [46]. The requirements are 
split into functional and non-functional requirements. 

 
6.2.1 Functional requirements 

Functional requirements are requirements for desired functions of the model. A 
function is a terminating part of the interaction between an artifact and its context 
that contributes to to a service to a stakeholder [46]. The following functional 
requirements have been identified: 

1. The model enables team leads to identify business processes suitable for 
reinforcement learning. 

2. Using the model, the team lead is able to design a task environment that 
resembles the real-world together with the operational staff. 

3. The model gives the team lead a good idea about whether or not the RL 
agent is going to succeed during implementation. 

4. The model gives team leads an idea about the expected workload of the 
stakeholders during the implementation. 

5. The model helps developers to tune the (hyper)parameters to increase the 
performance of the agents. 

6. The model is can easily be adapted and tuned by logistic organizations. 
7. The model is compatible with an ever expanding number of RL algorithms. 

 
6.2.2 Non-functional requirements 

The non-functional requirement for the 
model is that the model should be easy 
to use and learn for both team leads 
and developers. For this non-functional 
requirement the indicator is the effort 
required. 

 

6.3 Positioning of the artifact 
The model should be positioned to help 
logistic organizations that are just get- 
ting started with reinforcement learning 
or even AI in general. The model en- 
compasses all of the technology, orga- 
nization and the logistic environment 
and is targeted at AI novice organiza- 
tions [16, 31]. The positioning can be 
found in Figure 6.1. 

Figure 6.1: The positioning of the model. 

 
Model 

Environment Organization Technology 

AI novice 
AI ready 

AI proficient 
AI advanced 



 

 

   
 
 
 
 
 

In this chapter the proposed model as well as its tasks for each stakeholder are 
discussed in detail. The model consists of recommendations that are a result of the 
exploratory research and the problem investigation. An overview of the model can 
be found in Figure 7.2. To enable other logistic organizations to adapt the model 
into their business processes BPMN is used, as it is the leading standard in business 
process modelling. The model consists of three phases, exploration, scaling up and 
implementation. In the following sections each stakeholder is discussed starting 
with the team lead. 

 
7.1 Team lead 

The team lead is the most important actor in the implementation process, as he or 
she is responsible for identifying suitable business processes for RL. Together with 
the the other stakeholders the team lead coordinates the process and decides 
whether or not to continue with the implementation. The expected workload for 
each phase is presented in Figure 7.1. 

 

Figure 7.1: Workload for team lead 
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7.1.1 Identify suitable business processes 
 

Not every task is suitable for reinforcement learning. The first step when identifying 
a suitable business process is defining (a simplified version of) the task environment. 
The task environment consists of the agent, what sensors it has and which actions 
it can take as well as the environment the agent is operating in. When the task 
environment is considered to be suited for RL by the team lead, it is added to a 
backlog where they are prioritized in terms of impact and expected implemen- 
tation difficulty. Based on literature and the exploratory research each of the 
following characteristics help in identifying whether or not the task environment 
suits reinforcement learning: 

 
Fully observable or partially observable? Because RL is not very sample 
efficient, it is important that the agent has access to enough input data. A 
fully observable environment is therefore preferred over environments with 
limited observability. 
Single agent or multiagent? The complexity of task environments with multiple 
agents increases significantly. Having an agent solve a smaller part of the 
task environment could alleviate this problem. 
Deterministic or stochastic? Knowing exactly where the agent ends up taking 
a particular action helps the agent train the correct policy however when 
the environment is stochastic it could make it more robust to overfitting. 
Sparse or immediate results? Whether it is possible to give the agent a reward 
immediately after taking an action or if it only comes at the end. Immediate 
rewards result in faster training agents and is preferred especially when using 
temporal-difference learning algorithms. The shorter the delay between 
action and consequence, the faster the feedback loop gets closed and the 
easier it is for an agent to figure out a path with high rewards. 
Static or dynamic? When the environment changes when the agent is still 
considering an action the environment is dynamic. Comparable to stochastic 
environments this is more difficult for the agent to learn. 
Discrete or continuous? RL agents have been successful in both discrete as 
well as continuous task environments. It is important to consider the possible 
scenario the agent can run into. 

 
Considering all of these task environment characteristics, the team lead can rank 
these business processes accordingly and decide whether or not to add it to the 
backlog. 

 

7.1.2 Design task environment 
 

The team lead makes a decision to pick a certain business process from the 
backlog. In this part the design of the task environment is developed. Similar to 
the exploratory research, the team lead specifies the details of an environment 
and the agent interacting with it. This is split up into three parts, the environment, 
the reward function and the agent types. After these activities are performed, the 
team lead makes the decision to ask the development team to develop a small 
simulation environment. 

• 

• 

• 

• 

• 

• 
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The environment 
The main task is to design an environment that simulates (a simplified version of) the 
real-world business process. For the exploratory research this was a table consisting 
of all locations and the products allocated to those locations. A task environment 
can easily consists of multiple inputs such as tabular and imagery data. 

 
Finally the environment should be passed to the agent in a way it can understand. 
In the exploratory research one hot encoding was used to pass the state to the 
agent. But using imagery data is also a possibility. In literature passing an image to 
the agent often consists of using the greyscale values of of a cropped image. 

 
Actions 
There can be multiple ways to solve the same puzzle. In the exploratory research 
the agent could solve the puzzle by only deciding between products and se- 
quentially solve the puzzle however the fully autonomous agent was able to slot 
products on a specific location as well as decide when it was finished. With the 
environment in mind the team lead could come up with different ways the agent 
can interact with the environment. Based on the results of the exploratory research, 
the idea is to get a minimal set of actions of which the agent is able to reach its 
goal. 

 
Reward function 
Creating a reward function is not difficult however designing a reward function 
that encourages intended behaviour is, especially considering the agent has to 
be able to learn it. For the slotting multiple rewards and penalties were specified 
to mimic how a slotter would evaluate the product allocation. The problem 
however was that only slotting was evaluated using the products that were already 
allocated, and not on the products that still needed to be allocated. The result 
was an agent that started slotting certain products, slotted correctly from there 
however in the end did not find the global optimum. The team lead should attempt 
to design a reward function that gives an accurate reward in a particular state 
taking into account the actions the agent can take. For example when an agent 
can undo its action it could still learn the optimal policy. 

 
7.1.3 Assess RL approach and method 

With a task environment in place the team lead decides whether or not it is suf- 
ficient enough for the developers to develop a small simulation. This simulation  
is used to identify whether or not the agent is able to learn the correct policy    
in a small task environment before scaling up towards a more realistic scenario. 
In order to pick an RL approach the team lead can decide between three RL 
approaches which are model-based, value-based and policy gradient. These 
approaches are not mutually exclusive, A2C for example uses both value-based 
as well as policy gradient methods. Based on the task environment, the following 
characteristics of the task environment can ease the decision making: 

 
1. Model-based, when the model of an environment is known. 
2. Value-based, such as Q-learning and DQN, learn by estimating how good it 

is to take a particular action. 
3. Policy gradient, deriving a policy directly. 
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Figure 7.3: Overview of RL algorithms 
 
 
 

OpenAI provides a clear overview of the available RL algorithms organizations 
could use1. Figure 7.3 shows an overview of the currently available RL algorithms. 

 
Within AI novice and AI ready logistic organizations it is likely that there is limited 
knowledge about machine learning and how to get started. To tackle this problem 
the backbone of the A2C agent used in the exploratory research is provided in 
Appendix D to enable these organizations to get started nevertheless. 

 
7.1.4 Requirements engineering 

When the results of the first experiments show that the agent is able to learn and 
solve the problem presented so far, the team lead can start with the requirements 
engineering process. Based on what the agent was able to learn in the initial tests. 
These requirements should tackle key performance indicators such as the required 
performance of the agent and whether or not a fallback should be in place. 

 
 
 

7.2 Development team 

The developers are responsible for realizing the agent and the simulation according 
to the specifications designed by the team lead and the operational staff. Starting 
with a small proof of concept in the exploration phase the team slowly gets more 
involved and thus the workload increases. In the final phase the team realizes the 
agent that is capable of automating a business process. The expected workload 
for the developers is depicted in Figure 7.4. 

 
 

1https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html 
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Figure 7.4: Workload for the development team 

 
7.2.1 Develop and test a small simulation environment 

The task environment, reward function and the type of RL agent thought out by 
the team lead are the starting point for the development team. The first goal of 
the team is to develop a small simulation environment and perform some initial 
tests. The goal of these initial tests is to find out whether or not the idea works in 
an environment in which the agent should be able to perform well, with initial 
(hyper)parameters. In the slotting case a small simulation was developed of a 
warehouse layout with only four locations and four products to slot. This simplified 
example showed the potential of Q-learning for the problem and with these initial 
results the team lead could continue. 

 
7.2.2 Implement a real-world scenario 

When the team lead has developed requirements and has an idea for a real- 
world scenario, the development team gets involved again. The team creates  
a real-world scenario that is a subset of the actual problem to solve. This step is 
important because as the task environment and reward function get more specific, 
it could make learning more difficult for the agent. The real-world scenario for 
the slotting agent were three scenarios of various sizes that take into account the 
store demand forecast, the stacking groups and classes as well as facings and 
different types of locations. Although being smaller, this can be considered a part 
of the puzzle the operational staff solves each and every day. With a real-world 
scenario in place, the developers can test the performance of the agent by 
tuning the (hyper)parameters. Logistic organizations that can be considered AI 
novice, might not have developers with affinity with machine learning. To enable AI 
novice organizations to start experimenting with reinforcement learning Appendix 
D provides the Python implementation of an A2C agent the developers can use. 

 
7.2.3 Tuning the (hyper)parameters 

When tuning the hyperparameters of any RL agent, it is important that the de- 
velopers know which parameters to adjust in order to increase the performance 
of the agent. Much like in supervised learning, tuning the parameters is merely 
an activity of trail and error. Based on the tuning that was conducted on the 
developed slotting agent, the following remarks could be helpful when tuning the 
parameters: 

 
• Number of updates and batch size, a low batch size makes the agents 
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network being updated more often, increasing the load on the GPU. When 
having a bigger environment the batch size differences are not as significant. 
As with almost every deep neural network, more updates are beneficial for 
the performance of the agent. Different from supervised and unsupervised 
learning, RL tends to find a local optimum that is difficult to escape from, 
even with more data. 
Increasing the number of nodes or layers increases the capacity of the agent 
to learn complex problems. It could however lead to overfitting in which 
the agent performs well in known states but fails when encountering states it 
has not seen before. In scenario A the agent with 256 nodes outperformed 
having 512 and 1024 nodes. The difference was less significant when scaling 
up towards larger environments which substantiates the idea that larger 
environments need more nodes as well as layers. 
Gamma is used to discount potential future rewards. This is particularly impor- 
tant for stochastic task environments but in the case of the product allocation 
the environment was deterministic. 
The learning rate is a way to control how fast an agent learns, partially 
overwriting old values. A higher learning rate means an agent learns faster 
but also focuses more on recent experiences as old ones are removed faster. 
As the environments got larger, the learning rate was increased to encourage 
the agent to identify potential success paths faster. 
Entropy or rate of exploration/exploitation is important as it controls how much 
the agent explores the environment or takes actions based on knowledge. 
Ideally starting with an agent that only explores is a good way to start, slowly 
lowering the entropy from there to find an optimum. In a larger environment 
the agent is more likely to pick an action it took before and therefore the 
entropy is increased accordingly. 

 
The importance of tuning the parameters became clear in the exploratory re- 
search, after tuning the agents trained more stable and efficiently. The team 
lead should not rush judging the performance of the agent before proper (hy- 
per)parameter tuning is performed as it could have a profound impact. 

 
7.2.4 Implementing the agent (and fallback) 

When the team lead has made the decision the start implementing the final 
agent, the workload shifts towards the developers. The development of the final 
agent consists mainly of scaling up the real-world scenario towards the actual 
business process. A fallback should also be considered as the results of RL agents 
are not always reproducible, meaning that it could fail sometimes. Depending 
on the impact of an agent occasionally not performing, the fallback should be 
considered. An example at Albert Heijn is the current tool that is able to make 
product allocation decisions based on a search algorithm. The team lead makes 
sure to monitor the performance of the agent after implementation and trigger 
the fallback if needed. 

 

7.3 Operations 
The operational staff is responsible for carrying out the business process and can be 
considered the end user. In each phase the operational staff is conducted multiple 

• 

• 

• 

• 
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times for their operational experience. Getting the operational staff involved from 
the start helps in developing a positive attitude towards the agent and increases 
the potential to adopt it [33]. The workload for the operational staff can be found 
in Figure 7.5. 

 
 

 

Figure 7.5: Workload for the operational employees 
 

7.3.1 Evaluating the task environment 

Together with the team lead the task environment is developed and evaluated 
by the operational staff. The team lead attempts to create a task environment 
that is suitable for RL whereas the operational staff evaluates to what extent the 
task environment compares to the real-world. The operational staff can identify 
potential problems with a reward function when comparing their own indicators 
for success. 

 
In the product allocation problem a small task environment was made with a 
small warehouse of only 4 locations, even though this is obviously not to scale, the 
essence of the problem is the same. An agent attempts to - based on various in- 
puts - allocate products in a way that is optimal. The goal is therefore to find a task 
environment that closely resembles the real-world puzzle, but in a simplified form. 
When executed correctly, the developers are presented with a task environment 
that is easy to implement while giving a valuable sneak peak of its potential. As 
shown in the exploratory research, performance could still increase even though 
the agent is not superior to the human by the application of intelligence amplifica- 
tion. If for example the final 10% of the business process is quite straightforward an 
RL agent could still significantly improve the performance of the operational staff. 
During the evaluation these potential cooperation should also be considered. 

 
7.3.2 Evaluating the impact on the operation 

Before the impact on the operations can be assessed, first the test results and the 
performance of the agent have to be assessed. In order to have an objective 
discussion the focus should be on actual results of the agent rather than specula- 
tion. In the example of the slotting agent, the agent is not always able to find the 
global optimum, but is able to allocate products correctly to a certain extent. The 
product allocation has a profound impact on the productivity of the warehouses 
of Albert Heijn, therefore the savings in terms of time spent by the slotters does not 
outweigh the loss in productivity in the warehouses. 
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7.3.3 Start with updated business process 
With the agent implementation complete, the operational staff starts working with 
the updated business process. When the agent does not perform due to certain 
circumstances the fallback will be activated. The operational staff will be thought 
how to identify potential failures of the agent and how to instantiate the fallback if 
necessary. 
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The requirements of the model are specified which enable validation by assessing 
to what extent it meets those when implemented in the problem context. The 
central problem of treatment validation is that no real-world implementation is 
available to investigate whether the treatment contributes to stakeholder goals. 
Still, we want to predict what will happen if the treatment is implemented [46]. An 
expert opinion was used complemented by results obtained during the exploratory 
research. First the setup and validation goal is discussed in section 8.1. In section 
8.2 the expert opinion is presented. 

 
 

8.1 Validation setup 
Using expert opinions and based on the exploratory research the proposed model 
for RL-based business process re-engineering is validated. Because a large portion 
of the activities in the proposed model are also performed during the exploratory 
research, the results are also part of the model validation. Almost all activities in 
the first two phases are performed during the exploratory research, the validated 
activities can be found in Figure 8.2. The activities not covered by the exploratory 
research are validated by the team lead from the Logistics Support department of 
Albert Heijn. The validation approach per phase is visualized in Figure 8.1. 

 
 

Figure 8.1: Validation for each phase in the model 

Explorator y research 

Expert opinion 
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Figure 8.2: The activities also performed during the exploratory research 

 
For each of the phases in the proposed model, the requirements defined in chapter 
6 are validated by the team lead at the Logistics Support department at Albert 
Heijn. The goal of the validation is to develop a design theory of an artifact in 
context that allows us to predict what would happen if the artifact were transferred 
to its intended problem context [46]. 

 

8.2 Team lead expert opinion 
The decision to use BPMN for the model makes the model easily adaptable by 
logistic organizations. The stakeholders are general to enable organizations to 
map their own teams and individuals on these roles. 

 
The team lead points out that depending on the target organization, it is difficult 
to assess whether or not the team lead has the required knowledge in order    
to identify suitable business processes for RL. The team lead may lack in-depth 
knowledge about a process carried out by the operational staff each and every 
day that it is required to identify these processes. More examples in future RL 
implementations could ease the identification. A team lead might also decide to 
get the operational staff involved beforehand. 

 
During the exploratory research the Logistics Support team got an introduction 
into artificial intelligence and reinforcement learning. When an AI novice organi- 
zation would attempt to re-engineer their business processes with RL having only 
the model would not be enough. The examples from the exploratory research 
aid this problem to some extent, however these organizations will need a proper 
introduction into the field before commencing. The introduction helps to get  
the conversation of AI within the department started but it is important to give 
examples the employees can relate to. Examples such as AGVs in the warehouses 
are well known but RL can also solve less visible tasks such as the product allocation. 
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The model consists of multiple moments where the team lead can make the 
decision whether or not to continue with reinforcement learning. Being able to 
start small and slowly scale up is really valuable according to the team lead, as it 
does not require huge up-front investments both in terms of costs and scarce IT 
personnel. 

 
The team lead suggests that when the business process is identified it makes sense 
to concurrently get the developers involved to design the task environment to- 
gether. This alleviates the problem of the developers being unable to develop the 
environment thought out by the team lead. 

 
The expert notes that having an idea about the workload of every stakeholder 
during the implementation process helps in the decision making about whether or 
not to continue. Maybe more important, it gives an idea about whether the team 
lead is allocating enough resources during each phase. 

 
Based on the expert opinion and the exploratory research logistic organizations 
using the proposed model are able to re-engineer their business processes us- 
ing RL, but there are some preconditions to be met. AI Novice organizations do 
need a proper introduction into the field of AI and the characteristics of RL before 
proceeding. Without the examples the model could be difficult to interpret, espe- 
cially when tackling a very different business process compared to the product 
allocation problem. 
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In this chapter the research is concluded and an overview of the contribution of 
this thesis for both practice and literature is presented. Finally the limitations and 
future work are discussed. 

 
What is the current state of artificial intelligence and especially deep and rein- 
forcement learning in the logistics industry? 

 
Artificial Intelligence (AI) will become very important for businesses across the 
world, and its time is now. Organizations that successfully implement AI are said to 
profit disproportionately compared to the laggards. A literature review on both AI 
and technology adoption shows that logistic organizations struggle to implement 
AI because of its unique determinants as well as not having clear and concise tools 
to improve their AI maturity. Deep learning is currently the most promising AI tech- 
nique but reinforced learning is also gaining momentum. Reinforcement learning 
encompasses all of AI, an agent learns by performing actions in an environment 
and eventually finds an optimal policy to maximize its reward. This resembles in a lot 
of ways humans learn, although currently not being very efficient. Reinforcement 
learning became much more powerful due to the addition of neural networks 
and multiple approaches and algorithms have been identified, such as Deep 
Q-learning (DQN) and Advantage Actor Critic (A2C). Reinforcement learning 
literature has skyrocketed in recent years due to breakthroughs such as defeating 
the world champion in a game of Go. But little is known about whether and 
how this technique could be implemented into the business processes of logistic 
organizations. 

 
What are the most important artificial intelligence adoption models and frame- 
works in the logistics industry? 
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Technology adoption research has been around for a long time, and through 
time multiple acceptance models were developed. Starting with the TAM which 
was eventually extended and resulted in the UTAUT model. The UTAUT model is 
often criticized because its determinants are not entirely compatible with AI. This is 
especially true because of the potential job loss and the disruptive nature of AI. In 
practice therefore, most of the time the TOE model is used to draw conclusions 
regarding the adoption of AI in organizations. Other adoption models such as the 
DOI are still relevant for AI as it follows a similar pattern and the potential rewards for 
early adopters is disproportionate. The TOE model was extended by Mahroof with 
perceived benefits as this was a great predictor for AI adoption in a large retailer 
warehouse. Based on the task at hand, an assessment can be made whether or 
not AI is suitable following the intelligence amplification framework. The framework 
shows what type of task humans excel at and what tasks are better off handled 
by computers. 

 
Which types of business processes are suitable for reinforcement learning? 

 
The literature body helped in identifying most of the characteristics a business 
process should have to be suitable for RL. During the exploratory research three 
potential business processes were considered and based on the results of the liter- 
ature review the product allocation in the warehouses of Albert Heijn was picked 
because of its deterministic, fully observable nature. After implementing real-world 
scenarios of the slotting and the difficulties along the way the list with character- 
istics was refined and incorporated in the guidelines of the final model. Logistic 
organizations that want to identify a suitable business process to re-engineer with 
RL should also consider the size of the task environment and if rewards are sparse 
or immediate. The agent trained in the exploratory research has to be retrained 
when locations or product specifications change, picking a business process that 
does not change in terms of environment and actions the agent can take are also 
more suitable. 

 
Which steps help logistic organizations in successfully implementing reinforcement 
learning? 

 
During the exploratory research an attempt was made to develop a RL agent 
which is able to allocate products successfully in a small but realistic warehouse 
setting. The slotting of products is an important and labour intensive task and 
currently performed by multiple full-time employees. 

 
Traditional machine learning approaches are only partially applicable to RL such 
as (hyper)parameter optimization and deciding whether or not there is a business 
case. In RL however, these tasks are only a subset of a set of tasks required to even 
get started. First a task environment needs to be identified and created for the 
agent to interact with. This can seem straightforward with a deterministic environ- 
ment such as a chess board but when considering business processes in logistic 
organizations this could be very difficult. One hot encoding is one technique to 
pass an environment such as a spreadsheet to an agent used successfully in this 
thesis. Another important and difficult task in RL is the designing of the reward 
function, this often requires in-depth analysis together with the operational staff. For 
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the slotting a scoreboard was developed that was created in cooperation with the 
employees in an attempt to give the agent proper rewards. The reward function 
should be detailed enough for the agent to learn the correct policy however when 
over-engineering the agent could not learn at all. As with other high risk projects it 
is important to start small with a manageable task environment and scale up from 
there as the agent continues to learn. 

 
To what extent can the developed model help logistic organizations in the adop- 
tion of reinforcement learning? 

 
Based on the exploratory research and the literature body a BPMN model was 
developed together with a set of guidelines that enables logistic organizations to 
re-engineer their business processes using reinforcement learning. Although being 
aimed at AI novice and AI ready organizations, there are some preconditions 
for organizations before commencing. There should be a basic understanding 
about AI and RL across the entire department in order to get started with the 
implementation. This is because the team lead - the stakeholder responsible for 
the implementation - needs both the developers and the operational staff in its 
decision process. RL differs from supervised and unsupervised learning as it is able 
to solve a wide variety of tasks with the same agent, however it succeeds in only 
a fraction compares to the mainstream learning methods. The model therefore 
includes multiple moments in which the team lead can decide whether or not to 
continue with the implementation. 

 
The business process targeted for the validation was the slotting process at Albert 
Heijn. Based on a realistic case, numerous staff members participated in an ex- 
periment to find out whether or not the product allocation performance could 
be increased using an RL agent. The experiment showed that using intelligence 
amplification, in which the staff members worked in cooperation with the RL agent 
significantly reduced the required effort while still achieved good performance. 
The results showed that although the staff was able to reach the maximum score, 
the agent was not far off. When the agent was asked to perform the entire task by 
itself, the agent was able to find a local optimum in almost every attempt. 

 
The scientific relevance is twofold. Current adoption models lack the unique de- 
terminants for artificial intelligence and reinforcement learning, the methodology 
of this research could alleviate this problem for future research. Secondly, this 
research also indicates that using intelligence amplification, agents using rein- 
forcement learning also benefit from the cooperation between a human and the 
agent. The model can be considered a first step in taking reinforcement learning 
beyond simple games and towards actual business processes. 
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9.1 Limitations and future work 
Even though literature of reinforcement learning has only recently gained a lot of 
attention, the field exists for a long time. Because of the limited period in which 
the literature review was written, not all relevant contributions are considered. 
Since the development of Advantage Actor Critic (A2C) AI organizations have 
developed more state-of-the-art algorithms that are beyond the scope of this 
research. 

 
The main focus of this research was on developing an agent capable of being im- 
plemented in a business process. Due to time constraints the proposed model the 
treatment was only validated using expert opinions and the exploratory research. 
The model without the exploratory research examples is currently not sufficient for 
AI novice organizations, future work can extend the number of implementations 
and further develop the model. 

 
When developing the agent, due to computational limitations the largest scenario 
considered consists of 42 locations and 29 products to allocate, whereas in the 
real-world the slotters work with environments that could consist thousands of 
locations. Future work could use the model and attempt an implementation at a 
logistic organization that encompasses all three phases. 

 
 

9.2 Recommendations for Albert Heijn 
Because the agent used for the product allocation is model-free, it can be used 
for a wide variety of problems. The team lead and the developers can continue to 
experiment with the A2C algorithm and when new state-of-the-art RL algorithms 
are developed the department can quickly adapt because the task environment 
and reward function do not have to change. 

 
Even though reinforcement learning has not been able to solve the slotting per- 
fectly or outperform the traditional way of working does not mean it could not 
add value. Reevaluating tasks within the supply chain of Albert Heijn could identify 
tasks where agents would excel at and tasks better suited for humans. The applica- 
tion of the intelligence amplification framework improves this identification process. 
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A Literature review results of reinforcement learning 
For this topic one of the most influential books on AI is used first and appended 
by a structured literature review on recent review papers regarding - state of the 
art - deep learning and reinforcement learning. The aim of this review is therefore 
to get an overview of the current state of artificial intelligence and reinforcement 
learning literature. First the book is discussed followed by the details and results of 
the structured literature review. 

 
Book 
The foundation for this research topic is the highly cited 
book "Artificial Intelligence - A Modern Approach" by 
Russel and Norvig because it forms a proper foundation 
of the field [35]. 

 
The 1152 pages offer one of the most comprehensive, 
up-to-date introduction to the theory and practice of 
AI and is therefore a great starting point for diving into 
AI. 

 
SLR 
In addition a literature review was conducted to find 
relevant and more recent contributions in the field. Be- 
cause the book of Russel and Norvig covers AI in general, the focus of the SLR was 
on deep learning that currently delivers the most promising results and a look into 
the future with reinforced learning. 

 
After an initial search and the relevance of the results the following search queries 
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were used to find relevant literature: 
 

TITLE-ABS-KEY ("neural network*") 
n: 423.706 
TITLE-ABS-KEY ("deep learning") 
n: 39.666 
TITLE-ABS-KEY ("reinforce* learning") 
n: 198 

 
Because of the huge number of articles on the topic, inclusion and exclusion 
criteria have been defined in an attempt to improve and refine the literature body. 

 
Inclusion criteria: 

 
• English peer reviewed studies. 
• Review papers that are related to deep learning or reinforced learning. 

Exclusion criteria: 
 

• Studies that are not accessible. 
• Studies that are not related to the research questions. 
• Duplicate studies. 
• Short papers. 
• Studies in which deep learning or reinforcement learning is not the main topic. 

 
Results 
This literature study was conducted on the 18th of June 2019. The results can be 
found in Table A.1. 

 
 

n1 n2 n3 n4 n5 

441.485 319 50 21 22 

Table A.1: Number of results for the reinforcement learning SLR 
 

Using the extended concept matrix the articles and their concepts have been 
identified [45, 47]. 

 
The final selection of articles can be found in Table A.2. How each concept relates 
to the research questions is visualized in Table A.3. 

• 

• 

• 
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Papers Concepts 
 

 
 
 
 
 
 
 
 
 
 

Poggio et al. (2017) [30]  x x  

Wang et al. (2019) [43]    x  

Rizk et al. (2018) [32] x x  x  

Garnelo et al. (2019) [18]   x x  

Bus¸oniu et al. (2018) [10]   x  x 
Botvinick et al. (2019) [7] x  x x x 
Schmidhuber (2015) [37] x x x x x 
Sze et al. (2017) [40]   x   

Zhuang et al. (2017) [48] x  x   

Shrestha et al. (2019) [39]    x  

Altahhan et al. (2016) [3]    x x 
Shakirov et al. (2018) [38] x  x   

Deng (2018) [15] x  x   

Mnih et al. (2013) [27]     x 
Mnih et al. (2016) [28]     x 
Andrew et al. (1998) [4]     x 
Van Hasselt et al. (2016) [41]     x 
Schaul et al. (2015) [36]     x 
Lin et al. (1992) [25]     x 
Dayan et al. (2008) [14]     x 
Bellman et al. (1957) [5]     x 
Watkins et al. (1992) [44]     x 

Table A.2: The concept matrix for deep learning and reinforced learning 

H
ist

or
y 

a
nd

 
fu

tu
re

 o
f D

L 

Fr
om

 sh
a

llo
w

 to
w

ar
ds

 
d

ee
p

 le
a

rn
in

g 

C
ha

lle
ng

es
 a

nd
 

op
p

or
tu

ni
tie

s o
f D

L 

D
L 

a
p

p
lic

a
tio

ns
 

a
nd

 te
ch

ni
q

ue
s 

D
ee

p
 re

in
fo

rc
ed

 
le

a
rn

in
g 



126 Appendices 
 

 

Concept SQ1 SQ2 
History and future of DL x x 
From shallow towards deep learning x  
Challenges and opportunities of DL x x 
DL applications and techniques x  
Deep reinforced learning x  

Table A.3: AI concepts 

 
B Literature review results of technology adoption 

Technology acceptance and acceptance on both individual level as well as on an 
organizational level has been a subject of research since the late 1980s. Because 
of the abundance and the persisting relevance of articles a twofold methodology 
was used. First technology adoption is considered and papers were selected 
based on recommendations of experts of the University of Twente. To be able to 
compare technologies or innovations to artificial intelligence a structured literature 
review was used to find articles on AI adoption in preferably logistic organizations. 

 
Experts 
Contacting senior experts on a particular topic in conducting a literature review 
is of great importance in order to get a high-quality review [45]. For this review 
experts and lecturers at the University of Twente were contacted to identify the 
most influential articles, the foundation of the field. The experts that contributed 
articles to this literature review are professor M.E. Iacob and associate professor M.J. 
van Sinderen. The selection consists mainly of technology acceptance models 
and how they evolved over time. Research that was added to the review using this 
method are marked with an asterisk in the results, which can be found in Table B.1. 

 
SLR 
Whereas the expert articles form the foundation of the topic, more recent literature 
on technology - and particularly AI - adoption were needed to be able to answer 
the research questions. Therefore the expert articles are complemented with a SLR. 

 
Based on the relevance of the most cited results for different search queries, the 
following search query was used: 

 
TITLE-ABS-KEY ("artificial intelligence" OR "AI" OR "intelligent agent*") AND 
("adopt*" OR "accept*") AND "logistic*" 
n: 307 

 
The following inclusion and exclusion criteria were used for technology adoption: 

 
Inclusion criteria: 

 
• English peer reviewed studies. 
• Published between 2000 and 2019. 
• Related to technology - or AI - adoption (in logistical organizations). 

• 
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• Acceptance articles on both organizational and individual level. 

Exclusion criteria: 
 

• Articles that are not accessible. 
• Articles that are not peer reviewed. 
• Duplicate studies. 
• Short papers. 
• Studies that have a very narrow scope. 

Results 
This literature study was conducted on the 15th of May 2019. The results can be 
found in Table B.1. 

 
 

n1 n2 n3 n4 n5 

302 712 33 14 14 

Table B.1: Number of results for technology adoption SLR 
 

The following concepts emerged from the literature body: 
 

• Technology adoption at an individual level. 
• Technology adoption at organizational level. 
• Artificial intelligence adoption. 
• Innovation diffusion. 
• Implementation of AI. 
• Human-computer symbiosis. 

Using the extended concept matrix the articles and their concepts have been 
identified [45, 47]. The final selection of articles can be found in Table B.2. How 
each concept relates to the research questions is visualized in Table B.3. 
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Papers Concepts 
 
 
 
 
 
 
 
 
 
 

Karahanna et al. (1999) [21] x  

Moore et al. (1991) [29] x   x   

Venkatesch et al. (2003)* [42]       

Rogers (1983)* [33] x x  x   

DePietro et al. (1990) [16] x x  x   

Ajzen et al. (1970)* [2] x      

Davis (1989)* [12] x      

Davis et al. (1989)* [13] x      

Dobrkovic (2016)* [17] x  x   x 
Damanpour et al. (2006) [11]  x  x   

Mahroof et al. (2019) [26] x x x  x  

Klumpp et al. (2019) [23] x  x   x 
Oliveira et al. (2011) [34] x x  x   

Leung et al. (2016) [24]     x  

Table B.2: The concept matrix for technology adoption 
 
 
 
 
 

Concept SQ1 SQ2 
Technology adoption at individual level  x 
Technology adoption at organizational level  x 
Artificial intelligence adoption x x 
Innovation diffusion  x 
Implementation of AI x x 
Human-computer symbiosis x x 

Table B.3: Technology adoption concepts 
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C Scenarios 
 

In this appendix the scenarios used in the exploratory research and intelligence 
amplification chapter are discussed. 

 

Scenario A 
 

Scenario A contains 10 locations and 6 products to slot. The products can be 
found in Table C.1, the initial slotting and the optimal slotting can be found in Table 
C.2. When slotted optimally, the resulting scoreboard can be found in Table C.3. 
The circuit can be found in Figure C.1. 

 
 
 
 
 
 
 

 
 
 

Figure C.1: The circuit for scenario A 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cookies 220 20 1500 2200 2200 D 14000 
Soup 180 12 700 500 600 C 35000 
Beer 40 - 800 800 1000 A 10000 
Toilet paper 24 - 250 200 300 C 40000 
Rice 120 20 700 700 550 D 60000 
Coffee 150 15 1000 800 900 B 12000 

Table C.1: Products to slot in scenario A 
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Location Flow rack Next location Slotted initially Optimal slotting 
1 False 3 - Beer 
2 False 4 - Coffee 
3 False 5 - Beer 
4 False 6 - Cookies 
5 False 7 - Beer 
6 False 8 - Cookies 
7 False 9 - Soup 
8 False 10 - Toilet paper 
9 False - - Rice 
10 False - - Toilet paper 

Table C.2: Locations and optimal slotting for scenario A 
 
 

Reward Score Occurrences Total 
Product slotted (A) +15 1 15 
Product slotted (B) +15 1 15 
Product slotted (C) +15 2 30 
Product slotted (D) +15 2 30 
Free locations +2 0 0 
Matching SDF (+1) +15 6 90 
Matching SDF (+2) +10 6 60 
Matching SDF (+3) +5 5 25 
Movement -1 10 -10 
Facings not adjacent -15 0 0 
Stacking group violation -15 0 0 
Stacking class violation -10 0 0 

   255 

Table C.3: The scoreboard for the optimal slotting in scenario A 
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Scenario B 

Scenario B contains 20 locations and 13 products to slot. The products can be 
found in Table C.4, the initial slotting and the optimal slotting can be found in Table 
C.5. When slotted optimally, the resulting scoreboard can be found in Table C.6. 
The circuit can be found in Figure C.2. 

 
 
 
 
 
 

 
 
 

Figure C.2: The circuit for scenario B 
 
 
 
 
 
 
 
 
 
 
 
 

Ketchup 120 10 700 700 550 D 53000 
Cereal 60 - 200 500 250 D 52000 
Rice 120 20 700 700 550 C 40000 
Pasta 25 5 100 120 90 D 57000 
Coffee 150 15 1000 800 900 B 12000 
Eggs 90 20 300 200 550 C 42000 
Apple juice 70 - 500 450 500 D 12000 
Toilet paper 24 - 120 140 160 D 60000 
Candy 120 40 700 700 550 C 42000 
Soda 40 - 400 800 700 B 11000 
Soup 180 12 1000 2500 2500 C 25000 
Beer 40 - 800 800 1000 A 10000 
Cookies 220 20 1200 1500 1200 D 14000 

Table C.4: Products to slot in scenario B 
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Location Flow rack Next location Slotted initially Optimal slotting 
1 False 3 - Beer 
2 False 4 - Soda 
3 False 5 - Beer 
4 False 6 - Soda 
5 False 7 - Beer 
6 False 8 - Soda 
7 False 9 - Beer 
8 False 10 - Coffee 
9 False - - Apple juice 
10 False - - Cookies 
11 False 13 - Soup 
12 False 14 - Rice 
13 False 15 - Soup 
14 False 16 - Candy 
15 False 17 - Eggs 
16 False 18 - Cereal 
17 False 19 - Ketchup 
18 False 20 - Cereal 
19 False - - Pasta 
20 False - - Toilet paper 

Table C.5: Locations and optimal slotting for scenario B 
 
 

Reward Score Occurrences Total 
Product slotted (A) +15 1 15 
Product slotted (B) +15 2 30 
Product slotted (C) +15 4 60 
Product slotted (D) +15 6 90 
Free locations +2 0 0 
Matching SDF (+1) +15 12 180 
Matching SDF (+2) +10 13 130 
Matching SDF (+3) +5 12 60 
Movement -1 20 -20 
Facings not adjacent -15 0 0 
Stacking group violation -15 0 0 
Stacking class violation -10 0 0 

   545 

Table C.6: The scoreboard for the optimal slotting in scenario B 
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Scenario C 
 

Scenario C contains 42 locations and 29 products to slot. The products can be 
found in Table C.8, the initial slotting and the optimal slotting can be found in Table 
C.9. When slotted optimally, the resulting scoreboard can be found in Table C.7. 
The circuit can be found in Figure C.3. 

 
 
 
 
 
 
 

 
 
 

Pallet location Flow rack 
 

Figure C.3: The circuit for scenario C 
 
 
 
 
 
 

Reward Score Occurrences Total 
Product slotted (A) +15 1 15 
Product slotted (B) +15 2 30 
Product slotted (C) +15 4 60 
Product slotted (D) +15 22 330 
Free locations +2 0 0 
Matching SDF (+1) +15 28 420 
Matching SDF (+2) +10 29 290 
Matching SDF (+3) +5 28 140 
Movement -1 42 -42 
Facings not adjacent -15 0 0 
Stacking group violation -15 0 0 
Stacking class violation -10 0 0 

   1243 

Table C.7: The scoreboard for the optimal slotting in scenario C 



134 Appendices 
 

 
 

 
 
 
 
 
 
 
 

Beer 40 0 800 800 1000 A 10000 
Soda 40 0 400 800 700 B 11000 
Coffee 150 15 1000 800 900 B 12000 
Apple juice 70 0 500 450 500 D 12000 
Cookies 220 20 1200 1500 1200 D 14000 
Soup 180 12 1000 2500 2500 C 25000 
Rice 120 20 700 700 550 C 40000 
Eggs 90 20 300 200 550 C 42000 
Candy 120 40 700 700 550 C 42000 
Cereal 60 0 200 500 250 D 52000 
Ketchup 120 10 700 700 550 D 53000 
Pasta 25 5 100 120 90 D 57000 
Toilet paper 24 0 120 140 160 D 60000 
Diapers 100 0 2000 2500 2500 D 60000 
Sausages 80 20 400 400 550 D 62000 
Bread 80 5 600 1100 1000 D 64000 
Honey 400 40 60 50 50 D 64000 
Chocolate 200 10 15 20 15 D 65000 
Baby wipes 40 20 20 20 25 D 70000 
Mustard 60 10 10 5 5 D 71000 
Paprika powder 80 20 25 15 10 D 72000 
Tissues 20 5 10 10 10 D 73000 
Deodorant 50 20 30 40 40 D 80000 
Peanut butter 40 10 10 5 20 D 90000 
Almonds 60 10 10 15 10 D 90000 
Apple pie 20 5 5 5 10 D 90000 
Soap 50 5 10 10 5 D 90000 
Sunscreen 200 40 800 700 800 D 92000 
Crackers 40 5 400 800 600 D 95000 

Table C.8: Products to slot in scenario C 
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Location Flow rack Next location Slotted initially Optimal slotting 
1 False 3 - Beer 
2 False 4 - Soda 
3 False 5 - Beer 
4 False 6 - Soda 
5 False 7 - Beer 
6 False 8 - Soda 
7 False 9 - Beer 
8 False 10 - Coffee 
9 False - - Apple juice 
10 False - - Cookies 
11 False 13 - Soup 
12 False 14 - Rice 
13 False 15 - Soup 
14 False 16 - Candy 
15 False 17 - Eggs 
16 False 18 - Cereal 
17 False 19 - Ketchup 
18 False 20 - Cereal 
19 False - - Pasta 
20 False - - Toilet paper 
21 False 23 - Diapers 
22 False 24 - Sausages 
23 False 25 - Diapers 
24 False 26 - Bread 
25 False 27 - Diapers 
26 False - - Bread 
27 False 37 - Diapers 
28 True - - Honey 
29 True - - Chocolate 
30 True - - Baby wipes 
31 True - - Mustard 
32 True - - Paprika powder 
33 True - - Tissues 
34 True - - Deodorant 
35 True - - Peanut butter 
36 True - - Almonds 
37 False - - Apple pie 
38 False - - Soap 
39 False - - Sunscreen 
40 False 41 - Crackers 
41 False 42 - Crackers 
42 False - - Crackers 

Table C.9: Locations and optimal slotting for scenario C 
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D Advantage Actor-Critic agent Python implementation 
The appendix is divided into three sections, first the installation requirements are 
discussed followed by the design of the agent. Finally the instructions to train and 
use the agent are shown. 

 
Installation 
To ensure that the Python code in this chapter can run properly on every machine 
a virtual environment is used. To install the virtual environment the following steps 
have to be followed: 

 
1. Install pipenv (HTTPS://GITHUB.COM/PYPA/PIPENV). 
2. Create a directory and copy the Pipfile found in Code segment 11. 
3. Install the virtual environment, with the required packages by running the 

following command: pipenv install. 
4. To run a python file using the virtual environment, one can run: "pipenv shell 

filename.py". 
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Code segment 1: The Pipfile used to create the virtual environment (Pipenv) 
 
 

Design 
The design of the A2C agent consists of the agent, its neural network and the 
environment. 

Neural network 
The implementation of the neural network (also called model) can be found in 
Code segment 2. Here the structure of the neural network is defined such as the 
number of actions the agent can take, the number of nodes (in a single layer) and 
the number of layers in the body. Once initialized these parameters are fixed to 
enable training an agent using the model multiple times. Other (hyper)parameters 
such as the learning rate are part of the agent as it decides how to update its 
internal model. 
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1Depending on the task environment, one might not need all packages listed in the Pipfile. 

s t y l e = " ∗ " 
beautifultable = " ∗ " 

[ requires ] 
python_version = " 3 . 7 " 
 
[ pipenv ] 
allow_ prereleases = t rue 

matplotlib = " ∗ " 

tensorflow = " ==2.0.0 − rc0 " 
progressbar2 = " ∗ " 

pandas = " ∗ " 
gym = " ∗ " 

[ [ source ] ] 
name = " pypi " 
u r l = " https : / / pypi . org/ simple " 
v e r i f y _ s s l = t rue 

[ dev−packages] 

[ packages] 
numpy = " ∗ " 

class P r o b a b i l i t y D i s t r i b u t i o n ( t f . keras . Model ) : 
def c a l l ( s e l f , l o g i t s ) : 

return t f . squeeze ( t f . random. categorical ( l o g i t s , 1 ) , a x i s =−1) 
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6 class Model( t f . keras . Model ) : 
7 def _ _ i n i t _ _ ( s e l f , locations , products , number_of_actions , number_of_nodes=512 , number_of_extra_layers = 0 ) : 
8 super ( ) . _ _ i n i t _ _ ( ’ mlp_policy ’ ) 
9 

10 s e l f . number_of_extra_layers = number_of_extra_layers 
11 
12 s e l f . f l a t t e n = k l . F latten ( input_shape =( locations , products + 1 ) ) 
13 s e l f . hidden1 = k l . Dense( number_of_nodes , activation= ’ r e l u ’ ) 
14 s e l f . hidden2 = k l . Dense( number_of_nodes ,  activation= ’ r e l u ’ ) 
15 
16 # Extra layers 
17 i f s e l f . number_of_extra_layers == 1 : 
18 s e l f . hidden3 = k l . Dense( number_of_nodes , activation= ’ r e l u ’ ) 
19 e l i f s e l f . number_of_extra_layers == 2 : 
20 s e l f . hidden3  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
21 s e l f . hidden4  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
22 e l i f s e l f . number_of_extra_layers == 3 : 
23 s e l f . hidden3  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
24 s e l f . hidden4  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
25 s e l f . hidden5  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
26 e l i f s e l f . number_of_extra_layers == 4 : 
27 s e l f . hidden3  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
28 s e l f . hidden4  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
29 s e l f . hidden5  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
30 s e l f . hidden6  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
31 e l i f s e l f . number_of_extra_layers == 5 : 
32 s e l f . hidden3  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
33 s e l f . hidden4  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
34 s e l f . hidden5  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
35 s e l f . hidden6  =  k l . Dense( number_of_nodes ,   activation= ’ r e l u ’ ) 
36 s e l f . hidden7 = k l . Dense( number_of_nodes ,  activation= ’ r e l u ’ ) 
37 
38 s e l f . value = k l . Dense( 1 , name= ’ value ’ ) 
39 
40 s e l f . l o g i t s = k l . Dense( number_of_actions , name= ’ p o l i c y _ l o g i t s ’ ) 
41 s e l f . d i s t = P r o b a b i l i t y D i s t r i b u t i o n ( ) 
42 
43 def c a l l ( s e l f , inputs ) : 
44 x = t f . convert_to_tensor ( inputs , dtype= t f . f loat 32 ) 
45 
46 x = s e l f . f l a t t e n ( x ) 
47 
48 i f s e l f . number_of_extra_layers == 1 : 
49 x = s e l f . hidden3 ( x ) 
50 e l i f s e l f . number_of_extra_layers == 2 : 
51 x  =  s e l f . hidden3 ( x ) 
52 x  =  s e l f . hidden4 ( x ) 
53 e l i f s e l f . number_of_extra_layers == 3 : 
54 x  =  s e l f . hidden3 ( x ) 
55 x  =  s e l f . hidden4 ( x ) 
56 x  =  s e l f . hidden5 ( x ) 
57 e l i f s e l f . number_of_extra_layers == 4 : 
58 x  =  s e l f . hidden3 ( x ) 
59 x  =  s e l f . hidden4 ( x ) 
60 x  =  s e l f . hidden5 ( x ) 
61 x  =  s e l f . hidden6 ( x ) 
62 e l i f s e l f . number_of_extra_layers == 5 : 
63 x  =  s e l f . hidden3 ( x ) 
64 x  =  s e l f . hidden4 ( x ) 
65 x  =  s e l f . hidden5 ( x ) 
66 x  =  s e l f . hidden6 ( x ) 
67 x = s e l f . hidden7 ( x ) 
68 
69 hidden_logs = s e l f . hidden1 ( x ) 
70 hidden_vals = s e l f . hidden2 ( x ) 
71 
72 return s e l f . l o g i t s ( hidden_logs ) , s e l f . value ( hidden_vals ) 
73 
74 def action_value ( s e l f , obs ) : 
75 l o g i t s , value = s e l f . predict ( obs ) 
76 action = s e l f . d i s t . predict ( l o g i t s ) 
77 return np . squeeze ( action , a x i s = −1), np . squeeze ( value , a x i s =−1) 

 
Code segment 2: Neural network of A2C (model.py) 

 
 
 

The "ProbabilityDistribution" class is used to randomly sample a categorical action. 
One could need to make some changes to the input as this differs with each 
task environment. The flatten layer is used to transform the multidimensional array 
of products on locations to a flattened array each value representing one input 
node. The call function is used to run input trough the model and return both the 
Q-values and the value of the current state. The action_value function is a helper 
method used later. 
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Agent 
In order to test whether the agent learns two agents have been created, a baseline 
agent that makes random decisions and the actual agent. Using both agents and 
comparing the scores they are able to achieve one can assess whether or not the 
A2C agent performs better than when making random decisions. The baseline 
agent can be found in Code segment 3 and the A2C agent can be found in 
Code segment 3. 
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Code segment 3: Baseline agent that picks actions randomly (random_agent.py) 

Both agents are initialized using an instance of the Model class but the A2C agent 
can also take various (hyper)parameters. Such as the value function coefficient, 
entropy, gamma and the learning rate. The A2C agent includes a train method 
where the batch size and the number of updates can be passed as parameters. 
The _returns_advantages method that returns the advantages used during training. 
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urn ret rns , dv 
antage = r e t r n − 

ret u a antages 

r e t u r n s [ t ]  =  rewards [ t ]  +  s e l f . params[ ’gamma’ ]  ∗  r e t u r n s [ t  +  1 ]  ∗  ( 1  − dones [ t ] ) 
r e t u r s r n s = r e t u n [ : − 1 ] 
adv s u    s values 

f o r t in reversed ( range ( rewards . shape [ 0 ] ) ) : 
r e t u r n s = np . append(np . z e r o s _ l i k e ( rewards ) , next_value , a x i s =−1) 

return r e w a r d s _ l i s t 
 
def _returns_advantages ( s e l f , rewards , dones , values , next_value ) : 

l o s s e s = s e l f . model . train_on_batch ( observations , [ acts_and_advs , r e t u r n s ] ) 
acts_and_advs = np . concatenate ( [ actions [ : , None] , advs [ : , None] ] , a x i s =−1) 

_ , next_value  = s e l f . model . action_value (np . expand_dims( env . one_hot_encode ( ) , a x i s = 0 )) 
returns , advs = s e l f . _returns_advantages ( rewards , dones , values , next_value ) 

i f dones [ step ] : 
ep_rews . append( 0 . 0 ) 
r e w a r d s _ l i s t =  np . append( rewards_ l i s t , env . get_score ( ) ) 
next_obs = env . reset ( ) 

ep_rews[ −1] += rewards [ step ] 

import tensorflow as t f 
import numpy as np 
from progressbar import progressbar 
 
import tensorflow . keras . l o s s e s as k l s 
import tensorflow . keras . optimizers as ko 
 

class A2CAgent : 
def  _ _ i n i t _ _ ( s e l f ,  model ,  value = 0 . 5 ,  entropy = 0. 0001 , gamma= 0 . 95 ,  learning_ rate = 0 . 0007 ) : 

s e l f . params = { ’ value ’ : value , ’ entropy ’ : entropy , ’gamma’ : gamma} 
 

s e l f . model =  model 
s e l f . model . compile ( 

optimizer=ko . RMSprop( l r = learning_ rate ) , 
l o s s =[ s e l f . _ l o g i t s _ l o s s , s e l f . _ value_ loss ] 

) 
 

def t r a i n ( s e l f ,  env ,  batch_sz =32 ,  updates= 500 ): 
r e w a r d s _ l i s t = np . array ( [ ] ) 
actions = np . empty ( ( batch_sz , ) , dtype=np . int 32 ) 
rewards , dones , values = np . empty( ( 3 , batch_sz ) ) 
observations =  np . empty ( ( batch_sz , ) + env . one_hot_encode ( ) . shape) 
ep_rews = [ 0 . 0 ] 
env . reset ( ) 
next_obs = env . one_hot_encode ( ) 
f o r update in progressbar ( range ( updates ) ) : 

 
f o r step in range ( batch_sz ) : 

observations [ step ] = env . one_hot_encode ( ) . copy ( ) 
actions [ step ] , values [ step ] = s e l f . model . action_value (np . expand_dims( env . one_hot_encode ( ) , a x i s = 0 )) 
next_obs , rewards [ step ] , dones [ step ] , _ = env . step ( actions [ step ] ) 

class RandomAgent: 
def _ _ i n i t _ _ ( s e l f ,  model ) : 

s e l f . model = model 
 

def t e s t ( s e l f , env , render=True ) : 
obs , done, ep_reward = env . reset ( ) , False , 0 
while not done: 

action , _ = s e l f . model . action_value ( obs [None, : ] ) 
obs , reward , done, _ = env . step ( action ) 
ep_reward += reward 
i f render : 

env . render ( ) 
return ep_reward 
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Code segment 4: A2C agent implementation (agent.py) 

 
Environment 
The agent works with gym environments (HTTP://GYM.OPENAI.COM/DOCS/) created 
by OpenAI. It is possible however to create custom environments such as for the 
product allocation problem. Creating the (task) environment is completely de- 
pendent on the business process one wants to re-engineer using RL. This section 
focuses on the how to setup the environment and how to run the agent whereas 
section D highlights the implementation for the product allocation problem. 

 
The scaffolding needed for custom gym environments can be found in Code 
segment 5. 

Code segment 5: The scaffolding for a custom gym environment 

The setup file is presented in Code segment 6. Registering the environment is 
presented in Code 7, the identifier is used by the agent to initialize the environment. 

 
1 
2 
3 

from setuptools import setup 
 

setup (name= ’gym_custom ’ , 
4  version= ’ 0 . 0 . 1 ’ , 
5  i n s t a l l _ r e q u i r e s =[ ’gym’ ] 
6 )  

Code segment 6: gym-custom/setup.py 
 

Code segment 7: gym-custom/gym_custom/ init .py 
 

    from  gym_custom . envs . custom_env  import CustomEnv  

Code segment 8: gym-custom/gym_custom/envs/ init .py 

The custom environment file presented in Code segment 9 shows the minimal class 
setup. The init . method initializes the environment, the step method takes the 
an integer that represents on of all possible actions. The reset method is used to 

README.md 
setup . py 
gym_custom/ 

_ _ i n i t _ _ . py 
envs/ 

_ _ i n i t _ _ . py 
custom_env . py 

gym−custom/ 

id = ’ custom−v0 ’ , 
r e g i s t e r ( 
 

entry_ point= ’gym_custom . envs : CustomEnv ’ , 
) 

from gym. envs . r e g i s t r a t i o n import r e g i s t e r 

def t e s t ( s e l f , env , render=True ) : 
env . reset ( ) 
done, ep_reward = False , 0 
while not done: 

action , _ = s e l f . model . action_value (np . expand_dims( env . one_hot_encode ( ) , a x i s = 0 )) 
obs , reward , done, _ = env . step ( action ) 
ep_reward += reward 
i f render : 

env . render ( ) 
p r i n t ( env . get_score ( ) ) 
return ep_reward 

 
def _ value_ loss ( s e l f , returns , value ) : 

return s e l f . params[ ’ value ’ ] ∗ k l s . mean_squared_error ( returns , value ) 

def _ l o g i t s _ l o s s ( s e l f , acts_and_advs , l o g i t s ) : 

weighted_sparse_ce = k l s . SparseCategoricalCrossentropy ( f rom_ logits=True ) actions 
= t f . cast ( actions , t f . int 32 ) 
p o l i c y _ l o s s = weighted_sparse_ce ( actions , l o g i t s , sample_weight=advantages) 
entropy_ loss = k l s . categorical_crossentropy ( l o g i t s , l o g i t s , f rom_ logits=True ) 
return p o l i c y _ l o s s − s e l f . params[ ’ entropy ’ ] ∗ entropy_ loss 

actions , advantages = t f . s p l i t ( acts_and_advs , 2 , a x i s =−1) 

http://gym.openai.com/DOCS/)
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class S l o t t i n g (gym. Env ) : 
metadata = { ’ render . modes’ : [ ’human’ ] } 

 
. . . 

 
def get_score ( s e l f , show_output=False , save_score= False ) : 

reward = 0 
penalty = 0 

 
. . . # Running each of the below methods to calculate the rewards and penalties . 

return f l o a t ( reward − penalty ) 

def check_sdf ( s e l f ) : 
r e s u l t _ 1 ,   r e s u l t _ 2 ,   r e s u l t _ 3  =  0 ,  0 ,  0 

 
#   For  each  product ,   get  the  locations . 
f o r product_index , product in s e l f . products . i t e r r o w s ( ) : 

sdf_day_1 , sdf_day_2 , sdf_day_3 = product [ ’ SDF (+ 1 ) ’ ] , product [ ’ SDF (+ 2 ) ’ ] , product [ ’ SDF (+ 3 ) ’ ] 
f o r location_index , location in s e l f . locations [ s e l f . locations [ ’ Slotted currently ’ ] == product_index ] 

. i t e r r o w s ( ) : 
i f location [ ’ Flow rack ’ ] and product [ ’ U n i t s i n flow rack ’ ] : 

sdf_day_1 −= s e l f . additions_ f low_ rack ∗ product [ ’ U n i t s i n flow rack ’ ] 

sdf_day_3 −= s e l f . additions_ f low_ rack ∗ product [ ’ U n i t s i n flow rack ’ ] 
else 

sdf_day_2 −= s e l f . additions_ f low_ rack ∗ product [ ’ U n i t s i n flow rack ’ ] 

: 
sdf_day_1 −= s e l f . additions_ pallet_ location ∗ product [ ’ U n i t s per pallet ’ ] 
sdf_day_2 −= s e l f . additions_ pallet_ location ∗ product [ ’ U n i t s per pallet ’ ] 
sdf_day_3 −= s e l f . additions_ pallet_ location ∗ product [ ’ U n i t s per pallet ’ ] 

reset the environment to its initial state or - depending on the goal of the agent - a 
random state. The render method is used to represent the environment, this could 
be a table or a GUI. When the gym environment is created, the environment can 
be installed using the following command "pip install -e .". 
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Code segment 9: The scaffolding for a custom gym environment 
 
 

Usage 
So far the universal A2C agent is discussed, in this section the usage of the agent is 
elaborated using the product allocation problem. This includes the custom slotting 
environments as well as the files to train and test the agents. 

 
Slotting environment 
This section shows what the product allocation environment looks like. And how the 
results of the agent throughout this thesis were obtained. Three environments were 
created for the slotting puzzle. Version 1 is for the sequential agent whereas version 
2 and 3 are for the semi- and fully-autonomous agent types. The distinction was 
made because the set of actions for each agent differs. The get_score function for 
the environments was the same and can be found in Code segment 10. Whereas 
the sequential agent needs to keep track of its last slotted location, the semi is 
only finished when a decision is made for each location. The fully-autonomous 
agent on the other hand decides when it is finished. 
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31 i f sdf_day_1 <= 0 : 
32  r e s u l t _ 1 += 1 
33 i f sdf_day_2 <= 0 : 
34  r e s u l t _ 2 += 1 
35 i f sdf_day_3 <= 0 : 

import gym 
from gym import error , spaces , u t i l s 
from gym. u t i l s import seeding 

 
class CustomEnv(gym. Env ) : 

metadata = { ’ render . modes’ : [ ’human’ ] } 
 

def _ _ i n i t _ _ ( s e l f ) : 
. . . 

def step ( s e l f , action ) : 
. . . 

def reset ( s e l f ) : 
. . . 

def render ( s e l f , mode= ’human’ , close= False ) : 
. . . 
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36 r e s u l t _ 3 += 1 
37 
38 return r e s u l t _ 1 ,  r e s u l t _ 2 ,  r e s u l t _ 3 
39 
40 def check_free_locations ( s e l f ) : 
41 return s e l f . locations [ ’ Slotted current ly ’ ] . t o l i s t ( ) . count ( ’  ’ ) 
42 
43 def check_products_slotted ( s e l f ) : 
44 result_ a , result_ b , result_ c , r e s u l t _ d = 0 , 0 , 0 , 0 
45 f o r index , product in s e l f . products . i t e r r o w s ( ) : 
46 i f index in s e l f . locations [ ’ Slotted current ly ’ ] . t o l i s t ( ) : 
47 i f product [ ’ Stacking group ’ ] == ’A’ : 
48 r e s u l t _ a += 1 
49 e l i f product [ ’ Stacking group ’ ] == ’ B ’ : 
50 r e s u l t _ b += 1 
51 e l i f product [ ’ Stacking group ’ ] == ’C’ : 
52 r e s u l t _ c += 1 
53 else : 
54 r e s u l t _ d += 1 
55 p r i n t ( result_ a , result_ b , result_ c , r e s u l t _ d ) 
56 return  result_ a ,  result_ b ,  result_ c ,  r e s u l t _ d 
57 
58 def check_products_not_slotted ( s e l f ) : 
59 r e s u l t = 0 
60 f o r index , product in s e l f . products . i t e r r o w s ( ) : 
61 i f index not in s e l f . locations [ ’ Slotted current ly ’ ] . t o l i s t ( ) : 
62 r e s u l t += 1 
63 return r e s u l t 
64 
65 def check_movements( s e l f ) : 
66 r e s u l t = 0 
67 f o r index , location in s e l f . locations . i t e r r o w s ( ) : 
68 i f location [ ’ Slotted i n i t i a l l y ’ ] != location [ ’ Slotted current ly ’ ] : 
69 r e s u l t += 1 
70 return r e s u l t 
71 
72 def check_facing_locations ( s e l f ) : 
73 r e s u l t = 0 
74 f o r index , product in s e l f . products . i t e r r o w s ( ) : 
75 number_of_occurrences = s e l f . locations [ ’ Slotted current ly ’ ] . t o l i s t ( ) . count ( index ) 
76 
77 i f number_of_occurrences > 1 : 
78 occurrences = s e l f . locations . index [ s e l f . locations [ ’ Slotted current ly ’ ]  ==  index ] . t o l i s t ( ) 
79 
80 f o r  o  in range ( len ( occurrences ) 1 ) : 
81 i f s e l f . locations [ ’ Next location ’ ] [ occurrences [ o ] ] != occurrences [ o + 1 ] : 
82 r e s u l t += 1 
83 return r e s u l t 
84 
85 def check_stacking_class ( s e l f ) : 
86 r e s u l t = 0 
87 
88 stacking_ class = 0 
89 l i st_ of_ products_ found = [ ] 
90 
91 f o r index , location in s e l f . locations [ s e l f . locations [ ’ Slotted current ly ’ ] != ’ ’ ] . i t e r r o w s ( ) : 
92 i f location [ ’ Slotted current ly ’ ] not in l i st_ of_ products_ found : 
93 l i st_ of_ products_ found += [ location [ ’ Slotted current ly ’ ] ] 
94 
95 current_ stacking_ class = s e l f . products [ ’ Stacking class ’ ] [ location [ ’ Slotted current ly ’ ] ] 
96 i f current_ stacking_ class < stacking_ class : 
97 r e s u l t += 1 
98 else : 
99 stacking_ class = current_ stacking_ class 

100 return r e s u l t 
101 
102 def check_stacking_group ( s e l f ) : 
103 r e s u l t = 0 
104 
105 stacking_group = ’A’ 
106 l i st_ of_ products_ found = [ ] 
107 
108 f o r index , location in  s e l f . locations [ s e l f . locations [ ’ Slotted  current ly ’ ]  !=  ’  ’ ] . i t e r r o w s ( ) : 
109 
110 i f location [ ’ Slotted current ly ’ ] not in l i st_ of_ products_ found : 
111 l i st_ of_ products_ found += [ location [ ’ Slotted current ly ’ ] ] 
112 
113 new_stacking_group = stacking_group 
114 current_stacking_group = s e l f . products [ ’ Stacking group ’ ] [ location [ ’ Slotted current ly ’ ] ] 
115 i f stacking_group == ’A’ : 
116 i f current_stacking_group == ’ B ’ : 
117 new_stacking_group = ’ B ’ 
118 e l i f current_stacking_group == ’C’ : 
119 new_stacking_group = ’C’ 
120 e l i f current_stacking_group == ’D’ : 
121 new_stacking_group = ’AD’ 
122 e l i f stacking_group == ’AD’ : 
123 i f current_stacking_group == ’A’ : 
124 r e s u l t += 1 
125 else : 
126 i f current_stacking_group == ’ B ’ : 
127 new_stacking_group = ’ B ’ 
128 e l i f current_stacking_group == ’C’ : 
129 new_stacking_group = ’C’ 
130 e l i f stacking_group == ’ B ’ : 
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131 
132 
133 

i f current_stacking_group == ’A’ : 
r e s u l t += 1 

else : 
134  i f current_stacking_group == ’C’ : 
135  new_stacking_group = ’C’ 
136  e l i f current_stacking_group == ’D’ : 
137  new_stacking_group = ’BD ’ 
138  e l i f stacking_group == ’BD ’ : 
139  i f current_stacking_group == ’A’ or current_stacking_group == ’ B ’ : 
140  r e s u l t += 1 
141  else : 
142  i f current_stacking_group == ’C’ : 
143  new_stacking_group = ’C’ 
144  e l i f stacking_group == ’C’ : 
145  i f current_stacking_group == ’A’ or current_stacking_group == ’ B ’ : 
146  r e s u l t += 1 
147  else : 
148  i f current_stacking_group == ’D’ : 
149  new_stacking_group = ’CD’ 
150  else : 
151  i f current_stacking_group != ’D’ : 
152  r e s u l t += 1 
153   

154  stacking_group = new_stacking_group 
155  return r e s u l t 
156   

157 . . .  

Code segment 10: The reward function 

Training the agent requires a Python file that initializes the model, the agent and 
one of the three environments. In Code segment 11 the file is depicted that was 
used to train the agent for the product allocation. Based on the reward function 
the agent got either immediate or sparse rewards. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 

facings_not_adjacent = 15 
stacking_ group_ violation = 15 
s tacking_ class_ v io lat ion = 10 
 
REWARDS = { 

’ Product s lotted (A) ’ : product_a_slotted , 
. . . 
’ Matching SDF (+ 3 ) ’ : matching_sdf_3 

} 
 
PENALTIES = { 

’ Product not s lotted ’ : product_not_slotted , 
. . . 
’ Stacking class v i o l a t i o n ’ : s tacking_ class_ v iolation 

} 
 
MAX_ADDITIONS_PER_FLOW_RACK_PER_DAY = 2 
MAX_ADDITIONS_PER_PALLET_LOCATION_PER_DAY = 7 
 
. . . 

 
locations = . . . # Load locations from CSV f i l e 
products = . . . # Load products from CSV f i l e 

# 512 
# 0 
# 0 . 5 
# 0.0001 
# 0 . 95 
# 0.0007 

# Hyperparameters 
number_of_nodes = 512 
hidden_layers =  0 
value = 0 . 5 
entropy = 0 . 5 
gamma = 0 . 95 
learning_ rate = 0.005 

 
product_a_slotted = 15 
product_b_slotted = 15 
product_c_slotted = 15 
product_d_slotted  = 15 
f ree_ locations = 2 
matching_sdf_1 = 15 
matching_sdf_2  =  10 
matching_sdf_3 = 5 
 
product_not_slotted = 20 
movement = 1 

# Reward function : sparse or immediate 
reward_function = ’ immediate ’ 
 
# Basic variables 
scenario = ’A’ 
updates = 100 
batch_size = 10 
save_model = True 

# Agent type : sequential , semi−autonomous or f u l l y −autonomous 
agent = ’ sequential ’ 

. . . 
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93 

Code segment 11: The script used for training the agent 

. . . 
 

# Create the s l o t t i n g environment 
env = gym. make( agent_type , 

reward_function=reward_function , 
directory= directory , 
locations= locations , 
products=products , 
rewards=REWARDS, 
penalties=PENALTIES , 
additions_ f low_ rack=MAX_ADDITIONS_PER_FLOW_RACK_PER_DAY , 
additions_ pallet_ location=MAX_ADDITIONS_PER_PALLET_LOCATION_PER_DAY) env 

. get_score ( show_output=True ) 

model = Model( locations=len ( env . locations ) , 
products=len ( env . products ) , 
number_of_actions=len ( env . actions ) , 
number_of_nodes=number_of_nodes , 
number_of_extra_layers=hidden_layers ) 

 
# A2C agent 
agent = A2CAgent( model , value=value , entropy=entropy , gamma=gamma, learning_ rate= learning_ rate ) 

rewards = agent . t r a i n ( env , updates=updates , batch_sz=batch_size ) 

# Saving the model weights . 
i f save_model : 

model . save_weights ( directory + " /model . h5 " ) 
 

# Saving the r e s u l t s 
. . . 

 
agent . t e s t ( env) 
env . save ( ) 
f inal_ score = env . get_score ( show_output=True ) 
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