

The adoption of reinforcement learning
in the logistics industry: A case study

at a large international retailer

MSc Business Information Technology

M.W.T. Gemmink

Master thesis

The adoption of reinforcement learning in
the logistics industry: A case study at a

large international retailer
November 2019

Author
Name M.W.T. Gemmink (Martijn)
Programme MSc Business Information Technology
Institute University of Twente

PO Box 217
7500 AE Enschede
The Netherlands

Email address M.W.T.GEMMINK@ALUMNUS.UTWENTE.NL

Graduation committee
First supervisor Dr. Maria-Eugenia Iacob

Department of Industrial Engineering and Business
Information Systems
University of Twente, Enschede, The Netherlands
M.E.IACOB@UTWENTE.NL

Second supervisor Dr. Marten van Sinderen

Faculty of Electrical Engineering, Mathematics and
Computer Science
University of Twente, Enschede, The Netherlands
M.J.VANSINDEREN@UTWENTE.NL

Company supervisor Pieter Meints MSc.

Logistics Support
Albert Heijn, Zaandam, The Netherlands
PIETER.MEINTS@AH.NL

Daily supervisor Ing. Jean Paul Sebastian Piest MSCM

Department of Industrial Engineering and Business
Information Systems
University of Twente, Enschede, The Netherlands
J.P.S.PIEST@UTWENTE.NL

mailto:M.W.T.GEMMINK@ALUMNUS.UTWENTE.NL
mailto:M.E.IACOB@UTWENTE.NL
mailto:M.J.VANSINDEREN@UTWENTE.NL
mailto:PIETER.MEINTS@AH.NL
mailto:J.P.S.PIEST@UTWENTE.NL

Preface

Whereas supervised and unsupervised learning has already reached widespread
adoption within the logistics industry, reinforcement learning remains largely un-
charted territory. Reinforcement learning is particularly interesting as agents can
learn based on experience in a real-world or simulated environment. Current
applications of the technique focuses primarily on games, however reinforcement
learning could also be implemented within the business processes of logistic or-
ganizations. Because no clear and concise model for reinforcement learning
adoption exists, this thesis is aimed at developing one. The main research question
is therefore:

How can logistic organizations effectively assess and adopt reinforcement learn-
ing into their business processes?

Conducting exploratory research and a literature review formed the basis for
a business process model aimed at logistic organizations in order to implement
reinforcement learning. The exploratory research was an attempt to design and
develop a reinforcement learning agent that could solve (a part of) the product
allocation problem within the warehouses of Albert Heijn, also called slotting. The
agent successfully learned how to allocate products according to the require-
ments as prioritized by the company. The insights of both the literature body and
the creation of the agent were used to create the model to re-engineer business
processes in the logistics industry using reinforcement learning.

The model was validated using expert opinions and the performance of the agent
gives logistic organizations an idea about whether and how to use reinforcement
learning in their business processes. The agent achieves high scores in the product
allocation problem, but members of the Logistics Support department are still able
to outperform the agent. Using intelligence amplification however, the cooper-

Management summary

ation between the agent and the operational employees, the performance in
terms of time and score of the slotting increased.

The contribution of this thesis to practice is that the model supports AI novice and
AI ready departments within logistic organizations to re-engineer their business
processes using reinforcement learning. Because these organizations have limited
skills to implement a reinforced agent themselves, an example agent is provided
that is ready to be used and experiment with. The scientific relevance is twofold.
Current adoption models lack the unique determinants for artificial intelligence
and reinforcement learning, the methodology of this research could alleviate
this problem for future research. Secondly, this research also indicates that using
intelligence amplification, agents using reinforcement learning also benefit from
the cooperation between a human and the agent. The model can be considered
a first step in taking reinforcement learning beyond simple games and towards
actual business processes.

Utrecht, 15 November, 2019

Dear reader,

This thesis concludes my master Business Information Technology at the University
of Twente. Little over 6 years ago I started my bachelor at this beautiful campus
in Enschede and I’ve never regretted the decision to study at the UT ever since.
Starting in 2013, the bachelor Business IT - featuring a valuable combination of
computer science and management courses - brought me to where I am today.
In those years I have been developing my personal, academic and professional
skills. I have made a lot of friends during my time as a student and I cherish many
unforgettable memories such as a study tour to South East Asia.

I would like to thank the people who were important during the writing of this
thesis. First of all, I would like to thank my supervisors Maria Iacob, Marten van
Sinderen and Sebastian Piest, for guiding me in writing this thesis and all the valu-
able feedback they have provided. As my daily supervisor, Sebastian always
found the time to discuss my progress which really helped me in tackling issues and
keep moving forward, thanks Sebastian! I would also like to thank Pieter Meints
for his contribution and feedback during the project as my company supervisor
at Albert Heijn. I always felt a member of the Logistics Support team and that
really motivated me during the writing of the thesis. I really enjoyed having the
opportunity to take a look at the logistic operations of Albert Heijn. Finally, I would
like to thank my girlfriend, Niké, my family and friends for always supporting me
throughout my studies. I could not have done it without them.

I wish you pleasant reading,

Martijn Gemmink

Acknowledgement

2.1 The engineering cycle [46] .. 27
2.2 Research methodology ... 28
2.3 The literature selection process, based on Wolfswinkel et al. [47] 29

3.1 Definitions of AI in four dimensions [35] ... 35
3.2 Artificial Intelligence overview [6] ... 36
3.3 Agents interact with environments through sensors and actuators [35] 37
3.4 Schematic diagram of a simple reflex agent [35] ... 38
3.5 Schematic diagram of a model-based reflex agent [35]............................. 39
3.6 Schematic diagram of a goal-based agent [35] .. 39
3.7 Schematic diagram of a utility-based agent [35] ... 40
3.8 A general learning agent [35] ... 40
3.9 Representation of states and transitions [35] ... 41
3.10 Representation of a node inside a neural network 42
3.11 The most common activation functions ... 43
3.12 A neural network .. 43
3.13 A small neural network including the weights.. 43
3.14 Reinforcement learning, derived from the MDP .. 47
3.15 Differences between Q-table and the Q-network 51
3.16 The Actor-Critic architecture [4] ... 52

4.1 Technology Acceptance Model [12, 13] ... 56
4.2 Diffusion of Innovations (DOI) [33] ... 57
4.3 Unified Theory of Acceptance and Use of Technology (UTAUT) [42] 58
4.4 The technology-organization-environment (TOE) framework [16] 59

List of figures

4.5 Decision making according to problem complexity and workload [17] . . 59
4.6 Machine learning taxonomies [6] ... 61
4.7 Decision tree for cost reduction [6] ... 61
4.8 Decision tree for insight generation [6] ... 62
4.9 Level of AI competency [31] ... 63

5.1 The task environment and the scenarios .. 71
5.2 Sample container with correct stacking group and class 73
5.3 The neural network of A2C .. 76
5.4 Results for semi autonomous agent for scenario A .. 77
5.5 Results for fully autonomous agent for scenario A ... 77
5.6 Results based on sparse and immediate rewards for scenario A 78
5.7 Results based on sparse and immediate rewards for scenario B 78
5.8 Baseline results for scenario A .. 79
5.9 Baseline results for scenario B .. 79
5.10 Rewards with various batch sizes for scenario A .. 79
5.11 Rewards with various batch sizes for scenario B ... 79
5.12 Rewards with 0, 2 and 4 hidden layers in scenario A 80
5.13 Rewards with 0, 2 and 4 hidden layers in scenario B 80
5.14 Rewards with 256, 512 and 1024 nodes per layer in scenario A 81
5.15 Rewards with 256, 512 and 1024 nodes per layer in scenario B 81
5.16 Rewards with various learning rates in scenario A 82
5.17 Rewards with various learning rates in scenario B .. 82
5.18 Rewards with various entropy values in scenario A 82
5.19 Rewards with various entropy values in scenario B 82
5.20 Rewards with various gamma values in scenario A 84
5.21 Rewards with various gamma values in scenario B 84
5.22 The circuit for scenario E .. 86
5.23 Rewards of the agent with optimized parameters in scenario A 89
5.24 Rewards of the agent with optimized parameters in scenario B 89
5.25 Rewards of the agent with optimized parameters in scenario C 89

6.1 The positioning of the model. .. 94

7.1 Workload for team lead ... 95
7.2 A method for RL-driven business process re-engineering 96
7.3 Overview of RL algorithms ... 99
7.4 Workload for the development team ... 100
7.5 Workload for the operational employees... 102

8.1 Validation for each phase in the model ... 107
8.2 The activities also performed during the exploratory research 108

C.1 The circuit for scenario A ... 129
C.2 The circuit for scenario B ... 131

C.3 The circuit for scenario C .. 133

1.1 The report contents .. 26

2.1 The concept matrix by Webster & Watson [45] .. 30
2.2 The advanced concept matrix by Wolfswinkel et al. [47] 30

3.1 Initial Q-learning table ... 50
3.2 Q-learning table after training .. 50

5.1 Locations and types of DCs of Albert Heijn .. 66
5.2 An example of the locations for scenario A ... 71
5.3 An example of the products for scenario A ... 72
5.4 The scoreboard for the slotting as shown in Table 5.2 74
5.5 One hot encoding on 3 products ... 75
5.6 Default parameters for the A2C algorithm ... 78
5.7 Optimized (hyper)parameters used per scenario ... 84
5.8 Products to slot in scenario E ... 86
5.9 Locations and optimal slotting for scenario E .. 87
5.10 Performance of the participants for different actors and scenarios 88

A.1 Number of results for the reinforcement learning SLR 124
A.2 The concept matrix for deep learning and reinforced learning 125
A.3 AI concepts .. 126
B.1 Number of results for technology adoption SLR ... 127
B.2 The concept matrix for technology adoption ... 128
B.3 Technology adoption concepts ... 128
C.1 Products to slot in scenario A.. 129

List of tables

C.2 Locations and optimal slotting for scenario A .. 130
C.3 The scoreboard for the optimal slotting in scenario A 130
C.4 Products to slot in scenario B .. 131
C.5 Locations and optimal slotting for scenario B ... 132
C.6 The scoreboard for the optimal slotting in scenario B 132
C.7 The scoreboard for the optimal slotting in scenario C 133
C.8 Products to slot in scenario C ... 134
C.9 Locations and optimal slotting for scenario C .. 135

A2C Advantange Actor-Critic
AGV Autonomous guided vehicle
AH Albert Heijn
AI Artificial intelligence
BPMN Business process model and notation
CNN Convolutional neural network
DC Distribution center
DDQN Double Deep Q-Network
DNN Deep neural network
DOI Diffusion of innovations
DP Dynamic programming
DQN Deep Q-Network
GUI Graphical user interface
GPU Graphics processing unit
IA Intelligence amplification
IT Information technology
LS Logistics Support
LSP Logistic service provider
MDP Markov decision process
ML Machine learning
NN Neural network
RL Reinforced learning
RNN Recurrent neural network
SLR Structured literature review
TAM Technology acceptance model
TD Temporal-difference
TOE Technology-organization-environment
TPB Theory of planned behavior
TRA Theory of reasoned action
UTAUT Unified theory of acceptance and use of technology
WMS Warehouse Management System

Abbreviations

 Preface

Management summary ...5

Acknowledgement .. 7

List of figures .. 11

List of tables ... 14

Abbreviations .. 16

1 Introduction ... 23
1.1 Background 24
1.1.1 Albert Heijn .. 24
1.1.2 Ahold Delhaize ... 24

1.2 Motivation 25
1.3 Problem definition 25
1.4 Research goal 25
1.5 Research questions 25
1.6 Report contents 26

I Initiation

Contents

2 Methodology .. 27
2.1 Problem investigation 28
2.1.1 Structured literature review ... 28
2.1.2 Exploratory research .. 30
2.2 Treatment design 31
2.3 Treatment validation 31
2.3.1 Single-case mechanism experiments .. 31
2.3.2 Expert opinions .. 31

 II Problem investigation

3 Reinforcement learning ... 35

3.1 Artificial intelligence 36
3.1.1 Intelligent agents .. 36
3.1.2 Task environments ... 37
3.1.3 Agent programs ... 38
3.1.4 Problem-solving .. 41
3.1.5 Learning techniques .. 41
3.2 Deep learning 42
3.2.1 Neural networks .. 42
3.2.2 The need for DL ... 45
3.3 Reinforcement learning 46
3.3.1 Core concepts of RL .. 46
3.3.2 RL approaches ... 48
3.3.3 RL algorithms ... 49
3.3.4 Challenges of RL ... 53

4 Technology adoption ... 55
4.1 Adoption models 55
4.1.1 Technology Acceptance Model (TAM)... 55
4.1.2 Diffusion of Innovations (DOI) .. 56
4.1.3 Unified Theory of Acceptance and Use of Technology (UTAUT) 58
4.1.4 Technology-Organization-Environment (TOE) ... 58
4.2 Intelligence amplification 59
4.3 AI adoption in logistics 59
4.4 AI in practice 60
4.5 Maturity models 62

5 Exploratory research .. 65
5.1 Background 65
5.1.1 Replenishment .. 65
5.1.2 Distribution centers ... 65
5.1.3 Logistics Support ... 66
5.1.4 Transport .. 66
5.1.5 Stores .. 67

5.2 AI maturity at the department 67
5.2.1 Team day at the university .. 67
5.2.2 Demonstration agent .. 68
5.3 Identifying a suitable business process 68
5.3.1 Estimating the number of order pickers per shift .. 69
5.3.2 Optimal rack locations .. 69
5.3.3 Slotting ... 70
5.4 Automating the slotting process 70
5.4.1 Task environment .. 70
5.4.2 Reward function ... 72
5.4.3 Implementation .. 74
5.5 Intelligence amplification 84
5.5.1 Experiment setup .. 85
5.5.2 Results .. 87
5.6 Conclusion 87

III Treatment design

6 Requirements specification .

93
6.1 Stakeholders 93
6.2 Requirements 94
6.2.1 Functional requirements . 94
6.2.2 Non-functional requirements . 94
6.3 Positioning of the artifact 94

7 Model . 95
7.1 Team lead 95
7.1.1 Identify suitable business processes . 97
7.1.2 Design task environment . 97
7.1.3 Assess RL approach and method . 98
7.1.4 Requirements engineering . 99
7.2 Development team 99
7.2.1 Develop and test a small simulation environment . 100
7.2.2 Implement a real-world scenario . 100
7.2.3 Tuning the (hyper)parameters . 100
7.2.4 Implementing the agent (and fallback) . 101
7.3 Operations 101
7.3.1 Evaluating the task environment . 102
7.3.2 Evaluating the impact on the operation . 102
7.3.3 Start with updated business process . 103

IV

Treatment validation

8 Model validation ... 107
8.1 Validation setup 107

8.2 Team lead expert opinion 108

 V Closure

9 Conclusion .. 113
9.1 Limitations and future work 116
9.2 Recommendations for Albert Heijn 116

 Postface

 References . 119
 Appendices . 123
A Literature review results of reinforcement learning 123
B Literature review results of technology adoption 126
C Scenarios 129
D Advantage Actor-Critic agent Python implementation 136

I Initiation

1 Introduction .. 23
1.1 Background
1.2 Motivation
1.3 Problem definition
1.4 Research goal
1.5 Research questions
1.6 Report contents

2 Methodology .. 27
2.1 Problem investigation
2.2 Treatment design
2.3 Treatment validation

1. Introduction

Modern artificial intelligence enables computers not only to solve problems based
on human instructions but to solve them on their own [15]. Many believe that the
future of AI is filled with potential and that it will become an important part of the
logistics industry [6]. According to McKinsey the AI revolution is not in its infancy, but
the majority of the economic impact is yet to come [9]. In recent years artificial
intelligence has been studied intensively leading to a much better understanding
of the technology. Artificial intelligence research has been around for 50 years and
marketing has reached an all-time high [20, 26]. Because of modern computer
power and large amounts of data, artificial intelligence is becoming increasingly
interesting for logistic organizations that now can (partially) automate tasks that
require a decent level of intelligence [6, 9].

"Artificial intelligence (AI) is once again set to thrive; unlike past waves of hype and
disillusionment, today’s current technology, business, and societal conditions have
never been more favorable to widespread use and adoption of AI." [6].

Almost everything we currently hear from in the field is thanks to deep learning.
Deep learning works by using statistics to find patterns in data and it has proven
to be successful in recent years. The sudden rise and fall of different techniques
have characterized research for a long time and an analysis of more than sixteen
thousand papers suggests the same could happen to deep learning in the near
future. The research also identified upcoming trends in the field, one that keeps
coming up is reinforced learning1. Reinforced learning gained momentum in Oc-
tober 2015, when DeepMind’s AlphaGo defeated the world champion in a game
of Go. With reinforced learning an agent is trained using punishments and rewards,
much like how humans learn in the real world [19].

1Reinforced and reinforcement learning are used interchangeably throughout the thesis, but are

the same.

24 Chapter 1. Introduction

AI has become more favorable than ever before because of Big Data, cloud
computing and processing power. AI is becoming an integral part of the future
of logistic organizations. AI has the potential to "fundamentally extend human
efficiency in terms of reach, quality, and speed by eliminating mundane and
routine work" [6]. Logistics is becoming an AI-driven industry and there are already
many examples such as autonomous guided vehicles (AGVs), intelligent robot
sorting, predictive demand, capacity planning and many more [6].

1.1 Background
This research has been conducted over an eight month period at the Logistics
Support department of Albert Heijn. The department ensures that the processes in
the distribution centers run smoothly.

1.1.1 Albert Heijn

The organization is named after its founder Albert Heijn (1865
– 1945). Albert Heijn took over the small grocery store of his
father Jan Heijn in Oostzaan, a municipality and a town in
the Zaanstreek, The Netherlands. A few years later Albert
Heijn opened its second store in Purmerend and started with
its own production companies which roasted coffee beans
and baked cookies to be sold in the expanding number of
stores. In 1927 the number of stores reached 107. Albert
Heijn passed away in 1945 and three years later the com-
pany went public.

Albert Heijn wanted its stores to be accessible to both the wealthy and the poor, his
motto was: “The everyday affordable, the special accessible.” The mission of Albert
Heijn is to offer all ingredients for a better life. Bringing good, safe, sustainable and
healthy food to millions of customers. The stores have a wide range of high-quality
items and friendly, helpful service, long opening hours and online ordering enable
customers to shop for groceries around the clock. Albert Heijn (AH) is currently
the largest and oldest food retailer in the Netherlands. Albert Heijn has more
than a thousand shops across the Netherlands and another 40 in Belgium. The
organization is owned by Ahold Delhaize.

1.1.2 Ahold Delhaize

Ahold Delhaize is the result of a merger in 2016 be-
tween the Dutch Ahold and the Belgian Delhaize.
The headquarters of the organization is located
in Zaandam, The Netherlands. The organization
operates retail companies across 11 countries, em-
ploying over 372 thousand people in more than 6
thousand stores. Last year in 2018, the net sales
were 62.8 billion euro. Every week 50 million cus-
tomers are served at the supermarkets, drug stores, convenience stores and liquor
stores in one of the 19 local brands of Ahold Delhaize, of which Albert Heijn is one.

1.2 Motivation 25

1.2 Motivation
Whereas supervised and unsupervised learning have been studied extensively,
reinforcement learning kept a low profile over the years. Recently reinforcement
learning gained momentum due to breakthroughs such as defeating the world
champion in a game of Go. There is not much literature connecting reinforcement
learning to practice that goes beyond games and towards actual implementation
in a large industry such as logistics.

1.3 Problem definition
Logistic organizations lack the tools to effectively identify whether (parts) of their
business processes are suitable for reinforcement learning. But even when these
processes are identified, the implementation is not as straightforward as supervised
and unsupervised learning.

1.4 Research goal
This thesis aims at easing the adoption of reinforcement learning in the logistics
industry with a clear and concise model that is on a business process level that
helps these organizations to effectively implement reinforcement learning.

1.5 Research questions
Based on the problem statement the main research question that has been identi-
fied is:

RQ How can logistic organizations effectively assess and adopt reinforce-

ment learning into their business processes?

To be able to answer the research question the following sub-questions have been
formulated:

SQ1 What is the current state of artificial intelligence and especially deep and

reinforcement learning in the logistics industry?

SQ2 What are the most important artificial intelligence adoption models and
frameworks in the logistics industry?

SQ3 Which types of business processes are suitable for reinforcement learn-

ing?

SQ4 Which steps help logistic organizations in successfully implementing rein-
forcement learning?

SQ5 To what extent can the developed model help logistic organizations in

the adoption of reinforcement learning?

26 Chapter 1. Introduction

1.6 Report contents
The structure of this thesis is build around the different phases of the Design Sci-
ence Methodology of Wieringa [46]. First the background information on the two
main topics, technology adoption and reinforcement learning is considered in the
problem investigation. The exploratory research implementation of reinforcement
learning at Albert Heijn is also considered in Part II. Part III and IV are part of the
design cycle in designing and validation the treatment. Part V includes both the
conclusion and the discussion. In Table 1.1 the part(s) and their relation to the
research questions is depicted.

Question Type Methodology Part(s)
SQ1 Knowledge Problem investigation Part II
SQ2 Knowledge Problem investigation Part II
SQ3 Design Exploratory research / treatment design Part II & III
SQ4 Design Exploratory research / treatment design Part III & IV
SQ5 Design Treatment validation Part IV

Table 1.1: The report contents

2. Methodology

The method of research will be based on the Design Science Methodology of
Wieringa [46], which is about studying an artifact in context. The goal is to de-
velop a model that helps logistic organizations to effectively adopt reinforcement
learning. This design problem, according to Wieringa, can be formulated as follows:

Improve the adoption of reinforcement learning in logistic organizations by de-
signing a model that is on a business process level in order to effectively utilize its
potential [46].

The engineering cycle is a rational problem-solving process which contains the
task to carry out design science research. The engineering cycle is depicted in
Figure 2.1. The cycle provides a logical structure of tasks and tells us that in order
to justify a treatment we must understand the problem [46]. In design science,
only the first three tasks of the engineering cycle are performed, starting with the
problem investigation.

Treatment implementation Implementation evaluation /
Problem investigation

Treatment validation Treatment design

Figure 2.1: The engineering cycle [46]

For this thesis an approach will be taken that consists of the design cycle appended
by exploratory research that has similarities to systems engineering, see Figure 2.2.

28 Chapter 2. Methodology

Exploratory research

First a number of iterations are performed in an attempt to adopt reinforcement
learning at the Logistics Support department of Albert Heijn, the largest food
retailer in the Netherlands. The exploratory research together with a structured
literature review will form a solid foundation for the problem investigation discussed
in section 2.1. The next step is the treatment design, in which the requirements for
the to be developed model are specified and the treatment(s) are discussed. The
treatment design can be found in section 2.2. The final step of the design cycle is
the treatment validation discussed in section 2.3.

Treatment implementation Implementation evaluation /
Problem investigation

Treatment validation Treatment design

Figure 2.2: Research methodology

2.1 Problem investigation
The task is to investigate a problematic situation, starting with identifying, describ-
ing, explaining and evaluating the problem to be treated [46]. The problem
investigation is twofold, both a structured literature review (SLR) found in section
2.1.1 and exploratory research in section 2.1.2 is considered. The goal of the
exploratory research is to start the treatment design task with a strong literature
foundation and the experience of actually carrying out a reinforcement learning
adoption project at a large logistic organisation.

2.1.1 Structured literature review

This literature review aims to identify the problems, approaches, tools and applica-
tions of artificial intelligence and especially reinforcement learning as well as its
adoption in logistic organizations in an attempt to identify what hinders progress in
this regard. Both the scientific body as well as material from the logistics field will
be considered.

An effective literature review creates a firm foundation for advancing knowledge
[45]. First the literature search and selection will be discussed which also addresses
the structured literature review and how the literature will be reviewed. For both
main topics, a different search strategy was used.

2.1 Problem investigation 29

Literature search and selection

Based on the research questions two main top-
ics have been identified, reinforcement learn-
ing and technology adoption. Artificial intel-
ligence is huge and during the last 50 years
the field has become very disparate mak-
ing it difficult to grasp [8]. The field of
technology adoption and acceptance is on
the other side of the spectrum being much
more clear and concise. Because of the
nature of the fields two separate methodolo-
gies were used. The specifics of each re-
search method are discussed at the begin-
ning of appendix A and B. The method of
research for the structured literature review is
based on the guidelines of Kitchenham et
al. [22]. The two topics formed the basis
for a systematic literature review (SLR). A SLR
makes the review more valuable because it re-
quires a legitimization for every choice made
in the search process [47]. Before commenc-

Articles

Filter out
doubles

n1

Inclusion and
exclusion criteria

n2

Refine sample
based on title
and abstract

n3

Refine sample
based on full text

n4
Forward and

backward
citations

n5

ing with the review, first the sources have to
be identified. The following sources will be

Final
sample New articles?

used:

• Scopus WWW.SCOPUS.COM
• Web of Science WWW.WEBOFKNOWLEDGE.COM

Figure 2.3: The literature selec-
tion process, based on Wolf-
swinkel et al. [47]

• IEEE Explore WWW.IEEE.ORG/WEB/PUBLICATIONS/XPLORE
• Research Gate WWW.RESEARCHGATE.NET
• Springer Links WWW.SPRINGERLINK.COM
• Science Direct WWW.SCIENCEDIRECT.COM
• Google Scholar WWW.SCHOLAR.GOOGLE.COM

• University of Twente Library WWW.UTWENTE.NL/EN/LISA/LIBRARY

First Scopus and Web of Science were used for a preliminary search for the title,
keywords and abstract. The selection of the final sample will be based on the
selection process of Wolfswinkel et al. [47]. An iterative selection process that
starts with filtering out the doubles. For every topic there will be inclusion and
exclusion criteria that limits and improves the quality of articles found. From the
remaining sample the title and abstract will be read and when relevant, the full
text also. Forward and backward citations are used to evaluate the foundation on
which the author(s) statements are based and to find more relevant articles. The
literature selection process can be found in Figure 2.3.

Reviewing the literature

With the final selection of articles the next step is to review the literature and to
identify the key concepts that arise. Webster & Watson recommend using a con-
cept matrix when reviewing the articles, synthesizing the literature by discussing
each identified concept. The concept matrix can be found in Table 2.1.

http://www.scopus.com/
http://www.webofknowledge.com/
http://www.ieee.org/WEB/PUBLICATIONS/XPLORE
http://www.researchgate.net/
http://www.springerlink.com/
http://www.sciencedirect.com/
http://www.scholar.google.com/
http://www.utwente.nl/EN/LISA/LIBRARY

30 Chapter 2. Methodology

Articles Concepts
A B C D . . .

1 x x
2 x x

. . . x x

Table 2.1: The concept matrix by Webster & Watson [45]

Articles Concepts

A AB B C . . .
1 x x
2 x x

. . . x x

Table 2.2: The advanced concept matrix by Wolfswinkel et al. [47]

In order to expose potential relevant relations between concepts and their proper-
ties the concept matrix can be extended by merging concepts. Identifying what
concepts to merge is a continuous process during the analysis. The advanced
concept matrix proposed by Wolfswinkel et al. can be found in Table 2.2.

2.1.2 Exploratory research
The technology adoption models, combined with the specifications of reinforce-
ment learning from literature will be the starting point of a small engineering cycle
within the Logistics Support department of Albert Heijn. The goal of this exploratory
research is to explore to what extent reinforcement learning can be adopted.
The results of this exploratory research will be used as input for the model. The
exploratory research consists of three phases.

Identifying suitable business processes
Based on the determinants of reinforcement learning and the puzzles it is able to
solve one can identify which business processes are suitable for the technique.
Three potential business processes will be identified based on unstructured inter-
views with employees of the LS department. One business process will be picked
based on criteria defined before selecting the processes. The criteria are based
on the literature body of RL.

Implementation of reinforcement learning
In this phase an attempt will be made to automate (a part of) the business process
using reinforcement learning. Multiple experiments will be conducted to test
different algorithms in order to get an understanding about what their advantages
and drawbacks are in terms of performance and ease-of-use, starting with the
most basic algorithm and scaling up from there. The implementation attempt will
also give an idea about the performance of RL in a business process.

2.2 Treatment design 31

Adoption within the LS department
A single technical implementation is not sufficient for actual adoption, the organi-
zational aspects of the adoption of reinforcement learning need to be considered.
The aim is to determine what makes a logistic organization adopt a new tech-
nology such as artificial intelligence and in particular reinforcement learning. A
logbook will be kept on all actions taken and whether or not they contributed to
the adoption.

2.2 Treatment design

In this step of the design cycle the requirements are identified and how they
contribute to the goals of the artifact [46]. The requirements are defined based
on the experience gained by the exploratory implementation of RL in the LS
department. The validity of the treatment design will also be assessed.

2.3 Treatment validation

The final step is the validation of the model. The aim of the validation is to "develop
a design theory of an artifact in context that allows us to predict what would
happen if the artifact were transferred to its intended problem context" [46]. The
experimental research is also part of the validation. With the validation complete,
an assessment can be made to what extent the model is able to help logistics
organizations in adopting reinforcement learning into their business processes.
And secondly to what extent RL is able to solve the problems it faces. Finally the
limitations of the model and directions for future work are identified.

2.3.1 Single-case mechanism experiments

Single-case mechanism experiments are conducted for the exploratory implemen-
tation of a real-world business process at the LS department. These experiments
will be carried out with multiple types of agents and environments to assess if the
agents are able to perform in the business process identified in the exploratory
research.

2.3.2 Expert opinions

Both the exploratory implementation of RL in a business process and the model
itself will be validated by expert opinions. Employees of the LS department have
the ability to imagine how the developed agent will interact inside the business
process and what effects this would have. They will also validate whether the
model could help the LS department to effectively utilize reinforcement learning
into their business processes.

II Problem investigation

3 Reinforcement learning 35
3.1 Artificial intelligence
3.2 Deep learning
3.3 Reinforcement learning

4 Technology adoption 55
4.1 Adoption models
4.2 Intelligence amplification
4.3 AI adoption in logistics
4.4 AI in practice
4.5 Maturity models

5 Exploratory research 65
5.1 Background
5.2 AI maturity at the department
5.3 Identifying a suitable business process
5.4 Automating the slotting process
5.5 Intelligence amplification
5.6 Conclusion

3. Reinforcement learning

Reinforcement learning is a field within artificial intelligence. Intelligence is our
important ability to perceive, understand, predict and manipulate a world that is
far more complicated than ourselves. AI is not only concerned with understanding
but also with building intelligent entities. Definitions of AI can be categorized
in four categories, see Figure 3.1. The top dimensions are about reasoning and
the bottom ones address behaviour. The definitions on the left are concerned
with human performance whereas the right ones address rationality. A system
is considered rational when it does the "right thing", given what it knows. Russell
and Norvig define AI as the study of intelligent agents that receive percepts from
the environment and perform actions [35]. This chapter starts with the general
concept of AI, the importance of deep learning and finally dives into reinforcement
learning.

Figure 3.1: Definitions of AI in four dimensions [35]

36 Chapter 3. Reinforcement learning

3.1 Artificial intelligence
AI was first mentioned at a conference in July 1956, but research into the na-
ture of intelligence goes back to the Greeks and other philosophers [8]. In the
1980s researchers were finding out that creating AI was more complicated than
anticipated and many companies failed to deliver on their promises, leading to
the so-called "AI Winter" [8, 35]. Recently due to the greater use of the scientific
method in experimenting with and comparing approaches AI has advanced more
rapidly. Sub-fields of AI are more integrated and AI has found common ground
with other disciplines [35].

Deng et al. identified three main waves in the world of AI. The first wave in the
1960s was based on expert knowledge engineering - often symbolic logic rules -
on very narrow application domains. The second wave which came around in
the 1980s was based on machine learning or shallow learning due to the lack
of abstractions [15]. AI has seen a large resurgence over the past ten years and
deep learning - the current wave - is one of the most contributing factors [9]. This is
visualized in Figure 3.2. Other important factors are big data and technological
advances in creating general AI [48]. Currently we are able to create narrow
AI, which is able to solve specific problems, general AI is able to solve multiple
problems, like humans. The stage in which AI exceeds humans significantly super
AI can be reached [6].

Figure 3.2: Artificial Intelligence overview [6]

3.1.1 Intelligent agents
Agents help in representing, analyzing, designing and implementing complex
software systems [20]. According to Russel and Norvig: "An agent is anything that
can be viewed as perceiving its environment through sensors and acting upon that
environment trough actuators", this is visualized in Figure 3.3. The agent percepts
inputs from its sensors and the history of what the agent has perceived is called
the percept sequence. An agent’s behavior is described by the agent function
that maps any given percept sequence to an action. For complex problems this
will be a very large - often infinite - table so often there is a bound to the length of
sequences to consider. The agent program is the actual implementation of the
agent function [35].

3.1 Artificial intelligence 37

Figure 3.3: Agents interact with environments through sensors and actuators [35]

Rationality is an important concept in the book because it answers the question
whether an agent is good or bad, intelligent or stupid. Whether an agent is ra-
tional is assessed by considering the consequences of the agent’s behavior. The
definition of a rational agent, according to Russel and Norvig:

"For each possible percept sequence, a rational agent should select an action
that is expected to maximize its performance measure, given the evidence pro-
vided by the percept sequence and whatever built-in knowledge the agent has"
[35].

The environment states whether the agent’s actions were rational. It is difficult to
construct performance measures, both because "success" is often not clear. The
authors state that "it is better to design performance measures according to what
one actually wants in the environment, rather than according to how one thinks
the agent should behave". Rationality is not perfect, because there is a level of
uncertainty in the outcome. Omniscience is when the outcome is known before-
hand, but this is impossible in reality. Agents sometimes have to perform certain
actions to maximize the expected outcome, also called information gathering.
In uncharted territory an agent might also perform some exploration in order to
get familiar with the environment. The extent to which an agent is dependent
on prior knowledge rather than its own percepts tells something about its level of
autonomy [35].

3.1.2 Task environments

When designing an agent the environment needs to be specified as fully as pos-
sible. The authors define the task environment as the performance measure,
environment, actuators and sensors. An example of a performance measure for a
self-driving car is whether it is driving safe. The environment is the road, pedestrians
and other traffic. The actuators can be the gas and brake pedal. Finally the
sensors can be the cameras that register the road [35].

When describing a task environment the following dimensions need to be taken
into account:

38 Chapter 3. Reinforcement learning

Fully observable vs. partially observable: Whether the agent’s sensors give
the agent the complete state.
Single agent vs. multiagent: If the performance of an agent is dependent
on the behaviour of another, the task environment is multiagent. Agents can
both cooperate and compete to a certain level.
Deterministic vs. stochastic: When the next state of the environment is com-
pletely determined by the current state and the action by the agent, it is
deterministic.
Episodic vs. sequential: When an agent performs a single action and its
actions are based on previous ones, it is episodic. An agent’s short-term
actions in a sequential environment can have long-term consequences.
Static vs. dynamic: In static environments the environment does not change
while an agent is considering an action. Dynamic environments continuously
require the agent to take actions, even if it is still deciding.
Discrete vs. continuous: When the environment has a finite number of states
and potential actions, it is considered discrete. Continuous environments
handle environments that have infinite distinct states.

3.1.3 Agent programs

Russel and Norvig identify four basic kinds of agent programs, each program is
considered below.

Simple reflex agents
As the name implies this is the simplest type of agents. An agent selects actions
based only on the current percept, ignoring the percept history. Based on sensor
data and condition-action rules the agent takes actions. The schematic overview
of a simple reflex agent is shown in Figure 3.4. Simple reflex agents work best when
the task environment is fully observable [35].

Figure 3.4: Schematic diagram of a simple reflex agent [35]

Model-based reflex agents
Model-based reflex agents can handle partial observability because they keep
track of parts of the environment it cannot see. These agents maintain an internal
state based on the percept history. The agent requires knowledge to be encoded
into the agent program, how the environment evolves independently of the agent

•

•

•

•

•

•

3.1 Artificial intelligence 39

Figure 3.5: Schematic diagram of a model-based reflex agent [35]

Figure 3.6: Schematic diagram of a goal-based agent [35]

and how the agent’s own actions affect the world. A model is created that
attempts to describe the environment on which the agent decides its actions [35].
The model-based reflex agent is shown in Figure 3.5.

Goal-based agents
Having knowledge about the environment is not always sufficient to know what
to do. Here goal-based agents come into the equation. The agent has some
sort of goal that help in deciding an action that is desirable. The goal can be
straightforward when it is short term or immediately after an action but can be
complex when it is achieved in the long run [35]. The schematic representation of
a goal-based agent can be found in Figure 3.6.

Utility-based agents
In order to generate high-quality behaviour in most environments, goals are not
sufficient. Considering rationality, the goal does not always justify the means.
Utility-based agents therefore also take into account utility, which is essentially
an internalization of the performance measure. When multiple actions result
in the same goal or the goals are uncertain, a utility function can produce an
appropriate trade-off [35]. The schematic overview of a utility-based agent is
shown in Figure 3.7.

40 Chapter 3. Reinforcement learning

Figure 3.7: Schematic diagram of a utility-based agent [35]

Figure 3.8: A general learning agent [35]

Learning
Agents can improve through learning. In creating state-of-the-art systems the
preferred method is to build learning machines and then to teach them. Learning
also has the advantage that it is allows agents to operate in unknown environments.
The learning element is responsible for making improvements and the performance
element is responsible for selecting actions, the previously considered agent.
A fixed performance standard, called a critic, is used as an indication for the
learning element for the agent’s success. A learning agent could also have a
problem generator, which suggests actions that lead to new and informative
experiences. According to Russel and Norvig: "Learning in intelligent agents can
be summarized as a process of modification of each component of the agent
to bring the components into closer agreement with the available feedback
information, thereby improving the overall performance of the agent" [35]. A
general learning agent is visualized in Figure 3.8.

Representation of states and transitions
So far different agent programs have been discussed but not the representation
of the state and its transitions. In an atomic representation each state of the
world has no internal structure. A factored representation splits up each state

3.1 Artificial intelligence 41

Figure 3.9: Representation of states and transitions [35]

into a fixed set of variables and attributes, each of which can have a value. In
a factored representation states can share attributes. Structured representation
is the most expressive of the three because it can explicitly describe various and
varying relationships [35]. The representation of states and transitions in increasing
expressiveness are shown in Figure 3.9.

Most of the time the more expressive language is much more concise, however
learning and reasoning become more complex as the expressive power of the
representation increases. "To gain the benefits of expressive representations while
avoiding their drawbacks, intelligent systems for the real world may need to oper-
ate at all points along the axis simultaneously" [35].

3.1.4 Problem-solving

This section deals with the numerous ways in which agents can achieve its goals
when no single action will do. Simple reflex agents cannot operate effectively in
environments which are large and where it would take too long to learn. Goal-
based agents consider actions and their outcomes however before searching for
a solution, a goal as well as the problem must be identified. The decisions which
the agent needs to make to reach the goal state is called the solution. An agent
searches for the optimal (or most shallow) path towards the solution. There are
numerous uniformed and informed search methods. Uninformed search is when
only the problem definition is considered whereas informed search also considers
the solution [35].

Searching for a solution works only for a single category of problems. When the
problem is observable, deterministic in which the solution is a number of actions.
When the problem is does not meet that requirements, different search techniques
are needed. Online search is when an agent is faced with a state space that is
unknown and must be explored [35].

In an environment in which an agent is trying to plan ahead and other agents are
planning against us, for example in a game of chess, again other strategies are
needed which work in competitive environments [35].

3.1.5 Learning techniques

There are multiple techniques to make an agent learn. Learning improves the
agent performance on future tasks after making observations about the world.

42 Chapter 3. Reinforcement learning

· ∗
→ ∗ → ∗

Any component of an agent can be improved, the improvements depend on four
major factors:

• Which component to improve.
• What prior knowledge the agent has.
• The representation of the component and its data.
• The feedback available to learn from.

There are three types of feedback that correspond to the three types of learning.
Unsupervised learning means the agent is learning patterns even though no
feedback is supplied, this often involves clustering. In supervised learning the agent
observes inputs and the corresponding outputs and maps those in a function. The
distinction is not always clear in real-world cases, e.g. semi-supervised learning in
which is a combination of both supervised and unsupervised learning [35]. The
final type of feedback is reinforcement learning, discussed in detail in section 3.3.

3.2 Deep learning

The "deep" in deep learning (DL) means that it uses one or multiple neural networks
[35]. In this section neural networks are introduced as well as its importance in
terms of recent developments.

3.2.1 Neural networks

As mentioned before a neural network consists of neurons (or nodes). A node
takes inputs, performs some calculations and produces an output. An example of
a node with two inputs x1 and x2 can be found in Figure 3.10 [35]. The calculation
that happens in the example are:

1. Each input is multiplied by the weight. So x1 x1 w1 and x2 x2 w2.
2. The weighted inputs are added together with a bias b such that (x1 w1)+ (x2 w2)+ b.
3. Finally the sum is passed through an activation function in such a way that

y = f (x1 ∗ w1 + x2 ∗ w2 + b).

The activation function is used to turn an un-
bounded input into an output that has a
predictable form. There are multiple acti-
vation functions but one of the most com-
mon is the Sigmoid function. The Sigmoid
function only outputs numbers in the range
(0, 1), it compresses values [35]. There are
multiple activation functions, an overview of
the most common can be found in Figure
3.11.

Figure 3.10: Representation of a
node inside a neural network

A neural network (NN) consists of many connected neurons, each producing a
sequence of real-valued activations. The first layer is called the input layer which
is a number of neurons which get activated through sensors perceiving the envi-
ronment. When the input neurons get activated the other layer(s) get activated
using weighted connections from the previous layer. The credit assignment is the

x1 w1

y
x2 w2

3.2 Deep learning 43

Figure 3.11: The most common activation functions

problem of finding the right weights that make the NN work properly. Deep learn-
ing (DL) is the process of creating NNs with many layers and accurately assigning
credit to those layers [37]. An example of a neural network can be found in Figure
3.12. A hidden layer is any layer between the input and the output, the number of
hidden layers can vary [35].

Input layer Output
layer

Hidden
x1 layers y1

h1 h3

x2 y2

h2 h4

x3 y3

Figure 3.12: A neural network

Figure 3.13: A small neural network including the weights

Imagine a small neural network with two nodes in the input layer, one node in the
output layer and one hidden layer in between with two nodes. The resulting neural
network is depicted in Figure 3.13. Consider w = [0.5, 1, 0.8, 0.4, 0.3, 0.8], so w1 = 0.5
and w6 = 0.8. The processes of passing inputs forward in order to get an output is
called feedforward. b = [1, 0.1, 6] which are the respective biases in each node [35].
If we input x = [4, 2] into the network with Sigmoid sa(x) with a = 1 as its activation

x1 w1 h1 w5
w2

w3
y

x2 w4 h2 w6

44 Chapter 3. Reinforcement learning

∂w 1

n

function the result can be calculated using the following equations:

h1 = f ((w1 ∗ x1)+ (w2 ∗ x2)+ b1)

= f ((0.5 ∗ 4)+ (1 ∗ 2)+ 1)
= f (5)
= 0.99

h2 = f ((w3 ∗ x1)+ (w4 ∗ x2)+ b2)

= f ((0.8 ∗ 4)+ (0.4 ∗ 2)+ 0.1)
= f (4.1)
= 0.98

y = f ((w5 ∗ h1)+ (w6 ∗ h2)+ b3)

= f ((0.3 ∗ 0.99)+ (0.8 ∗ 0.98)+ 6)
= f (7.08)
= 0.99

When training a neural network, one attempts to minimize the loss. The lower the
loss, the better are the predictions the network makes. A loss function often used is
the mean squared error (MSE) [35]. The MSE can be denoted as:

MSE = 1 (y y 2

∑
i=1

true − pred)

n = number of samples
y = the variable being predicted

ytrue = the actual variable
ypred = the predicted variable output from the network

With a clear goal of minimizing the loss we can write the loss as a multivariable
function L(w1, w2, w3, w4, w5, w6, b1, b2, b3). When we want to tweak for example w2
and want to know how the loss L would change we need the partial derivative
 ∂L [35]. Using the chain rule, this partial derivative can be written in the following
formula:

∂L ∂L ∂ypred

∂w1
=

∂ypred
∗

∂L

∂w1
∂ypred ∂h1

=
∂ypred

∗
 ∂h1

∗
∂w1

The system of calculating partial derivatives starting from the back is called back-
propagation. Using backpropagation one knows how to change the weights and
biases in a network to make a better prediction. To train a network an optimization
algorithm called stochastic gradient descent (SGD) is used that determines exactly
how much the weights and biases need to change [35]. The update equation of

n

3.2 Deep learning 45

∂w1

SGD looks like:

w1 ← w1 − η ∂L

The learning rate is denoted as η which controls how fast we train. These steps are
repeated for every sample we train on and slowly the network will improve [35].

3.2.2 The need for DL

DL already plays an important role in our lives and this is constantly increasing.
Some of the application areas currently using DL are cancer diagnosis, custom
made medicine, self-driving cars and forecasting. DL is about using optimizing
techniques in order improve the accuracy and reduce the training time of neural
networks. Shrestha et al. reviewed multiple optimization methods for different types
of architectures. Their review includes convolutional neural networks (CNN), deep
residual neural networks (DRN), recurrent neural networks (RNN) and reinforced
learning (RL) [39]. The building blocks for simple NNs have been around for many
decades but only recently they have attracted wide-spread attention by outper-
forming alternative methods. There are two types of NNs: feed-forward (FNN) and
recurrent (RNN), both of which have been successful in the past. RNNs are the
deepest of all NNs but also require much more powerful computers that FNNs
because of their cyclic nature [37]. A feed-forward network has connections in
one directions whereas a recurrent network feeds outputs back to its inputs. Neural
networks are often used when more than one output needs to be considered [35].

When shallow neural networks were not capable in replicating human intelligence
the machine learning community started focusing on DL [32]. It is not always clear
when and if DL will outperform shallow NNs. Similarly there is no clear winner on
which type of NN is best [39]. Poggio et al. reviewed and extended the theoretical
literature about the conditions under which DL can be exponentially better than
shallow learning [30].

An application in literature is enhancing transportation systems using DL. Wang et
al. provide a comprehensive survey that focuses on the utilization of DL models
to enhance the intelligence of the transportation systems. The authors identified
which type of DL was best suited for the task at hand. Based on their results the
authors identified a common pattern in applying DL models, starting with a simple
DNN and slowly moving towards more sophisticated models. To reduce overfitting,
a common problem on DL models, a useful strategy is to apply dropout which
randomly ignores parameters during training [43]. Sze et al. wrote a review paper
about the efficient processing of deep neural networks. DNNs deliver high accu-
racy on many AI tasks however the computational complexity and therefore its
costs are high. The authors highlight important benchmarking metrics for practi-
tioners to use [40].

DL has proven to be extremely successful however big challenges await. DL
currently lacks interpretability and often require much more training than humans
[15]. In the near future Deep Neural Networks will be able to - just like humans -
actively perceive patterns by sequentially direction attention to relevant parts of

46 Chapter 3. Reinforcement learning

the data [37]. To tackle these problems both fundamental and applied research
is needed, a new wave will not come without one or more breakthroughs in
this regard. One of the potential breakthroughs Deng et al. mention is deep
reinforced learning [15]. Garnelo et al. argue that a key objective for DL is to
develop architectures capable of discovering objects and relations in raw data
and to be able to represent them in ways that are useful for downstream processing
[18]. During the next 5 to 10 years human level AI could be constructed, a thought
based on thorough analysis of current rends in DL and brain reverse engineering
[38].

3.3 Reinforcement learning
By using reinforced learning, an agent can learn what to do in the absence of
feedback of a teacher. Without feedback, the agent does not know what actions
are good and bad. Instead of learning an agent good and bad actions, one
could also let it explore on its own and provide a reward when the agent attempts
a good action. Rewards in environments can come at the end, immediately
or anywhere in between depending on the problem. When playing a game of
chess, it is difficult to reward individual actions but it is clear that checkmate is
the goal [35]. Reinforced learning (RL) is a technique that can learn to predict
consequences of behaviour in environments in order to optimize its actions [14].

"The task of reinforced learning is to use observed rewards to learn an optimal (or
nearly optimal) policy for the environment." [35]

Reinforced learning encompasses all of AI, an agent is placed in an environment
and must learn to behave successfully. Reinforced learning can be passive, where
the policy is fixed and the task is to learn the utilities of states. Another possibility
is active learning, where the agent must also learn what to do. In order for an
agent to gain a lot of valuable experience exploration is used. An example of
exploring is when an agent takes an action it has not taken before to learn. An
agent that explores more contributes to the learning and therefore increasing its
rewards in the future. Exploitation is when an agent takes an action that - given its
current knowledge - maximizes its utility [35]. RL is trained based on a simulation
and therefore the underlying models used by most RL algorithms assume noise-free
state information, whereas in practice the feedback is buried in noise and prone
to delays [10]. Despite the difficulties deep reinforced learning enables scaling to
problems that were previously unthinkable [3].

3.3.1 Core concepts of RL

In this section the core building blocks of reinforcement learning will be discussed,
these concepts are used for RL algorithms and are not mutually exclusive.

Markov decision process
Reinforced learning is based on the Markov decision process (MDP) mathemati-
cal framework to tackle its problems. The MDP - introduced by Bellman in 1957 -
produces an easy framework to model complex problems. The framework is used
to model decision making in situations where outcomes are controlled partially
random and partially by the decision maker [5].

3.3 Reinforcement learning 47

• |

A MDP is denoted as (S, A, Pa, Ra) [4], where:

S is the set of states.
A is the set of actions.
Pa(s, st) = Pr(st+1 = st st = s, at = a) is the probability that the action a in state s
at time t will result in state st.

• Ra(s, st) is the reward received by the transition from state s to st, by action a.

The problem of a MDP is to find an
optimal policy. A function π(s) that
specifies which action to take in
state s. The MDP in which an agent
is interacting can be found in Fig-
ure 3.14. An action can be any-
thing from a chess move or control-
ling a steering wheel. Rewards can
be sparse, for example in a game
of chess when they will come at
the end or immediate in a game
of pong. With sparse rewards it is
often difficult to untangle what ac-
tions contributed to the final result.

Figure 3.14: Reinforcement learning, derived from
the MDP

In order to reward immediate rewards more than potential future rewards a dis-
count factor γ can be used. The learning rate α is often used as a step size to
determine to what extent newly acquired information overwrites old information.
The horizon H tells us something about whether actions can take on forever or at a
number of timesteps, it describes when the agent is finished [35].

Reinforced learning can solve MDPs without explicit specification of the transition
probabilities. In reinforcement learning, instead of explicit specification of the
transition probabilities, the transition probabilities are accessed through a simulator
that is typically restarted many times from a uniformly random initial state [35].

Dynamic programming
Dynamic programming (DP) refers to a collection of algorithms that can be used
to compute an optimal policy given a perfect model, such as a MDP [35]. DP uses
a value function to structure and organize the search for good policies. Policy
evaluation refers to the iterative computation of value functions for a given policy.
And policy improvement is the computation of an improved policy given the value
function for that policy. When combining these methods we obtain policy iteration
and value iteration, the most popular DP methods. DP is not very practical for
large problems, but are quite efficient for solving deterministic MDPs [4].

Monte Carlo methods
This learning method estimates value functions and discovers optimal policies
without having complete knowledge about the environment. Mote Carlo methods
only require experiences consisting of states, actions and rewards from interactions
with the (simulated) environment. As Andrew et al. put it: "Learning from actual

•
•

48 Chapter 3. Reinforcement learning

experience is striking because it requires no prior knowledge of the environment’s
dynamics, yet is can still attain optimal behaviour". The methods are solving
RL problems based on averaging sample returns. The underlying concept of
Monte Carlo methods is to use randomness to solve problems that might be
deterministic in principle. In off-policy methods, the agent also explores, but learns
a deterministic policy that can be different from the policy followed. With on-policy
methods the agent attempts to find the best policy that still explores [4].

Temporal-difference learning

Solving the underlying MDP is not the only way to tackle a learning problem. An-
other way is to use temporal-difference (TD) learning. TD is a model-free approach
to learning how to predict a quantity that depends on future values. TD is a com-
bination of Monte Carlo and dynamic programming (DP) ideas. TD methods can
learn directly from raw experience without a model. TD methods learn based on
estimates, "they learn a guess from a guess" also called boostrapping. Imagine
updating Fridays weather forecast made on Monday when it is Wednesday and a
much more accurate forecast can be made. With Monte Carlo methods one must
wait until the end of an episode, because only then is the return known, whereas
with TD methods one need wait only one timestep. In Monte Carlo methods in
which experimental actions are taken, the learning is slowed down significantly.
This is not such a big problem in TD methods because they learn after every action.
Even though TD methods learn from immediate actions they still converge. It is still
not clear whether Monte Carlo or TD methods converge faster but in practice TD
methods usually converge faster [4].

3.3.2 RL approaches

There are numerous approaches used for RL, most can be categorized in the
following approaches:

1. Model-based learning, use a model to find actions that have maximum

rewards.
2. Value learning, estimating how good it is to take an action or reach a certain

state.
3. Policy gradient, deriving a policy directly.

These approaches are not mutually exclusive but provide a way to classify the RL
algorithms discussed in section 3.3.3.

Model-based RL

The idea of model-based RL is using a model and cost function to identify the
optimal path of actions. A model predicts the next state after taking an action
based on a model that is being optimized. Model-based RL agents are reflex-
agents in which sensory input is processed and results in an action. Model-based
RL has a strong competitive edge over other RL approaches because of its sample
efficiency. The drawback however is that is is limited to the task it is designed for
[35]. If physical simulation takes time, for example in robotics, model-based RL is a
popular approach.

3.3 Reinforcement learning 49

Value learning
This model-free method uses experience to learn directly based on state/action
values or policies without the need of a world model [14]. Model-free methods
are not as efficient as the model-based methods, because information from the
environment is being combined with previous beliefs about state values, rather
than being used directly. Sometimes it is difficult to determine which actions are
responsible for the final result. For example when the rules of a game are clear,
the optimal strategy cannot easily be determined. Using the Monte Carlo method
one can calculate the value of a certain action or episode. Using DP the policy
can be improved [35].

Policy gradient
As the name suggests, this approach focuses on the policy. Many human controls
are very intuitive, without thorough planning finding the maximum return. Policy
gradient works by making better rewards more likely to happen [4]. The reward
function is defined as:

J(θ) = ∑ dπ (s)Vπ (s) = ∑ dπ (s) ∑ πθ (a|s)Qπ (s, a)

s∈S s∈S a∈A

dπ (s) is the stationary distribution of a MDP. Policy-based methods are very useful in
continuous tasks. Using gradient ascent, one can move θ towards the direction
suggested by the gradient ∇θ J(θ) to find the best θ for πθ that results in the highest
return [4]. In order to compute ∇θ J(θ) the policy gradient theorem is used, which
simplifies the gradient computation:

∇θ J(θ) = ∇θ ∑ Qπ (s, a)πθ (a|s)

a∈A

3.3.3 RL algorithms
Because of the huge array of RL algorithms in the literature only the ones used in
this thesis are discussed.

Q-learning
In 1989 Watkins introduced Q-learning, which is a form of model-free reinforce-
ment learning. Model-free reinforcement learning means that after learning, it
can be viewed as a method of asynchronous DP. Q-learning enabled agents to
learn how to act optimally in a fixed MDP by experiencing the consequences
of actions without having to know the environment the agent is acting in. The
learning process works by having an agent trying different actions in a particular
state and evaluating the rewards and or penalties it receives, which is similar to the
TD method. The rewards and penalties the agent receives can be infrequent and
delayed. A long delayed reward can make it difficult to untangle the information
and traceback what sequence of actions contributed to the reward [44].

The "Q" in Q-learning stands for the quality of an action taken in a given state.
These states and their actions can be visualized in a so-called Q-table. An example
of an initial Q-table with x states and 4 actions is depicted in Table 3.1 and after
training in Table 3.2.

50 Chapter 3. Reinforcement learning

∗

 a1 a2 a3 a4

s0 0 0 0 0
.
.
.
sx 0 0 0 0

Table 3.1: Initial Q-learning table

The algorithm calculates the quality of an action and updates the value inside the
Q-table. At each timestep t the agents selects an action at and observes reward
rt and enters a new state st+1. The new Q-value is calculated using the following
formula:

Qnew(st , at) ← (1 − α) ∗ Q(st , at)+ α ∗ (rt + γ ∗ Qmax(st+1,a))

The formula uses TD learning to look one step ahead by taking into account the
maximum Q-value in the next state st+1 [44].

 a1 a2 a3 a4

s0 0.1 0.3 6.4 -8.5
.
.
.
sx -2.3 0.4 5 -3.1

Table 3.2: Q-learning table after training

Deep Q-learning (DQN)
Q-learning is not very scalable and a different approach was needed to accom-
modate large and possibly even infinite state/action spaces. This is because the
Q-table stores every state/action pair, imagine an environment with 10.000 states
and 1.000 actions per state, the Q-table needs to hold 10 million cells. Here Deep
Q-learning (DQN) comes in, because we can use a neural network to approx-
imate the quality of an action [27]. To take advantage of the way neural nets
work the Q-values are calculated for a specific state (called the Q-network), not a
state-action pair. This is visualized in Figure 3.15.

DQN works by storing all past experiences of an agent in memory, determine the
next action by the Q-network and by minimizing the loss function. The loss function
in DQN is the mean squared error (MSE) of the TD part (rt + γ Qmax(st+1,a)) in the for-
mula. Because Rt+1 is the actual reward, the network - through backpropagation -
is going to converge.

In order for agents to converge faster, a technique often used is experience replay.
Which basically lets the agent reuse previous experiences in order to learn more
from them. An important requirement for experience replay is that the laws of the

3.3 Reinforcement learning 51

Figure 3.15: Differences between Q-table and the Q-network

environment do not change that result in past experiences becoming irrelevant
[25]. Because some experiences are more valuable than others, a way to improve
DQN agents is by using prioritized experience replay. Whereas in experience replay
experiences are uniformly sampled from from the experience memory, prioritized
experience replay attempts to replay important transitions more frequently. Schaul
et al. extended DQN with prioritized experience replay and outperformed the
standard DQN in 41 out of 49 games tested [36].

Although its great performance, DQN suffers from overestimating the Q-values.
This is because the calculation of Qnew consists of its own prediction. It is therefore
chasing a moving target which makes it slower to converge and because the
prediction is based on the Qmax - the highest predicted next Q-value - it is over-
estimating. In an attempt to counter this problem, the Double Deep Q-learning
algorithm (DDQN) was introduced by Van Hasselt et al. in 2016. The algorithm
basically works with two neural networks, one for action selection and one for
action evaluation. At an interval of n the evaluation NN is set equal to the ac-
tion selection NN. Qmax is therefore not changing allowing for faster convergence.
DDQN outperformed DQN on almost all 57 games tested by the authors [41].

Actor-Critic
Whereas policy gradient methods only update at the end of an episode, Actor-
Critic methods uses TD learning to update at each timestep. This prevents that
both good and bad actions are averaged as good when the final result is good.
As a consequence policy gradients need a lot of samples. Actor-critic combines
both policy gradients as well as the value function to increase efficiency [4].

The policy structure is known as the actor, because it is used to select actions,
and the estimated value function is known as the critic, because it criticizes the
actions made by the actor. Learning is always on-policy: the critic must learn

Q(s, a1)

Q(s, a2)

Q(s, a3)

Q(s, a4)

Q(s, a2)

st
at

e
st

at
e

ac
tio

n

52 Chapter 3. Reinforcement learning

• |
|

about and critique whatever policy is currently being followed by the actor [4].
This is visualized in Figure 3.16.

Figure 3.16: The Actor-Critic architecture [4]

Actor-critic methods consist of two models, which may optionally share parame-
ters:

Critic updates the value function parameters w and depending on the algo-
rithm it could be action-value Qw(a s) or state-value Vw(s).
Actor updates the policy parameters θ for πθ (a s), in the direction suggested
by the critic.

Advantage Actor-Critic (A2C)
The advantage Actor-Critic (A2C) is a synchronous version of its asynchronous
counterpart and is based on the Actor-Critic approach. A2C is an attempt to
reduce the noisy gradients and the high variance of the basic actor-critic method.
The actor-critic algorithm works with an advantage instead of the value function:

A(s, a) = Q(s, a) − V (s)

The advantage is the Q-value for a particular state minus the average value of that
state. This function therefore tells us the improvement compared to the average
action taken at that state. If A(s, a) > 0 the gradient is pushed in that direction,
opposite when A(s, a) < 0. The advantage function can be estimated using the TD
error, denoted as:

A(s, a) = r + γV (st) − V (s)

A3C focuses on parallel training in which multiple actors are trained in parallel and
get synced with global parameters after a number of timesteps [28]. Although
being faster, because actors train independently on an "outdated" version of the
global parameters the update is not as efficient compared to A2C. A2C also has

•

3.3 Reinforcement learning 53

shown to utilize GPUs more efficiently and work better with small batch sizes while
achieving similar or better performance than A3C [28].

3.3.4 Challenges of RL

Bus¸oniu et al. wrote a review that covers AI approaches to RL, from the viewpoint
of the control engineer. The authors argue that stability is the main concern and
that deep RL has been extremely promising in in recent years. This is because RL
is particularly powerful in solving the function approximation and thus increasing
accuracy [10].

There are numerous challenges in the field of RL from a neurobiology viewpoint
according to Dayan et al. Model-free methods are less efficient than model-based
methods but provide greater flexibility. RL agents focus on exploitation - using past
experiences to optimize outcomes - however exploration could also be beneficial
to find potential benefits that increase the long-term gain. This balancing act
however is very difficult. The same holds for the degree in which new information
should overwrite old information [14]. RL is not as stable as its supervised and
unsupervised counterparts because it is presented with different experiences
every time it is trained, its reproducibility therefore is low. Good practice therefore
is to have fallbacks and check in place to verify the agent has learned the correct
strategy [10].

4. Technology adoption

Information technology (IT) is considered to be an essential tool in improving the
competitiveness of organizations. In order to utilize the potential benefits of IT it
needs to be adopted [34]. The explosive rise in technologies revolutionized the way
in which businesses operate and the pace at which these activities take place.
These innovations continue to have a profound impact on business processes
across the entire organization [26].

4.1 Adoption models
In this section numerous adoption models are discussed that can be considered
the foundation of the technology adoption field.

4.1.1 Technology Acceptance Model (TAM)

In 1967 Ajzen and Fishbein introduced the Theory of Reasoned Action (TRA) based
on the theory that a person’s behaviour is a function of his behavioural intention
[2]. TRA suggests that stronger intentions lead to increased effort to perform the
behaviour, which increases the likelihood for the behaviour to be performed. Tech-
nology adoption is concerned with the action of using technology and which
elements influence this usage. Information systems can only improve organizational
performance if used, hence the importance of a technology acceptance model.
TRA is general and not designed to apply only to computer usage behaviour,
therefore Davis et al. proposed a model tailored to computer usage. found that
resistance of these systems by managers and professionals is a big problem. The
authors aimed at predicting people’s acceptance of computers from a measure
of intentions, therefore building on the theoretical basis of TRA. The intentions
considered were attitudes, subjective norms, perceived usefulness and perceived
ease of use. This resulted in the technology acceptance model (TAM) visualized
in Figure 4.1 [12]. A comparison was made on the two theoretical models and

56 Chapter 4. Technology adoption

resulted in the identification of a more powerful causal structure in predicting and
explaining user behaviour [13].

Figure 4.1: Technology Acceptance Model [12, 13]

In 1991 Moore et al. saw that in the technology adoption field there were a lot of
mixed and inconclusive outcomes. The authors considered the various perceptions
an individual may have towards an IT innovation [29]. Karahanna et al. conducted
a study to find out whether or not pre-adoption and post-adoption beliefs are
different. The authors also provide preliminary evidence suggesting that these are
indeed not the same [21].

4.1.2 Diffusion of Innovations (DOI)

Another angle at explaining, how, why and at what rate new ideas and technology
spread Rogers introduced the Diffusion of Innovations theory (DOI) [33]. Diffusion is
the process by which an innovation is communicated through certain channels
over time among the members of a social system. Diffusion is a kind of social
change, a process in which the structure and function of a social system changes.
When new ideas are invented, diffused, and are adopted or rejected, leading
to certain consequences, social change occurs. Diffusion can be both planned
and spontaneous but is often a combination of the two. Rogers distinguishes two
types of diffusion systems, centralized and decentralized. When a small number of
officials decide when and how to diffuse an innovation as well as to evaluate it,
the diffusion system is considered to be centralized. When potential adopters are
solely responsible for the diffusion of an innovation the system is considered to be
decentralized [33].

There are four elements in the DOI, the first being the innovation itself which is "an
idea, practice, or object that is perceived as new by an individual or other unit
of adoption". New does not imply new knowledge, someone may have known
about an innovation for some time but stills needs to develop an attitude towards
it and potentially adopt it. The characteristics as perceived by the members of a
social system are:

1. Relative advantage, the degree to which an innovation is perceived to be

better.

4.1 Adoption models 57

2. Compatibility, the degree to which an innovation is consistent with existing
values, the past and needs.

3. Complexity, the degree to which an innovation is perceived to be difficult.
4. Trailability, the degree to which an innovation may be experimented with on

a limited basis.
5. Observability, the degree to which the result of the innovation is visible to

others.

The second element are the communication channels, which are the means by
which the messages get from one individual to another. The information-exchange
relationship between the individuals determine whether and to what extent the
source will transmit the innovation to the receiver. Examples of channels are Social
Media for rapidly inform a big audience or a face-to-face exchange on an inter-
personal level. Most individuals make innovation adoption decisions based mainly
upon subjective evaluation, instead of a scientific evaluation. Primarily the very
first adopters also use a scientific approach to evaluate an innovation. The transfer
of an idea between individuals occur more frequently when they are alike, the
degree of homophily. One of the most distinctive problems in the communication
of innovations is that individuals are heterophilous. For example some people are
more technically competent than others, often leading to ineffective communi-
cation. However, without some degree of heterophily no diffusion can occur, as
there is no new information to exchange.

Figure 4.2: Diffusion of Innovations (DOI) [33]

Time is the third element
of the diffusion process, of-
ten measured in how long
it takes for a particular inno-
vation to reach a certain
amount of adopters. The
DOI is visualized in Figure
4.2.

The final element of the
DOI are the members of a
social system, which is de-
fined by Rogers et al. as
"a set of interrelated units
that are engaged in joint
problem solving to accom-
plish a common goal". Dif-
fusion occurs within a so-
cial system and the struc-
ture of the system consti-

tutes a boundary in which an innovation diffuses. The structure allows one to
predict behaviour to a certain degree and thus decreasing uncertainty [33].
Damanpour et al. used a sample of 1200 public organizations in the United States
and found that organizational characteristics and top managers’ attitudes toward
an innovation have a strong influence [11].

58 Chapter 4. Technology adoption

Figure 4.3: Unified Theory of Acceptance and Use of Technology (UTAUT) [42]

4.1.3 Unified Theory of Acceptance and Use of Technology (UTAUT)

TAM has been extensively studied and expanded but the most influential update
was the Unified Theory of Acceptance and Use of Technology (UTAUT model con-
sidered next. In 2003, there was already a huge array of information technology
acceptance models and Venkatesh et al. aimed at creating an unified view of
those models [42].

The authors compared the following eight models; TRA, TAM, the motivational
model, the theory of planned behaviour (TPB), a combination of TAM and TPB,
the model of PC utilization, DOI and the social cognitive theory. The models were
reviewed over a period of six months at four organizations in which their predictive
power was assessed.

Venkatesh et al. formulated the Unified Theory of Acceptance and Use of Technol-
ogy (UTAUT) which is visualized in Figure 4.3.

4.1.4 Technology-Organization-Environment (TOE)

The technology-organization-environment (TOE) framework was first mentioned
in Torznatzky and Fleischer’s The Processes of Technological Innovation in 1990.
Whereas the book describes the entire process of innovation, the focus will be on
the adoption chapter from DePietro et al. [16]. Since the book was published it
remains among the most prominent and widely used theories of innovation adop-
tion in organizations. The framework consists of three elements, the technological
context, the organizational context and the environmental context. The contexts
influence technological innovation, as shown in Figure 4.4.

4.2 Intelligence amplification 59

Figure 4.4: The technology-organization-environment (TOE) framework [16]

4.2 Intelligence amplification
In the core concept op AI, the
machine mimics and replaces the
cognitive abilities of the human
brain. Dobrkovic et al. argue that
there is a fundamental difference in
the type of tasks intelligent agents
excel at and the type of tasks hu-
mans do well. This difference is vi-
sualized in Figure 4.5. Dobrkovic et
al. define intelligence amplification
(IA) as "enhancing human decision
making abilities through a symbi-
otic relationship between a human
and an intelligent agent". When im-
plementing AI in business processes
it can be very helpful to identify the
type of task and whether or not an
AI agent is the way forward [17].

Figure 4.5: Decision making according to problem
complexity and workload [17]

4.3 AI adoption in logistics
Not every innovation can be considered equivalent, an over-simplification some-
times made in the past [33]. This is especially true for AI because it has the potential
to learn and develop intelligence that can imitate humans and solve complex
problems. Whereas previous literature primarily focused on the adoption of tech-
nologies, the specific determinants of AI adoption are easily overlooked. Mahroof
therefore aimed at exploring the barriers and opportunities of AI adoption con-
ducting a case study at the warehouse of a major food retailer. The focus of the
research was to explore the AI readiness of a large retailer from a human-centric

60 Chapter 4. Technology adoption

perspective. Using semi-structured interviews and TOE as the conceptual basis, the
opportunities and barriers of AI adoption in the warehouse were identified. TOE is
often extended with ’perceived benefits’ which refers to the relative advantage
that AI technology can provide to the organization. According to Mahroof, the
TOE framework with the extension provides the ideal lenses for assessing AI readi-
ness [26].

A part of the adoption is the potential to deliver the perceived benefits. Leung et
al. used AI to support decision makers in generating wave picking sequences to
handle e-commerce shipments. Considering that order picking is one of the most
costly activities in a warehouse, efficient wave picking was crucial for reducing
the costs. A pilot study at a logistic service provider (LSP) showed that the order
processing efficiency was greatly enhanced [24].

Klumpp et al. presented a literature review on the development of AI applications
and outlined potential risks to social sustainability of an artificial divide between
employees and the organization. The conclusion is that in order to get a fully
automated supply chain there needs to be sufficient attention for the human
interaction factor [23].

"In summary, the future competitiveness and logistics performance will significantly
depend on the described factors regarding human work motivation as well as
human–machine cooperation and acceptance." [23]

4.4 AI in practice
DHL and IBM have jointly written a report on AI in logistics in which the impact on
logistical organizations is assessed, as well as best practices from other industries
that can be applied to logistics [6]. Accenture wrote a report on AI maturity and
models for success [1].

It is not a simple task to shift current logistics operating models to models which
incorporate AI. Because of the abundance of machine learning methodologies it
is difficult to find the right one for the problem at hand. DHL and IBM created an
overview to aid the search which is visualized in Figure 4.6.

It is useful to identify what business problems could be solved by, and demands AI.
When a business problem that can be improved by AI is identified, the next step
is to cautiously assess the potential value drivers such as cost reduction and an
improved customer experience. Before commencing with the implementation
the available and required data has to be considered as well as how clean it is,
how often it is collected and how it can be accessed. Depending on the project
time span and the AI skills available in the organization it may be better to start a
one-off project instead of a long-term initiative that requires changes in the core
of the organization. When AI skills are lacking within an organization, it could be
necessary to outsource projects [6].

In their report DHL and IBM also identify two types of AI projects, cost reduction and

4.4 AI in practice 61

Figure 4.6: Machine learning taxonomies [6]

new value creation. For cost reduction projects they provide a framework which
can help in deciding whether a project is a classical analytics project, machine
learning project or an AI + human project. The cost reduction decision tree for AI
projects can be found in Figure 4.7 [6].

Figure 4.7: Decision tree for cost reduction [6]

The culture of an organization is also a big factor in the adoption of AI. The
adoption and its required cultural shift could be more difficult than the technical
implementation challenges. Job loss is often the biggest fear and having leaders
in an organization that are supportive of new technologies and who are able to
bring change is crucial for success [1, 6].

An agile approach in an organization enables employees to learn and evolve
with new AI systems. Data is important and the initial quality of the AI agents
can be lower than currently however over time the agent has the potential to
surpass it. The question that arises is what quality standard do we accept for it be

62 Chapter 4. Technology adoption

Figure 4.8: Decision tree for insight generation [6]

economically viable [6].

When an approach is identified the next step is the actual implementation. There
are numerous ways to carry out the implementation, some recommendations from
DHL and IBM are:

Design thinking to reveal unmet needs of users.
Traditional IT project management to scope the system(s).
AI-specific methodologies for creating and training the models.
Agile methodologies for continuous development and improvement after
deployment.

According to Accenture nearly 20% of leaders identify resistance from employees
due to concerns about job security [1].

4.5 Maturity models
When organizations want to know how far they are in terms of becoming an "AI-first"
organization, an assessment is often made using a maturity model. Numerous
models and assessment techniques exist online, some of them are discussed in
more detail here.

In their report Accenture describes emerging best practices regarding the imple-
mentation of AI. When considering the more successful AI deployments the most
contributing factors are:

Reviewing AI output on a weekly basis.
Making sure there are processes in place to override questionable results
from AI agents.
Anticipation that more than 25% of processes being improved by AI in the
next three years.

• Conducting ethics training.

•
•
•
•

•
•

•

4.5 Maturity models 63

Figure 4.9: Level of AI competency [31]

• Connecting analytics to AI.
• Having faith in AI agents.

Based on the survey of Accenture there are no clear guidelines for success in AI,
but that it is crucial for successfully managing the powerful potential of AI [1].

Other maturity models can be found online such as the model of Pringle et al. as
shown in Figure 4.9 [31]. The model was written for communication and media
service providers but the idea could be applied to the logistics industry. The au-
thors identified the core pillars and assessment criteria needed for an AI maturity
model, including strategy, organization, data, technology and operations. These
core pillars contain a detailed set of criteria and associated questions designed to
assess the AI maturity [31].

Whereas there are numerous maturity models and AI readiness scans to be found
on the world wide web, the number of models tailored towards the logistic industry
remains limited. Organizations have no clue whether or not a model is suited for
their industry. The models are often very high level, useful for setting and managing
goals, however they lack a clear method when starting to implement AI and
identify potential low-hanging fruit.

5. Exploratory research

The literature review on reinforcement learning and technology adoption is impor-
tant when creating a model, however having actual implementation experience
is even more valuable. As Benjamin Franklin once said: "Well done, is better than
well said". In this research an attempt will be made to implement reinforcement
learning at the LS department. First the background is discussed in section 5.1 to
get an idea about the supply chain and the department, as well as its readiness
towards AI. Multiple business processes are identified in section 5.3 and for each
the applicability of RL is discussed. Finally the actual implementation is discussed
in terms of the organizational and technological aspects. This exploratory work
helps in establishing priorities, establish definitions and together with the literature
review forms the starting point for the treatment design.

5.1 Background

In this section the most important stakeholders within the supply chain are dis-
cussed.

5.1.1 Replenishment

This department is responsible for ensuring product availability in the stores by
planning and controlling the flow of goods. Flow managers make sure that the
supply chain operates smoothly. They make agreements with manufacturers,
suppliers, logistic organizations and internal departments to reach this goal. The
planners within the replenishment department constantly monitor the automatic
orders and act when needed.

5.1.2 Distribution centers

Albert Heijn has several distribution centers (DCs) across the Netherlands. The
national DC (LDC) is located in Geldermalsen and contains around 12 thou-

66 Chapter 5. Exploratory research

sand products such as slow-moving products, tobacco, dangerous goods and
medicines. There are also four regional DCs (RDCs) which contain close to 4
thousand products which include fast-moving products including cooled products.
There are also six DCs outsourced to logistic service providers (LSP). The remainder
of product types such as (slow-moving) cooled products, flowers, non-food and
frozen products are managed by those LSPs. The overview of DCs in the supply
chain of Albert Heijn can be found in Table 5.1.

Type Abbreviation Operator Location
National DC LDC Albert Heijn Geldermalsen
Regional DC DCP Pijnacker

 DCT Tilburg
 DCZ Zaandam
 DCO Zwolle
Shared Fresh Center SFC XPO Logistics Nieuwegein
XPO Oss (non-food) Oss
Frozen products Hoogeveen

Shared warehouse cheese SWK Bakker Logistiek Zeewolde
Returns Kuenhe + Nagel Pijnacker

 Tilburg
 Zaandam
 Zwolle

Flowers GIST Bleiswijk

Table 5.1: Locations and types of DCs of Albert Heijn

5.1.3 Logistics Support

The logistics support (LS) department of Albert Heijn is responsible for ensuring that
the processes in the distribution centers run smoothly. The main responsibilities of
the team, among other things, are:

1. Making substantiated decisions about where to place certain types of racks
within a warehouse.

2. Slotting products within the warehouse for a smooth picking process.
3. The distribution of articles to stores in a way that is beneficial for both stores

and DCs.
4. Ordering different types of load carriers to make sure there are no bottle-

necks.
5. Ensure that pick orders are in the WMS in time.
6. Monitoring forecasts for the coming days/weeks or even months to make sure

the DCs are prepared.

5.1.4 Transport

The department of transport is responsible for facilitating the transportation of
products to distribution centers and shops.

5.2 AI maturity at the department 67

5.1.5 Stores
The stores are responsible for selling products to the consumers of Albert Heijn. The
shops make sure that products are in the shelves in time.

5.2 AI maturity at the department

The LS department has yet to start with artificial intelligence and therefore could
be ranked "AI novice" in the maturity model of Pringle et al. [31]. Within other
departments of Albert Heijn AI has already been successfully implemented such as
personal discounts based on your personal buying behaviour and dynamic pricing
to reduce wasting products that almost reached their best before date. In order to
increase the awareness within the department and to be able to generate ideas
suitable for AI and RL a team day was organized around this theme. To build upon
that day a series of presentations was held to show the potential of RL and how
the department could adopt this technology.

5.2.1 Team day at the university

On Friday the 24th of May the entire logistics support department of Albert Heijn
went to the University of Twente for its annual team day. The team day is about
learning something having some fun along the way. This time it was about inspiring
colleagues into the world of artificial intelligence and other innovations such as
drones. It is a great way to reach the entire audience including slotters, planners,
managers and IT experts to get the dialog about AI started.

Sebastian Piest gave a presentation about what artificial intelligence is and its
possibilities. This gave the team members a first impression of the technology and
its capabilities. After the presentation the team members were first asked about
potential uses of AI in the warehouses and logistics of Albert Heijn, this was done
individually. After that the employees split into different groups to discuss their ideas
and to also think about the consequences that AI could have on the department
and the employees in particular.

Interesting questions that arose were:

Where is the line between AI and an advanced algorithm?
As the middle-man between transport and replenishment, with an AI agent
making the decisions, are we still able to substantiate its decisions?
If we rely on an AI agent to make important decisions, how can we make
sure we are able to intervene when needed?
Will AI replace or change my job?
How do we get the knowledge to an adequate level to be able to maintain
and improve the agents?

This event was an opportunity to identify opportunities and concerns of the differ-
ent stakeholders at the logistics support department. The questions formulated
above could hinder the adoption and tackling those is extremely important for the
adoption of AI. The ideas that the members came up with for the logistics support
department were:

• Automated slotting

•
•

•

•
•

68 Chapter 5. Exploratory research

•

• Indoor real-time positioning with dynamic orders
• Smart voice-picking using conversations
• Automatic stacking quality assessment
• AGV transito
• Automatic inbound classification
• Using drones for safety and automatically checking the inventory levels
• Store demand forecast automatic outlier detection
• Automatic dock assignment, a smart control tower
• Creating a virtual distribution center, where realistic simulations can be run

The ideas were discussed in the groups and this automatically led to some addi-
tional concerns:

• Do we want to be an ‘owner’ of an intelligent agent?
• Do we still go to the sites if decisions are made by an agent?
• What is the right moment to get into AI? Developments are going fast.

5.2.2 Demonstration agent
During a weekly meeting on the Friday afternoon the entire department is brought
up-to-speed with the newest developments within the supply chain of Albert Heijn.
In order to answer some of the concerns of team members and bring the AI
discussion closer to the department I decided to give a demonstration of a simple
reinforcement learning agent that was able to solve a small slotting puzzle. The
demonstration was based on a Q-learning algorithm which is not scalable but
it helped the team members to look beyond the state-of-the-art examples of AI
and closer towards their own work. Because the department knew the potential
applications of RL a suitable business process could be identified.

5.3 Identifying a suitable business process

The operational staff at the Logistics Department is most likely to perform repetitive
and labour-intensive activities. Therefore a selection of those employees were
asked about activities they perform often that could be suitable for reinforcement
learning. Based on those talks three important business processes that could be
suitable for RL in the Logistics Support department of Albert Heijn were identified:

1. The estimation of order pickers needed for production per shift.
2. The slotting process in the warehouses.
3. The identification of optimal locations for racks in a warehouse.

Each process was then ranked based on the following criteria:

How crucial is this process for the operation?
– Is there a fallback in case the agent does not perform?

How labour-intensive is the task in daily operations?
To what extent does the task environment fit a RL approach?

– Can the task environment be simulated?
– How big is the state-action space?
– Are the rewards sparse, immediate or somewhere in between?

•
•

5.3 Identifying a suitable business process 69

– How effective should the agent be?
What are the potential gains in terms of effectiveness given the current situa-
tion?

The criteria are based on the strengths and weaknesses of reinforcement learn-
ing. A reinforced learning agent is not as stable as its super- and unsupervised
counterparts and therefore it is valuable to assess the importance of the process.
If there is a fallback in place this could alleviate this problem to some extent. If a
task is very labour-intensive an agent could save the employees a lot of time and
thus costs making the potential rewards worth the risk. The task environment says
something about the fit with reinforcement learning as well as the complexity of
the problem the agent attempts to solve. In the next sections each case will be
evaluated based on these criteria.

5.3.1 Estimating the number of order pickers per shift

Order picking at the DCs of Albert Heijn requires proper planning to make sure the
orders are ready for transport in time to (a regional DC or) the supermarkets across
the country. Because this operation runs 24 hours a day, order pickers can also
work during the night. A RL agent could decide the most optimal ratio of day night
workers. This is important because having to many order pickers at any time leads
to congestion in the warehouse and thus to lower productivity, working during
the night however is more expensive. This business process however is difficult to
simulate as the penalties (such as congestion) can be the result of various external
factors. The state-actions space depends hugely on what variables one takes into
account, but selecting those variables is not straightforward. Making this planning
is not very time-consuming as the operational staff already has tools that ease the
decision-making process. This problem is not particularly suited for RL, a supervised
learning agent could also be used to predict the productivity based on historical
data.

5.3.2 Optimal rack locations

There are numerous location types available in the warehouses of Albert Heijn, such
as regular pallet locations and flow racks. Flow racks consists of multiple smaller
locations that are great for products that are not sold very often, this reduces the
required area that the product occupies and therefore the distance the order
pickers have to travel to complete their order. Deciding where which type of
location goes is a complex task, having to many flow racks at the beginning of
the circuit limits the number of products allowed in those locations. The major
downside of this business process is its occurrence frequency. Only when a (part of
a) DC is remodelled, the rack locations are identified and therefore the agent is
needed. Similar to estimating the order pickers per shift, this problem is difficult to
simulate. The layout of the DC needs to be combined with the products that have
to be allocated and this is based an a lot of assumptions that could alter the results.
The actual results of the agent are also difficult to measure, as the performance of
order pickers after a remodeling does take some time. Order pickers need to get
accustomed to the new layout and tuning and improving the agent would take a
lot of time. Although an RL agent could be used for this problem, it is unsuitable for
an initial implementation that requires a lot of iterations.

•

70 Chapter 5. Exploratory research

5.3.3 Slotting
Slotting is the process of organizing inventory in a warehouse or DC. It is an impor-
tant tool to create an effective warehouse by maximizing the use of available
space within a warehouse by more efficient picking and storage. There is a huge
array of strategies for product allocation but those strategies focus on heuristics
but maybe an RL agent can achieve similar results even being much simpler. The
product allocation problem can easily be scaled down and the Logistics Support
department already has a good idea about what factors make a "good" slotting,
this makes it suitable for an approach that starts small and to slowly scales up from
there. Slotting is also very labour-intensive and often comes down to solving a
large number of small tasks such as adjusting the number of locations - also called
facings - for a product. This makes the potential gains much larger. Compared to
the other two problems and according to the criteria defined at the beginning
of this section, the product allocation problem was picked for an implementation
attempt.

5.4 Automating the slotting process

Before commencing with the technical implementation the task environment
needs to be assessed. Based on the actual slotting at Albert Heijn the environ-
ment has been made and multiple scenarios, action sets and credit assignment
strategies have been formulated in order to test the agent.

5.4.1 Task environment

To test whether an agent is able to solve real-world logistical challenges multiple
realistic scenarios are considered. The following scenarios are tested, visualized in
Figure 5.1:

Scenario A The most basic scenario with 10 pallet locations with locations on

two sides of the path.

Scenario B This scenario contains 20 locations in order to assess the impact
of having a DC that is double the size in terms of locations and
products to slot.

Scenario C This scenario contains 42 locations and also contains a flow rack

location in which slow-moving products can be slotted efficiently.
Flow racks are only accessible from one side.

The layout of the task environment can also be visualized in a tabular view, ordered
on the pick sequence. This is a simplified version of the layout the slotters use in
their work. The tabular view can be found in Table 5.2. The last two columns are
used to monitor which products were slotted initially and currently.

With the environment in place, one can consider the actions the agent can take
(also denoted as S). In order to assess whether less possible actions result in faster
training and better results, three types of agents will be considered. The agent
types are:

5.4 Automating the slotting process 71

A B C

1

3

5

7

9

2 19 20 21

4 17 18 23

6 15 16 25

8 13 14 27

10 11 12 37

22 42

24 41

26 40

28 - 36

38 39

Sequential The agent sequentially makes decisions. When a decision has
been made for every location the agent is finished. The num-
ber of possible actions is equal to the number of products.

Partially autonomous The agent makes decisions for every product and every loca-

tion. When a decision for every location has been made, the
agent is finished. The number of actions are the number of
products times the number of locations.

Fully autonomous The agent makes decisions for every product and every loca-

tion and it decides when it is finished. The number of actions
are the number of products times the number of locations
plus one finished action.

Pallet location Flow rack

Figure 5.1: The task environment and the scenarios

Location Next location Flow rack Slotted initially* Slotted*
1 3 False - Coffee
2 4 False - -
3 5 False - Cookies
4 6 False - Soup
5 7 False - -
6 8 False - Soup
7 9 False - -
8 10 False - Rice
9 - False - Toilet paper
10 - False - Toilet paper

Table 5.2: An example of the locations for scenario A

For every scenario a list of products is available that need to be slotted. The
product details include variables such as how many products fit in a pallet location
and how many in a flow rack. The store demand forecast (SDF) of the next three

72 Chapter 5. Exploratory research

days is also taken into account so the agent can make decisions that also take into
account the days to come. The products that need to be slotted are visualized in
Table 5.3.

Cookies 220 20 1500 2200 2200 D 14000
Soup 180 12 700 500 600 C 35000
Beer 40 - 800 800 1000 A 10000
Toilet paper 24 - 250 200 300 C 40000
Rice 120 20 700 700 550 D 60000
Coffee 150 15 1000 800 900 B 12000

Table 5.3: An example of the products for scenario A

5.4.2 Reward function
Designing a reward function is one of the most difficult tasks within RL. Both primary
as well as secondary goals should be taken into account when designing the
function because an agent will not find the optimal policy. The reward function is
the sum of rewards minus the penalties.

Rewards
The following rewards can be scored by the agent:

Product slotted When the agent should always try to slot all products, be-

cause otherwise the product cannot be delivered to the
stores around the country.

Free locations Locations are limited and new products are coming to the

warehouse each day, therefore it is important to keep as
many free locations as possible so these can be slotted with
minimal movements.

Matching SDF When the agent reserves sufficient locations for the products

to be slotted it gets a higher score. When there are also
enough locations for the next two days additional points
are scored. This way the agent creates an slotting that can
requires minimal movements at the next iteration. The number
of locations is determined by the estimated store demand
forecast (SDF), the location type and the maximum number
of replenishments per day. For pallet locations this is set at 7
times a day while for flow racks this is only 2 times a day.

Pr
od

uc
t

Un
its

 p
er

 p
al

le
t

Un
its

 in
 fl

ow
 ra

ck

SD
F

(+
1)

SD
F

(+
2)

SD
F

(+
3)

St
ac

ki
ng

 g
ro

up

St
ac

ki
ng

 c
la

ss

5.4 Automating the slotting process 73

Penalties

The rewards are complemented by penalties in order to make sure that an optimal
slotting also receives the optimal score. The penalties used are:

Movement Every location with a different product means a move-

ment, which takes time and therefore should be mini-
mized as much as possible.

Facings not adjacent Due to limitations in the WMS of Albert Heijn, facing lo-

cations can only be adjacent. A penalty is therefore
imposed when the agent attempts to slot products on
two separate locations.

Stacking group violation Stacking groups are important to ensure containers are

stacked correctly without damaging goods. The stacking
groups make sure that heavy beer crates are on the bot-
tom of the containers whereas light products are used
on top.

Stacking class violation The stacking class is a number that should be ascending

when following the pick sequence to ensure products of
similar dimensions are slotted near each other for easier
and more stable stacking by the order pickers.

Albert Heijn recently implemented a special load
carrier algorithm (LCA) to increase the load factor
on its containers. Where previously the maximum
weight of containers was easily reached with heavy
bottles of soda, resulting in containers that were not
full, the LCA now smartly distributes the weight over
multiple load carriers. The stacking groups were
implemented for the LCA and the slotting needs
to make sure these groups are in a specific order
while also take into account the stacking class. The
stacking class is a number that is build up by multiple
factors like weight, dimensions and whether the box
is fragile or not. With a correct slotting, the resulting
containers look like the one depicted in Figure 5.2.
The stacking groups are "A", "B", "C" and "D". Beer
crates are "A", "B" are black crates that have famil-
iar dimensions and can easily be stacked on top
of beer crates. "C" are the cover groups which are
boxes that create a nice cover from which every-
thing else - stacking group "D" - can be stacked. "A",
"B" and "C" products all need to be slotted adjacent

Figure 5.2: Sample container
with correct stacking group and
class

without an interruption in alphabetical order. "D" can be slotted everywhere in
between as long as it does not interrupt a sequence of the other groups. An
example of a correct slotting looks like: [A, A, B, B, D, D, C, D], incorrect is: [A, A, D,
D, A, A, B, C] because stacking group "A" is not slotted adjacent.

A10

A10

D12

D10

D14

B12

B16

B16

C20

D40

D22

D24

D60

D85

74 Chapter 5. Exploratory research

Verifying the reward function
To verify whether this combination of rewards and penalties yield the desired result
the score is verified. For each scenario an optimal slotting was made that has
no penalties, maximum rewards, maximum free locations and a limited number
of movements. For scenario A, the example slotting in Table 5.2 will result in the
scoreboard found in Figure 5.4.

Reward Score Occurrences Total
Product slotted +15 5 75
Free locations +2 3 6
Matching SDF (+1) +15 5 75
Matching SDF (+2) +10 4 40
Matching SDF (+3) +5 4 20
Free locations +2 3 6
Movement -1 7 -7
Facings not adjacent -15 1 -15
Stacking group violation -15 0 0
Stacking class violation -10 0 0

 200

Table 5.4: The scoreboard for the slotting as shown in Table 5.2

Credit assignment
The credit assignment problem is one of the most difficult problems in the RL field.
Primarily because it is very difficult to assess the value of an action. Because
the slotting process can have both immediate as well as sparse rewards, both
strategies will be used. This will also be valuable with the different types of agents,
e.g. whether the fully autonomous agent will learn whether or not to decide when
it is finished. The credit assignment strategies are:

Immediate The agent gets an immediate reward after every action and noth-

ing when finished.

Sparse The agent receives no immediate rewards but only the full reward
when finished.

5.4.3 Implementation
First the state is discussed and how it is passed to the agent. Finally an algorithm
was selected, the agent is discussed and how its (hyper)parameters were tuned.

Passing the state to the agent
Based on the state, the agent should take actions. When for example the task is
identifying handwritten digits in an image the agent is served with a low resolution
grayscale multidimensional array with the intensities of white as a float between 0
and 1. This array is flattened, which just transforms this array [[0.6, 0.2, 0.3], [0.1, 0.2,
0.3]] to [0.6, 0.2, 0.3, 0.1, 0.2, 0.3]. Each value in the flattened array will be the input

5.4 Automating the slotting process 75

layer on which the network will learn.

For the slotting we want a similar flattened array that is able to describe exactly
what the current slotting looks like. For this "one hot encoding" will be used. Every
product that can be slotted including an empty spot will be encoded as an array
of the same length containing a single 1. This is done for every location in the
warehouse, resulting in similar multidimensional array as with the digits example. An
example of one hot encoding can be found in Table 5.5. When one hot encoding
the following state: [bread, soup, -, -] the following multidimensional array will be
created: [[1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0, 0, 0, 1]]. When flattened this can be
used as input for the neural network and every possible state can be described.

Product One hot encoded

- [0, 0, 0, 1]
Soup [0, 0, 1, 0]
Deodorant [0, 1, 0, 0]
Bread [1, 0, 0, 0]

Table 5.5: One hot encoding on 3 products.

Selecting an algorithm
The first attempt for automating the slotting was made with Q-learning. This algo-
rithm, developed by Watkins in 1989 works by assessing the quality of an action [44].
The Q-learning algorithm performed well in the small scenario that it was able to
hold in memory. Q-learning is very precise but therefore not scalable beyond small
task environments. The next step was to introduce neural networks and sacrifice
precision for scalability.

With DQN the task environment could grow larger to around 20 locations without
sacrificing precision. But there was another problem that with larger task environ-
ments after extensive training the agent started to overestimate the Q-values. This
was especially difficult for the fully autonomous agents which never learned to
finish the slotting because its belief of always having great alternatives. The over-
estimation for the other types agents did not suffer in terms of its policy, however
it made validation particularly difficult. After long training the Q-values were no
longer realistic and optimizations made were greatly influenced by the number of
episodes the agents were trained for.

To counter the effect of overestimation of Q-values the Double DQN (DDQN) was
implemented. Because DQN is chasing a moving target, the DDQN resulted in
lower estimations but its results remained volatile, especially when scaling up to-
wards larger task environments such as scenario B and C.

Beyond scenario A and B, the DDQN was not able to reach the optimal slotting
with a reasonable amount of training. Therefore the Advantage Actor-Critic (A2C)
algorithm was implemented. A2C outperformed DDQN in terms of training time
and accuracy. Because this implementation showed the most potential, it has
been used for the remainder of the implementation.

76 Chapter 5. Exploratory research

A2C agent design
The neural network structure of the A2C agent can be found in Figure 5.3. The input
layer, the body and the output layer can all be adjusted to fit the environment.
When working with imagery data it is possible there are one or more convolutional
layers before the input layer. The neural network calculates multiple values, the
Q-values for an action given state Q(s, a1) and the value of a certain state V (s). The
actor uses the Q-values to decide which action to take whereas the critic evalu-
ates the current state. Combined the agent is able to calculate its advantage. If
the actual reward turns out to be better or worse than expected, the weights of
the network are adjusted accordingly. The agent has been implemented using
Python and Tensorflow 2 and can be found in appendix D.

Q(s, a1)

Q(s, a2)

Q(s, a3)

V(s)

Actor

Critic

Figure 5.3: The neural network of A2C

Tuning the (hyper)parameters
Multiple (hyper)parameters can be tuned in the model the agent uses to increase
its performance. For the A2C algorithm an attempt is made to tune the parameters
and increase the performance compared to a baseline. In order to see the impact
on performance when the task environment doubles in size and complexity all
tests are ran on both scenario A and B. Every test is ran at least three times for
each scenario to reduce the problem of reproducibility.

First a comparison between the different types of agents was made to see how
these performed. The semi and fully autonomous agents were not always able to
perform well and in some attempts the agents never completed the slotting when
tested. Both agents sometimes got stuck trying to perform an action that had
no effect in the environment, for example placing a product on a location that
was already slotted with that particular product, this leads to a loop which takes
a lot of time to get out of. The semi autonomous agent was required to make a
product allocation decision for each location, because the agent has no prior
knowledge it took a lot of updates to finish the same amount of episodes as the
sequential agent. A similar behaviour was found for the fully autonomous agent
as it has to decide when it has completed allocating products. For the analysis

Input Body

5.4 Automating the slotting process 77

the sequential agent will be used as it has proven to be most stable and has a
fixed number of actions that is required to complete an episode, which eases
the comparison on tuning various (hyper)parameters. For comparison, the results
of the semi autonomous agent can be found in Figure 5.4, the fully autonomous
agent in Figure 5.5 and for the sequential agent in Figure 5.8.

Figure 5.4: Results for semi autonomous agent for scenario A

Figure 5.5: Results for fully autonomous agent for scenario A

Having immediate or sparse rewards can also have impact on the performance
of the agents to be trained. In general, having immediate results is beneficial for
RL because it allows the agent to learn which actions have lead to the final result
instead of evaluating all preceeding actions equally. The precondition is that the
reward function is able to take future actions into account. To test which reward
function works best for the product allocation problem, both reward functions
were tested for scenario A and B. The results are depicted in Figure 5.6 and 5.7. In
scenario A, the results are clearly in favor of immediate rewards in terms of rewards
however a sparse reward function seems to be more stable during training. In
scenario B the results are very similar, when increasing the task environment the
difference between the reward functions was not significant. For the remainder
of the analysis, the immediate reward function will be used. In the following para-
graphs each (hyper)parameter is discussed. The default values used in the tests
can be found in Table 5.6.

78 Chapter 5. Exploratory research

Figure 5.6: Results based on sparse and immediate rewards for scenario A

Figure 5.7: Results based on sparse and immediate rewards for scenario B

Parameter Default value
Agent type Sequential
Reward function Immediate
Updates 2500
Batch size 20
Number of nodes 512
Hidden layers 2
Entropy 0.001
Gamma 0.95
Learning rate 0.0005

Table 5.6: Default parameters for the A2C algorithm

The results of the baseline tests for scenario A and B can be found in Figure 5.8 and
5.9. The baseline for scenario A took twice as long as scenario B, which makes
sense because the task environment is double the size. Each graph shown in this
section the Y-axis is set so that reaching the upper value means the agent performs
optimally, the lowest Y-value corresponds to the starting score. For scenario A the
Y-axis of (-40, 255) was used and for scenario B (-90, 545) respectively.

5.4 Automating the slotting process 79

Figure 5.8: Baseline results for scenario A

Figure 5.9: Baseline results for scenario B

Figure 5.10: Rewards with various batch sizes for scenario A

Figure 5.11: Rewards with various batch sizes for scenario B

80 Chapter 5. Exploratory research

Deep neural networks improve by feeding them more data. When reducing the
batch size, the network inside the agent is updated more frequently (with a higher
number of updates), increasing the load on the graphics processing unit (GPU).
Depending on the GPU capacity of the machine, a lower batch size could speed
up learning. The goal is to find a batch size that leads to optimal learning that the
GPU is able to handle. The batch sizes tested were 10, 20 and 40. In scenario A,
found in Figure 5.10, both batch size 10 and 20 perform better than the largest
batch size however batch size 10 reached the local optimum faster although being
more volatile in the process. In scenario B, found in Figure 5.11, the difference in
batch sizes is limited. The impact of larger batch sizes in a bigger environment are
limited.

Increasing the number of nodes and layers enables the agent to learn more com-
plex problems but increases the likelihood of overfitting, making perfect decisions in
a known state, but having no clue in a state seen for the first time. When the agent
used 4 hidden layers the performance decreased both in scenario A and B. In
scenario A having 0 or 2 layers made almost no difference in the final performance
however having 2 layers looks more unstable, as can be found in Figure 5.12. The
most stable learning also seems to be the case when the agent attempted to
solve the product allocation problem in scenario B depicted in Figure 5.13.

Figure 5.12: Rewards with 0, 2 and 4 hidden layers in scenario A

Figure 5.13: Rewards with 0, 2 and 4 hidden layers in scenario B

Apart from the number of layers, the number of nodes per layer can also be ad-
justed. In order to assess whether more nodes per layer increases the performance
a test with 256, 512 and 1024 nodes was performed on both scenario A and B. In

5.4 Automating the slotting process 81

the smaller scenario A, having less nodes (256) made the learning more stable
compared to having more nodes, see Figure 5.14. Shown in Figure 5.15, when
the scenario gets larger the differences between having 256 or 1024 are lower
compared to scenario A however having 256 and 512 nodes still outperformed
having 1024 nodes per layer in scenario B.

Figure 5.14: Rewards with 256, 512 and 1024 nodes per layer in scenario A

Figure 5.15: Rewards with 256, 512 and 1024 nodes per layer in scenario B

The learning rate in neural networks decide how much a the old value is overwrit-
ten by the new value. Doubling the learning rate makes the agent "learn" twice as
fast. The problem with having a large learning rate is that the agent could slowly
forget important older experiences. Various learning rates were tested for scenario
A in Figure 5.16 and scenario B in Figure 5.17. In scenario A having a larger learning
rate made the agent learn fast sometimes but after 2500 episodes its average
performance did no longer improve whereas the lower learning rate agents kept
on improving. In scenario B the lowest learning rate performed best overall but
the agent with a high learning rate learned faster in the first 1500 episodes before
dropping back down again.

82 Chapter 5. Exploratory research

Figure 5.16: Rewards with various learning rates in scenario A

Figure 5.17: Rewards with various learning rates in scenario B

Figure 5.18: Rewards with various entropy values in scenario A

Figure 5.19: Rewards with various entropy values in scenario B

5.4 Automating the slotting process 83

Despite the fast convergence of the agent, it failed to reach the maximum score.
The exploration of the agent might need to improve, here is where the entropy
comes in. Entropy is an important aspect in the A2C algorithm, because it provides
a bonus for when the agent explores. This bonus encourages the agent to take
actions more unpredictably, and potentially discover another better solution. A
low entropy value makes the agent stubborn and take actions it took before,
a high entropy makes the agent try different actions. In scenario A the default
entropy made the agent learn the most stable, comparable to a high entropy of
0.1, see Figure 5.18. With the lowest entropy the agent learns in a similar fashion
however there are some noticeable drops during training and after 2000 episodes
the agent fails to keep up and learn something new. In scenario B, shown in Figure
5.19, the differences are almost unnoticeable, this is largely because the agents
are still learning about the environment even when always picking actions the
agent took before. More episodes could eventually show similar results to scenario
A.

Gamma (γ) is used to discount future values. Getting a lower reward immediately
could be more valuable than being uncertain a larger reward will be reached
later on. This is were gamma comes in and tweaking it could lead to the agent
making different decisions. For scenario A, found in Figure 5.20, a gamma of 1
resulted in the highest rewards and the rewards dropped when gamma was lower.
This can be explained due to the fact that future rewards in the product allocation
problem do not change, there is not another agent changing the environment
that makes it important to discount future values. In a larger scenario discounting
is valuable as the agent is less certain about rewards it is going to get all the way
at the end of the puzzle. In scenario B, depicted in Figure 5.21, a lower gamma is
beneficial. Gamma is also more important for the fully-autonomous agents as it
can overwrite its own actions, without a discount factor it could slot forever without
making the decision to end the process.

84 Chapter 5. Exploratory research

Figure 5.20: Rewards with various gamma values in scenario A

Figure 5.21: Rewards with various gamma values in scenario B

Parameter Scenario A Scenario B Scenario C
Agent type Sequential Sequential Sequential
Reward function Immediate Immediate Immediate
Updates 10000 20000 20000
Batch size 10 20 42
Number of nodes 256 512 1024
Hidden layers 0 0 0
Entropy 0.001 0.005 0.01
Gamma 0.95 0.95 0.95
Learning rate 0.0001 0.0005 0.001

Table 5.7: Optimized (hyper)parameters used per scenario

Based on the (hyper)parameter tuning performed for each scenario the default
parameters have been identified. These parameters will be used in the experiment
in the next section. The parameters can be found in Table 5.7.

5.5 Intelligence amplification

So far only the performance of the agent is considered, in this section the human
performance is also taken into account. Intelligence amplification is the symbiotic
relationship between an human and an intelligent system. The general idea is
that humans excel at creative tasks whereas artificial agents excel at computa-

5.5 Intelligence amplification 85

tionally intensive tasks [17]. This symbiotic relationship between the human and
the agent could also be applicable to reinforcement learning. The aim of this
section is therefore to find out to what extent a reinforcement learning agent can
support the operational staff in allocating products in the warehouses of Albert
Heijn. When the agent attempts to solve the slotting puzzle on its own it learns
and finds a local optimum, this is however not always the global optimum (the
most desirable outcome). The slotter should be able to find the optimum, when
given enough time. An experiment has been developed to identify whether a
partnership that emphasizes the strength of the slotter and the agent is beneficial
in terms of performance, quality being the score of the slotting and time being the
time the slotter has devoted to the product allocation problem. The idea is that
the slotter starts with partially allocating products to locations and then letting the
agent complete the task.

5.5.1 Experiment setup
To validate whether intelligence amplification is able to improve the performance
of the slotters the following experiment was created. 50% of the target population
(4 participants) of slotters were asked to take part. The slotters had to solve one
or multiple slotting puzzles that correspond to the scenarios considered at the
beginning of this chapter. First a baseline was established by slotters that were
asked to complete a randomly assigned scenario without the help of an agent.
Other slotters then got the same scenario however this time they were able to use
an agent. Finally the agents ran the scenarios without the slotters. Time spent by
the agents is not taken into account as this is hugely dependent on the available
hardware and the costs of hardware is beyond the scope of this research.

Validation research goal
The following knowledge questions have been identified to find out whether or not
intelligence amplification increases the performance of slotters:

How does the slotter with the agent compare to the baseline in terms of time
and quality? (Trade-off question)
What effects are produced by the interaction between the slotter and the
agent? (Effect question)
What happens when the problem context becomes bigger? (Sensitivity ques-
tion)

The first question is essential as it gives an idea about whether the agent can
achieve similar quality in less time than the the slotter. The second question fo-
cuses on the partnership between the agent and the slotter and the relationship
between the two. The final research goal question is whether the intelligence ampli-
fication scales when the environment gets bigger. Combined these questions give
a good idea about whether or not intelligence amplification with reinforcement
learning can be beneficial and to what extent.

Samples
The slotters that got the baseline experiment were asked to solve a small slotting
puzzle similar to their daily work although being much smaller. The scenarios used

•

•

•

86 Chapter 5. Exploratory research

can be found in appendix C. The slotters are asked to solve these small puzzles by
hand starting with an empty warehouse. The slotters first get an explanation of
the goal of the task which is to solve the puzzle as good as possible in the least
amount of time. An small example is presented to the slotters before commencing
to make sure they are prepared and understand the task. With the example
completed the actual experiment can start. The experiment is carried out on
paper to make solving it easy and understandable. The actual puzzle to solve is on
the back of the paper and when turned the experiment starts. When the slotter
is finished with the task the paper is turned on its back again and the start and
end time is noted. The quality of the slotting will be assessed by the rewards and
penalties used throughout this thesis. The rewards and penalties are discussed with
the slotter beforehand to make sure they know where to pay attention to when
solving the puzzle. The participants are also asked to solve one ore more different
scenarios with the agent used for a comparison later. The slotter with the agent
does not have to finish the puzzle, as it has an agent to do that. An example of
the experiment is discussed in the next section.

Example experiment

Because there were multiple experiments for
each scenario, a small example is presented
here. The participant first gets a schematic
overview of the DC. In Figure 5.22 a schematic
overview of a DC with 6 locations is de-
picted.

In Table 5.8 the products are listed that need
to be allocated to one or multiple locations.
The store demand forecast (SDF) for the coming
three days as well as the stacking group and
stacking class are listed. The maximum number
of replenishments for a pallet location is 7 times
a day and for a flow rack this is 2. This can be
used to calculate how many locations need to
be allocated for each product.

 E

1 2

3 4

5 6

Figure 5.22: The circuit for scenario E

Toilet paper 24 - 120 140 160 D 60000 ■
Soda 40 - 400 800 700 B 11000 D
Soup 180 12 1000 2500 2500 C 25000 D
Beer 40 - 800 800 1000 A 10000 ■

Table 5.8: Products to slot in scenario E

Pr
od

uc
t

Un
its

 p
er

 p
al

le
t

Un
its

 in
 fl

ow
 ra

ck

SD
F

(+
1)

SD
F

(+
2)

SD
F

(+
3)

St
ac

ki
ng

 g
ro

up

St
ac

ki
ng

 c
la

ss

Lo
ck

 fo
r a

ge
nt

?

5.6 Conclusion 87

Depending on the experiment the participant has one of the following assign-
ments:

1. Allocate the product as optimally as possible while using as little time as

possible.
2. Allocate the product as optimally as possible while using as little time as

possible. But this time the participants do not have to finish the entire puzzle.
After partially solving the puzzle, they can lock products and locations they
know are allocated correctly. The agent takes over and finishes the puzzle on
its own.

1 False 3 - Beer ■
2 False 4 - Soda D
3 False 5 - Beer D
4 False 6 - Soda ■
5 False 7 - Beer D
6 False 8 - Soda D

Table 5.9: Locations and optimal slotting for scenario E

5.5.2 Results
The results of the experiment are presented in Table 5.10. The results of the agent
on scenario A, B and C can be found in Figure 5.23, 5.24 and 5.25 respectively.
The (hyper)parameter tuning really paid off as in all scenarios the learning is very
consistent and all agents converge towards a local optimum. Without the agent,
the participants are able to get the maximum reward however when supported by
an agent the time could be reduced without the quality of the slotting reducing
substantially. By locking both locations and products the actions required to be
considered by the agent dropped significantly, making it more likely to find a local
optimum closer to the maximum reward.

5.6 Conclusion
The department of Logistics Support is AI novice and numerous activities have
resulted in more knowledge about AI and the impact it could have on the de-
partment. Multiple business processes have been assessed and together with
the department the slotting has been identified as a process that is most labour-
intensive and would benefit from an agent supporting the slotter in the daily
operations. When trying multiple algorithms the A2C achieved the highest sample
efficiency and performance. The (hyper)parameters of the algorithm were tested
on two scenarios to get an initial idea about their impact when scaling up towards

Lo
ca

tio
n

Fl
ow

 ra
ck

N
ex

t l
oc

at
io

n

Sl
ot

te
d

in
iti

al
ly

O
pt

im
al

 s
lo

tti
ng

Lo
ck

 fo
r a

ge
nt

?

88 Chapter 5. Exploratory research

ct
or

en
ar

io

m
pl

oy
ee

 ti
m

e

m
pl

oy
ee

ge
nt

Pa

A

Sc

E E ∆ A

∆
- Agent A - - - 202 +242
Participant 1 Employee A 5 minutes 230 +270 - -
Participant 3 Employee A 11 minutes 255 +295 - -
Participant 4 Employee A 10 minutes 255 +295 - -
Participant 2 Combination A 7 minutes 60 +100 235 +175
- Agent B - - - 438 +528
Participant 2 Employee B 16 minutes 545 +355 - -
Participant 3 Combination B 7 minutes 30 +120 488 +458
Participant 1 Combination B 7 minutes 245 +355 502 +257
- Agent C - - - 729 +935
Participant 2 Employee C 34 minutes 1193 +1399 - -
Participant 4 Combination C 7 minutes -60 +146 822 +882

Table 5.10: Performance of the participants for different actors and scenarios

the puzzle the agent has to solve in a real-world scenario. The experiment aimed
at intelligence amplification resulted in a higher overall performance for slotters
using the agent.

rti
ci

pa
nt

5.6 Conclusion 89

Figure 5.23: Rewards of the agent with optimized parameters in scenario A

Figure 5.24: Rewards of the agent with optimized parameters in scenario B

Figure 5.25: Rewards of the agent with optimized parameters in scenario C

III

Treatment design

6 Requirements specification 93
6.1 Stakeholders
6.2 Requirements
6.3 Positioning of the artifact

7 Model .. 95
7.1 Team lead
7.2 Development team
7.3 Operations

In order to transfer the experience and knowledge of the exploratory research,
requirements have been identified for the model. Defining requirements helps
in deriving useful guidelines for possible treatments [46]. In this chapter the re-
quirements for the model are identified as properties desired by stakeholders. The
stakeholders are identified in section 6.1. The requirements are based on contri-
bution arguments which are a result of design choices made on behalf of the
stakeholders. The goal of the model is to enable logistic organizations to effectively
implement reinforcement learning.

6.1 Stakeholders

Based on the exploratory research and the parties involved in implementing
reinforcement learning the following stakeholders have been identified. The stake-
holders have been generalized to enable other logistic organizations in mapping
slightly different positions onto these. The stakeholders and their goals are:

Team lead The member that is responsible for the operational staff and con-

tinuously improving the efficiency and quality of the operational
staff.

Operational staff The employees responsible for carrying out the daily logistic op-

erations, such as slotting, order picking and planning.

Developers The developers are responsible for developing and maintaining
the software to support the operational staff. These developers
do not necessarily have in-depth machine learning knowledge.

6. Requirements specification

94 Chapter 6. Requirements specification

6.2 Requirements
The requirements of the model are properties desired by some stakeholder, who
committed resources and time to realize the property [46]. The requirements are
split into functional and non-functional requirements.

6.2.1 Functional requirements

Functional requirements are requirements for desired functions of the model. A
function is a terminating part of the interaction between an artifact and its context
that contributes to to a service to a stakeholder [46]. The following functional
requirements have been identified:

1. The model enables team leads to identify business processes suitable for
reinforcement learning.

2. Using the model, the team lead is able to design a task environment that
resembles the real-world together with the operational staff.

3. The model gives the team lead a good idea about whether or not the RL
agent is going to succeed during implementation.

4. The model gives team leads an idea about the expected workload of the
stakeholders during the implementation.

5. The model helps developers to tune the (hyper)parameters to increase the
performance of the agents.

6. The model is can easily be adapted and tuned by logistic organizations.
7. The model is compatible with an ever expanding number of RL algorithms.

6.2.2 Non-functional requirements

The non-functional requirement for the
model is that the model should be easy
to use and learn for both team leads
and developers. For this non-functional
requirement the indicator is the effort
required.

6.3 Positioning of the artifact
The model should be positioned to help
logistic organizations that are just get-
ting started with reinforcement learning
or even AI in general. The model en-
compasses all of the technology, orga-
nization and the logistic environment
and is targeted at AI novice organiza-
tions [16, 31]. The positioning can be
found in Figure 6.1.

Figure 6.1: The positioning of the model.

Model

Environment Organization Technology

AI novice
AI ready

AI proficient
AI advanced

In this chapter the proposed model as well as its tasks for each stakeholder are
discussed in detail. The model consists of recommendations that are a result of the
exploratory research and the problem investigation. An overview of the model can
be found in Figure 7.2. To enable other logistic organizations to adapt the model
into their business processes BPMN is used, as it is the leading standard in business
process modelling. The model consists of three phases, exploration, scaling up and
implementation. In the following sections each stakeholder is discussed starting
with the team lead.

7.1 Team lead

The team lead is the most important actor in the implementation process, as he or
she is responsible for identifying suitable business processes for RL. Together with
the the other stakeholders the team lead coordinates the process and decides
whether or not to continue with the implementation. The expected workload for
each phase is presented in Figure 7.1.

Figure 7.1: Workload for team lead

7. Model

Phase 3 - Implementation

Construct a fallback

Implement agent

Develop the agent

Monitor performance

Start implementation
Implement RL into

the business
process

Performance
metrics

Implementation
ready

Start with updated
business process

Receive task
environment

Evaluate impact on
operations

Evaluate task
environment and
provide feedback

Positive
impact?

Assess
implementation

impact on operations

Design task
environment

Pick business
process from

backlog RL backlog

no

yes

yes

Task
environment
viable? no no

Adjust the
requirements?

Identify suitable
business processes

for RL

no yes
Attempt

implementation?

Receive
results no no yes yes

Meets
requirements?

yes no Try another
approach?

no Adding new
ideas?

Receive results

Requirements
engineering yes

Assess RL
approach and

method

Results
sufficient?

Tune
(hyper)parameters

Implement real-world
scenario Perform initial tests

Develop a small
simulation

environment

Receive task
environment

Test results

Phase 2 - Scaling up Phase 1 - Exploration

96

C
ha

pt
er

 7
. M

od
el

D
ep

ar
tm

en
t w

ith
in

 lo
gi

st
ic

 o
rg

an
iz

at
io

n

M
an

ag
er

 /
te

am
 le

ad

O
pe

ra
tio

ns

D
ev

el
op

m
en

t t
ea

m

Fi
gu

re
 7

.2
: A

 m
et

ho
d

 fo
r R

L-
d

riv
en

 b
us

in
es

s p
ro

ce
ss

 re
-e

ng
in

ee
rin

g

7.1 Team lead 97

7.1.1 Identify suitable business processes

Not every task is suitable for reinforcement learning. The first step when identifying
a suitable business process is defining (a simplified version of) the task environment.
The task environment consists of the agent, what sensors it has and which actions
it can take as well as the environment the agent is operating in. When the task
environment is considered to be suited for RL by the team lead, it is added to a
backlog where they are prioritized in terms of impact and expected implemen-
tation difficulty. Based on literature and the exploratory research each of the
following characteristics help in identifying whether or not the task environment
suits reinforcement learning:

Fully observable or partially observable? Because RL is not very sample
efficient, it is important that the agent has access to enough input data. A
fully observable environment is therefore preferred over environments with
limited observability.
Single agent or multiagent? The complexity of task environments with multiple
agents increases significantly. Having an agent solve a smaller part of the
task environment could alleviate this problem.
Deterministic or stochastic? Knowing exactly where the agent ends up taking
a particular action helps the agent train the correct policy however when
the environment is stochastic it could make it more robust to overfitting.
Sparse or immediate results? Whether it is possible to give the agent a reward
immediately after taking an action or if it only comes at the end. Immediate
rewards result in faster training agents and is preferred especially when using
temporal-difference learning algorithms. The shorter the delay between
action and consequence, the faster the feedback loop gets closed and the
easier it is for an agent to figure out a path with high rewards.
Static or dynamic? When the environment changes when the agent is still
considering an action the environment is dynamic. Comparable to stochastic
environments this is more difficult for the agent to learn.
Discrete or continuous? RL agents have been successful in both discrete as
well as continuous task environments. It is important to consider the possible
scenario the agent can run into.

Considering all of these task environment characteristics, the team lead can rank
these business processes accordingly and decide whether or not to add it to the
backlog.

7.1.2 Design task environment

The team lead makes a decision to pick a certain business process from the
backlog. In this part the design of the task environment is developed. Similar to
the exploratory research, the team lead specifies the details of an environment
and the agent interacting with it. This is split up into three parts, the environment,
the reward function and the agent types. After these activities are performed, the
team lead makes the decision to ask the development team to develop a small
simulation environment.

•

•

•

•

•

•

98 Chapter 7. Model

The environment
The main task is to design an environment that simulates (a simplified version of) the
real-world business process. For the exploratory research this was a table consisting
of all locations and the products allocated to those locations. A task environment
can easily consists of multiple inputs such as tabular and imagery data.

Finally the environment should be passed to the agent in a way it can understand.
In the exploratory research one hot encoding was used to pass the state to the
agent. But using imagery data is also a possibility. In literature passing an image to
the agent often consists of using the greyscale values of of a cropped image.

Actions
There can be multiple ways to solve the same puzzle. In the exploratory research
the agent could solve the puzzle by only deciding between products and se-
quentially solve the puzzle however the fully autonomous agent was able to slot
products on a specific location as well as decide when it was finished. With the
environment in mind the team lead could come up with different ways the agent
can interact with the environment. Based on the results of the exploratory research,
the idea is to get a minimal set of actions of which the agent is able to reach its
goal.

Reward function
Creating a reward function is not difficult however designing a reward function
that encourages intended behaviour is, especially considering the agent has to
be able to learn it. For the slotting multiple rewards and penalties were specified
to mimic how a slotter would evaluate the product allocation. The problem
however was that only slotting was evaluated using the products that were already
allocated, and not on the products that still needed to be allocated. The result
was an agent that started slotting certain products, slotted correctly from there
however in the end did not find the global optimum. The team lead should attempt
to design a reward function that gives an accurate reward in a particular state
taking into account the actions the agent can take. For example when an agent
can undo its action it could still learn the optimal policy.

7.1.3 Assess RL approach and method

With a task environment in place the team lead decides whether or not it is suf-
ficient enough for the developers to develop a small simulation. This simulation
is used to identify whether or not the agent is able to learn the correct policy
in a small task environment before scaling up towards a more realistic scenario.
In order to pick an RL approach the team lead can decide between three RL
approaches which are model-based, value-based and policy gradient. These
approaches are not mutually exclusive, A2C for example uses both value-based
as well as policy gradient methods. Based on the task environment, the following
characteristics of the task environment can ease the decision making:

1. Model-based, when the model of an environment is known.
2. Value-based, such as Q-learning and DQN, learn by estimating how good it

is to take a particular action.
3. Policy gradient, deriving a policy directly.

7.2 Development team 99

Figure 7.3: Overview of RL algorithms

OpenAI provides a clear overview of the available RL algorithms organizations
could use1. Figure 7.3 shows an overview of the currently available RL algorithms.

Within AI novice and AI ready logistic organizations it is likely that there is limited
knowledge about machine learning and how to get started. To tackle this problem
the backbone of the A2C agent used in the exploratory research is provided in
Appendix D to enable these organizations to get started nevertheless.

7.1.4 Requirements engineering

When the results of the first experiments show that the agent is able to learn and
solve the problem presented so far, the team lead can start with the requirements
engineering process. Based on what the agent was able to learn in the initial tests.
These requirements should tackle key performance indicators such as the required
performance of the agent and whether or not a fallback should be in place.

7.2 Development team

The developers are responsible for realizing the agent and the simulation according
to the specifications designed by the team lead and the operational staff. Starting
with a small proof of concept in the exploration phase the team slowly gets more
involved and thus the workload increases. In the final phase the team realizes the
agent that is capable of automating a business process. The expected workload
for the developers is depicted in Figure 7.4.

1https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

100 Chapter 7. Model

Figure 7.4: Workload for the development team

7.2.1 Develop and test a small simulation environment

The task environment, reward function and the type of RL agent thought out by
the team lead are the starting point for the development team. The first goal of
the team is to develop a small simulation environment and perform some initial
tests. The goal of these initial tests is to find out whether or not the idea works in
an environment in which the agent should be able to perform well, with initial
(hyper)parameters. In the slotting case a small simulation was developed of a
warehouse layout with only four locations and four products to slot. This simplified
example showed the potential of Q-learning for the problem and with these initial
results the team lead could continue.

7.2.2 Implement a real-world scenario

When the team lead has developed requirements and has an idea for a real-
world scenario, the development team gets involved again. The team creates
a real-world scenario that is a subset of the actual problem to solve. This step is
important because as the task environment and reward function get more specific,
it could make learning more difficult for the agent. The real-world scenario for
the slotting agent were three scenarios of various sizes that take into account the
store demand forecast, the stacking groups and classes as well as facings and
different types of locations. Although being smaller, this can be considered a part
of the puzzle the operational staff solves each and every day. With a real-world
scenario in place, the developers can test the performance of the agent by
tuning the (hyper)parameters. Logistic organizations that can be considered AI
novice, might not have developers with affinity with machine learning. To enable AI
novice organizations to start experimenting with reinforcement learning Appendix
D provides the Python implementation of an A2C agent the developers can use.

7.2.3 Tuning the (hyper)parameters

When tuning the hyperparameters of any RL agent, it is important that the de-
velopers know which parameters to adjust in order to increase the performance
of the agent. Much like in supervised learning, tuning the parameters is merely
an activity of trail and error. Based on the tuning that was conducted on the
developed slotting agent, the following remarks could be helpful when tuning the
parameters:

• Number of updates and batch size, a low batch size makes the agents

7.3 Operations 101

network being updated more often, increasing the load on the GPU. When
having a bigger environment the batch size differences are not as significant.
As with almost every deep neural network, more updates are beneficial for
the performance of the agent. Different from supervised and unsupervised
learning, RL tends to find a local optimum that is difficult to escape from,
even with more data.
Increasing the number of nodes or layers increases the capacity of the agent
to learn complex problems. It could however lead to overfitting in which
the agent performs well in known states but fails when encountering states it
has not seen before. In scenario A the agent with 256 nodes outperformed
having 512 and 1024 nodes. The difference was less significant when scaling
up towards larger environments which substantiates the idea that larger
environments need more nodes as well as layers.
Gamma is used to discount potential future rewards. This is particularly impor-
tant for stochastic task environments but in the case of the product allocation
the environment was deterministic.
The learning rate is a way to control how fast an agent learns, partially
overwriting old values. A higher learning rate means an agent learns faster
but also focuses more on recent experiences as old ones are removed faster.
As the environments got larger, the learning rate was increased to encourage
the agent to identify potential success paths faster.
Entropy or rate of exploration/exploitation is important as it controls how much
the agent explores the environment or takes actions based on knowledge.
Ideally starting with an agent that only explores is a good way to start, slowly
lowering the entropy from there to find an optimum. In a larger environment
the agent is more likely to pick an action it took before and therefore the
entropy is increased accordingly.

The importance of tuning the parameters became clear in the exploratory re-
search, after tuning the agents trained more stable and efficiently. The team
lead should not rush judging the performance of the agent before proper (hy-
per)parameter tuning is performed as it could have a profound impact.

7.2.4 Implementing the agent (and fallback)

When the team lead has made the decision the start implementing the final
agent, the workload shifts towards the developers. The development of the final
agent consists mainly of scaling up the real-world scenario towards the actual
business process. A fallback should also be considered as the results of RL agents
are not always reproducible, meaning that it could fail sometimes. Depending
on the impact of an agent occasionally not performing, the fallback should be
considered. An example at Albert Heijn is the current tool that is able to make
product allocation decisions based on a search algorithm. The team lead makes
sure to monitor the performance of the agent after implementation and trigger
the fallback if needed.

7.3 Operations
The operational staff is responsible for carrying out the business process and can be
considered the end user. In each phase the operational staff is conducted multiple

•

•

•

•

102 Chapter 7. Model

times for their operational experience. Getting the operational staff involved from
the start helps in developing a positive attitude towards the agent and increases
the potential to adopt it [33]. The workload for the operational staff can be found
in Figure 7.5.

Figure 7.5: Workload for the operational employees

7.3.1 Evaluating the task environment

Together with the team lead the task environment is developed and evaluated
by the operational staff. The team lead attempts to create a task environment
that is suitable for RL whereas the operational staff evaluates to what extent the
task environment compares to the real-world. The operational staff can identify
potential problems with a reward function when comparing their own indicators
for success.

In the product allocation problem a small task environment was made with a
small warehouse of only 4 locations, even though this is obviously not to scale, the
essence of the problem is the same. An agent attempts to - based on various in-
puts - allocate products in a way that is optimal. The goal is therefore to find a task
environment that closely resembles the real-world puzzle, but in a simplified form.
When executed correctly, the developers are presented with a task environment
that is easy to implement while giving a valuable sneak peak of its potential. As
shown in the exploratory research, performance could still increase even though
the agent is not superior to the human by the application of intelligence amplifica-
tion. If for example the final 10% of the business process is quite straightforward an
RL agent could still significantly improve the performance of the operational staff.
During the evaluation these potential cooperation should also be considered.

7.3.2 Evaluating the impact on the operation

Before the impact on the operations can be assessed, first the test results and the
performance of the agent have to be assessed. In order to have an objective
discussion the focus should be on actual results of the agent rather than specula-
tion. In the example of the slotting agent, the agent is not always able to find the
global optimum, but is able to allocate products correctly to a certain extent. The
product allocation has a profound impact on the productivity of the warehouses
of Albert Heijn, therefore the savings in terms of time spent by the slotters does not
outweigh the loss in productivity in the warehouses.

7.3 Operations 103

7.3.3 Start with updated business process
With the agent implementation complete, the operational staff starts working with
the updated business process. When the agent does not perform due to certain
circumstances the fallback will be activated. The operational staff will be thought
how to identify potential failures of the agent and how to instantiate the fallback if
necessary.

IV Treatment validation

8 Model validation 107
8.1 Validation setup
8.2 Team lead expert opinion

8. Model validation

The requirements of the model are specified which enable validation by assessing
to what extent it meets those when implemented in the problem context. The
central problem of treatment validation is that no real-world implementation is
available to investigate whether the treatment contributes to stakeholder goals.
Still, we want to predict what will happen if the treatment is implemented [46]. An
expert opinion was used complemented by results obtained during the exploratory
research. First the setup and validation goal is discussed in section 8.1. In section
8.2 the expert opinion is presented.

8.1 Validation setup
Using expert opinions and based on the exploratory research the proposed model
for RL-based business process re-engineering is validated. Because a large portion
of the activities in the proposed model are also performed during the exploratory
research, the results are also part of the model validation. Almost all activities in
the first two phases are performed during the exploratory research, the validated
activities can be found in Figure 8.2. The activities not covered by the exploratory
research are validated by the team lead from the Logistics Support department of
Albert Heijn. The validation approach per phase is visualized in Figure 8.1.

Figure 8.1: Validation for each phase in the model

Explorator y research

Expert opinion

108 Chapter 8. Model validation

Figure 8.2: The activities also performed during the exploratory research

For each of the phases in the proposed model, the requirements defined in chapter
6 are validated by the team lead at the Logistics Support department at Albert
Heijn. The goal of the validation is to develop a design theory of an artifact in
context that allows us to predict what would happen if the artifact were transferred
to its intended problem context [46].

8.2 Team lead expert opinion
The decision to use BPMN for the model makes the model easily adaptable by
logistic organizations. The stakeholders are general to enable organizations to
map their own teams and individuals on these roles.

The team lead points out that depending on the target organization, it is difficult
to assess whether or not the team lead has the required knowledge in order
to identify suitable business processes for RL. The team lead may lack in-depth
knowledge about a process carried out by the operational staff each and every
day that it is required to identify these processes. More examples in future RL
implementations could ease the identification. A team lead might also decide to
get the operational staff involved beforehand.

During the exploratory research the Logistics Support team got an introduction
into artificial intelligence and reinforcement learning. When an AI novice organi-
zation would attempt to re-engineer their business processes with RL having only
the model would not be enough. The examples from the exploratory research
aid this problem to some extent, however these organizations will need a proper
introduction into the field before commencing. The introduction helps to get
the conversation of AI within the department started but it is important to give
examples the employees can relate to. Examples such as AGVs in the warehouses
are well known but RL can also solve less visible tasks such as the product allocation.

Start with updated
business process

Evaluate impact on
operations

Receive task
environment

Evaluate task
environment and
provide feedback

Implementation
ready

Implement RL into
the business Performance

process metrics
Start implementation

Monitor performance

Positive
impact?

Assess
implementation

impact on operations

no

yes
nt

Adjust the
requirements?

no

Receive
results no no

Meets
requirements?

yes no

Receive results

Try another
approach?

Requirements
engineering yes

Results
sufficient?

Design task
environment

Pick business
process from

backlog RL backlog

yes

Task
environme
viable? no no

Identify suitable
business processes

for RL

yes
Attempt

implementation?

yes yes

no Adding new
ideas?

Assess RL
approach and

method

Develop the agent

Implement agent

Phase 3 - Implementation

Construct a fallback

Tune
(hyper)parameters

Implement real-world
scenario

esults

Phase 2 - Scaling up

Perform initial tests
Develop a small

simulation
environment

Receive task
environment

Test r

Phase 1 - Exploration
D

ep
ar

tm
en

t w
ith

in
 lo

gi
st

ic
 o

rg
an

iz
at

io
n

M
an

ag
er

 /
te

am
 le

ad

O
pe

ra
tio

ns

D
ev

el
op

m
en

t t
ea

m

8.2 Team lead expert opinion 109

The model consists of multiple moments where the team lead can make the
decision whether or not to continue with reinforcement learning. Being able to
start small and slowly scale up is really valuable according to the team lead, as it
does not require huge up-front investments both in terms of costs and scarce IT
personnel.

The team lead suggests that when the business process is identified it makes sense
to concurrently get the developers involved to design the task environment to-
gether. This alleviates the problem of the developers being unable to develop the
environment thought out by the team lead.

The expert notes that having an idea about the workload of every stakeholder
during the implementation process helps in the decision making about whether or
not to continue. Maybe more important, it gives an idea about whether the team
lead is allocating enough resources during each phase.

Based on the expert opinion and the exploratory research logistic organizations
using the proposed model are able to re-engineer their business processes us-
ing RL, but there are some preconditions to be met. AI Novice organizations do
need a proper introduction into the field of AI and the characteristics of RL before
proceeding. Without the examples the model could be difficult to interpret, espe-
cially when tackling a very different business process compared to the product
allocation problem.

V Closure

9 Conclusion .. 113
9.1 Limitations and future work
9.2 Recommendations for Albert Heijn

9. Conclusion

In this chapter the research is concluded and an overview of the contribution of
this thesis for both practice and literature is presented. Finally the limitations and
future work are discussed.

What is the current state of artificial intelligence and especially deep and rein-
forcement learning in the logistics industry?

Artificial Intelligence (AI) will become very important for businesses across the
world, and its time is now. Organizations that successfully implement AI are said to
profit disproportionately compared to the laggards. A literature review on both AI
and technology adoption shows that logistic organizations struggle to implement
AI because of its unique determinants as well as not having clear and concise tools
to improve their AI maturity. Deep learning is currently the most promising AI tech-
nique but reinforced learning is also gaining momentum. Reinforcement learning
encompasses all of AI, an agent learns by performing actions in an environment
and eventually finds an optimal policy to maximize its reward. This resembles in a lot
of ways humans learn, although currently not being very efficient. Reinforcement
learning became much more powerful due to the addition of neural networks
and multiple approaches and algorithms have been identified, such as Deep
Q-learning (DQN) and Advantage Actor Critic (A2C). Reinforcement learning
literature has skyrocketed in recent years due to breakthroughs such as defeating
the world champion in a game of Go. But little is known about whether and
how this technique could be implemented into the business processes of logistic
organizations.

What are the most important artificial intelligence adoption models and frame-
works in the logistics industry?

114 Chapter 9. Conclusion

Technology adoption research has been around for a long time, and through
time multiple acceptance models were developed. Starting with the TAM which
was eventually extended and resulted in the UTAUT model. The UTAUT model is
often criticized because its determinants are not entirely compatible with AI. This is
especially true because of the potential job loss and the disruptive nature of AI. In
practice therefore, most of the time the TOE model is used to draw conclusions
regarding the adoption of AI in organizations. Other adoption models such as the
DOI are still relevant for AI as it follows a similar pattern and the potential rewards for
early adopters is disproportionate. The TOE model was extended by Mahroof with
perceived benefits as this was a great predictor for AI adoption in a large retailer
warehouse. Based on the task at hand, an assessment can be made whether or
not AI is suitable following the intelligence amplification framework. The framework
shows what type of task humans excel at and what tasks are better off handled
by computers.

Which types of business processes are suitable for reinforcement learning?

The literature body helped in identifying most of the characteristics a business
process should have to be suitable for RL. During the exploratory research three
potential business processes were considered and based on the results of the liter-
ature review the product allocation in the warehouses of Albert Heijn was picked
because of its deterministic, fully observable nature. After implementing real-world
scenarios of the slotting and the difficulties along the way the list with character-
istics was refined and incorporated in the guidelines of the final model. Logistic
organizations that want to identify a suitable business process to re-engineer with
RL should also consider the size of the task environment and if rewards are sparse
or immediate. The agent trained in the exploratory research has to be retrained
when locations or product specifications change, picking a business process that
does not change in terms of environment and actions the agent can take are also
more suitable.

Which steps help logistic organizations in successfully implementing reinforcement
learning?

During the exploratory research an attempt was made to develop a RL agent
which is able to allocate products successfully in a small but realistic warehouse
setting. The slotting of products is an important and labour intensive task and
currently performed by multiple full-time employees.

Traditional machine learning approaches are only partially applicable to RL such
as (hyper)parameter optimization and deciding whether or not there is a business
case. In RL however, these tasks are only a subset of a set of tasks required to even
get started. First a task environment needs to be identified and created for the
agent to interact with. This can seem straightforward with a deterministic environ-
ment such as a chess board but when considering business processes in logistic
organizations this could be very difficult. One hot encoding is one technique to
pass an environment such as a spreadsheet to an agent used successfully in this
thesis. Another important and difficult task in RL is the designing of the reward
function, this often requires in-depth analysis together with the operational staff. For

115

the slotting a scoreboard was developed that was created in cooperation with the
employees in an attempt to give the agent proper rewards. The reward function
should be detailed enough for the agent to learn the correct policy however when
over-engineering the agent could not learn at all. As with other high risk projects it
is important to start small with a manageable task environment and scale up from
there as the agent continues to learn.

To what extent can the developed model help logistic organizations in the adop-
tion of reinforcement learning?

Based on the exploratory research and the literature body a BPMN model was
developed together with a set of guidelines that enables logistic organizations to
re-engineer their business processes using reinforcement learning. Although being
aimed at AI novice and AI ready organizations, there are some preconditions
for organizations before commencing. There should be a basic understanding
about AI and RL across the entire department in order to get started with the
implementation. This is because the team lead - the stakeholder responsible for
the implementation - needs both the developers and the operational staff in its
decision process. RL differs from supervised and unsupervised learning as it is able
to solve a wide variety of tasks with the same agent, however it succeeds in only
a fraction compares to the mainstream learning methods. The model therefore
includes multiple moments in which the team lead can decide whether or not to
continue with the implementation.

The business process targeted for the validation was the slotting process at Albert
Heijn. Based on a realistic case, numerous staff members participated in an ex-
periment to find out whether or not the product allocation performance could
be increased using an RL agent. The experiment showed that using intelligence
amplification, in which the staff members worked in cooperation with the RL agent
significantly reduced the required effort while still achieved good performance.
The results showed that although the staff was able to reach the maximum score,
the agent was not far off. When the agent was asked to perform the entire task by
itself, the agent was able to find a local optimum in almost every attempt.

The scientific relevance is twofold. Current adoption models lack the unique de-
terminants for artificial intelligence and reinforcement learning, the methodology
of this research could alleviate this problem for future research. Secondly, this
research also indicates that using intelligence amplification, agents using rein-
forcement learning also benefit from the cooperation between a human and the
agent. The model can be considered a first step in taking reinforcement learning
beyond simple games and towards actual business processes.

116 Chapter 9. Conclusion

9.1 Limitations and future work
Even though literature of reinforcement learning has only recently gained a lot of
attention, the field exists for a long time. Because of the limited period in which
the literature review was written, not all relevant contributions are considered.
Since the development of Advantage Actor Critic (A2C) AI organizations have
developed more state-of-the-art algorithms that are beyond the scope of this
research.

The main focus of this research was on developing an agent capable of being im-
plemented in a business process. Due to time constraints the proposed model the
treatment was only validated using expert opinions and the exploratory research.
The model without the exploratory research examples is currently not sufficient for
AI novice organizations, future work can extend the number of implementations
and further develop the model.

When developing the agent, due to computational limitations the largest scenario
considered consists of 42 locations and 29 products to allocate, whereas in the
real-world the slotters work with environments that could consist thousands of
locations. Future work could use the model and attempt an implementation at a
logistic organization that encompasses all three phases.

9.2 Recommendations for Albert Heijn
Because the agent used for the product allocation is model-free, it can be used
for a wide variety of problems. The team lead and the developers can continue to
experiment with the A2C algorithm and when new state-of-the-art RL algorithms
are developed the department can quickly adapt because the task environment
and reward function do not have to change.

Even though reinforcement learning has not been able to solve the slotting per-
fectly or outperform the traditional way of working does not mean it could not
add value. Reevaluating tasks within the supply chain of Albert Heijn could identify
tasks where agents would excel at and tasks better suited for humans. The applica-
tion of the intelligence amplification framework improves this identification process.

Postface

References

[1] Accenture, SAS, and Intel. “AI Momentum, Maturity & Models for success”. In: (2018),
p. 24 (cit. on pp. 60–63).

[2] Icek Ajzen and Martin Fishbein. The Prediction of Behavior from Attitudinal and
Normative Variables. Tech. rep. 1970, pp. 466–487 (cit. on pp. 55, 128).

[3] Abdulrahman Altahhan. “Self-reflective deep reinforcement learning”. In: Proceed-
ings of the International Joint Conference on Neural Networks 2016-Octob.8 (2016),
pp. 4565–4570. ISSN: 1053-5888. DOI: 10.1109/IJCNN.2016.7727798 (cit. on pp. 46,
125).

[4] Alex M. Andrew. “Reinforcement Learning: An Introduction”. In: Kybernetes 27.9
(1998), pp. 1093–1096. ISSN: 0368492X. DOI: 10.1108/k.1998.27.9.1093.3 (cit. on
pp. 47–49, 51, 52, 125).

[5] Richard Bellman. A Markovian Decision Process. 1957. DOI: 10.1512/iumj.1957.6.
56038 (cit. on pp. 46, 125).

[6] Ben Gesing, Steve J. Peterson, and Dirk Michelsen. “Artificial Intelligence in Logistics
- A collaborative report by DHL and IBM on implications and use cases for the
logistics industry”. In: DHL Customer Solutions & Innovation (2018), p. 45. URL: https:
//www.logistics.dhl/content/dam/dhl/global/core/documents/pdf/glo- ai- in-
logistics-white-paper.pdf (cit. on pp. 23, 24, 36, 60–62).

[7] Matthew Botvinick et al. “Reinforcement Learning, Fast and Slow”. In: Trends in
Cognitive Sciences 23.5 (2019), pp. 408–422. ISSN: 1879307X. DOI: 10.1016/j.tics.
2019.02.006. URL: https://doi.org/10.1016/j.tics.2019.02.006 (cit. on p. 125).

[8] E. S. Brunette, R. C. Flemmer, and C. L. Flemmer. “A review of artificial intelligence”.
In: ICARA 2009 - Proceedings of the 4th International Conference on Autonomous
Robots and Agents. 2009, pp. 385–392. ISBN: 9781424427130. DOI: 10.1109/ICARA.
2000.4804025 (cit. on pp. 29, 36).

[9] Jacques Bughin et al. “Notes from the AI frontier: Modeling the global economic
impact of AI”. In: McKinsey Global Institute September.September (2018), pp. 1–
64. URL: https://www.mckinsey.com/featured-insights/artificial-intelligence/
notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy
(cit. on pp. 23, 36).

http://dx.doi.org/10.1109/IJCNN.2016.7727798
http://dx.doi.org/10.1108/k.1998.27.9.1093.3
http://dx.doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1512/iumj.1957.6.56038
https://www.logistics.dhl/content/dam/dhl/global/core/documents/pdf/glo-ai-in-logistics-white-paper.pdf
https://www.logistics.dhl/content/dam/dhl/global/core/documents/pdf/glo-ai-in-logistics-white-paper.pdf
https://www.logistics.dhl/content/dam/dhl/global/core/documents/pdf/glo-ai-in-logistics-white-paper.pdf
http://dx.doi.org/10.1016/j.tics.2019.02.006
http://dx.doi.org/10.1016/j.tics.2019.02.006
https://doi.org/10.1016/j.tics.2019.02.006
http://dx.doi.org/10.1109/ICARA.2000.4804025
http://dx.doi.org/10.1109/ICARA.2000.4804025
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy
https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai-frontier-modeling-the-impact-of-ai-on-the-world-economy

120 References

[10] Lucian Bus¸oniu et al. “Reinforcement learning for control: Performance, stability,
and deep approximators”. In: Annual Reviews in Control 46 (2018), pp. 8–28. ISSN:
13675788. DOI: 10.1016/j.arcontrol.2018.09.005 (cit. on pp. 46, 53, 125).

[11] Fariborz Damanpour and Marguerite Schneider. “Phases of the adoption of innova-
tion in organizations: Effects of environment, organization and top managers”. In:
British Journal of Management 17.3 (Sept. 2006), pp. 215–236. ISSN: 10453172. DOI:
10.1111/j.1467-8551.2006.00498.x (cit. on pp. 57, 128).

[12] Fred D. Davis. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance
of Information Technology”. In: MIS Quarterly 13.3 (Sept. 1989), p. 319. ISSN: 02767783.
DOI: 10.2307/249008. URL: https://www.jstor.org/stable/249008?origin=crossref
(cit. on pp. 55, 56, 128).

[13] Fred D. Davis, Richard P. Bagozzi, and Paul R. Warshaw. “User Acceptance of Com-
puter Technology: A Comparison of Two Theoretical Models”. In: Management
Science 35.8 (Aug. 1989), pp. 982–1003. ISSN: 0025-1909. DOI: 10.1287/mnsc.35.8.982.
URL: http :// pubsonline . informs . org / doi / abs / 10 . 1287 / mnsc . 35 . 8 . 982 (cit. on
pp. 56, 128).

[14] Peter Dayan and Yael Niv. “Reinforcement learning: The Good, The Bad and The
Ugly”. In: Current Opinion in Neurobiology 18.2 (2008), pp. 185–196. ISSN: 09594388.
DOI: 10.1016/j.conb.2008.08.003 (cit. on pp. 46, 49, 53, 125).

[15] Li Deng. “Artificial Intelligence in the Rising Wave of Deep Learning: The Historical
Path and Future Outlook”. In: IEEE Signal Processing Magazine 35.1 (2018), pp. 177–
180. ISSN: 10535888. DOI: 10.1109/MSP.2017.2762725 (cit. on pp. 23, 36, 45, 46, 125).

[16] Rocco DePietro, Edith Wiarda, and Mitchell Fleischer. “The context for change: Or-
ganization, Technology and Environment”. In: The process of technology innovation.
1990 (cit. on pp. 58, 59, 94, 128).

[17] Andrej Dobrkovic et al. “Intelligence amplification framework for enhancing schedul-
ing processes”. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 10022 LNAI.
Springer Verlag, 2016, pp. 89–100. ISBN: 9783319479545. DOI: 10.1007/978- 3- 319-
47955-2{_}8 (cit. on pp. 59, 85, 128).

[18] Marta Garnelo and Murray Shanahan. “Reconciling deep learning with symbolic
artificial intelligence: representing objects and relations”. In: Current Opinion in
Behavioral Sciences 29 (2019), pp. 17–23. ISSN: 23521546. DOI: 10.1016/j.cobeha.
2018.12.010. URL: https://doi.org/10.1016/j.cobeha.2018.12.010 (cit. on pp. 46,
125).

[19] Karen Hao. We analyzed 16,625 papers to figure out where AI is headed next. 2019.
URL: https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-
figure-out-where-ai-is-headed-next/ (cit. on p. 23).

[20] Nicholas R Jennings and Michael Wooldridge. A Roadmap of Agent Research and
Development. Tech. rep. 1998, pp. 7–38 (cit. on pp. 23, 36).

[21] Elena Karahanna, Detmar W Straub, and Norman L Chervany. Information Technol-
ogy Adoption Across Time: A Cross-Sectional Comparison of Pre-Adoption and
Post-Adoption Beliefs. Tech. rep. 2. 1999, pp. 183–213. URL: http : / / www . jstor .
orgStableURL:http://www.jstor.org/stable/249751 (cit. on pp. 56, 128).

[22] Barbara Kitchenham. Procedures for Performing Systematic Reviews. Tech. rep. 2004
(cit. on p. 29).

[23] Matthias Klumpp and Henk Zijm. “Logistics Innovation and Social Sustainability: How
to Prevent an Artificial Divide in Human–Computer Interaction”. In: Journal of Business
Logistics. Wiley-Blackwell, 2019. DOI: 10.1111/jbl.12198 (cit. on pp. 60, 128).

http://dx.doi.org/10.1016/j.arcontrol.2018.09.005
http://dx.doi.org/10.1111/j.1467-8551.2006.00498.x
http://dx.doi.org/10.2307/249008
https://www.jstor.org/stable/249008?origin=crossref
http://dx.doi.org/10.1287/mnsc.35.8.982
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.35.8.982
http://dx.doi.org/10.1016/j.conb.2008.08.003
http://dx.doi.org/10.1109/MSP.2017.2762725
http://dx.doi.org/10.1007/978-3-319-47955-2%7B/_%7D8
http://dx.doi.org/10.1007/978-3-319-47955-2%7B/_%7D8
http://dx.doi.org/10.1016/j.cobeha.2018.12.010
http://dx.doi.org/10.1016/j.cobeha.2018.12.010
https://doi.org/10.1016/j.cobeha.2018.12.010
https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
http://www.jstor.org/stable/249751
http://dx.doi.org/10.1111/jbl.12198

121

[24] K. H. Leung et al. “Design of a case-based multi-agent wave picking decision support
system for handling e-commerce shipments”. In: PICMET 2016 - Portland Interna-
tional Conference on Management of Engineering and Technology: Technology
Management For Social Innovation, Proceedings. 2017. ISBN: 9781509035953. DOI:
10.1109/PICMET.2016.7806645 (cit. on pp. 60, 128).

[25] Long Ji Lin. “Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching”. In: Machine Learning 8.3 (1992), pp. 293–321. ISSN: 15730565.
DOI: 10.1023/A:1022628806385 (cit. on pp. 51, 125).

[26] Kamran Mahroof. “A human-centric perspective exploring the readiness towards
smart warehousing: The case of a large retail distribution warehouse”. In: Interna-
tional Journal of Information Management 45 (Apr. 2019), pp. 176–190. ISSN: 02684012.
DOI: 10.1016/j.ijinfomgt.2018.11.008 (cit. on pp. 23, 55, 60, 128).

[27] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: (2013),
pp. 1–9. URL: http://arxiv.org/abs/1312.5602 (cit. on pp. 50, 125).

[28] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In:
33rd International Conference on Machine Learning, ICML 2016 4 (2016), pp. 2850–
2869 (cit. on pp. 52, 53, 125).

[29] Gary C Moore and Izak Benbasat. Development of an Instrument to Measure the
Perceptions of Adopting an Information Technology Innovation. Tech. rep. 1991
(cit. on pp. 56, 128).

[30] Tomaso Poggio et al. “Why and when can deep-but not shallow-networks avoid
the curse of dimensionality: A review”. In: International Journal of Automation and
Computing 14.5 (2017), pp. 503–519. ISSN: 17518520. DOI: 10.1007/s11633-017-1054-2
(cit. on pp. 45, 125).

[31] Tom Pringle and Eden Zoller. “How to Achieve AI Maturity and Why It Matters”. In:
(2018), p. 18. URL: https://www.amdocs.com/sites/default/files/filefield_paths/
ai-maturity-model-whitepaper.pdf (cit. on pp. 63, 67, 94).

[32] Yara Rizk et al. “Deep belief networks and cortical algorithms: A comparative
study for supervised classification”. In: Applied Computing and Informatics 15.2
(2018), pp. 81–93. ISSN: 22108327. DOI: 10 . 1016 / j. aci . 2018 . 01 . 004. URL: https :
//doi.org/10.1016/j.aci.2018.01.004 (cit. on pp. 45, 125).

[33] Everett M. Rogers. Diffusion of innovations. Free Press, 1983, p. 453. ISBN: 0029266505
(cit. on pp. 56, 57, 59, 102, 128).

[34] Maria Rosario Oliveira Martins, Tiago Oliveira, and Maria Fraga Martins. “Literature
Review of Information Technology Adoption Models at Firm Level”. In: The Electronic
Journal Information Systems Evaluation 14 (2011), p. 110. ISSN: 1566-6379 (cit. on
pp. 55, 128).

[35] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach Third
Edition. Tech. rep. 2010, p. 1151. DOI: 10.1017/S0269888900007724. arXiv: 9809069v1
[gr-qc] (cit. on pp. 35–49, 123).

[36] Tom Schaul et al. “Prioritized Experience Replay”. In: (2015), pp. 1–21. URL: http:
//arxiv.org/abs/1511.05952 (cit. on pp. 51, 125).

[37] Jürgen Schmidhuber. “Deep Learning in neural networks: An overview”. In: Neural
Networks 61 (2015), pp. 85–117. ISSN: 18792782. DOI: 10.1016/j.neunet.2014.09.003.
URL: http://dx.doi.org/10.1016/j.neunet.2014.09.003 (cit. on pp. 43, 45, 46, 125).

[38] V. V. Shakirov, K. P. Solovyeva, and W. L. Dunin-Barkowski. “Review of State-of-the-Art in
Deep Learning Artificial Intelligence”. In: Optical Memory and Neural Networks 27.2
(2018), pp. 65–80. ISSN: 1060-992X. DOI: 10.3103/s1060992x18020066 (cit. on pp. 46,
125).

http://dx.doi.org/10.1109/PICMET.2016.7806645
http://dx.doi.org/10.1016/j.ijinfomgt.2018.11.008
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1007/s11633-017-1054-2
https://www.amdocs.com/sites/default/files/filefield_paths/ai-maturity-model-whitepaper.pdf
https://www.amdocs.com/sites/default/files/filefield_paths/ai-maturity-model-whitepaper.pdf
http://dx.doi.org/10.1016/j.aci.2018.01.004
https://doi.org/10.1016/j.aci.2018.01.004
https://doi.org/10.1016/j.aci.2018.01.004
http://dx.doi.org/10.1017/S0269888900007724
http://arxiv.org/abs/9809069v1
http://arxiv.org/abs/9809069v1
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.05952
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.3103/s1060992x18020066

122 References

[39] Ajay Shrestha and Ausif Mahmood. “Review of Deep Learning Algorithms and
Architectures”. In: IEEE Access 7 (2019), pp. 53040–53065. ISSN: 2169-3536. DOI: 10.
1109/ACCESS.2019.2912200. URL: https://ieeexplore.ieee.org/document/8694781/
(cit. on pp. 45, 125).

[40] Vivienne Sze et al. “Efficient Processing of Deep Neural Networks: A Tutorial and
Survey”. In: Proceedings of the IEEE 105.12 (2017), pp. 2295–2329. ISSN: 00189219. DOI:
10.1109/JPROC.2017.2761740. URL: http://ieeexplore.ieee.org/document/8114708/
(cit. on pp. 45, 125).

[41] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with
double Q-Learning”. In: 30th AAAI Conference on Artificial Intelligence, AAAI 2016.
2016. ISBN: 9781577357605 (cit. on pp. 51, 125).

[42] Venkatesh et al. “User Acceptance of Information Technology: Toward a Unified
View”. In: MIS Quarterly 27.3 (2003), p. 425. ISSN: 02767783. DOI: 10.2307/30036540.
URL: https://www.jstor.org/stable/10.2307/30036540 (cit. on pp. 58, 128).

[43] Yuan Wang et al. “Enhancing transportation systems via deep learning: A survey”. In:
Transportation Research Part C: Emerging Technologies 99.December 2018 (2019),
pp. 144–163. ISSN: 0968090X. DOI: 10.1016/j.trc.2018.12.004. URL: https://doi.org/
10.1016/j.trc.2018.12.004 (cit. on pp. 45, 125).

[44] Christopher J. C. H. Watkins and Peter Dayan. “Q-learning”. In: Machine Learning
8.3-4 (1992), pp. 279–292. ISSN: 0885-6125. DOI: 10.1007/bf00992698 (cit. on pp. 49, 50,
75, 125).

[45] Jane Webster and Richard T Watson. Analyzing the Past to Prepare for the Future:
Writing a Literature Review. Tech. rep. 2. 2002, pp. xiii–xxiii (cit. on pp. 28, 30, 124, 126,
127).

[46] Roel J Wieringa and Software Engineering. Design Science Methodology. ISBN:
9783662438381 (cit. on pp. 26–28, 31, 93, 94, 107, 108).

[47] Joost F. Wolfswinkel, Elfi Furtmueller, and Celeste P.M. Wilderom. Using grounded
theory as a method for rigorously reviewing literature. Jan. 2013. DOI: 10.1057/ejis.
2011.51 (cit. on pp. 29, 30, 124, 127).

[48] Yue-ting Zhuang et al. “Challenges and opportunities: from big data to knowledge
in AI 2.0”. In: Frontiers of Information Technology & Electronic Engineering 18.1 (2017),
pp. 3–14. ISSN: 2095-9184. DOI: 10.1631/fitee.1601883 (cit. on pp. 36, 125).

http://dx.doi.org/10.1109/ACCESS.2019.2912200
http://dx.doi.org/10.1109/ACCESS.2019.2912200
https://ieeexplore.ieee.org/document/8694781/
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://ieeexplore.ieee.org/document/8114708/
http://dx.doi.org/10.2307/30036540
https://www.jstor.org/stable/10.2307/30036540
http://dx.doi.org/10.1016/j.trc.2018.12.004
https://doi.org/10.1016/j.trc.2018.12.004
https://doi.org/10.1016/j.trc.2018.12.004
https://doi.org/10.1016/j.trc.2018.12.004
http://dx.doi.org/10.1007/bf00992698
http://dx.doi.org/10.1057/ejis.2011.51
http://dx.doi.org/10.1057/ejis.2011.51
http://dx.doi.org/10.1057/ejis.2011.51
http://dx.doi.org/10.1631/fitee.1601883

Appendices

A Literature review results of reinforcement learning
For this topic one of the most influential books on AI is used first and appended
by a structured literature review on recent review papers regarding - state of the
art - deep learning and reinforcement learning. The aim of this review is therefore
to get an overview of the current state of artificial intelligence and reinforcement
learning literature. First the book is discussed followed by the details and results of
the structured literature review.

Book
The foundation for this research topic is the highly cited
book "Artificial Intelligence - A Modern Approach" by
Russel and Norvig because it forms a proper foundation
of the field [35].

The 1152 pages offer one of the most comprehensive,
up-to-date introduction to the theory and practice of
AI and is therefore a great starting point for diving into
AI.

SLR
In addition a literature review was conducted to find
relevant and more recent contributions in the field. Be-
cause the book of Russel and Norvig covers AI in general, the focus of the SLR was
on deep learning that currently delivers the most promising results and a look into
the future with reinforced learning.

After an initial search and the relevance of the results the following search queries

124 Appendices

were used to find relevant literature:

TITLE-ABS-KEY ("neural network*")
n: 423.706
TITLE-ABS-KEY ("deep learning")
n: 39.666
TITLE-ABS-KEY ("reinforce* learning")
n: 198

Because of the huge number of articles on the topic, inclusion and exclusion
criteria have been defined in an attempt to improve and refine the literature body.

Inclusion criteria:

• English peer reviewed studies.
• Review papers that are related to deep learning or reinforced learning.

Exclusion criteria:

• Studies that are not accessible.
• Studies that are not related to the research questions.
• Duplicate studies.
• Short papers.
• Studies in which deep learning or reinforcement learning is not the main topic.

Results
This literature study was conducted on the 18th of June 2019. The results can be
found in Table A.1.

n1 n2 n3 n4 n5

441.485 319 50 21 22

Table A.1: Number of results for the reinforcement learning SLR

Using the extended concept matrix the articles and their concepts have been
identified [45, 47].

The final selection of articles can be found in Table A.2. How each concept relates
to the research questions is visualized in Table A.3.

•

•

•

Appendix A Literature review results of reinforcement learning 125

Papers Concepts

Poggio et al. (2017) [30] x x

Wang et al. (2019) [43] x

Rizk et al. (2018) [32] x x x

Garnelo et al. (2019) [18] x x

Bus¸oniu et al. (2018) [10] x x
Botvinick et al. (2019) [7] x x x x
Schmidhuber (2015) [37] x x x x x
Sze et al. (2017) [40] x

Zhuang et al. (2017) [48] x x

Shrestha et al. (2019) [39] x

Altahhan et al. (2016) [3] x x
Shakirov et al. (2018) [38] x x

Deng (2018) [15] x x

Mnih et al. (2013) [27] x
Mnih et al. (2016) [28] x
Andrew et al. (1998) [4] x
Van Hasselt et al. (2016) [41] x
Schaul et al. (2015) [36] x
Lin et al. (1992) [25] x
Dayan et al. (2008) [14] x
Bellman et al. (1957) [5] x
Watkins et al. (1992) [44] x

Table A.2: The concept matrix for deep learning and reinforced learning

H
ist

or
y

a
nd

fu

tu
re

 o
f D

L

Fr
om

 sh
a

llo
w

 to
w

ar
ds

d

ee
p

 le
a

rn
in

g

C
ha

lle
ng

es
 a

nd

op
p

or
tu

ni
tie

s o
f D

L

D
L

a
p

p
lic

a
tio

ns

a
nd

 te
ch

ni
q

ue
s

D
ee

p
 re

in
fo

rc
ed

le

a
rn

in
g

126 Appendices

Concept SQ1 SQ2
History and future of DL x x
From shallow towards deep learning x
Challenges and opportunities of DL x x
DL applications and techniques x
Deep reinforced learning x

Table A.3: AI concepts

B Literature review results of technology adoption

Technology acceptance and acceptance on both individual level as well as on an
organizational level has been a subject of research since the late 1980s. Because
of the abundance and the persisting relevance of articles a twofold methodology
was used. First technology adoption is considered and papers were selected
based on recommendations of experts of the University of Twente. To be able to
compare technologies or innovations to artificial intelligence a structured literature
review was used to find articles on AI adoption in preferably logistic organizations.

Experts
Contacting senior experts on a particular topic in conducting a literature review
is of great importance in order to get a high-quality review [45]. For this review
experts and lecturers at the University of Twente were contacted to identify the
most influential articles, the foundation of the field. The experts that contributed
articles to this literature review are professor M.E. Iacob and associate professor M.J.
van Sinderen. The selection consists mainly of technology acceptance models
and how they evolved over time. Research that was added to the review using this
method are marked with an asterisk in the results, which can be found in Table B.1.

SLR
Whereas the expert articles form the foundation of the topic, more recent literature
on technology - and particularly AI - adoption were needed to be able to answer
the research questions. Therefore the expert articles are complemented with a SLR.

Based on the relevance of the most cited results for different search queries, the
following search query was used:

TITLE-ABS-KEY ("artificial intelligence" OR "AI" OR "intelligent agent*") AND
("adopt*" OR "accept*") AND "logistic*"
n: 307

The following inclusion and exclusion criteria were used for technology adoption:

Inclusion criteria:

• English peer reviewed studies.
• Published between 2000 and 2019.
• Related to technology - or AI - adoption (in logistical organizations).

•

Appendix B Literature review results of technology adoption 127

• Acceptance articles on both organizational and individual level.

Exclusion criteria:

• Articles that are not accessible.
• Articles that are not peer reviewed.
• Duplicate studies.
• Short papers.
• Studies that have a very narrow scope.

Results
This literature study was conducted on the 15th of May 2019. The results can be
found in Table B.1.

n1 n2 n3 n4 n5

302 712 33 14 14

Table B.1: Number of results for technology adoption SLR

The following concepts emerged from the literature body:

• Technology adoption at an individual level.
• Technology adoption at organizational level.
• Artificial intelligence adoption.
• Innovation diffusion.
• Implementation of AI.
• Human-computer symbiosis.

Using the extended concept matrix the articles and their concepts have been
identified [45, 47]. The final selection of articles can be found in Table B.2. How
each concept relates to the research questions is visualized in Table B.3.

128 Appendices

Papers Concepts

Karahanna et al. (1999) [21] x

Moore et al. (1991) [29] x x

Venkatesch et al. (2003)* [42]

Rogers (1983)* [33] x x x

DePietro et al. (1990) [16] x x x

Ajzen et al. (1970)* [2] x

Davis (1989)* [12] x

Davis et al. (1989)* [13] x

Dobrkovic (2016)* [17] x x x
Damanpour et al. (2006) [11] x x

Mahroof et al. (2019) [26] x x x x

Klumpp et al. (2019) [23] x x x
Oliveira et al. (2011) [34] x x x

Leung et al. (2016) [24] x

Table B.2: The concept matrix for technology adoption

Concept SQ1 SQ2
Technology adoption at individual level x
Technology adoption at organizational level x
Artificial intelligence adoption x x
Innovation diffusion x
Implementation of AI x x
Human-computer symbiosis x x

Table B.3: Technology adoption concepts

Te
ch

no
lo

gy
 a

do
pt

io
n

a
t i

nd
iv

id
ua

l le
ve

l

Te
ch

no
lo

gy
 a

d
op

tio
n

a
t o

rg
a

ni
za

tio
na

l le
ve

l

A
rti

fic
ia

l I
nt

el
lig

en
ce

a

d
op

tio
n

In
no

va
tio

n
d

iff
us

io
n

Im
p

le
m

en
ta

tio
n

of

A
I

Hu
m

an
-c

om
pu

te
r

sy
m

b
io

sis

Appendix C Scenarios 129

A

1

3

5

7

9

2

4

6

8

10

C Scenarios

In this appendix the scenarios used in the exploratory research and intelligence
amplification chapter are discussed.

Scenario A

Scenario A contains 10 locations and 6 products to slot. The products can be
found in Table C.1, the initial slotting and the optimal slotting can be found in Table
C.2. When slotted optimally, the resulting scoreboard can be found in Table C.3.
The circuit can be found in Figure C.1.

Figure C.1: The circuit for scenario A

Cookies 220 20 1500 2200 2200 D 14000
Soup 180 12 700 500 600 C 35000
Beer 40 - 800 800 1000 A 10000
Toilet paper 24 - 250 200 300 C 40000
Rice 120 20 700 700 550 D 60000
Coffee 150 15 1000 800 900 B 12000

Table C.1: Products to slot in scenario A

Pr
od

uc
t

Un
its

 p
er

 p
al

le
t

Un
its

 in
 fl

ow
 ra

ck

SD
F

(+
1)

SD
F

(+
2)

SD
F

(+
3)

St
ac

ki
ng

 g
ro

up

St
ac

ki
ng

 c
la

ss

130 Appendices

Location Flow rack Next location Slotted initially Optimal slotting
1 False 3 - Beer
2 False 4 - Coffee
3 False 5 - Beer
4 False 6 - Cookies
5 False 7 - Beer
6 False 8 - Cookies
7 False 9 - Soup
8 False 10 - Toilet paper
9 False - - Rice
10 False - - Toilet paper

Table C.2: Locations and optimal slotting for scenario A

Reward Score Occurrences Total
Product slotted (A) +15 1 15
Product slotted (B) +15 1 15
Product slotted (C) +15 2 30
Product slotted (D) +15 2 30
Free locations +2 0 0
Matching SDF (+1) +15 6 90
Matching SDF (+2) +10 6 60
Matching SDF (+3) +5 5 25
Movement -1 10 -10
Facings not adjacent -15 0 0
Stacking group violation -15 0 0
Stacking class violation -10 0 0

 255

Table C.3: The scoreboard for the optimal slotting in scenario A

Appendix C Scenarios 131

B

1

3

5

7

9

2 19

4 17

6 15

8 13

10 11

20

18

16

14

12

Scenario B

Scenario B contains 20 locations and 13 products to slot. The products can be
found in Table C.4, the initial slotting and the optimal slotting can be found in Table
C.5. When slotted optimally, the resulting scoreboard can be found in Table C.6.
The circuit can be found in Figure C.2.

Figure C.2: The circuit for scenario B

Ketchup 120 10 700 700 550 D 53000
Cereal 60 - 200 500 250 D 52000
Rice 120 20 700 700 550 C 40000
Pasta 25 5 100 120 90 D 57000
Coffee 150 15 1000 800 900 B 12000
Eggs 90 20 300 200 550 C 42000
Apple juice 70 - 500 450 500 D 12000
Toilet paper 24 - 120 140 160 D 60000
Candy 120 40 700 700 550 C 42000
Soda 40 - 400 800 700 B 11000
Soup 180 12 1000 2500 2500 C 25000
Beer 40 - 800 800 1000 A 10000
Cookies 220 20 1200 1500 1200 D 14000

Table C.4: Products to slot in scenario B

Pr
od

uc
t

Un
its

 p
er

 p
al

le
t

Un
its

 in
 fl

ow
 ra

ck

SD
F

(+
1)

SD
F

(+
2)

SD
F

(+
3)

St
ac

ki
ng

 g
ro

up

St
ac

ki
ng

 c
la

ss

132 Appendices

Location Flow rack Next location Slotted initially Optimal slotting
1 False 3 - Beer
2 False 4 - Soda
3 False 5 - Beer
4 False 6 - Soda
5 False 7 - Beer
6 False 8 - Soda
7 False 9 - Beer
8 False 10 - Coffee
9 False - - Apple juice
10 False - - Cookies
11 False 13 - Soup
12 False 14 - Rice
13 False 15 - Soup
14 False 16 - Candy
15 False 17 - Eggs
16 False 18 - Cereal
17 False 19 - Ketchup
18 False 20 - Cereal
19 False - - Pasta
20 False - - Toilet paper

Table C.5: Locations and optimal slotting for scenario B

Reward Score Occurrences Total
Product slotted (A) +15 1 15
Product slotted (B) +15 2 30
Product slotted (C) +15 4 60
Product slotted (D) +15 6 90
Free locations +2 0 0
Matching SDF (+1) +15 12 180
Matching SDF (+2) +10 13 130
Matching SDF (+3) +5 12 60
Movement -1 20 -20
Facings not adjacent -15 0 0
Stacking group violation -15 0 0
Stacking class violation -10 0 0

 545

Table C.6: The scoreboard for the optimal slotting in scenario B

Appendix C Scenarios 133

C

1

3

5

7

9

2 19

4 17

6 15

8 13

10 11

20 21

18 23

16 25

14 27

12 37

22 42

24 41

26 40

28 - 36

38 39

Scenario C

Scenario C contains 42 locations and 29 products to slot. The products can be
found in Table C.8, the initial slotting and the optimal slotting can be found in Table
C.9. When slotted optimally, the resulting scoreboard can be found in Table C.7.
The circuit can be found in Figure C.3.

Pallet location Flow rack

Figure C.3: The circuit for scenario C

Reward Score Occurrences Total
Product slotted (A) +15 1 15
Product slotted (B) +15 2 30
Product slotted (C) +15 4 60
Product slotted (D) +15 22 330
Free locations +2 0 0
Matching SDF (+1) +15 28 420
Matching SDF (+2) +10 29 290
Matching SDF (+3) +5 28 140
Movement -1 42 -42
Facings not adjacent -15 0 0
Stacking group violation -15 0 0
Stacking class violation -10 0 0

 1243

Table C.7: The scoreboard for the optimal slotting in scenario C

134 Appendices

Beer 40 0 800 800 1000 A 10000
Soda 40 0 400 800 700 B 11000
Coffee 150 15 1000 800 900 B 12000
Apple juice 70 0 500 450 500 D 12000
Cookies 220 20 1200 1500 1200 D 14000
Soup 180 12 1000 2500 2500 C 25000
Rice 120 20 700 700 550 C 40000
Eggs 90 20 300 200 550 C 42000
Candy 120 40 700 700 550 C 42000
Cereal 60 0 200 500 250 D 52000
Ketchup 120 10 700 700 550 D 53000
Pasta 25 5 100 120 90 D 57000
Toilet paper 24 0 120 140 160 D 60000
Diapers 100 0 2000 2500 2500 D 60000
Sausages 80 20 400 400 550 D 62000
Bread 80 5 600 1100 1000 D 64000
Honey 400 40 60 50 50 D 64000
Chocolate 200 10 15 20 15 D 65000
Baby wipes 40 20 20 20 25 D 70000
Mustard 60 10 10 5 5 D 71000
Paprika powder 80 20 25 15 10 D 72000
Tissues 20 5 10 10 10 D 73000
Deodorant 50 20 30 40 40 D 80000
Peanut butter 40 10 10 5 20 D 90000
Almonds 60 10 10 15 10 D 90000
Apple pie 20 5 5 5 10 D 90000
Soap 50 5 10 10 5 D 90000
Sunscreen 200 40 800 700 800 D 92000
Crackers 40 5 400 800 600 D 95000

Table C.8: Products to slot in scenario C

Pr
od

uc
t

Un
its

 p
er

 p
al

le
t

Un
its

 in
 fl

ow
 ra

ck

SD
F

(+
1)

SD
F

(+
2)

SD
F

(+
3)

St
ac

ki
ng

 g
ro

up

St
ac

ki
ng

 c
la

ss

Appendix C Scenarios 135

Location Flow rack Next location Slotted initially Optimal slotting
1 False 3 - Beer
2 False 4 - Soda
3 False 5 - Beer
4 False 6 - Soda
5 False 7 - Beer
6 False 8 - Soda
7 False 9 - Beer
8 False 10 - Coffee
9 False - - Apple juice
10 False - - Cookies
11 False 13 - Soup
12 False 14 - Rice
13 False 15 - Soup
14 False 16 - Candy
15 False 17 - Eggs
16 False 18 - Cereal
17 False 19 - Ketchup
18 False 20 - Cereal
19 False - - Pasta
20 False - - Toilet paper
21 False 23 - Diapers
22 False 24 - Sausages
23 False 25 - Diapers
24 False 26 - Bread
25 False 27 - Diapers
26 False - - Bread
27 False 37 - Diapers
28 True - - Honey
29 True - - Chocolate
30 True - - Baby wipes
31 True - - Mustard
32 True - - Paprika powder
33 True - - Tissues
34 True - - Deodorant
35 True - - Peanut butter
36 True - - Almonds
37 False - - Apple pie
38 False - - Soap
39 False - - Sunscreen
40 False 41 - Crackers
41 False 42 - Crackers
42 False - - Crackers

Table C.9: Locations and optimal slotting for scenario C

136 Appendices

D Advantage Actor-Critic agent Python implementation
The appendix is divided into three sections, first the installation requirements are
discussed followed by the design of the agent. Finally the instructions to train and
use the agent are shown.

Installation
To ensure that the Python code in this chapter can run properly on every machine
a virtual environment is used. To install the virtual environment the following steps
have to be followed:

1. Install pipenv (HTTPS://GITHUB.COM/PYPA/PIPENV).
2. Create a directory and copy the Pipfile found in Code segment 11.
3. Install the virtual environment, with the required packages by running the

following command: pipenv install.
4. To run a python file using the virtual environment, one can run: "pipenv shell

filename.py".

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Code segment 1: The Pipfile used to create the virtual environment (Pipenv)

Design
The design of the A2C agent consists of the agent, its neural network and the
environment.

Neural network
The implementation of the neural network (also called model) can be found in
Code segment 2. Here the structure of the neural network is defined such as the
number of actions the agent can take, the number of nodes (in a single layer) and
the number of layers in the body. Once initialized these parameters are fixed to
enable training an agent using the model multiple times. Other (hyper)parameters
such as the learning rate are part of the agent as it decides how to update its
internal model.

1
2
3
4
5

1Depending on the task environment, one might not need all packages listed in the Pipfile.

s t y l e = " ∗ "
beautifultable = " ∗ "

[requires]
python_version = " 3 . 7 "

[pipenv]
allow_ prereleases = t rue

matplotlib = " ∗ "

tensorflow = " ==2.0.0 − rc0 "
progressbar2 = " ∗ "

pandas = " ∗ "
gym = " ∗ "

[[source]]
name = " pypi "
u r l = " https : / / pypi . org/ simple "
v e r i f y _ s s l = t rue

[dev−packages]

[packages]
numpy = " ∗ "

class P r o b a b i l i t y D i s t r i b u t i o n (t f . keras . Model) :
def c a l l (s e l f , l o g i t s) :

return t f . squeeze (t f . random. categorical (l o g i t s , 1) , a x i s =−1)

Appendix D Advantage Actor-Critic agent Python implementation 137

6 class Model(t f . keras . Model) :
7 def _ _ i n i t _ _ (s e l f , locations , products , number_of_actions , number_of_nodes=512 , number_of_extra_layers = 0) :
8 super () . _ _ i n i t _ _ (’ mlp_policy ’)
9

10 s e l f . number_of_extra_layers = number_of_extra_layers
11
12 s e l f . f l a t t e n = k l . F latten (input_shape =(locations , products + 1))
13 s e l f . hidden1 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
14 s e l f . hidden2 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
15
16 # Extra layers
17 i f s e l f . number_of_extra_layers == 1 :
18 s e l f . hidden3 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
19 e l i f s e l f . number_of_extra_layers == 2 :
20 s e l f . hidden3 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
21 s e l f . hidden4 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
22 e l i f s e l f . number_of_extra_layers == 3 :
23 s e l f . hidden3 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
24 s e l f . hidden4 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
25 s e l f . hidden5 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
26 e l i f s e l f . number_of_extra_layers == 4 :
27 s e l f . hidden3 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
28 s e l f . hidden4 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
29 s e l f . hidden5 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
30 s e l f . hidden6 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
31 e l i f s e l f . number_of_extra_layers == 5 :
32 s e l f . hidden3 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
33 s e l f . hidden4 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
34 s e l f . hidden5 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
35 s e l f . hidden6 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
36 s e l f . hidden7 = k l . Dense(number_of_nodes , activation= ’ r e l u ’)
37
38 s e l f . value = k l . Dense(1 , name= ’ value ’)
39
40 s e l f . l o g i t s = k l . Dense(number_of_actions , name= ’ p o l i c y _ l o g i t s ’)
41 s e l f . d i s t = P r o b a b i l i t y D i s t r i b u t i o n ()
42
43 def c a l l (s e l f , inputs) :
44 x = t f . convert_to_tensor (inputs , dtype= t f . f loat 32)
45
46 x = s e l f . f l a t t e n (x)
47
48 i f s e l f . number_of_extra_layers == 1 :
49 x = s e l f . hidden3 (x)
50 e l i f s e l f . number_of_extra_layers == 2 :
51 x = s e l f . hidden3 (x)
52 x = s e l f . hidden4 (x)
53 e l i f s e l f . number_of_extra_layers == 3 :
54 x = s e l f . hidden3 (x)
55 x = s e l f . hidden4 (x)
56 x = s e l f . hidden5 (x)
57 e l i f s e l f . number_of_extra_layers == 4 :
58 x = s e l f . hidden3 (x)
59 x = s e l f . hidden4 (x)
60 x = s e l f . hidden5 (x)
61 x = s e l f . hidden6 (x)
62 e l i f s e l f . number_of_extra_layers == 5 :
63 x = s e l f . hidden3 (x)
64 x = s e l f . hidden4 (x)
65 x = s e l f . hidden5 (x)
66 x = s e l f . hidden6 (x)
67 x = s e l f . hidden7 (x)
68
69 hidden_logs = s e l f . hidden1 (x)
70 hidden_vals = s e l f . hidden2 (x)
71
72 return s e l f . l o g i t s (hidden_logs) , s e l f . value (hidden_vals)
73
74 def action_value (s e l f , obs) :
75 l o g i t s , value = s e l f . predict (obs)
76 action = s e l f . d i s t . predict (l o g i t s)
77 return np . squeeze (action , a x i s = −1), np . squeeze (value , a x i s =−1)

Code segment 2: Neural network of A2C (model.py)

The "ProbabilityDistribution" class is used to randomly sample a categorical action.
One could need to make some changes to the input as this differs with each
task environment. The flatten layer is used to transform the multidimensional array
of products on locations to a flattened array each value representing one input
node. The call function is used to run input trough the model and return both the
Q-values and the value of the current state. The action_value function is a helper
method used later.

138 Appendices

Agent
In order to test whether the agent learns two agents have been created, a baseline
agent that makes random decisions and the actual agent. Using both agents and
comparing the scores they are able to achieve one can assess whether or not the
A2C agent performs better than when making random decisions. The baseline
agent can be found in Code segment 3 and the A2C agent can be found in
Code segment 3.

1
2
3
4
5
6
7
8
9

10
11
12
13

Code segment 3: Baseline agent that picks actions randomly (random_agent.py)

Both agents are initialized using an instance of the Model class but the A2C agent
can also take various (hyper)parameters. Such as the value function coefficient,
entropy, gamma and the learning rate. The A2C agent includes a train method
where the batch size and the number of updates can be passed as parameters.
The _returns_advantages method that returns the advantages used during training.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

urn ret rns , dv
antage = r e t r n −

ret u a antages

r e t u r n s [t] = rewards [t] + s e l f . params[’gamma’] ∗ r e t u r n s [t + 1] ∗ (1 − dones [t])
r e t u r s r n s = r e t u n [: − 1]
adv s u s values

f o r t in reversed (range (rewards . shape [0])) :
r e t u r n s = np . append(np . z e r o s _ l i k e (rewards) , next_value , a x i s =−1)

return r e w a r d s _ l i s t

def _returns_advantages (s e l f , rewards , dones , values , next_value) :

l o s s e s = s e l f . model . train_on_batch (observations , [acts_and_advs , r e t u r n s])
acts_and_advs = np . concatenate ([actions [: , None] , advs [: , None]] , a x i s =−1)

_ , next_value = s e l f . model . action_value (np . expand_dims(env . one_hot_encode () , a x i s = 0))
returns , advs = s e l f . _returns_advantages (rewards , dones , values , next_value)

i f dones [step] :
ep_rews . append(0 . 0)
r e w a r d s _ l i s t = np . append(rewards_ l i s t , env . get_score ())
next_obs = env . reset ()

ep_rews[−1] += rewards [step]

import tensorflow as t f
import numpy as np
from progressbar import progressbar

import tensorflow . keras . l o s s e s as k l s
import tensorflow . keras . optimizers as ko

class A2CAgent :
def _ _ i n i t _ _ (s e l f , model , value = 0 . 5 , entropy = 0. 0001 , gamma= 0 . 95 , learning_ rate = 0 . 0007) :

s e l f . params = { ’ value ’ : value , ’ entropy ’ : entropy , ’gamma’ : gamma}

s e l f . model = model
s e l f . model . compile (

optimizer=ko . RMSprop(l r = learning_ rate) ,
l o s s =[s e l f . _ l o g i t s _ l o s s , s e l f . _ value_ loss]

)

def t r a i n (s e l f , env , batch_sz =32 , updates= 500):
r e w a r d s _ l i s t = np . array ([])
actions = np . empty ((batch_sz ,) , dtype=np . int 32)
rewards , dones , values = np . empty((3 , batch_sz))
observations = np . empty ((batch_sz ,) + env . one_hot_encode () . shape)
ep_rews = [0 . 0]
env . reset ()
next_obs = env . one_hot_encode ()
f o r update in progressbar (range (updates)) :

f o r step in range (batch_sz) :

observations [step] = env . one_hot_encode () . copy ()
actions [step] , values [step] = s e l f . model . action_value (np . expand_dims(env . one_hot_encode () , a x i s = 0))
next_obs , rewards [step] , dones [step] , _ = env . step (actions [step])

class RandomAgent:
def _ _ i n i t _ _ (s e l f , model) :

s e l f . model = model

def t e s t (s e l f , env , render=True) :
obs , done, ep_reward = env . reset () , False , 0
while not done:

action , _ = s e l f . model . action_value (obs [None, :])
obs , reward , done, _ = env . step (action)
ep_reward += reward
i f render :

env . render ()
return ep_reward

Appendix D Advantage Actor-Critic agent Python implementation 139

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Code segment 4: A2C agent implementation (agent.py)

Environment
The agent works with gym environments (HTTP://GYM.OPENAI.COM/DOCS/) created
by OpenAI. It is possible however to create custom environments such as for the
product allocation problem. Creating the (task) environment is completely de-
pendent on the business process one wants to re-engineer using RL. This section
focuses on the how to setup the environment and how to run the agent whereas
section D highlights the implementation for the product allocation problem.

The scaffolding needed for custom gym environments can be found in Code
segment 5.

Code segment 5: The scaffolding for a custom gym environment

The setup file is presented in Code segment 6. Registering the environment is
presented in Code 7, the identifier is used by the agent to initialize the environment.

1
2
3

from setuptools import setup

setup (name= ’gym_custom ’ ,
4 version= ’ 0 . 0 . 1 ’ ,
5 i n s t a l l _ r e q u i r e s =[’gym’]
6)

Code segment 6: gym-custom/setup.py

Code segment 7: gym-custom/gym_custom/ init .py

 from gym_custom . envs . custom_env import CustomEnv

Code segment 8: gym-custom/gym_custom/envs/ init .py

The custom environment file presented in Code segment 9 shows the minimal class
setup. The init . method initializes the environment, the step method takes the
an integer that represents on of all possible actions. The reset method is used to

README.md
setup . py
gym_custom/

_ _ i n i t _ _ . py
envs/

_ _ i n i t _ _ . py
custom_env . py

gym−custom/

id = ’ custom−v0 ’ ,
r e g i s t e r (

entry_ point= ’gym_custom . envs : CustomEnv ’ ,
)

from gym. envs . r e g i s t r a t i o n import r e g i s t e r

def t e s t (s e l f , env , render=True) :
env . reset ()
done, ep_reward = False , 0
while not done:

action , _ = s e l f . model . action_value (np . expand_dims(env . one_hot_encode () , a x i s = 0))
obs , reward , done, _ = env . step (action)
ep_reward += reward
i f render :

env . render ()
p r i n t (env . get_score ())
return ep_reward

def _ value_ loss (s e l f , returns , value) :

return s e l f . params[’ value ’] ∗ k l s . mean_squared_error (returns , value)

def _ l o g i t s _ l o s s (s e l f , acts_and_advs , l o g i t s) :

weighted_sparse_ce = k l s . SparseCategoricalCrossentropy (f rom_ logits=True) actions
= t f . cast (actions , t f . int 32)
p o l i c y _ l o s s = weighted_sparse_ce (actions , l o g i t s , sample_weight=advantages)
entropy_ loss = k l s . categorical_crossentropy (l o g i t s , l o g i t s , f rom_ logits=True)
return p o l i c y _ l o s s − s e l f . params[’ entropy ’] ∗ entropy_ loss

actions , advantages = t f . s p l i t (acts_and_advs , 2 , a x i s =−1)

http://gym.openai.com/DOCS/)

140 Appendices

class S l o t t i n g (gym. Env) :
metadata = { ’ render . modes’ : [’human’] }

. . .

def get_score (s e l f , show_output=False , save_score= False) :

reward = 0
penalty = 0

. . . # Running each of the below methods to calculate the rewards and penalties .

return f l o a t (reward − penalty)

def check_sdf (s e l f) :
r e s u l t _ 1 , r e s u l t _ 2 , r e s u l t _ 3 = 0 , 0 , 0

For each product , get the locations .
f o r product_index , product in s e l f . products . i t e r r o w s () :

sdf_day_1 , sdf_day_2 , sdf_day_3 = product [’ SDF (+ 1) ’] , product [’ SDF (+ 2) ’] , product [’ SDF (+ 3) ’]
f o r location_index , location in s e l f . locations [s e l f . locations [’ Slotted currently ’] == product_index]

. i t e r r o w s () :
i f location [’ Flow rack ’] and product [’ U n i t s i n flow rack ’] :

sdf_day_1 −= s e l f . additions_ f low_ rack ∗ product [’ U n i t s i n flow rack ’]

sdf_day_3 −= s e l f . additions_ f low_ rack ∗ product [’ U n i t s i n flow rack ’]
else

sdf_day_2 −= s e l f . additions_ f low_ rack ∗ product [’ U n i t s i n flow rack ’]

:
sdf_day_1 −= s e l f . additions_ pallet_ location ∗ product [’ U n i t s per pallet ’]
sdf_day_2 −= s e l f . additions_ pallet_ location ∗ product [’ U n i t s per pallet ’]
sdf_day_3 −= s e l f . additions_ pallet_ location ∗ product [’ U n i t s per pallet ’]

reset the environment to its initial state or - depending on the goal of the agent - a
random state. The render method is used to represent the environment, this could
be a table or a GUI. When the gym environment is created, the environment can
be installed using the following command "pip install -e .".

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Code segment 9: The scaffolding for a custom gym environment

Usage
So far the universal A2C agent is discussed, in this section the usage of the agent is
elaborated using the product allocation problem. This includes the custom slotting
environments as well as the files to train and test the agents.

Slotting environment
This section shows what the product allocation environment looks like. And how the
results of the agent throughout this thesis were obtained. Three environments were
created for the slotting puzzle. Version 1 is for the sequential agent whereas version
2 and 3 are for the semi- and fully-autonomous agent types. The distinction was
made because the set of actions for each agent differs. The get_score function for
the environments was the same and can be found in Code segment 10. Whereas
the sequential agent needs to keep track of its last slotted location, the semi is
only finished when a decision is made for each location. The fully-autonomous
agent on the other hand decides when it is finished.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31 i f sdf_day_1 <= 0 :
32 r e s u l t _ 1 += 1
33 i f sdf_day_2 <= 0 :
34 r e s u l t _ 2 += 1
35 i f sdf_day_3 <= 0 :

import gym
from gym import error , spaces , u t i l s
from gym. u t i l s import seeding

class CustomEnv(gym. Env) :

metadata = { ’ render . modes’ : [’human’] }

def _ _ i n i t _ _ (s e l f) :
. . .

def step (s e l f , action) :
. . .

def reset (s e l f) :
. . .

def render (s e l f , mode= ’human’ , close= False) :
. . .

Appendix D Advantage Actor-Critic agent Python implementation 141

−

−

−

−

36 r e s u l t _ 3 += 1
37
38 return r e s u l t _ 1 , r e s u l t _ 2 , r e s u l t _ 3
39
40 def check_free_locations (s e l f) :
41 return s e l f . locations [’ Slotted current ly ’] . t o l i s t () . count (’ ’)
42
43 def check_products_slotted (s e l f) :
44 result_ a , result_ b , result_ c , r e s u l t _ d = 0 , 0 , 0 , 0
45 f o r index , product in s e l f . products . i t e r r o w s () :
46 i f index in s e l f . locations [’ Slotted current ly ’] . t o l i s t () :
47 i f product [’ Stacking group ’] == ’A’ :
48 r e s u l t _ a += 1
49 e l i f product [’ Stacking group ’] == ’ B ’ :
50 r e s u l t _ b += 1
51 e l i f product [’ Stacking group ’] == ’C’ :
52 r e s u l t _ c += 1
53 else :
54 r e s u l t _ d += 1
55 p r i n t (result_ a , result_ b , result_ c , r e s u l t _ d)
56 return result_ a , result_ b , result_ c , r e s u l t _ d
57
58 def check_products_not_slotted (s e l f) :
59 r e s u l t = 0
60 f o r index , product in s e l f . products . i t e r r o w s () :
61 i f index not in s e l f . locations [’ Slotted current ly ’] . t o l i s t () :
62 r e s u l t += 1
63 return r e s u l t
64
65 def check_movements(s e l f) :
66 r e s u l t = 0
67 f o r index , location in s e l f . locations . i t e r r o w s () :
68 i f location [’ Slotted i n i t i a l l y ’] != location [’ Slotted current ly ’] :
69 r e s u l t += 1
70 return r e s u l t
71
72 def check_facing_locations (s e l f) :
73 r e s u l t = 0
74 f o r index , product in s e l f . products . i t e r r o w s () :
75 number_of_occurrences = s e l f . locations [’ Slotted current ly ’] . t o l i s t () . count (index)
76
77 i f number_of_occurrences > 1 :
78 occurrences = s e l f . locations . index [s e l f . locations [’ Slotted current ly ’] == index] . t o l i s t ()
79
80 f o r o in range (len (occurrences) 1) :
81 i f s e l f . locations [’ Next location ’] [occurrences [o]] != occurrences [o + 1] :
82 r e s u l t += 1
83 return r e s u l t
84
85 def check_stacking_class (s e l f) :
86 r e s u l t = 0
87
88 stacking_ class = 0
89 l i st_ of_ products_ found = []
90
91 f o r index , location in s e l f . locations [s e l f . locations [’ Slotted current ly ’] != ’ ’] . i t e r r o w s () :
92 i f location [’ Slotted current ly ’] not in l i st_ of_ products_ found :
93 l i st_ of_ products_ found += [location [’ Slotted current ly ’]]
94
95 current_ stacking_ class = s e l f . products [’ Stacking class ’] [location [’ Slotted current ly ’]]
96 i f current_ stacking_ class < stacking_ class :
97 r e s u l t += 1
98 else :
99 stacking_ class = current_ stacking_ class

100 return r e s u l t
101
102 def check_stacking_group (s e l f) :
103 r e s u l t = 0
104
105 stacking_group = ’A’
106 l i st_ of_ products_ found = []
107
108 f o r index , location in s e l f . locations [s e l f . locations [’ Slotted current ly ’] != ’ ’] . i t e r r o w s () :
109
110 i f location [’ Slotted current ly ’] not in l i st_ of_ products_ found :
111 l i st_ of_ products_ found += [location [’ Slotted current ly ’]]
112
113 new_stacking_group = stacking_group
114 current_stacking_group = s e l f . products [’ Stacking group ’] [location [’ Slotted current ly ’]]
115 i f stacking_group == ’A’ :
116 i f current_stacking_group == ’ B ’ :
117 new_stacking_group = ’ B ’
118 e l i f current_stacking_group == ’C’ :
119 new_stacking_group = ’C’
120 e l i f current_stacking_group == ’D’ :
121 new_stacking_group = ’AD’
122 e l i f stacking_group == ’AD’ :
123 i f current_stacking_group == ’A’ :
124 r e s u l t += 1
125 else :
126 i f current_stacking_group == ’ B ’ :
127 new_stacking_group = ’ B ’
128 e l i f current_stacking_group == ’C’ :
129 new_stacking_group = ’C’
130 e l i f stacking_group == ’ B ’ :

142 Appendices

131
132
133

i f current_stacking_group == ’A’ :
r e s u l t += 1

else :
134 i f current_stacking_group == ’C’ :
135 new_stacking_group = ’C’
136 e l i f current_stacking_group == ’D’ :
137 new_stacking_group = ’BD ’
138 e l i f stacking_group == ’BD ’ :
139 i f current_stacking_group == ’A’ or current_stacking_group == ’ B ’ :
140 r e s u l t += 1
141 else :
142 i f current_stacking_group == ’C’ :
143 new_stacking_group = ’C’
144 e l i f stacking_group == ’C’ :
145 i f current_stacking_group == ’A’ or current_stacking_group == ’ B ’ :
146 r e s u l t += 1
147 else :
148 i f current_stacking_group == ’D’ :
149 new_stacking_group = ’CD’
150 else :
151 i f current_stacking_group != ’D’ :
152 r e s u l t += 1
153

154 stacking_group = new_stacking_group
155 return r e s u l t
156

157 . . .

Code segment 10: The reward function

Training the agent requires a Python file that initializes the model, the agent and
one of the three environments. In Code segment 11 the file is depicted that was
used to train the agent for the product allocation. Based on the reward function
the agent got either immediate or sparse rewards.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

facings_not_adjacent = 15
stacking_ group_ violation = 15
s tacking_ class_ v io lat ion = 10

REWARDS = {

’ Product s lotted (A) ’ : product_a_slotted ,
. . .
’ Matching SDF (+ 3) ’ : matching_sdf_3

}

PENALTIES = {

’ Product not s lotted ’ : product_not_slotted ,
. . .
’ Stacking class v i o l a t i o n ’ : s tacking_ class_ v iolation

}

MAX_ADDITIONS_PER_FLOW_RACK_PER_DAY = 2
MAX_ADDITIONS_PER_PALLET_LOCATION_PER_DAY = 7

. . .

locations = . . . # Load locations from CSV f i l e
products = . . . # Load products from CSV f i l e

512
0
0 . 5
0.0001
0 . 95
0.0007

Hyperparameters
number_of_nodes = 512
hidden_layers = 0
value = 0 . 5
entropy = 0 . 5
gamma = 0 . 95
learning_ rate = 0.005

product_a_slotted = 15
product_b_slotted = 15
product_c_slotted = 15
product_d_slotted = 15
f ree_ locations = 2
matching_sdf_1 = 15
matching_sdf_2 = 10
matching_sdf_3 = 5

product_not_slotted = 20
movement = 1

Reward function : sparse or immediate
reward_function = ’ immediate ’

Basic variables
scenario = ’A’
updates = 100
batch_size = 10
save_model = True

Agent type : sequential , semi−autonomous or f u l l y −autonomous
agent = ’ sequential ’

. . .

Appendix D Advantage Actor-Critic agent Python implementation 143

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Code segment 11: The script used for training the agent

. . .

Create the s l o t t i n g environment
env = gym. make(agent_type ,

reward_function=reward_function ,
directory= directory ,
locations= locations ,
products=products ,
rewards=REWARDS,
penalties=PENALTIES ,
additions_ f low_ rack=MAX_ADDITIONS_PER_FLOW_RACK_PER_DAY ,
additions_ pallet_ location=MAX_ADDITIONS_PER_PALLET_LOCATION_PER_DAY) env

. get_score (show_output=True)

model = Model(locations=len (env . locations) ,
products=len (env . products) ,
number_of_actions=len (env . actions) ,
number_of_nodes=number_of_nodes ,
number_of_extra_layers=hidden_layers)

A2C agent
agent = A2CAgent(model , value=value , entropy=entropy , gamma=gamma, learning_ rate= learning_ rate)

rewards = agent . t r a i n (env , updates=updates , batch_sz=batch_size)

Saving the model weights .
i f save_model :

model . save_weights (directory + " /model . h5 ")

Saving the r e s u l t s
. . .

agent . t e s t (env)
env . save ()
f inal_ score = env . get_score (show_output=True)

	Management summary 5
	Acknowledgement 7
	List of figures 11
	List of tables 14
	Abbreviations 16
	1.1 Background 24
	1.2 Motivation 25
	1.3 Problem definition 25
	1.4 Research goal 25
	1.5 Research questions 25
	1.6 Report contents 26
	8.1 Validation setup 107
	8.2 Team lead expert opinion 108
	9.1 Limitations and future work 116
	9.2 Recommendations for Albert Heijn 116

	2.1 Problem investigation
	2.1.1 Structured literature review
	2.1.2 Exploratory research

	2.2 Treatment design
	2.3 Treatment validation
	2.3.1 Single-case mechanism experiments
	2.3.2 Expert opinions

	3.1 Artificial intelligence
	3.1.1 Intelligent agents
	3.1.2 Task environments
	3.1.3 Agent programs
	3.1.4 Problem-solving
	3.1.5 Learning techniques

	3.2 Deep learning
	3.2.1 Neural networks
	3.2.2 The need for DL

	3.3 Reinforcement learning
	3.3.1 Core concepts of RL
	3.3.2 RL approaches
	3.3.3 RL algorithms
	3.3.4 Challenges of RL

	4.1 Adoption models
	4.1.1 Technology Acceptance Model (TAM)
	4.1.2 Diffusion of Innovations (DOI)
	4.1.3 Unified Theory of Acceptance and Use of Technology (UTAUT)
	4.1.4 Technology-Organization-Environment (TOE)

	4.2 Intelligence amplification
	4.3 AI adoption in logistics
	4.4 AI in practice
	4.5 Maturity models
	5.1 Background
	5.1.1 Replenishment
	5.1.2 Distribution centers
	5.1.3 Logistics Support
	5.1.4 Transport
	5.1.5 Stores

	5.2 AI maturity at the department
	5.2.1 Team day at the university
	5.2.2 Demonstration agent

	5.3 Identifying a suitable business process
	5.3.1 Estimating the number of order pickers per shift
	5.3.2 Optimal rack locations
	5.3.3 Slotting

	5.4 Automating the slotting process
	5.4.1 Task environment
	5.4.2 Reward function
	5.4.3 Implementation

	5.5 Intelligence amplification
	5.5.1 Experiment setup
	5.5.2 Results

	5.6 Conclusion

