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Abstract
Distributed Denial of Service (DDoS) attacks are malicious attempts to disrupt a
service from the target by overwhelming it by network packets. DDoS attacks are
continuously rising in size and diversity. In 2018, Netscout reported a peak of 1.7
Tbps in size [1] and Akamai’s annual report of 2018 [2] states that those spikes are
still growing with an increasing growth curve. As an example from the beginning
of 2018, with the new memcached attacks, attackers are still finding new ways to
perform DDoS attacks. Cloudflare is one of the biggest vendors on the market pro-
viding solutions the defend against DDoS attacks. Their defending methods include
the filtering of malicious packets by generated rules from attack signatures. The
extended Berkeley Packet Filter (eBPF) and eXpress Data Path (XDP) form an im-
portant part in those defending methods. With the ability to filter packets at a very
high speed, eBPF and XDP prove in existing solutions that it can perform in the fight
against DDoS attacks. With eBPF and XDP, malicious packets can be dropped based
on rules specified inside the eBPF program. Studies show that eBPF and XDP are
tools that are able to drop packets at higher rates than former tools. However those
studies only show this with plain packets and not in the case of an actual DDoS at-
tack. Altough eBPF and XDP are open-source, the tools can not directly be used to
mitigate DDoS attacks. In practice a network operator has to know how to use this
tools and what the implication of different scenarios can be. Therefore, the overall
goal of this study is to research how to use eBPF and XDP to mitigate DDoS at-
tacks and to research how effective the tools can be. A DDoS mitigation system is
proposed in this study with the use of eBPF and XDP. With this system a network
operator is able to drop packets up to a 100% accuracy when deep packet layers are
considered. The XDP filter allows higher packet processing speeds than an Iptables
filter with the same rules. The contribution of this study is two-fold. It adds new
scientific findings on which new studies can build upon and the study can be put in
practice by network operators in real network environments.
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Chapter 1

Introduction

Distributed Denial of Service (DDoS) attacks are not a new threat in our society. The
presence of studies against DDoS attacks from the early 2000’s, prove that the fight
against DDoS attacks is ongoing for already a long time [3]. Reports show that DDoS
attacks still form a severe threat and are actually growing in number, intensity and
diversity [4]. For example, Netscout [1], reports a threefold increase in the number
of DDoS attacks against third party data centers and cloud services with a record
breaking 1.7 Tbps in size. Also Akamai’s annual report of 2018 shows that the size of
DDoS attacks is growing with 9% quarterly and that attackers are still finding new
ways to leverage their DDoS attacks. For instance the new memcached reflection
attacks in 2017, formed the cause of some record breaking DDoS attacks [5]. All those
facts together highlight the need for more research into DDoS mitigation, despite the
many mechanisms that actually already exist as shown by Osanaiye et al. [6].

DDoS attack mitigation can be realised by recognising and dropping the DDoS
network packets in a network. Dropping packets at high speeds has to be done care-
fully, because legitimate traffic should ideally not be dropped. To be able to classify
whether a packet is legitimate traffic or malicious traffic, classification techniques
have to be adopted. As defined by Osanaiye et al. [6], those techniques to detect
DDoS attacks can be split into signature based detection techniques and anomaly
based techniques. The Signature based detection techniques use a set of DDoS at-
tack characteristics in a database. Those characteristics are derived from known at-
tacks that occurred the past for example. Those characteristics can be used to match
against monitored traffic to detect any malicious activity. Anomaly based detection
methods use techniques without any prior known information and usually leverage
some form of machine learning. Signature-based techniques usually have a higher
accuracy on detecting attacks over anomaly based methods. New attacks however,
are more difficult to detect with signature-based techniques as maintaining up to
date signatures is challenging.

One of the biggest vendors on the market of DDoS mitigation solutions is Cloud-
flare. As a leader in this market they have adopted DDoS mitigation mechanisms
that outweigh competitors. The automated DDoS mitigation system of Cloudflare
named GateBot is using the features of the extended Berkeley Packet filter (eBPF)
and the eXpress Data Path (XDP) [7]. Those features include the ability to drop
network packets at high speeds. XDP and eBPF work on an operating system level,
which is the level that forms a bridge between hardware and software in the userspace.
Altogether, eBPF and XDP are tools that can help to build infrastructure to make
signature based defense mechanisms. Fabre [8] from Cloudflare made an article
about Cloudflare’s tool named L4Drop, which works complementary with Cloud-
flare’s GateBot. L4Drop uses packet dropping rules in combination with eBPF and
XDP. They however don’t mention how those rules are generated exactly. Facebook
uses XDP not directly in the fight against DDoS, but as a signature-based firewall
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in general [9]. Their solution is capable of automatically updating rules, but again,
unclear is how those rules are generated. Outside the solutions of Cloudflare and
Facebook there are little to no other public production use-cases that use eBPF and
XDP as a packet filter. Høiland-Jørgensen et al. [10] show with their study on eBPF
and XDP that DDoS traffic filtering is possible without the need for special hard-
ware. A search on Google Scholar with the search term ’DDoS XDP eBPF’ returns
25 academic works, but none of these works study how to automatically generate
rules for signature-based DDoS mitigation with eBPF and XDP. Our hypothesis is
that by studying rule generation in this domain, an effective method can be created
to mitigate DDoS attacks.

An existing platform containing DDoS signatures is called DDoSDB launched
by dr. Jair Santanna from the Univeristy of Twente [11]. Those signatures open the
possibility to study signature based detection techniques, including how to derive
rules from those signatures. This platform also hosts attack traffic which can also be
used for research against DDoS attacks. With DDoSDB as a source of DDoS attack
signatures, it could potentially function as a base to automatically generate rules for
a eBPF and XDP filter. As mentioned there are however no studies that show how
to do this automatic generation for eBPF and XDP. Therefore the goal of this study
is to design a method for automated rule generation inside eBPF and XDP together
with signatures from DDoSDB.

To pursue our goal, the following research questions (RQ) are defined as the basis
of this research:

• RQ1: What methods currently exist that automatically update rules in a signa-
ture based DDoS mitigation?

• RQ2: How to automatically generate eBPF rules for DDoS mitigation using
DDoS attack signatures?

• RQ3: What is the effectiveness and the usability of the designed DDoS mitiga-
tion system using DDoS attack signatures?

The three given research questions define the structure of this study. First RQ1
will be answered in chapter 2. It will give insight into what DDoS attacks are, in-
cluding possible mitigation methods. On answering RQ2, the design of our own
mitigation method will be described in chapter 3. The method will make use of a
signature based techniques using XDP and eBPF. It will be tested against real DDoS
attacks from DDoSDB. Then, chapter 4 will discuss the results of those tests, which
will give answer on to RQ3. Finally in chapter 5, the conclusion of this study will be
given.
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Chapter 2

Background of DDoS Attacks &
Mitigation

The overall goal of this chapter is to give answer to what methods currently exist that au-
tomatically update rules in a signature based DDoS mitigation? (RQ1) The answer
of this question will be given by the structure of multiple sections. Section 2.1 will elaborate
on what DDoS attacks are. By taking those DDoS attacks into account, section 2.2 will
focus on possible DDoS attack detection and mitigation methods. Then, in section 2.3 the
workings and possibilities of eBPF and XDP in a signature based DDoS mitigation method
will be discussed.
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2.1 DDoS Attacks

For the first section in this chapter, we want to understand what DDoS attacks actually are
and how they work. The goal of this section is to give some background on DDoS attacks,
how are they performed and which kind of attacks actually form a threat nowadays.

2.1.1 DDoS Background and Taxonomy

DoS and DDoS attacks are performed with the purpose of stopping a certain target
or multiple targets from delivering a service. In the case of a DoS attack, the attack
is performed with the use of just a single machine. Kenig et al. [12] outlines the
history of DoS and DDoS attacks and states that the first DoS attack dates back to
1974. Then one of the first large-scale Distributed DoS attack occurred in 1999. As
a distributed attack it obtained its strength by harnessing the resources of many
machines together. DDoS attacks were due to their distributed character way more
powerful then DoS attacks and caused bigger problems in the early 2000’s. In 2002
a targeted victim by a DDoS attack was a DNS server [13], which caused that many
internet users were not able to browse the web. Since then DDoS attacks still causes
unavailable services on the internet.

Understanding what the weaknesses are of DDoS victims is essential to under-
stand how DDoS attacks work and why it is possible that an online services be-
come unavailable. Back in 2004, Mirkovic and Reiher [14] classified DDoS attacks
by several different features, including the classification by what weakness they try
to exploit. They make a distinction between semantic and brute-force attacks. By
sending requests semantic attacks misuse a certain feature or bug from a protocol or
application at the victim, that causes the victim to consume all resources it has. This
kind of attacks do not focus on the the amount of requests that is send to the victim,
but about what the victim does with those requests. An example could be to sent
very complicated database queries to a database server which causes the database
server to waist all computational resources and therefore, becomes unavailable for
other users of the database. The other type of attacks, brute-force attacks focus on
generating and sending more traffic than the victim can process. This can also ex-
haust resources at the victim, but this time it is due to the amount of traffic the victim
receives. The categorisation of flooding attacks and semantic attacks is commonly
used in literature [15], other studies refer to brute-force attacks as flooding or vol-
umetric attacks [16]. Note that, the two classes of attacks do not mutually exclude
each other, which means that an attack can fall in both classes of flooding attacks
and semantic attacks. Furthermore, also note that by definition even semantic DDoS
attacks use multiple machines to target the victim, since the attack is distributed.
Therefore the amount of requests to successfully perform an semantic DDoS attack
also plays a role, but doesn’t have the focus.

As mentioned, semantic attacks misuse the behaviour of applications and proto-
cols. Flooding attacks however exhaust resources that are also bound to protocols.
Zargar et al. [16] classifies attacks based on what protocol is targeted by its requests,
attacks on a network or transport level on the one hand and attacks on an application
level on the other hand. Those levels can be found in the Open Systems Interconnec-
tion (OSI) model [17], which defines 7 layers in the computer network architecture.
The network layer is layer 3 (L3) is the OSI model and the function of the layer is
to route packets. The internet protocol (IP) works on this layer. Layer 4 (L4), the
transport layer has the function of segmenting data before it goes to L3 and L4 also
reassembles data after it comes from L3. Furthermore, L4 includes port addresses
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to deliver messages to the correct processes in layer 5. TCP and UDP are examples
of protocols functioning in L4. Application level attacks exploit protocols on layer
7 (L7) of the OSI model, where protocols as HTTP can be found. This way DDoS
traffic that reaches this last layer by targeting the HTTP protocol for instance, has
been trough all the other layers as well. A DDoS attack with requests targeted at the
TCP protocol in L4, will however not reach L7.

Concluded can be that, as long as they exist, DDoS attacks are made possible by
sending requests in a distributed manner to its victim. Those requests are exploiting
weaknesses of its victim by using semantic attacks and flooding attacks. How these
attacks exactly cause a victim to stop delivering a service is determined by what
protocols are involved, occuring in different layers of the OSI model.

2.1.2 Attack motivations

Akamai specifies 6 common types of motivations for DDoS attackers [18]. Further-
more also Fenil and Mohan Kumar [19] sums up several incentives to perform DDoS
attacks. Some DDoS attack incentives and motivation together with some examples
attack motivations are listed as follows.

• Hacktivism includes all hacking acts that have political motivations by attack-
ing companies or governmental institutions. DDoS attacks are a subset of those
hacking acts. The DDoS attacks against payment companies as Mastercard and
Paypal when they closed donations to wikileaks are examples of hacktivism
attacks [20].

• Extortion is another motivation of attackers to use DDoS attacks. Attackers
demand the victim to pay ransom, by threating them with DDoS attacks [21].
The group that called themselve DD4BC is an example of attacker that asked
bitcoins to their victims via mail, in exchange for stopping DDoS attacking the
victim.

• Script Kiddies form another threat on the internet. Young people, often chil-
dren form a threat if they are playing around with freely available tools or
booters. They perform attacks to just play around, trying to make news head-
lines or hitting their friends to gain advantages in online games [22].

• Distraction can also be an incentive to perform DDoS attacks. Sometimes this
is called DDoS as a Smokescreen and is performed to hide other malicious ac-
tivity. The Sony Playstation hack for example was masked by days long DDoS
attacks. Most times companies find out days later that they have financial loses
or that data is stolen [23].

• Market manipulation can be the goal a DDoS attacker. By DDoSing certain
companies, attackers can gain advantages with their position on stock markets
[24].

Revenue losses and reputation damage form the biggest threats for businesses
as a consequence of DDoS attacks [25]. Depending on the type of business, revenue
losses vary, but cost a business tens of millions of dollars per hour when services
are totally down. With the risk for businesses of losing their reputation or revenues,
DDoS mitigation mechanisms will have to applied at business level. Not only busi-
ness are impacted by DDoS attacks however, state actors or critical infrastructures
can be targeted as well. Electricity supply systems for example can become a target
as well, since those kind of systems all become connected to the internet [26].
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2.1.3 Architecture of DDoS attacks

A DDoS attacker is the initiator of a DDoS attack. To perform a DDoS attack an at-
tacker has to have a set of machines to target his victim. In a typical DDoS attack
those machines are malware infected machines that thereby become remotely con-
trollable. Literature refers to those machines with different names, such as zombies,
slaves, daemons, bots or agents [14, 19]. The number of bots used in a in a DDoS
attack can be over thousands [27]. It is possible to command and control those bots
either in a more manual way or in an automated controlled way [14]. The level of au-
tomation varies between semi-automatic and fully automatic communication. In an
fully automatic method no direct communication with the bots is needed between
the attacker and bots, since they are fully hard-coded with a specified with the start
time, attack type, attack duration, and source IPs of the victim machines [28]. Semi-
automatic attacks can offer more control to the attacker as the attack type, victims,
time and duration can be specified by him. To command and control those bots a
botnet has to be formed [29]. In a botnet the bots are not only controlled, but botnets
can also adopt mechanisms to infect new bots in an automatic way. Hoque et al. [28]
defines a botnet as a collection of many malware infected machines controlled by
malicious entities. Note that this definition does not necessarily mean that botnets
are used to perform DDoS attacks, but can also be used to perform other mailicous
activities. In modern botnets, bots are not directly controlled by the attacker, but via
controllers that operate on Command and Control (C&C) servers [30]. Figure 2.1
gives an overview of a botnet structure.

Attacker

Command & Control Servers

Bots

A

B

C

Botnet

Victim

FIGURE 2.1: DDoS attack trough a botnet structure

The attack path from the attacker to the victim of a DDoS attack is displayed at
Figure 2.1. The attacker controls the C&C server at A, after which the C&C server can
send commands to the bots at B. The bots on their turn, direct their malicious traffic
towards the victim at C. The C&C servers are responsible for infecting more bots
and keeps communicating with them, therefore the C&C servers including the in-
volved communication at A and B form the backbone of the botnet [30]. Using C&C
servers in a botnet structure not only automates workflows of the attacker, but can
also hide the identity of the attacker. The design of a botnet depends on which model
is used. Alomari [31] defines several different botnet-models that are also used for
DDoS attack. The first one is the ’Agent Handler’ model, where the C&C servers
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are other compromised computers systems called handlers. Those handlers are in-
fected with software that is able to command and control the bots called agents. In
an Internet Relay Chat (IRC) model an attacker doesn’t compromise machine other
then the bots. IRC is normally used as a text-based chat system through communi-
cation channels. Those communication channels can also be used to create a botnet
by sending commands in a private chatroom full of infected and connected bots.
The final C&C model is the web-based model, where commands towards the bots
are send trough the web protocol HTTP or HTTPS. The C&C web-based model for
botnet became most common and popular nowadays [32].

Instead of directly sending traffic to the victim, bots can also send requests trough
reflectors [33]. Figure 2.2 shows how those reflectors are operating is DDoS attack.

Attacker

A

C

D

Botnet

E

Victim

Reflectors

FIGURE 2.2: Reflected DDoS attack

In a reflection attack, bots can send their traffic to any device on the internet that
gives a response. The traffic at D in Figure 2.2 is directly coming from the bots in
the botnet and exists of requests for the reflectors. The reflectors respond on those
requests with a response. Those responses are then send to the victim at E, made
possible by IP address spoofing. IP address spoofing is done by, altering the source
address of the traffic at D. The reflector then assumes the response has to be send
to this false IP address, which is the IP address of the victim. Compared to non-
reflected DDoS attacks, reflected attacks become even more distributed and even
harder to trace back. Due to Reflection attacks, amplification attacks become possible
which can increase the malicous traffic size. When the response of the reflector is
bigger in size then the request, traffic size can be amplified. The amplification factor
determines the ratio between the response size and request size and can easily be
one order of magnitude big, Thomas et al. [34] shows this by using DNS requests
for example. Note that those amplification attacks misuse the behaviour of normal
innocent services that are just freely available such as DNS servers for example.

To sum up, DDoS attacks can be leveraged by the use of botnets existing out of
C&C servers and bots. Furthermore reflectors enable the the possibility of attack
traffic amplification to generate bigger traffic sizes.. The quarterly DDoS attack size
growth of 9% doesn’t grow continuously, but is determined by peaks in the growth
curve as stated by Akamai [35]. Those peaks are set by the attackers discovery of
new ways of building botnets or by the discovery of new reflection attacks.
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2.1.4 DDoS attack vectors

An attack vector of a DDoS is determined by the kind of messages sent by the bots of
a botnet. Table 2.1 displays today’s common attack vectors, together with its descrip-
tion. Roughly from the top to the bottom of the table, the attack vector generates less
malicious traffic. As described in section 2.1.1, semantic attacks gain their strength
by misusing a certain feature or bug in a protocol and flooding attacks gain their
strength by the amount of traffic generated. Therefore, flooding attacks in OSI layer
3 and 4 generate the highest volumes of malicious traffic, semantic attacks in those
layer are already effective with less traffic. Attacks in OSI layer 7 or the application
layer tend to come in the lowest volumes of traffic, compared to the other attack
vectors. In the table, one of the columns ’S’ or ’F’ is ticked respectively whether the
attack is more semantic in nature or if the attack is more focused on flooding. The
Protocol column shows which protocol is targeted with the attack and the ’OSI L’
column shows in which OSI layer this protocol operates. The final column shows if
the vector typically uses reflectors as in Figure 2.2.

TABLE 2.1: DDoS attack vectors

Attack
Vector

Description S F Protocol OSI
L

Can be
reflected

UDP
Flood

An UDP attack targets random ports on a victim its
computer or network to flood as much, not necesar-
rily valid, packets as possible. The system of the vic-
tim will try to determine what application is listen-
ing on this port and will eventually send back that
the destination is not reachable. Spoofed ip address
make sure that this response directed to the bots. By
flooding the this traffic the victims network link can
be overflooded [36].

x UDP L4

UDP
amplifi-
cation

Protocols on top of the UDP protocol can be used to
generated malicious response messages. Instead of
TCP, UDP doesn’t require to establish a connection
between device before sending messages. Therefore
messages on top of UDP can be spoofed and then
be reflected towards the victim. The reflected mes-
sages are amplified and the amplification factor de-
pends on the protocol [34].

x UDP/* * x

ICMP
flood

ICMP echo requests are used to ping a certain tar-
get. The attacker will try to send those requests in a
higher number than the victim can handle [37].

x ICMP L3

SYN
flood

Every TCP connection is initiated with a SYN mes-
sage, followed by a responding SYN-ACK from the
receiver. The connection is then finally established
by an ACK message from the initiator. To exploit
the behaviour of this protocol an attacker can flood
SYN messages to its victim, but then not respond on
the SYN-ACK messages. This way the victim keeps
open half-open connections in its memory which
will eventually be exhausted [38].

x TCP L4

SYN-
ACK
flood

An attacker can also choose to overload its victim by
overloading it with SYN-ACK messages by sending
SYN messages to reflectors on which the victim will
exhaust its resources by trying to figure out why
those messages are incoming [39].

x TCP L4 x

ACK
flood

After establishing a TCP connection, the receiver of
a messages from the other side acknowledges the re-
ceivement with an ACK message. In an ACK flood
attack, the victim receives ACK messages and failes
to link them to an active TCP session. As a result
the victim resources can be exhausted by [16].

x TCP L4

DNS
flood

With this attack a DNS server is targeted by over-
loading it with DNS requests [40].

x UDP/DNS L7
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HTTP
GET
flood

The attacker sends legitimate looking HTTP traffic
to the victims webserver containing GET requests.
These request are normally used to obtain a web-
page. When the Get request are flooded to the vic-
tim it will consume potentially more resources on
the server than it can handle, sometimes also called
an excessive VERB attack [41].

x TCP/HTTP L7

HTTP
fragmen-
tation

The bots of the attacker establish a valid HTTP con-
nection HTTP connections with the webserver of
the victim. By fragmenting packets send to the web-
server and sending them very slowly, the webserver
will have to hold up many connection, which ulti-
mately can exhaust its resources [41].

x TCP/HTTP L7

Note that table 2.1 doesn’t specify all available attack vectors, but structures some
common ones and gives an idea on which different kind of attacks are possible.
Singh et al. [41] for example specifies 20 different attack vector only using the HTTP
protocol. Furthermore the UDP amplification vector in table 2.1 doesn’t specify any
targeted protocol. This is because several protocols can be used on top of UDP to
amplify traffic. Next some examples of those amplifying protocols and how they
amplify traffic.

• The NTP protocol is generally used to synchronise time between computer sys-
tems. An NTP server can also return up to the last 600 used IP addressees that
have connected to the server by using the MONLIST command. The MON-
LIST command of 64 bytes can be amplified up to 100 responses of 482 bytes
each. The typical UDP listening port of NTP is port 123. [42].

• The DNS protocol is used to translate domain names into IP addresses. The
ANY request to a DNS server returns all records available for a certain domain
name, which results in response message of over 4000 bytes with just a request
message of 60 bytes. The typical UDP listening port of DNS is port 53 [43].

• The SSDP protocol part of the UPnP protocol, which is made for devices on
a network to discover each other, such as as personal computers or printers.
With a SSDP discovery request, all other device with UPnP services reply with
a packet for each service they have configured. This way traffic amplification
factor of 75 and higher can be reached. The typical UDP listening port of SSDP
is port 1900 [43].

• The CharGen is an old protocol initially intended for testing purposes by gen-
erating random characters, but not really used for this purpose anymore. This
protocol can be misused to generate amplified DDoS traffic return 358.8 bytes
on average, with requests of just a single byte. The typical UDP listening port
of CharGen is port 19 [43].

• Quote of the Day (QOTD) is a protocol that is old and barely used anymore.
It has been used to generate a quote for users in the network and can also be
misused to generate amplified traffic. The typical UDP listening port of QOTD
is port 17 [43].

• The CLDAP protocol is the Connection-less Lightweight Directory Access Pro-
tocol and is designed to look up small amounts of information in a directory by
complementing the LDAP protocol Response traffic can amplifiy traffic with a
factor of over 50 [44]. The protocol works on port 389.



10 Chapter 2. Background of DDoS Attacks & Mitigation

• The Memcached protocol is generally used to cache memory for database-
driven websites. An open port on 11211 can result in an 15 byte request being
amplified up to 750000 bytes [45].

According to DDoSMon [46] more than half of all DDoS attack vectors today are
UDP amplification attacks. Other common UDP based attacks are UDP flood and
DNS flood. The most common TCP attacks are the SYN floods and ACK floods.
Other common attacks are against webservers using HTTP, but DDoSMon does not
specify what attack vectors exactly. Apart from the QOTD protoco, the previously
summed up amplification protocols are the most frequently used ones according to
DDoSMon. Also Akamai reports those protocols as most frequently used in am-
plification attack [5]. Last sections the term ’attacker’ is constantly referred to as a
person that initiates a DDoS attack, in practice however, an attacker doesn’t neces-
sarily need any knowledge of any of the above technical aspects of a DDoS attack.
Booters or stressers form platforms that offer DDoS attacks targeting a specified vic-
tim, in return of a payment. This way anyone with web access is able to start an
actual DDoS attack [47].

Several aspects of DDoS attacks are summed up in this section; the working of DDoS
attacks, different DDoS attack types and the kind of protocols that are used and mis-
used within DDoS attacks. The essence of a DDoS attack is that is that it exhausts
resources of its victim in such a way that the victim is not able to deliver a certain
service properly. This means that as long as resources of a certain service are limited,
the service will be prone to resource exhaustion and thus also vulnerable for DDoS
attacks. The next section will look into existing ways to defend such a service against
those DDoS attacks.

2.2 DDoS Attack Detection and Mitigation

In the previous section we gained insight in what DDoS attacks are and how they work. The
goal of this section is to study existing ways to mitigate DDoS attacks. Also available DDoS
attack mitigation studies will be evaluated in order to gain insight in the whole field of DDoS
mitigation.

2.2.1 DDoS Defense Taxonomy

Where Mirkovic and Reiher [14] classify different DDoS attacks, they also classify
defense mechanisms to protect against DDoS attacks. First of all, defense mecha-
nisms are divided into preventive mechanisms and reactive mechanisms. Then the
reactive mechanisms can be sub-classified by their detection method. Finally a clas-
sification can be made by the deployment location of the defense mechanism. All
those different classes will be described in this section.

Preventive mechanisms try to prevent DDoS attacks before they can even start.
For instance, Hardening IoT devices [48], can be used to prevent IoT devices from
getting compromised and being exploited in a botnet, with the result that less IoT
devices are used to perform DDoS attacks. Although those kind of preventive mech-
anisms can be really effective, they will never 100% guarantee that a DDoS attack
will never happen at all. The reason that DDoS attacks will always be present is that
attackers are constantly finding new ways to compromise systems and new ways
to generate malicious DDoS traffic. Therefore, reactive mechanisms will always be
needed to respond on an actual ongoing attacks, which is the scope of this study.
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Reactive mechanisms are relying on DDoS detection methods in the first place.
The detection has be done as fast and accurate as possible to be adequately respond
on a DDoS attack. The detection of a DDoS attack is typically done by either an
anomaly-based detection method or a signature-based detection method. Signature-
based detection methods detect the occurrence of attack with already known attack
patterns, whereas anomaly-based detection methods use machine learning for ex-
ample to detect abnormal behavior. Besides detecting DDoS attacks as fast as pos-
sible, those detection methods should also identify malicious traffic as accurate as
possible. This means that normal traffic and malicious traffic are classified in the
correct class as much as possible. Normal traffic is often also called benign traffic.
Making a distinction between benign traffic and malicious traffic can be challenging,
as attackers can try to imitate benign traffic as close as possible to make malicious
look like just normal traffic. On the other side benign traffic can have behaviour
patterns that are very similar to DDoS attacks. Flash crowd events for example, in
which a server receives a sudden peak in the amount of traffic, can cause a detec-
tion mechanism to think of a DDoS attack. Flash crowd events can happen because
of breaking news on a news website for instance [49]. Signature-based mechanisms
in general have a higher accuracy than anomaly-based mechanisms, but signature-
based mechanisms can only detect attacks that are specified by a limited amount
of rules. However, anomaly-based mechanisms in general are better in detecting
all possible attacks including common attacks, rare attacks and new attacks. Also
anomaly-based detection do not need a constant update of rules as with signature-
based mechanisms. After the detection of an attack, a reactive defense mechanism
responds to the attack. Typically those responses include filter mechanisms to filter
out the malicious traffic, but they can also include a reconfiguration of a network.

Another classification in defense mechanisms is made by deployment location.
For instance, Zargar et al. [16], classifies DDoS defense mechanisms by deployment
location. For the deployment location three different places are defined. The ’source-
based’ mechanisms that are deployed as close as possible at the source of the attack
and also the ’destination-based’ mechanisms that try to the defend the system of the
victim itself. Lastly, the ’network-based’ mechanisms hit the networks involved in
between the source and the destination, which is basically the rest of the internet
apart from the the source and destination of the attack. The last type of methods are
the hybrid mechanisms using a combination of the given mechanisms. Ideally DDoS
attacks are mitigated by source-based mechanisms as close as possible at the source
of the attack. This way the probability of any harm done will be as small as possible.
Those kind of mechanisms however are in general difficult to deploy since the attack
traffic is distributed and therefore difficult to detect and filter. Source-based mecha-
nisms Also the sources of an attack can be difficult to trace and it can be challenging
to determine a responsible party to pay for the deployment of such source-based
mechanisms. Network-based mechanisms can monitor traffic on a large scale, but
they require high storage and processing capabilities. Furthermore, with network-
based mechanisms, classifying traffic in benign and malicious traffic is difficult, due
to the large volume of traffic. Destination-based mechanisms are easier and cheaper
than other mechanisms to deploy since it is easier to aggregate traffic near the victim.
It also becomes more easy to deploy mechanisms against application-level attacks,
since not only the data in the network layers can be read. The attack traffic, how-
ever, might already do damage before the destination-based mechanisms can do
their work. At the end, Zargar et al. [16], states that defense mechanisms should be
divided over multiple collaborative deployment locations. Manavi [50] categorises
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defense mechanisms in a similar way and also recommends to further study col-
laboration methods between different defense mechanisms. Overall, concluded can
be that DDoS defense mechanisms can be broken down in preventive and reactive
mechanisms, where reactive mechanisms use anomaly-based and signature-based
detection methods. Further conclusion is that those reactive defense mechanisms
can occur in different deployment locations, ideally having methods that enable de-
fense mechanisms to collaborate with other defense mechanisms.

2.2.2 DDoS Attack Mitigation methods

In the previous section an overall idea is given on how and where DDoS defense
mechanisms operate. This section will elaborate on some specific mitigation meth-
ods that are used in DDoS defense mechanisms. Source-based methods as Ingress
and Egress filtering [51], D-Ward [52] and MULTOPS [53] are mainly focusing on
network devices near the sources of an DDoS attack. Those devices are typically not
reachable by entities that actively try to defend themselves against DDoS attacks.
Given that source-based methods lay out of scope for many parties and that source-
based methods have a low accuracy in general [54], source-based methods will not
be further discussed here. Source-based methods as such however can still be rele-
vant as they can and exist complementary to network-based and destination-based
methods, but are not relevant for the scope of this research. In the next subsections,
specific network-based and destination based mitigation methods will be further
discussed.

2.2.2.1 BGP routing

The internet consists of a network of Autonomous Systems (ASs), which are collec-
tions of IP routing prefixes. By 2019 there are over 90000 autonomous systems with
an unique number [55]. Internet Service Providers (ISPs) are the most typical owners
of ASs, but also other large organisations such as universities can own an AS. The
Border Gateway Protocol (BGP) is the protocol that helps ASs to exchange routing
information with each other. Determining the shortest path between ASs is part of
this protocol for instance. BGP is also involved at Internet Exchange Points (IXPs),
that form the physical infrastructure through which ISPs can route traffic between
their ASs. On the internet level of IXPs and ISPs, BGP enables methods to mitigate
DDoS attacks with the following methods.

• Blackholing or more specific ’Remote Triggered Blackholing’ (RTBH) [56], is
used inside a single or multiple ASs to drop network traffic. Instead of di-
recting traffic the through the correct route, blackholing causes network traffic
to be dropped by directing it to a null route . BGP announcements towards
all other BGP routers, cause that all traffic directed to or coming from a cer-
tain range of IP addresses is being dropped. After the detection of a DDoS
attack, these announcements can be initiated by the victim, but also by an in-
termediate device in the network. Note that traffic that is being ’blackholed’, is
dropped purely based on an IP prefix of either the source or the destination of
the traffic, no other properties of the traffic are used to drop traffic. Therefore,
dropping traffic using RTBH can be effective to mitigate a DDoS attack, but it
is likely that legitimate benign traffic is also dropped [57].

• BGP Flowspec [58] is an extension of BGP, which enables the possibility to fil-
ter and drop traffic based on a certain flow specification. With BGP Flowspec,
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Access Control Lists (ACLs) can be distributed among all BGP Flowspec en-
abled routers. These ACLs contain filter rules based on 12 different parameters
with details available in OSI layer 3 and 4, such as IP addresses, ports and TCP
flags for example. Filtering traffic based on more information than just IP ad-
dress prefixes, BGP flowspec has the potential to mitigate DDoS attacks more
accurately than RTBH. Studies show that with BGP flowspec, both the detec-
tion of DDoS attacks and mitigation can be automated in systems as RADAR
[59] and Stellar [60] for example.

As stated, BGP operates on a high level at IXPs and ISPs, to provide communica-
tion between different autonomous systems. Therefore BGP processes internet data
in high volumes that involves all different kind of internet traffic. Even with BGP
Flowspec, the latter makes it challenging to accurately filter DDoS attack traffic from
benign traffic. Furthermore, BGP Flowspecs rules are limited by the the fact that only
12 different parameters can be used and no further packet information can be used.
Besides this limitation, there is also a limit on the amount of rules a BGP router can
apply. For example, in the documentation of Ciscos BGP Flowspec enabled routers,
a maximum of 3000 rules is stated [61]. Nevertheless, mitigating DDoS traffic with
BGP Flowspec can potentially be done in a more granular way than with RTBH.

2.2.2.2 Network Firewall

The purpose of a network firewall is to form a barrier between two networks, by
filtering network packets. With that definition of a network firewall, BGP Flowspec
can be seen as a network firewall. However BGP Flowspec can only be deployed
on BGP enabled routers available on ISP and IXP levels, whereas more traditional
firewalls can occur on all sorts of network edges.

With a study by Mogul [62], the first generation of network firewalls dates back
to 1989. It was a packet filter to filter network packets based on their source and
destination addresses, ports and protocol. Since then all sorts of firewalls are devel-
oped with the purpose of filtering incoming and outgoing network traffic. In 1998
Julkunen and Chow [63] introduced a dynamic packet filter, which was able to keep
track of connection states. From that moment, two sorts of packet filtering firewalls
existed, the ’stateless’ and ’stateful’ firewalls. A stateful firewall is also able to deter-
mine if a packet is initiating a new connection or if the packet is part of an already
established connection. Next some open-source firewalls for the Linux operating
system will described.

• The Iptables [64] packet filter was introduced as part of the Linux kernel in
2001. Since then it has been the main Linux firewall for years and is also used
in the fight against DDoS attacks [65, 66]. With Iptables it is possible to put
rules in a table that specify what traffic should be filtered. To optimize the
filtering process, those rules should be ordered in a way that the rules with the
highest change to match should be on top of the table. Ip also provides the
possible to track connection in a table table, which makes Iptables a stateful
firewall.

• Nftables [67] was introduced for the Linux kernel in 2014. Where Iptables
existed of multiple seperate modules, Nftables combines them all and shows
performance benefits over Iptables [68]. In the performance of filtering mali-
cious DDoS packets, Nftables shows similar results compared to Iptables [69].
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• The extended Berkeley Packet Filter (eBPF) [70] is an extension of a former
BPF [71] and improves on the performance. eBPF enables the possibility to
put programs including filtering rules inside the Linux operating system. The
filtering itself is can be done via the eXpress Data Path (XDP) hook, which
enables higher packet processing speeds than other hooks in the kernel. Not
only processing speeds are improved, but eBPF also adds possibilities to in-
teract dynamically with other programs running in user-space. Furthermore,
filtering rules are not bound to specific packet header fields, but rules can ba-
sically be made on all possible bytes in a network packet. Studies show that
eBPF is a promising DDoS mitigation method since it has flexible filtering rules
and packets can be dropped had higher speeds than Nftables and Iptables [72].

The use of network firewalls against DDoS attacks can be limited by the fire-
wall configuration or processing speed. To mitigate a DDoS attack with a network
firewall, the firewall must be able to process the packets at least as fast as they are
incoming. If the network firewall is not able to process those packets in time, a con-
gestion can take place resulting in a denial of service. Therefore, firewalls should be
carefully configured and also be as fast as possible. As shown by Salah et al. [73],
network firewalls can potentially be targeted by a DDoS attack depending on the
behaviour and the properties of the network firewall.

2.2.2.3 IDS and IPS

As described by Liao et al. [74], the Intrusion Detection System (IDS) and the Intru-
sion Prevention System (IPS), are systems that detect and stop an intruder of bypass-
ing security mechanisms. Such an IPS or IDS can either function on a computer or on
a whole network of devices. Characteristic for an IDS or IPS is that they usually exist
of multiple elements and they can analyse all sorts of events and objects on multiple
places in a network. For example, Hwang and Gangadharan [75] shows that already
in 2001, a former version of Iptables is used as a building block inside an IDS. Strictly
an IDS is a system that purely monitors and detects intrusion without taking care of
stopping it. In literature often the terms IDS and IPS are used as synonyms, since
in practice most systems contain both detection functionalities as well as stopping
functionalities. This research will generally refer to an IPS from now on, considering
it also contains detection mechanisms. The term IDS will only be used to specifically
refer to the detection part of a certain system.

IPSs can be categorized in signature-based and anomaly-based systems, similar
to the categorisation of DDoS defense mechanisms as outlined in subsection 2.2.1.
Signature-based systems use certain rules derived from known DDoS attack to de-
tect attacks, whereas anomaly-based systems detect attacks based on irregular be-
haviour on all sorts of components in a system. Anomaly-based DDoS defense
mechanisms do most often occur in IPSs instead of other DDoS defense mechanisms,
since IPSs often have access to many resources in a network. Some specific IPS tech-
niques and methods related to the detection and mitigation of DDoS attacks will be
summed up and categorized by their detection method.

• Signature-based Systems. Snort [76] is an open source IPS based on signa-
tures. It has been adopted in several IPS solutions proposed by several stud-
ies. For example, Bakshi and Yogesh [77] propose a DDoS defense system us-
ing Snort in a virtual machine. It is able to drop packets coming from given
ip addresses to try to mitigate the attack coming from those addresses. An-
other study that adopts Snort is one from Lonea et al. [78], it uses a MySQL
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database to store and match known DDoS attacks. Furthermore, Lo et al. [79]
propose an Snort based IPS in the cloud with their study. Their system adopts
the cooperation with other IPSs, to be a able to alert other systems of ongoing
attacks.

• Anomaly-based Systems. Statistical anomaly detection, first normal traffic is
gathered which is then used to compare it with incoming traffic. Statistical
tests on the data can be applied to label the traffic as malicious or benign. A
study by Khamruddin and Rupa [80] proposes an statistical anomaly detection
technique using a Gaussian model to defend against DDoS attacks that target
the HTTP protocol. Another study by [81] uses a statistical anomaly detection
technique by calculating using a statistical method called the ’Jensen-Shannon
divergence’ method. Data mining techniques are also adopted by anomaly
detection methods to help detecting attacks in environments where big data is
involved. For example, Shamsolmoali and Zareapoor [81] uses Hadoop to be
able to monitor network traffic with big volumes.

• Hybrid Systems. Some methods, use the techniques of both, signature and
anomaly based techniques in a hybrid system. For example Bro is an example
of a open-source hybrid system [82]. In hybrid solutions a signature-based
detection method usually comes first in line, to be able to detect and filter all
known attacks first. After that, an anomaly-based can detect missed DDoS
attacks and try to filter this traffic. Teng et al. [83] propose an IPS where the first
layer of defense works similar to other Snort systems. After passing this layer,
the second layer uses statistical methods to detect anomalies in the network
traffic.

For a more comprehensive overview of available methods, the study of Osanaiye
et al. [6] can be reviewed, including all advantages and disadvantages of the meth-
ods. In general, the biggest disadvantage of signature-based detection are that un-
known attacks cannot be detected and that it can be challenging to maintain an up-
to-date signature database. However, the advantage of signature-based detection
is that it has a low false positive rate. At the other side, anomaly-based detection
has the advantage that is can detect new DDoS attacks as well. The downsides of
anomaly-based detection generally include that traffic is classified less accurately
and that it can be challenging to respond on an attack [84]. Hybrid detection meth-
ods can provide the advantages of both methods and have therefore the focus in
newer studies. An advantage of a hybrid method is that signatures can be made
from detected anomalies, that can directly be applied as rules in the signature-based
methods. The limitation is that a hybrid system can also get complex and chal-
lenging to implement. A complex system can cause an overhead, resulting in the
exhaustion of resources. This exhaustion means that monitoring and handling the
network traffic can cause a denial of service on itself, which is the opposite of the
DDoS IPS its goals.

2.2.2.4 Web Application Firewall (WAF)

Web Application Firewalls (WAFs) defend webservers against attacks targeting pro-
tocols in the application layer, such as HTTP, SMTP, DNS and NTP [85]. The general
purpose of a WAF is to defend against attacks such as, SQL injections, session hijack-
ing and cross-site scripting. However, another purpose of a WAF can be to detect
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and stop DDoS attacks [41]. Next some methods will be described on how WAFs are
able to mitigate DDoS attacks.

• Request analysis can be used to decide whether a user request is part of a
DDoS attack or not. Those requests must be part of a certain application layer
protocol. For example, a widespread used protocol on webservers is HTTP,
which is also a target for all sort DDoS attack types [41]. With WAFs such as
Modsecurity [86] or Modevasive [87], HTTP request inspection can be done to
detect those types of DDoS attacks [88]. Those WAF examples are open-source
and can be configured to be part of an Apache server.

• The use of CAPTCHAs is commonly used on web servers to distinct normal
users from bots by giving the user a certain challenge [89]. Those challenges
can also be used to filter DDoS attack requests coming from bots [90]. The chal-
lenges given to users can include a only human-readable pictures, but chal-
lenges can also involve a certain human behaviour detection [91]. An exam-
ple of performing human behaviour detection could be the analyses of mouse
movements.

The advantage of WAFs is that specific DDoS attacks can be detected, while they
are not detected on other places. However, the limitation is that not all types of DDoS
attacks can be mitigated, since WAFs are only able to detect certain DDoS attack in
the application layer. Also handling requests on an application level is not as fast
as doing it on a network level. One way of overcoming this problem, is to move
the filtering part to a network level. For example, Endraca [92] propose a method to
filter packets with Iptables after the detection of a DDoS attack with a WAF.

2.2.2.5 Overview mitigation methods

The previous subsections elaborate on different existing methods to mitigate DDoS
attacks. This section will highlight the differences between the methods including
their advantages and disadvantages. The methods are described under one one of
the following names; BGP routing, Network Firewall, IPS and IDS or WAF. Gen-
erally, as a DDoS attack occurs, it passes those mitigation methods in the same se-
quence. Ideally a DDoS attack is mitigated as fast as possible, since closer to the
victim it becomes more likely that a network congestion takes place as resources
become more scarce. That congestion can result in a denial of service on itself. How-
ever, the further away from its victim it is more challenging to accurately detect the
malicious traffic. The first reason for this, is that the amount of traffic is less closer
to the victim, which makes it easier to analyse. Secondly, network traffic can be in-
spected more deeply closer to the victim, which results in more available data about
the malicious traffic. Especially, attacks that do not occur in high volumes, typically
attacks hitting the application layer, are more easily to detect with methods that are
able to inspect network traffic with a high granularity. Concluded can be that with
the choice of a mitigation method, a trade-off will occur between the accuracy of the
detection and likeliness of resource exhaustion.

As seen in subsection 2.1.4 from the previous section, the most common attack
vector in DDoS attacks is ’UDP amplification’, which is an attack vector that gener-
ates high volumes of malicious traffic. To mitigate those kind of attacks, the miti-
gation method should therefore be able to handle large volumes of network traffic.
However, to mitigate all sorts of DDoS attacks, some mitigation methods should also
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be able to detect DDoS attacks with lower volumes of malicious traffic. The mitiga-
tion method categories as outlined in the previous subsections of this chapter can be
found in Table 2.2.

TABLE 2.2: Mitigation methods

Method
category

OSI L
Open-source
tools

Advantages Limitations

BGP
routing

3,4 BGP Flowspec High speed network traffic processing possible,
closely to the source of an attack.

Low accuracy due to:

-limitation on the number of rules

-strict rule specification requirements.

-relative high quantity of benign traffic

-malcious traffic is distributed

Network
Firewall

3,4
Iptables
Nftables
eBPF & XDP

Network firewalls are often already part of
existing network configurations.

Methods can be used as part of an IPS/IDS.

eBPF & XDP offer the possibility
to filter on arbitrary packet data.

Challenging to find and update efficient rules
that are able to filter all DDoS attacks.

New DDoS attacks are difficult to detect.

IPS/IDS 3,4,7
Snort
Bro

Can have access to
all sorts of resources on systems and networks.

IPS and IDS systems are the best methods for
anomaly-based detection.

Systems can become too complex.

WAF 7
Modsecurity
ModEvasive

Easier detection of low volumetric attacks in
the application layer.

Only a suitable solution against attacks target-
ing OSI layer 7.

Table 2.2 shows with column ’OSI L’, what OSI layers the methods usually can
access. As discussed, some open-source tools can be found back in the table as well
as the advantages and the limitations of the methods. Note that BGP Flowspec and
eBPF and XDP are relatively new open-source tools that all overcome some limi-
tations of their former methods. BGP routing is bound to only specific routers and
high level network routers at ISPs for example, whereas eBPF and XDP can in theory
operate on any device with a Linux kernel. The latter makes it possible for eBPF and
XDP to operate on more different locations than what is possible with BGP Flowspec.
Another advantage of eBPF and XDP over BGP Flowspec is that filter rules can be
more granular, with even the possibility to inspect packet data destined to all other
OSI layers.

WAFs have the limitation that they are not able to mitigate all sorts of DDoS
attacks as they only operate in the application application layer. However in collab-
oration with other systems, WAFs can be an effective mitigation methods.

With the use of an IPS, anomaly-based detection methods can be used, which
can be an advantage over signature-based only methods. Signature-based can only
be effective if correct rules are maintained and applied, which exactly the main chal-
lenge for new methods using eBPF and XDP.

2.2.3 DDoS Protection Services

The previous section elaborated on what kind of mitigation methods one can use
to protect itself against DDoS attacks. The defender can choose to implement those
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methods itself, but it can also choose to outsource it to a cloud-based DDoS Protec-
tion Service (DPS) [93]. This section will elaborate on those DPSs, how they operate
and what the biggest DPS vendors are.

DPSs are commercial online services that offer protection against DDoS attacks.
This protection is realised by implementing mechanisms against different kinds of
DDoS attacks and also by adopting multiple techniques. Those techniques include
partly the methods of the previous section, but also include the use of Content De-
livery Networks (CDNs). A CDN is a distributed network network of servers and
data centers, with the goal of delivering high availability and performance to its
end-users [94]. Due to this distributed nature of a CDN it can be used divert inter-
net traffic. This traffic diversion can balance loads and help to defend against DDoS
attacks. For example, the DNS protocol or the BGP protocol can be used to redi-
rect and divert the internet traffic, after which malicious traffic can be filtered. DPSs
combine the features of CDNs and other mitigation methods to be able to mitigate
DDoS attacks for their clients. Since, DPSs are commercial parties they typically do
not fully disclose how their methods exactly work, but some of them publish how
their methods work to some extend.

According to a IDC MarketScape assessment from 2019, Cloudflare, Akamai,
Radware and Arbor Networks are all examples of leader vendors in their field [95].
Those vendors all have in common that they use CDNs and its features to mitigate
DDoS attacks. Furthermore, all DPSs use a layered system using different sort of fire-
walls and scrubbing centers [96]. They also all stress the need for good collaboration
amongst all sorts of DDoS mitigation methods, also including ISP level solutions.
Akamai claims to serve between 15% and 30% of the global web traffic and offers a
DDos mitigation service called Kona [97]. They deployed mitigation methods in the
application layer as wel as in the network layer with network firewalls and WAFs.
Arborer Networks offers a DPS with underlying systems called Pravail APS, Peak-
flow SP and Peakflow TMS [96].

Cloudflare implemented an automatic system called Gatebot [98] that analyses
sampled incoming traffic from all their CDN edge servers. The central Gatebot is
able to detect DDoS attacks and deploys mitigation rules on to the edge servers using
L4Drop. On every edge-servers a network firewall is running which uses eBPF and
XDP in order to mitigate DDoS attacks [8, 99]. Before dropping the malicous packet a
small sample is send via Sflow packets back to Gatebot to keep track of the dropped
traffic. Besides filtering network traffic, Cloudflare uses WAFs on their edge servers
to protect against web application attacks. With their ’I’m under attack mode’ [100],
Cloudflare tries to mitigate DDoS attacks targeting the application layer. By using
Javascript and cookies, Cloudflare checks if the traffic is coming from a legitimate
user or a bot.

Concluded can be that DPSs can be helfpul for protecting online services against
DDoS attacks. Especially due to the used CDNs and easy deployment, DPSs can
have an advantages over self-implemented mitigation methods. Cloudflare pub-
lishes more technical articles about their DDoS mitigation methods than the other
leaders in the market. From multiple blogposts it becomes clear that Cloudflare em-
braces the use of eBPF and XDP within their DPS.

2.3 eBPF and XDP

In the previous section we investigated how DDoS attacks are currently mitigated. We ob-
served that signature-based solutions have a lower false positive rate than anomaly-based
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solutions, which indicates that benign traffic is less often classified as malicious with sig-
nature based methods. We learned that eBPF and XDP form relatively new methods to
mitigate DDoS attacks. Those methods are able to make a signature-based DDoS mitigation
that shows packet dropping speeds that are higher then other available methods. Besides the
speed, eBPF and XDP also have some features that offer the possibility to communicate with
user-space. Furthermore, with eBPF and XDP, full packet inspection is possible. This section
aims to study all available materials on eBPF and XDP.

2.3.1 extended Berkeley Packet Filter (eBPF)

This section will elaborate on how eBPF works and how it interacts with other sys-
tems. First will be described how its predecessor, the Berkeley Packet Filter (BPF)
works. BPF is a virtual machine model that runs inside the Linux kernel. It was
designed for filtering and capturing network packets matching specific rules. It was
introduced by Steve McCanne and Van Jacobson in 1992 [71] and it came with the
ability to run programs inside the kernel of a Linux operating sytem. One well-
known program that is able to capture network packets using BPF is tcpdump. After
compiling tcpdump turns a readable expression into an BPF bytecode, which con-
tains a set of instructions. This expression forms a rule for the BPF filter. A rule, for
example, could be that all incoming UDP packets at a certain port and coming from
a certain IP address have to be filtered. A rule can be broken down in all separate
parts as IP addresses and ports, these are called parameters.

A rule can be created for a tcpdump expression that filters all outgoing packets
with a certain destination IP address. In the next example the rule contains only
one parameter which is 192.168.0.1 for filtering all IPv4 packets with this IP address.
Listing 2.1 gives the set of instructions that represent the BPF bytecode of the rule.

LISTING 2.1: Tcpdump instructions

( 0 0 0 ) ldh [ 1 2 ]
( 0 0 1 ) j e q #0 x800 j t 2 j f 5
( 0 0 2 ) ld [ 3 0 ]
( 0 0 3 ) j e q #0 xc0a80001 j t 4 j f 5
( 0 0 4 ) r e t # 262144
( 0 0 5 ) r e t #0

More details on the syntax and meanings of the code in listing 2.1 can be found
at [101]. The first instruction (000) loads 2 bytes from the packet with offset 12 into
memory. The second instruction (001) checks if the IPv4 protocol is used. If the latter
is true the code jumps to instruction (002) and otherwise to (005). The third instruc-
tion (002) loads the the destination address. Then the next instruction does the actual
check if this is destination address 192.168.0.1 and returns true at instruction (004)
or false at the last instruction (005). Note that this filter exactly costs six instructions,
for a rather simple rule with not so many parameters. A more complicated rule with
more parameters will require a lot more instructions.

Alexei Starovoitov came up with a new BPF architecture BPF JIT in 2014 [70].
This is now known as the extended BPF (eBPF) and sometimes called just BPF as
it replaced the classic BPF. The classic BPF is often named as cBPF in literature, but
in this paper the the two names we will use are BPF for the old one and eBPF for
the new one. eBPF is more efficient then the BPF thanks to this just in time (JIT)
compiling of the eBPF code. eBPF is not only designed to filter network packets,
but to process any general event inside the kernel. Furthermore eBPF comes with
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maps that make it possible to share data between applications in the user-space and
kernel-space. For example, an application like an internet browser which can di-
rectly interact with the user, runs in the user-space, whereas the driver of a computer
screen runs inside the operating system. Those maps are not restricted in size. The
execution of eBPF code is hardware independent which makes it possible to run on
any architecture.

The shown tcpdump example was just an example of a program that in this case
uses the former BPF. The creation of an eBPF program with the purpose of eventu-
ally running inside the eBPF VM, starts typically with the creation of ’C source code’.
Figure 2.3 shows this step in the up left corner at ’1’. The ’LLVM Clang compiler’
[102] is able to compile this code into the ’eBPF bytecode’ in the form of an ELF file
[103]. After this compilation the bytecode can be loaded into the kernel with a sys-
tem call (syscall). A syscall is the typical way for a program in userspace to request
a service from the kernel of the operating system. An eBPF program loaded into
the kernel is done via the ’bpf syscall’ [104]. Together with this syscall, maps can
be initiated and the program type has to be specified. This program type essentially
defines which kernel functions can be called from the eBPF program. As can be seen
in Figure 2.3 the eBPF bytecode reaches the ’verifier’. Inside the kernel the eBPF
verifier comes with some checks on the byte code to ensure some safety, for example
no backward jumps are allowed to make sure no loops are possible. Furthermore an
eBPF program can not have more than 4096 instructions and each instruction has a
length of 64 bits. With the fact that simple filter rules can already cost multiple in-
structions as it is the case with tcpdump, it means that the bytecode can only contain
a very limited amount of filtering rules. If finally the bytecode is considered safe by
the verifier, the ’JIT’ compiler compiles the bytecode into machine code that matches
the right architecture. Finally the eBPF program runs inside the kernel where it can
interact with other kernel functions and can also interact with userspace programs
via ’maps’.

Userspace

Kernelspace

eBPF bytecode

C source code

Hardwarespace

User program

bpf syscall

LLVM Clang

Verifier + JIT

eBPF program

NIC

Maps

XDP driver hook

TC hook

Network stack

Iptables

1

2

FIGURE 2.3: eBPF & XDP environment
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2.3.2 eXpress Data Path (XDP)

This section will elaborate on XDP and how it is possible that it enables high packet
processing speeds. To reach the userspace, normally a network packet coming from
the Network Interface Card (NIC) flows through the kernel of an operating sys-
tem. Figure 2.3 shows this NIC at the ’2’, after which an incoming packet will flow
through all the elements inside the kernel. An alternative way is Kernel bypass-
ing; a method to process those packets directly in user-space by skipping the kernel.
The main advantage of doing this, can be that a high-speed packet processing per-
formance is possible. Some toolkits already use a form of kernel bypassing to gain
performance, such as the Data Plane Development Kit (DPDK) [105], Cisco’s Vector
Packet Processing (VPP) [106], Netmap [107] and Snabb [108]. Bypassing the ker-
nel to gain speed has some disadvantages. All networking functionality normally
provided by the kernel has become useless. There is also almost no ability to inter-
act with other parts of the OS and the user-space application needs to manage their
hardware resources directly. This all results in increased system complexity which
could introduce some security problems. XDP is a solution that does basically the
opposite of kernel bypassing. It actually adds programmability with eBPF programs
directly at the operating system networking stack [10]. This is done by adding a new
layer in the kernel network stack. An eBPF program can be directly executed at the
NIC driver at the first possible moment after a packet is received. The latter is called
the the ’XDP driver hook’ as shown in Figure 2.3. As explained is the previous sec-
tion, the bpf syscall allows eBPF bytecode to be executed as an ’eBPF program’. A
declaration inside the syscall has to be given to specify that the ’XDP driver hook’
should be used and the eBPF program therefore can also be called a ’XDP program’.

In the fight against DDoS attacks, an import feature of a network filter is that
it should drop malicious packets as fast as possible. According to the performance
evaluation from Høiland-Jørgensen et al. [10], the packet dropping performance of
XDP is significantly faster then older methods, such as Iptables. This performance
advantage of XDP over Iptables can be explained by the fact that XDP has the possi-
bility to filter right at the network device driver, which is an earlier stage then where
Iptables does its job. As shown in Figure 2.3, the fastest way for Iptables to drop
packets is in the prerouting phase near the traffic control (TC) hook. At the TC, the
incoming packets already have passed the driver space. This ’TC hook’ however
will come after the ’XDP driver hook’ and is therefore also a lot slower. According
to Høiland-Jørgensen et al. [10] packets an the ’XDP driver hook can be dropped
with a speed of 24 Mpps on a single CPU against a dropping rate of 4.8 Mpps at the
TC hook. This shows that packets can be dropped significantly faster with the use
of XDP than former methods using Iptables. The speed improvement of XDP over
Iptables is in the case of Cloudflare, one of the reasons for the replacement of an
Iptables filter [7]. With Cloudflare’s use of NICs that can handle two times the speed
of 25Gbps in their edge-servers, the network links themselves are not the bottleneck
when it comes to handling packets [109].

2.3.3 Related Work

This section aims on getting insight in all the available scientific work on eBPF and
XDP related to the mitigation of DDoS attacks. Sections 2.3.3.1 and 2.3.3.2 give in-
sight in possible future research directions based on the found studies on eBPF and
XDP. In order to be sure no scientific materials have been missed, a Google Scholar
crawler has been written [110]. First of all, the search terms ’eBPF’, ’XDP’ and also
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the full written terms ’extend Berkeley Packet Filter’ and ’eXpress Data Path’ have
been used. Those searches resulted in up over thousand result for only ’eBPF’ and
just below hundred results for the combination with ’XDP’. Table 2.3 shows the cov-
erage of the 25 most important papers found.

TABLE 2.3: Studies overview

Reference Paper Topics
DDoS eBPF XDP Rule Generation

Tran and Bonaventure [111] X
Hong et al. [112] X
Massimo [113] X X

Bertrone et al. [114] X X
Bertrone et al. [115] X X
Hemminger [116] X X

Ahern [117] X X
Miano et al. [118] X X

Lakhani and Miller [119] X X
Rüth et al. [120] X X

Chaignon et al. [121] X X
Van Tu et al. [122] X X

Xhonneux et al. [123] X X
Tu and Ruffy [124] X X

Viljoen and Kicinski [125] X X
Brouer [126] X X X

Bertin [7] X X X
Fabre [127] X X X

Høiland-Jørgensen et al. [10] X X X
Miano et al. [128] X X X
Miano et al. [129] X X X
Scholz et al. [72] X X X

Khamruddin and Rupa [80] X X
Aljuhani et al. [130] X X

Makita [131] X X

First of all, several studies found via Google Scholar did mention the use of XDP
and eBPF in combination with DDoS mitigation, but the main topics of those studies
involve other topics that are not relevant for this study [132, 133, 134].

Furthermore some studies found are are about different use-cases for eBPF. Apart
from packet filtering against DDoS attacks, eBPF offers solutions to other problems
inside to Linux kernel. For example Tran and Bonaventure [111], propose an exten-
sion on the TCP stack inside the linux kernel. Another use of eBPF is the proposal of
a virtual network switch by Hong et al. [112].

Another category of studies found, are studies that are about eBPF and XDP,
but with no focus on the mitigation of DDoS attacks. For instance purely about the
replacement of Iptables by eBPF and XDP in general [113, 114, 115] or studies about
a general eBPF and XDP solution with no focus on DDoS attacks [116, 117, 118, 119,
120, 121, 122, 123, 124, 125, 126]. Miano et al. [118] for instance, discusses on all sorts
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of network functionalities that can be built with eBPF and XDP, such as routers,
NATs and bridges.

The third category of studies focus on the use of eBPF and XDP related to the mit-
igation of DDoS attacks. From 2017, the study of Bertin [7] is an explorative study
for Cloudflare that concludes that XDP is a promising technology for the mitiga-
tion DDoS attacks. Two years later in 2019 is now clear that Cloudflare successfully
adopted XDP. In 2019, Fabre [127] describes for Cloudflare how they adopted XDP
by hard-coding filter rules inside the XDP program. The paper concludes that they
are successfully able to mitigate DDoS attacks, but are still constrained by the num-
ber of rules that can be specified. Høiland-Jørgensen et al. [10] tests the capability
of eBPF and XDP to drop packets at high speeds. They show a raw packet process-
ing performance of up to 24 Mpps on a single CPU. The paper of Miano et al. [129],
specify ’bpf-iptables’ based on eBPF and XDP, which is able to replace the former
Iptables. They tested their bpf-iptables performance under simulated DDoS attacks.
Further, they achieved higher packet dropping rates than Iptables with the use of
eBPF and XDP. Their matching was done on IP source, transport layer protocol and
source ports. In another study, Miano et al. [128] shows the same performance ad-
vantage of using eBPF and XDP over Iptables.

No studies have been found in how filtering rules should be generated in order
to mitigate DDoS attacks with XDP and eBPF. Due to the unique behaviour of the
eBPF environment, studies into rule generation methods can be helpful in order to
optimize DDoS attack mitigation. Existing studies such as [80, 130, 131] can be used
to find similiar methods for the use with eBPF and XDP.

2.3.3.1 Number of rules restriction

With eBPF and XDP together, it is possible to fit filter rules into an single XDP pro-
gram. There is however a limitation in the amount of rules that be used in a XDP
program, since XDP program can not be larger then 4096 instructions. As can been
seen in subsection 2.3.1 the number of instructions needed can add up pretty quickly
if the number of rules are increasing, especially when the rules become more com-
plex. Scholz et al. [72] managed to create a efficient filter containing up to 100 rules.
Facebook’s XDP packet filtering solution uses eBPF maps to store rules [9]. In the-
ory those maps can be infinitely large which means that there is much more space
for specifying rules. An extra advantage is that the XDP program doesn’t need to
be recompiled to add or remove rules. However, Fabre [127] reports that looking up
certain rules in maps also comes with the minimal costs of 4 instructions. Facebook
doesn’t show how their use of maps affects their performance results and only little
implementation details are given by Facebook.

2.3.3.2 Packet filter algorithms

The way packets are filtered by rules can be defined by an algorithm. Those al-
gorithms can define how packets are matched against certain rule-sets [135]. ’Lin-
ear search’ is the method Iptables uses that matches incoming packets rule for rule
against certain properties of the packet. As defined by Varghese [135], this packet
matching can also be done via ’Cross-Producting’ or decision tree approaches for ex-
ample. However, not all those algorithms are suitable to be used in a DDoS mitiga-
tion solution with eBPF and XDP [129]. Miano et al. [129] uses the ’Linear Bit-Vector
Search’ (LBVS) algorithm with eBPF and XDP in order to match packets against their
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rules. In a presentation, the same authors suggest that Tuple-Merge [136] might also
work efficiently, but this is still open for research.

2.4 Conluding Remarks

The goal of this chapter is to answer the research question; What methods currently
exist that automatically update rules in a signature based DDoS mitigation? The
answer on this question has been realised by first looking into DDoS attacks in gen-
eral in section 2.1. Then in section 2.2 the field of DDoS detection and mitigation has
been explored. Finally section 2.3, elaborates on the related work, the advantages
and the limitations of using eBPF and XDP as a DDoS attack mitigation method.

The second section 2.1 gives a brief overview of what to most important aspects
of a DDoS attack are. It explained that victims of DDoS attacks are targeted to ex-
haust their resources. By exhausting the resources of a victim, it will not be able
to deliver a service to other legitimate users of the service. Those resources get ex-
hausted by flooding the victim with network traffic or by misusing the behaviour
of a certain protocol to cause the exhaustion of the victim its resources. The conclu-
sion is that as long as resources are limited, they will always be prone to exhaustion
and thus vulnerable for a denial of service. Further observation is that DDoS attacks
still form a threat with huge revenues losses and reputation damage, due to 5 dif-
ferent attack motivations. At the end section 2.1 elaborates on the distributed nature
of DDoS attacks. Nowadays typical DDoS attacks are performed by built botnets
existing out bots and C&C servers, where the bots are compromised machines. De-
pending on the attack vector, an extra layer in to a DDoS architecture is added with
reflectors. Most common attack vector is UDP amplification through those reflectors
and the 7 most misused protocols are given.

Section 2.2 starts with describing different kind of defense mechanisms. Argued
is that reactive mechanisms will always be needed against DDoS attacks and that
they can are ideally deployed on multiple collaborative locations. Detection mech-
anisms of DDoS attacks can be classified into signature-based and anomaly-based,
with the main challenge for signature-based methods to maintain an up to date rule-
set. However signature-based mechanisms, have a lower false positive rate. Fur-
ther it describes different mitigation methods that are categorised by four different
categories; BGP routing, Network Firewalls, IPSs and WAFs. Concluded was that
the relatively new open-source tools eBPF and XDP have some features that could
overcome the limitations of other methods. These tools can be deployed on a wide
variety of devices and enable the possibility to collaborate with other applications
via user-space. This collaboration can overcome the limitation that signature-based
mechanisms have, since it enables the possibility to dynamically update filter rules,
that are automatically generated by secondary program.

Furthermore eBPF and XDP are able to fully inspect incoming packets at a even
higher processing rate than former network firewall methods. Finally section 2.2,
describes is that DPSs are a popular way to outsource the defense against DDoS at-
tacks. Those DPSs use CDNs to be able to redirect internet traffic, which can be used
to mitigate DDoS attacks. Implementation details on further methods are generally
not public, but Cloudflare posts openly about their successful method using eBPF
and XDP.

In section 2.3, the capabilities of eBPF and XDP in order to mitigate DDoS attacks
are shown. With the ability of eBPF to communicate with all sorts of functions inside
the Linux kernel and user-space, it enables to possibility to create a dynamic and
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customizable solution. The XDP hook inside the Linux kernel is able to process
packets on high speeds due to the fact that packets are filtered close to the NIC.
Related studies show that no studies use eBPF and XDP in order to automatically
update and generate rules with the use of attack signatures.
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Chapter 3

Method & Design

In the previous chapter we saw what DDoS attacks are, how they work and what mitigation
methods exist to be able to defend against them. We concluded that the features of eBPF &
XDP can potentially help mitigating DDoS attacks. These features include the possibility
to dynamically update filter rules from userspace into kernelspace and also the possibility to
drop packets at faster speeds than former methods. With eBPF and XDP as tools, this chapter
its aim is to study how those tools can fit in a DDoS mitigation system. Therefore, the goal
of this chapter is to find an answer on how to automatically generate eBPF rules for
DDoS mitigation using DDoS attack signatures (RQ2).

In section 3.1 we will give the predefined requirements of the system we created, by
taking RQ2 into account. Then, in section 3.2 we will elaborate on the implementation of
our own system and on how the requirements of the system are met. After that, section 3.3
will describe how the effectiveness and performance of the designed system is going to be
measured.
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3.1 Requirements

The requirements for the DDoS mitigation system of this study are specified in this
section. We first take a look at how our built DDoS attack mitigation system is part
of a bigger system. How this bigger system will look like on a high level has been
shown in Figure 3.1. At the left side of the figure, normal traffic as well as attack
traffic flows into the system. At the right side of the figure the filtered traffic flows
out of the system and should ideally only exist out of normal traffic.

Normal Traffic

Attack Traffic

XDP filter

Anomaly

Detection

Rule

Generation

Normal Traffic

Dropped Traffic Sample

FIGURE 3.1: Design of DDoS Attack mitigation system

The parts in orange, will be a part in the system that is created for this study. The
blue anomaly detection part the traffic is NOT part of this study, therefore further
requirements apply on the orange part. To take full advantage of the characteristic
of eBPF and XDP, we choose that our system should be part of a bigger collaborative
system. The incoming traffic will first pass the XDP filter that is able to apply certain
filter rules on the traffic. The traffic will than flow trough an anomaly detection sys-
tem which should be able to detect new attacks. By dissecting the traffic the anomaly
detection system should also be able to compare the traffic with already known at-
tacks. As soon as the anomaly detection has warned the rule generation system with
a certain incoming attack, the rule generation system can create rules to be applied
inside the XDP filter. This way we have a hybrid mitigation system that uses both
signature-based and anomaly-based methods to mitigate DDoS attacks. Within the
system the XDP filter is able to sample parts of dropped traffic. From those samples
can be derived how many and what kind of packets are being dropped. With that
information can be approximated how big the attack is and how much normal traffic
has been dropped.

The goal of the system is to drop DDoS Attack traffic by automatically generated
XDP rules that filter the traffic. In a realistic scenario the system will be operated by
a network operator, since the system will be part of a certain network. Those net-
works can differ in several ways and will therefore have different specific require-
ments when it comes to the mitigation of attacks. The network operator will have to
asses what the critical parts of his network are and in what ways a DDoS attack can
occur, since this will be different for every network. Therefore the network operator
should be able to manually alter network traffic filter rules that are created by any
automatic system. That’s why the system can be operated from a network operator’s
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perspective. To create a realistic system which is operated by a network operator, the
requirements of the system take into account that the system can be part of different
networks and different attack scenarios. Those factors are considered to be the con-
text of the actual DDoS mitigation system. The requirements are grouped by 3 main
requirements, that all include several sub-requirements in the following way.

1. The system should be able to filter network traffic using eBPF and XDP.

1.1 The system should be able to load eBPF programs inside the Linux kernel.

1.2 The eBPF programs should have a XDP hook that is able to filter network
packets.

1.3 The system should be able to store filter rules in eBPF maps.

1.4 The system should be able to store hard-coded rules inside the eBPF pro-
gram.

2. The system should be able to generate XDP rules in order to drop packets from
DDoS attacks.

2.1 The system should be able to derive filter rules from DDoS attack finger-
prints.

2.2 The system should be able to filter on all different features in OSI layers 3
and 4.

2.3 The system should be able to filter on important features inside OSI layers
higher than 4.

2.4 The system should be able to filter on multiple features at once.

3. The system should be able to mitigate DDoS attacks in a realistic situation.

3.1 The system should be able to take its own context into account when gen-
erating XDP rules.

3.2 The network operator of the system should be able to manually change
the type of rules that are used in the XDP filter.

3.3 The network operator of the system should be able to see what the kind
of packets are being dropped and how many of them are being dropped.

The first requirement directly specifies the use eBPF and XDP. The use of those
tools are justified by chapter 2. The second requirement is set in order to drop pack-
ets from DDoS attacks specifically. The system should be able filter based on specific
DDoS attack properties. As learned from chapter 2, DDoS attacks can have a variety
of different features that describe the specific DDoS attack. Besides being able to
mitigate different sorts of DDoS attacks, the third requirement specifies that the sys-
tem should also be able to work in a realistic network environment. With the term
realistic is meant that there are many variables in the context of the system that can
influence its behaviour.

Note that the requirements not only specify main and sub-requirements, but are
made on top of each other. The first requirement should be met in order to realise
the second one and the second requirement should be implemented to be able to
implement the third requirement. The next section will describe the implementation
of the system and how the requirements are met.
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3.2 Implementation

By following the requirements from the previous section, this section will describe
how the DDoS mitigation system has been implemented for this study. All code used
for the implementation can be found in an open source Github repository [137].

3.2.1 eBPF, XDP and the IOvisor BPF Compiler Collection

As known from section 2.3 from the previous chapter, eBPF programs can be de-
ployed by first compiling C source code by LLVM Clang and then using a bpf syscall
to load the program run into kernelspace. This process can also be done by IOvisor’s
BPF Compiler Collection (BCC) [138], which is a project that includes tools to com-
pile and load those eBPF programs. It uses a C wrapper around LLVM and provides
a front-end in Python which makes it easy to makes applications in user-space that
are also able to make eBPF programs. The system implemented for this study uses
IOvisor’s BCC, which makes it possible to deploy eBPF programs that use a XDP
filter. The filter is able to get values out of maps, but can also be hard-coded inside
the program. The Python front-end of BCC has been integrated within the rest of the
system. With the use of BCC, requirement number 1 and its sub-requirements are all
met.

3.2.2 Rule Generation

The second requirement of the requirements in section 3.1 describes that the system
should be able to generate XDP filter rules that are able to drop DDoS attack traffic.
The third requirements describes that the system should be aware of its context and
that the system should manually be able to be operated by a network operator. For
both requirements, 2 and 3 is described how they are met in this section.

The rule generation algorithm uses DDoS attack fingerprints as an input. Each
fingerprint functions as a summary of a specific attack. A fingerprint can also be
called the signature of the attack. The fingerprint of each DDoS attack contains the
values of all available features inside the DDoS attack. Inside the fingerprints, the
values are given as sets of values for each feature that are present in the DDoS attack.
A feature is a certain field inside a network packet e.g. the source IP address in the
IP layer. Note that the way the fingerprints are build up, the values are not linked
to each other, so not known is what the value combinations are existing inside the
attack. Those features values can be used to drop the DDoS attack traffic by the
XDP filter. The rule generation algorithm for this study assumes that the DDoS
attack fingerprints used are 100% correct, Algorithm 1 is a general example of how
all features in a fingerprint are used to create rules for the XDP filter.
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Algorithm 1: General XDP rule generation & filter algorithm
Input: DDoS_fingerprint<k,v[]>
// k is the unique key of a specific feature and v[] is a list

with the values for that feature
Input: feature_whitelist[]
Input: feature_value_whitelist[]

1 initialize XDP filter // load eBPF program and attach XDP filter
2 feature_map<k,v[]>← NULL
3 foreach k, v[] in DDoS_fingerprint<k,v[]> do
4 if k in feature_whitelist[] then
5 continue
6 foreach v in v[] do
7 if v in feature_value_whitelist[] then
8 continue
9 else

10 feature_map<k,v[]>← <k,v> // eBPF map, shared between
userspace and kernelspace

11 end
12 end
13 end
14 while XDP filter is loaded do
15 packet← incoming packet
16 foreach value in packet do
17 if value in feature_map<k,v[]> then
18 pass_packet← False
19 return pass_packet // DDoS packets being dropped as long as

XDP filter is loaded
20 else
21 pass_packet← True
22 return pass_packet
23 end
24 end
25 end

The algorithm in algorithm 1 shows how from a DDoS attack fingerprint, XDP
filter rules are created. The input of the algorithm exists out of the DDoS attack
fingerprints, a set of features that should be white-listed and a set of values per
feature that should be white-listed. With those lists a network operator can both
choose to deny a filter on a specific feature or to deny a filter on a specific value of
a feature. For example a network operator could choose that the XDP filter should
never drop packets based on a source IP address. Another example could be that
network operator specifically chooses to not filter on UDP source port 53. On line
number 3 and 6 the checks take place whether a feature or certain feature value
should be added to the feature_map. The XDP filter reads each incoming packet
and checks all values of the packet against the values in concerning feature_map. If
a value exist in one of those maps the packet will be dropped.

In the example algorithm, except from the white-listed ones, all features and
their values will be used to filter packets. However, not in all cases, all values are
needed to still be able to effectively drop the packets of a DDoS attack. To optimally
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minimize the features and its values that are used in the filter, the challenge is to
find the information inside malicious DDoS attack packets which is unique for those
packets and is not existing inside the normal packets. This unique information can
exists out of multiple network packets features. Only the features that should be
filtered should not be added to the white-list. The selection of those features can
either be done automatically or manually by the network operator. There are several
ways to select the features automatically. First method is to select the feature with
the fewest values inside the fingerprint as given in algorithm 2.

Algorithm 2: Select feature based on fewest values
Input: DDoS_fingerprint<k,v[]>
Output: feature_whitelist

1 best_ f eature← NULL
2 smallest_count← −1
3 f eature_whitelist← []
4 foreach k,v[] DDoS_fingerprint<k,v[]> do
5 count← 0
6 foreach v in v[] do
7 count← count + 1
8 end
9 if count < smallest_count or smallest_count == −1 then

10 best_ f eature← k
11 smallest_count← count
12 end
13 foreach k in DDoS_fingerprint<k,v[]> do
14 if k is not best_ f eature then
15 f eature_whitelist← k
16 end
17 return f eature_whitelist

Algorithm 2 start with a DDoS attack fingerprint and returns the best feature
based on the amount of values per feature. It returns the feature as a white-list
which can be used in algorithm 1 to generate XDP rules. In anomaly detection al-
gorithms often feature selection techniques are used to determine what the most
effective features are to train the algorithm. Adjusted mutual information is an
information-theoretic metric which can be used as such a feature selection technique
[139, 140, 141]. For this study, the adjusted mutual information (AMI) score metric
has been used to determine which features inside the attack traces and fingerprints
are best in distinguishing the attack traffic from normal traffic. Assuming that the
AMI scores have been pre-calculated and are inside the fingerprints, the algorithm
to select the best feature based on those scores, has been given in algorithm 3.
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Algorithm 3: Select feature based on AMI score
Input: DDoS_fingerprint<k,v[]>
Output: feature_whitelist

1 best_ f eature← NULL
2 best_AMI_score← 0
3 f eature_whitelist← []
4 foreach k in DDoS_fingerprint<k,v[]> do
5 score← k(AMI_score)

// AMI_score is additional information per feature inside the
fingerprint

6 if score > best_AMI_score then
7 best_AMI_score← score
8 best_ f eature← f eature
9 end

10 foreach k in DDoS_fingerprint<k,v[]> do
11 if k is not best_feature then
12 f eature_whitelist← k
13 end
14 return f eature_whitelist

Algorithm 3, again starts with the fingerprint and returns the list with features
that should be white-listed. The AMI scores in the fingerprints are linked to the con-
cerning features. With the possibility of the system of generating XDP rules that are
able to drop packets on specific features of a DDoS attack, the second requirement
has been met. The third requirement has been met by the possibility to alter the
generated rules based on the selected features and values. Selecting specific features
and values can not only be done to optimise the algorithm, but also to respond to
situations in the context of the system. The latter necessary to be able to mitigate
DDoS attacks in realistic situations.

3.2.3 Data Sources

The data that has been used to test the built system will be discussed in this subsec-
tion. The sources of the data and how the data has been ready for this study will also
be discussed. The data used in this study is realistic data from real networks and real
different sorts of DDoS attacks. This applies on the normal traffic traces, attack traf-
fic traces and the corresponding fingerprints of those attack traffic traces. Santanna
[11] created a platform called DDoSDB on which known attacks can be shared. The
platform offers a database that is used for this study. The database exists out of 889
DDoS attack traces together with the corresponding fingerprints, that contain the
most important information about the attack. The attack traffic comes in PCAP files
and the fingerprints are formatted in JSON files. The available information in the
fingerprint is depended on what protocols are used. In Listing 3.1 an example of a
fingerprint is given of an attack with UDP traffic.

LISTING 3.1: UDP DDoS attack fingerprint

1 {
2 "key":"d8ecc4556c6300355248ce2df77c49d3",
3 "multivector_key":"420 ebbc94e5ec5708143ac8774c08d92",
4 "protocol":"UDP",
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5 "src_ips":[
6 {
7 "as":"23969",
8 "cc":"TH",
9 "ip":"125.27.146.179"

10 },
11 {
12 "as":"23969",
13 "cc":"TH",
14 "ip":"125.26.151.154"
15 }
16 ],
17 "src_ports":[
18 24445
19 ],
20 "dst_ports":[
21 31280,
22 62696,
23 41102,
24 ...
25 ],
26 }

As can be seen in Listing 3.1 in all the fingerprint summarizes some information
available in the attack trace. All source IP addresses are listed as well as all the used
ource and destination ports. In this particular case the the attack purely exists out
of UDP packets with 24445 used as the source port. The out of the box fingerprints
from DDoSDB only contain features up to a certain level. Since the fingerprints
come from DDoSDB, note that the fingerprints are not made by this study. The
fingerprints from DDoSDB that are used for this study are assumed to be 100%
correct. Extra information to the fingerprints has been added that contains more in
depth packet information about the DDoS attack. The DDoS attack traces have been
compared the normal traffic and for each feature inside the attack traces the AMI has
been calculated.

Out of all the 889 attack traces, some of the pcap files mistakenly either didn’t
contain any packets at all or contained attack vectors with multiple L4 protocols.
After filtering all those bad attack traces, a number of 702 attack traces in total were
left over. Table 3.1 shows the number of attacks per protocol.

TABLE 3.1: Number of attacks per protocol

OSI L4 Protocol # OSI L7 Protocol #
TCP 278 HTTP 4
UDP 253 DNS 45

NTP 19
QUIC 9
Chargen 7
SSDP 7
Other 50

ICMP 170 - -

None of the attack traces from DDoSDB contained IPv6 packages. Further, in
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table 3.1 can be seen that the OSI L4 protocols TCP, UDP and ICMP are used in
respectively 278, 253 and 170 of the attack traces. Every attack only exists out of one
of those protocols. Some attack traces also contain packets with higher OSI level
protocols as shown in the table.

To simulate normal traffic for this study, also realistic traffic has been used. The
used "bigFlows" [142] network trace is a capture of real network traffic on a private
network. This capture contains exactly 791615 network packets and 132 different
applications are used. Those kind of network traces can be used to simulate the
network traffic in a real network. The bigFlows network trace comes as an example
network trace, with a tool that can be used for replaying network traces. This tool is
called Tcpreplay [143]. Table 3.2 shows the statistics on what protocols are used in
the capture.

TABLE 3.2: Statistics of bigFlows.pcap

OSI Layer Protocol Number of packets Percentage
L3 IPv4 791179 99.9%

IPv6 436 0.1%
L4 TCP 635017 80.1%

UDP 153135 19.3%
ICMP 3434 0.4%

L7 HTTP 28582 3.6%
DNS 4466 0.6%

With 791179 out of the total 791615 packets, table 3.2 shows that the capture
mainly contains IPv4 packets. Furthermore, the majority of the packets are TCP
packets with a percentage of 80.1%. Most of the packets do not contain application
data in OSI layer 7, but the protocols HTTP and DNS have a share of respectively
3.6% and 0.6% of the total amount of packets.

3.2.4 Setup

The test setup of this study contains of two workstations connected trough an UTP
cable. The theoretic speed of both network interfaces is 1 Gbits per second and the
throughput in practice is 950 Mbits per second as can been seen in Appendix A.
Figure 3.2 shows the sequence of actions taken to test a given set of DDoS attacks
against the XDP filter.

The sequence in Figure 3.2 starts with an attacklist of keys that represent certain
attacks from the DDoSDB database. PC1 initiates an ssh connection with PC2 and
from there on an iteration takes place over each attack in the attack list. PC1 then
notifies PC2 on what attack is going to be tested together with the number of runs
the specific is going to be tested. Next, PC2 prepares pcaps containing the DDoS
attack traffic and normal network traffic as discussed in subsection 3.2.3. When the
preparation of the pcaps on PC2 is done, PC1 attaches the XDP filter for a specific
rule-set and start recording the network traffic with Tcpdump. Tcpdump [144] is a
tool that is able to capture network traffic and is able to store a network trace file. In
the meanwhile PC2 is able to send the prepared pcaps using Tcpreplay.
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FIGURE 3.2: Testing setup

3.3 Evaluation Metrics

The build system has been described in the previous section. This section will elab-
orate on how this system has been tested on the effectiveness and ability to mitigate
DDoS attacks. First of all the accuracy of the filter has been measured by checking
how many of the total malicious packets are blocked and how many of the total
normal packets are not blocked. For the input of the system, the amount of attack
packets and normal packets are equally divided and therefore both 50% each run.
A ’run’ is defined as a specific test for a certain filter against a certain DDoS attack.
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Since there are no IPv6 packets inside the attacks the IPv6 packets inside the normal
traffic are left out. The prepared normal traffic pcap contains 1582358 packets, which
is double the number of IPv4 in the bigflows pcap. The DDoS pcaps are replayed
until the same number has been reached.

In the ideal case the output of the filter should exists of merely all normal packets
and no attack packets. The accuracy metric is given by tn+tp

tn+tp+ f n+ f p where tp = the
number of filtered malicious packets, tn = the number of normal packets that are not
filtered, f p = the number of normal packets that are filtered and f n = the number
malicious packets that are not filtered. Another used metric is the false positive rate
(FPR), which is given by f p

f p+tn . To measure if a recorded packet is malicious or not,
a flag has been added in the preparation phase of the pcaps. The header checksum
field of the IP layer of each packet has been used to store this flag.

Furthermore the limitations of the XDP filter have been measured. The first met-
ric is the speed of applying all the rules for a specific attack. This metric shows how
fast a DDoS attack can be mitigated after it has been detected by the anomaly detec-
tion part of the mitigation system. The metric will depend on the number of rules
that are applied in the filter. Secondly the speed in which packets go through the
filter has been measured. This way it can be compared against other former filter
methods.

The effectiveness of a DDoS attack mitigation method heavily depends on the
context of the system. It depends on the certain applications being used inside the to
defend network, because this determines the normal type of traffic. It also depends
on the set of IP addresses that are being used by the DDoS attack compared to the
set of IP addresses that are used for normal traffic. For example, if a certain network
uses a DNS server to resolve IP addresses and a DDoS attack is using the same DNS
server to perform a reflected attack. Then blocking the attack by IP address will also
drop a lot of normal traffic. Other features in the attacks packets are probably more
distinguishable from normal packets than just the IP address. Measures has been
done taking several contextual environments into account.

To sum up, the effectiveness of the system has been measured by using evalua-
tion metrics for three different factors:

• XDP filter limitations

• XDP filter accuracy

• XDP filter context

3.4 Concluding Remarks

This chapter describes how our own build DDoS mitigation has been implemented.
With the ability to automatically generate eBPF rules to mitigate DDoS attacks, the
second research question has been answered; How to automatically generate eBPF
rules for DDoS mitigation using DDoS attack signatures? In the first section 3.1 of
this chapter the requirements for the DDoS mitigation system of this study are set.
The requirements exist of four main requirements with sub-requirements. The first
main requirement specifies the use of eBPF and XDP and the second main require-
ment specifies the ability to generate network traffic filter rules. The last requirement
specifies that the system should be able to be used in a realistic environment, which
includes that the system should be able to be operated by a network operator. Then
in section 3.2 is shown how the different requirements have been implemented. The
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IOvisor’s BCC has been used to compile and load eBPF programs. BCC enables
the use of Python programs in user-space that are able to communicate with kernel-
space eBPF and/or XDP programs. A general XDP rule generation algorithm has
been made in order to generate XDP filter rules from DDoS attack fingerprints. This
rule generation algorithm includes the possibility for a network operator to alter
the rules. This way the network operator will always be in charge of what is hap-
pening inside his network. The data that has been used for this study merely exists
out of realistic network traffic, which means that the data comes from real scenarios.
Santanna’s DDoSDB [11] has been used for the DDoS attack fingerprints and DDoS
attack traces. The bigFlows [143] attack trace has been used to simulate normal traf-
fic in a network. Finally, section 3.3 explains how the created system has been tested
and what exactly has been measured. The system DDoS mitigation effectiveness has
been measured following several metrics. First of all the quantity of packets that are
filtered under different circumstances are measured. Furthermore, the limitations of
using an XDP filter are measured in terms of generation speed and rule size limits.
Finally, all results will then be discussed considering the context of a system. The
results on testing the build system will be given and discussed in the next chapter.
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Chapter 4

Results & Discussion

The previous chapter elaborates on how our own build DDoS attack mitigation system has
been implemented. The chapter specified what metrics were used to actually test the utility
and effectiveness of the system. The goal of this chapter is to find an answer on the last
research question; what is the effectiveness and the usability of the designed DDoS
mitigation system using DDoS attack signatures? As described in the previous chap-
ter the evaluation metrics are based on three factors. The limitations of system has been
measured, the accuracy has been measured and the context has been considered.

First in section 4.1, will discuss the limitations of the XDP filter. Further, the results
are given on how many and what kind of packets the XDP filter was able to filter accurately.
Then given all those results, in section 4.2 discusses how effective the XDP filter can be
under different circumstances. Different network properties can influence the effectiveness of
certain XDP filter rules. The section also discusses how useful the filter is in a real scenario
in a variable context.
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4.1 XDP filter Accuracy & Limitations

This section shows the results on testing the abilities of a XDP filter against the DDoS
attacks in our data-set. In order to be able to assess the value of the accuracy results
of the XDP filter, first the limitations of the XDP filter have been explored in sub-
section 4.1.1. Then, in subsection 4.1.2 shows the results and implications of having
overlap between attack traffic and normal traffic. Finally, subsection 4.1.3 shows the
accuracy results based on several different rule generation methods.

4.1.1 XDP filter limititations

One of the variables in a XDP program is the size of the maps. These maps reserve a
certain amount of memory to be used between kernel-space and user-space. To filter
on all values in a fingerprint, the size of a fingerprint determines how big the eBPF
maps should be. The more information a fingerprint contains, the more time it takes
to load eBPF maps of that are equal of size as the information in the fingerprint.
Table 4.1 shows the statistics of the fingerprint with the most information inside the
fingerprint.

TABLE 4.1: Statistics for fingerprint with most information.

Feature #
Source IP addresses 5409107
Total lengths 3
Header lengths 3
Destination ports 1
Source ports 65535
Flags 4
Window sizes 3
Urgent Pointers 1

Table 4.1 shows that in the worst case, the fingerprint contains 5409107 source IP
addresses, 65535 source ports and some extra values for the other features. It is a
TCP DDoS attack with in this case no deeper packet information after the TCP layer.
Note ’most information’ in this case means the amount of bytes and not the number
of values.

The influence of this size on the load speed of the program can be seen in Fig-
ure 4.1. It shows the curve for the size of an eBPF map plotted against the time it
takes to load the specific eBPF program including the map into the system mem-
ory. The storage of IP addresses needs 32-bit hashmaps and for a port value it needs
16-bit hashmaps. All-together this means that a memory storage for a 5500000 32-
bit hashmap, is the rounded up maximum size needed for the use of our dataset.
This means that 3.37 seconds is the maximum time needed to load an eBPF program
into memory. This is a reasonable time needed to mitigate a DDoS attack, especially
when considered that DDoS attacks can result in a denial of service of over hours.
In our tests the time needed to reserve the memory for the maps up to 4000 needed
a minimum time of 1.16 seconds.

The size of the rules inisde a XDP filter can be loaded in a reasonable time.
That is the main takeaway message of Figure 4.1, but note that this is the case for
the worst case fingerprint in the dataset used for this study. It is possible that higher
load times will be found for fingerprints outside the scope of this study.
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FIGURE 4.1: Load speeds for a single eBPF hashmap with 32bit en-
tries

Not only the amount of rules can form a limitation, but also the filter speed of
the filter can be a limitation. As we discussed in chapter 2, the speed advantage of
eBPF and XDP over other tools is one of the reasons we choose for eBPF and XDP
in our system. We tested if this advantage still holds when eBPF and XDP are used
with different filter rules. Tested is how many packet per second the kernel of our
set up is able to handle by the use of a tool developed by [145]. The tool is slightly
modified in a way that it is sending DNS packets containing 32 bytes of data. This
way the size of the packets is small enough to test the packet processing speed and
the packets can also be tested against a filter that filters on DNS query types. For
those tests four different scenario’s are tested. The first scenario tests the baseline for
one CPU with no filters at all. Then, a XDP and an Iptables filter were used filtering
on 5409107 different IP addresses. Those IP addresses come from the fingerprint
with the largest set of IP addresses. The last XDP filter, filters on the same set of
IP addresses, all UDP packet features and the DNS query type. Figure 4.2 shows
the results of those tests. It shows that the machine used in the setup is able to
process 1.06 million packets per second when no filter at all is used. It also shows
that with an Iptables filter on 5409107 IP addresses, the same CPU is able to process
0.39 million packets per second. With a XDP filter on the same set of IP addresses
the CPU is able to filter 0.77 million packets per second. Finally the third bar shows
that adding more checks on a few more features in the filter, doesn’t influence the
processing speed.
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FIGURE 4.2: Kernel packet processing speeds on a single CPU core
with different filters.

The results from Figure 4.2 say that processing a packets with a XDP filter is sig-
nificantly slower compared to having to filter at all. However, the same results show
that processing packets with a XDP filter is significantly faster compared to a Ipta-
bles filter. A XDP filter is able to faster process packets than an Iptables filter with
the same rule. Note that those processing speeds rates are not the dropping speeds.
Nevertheless, similar differences in rates can be expected when the packets are being
dropped, since the packets follow the same path through the filter. Another finding
on the results of Figure 4.2 says something about the impact on the processing speed
when the complexity of rules increase. The more features used inside the filter, the
higher the complexity of the rules inside the filter. The amount of different features
in the filter does not influence the processing speed of the filter. The amount of fin-
gerprint information in the filter has a bigger influence on the packet processing
speed than the complexity of the rules.

4.1.2 Overlap between attack and normal traffic

This subsection shows the results and implications of a scenario in which the feature
values of normal traffic and attack traffic overlap. One would expect that if the XDP
filter drop packets based on a value that occurs in both normal traffic and attack
traffic, the filter will also drop both kinds of traffic. This is an obvious implication of
filtering on values that have overlapping feature values. To prove this hypothesis,
the filter tested is an source IP address filter which blocks all the source IP addresses
that are given in the fingerprint of the attack. This feature has been chosen because it
is the first value in a network packets that is in a network packet. The normal traffic
has been artificially modified to have an overlap in the values of those IP source
addresses. This has been done under 5 different ratings, which are 0%, 25%, 50%,
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75% and 100% overlapping source IP addresses between the DDoS attack and the
normal traffic. Multiple overlapping percentages are linearly taken to prove that the
behaviour of the filter is as we would expect. Since there were no false negatives,
the false positive rates for all attacks are shown in Figure 4.3.
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FIGURE 4.3: XDP filter accuracy for all attacks, with a source IP ad-
dress filter

Figure 4.3 shows that the false positive rate of the filter perfectly matches the
rate of overlapping IP addresses. With 0% overlapping IP addresses the filter works
perfect, which means that it drops all the malicious packets and that all normal pack-
ets come through. With 100% overlapping IP addresses between normal and attack
traffic, the false positive rate is exactly 1.0. This number means that all packets are
dropped, including the normal the traffic. This result is unwanted in a realistic sit-
uation since the service that is protected by the filter will still be unreachable. The
decision on what an acceptable false positive rate is, will be decided by the network
operator. The results displayed in Figure 4.3 show that the filter is able to accurately
drop DDoS attack packets as long as the to drop values in the filter are not overlap-
ping with the normal traffic. The overlap of source IP addresses between normal and
DDoS attack traffic will depend on the context of the system. The same overlap per-
centages can occur when other features are taken into account, but the more deeper
in the packet, the more likely their might be some specific values that characterize
a certain DDoS attack. The character of a DDoS attack is that they come from a dis-
tributed network of different machines with all different IP addresses. This means
that it is more likely that an IP address will overlap with a normal traffic IP address.
The next test wills be done considering that an operator wants to white-list the IP
source feature, because of the big overlap between normal and attack traffic. The
next subsections will test filters with more in depth packet filters.
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4.1.3 One ore more feature(s) filter

There are two different methods specified in the previous chapter to select a feature
for the filter. The first method picks a feature based on the amount of different values
it has in the fingerprint. The second method picks a feature based on the Adjusted
Mutual Information Score (AMI) score of each feature. The AMI score helps by de-
termining which features should be selected for the filter. A feature with a higher
AMI score is more likely to distinguish the attack from normal traffic. In Table 4.2,
for each feature has been given how many times it is the highest AMI score for an
certain attack.

TABLE 4.2: Number of times a feature has the highest AMI score for
an UDP attack

Feature Number of UDP attacks
packet length 2
UDP source port 144
UDP destination port 13
UDP payload length 94
Total 253

As can be seen in Table 4.2 the UDP source port has most often die highest AMI
score, with 144 out of 253. This number can be explained due to the fact that UDP
are often reflected. As described in chapter 2, the packets from those attacks will
come from the same source port of the machine that reflects the attack packets. Fur-
thermore, the destination port feature has significantly less times the highest score
than the source port. Note that, all UDP attacks are considered here and therefore
only possible features have been taken up until OSI layer 4.

The accuracy of the filter has been tested by going through different scenario
tests. The total number of packets that were going trough the filter each test are
3164716 packets. Half of them were labeled as DDoS attack packets and half of them
were labeled as normal. The setup has been tested without any filter and all the
3164716 packets came trough for each DDoS attack. For all 253 UDP attacks has
been tested what the XDP filter accuracy is by filtering on different feature sets. For
each XDP filter, each attack has repeatedly been replayed until 1582358 packets were
send. In the meanwhile also the normal traffic has been replayed twice with a total
of 1582358 normal packets. By analysing the packets that were received behind the
XDP filter, it was possible determine the accuracy and false positive rate for that
specific setting. Since there were no false negatives, the results are presented as false
positives. Note that each attack has been tested four times under for different XDP
filters. The results are given in Figure 4.4.
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FIGURE 4.4: False positve rate for each UDP attack sorted on the
number of false positives

Figure 4.4 shows the false positive rates of a filter with the fewest feature values
in the fingerprint and the false positive rate of a filter with the highest AMI score
for each individual test. The third test has been done with filtering on those both
features combined. The latter test shows a lower or equal false positive rate for each
run that has been done. Finally when all UDP features are considered an accuracy
of 100% has been shown. Taking all features values inside the UDP fingerprints is
enough to drop all DDoS packets with zero false positives. Considered has to be
that this result has been achieved by using the bigFlows dataset for normal traffic,
which means that this result cannot necessarily be achieved in every network.

In the figure, the ’AMI score’ bars shows the highest peaks, with some attacks
that resulted in a false positive score of 0.16. This number means that the filter
dropped 16% of the normal traffic was dropped in the worst case scenario. This
means that 84% of the normal traffic is able to reach the network behind the filter.
Taking into account that all DDoS traffic has been dropped, this means that this is a
good score considering the potential impact of a DDoS attack can be that 0% of the
normal traffic reaches the network. This score was found when the filter was tested
against one out of the 253 UDP DDoS attacks, which means that is was the worst
case scenario of all the attacks considered in this study. The ’fewest values’ bars
show a maximum false positive rate of 0.013, which is lower than the peak of the
’AMI score’ bars. However, the ’fewest values’ bars shows that the there are more
attacks that cause a false positive rate above the 0.01 compared to the ’AMI score’
bar.

Table 4.3 shows how many times a certain TCP feature has the highest AMI score
for a certain attack. Again all TCP attack are considered with features up until OSI
level 4.



46 Chapter 4. Results & Discussion

TABLE 4.3: Number of times a feature has the highest AMI score for
an TCP attack

Feature Number of TCP attacks
packet length 0
TCP source port 0
TCP destination port 1
TCP header length 30
TCP flags 103
TCP window size 2
TCP urgent pointer 142
Total 278

Table 4.3 shows that the packet length feature and the TCP source port feature
never have the highest AMI score in our dataset. The packet length of a TCP packet
without any deeper layers do have in most cases have the same length, whether the
packet is from a normal packet or attack packet. Further, with 141 out of the 278 total
TCP attacks, the TCP urgent pointer most often has the highest AMI score. Normally
the urgent pointer specifies where the urgent data ends in the TCP stream. This is
normally used to specify that this data should directly be delivered to the applica-
tion instead of being queued in a data buffer. For DDoS attacks this can be used
to force packets to be processed. However the TCP urgent pointer flag is often not
set in the packets, which makes the urgent pointer field itself useless. Nonetheless,
the value in this field is something that can identify DDoS attacks in our dataset.
After the urgent pointer, the TCP flags are secondly most often the feature with the
highest AMI score. Tests have been done with different selected filters as shown in
Figure 4.5. The tests are done in the same way as done for the UDP attacks.
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FIGURE 4.5: False positve rate for each TCP attack sorted on the num-
ber of false positives
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Figure 4.5 shows the results of four different tests. In the first test the filter fil-
ters on the feature with the highest AMI score, in the second test the filter has been
applied on the feature with the fewest elements in the fingerprint. Furthermore, the
test shows the results when the filter drops packets based on values in both features
and also a test with three different features; 2 fewest value features and a feature
with the highest AMI score. Finally the results for a filter on all features. For the
highest AMI scores feature can be seen that 60 TCP runs have no false positives at
all and 110 of the tests have a false positive rate of 1. The ’fewest values’ filter shows
less false positives and even less false positives are reported with a filter that filters
on both the feature with the highest AMI score and the feature with the fewest val-
ues in the fingerprint. The fourth type of bars with three features shows that in 5 out
of the 278 attack there are just a few false positives at all. The attack with the highest
false positive rate had a false positive rate of 0.01. This is a significant improvement
over the previous tests. Lastly, when the filter is used on all TCP features, without
the IP address, there were no false positives. A 100% accuracy has been reached
when all TCP features in the fingerprint are considered in the XDP filter. Note that
this under the circumstances used in this study. The bigFlows dataset considered as
normal traffic might form a bias.

In the comparison between the results of TCP attacks and UDP attacks, it shows
that the UDP filter shows better results when one or two features are taken to gener-
ate filter rules. TCP has more features to filter on so on beforehand it was expected
that it was more likely to find a feature that resulted in less false positives than on
filtering on UDP packets. This difference can partly be explained by the fact that the
fraction of TCP is higher in the normal dataset that has been used. Another reason is
that there are more attacks that contain deeper layers the UDP attack set. Therefore
the UDP payload length in the UDP header becomes in many cases a distinguishing
feature.

With eBPF and XDP it is even possible to filter on features in higher OSI levels.
For the 45 DNS DDoS attacks the AMI scores have also been calculated, with the
result that for all attack the question type of the DNS request always had the highest
score. All DDoS attacks made use of the ANY request type, whereas in the normal
traffic none of the DNS packets contained this type of request. The filter therefore
showed 0 false positives and 0 false negatives. A 100% accuracy has been reached
when just one deep layer feature has been used in the filter. The ability of eBPF
and XDP to filter on deep layer packet features, has made this result possible. Note,
that this result is true for this special case, by filtering DNS packets in a specific
dataset. Result might differ when other protocols, other attacks or other normal
traffic is used.

The results shown in this subsection might be sufficient to mitigate a DDoS at-
tack. The results are all produced on two different feature selection methods, with
the ’fewest values’ method and the ’AMI score’ method. Some of the results show
that all packets of the DDoS attack are dropped and that there are certain percent-
ages of falsely dropped packets. A potential problem for the network operator with
these methods used, is that many values are used in the filter. This means that there
is not much space to remove values from the filter to be able to reduce the false
positives. For example if a feature is chosen based on the least values, there are per
definition not many values the filter. If the filter contains just one value, than the net-
work operator has no possibilities to whitelist any values. Furthermore, if there is a
critical service between one the false positives, a the network operator might want
to white-list specific values, with the risk of being vulnerable for the DDoS attack
again. The next section discusses the operating choices of a network operator under
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different scenarios.

4.2 The usability of the filter

The built system for this study is open-source and can be found online on github
[137]. Combining the system with DDoS fingerprints, it can be used by a network
operator to defend his network against DDoS attacks. The effectiveness of certain
rules to drop DDoS attack packets heavily depends on the context of the filter. Fur-
thermore, the applied rules in the system have a potential impact on the system of
the network operator. The effectiveness of a rule and the impact of a rule depend
on the size of the network, the place of the network and what applications are used
on the network. In order to make sure that a network operator is able to mitigate
a DDoS attack without any further complications, he needs to be able to check the
impact of certain rule on the network. As a network operator then has to decide how
many false positives and how many false negatives he allows in his filter. How a net-
work operator can use the system to obtain those those numbers has been discussed
in subsection 4.2.1. The less features used in the XDP filter, the faster the network
operator is able to deploy the rules, but the probability on false positives increases. A
second possibility a network operator has, is choosing to white-list certain specific
values from a feature. The advantage of this is that specific false positives can be
targeted to make sure that specific normal traffic will not be dropped. Finding the
optimal balance between false positives, false negatives and mitigating the DDoS
attack has been discussed in subsection 4.2.2.

This study has been focused on the ability of XDP to drop packets with a high
accuracy. Other studies already proved that XDP is able to drop packets on high
speeds. This study shows that this speed advantage is still there if XDP rules are ap-
plied. However, those test were done with minimum sized artificially made packets
to be able to fully stress the CPU of the machine in the setup. This was necessary
because of the 1 Gbps network link in the setup. Future studies should measure the
impact of the XDP rules on the dropping speeds with a higher speed network link
and real DDoS attacks.

4.2.1 Determining the performance

In order to make sure that a DDoS attack gets mitigated and that there are no false
positives, a network operator can act based on what is happening inside the net-
work. Whenever a XDP filter has been applied against an incoming DDoS attack,
the network operator can see how the filter performs. The first step for a network
operator should be to map all bottlenecks in his network. He should know what
the maximum size of incoming traffic is before a denial of service occurs, in terms of
data size and amount of packets. As stated the detection a DDoS attack itself should
be performed by the anomaly detection part of the system which is not part of this
study. One of the simplest anomaly detection method could be to monitor the in-
coming traffic rate for example. This rate should also be the first step of a network
operator that wants to check the performance of the filter. If the incoming traffic rate
is the same as before applying the filter, it could mean that the DDoS attack is 100%
accurately mitigated, the DDoS attack already has been stopped or that the fraction
false positives is equal to the fraction of false negatives. If the incoming traffic rate is
lower after applying the filter, it most certainly means that there are false positives.
Finally if the incoming traffic rate is higher than in a normal situation, nothing can
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be really concluded except that the attack traffic has most probably not fully been
filtered.

Comparing just the incoming traffic rates tells the network operator some infor-
mation, but not everything he needs to know. That is why the built system gives
some information about the dropped packets. The drop information that the sys-
tem gives is two-fold, the amount of packets that have been dropped and a sample
of the dropped packets. With this information the network operator is able to deter-
mine the false positives and false negatives of the applied filter. The traffic that has
not been dropped should contain only normal traffic, but can be check on possible
false negatives by comparing this traffic to the fingerprint of the attack. This is how-
ever only relevant if the DDoS is not mitigated yet. As long as the DDoS has been
mitigated, the network operator can allow some false negatives. The false negatives
can be determined by analysing the dropped packets sample. As the results show,
a DDoS attack packet can be distinguished from a normal packet by comparing all
features of the packets against the attack fingerprint.

4.2.2 DDoS attack scenarios

The setup that has been tested in this study made some assumptions on the context
of the system. First of all, as shown in Figure 3.1 of the previous the chapter, the
build system is considered to be part of a larger system. Ideally the overall system
should contain an anomaly detection part which is able to detect an incoming attack
and also able to match it against a certain DDoS attack fingerprint. This seems to be
an essential part of the system, but doesn’t mean that the system built for this study
cannot operate on itself. The DDoSDB platform used for this study contains an open
database which enables the sharing of DDoS attacks between network operators.
With the system build for this study, XDP filters can be applied with any DDoS
attack fingerprint in order to mitigate that specific attack. A simple DDoS detection
system based on the incoming traffic rate can already be sufficient for the network
operator to be notified about a DDoS attack.

A second assumption made on the context of the build system is that there are
AMI scores inside the fingerprints. Those AMI scores define which features to se-
lection in the AMI score filters. The AMI scores were obtained by comparing the
normal network traffic against the DDoS attack traffic. Therefore, the training data
in this study was the same set of data as the testing data, which means that the AMI
scores are biased in this study. Ideally those AMI scores should be generated by each
individual network operator based on their own ’normal traffic’ sample. Network
operators are open to share their findings on those AMI scores. With all the findings
of network operators together, generic AMI features can be found for each attack. If
those commonly found AMI features are shared via the fingerprints as well, a net-
work operator can choose to rely on those values instead of doing his own analysis.

The results found in this study heavily depends on the normal network traffic
dataset used. This dataset defines the context of the system, which of course can
differ in other realistic networks. Also the impact of false negatives depends on
the resources of the system and the strength of the DDoS attack. The filter should
filter just enough packets to not cause an exhaustion of resources behind the filter.
This means that a DDoS attack already is mitigated if there is no denial of service
anymore, but there can still be many false negatives. As stated, the impact of a false
positive depends on the context of the system. Note that the false positive rates in
the results of the previous section are based on a 50/50 divided normal and attack
traffic. As we known from the second chapter, we know that this is not a realistic



50 Chapter 4. Results & Discussion

fraction. DDoS attacks usually have a bigger share in the incoming traffic size, this
means that the false positive rates should not be interpreted on itself, but relatively
to each other. The rates will in practice be lower than the found rates in this study.

As an example, in a first scenario it could be possible that a network operator
mitigates a DDoS attack by filtering on the source port of a packet. The fingerprint
contains only one value for the source port which is 53. The attack packets might
successfully dropped, but if there is a machine behind the filter that does DNS re-
quests it, the DNS replies will also be dropped because this the protocol that uses
this port. DNS in this case is common protocol which is used in many network all
over the world. Therefore, more features should be considered to filter the packets.

In another scenario, it might be possible that among all the functions inside the
network behind the filter is one specific function that is really critical. The false
positive rates might be really low, but if this one essential function does not work
anymore the network operator should decide to whitelist the values that cause this
function normally.

Lastly, it is also possible in a scenario that a DDoS is successfully mitigated by
a filter including a white-list and the system does not report any false positives or
false negatives. The network operator should stay aware, since there might be some
cases he want to add values to the white-list. This is because he might have forgot
something to add to the white-list.

4.3 Concluding Remarks

The goals of this chapter was to answer; what is the effectiveness and the usability
of the designed DDoS mitigation system using DDoS attack signatures? The an-
swer of this question has been found, considering that the open-source built system
is being operated by a network operator. Assuming that the DDoS attack finger-
prints are 100% accurate, a network operator is able to mitigate DDoS attacks using
the built system which uses eBPF and XDP. This chapter showed the accuracy of the
built system and how it should be operated by a network operator.

The beginning of this chapter showed that the rules inside the XDP do not show
any problematic limitations on the data used for this study. With a maximum of
3.37 seconds load speed, it is a reasonable time to load filter rules into an eBPF map.
Then, the section gave different results for different feature selection algorithms.
Furthermore, the packet processing speed while having rules in a XDP filter is faster
than, having the same rules in an Iptables filter. It showed that in case of filtering
UDP attacks, just a few attacks had a false positive rate of above 0.01 when just two
features were selected. The first feature was selected based on the AMI score and
the other one based on the amount values for that specific feature inside the finger-
print. To obtain the same false positive rate to filter TCP attack, a third feature was
needed. In case of deeper packet values, a 100% accuracy score had been reached.
However, in the second section those results were put, into a realistic perspective.
From the discussion can be concluded that the optimal settings heavily depend on
the context of the system. A network operator should always be the one who as-
sesses what settings are needed for his network. The conclusion on the performance
of eBPF and XDP is that it is able able to mitigate potential DDoS attacks with low
false positive rates and low false negative rates. Especially since it is possible to filter
packets based on deep packet features. However a network operator should always
be there to judge the impact of the applied rules and if necessary put certain values
in the white-list of the rule generator. This judgement can be done by the network
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operator by analysing the samples of dropped network traffic, which is provided by
the system. It can be concluded that with the built system as a tool and with accu-
rate DDoS attack fingerprints, a network operator is able to mitigate DDoS attacks
effectively.
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Chapter 5

Conclusion

The previous chapter gave answer to the last third research question. This chapter sums up
the conclusions on all research questions as stated in the introduction:

• RQ1: What methods currently exist that automatically update rules in a signature
based DDoS mitigation?

• RQ2: How to automatically generate eBPF rules for DDoS mitigation using DDoS
attack signatures?

• RQ3: What is the effectiveness and the usability of the designed DDoS mitigation
system using DDoS attack signatures?

The answers on those questions provide new insights for the scientific world and on top
of that the answers can also help network operators to defend their systems against DDoS
attacks. Section 5.1 concludes on the contribution and impact of this study.
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Chapter 2 started on answering the first research question; What methods cur-
rently exist that automatically update rules in a signature based DDoS mitiga-
tion? Concluded is that the relatively new open-source tools eBPF and XDP have
some features that could overcome the limitations of other methods. These tools
can be deployed on a wide variety of devices and enable the possibility to collab-
orate with other applications via user-space. This collaboration can overcome the
limitation that signature-based mechanisms have, since it enables the possibility to
dynamically update filter rules, that are automatically generated by secondary pro-
gram. Furthermore, eBPF and XDP are able to fully inspect incoming packets at
a even higher processing rate than former network firewall methods. DDoS pro-
tection services (DPSs) are a popular way to outsource the defense against DDoS
attacks. Those DPSs use content delivery networks (CDNs) to be able to redirect
internet traffic, which can be used to mitigate DDoS attacks. Implementation details
on further methods are generally not public, but Cloudflare posts openly about their
successful method using eBPF and XDP.

With the ability of eBPF to communicate with all sorts of functions inside the
Linux kernel and user-space, it enables to possibility to create a dynamic and cus-
tomizable solution. The XDP hook inside the Linux kernel is able to process packets
on high speeds due to the fact that packets are filtered close to the NIC. Related
studies show that no studies use eBPF and XDP in order to automatically update
and generate rules with the use of attack signatures. Future study directions have
to include the limitations on eBPF and filtering algorithms that are used to match
packets against rules.

Chapter 3 describes how our own build DDoS mitigation has been implemented.
With the ability to automatically generate eBPF rules to mitigate DDoS attacks, the
second research question has been answered; How to automatically generate eBPF
rules for DDoS mitigation using DDoS attack signatures? In this chapter the re-
quirements for the DDoS mitigation system of this study are set. The requirements
exist of four main requirements with sub-requirements. The first main requirement
specifies the use of eBPF and XDP and the second main requirement specifies the
ability to generate network traffic filter rules. The last requirement specifies that the
system should be able to be used in a realistic environment, which includes that the
system should be able to be operated by a network operator. Then is shown how the
different requirements have been implemented. The IOvisor’s BCC has been used
to compile and load eBPF programs. BCC enables the use of Python programs in
user-space that are able to communicate with kernel-space eBPF and/or XDP pro-
grams. A general XDP rule generation algorithm has been made in order to generate
XDP filter rules from DDoS attack fingerprints. This rule generation algorithm in-
cludes the possibility for a network operator to alter the rules. This way the network
operator will always be in charge of what is happening inside his network. The
data that has been used for this study merely exists out of realistic network traffic,
which means that the data comes from real scenarios. Santanna’s DDoSDB [11] has
been used for the DDoS attack fingerprints and DDoS attack traces. The bigFlows
[143] attack trace has been used to simulate normal traffic in a network. Finally, the
chapter explains how the created system has been tested and what exactly has been
measured. The system DDoS mitigation effectiveness has been measured following
several metrics. First of all the quantity of packets that are filtered under different
circumstances are measured. Furthermore, the limitations of using an XDP filter are
measured in terms of generation speed and rule size limits.

The goal of chapter 4 was to answer; what is the effectiveness and the usability
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of the designed DDoS mitigation system using DDoS attack signatures? The an-
swer of this question has been found, considering that the open-source built system
is being operated by a network operator. Assuming that the DDoS attack finger-
prints are 100% accurate, a network operator is able to mitigate DDoS attacks using
the built system which uses eBPF and XDP. This chapter showed the accuracy of the
built system and how it should be operated by a network operator.

The beginning of this chapter showed that the rules inside the XDP do not show
any problematic limitations on the data used for this study. With a maximum of
3.37 seconds load speed, it is a reasonable time to load filter rules into an eBPF map.
Furthermore, the packet processing speed while having rules in a XDP filter is faster
than, having the same rules in an Iptables filter. Then, the next section gave different
results for different feature selection algorithms. It showed that in case of filtering
UDP attacks, just a few attacks had a false positive rate of above 0.01 when just two
features were selected. The first feature was selected based on the AMI score and the
other one based on the amount values for that specific feature inside the fingerprint.
To obtain the same false positive rate to filter TCP attack, a third feature was needed.
In case of deeper packet values, a 100% accuracy score had been reached. However,
in the second section those results were put, into a realistic perspective. From the
discussion can be concluded that the optimal settings heavily depend on the context
of the system. A network operator should always be the one who assesses what set-
tings are needed for his network. The conclusion on the performance of eBPF and
XDP is that it is able able to mitigate potential DDoS attacks with low false posi-
tive rates and low false negative rates. Especially since it is possible to filter packets
based on deep packet features. However a network operator should always be there
to judge the impact of the applied rules and if necessary put certain values in the
white-list of the rule generator. This judgement can be done by the network opera-
tor by analysing the samples of dropped network traffic, which is provided by the
system. The built system is publically available on github [137]. It can be concluded
that with the built system as a tool and with accurate DDoS attack fingerprints, a
network operator is able to mitigate DDoS attacks effectively.

5.1 Contribution

As stated in the introduction, studies about the mitigation of DDoS attacks are not
new. DDoS attacks already exists since the early 2000’s. The eBPF and XDP as tools
to migitate DDoS attacks have been studied since 2016, which means that they are
relatively new tools. Those studies only showed that eBPF and XDP are in potential
very effective tools to mitigate DDoS attacks in terms of speed. However, no study
up on so far showed how those tools can actually be used to mitigate DDoS attacks.
No study used real DDoS attack in combination with the tools XDP and eBPF. This
study shows how to create filter rules in order to mitigate DDoS attacks for eBPF and
XDP. This study shows that a XDP filter with real applied rules is faster than Iptables,
which is a new finding the scientific world. This study shows also the potential
accuracy of the filter which can be up to 100% when deep layer packets features
are considered. Future studies can build upon those findings, for example on the
optimization of the rules or testing the system in a real network setup. This study
can also be used in practice for network operators. This study offers a open-source
system that can be used as a tool to mitigate DDoS attacks in real network scenario’s.
The system offers similar techniques that are used by big DDoS protection services,
such as Cloudflare. However cloudflare, can use of the abilities of a big Content
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Delivery Network (CDN) in the fight against DDoS attacks. This can not directly be
compared to the abilities of the system created for this study.
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Appendix A

Setup specifications

iperf3 -b 1000M -u -c 10.0.0.50
Connecting to host 10.0.0.50, port 5201
local 10.0.0.41 port 48591 connected to 10.0.0.50 port 5201
Interval Transfer Bandwidth Total Datagrams
0.00-1.00 sec 102 MBytes 855 Mbits/sec 13052
1.00-2.00 sec 113 MBytes 950 Mbits/sec 14501
2.00-3.00 sec 113 MBytes 950 Mbits/sec 14499
3.00-4.00 sec 113 MBytes 950 Mbits/sec 14504
4.00-5.00 sec 113 MBytes 950 Mbits/sec 14497
5.00-6.00 sec 113 MBytes 950 Mbits/sec 14496
6.00-7.00 sec 113 MBytes 950 Mbits/sec 14496
7.00-8.00 sec 113 MBytes 950 Mbits/sec 14497
8.00-9.00 sec 113 MBytes 950 Mbits/sec 14496
9.00-10.00 sec 113 MBytes 950 Mbits/sec 14503
- - - - - - - - - - - - - - - - - - - - - - - - -
Interval Transfer Bandwidth Jitter Lost/Total Datagrams
0.00-10.00 sec 1.10 GBytes 941 Mbits/sec 0.082 ms 0/143540 (0Sent 143540 datagrams
iperf Done.
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