
Effects of Inserting Domain Vocabulary and
Fine-tuning BERT for German Legal Language

Master’s Thesis
Faculty of Electrical Engineering, Mathematics and Computer Science

Masters in Interaction Technology
Specialization in Intelligent Systems

University of Twente

submitted by
Chin Man Yeung Tai

Supervisors: Mariët Theune
Christin Seifert

External Supervisor (deepset): Timo Möller

November 26, 2019



Abstract

We explore in this study the effects of domain adaptation in NLP using the state-of-the-art
pre-trained language model BERT. Using its German pre-trained version and a dataset from
OpenLegalData containing over 100,000 German court decisions, we fine-tuned the language
model and inserted legal domain vocabulary to create a German Legal BERT model. We eval-
uate the performance of this model on downstream tasks including classification, regression
and similarity. For each task, we compare simple yet robust machine learning methods such as
TFIDF and FastText against different BERT models, mainly the Multilingual BERT, the Ger-
man BERT and our fine-tuned German Legal BERT. For the classification task, the reported
results reveal that all models were equally performant. For the regression task, our German
Legal BERT model was able to slightly improve over FastText and the other BERT models
but it is still considerably outperformed by TFIDF. In a within-subject study (N=16), we asked
subjects to evaluate the relevancy of documents retrieved by similarity compared to a reference
case law. Our findings indicate that the German Legal BERT, to a small degree, was able to
capture better legal information for comparison. We observed that further fine-tuning a BERT
model in the legal domain when the pre-trained language model already included legal data
yields marginal gains in performance.
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1 Introduction

Language is the scaffold of our minds. We build our thoughts through language and it condi-
tions how we experience and interact with the world. However, the social nature of the human
being makes us dependent on each other for our most crucial needs. In order to achieve fluent
interaction, natural language is the principal communication tool to express our intents and
expectations. From its primitive form including vocal and body cues to digital text represen-
tations, language has enabled but also evolved together with the technological progress.

Natural Language Processing (NLP) is the discipline within the field of Artificial Intelligence
(AI) that intends to equip machines with the same comprehension capability of natural lan-

guage as humans do. This field has the goal of extracting knowledge from a text corpus and
processing it for a wide array of tasks that provide valuable insights on the analyzed data.
Commonly, computers are well suited to process formal language. This entails structured
data, organized rules and commands without ambiguity. Examples of such are programming
languages or mathematical expressions.

Natural language comes with its own set of challenges. Not only the content is unstructured,
but the language itself is ambiguous and inconsistent. Metaphors, polysemy, rhetoric such as
sarcasm or irony and a vast collection of ambiguities are even hard to grasp for humans when
reading. These nuances and sources of difficulties to proper understanding are exacerbated
by the variety of national languages (English, German, Dutch, etc.). At the same time, the
technical domains where it is being used (scientific, administrative, legal language to name
a few) play an essential role defining the meaning of the words. Finally, the context and the
implied information from world knowledge are important to the correct interpretation. So,
how does NLP deal with these barriers?

Traditionally, methods employed by NLP practitioners have been based on complex sets of
hand-written rules. The design and implementation of rules that try to model the complexity
of a language needed to take into account all the linguistic elements and nuances. Needless
to say, these systems are hard to implement, maintain, scale and transfer. They are generally
not flexible enough as they cannot be extended to unknown words and infer their lexical na-
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Introduction

ture. The linguist Noam Chomsky gave another excellent example of the challenge with his
sentence: "Colorless green ideas sleep furiously." [10]. Despite of the correct syntax, the sen-
tence is incoherent due to the inherent properties of the entities and their possible attributes.
Moreover, considering language as an ever evolving instrument that mutates with the time,
adapting these rules would be infeasible. Rule based systems were the norm until late 80s.
Then, research increasingly turned to machine learning and statistical methods.

The machine learning approaches have ever since been gaining traction. This is because of
their capability to produce probability based predictions that can reliably solve multiple tasks
and sub-tasks. These methods have attained remarkable results and have proven themselves
robust when extrapolated to new data. Another factor that pushed forward the trend is the
continuous progress of hardware performance. Deep neural networks are computationally
expensive and it is only with the nowadays wide availability of GPUs that the processing
power meets the required demand.

1.1 Motivation

A New Milestone in NLP
In the late 2018, the research community in Artificial Intelligence saw a significant advance in
the development of deep learning based NLP techniques. This is due to the publication of the
paper “BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing” by the Google AI team [18]. As the title suggests, the work takes a twist on the recent
Transformer architecture [71] which is solely based on the attention mechanism and defines a
novel type of deep neural network arrangement. Their bidirectional learning approach man-
aged to achieve unprecedented performance and pushed the state-of-the-art in 11 downstream
tasks such as classification, question-answering, language inference among others. Followed
by the open sourcing of their model, academics working with deep learning methods for NLP
[67, 75, 44] were able to reproduce such results, as well as fine-tuning the model for their own
research tasks.

BERT is an extremely large neural network model pre-trained over a 3.3 billion words English
corpus extracted from Wikipedia and the BookCorpus [78] as training dataset. The model has
been influenced by the new movement in NLP initiated by ELMo [50] and ULMFiT [26], that
is transfer learning. The main idea of this technique is to allow the reuse of existing deep
learning models that have been trained from scratch, saving costly computation power by
adapting them across different domains, languages and/or tasks [60]. Research data scientist
at Deepmind Sebastian Ruder, compares the impact of BERT for the NLP community with

2



1.2 Why German?

the acceleration that pre-trained models for images ImageNet brought to the computer vision
field1.

Transfer learning in the industry
For businesses specialized in providing technical solutions based in text mining, the intro-
duction of transfer learning in NLP represents a major paradigm shift in the development
and training of deep learning models for NLP. Deepset GmbH, the machine learning con-
sultancy that supports this current thesis, is highly interested in evaluating the viability and
cost-opportunity derived from this approach. Transfer learning and, in particular, domain
adaptation would in theory reduce drastically the time required for producing a new model.
With the means of adapting a general model to different industry domains in a time and cost
optimized manner, transfer learning would reshape the way deep learning solutions are deliv-
ered to clients.

1.2 Why German?

Since deepset is based in Berlin, German is a language of interest because of their portfolio of
clients. If we consider the linguistic diversity on the Internet, German has been estimated to be
the third most common online language after English and Russian2. Despite of this, German
would represent, in relative value, just 5.9% of the global content. According to W3Techs,
this is almost 10 times less than English, which is the international vehicular language sitting
in the first position covering 54% of all online content.

The situation is analog in the field of NLP research, primarily due to the fact that German cor-
pora collections suitable for NLP are far less abundant than in English. Secondly, the Internet
has become one of the main sources of data for many studies because of its accessibility as
well as its exponentially increasing volume. Additionally, English being the lingua franca in
academia, the most renowned benchmarks for NLP tasks are, therefore, also aimed to evaluate
language models and tasks using text corpora in English. German, despite of being wide-
spread, can be considered a relatively low resource language in task-specific datasets and this
turns it into an ideal candidate for the application of transfer learning.

1http://ruder.io/nlp-imagenet/
2https://w3techs.com/technologies/overview/content_language/all
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1.3 Law and NLP

Numerous disciplines generate an extremely high volume of natural language content, but the
ones belonging to humanities are definitely the most prominent. From the fields dealing with
human culture and society, law and politics are outstanding in complexity. They constitute a
great challenge and are therefore a good choices as domains for knowledge extraction. Bring-
ing insight and structure to data that is otherwise highly verbose and contentious is one of the
main goals of NLP. This motivated the choice of the legal domain for conducting the current
research using the latest NLP models.

Following an interview with Tom Brägelmann3, lawyer at BBL Bernau Brosloff, we are going
to describe in this section the insights about the organization of the German legal system and
its entities, the characteristics that mark a difference compared to other legal systems, the
current situation of the workforce in law, the available data that could be used for NLP in
the legal field and how all these factors represent a great opportunity and motivation for the
current research.

German Jurisdiction
In the German legal system, the comprehensive set of legal codes is divided in two major
categories: the Public and the Civil law [20]. The Public law comprises four different types
of law: the Constitutional, the Administrative, the Administrative civil and the Criminal law.
These codes dictate the relationship between a private person and an official entity or between
two official entities. On the other hand, the laws that rule the relationship between two private
persons are filed under Civil law or also known as Private law. Then, the organization of
the German judiciary structure is composed of seven different kinds of courts: Constitutional
courts, Ordinary courts, consisting of civil and penal courts, Social courts, Administration
courts, Financial courts and Labor courts.

Subjected to centuries of updates to societal changes and influences from other European legal
systems, the German justice presents many unique traits. One particular feature that distin-
guishes the German legal system from the Anglo-Saxon one is, for example, the active role
and participation of the judge in the investigation of a case, instead of acting as a mere referee
judging the arguments provided by the two opposing parties in a litigation. Another important
trait is the importance of law cases. In Germany, there is, in theory, no system of binding
precedents, the law cases are therefore referenced for persuasion as an alternative to strictly
applying a previous principle. This proceeding fits the decision to each specific case and
avoids the generalization of a previous court decision that might, in fact, be erroneous.

3https://www.bbl-law.de/de/rechtsanwaelte/tom-braegelmann-llm/
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1.4 Research question

Overview on the German legal job market
After the financial crisis of 2008, the job market for lawyers in Germany was over-saturated
as demand dropped drastically [72]. Now, more than ten years later, a decline in the training
of new law practitioners is currently being registered, but the situation turned over and this
decrease happens in a historical moment when there is actually an increasing demand for
lawyers4. Germany was among the first European economies to recover from the crisis and
re-enter the growth phase. This societal welfare has many consequences and one of them is
the increasing capacity for the population to commit time and money to bringing a case to
court.

Legal Tech in Germany
During the past years, the technology industry took a great interest in the so-called Legal Tech
[14], a field where technology such as Machine Learning and NLP would provide value by
assisting in the common tasks that are carried out by lawyers and judges. Machine Learning
requires a considerable amount of data to train and be able to output results with accuracy.
However, due to confidentiality and privacy issues, legal text corpora such as court decisions
and decrees need the consent of the judge to be openly published. This heavily impacts the
amount of publicly available documents. The lack of digitization in this field also limits the
accessibility of legal documents. Fortunately, projects from the Open Data movement that
are concerned about data transparency, with the support of the Open Knowledge Foundation
resulted in open legal databases such as OffeneGesetze and Open Legal Data5. These sites
and other governmental portals are precious sources of labeled data that can be used to train
models to carry out relevant text mining for stakeholders in the legal context.

1.4 Research question

Inspired by these latest developments, the goal of this research project consists in determining
whether transfer learning, domain adaptation in particular, is a promising technique ready to be
adopted by NLP professionals or not. The chosen method to evaluate this is by measuring the
effects of inserting domain vocabulary and fine-tuning of a pre-trained model on downstream
tasks. The current language domain being considered is the legal field in German. As BERT
has been pre-trained using Wikipedia, a multilingual model “BERTBase, Multilingual Cased”
supporting 104 languages is available. Nonetheless, a multilingual model presents possible

4https://www.faz.net/aktuell/wirtschaft/recht-steuern/
juristen-erstmals-seit-jahrzehnten-weniger-anwaelte-15038068.html

5http://openlegaldata.io/
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shortcomings in performance since the number of articles on Wikipedia varies greatly per
language. We will therefore operate with our own BERT model pre-trained in German to
ensure more robust representations and avoid interference from other languages.

The configuration of different types of laws and courts in Germany is an opportunity for the
implementation of several downstream tasks. For example, a classifier: given an extract from
a court resolution, the model should be able to classify to which court the decision belongs
to. A regression task to predict the litigation cost and amount in dispute is equally viable. A
recommendation system of related cases through similarity analysis would be a useful solution
for lawyers to research material that could be cited as an argument for their case.

The project aims to answer the main research question:

“What are the effects of domain adaptation in the performance of a pre-trained German
BERT model on German legal downstream tasks?”.

This main question can be subsequently divided into sub-questions to help us underpin the
different aspects that leads to a complete and thorough answer:

1. What are the requirements for domain adaptation using BERT as a model?

2. How does the vocabulary impact the domain adaptation of the model?

3. What improvements can fine-tuning the language model yield for the selected tasks?

1.5 Thesis Outline

The remainder of the thesis is organized as follows: Chapter 2 reviews the background the-
ories that set the foundational knowledge for this research. Chapter 3 analyses the existing
related work. Chapter 4 gives an overview of the FARM framework for NLP transfer learning
followed by the methodology in Chapter 5. The experiments implemented using FARM and
their results are presented in Chapter 6. Finally, the thesis closes with the conclusion and a
discussion on further work in Chapter 7.
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2 Background

This chapter provides the essential background knowledge for the subsequent chapters. We
introduce basic ML concepts. Then, we focus on neural networks which are the specific type
of ML models used in this thesis. Finally, the BERT model and the transfer learning tech-
nique are fully reviewed for the understanding of the ensuing methodology. The latest deep
learning methods incorporated into BERT such as transformers, self-attention mechanisms,
are presented to the reader.

2.1 Machine Learning

Machine Learning is a term coined in the late 50’s by Arthur Samuel [61], a researcher in
the field of Artificial Intelligence, to describe the techniques based in statistical models and
algorithms to learn from sample data. When correctly trained, the mathematical model is
capable of inferring classification, prediction or decision when given new data that doesn’t
belong to the training data. From these outputs, higher level tasks, for example anomaly
detection, can be derived. The learning of such systems can be mainly conducted in three
different ways, supervised and unsupervised learning [6] and reinforcement learning. We
will focus on the first two paradigms. The spectrum is far from binary and there are numerous
methods that sit in between these two classes of Machine Learning. In our case, the alternative
called self-supervised learning will be specially interesting for the current research.

Supervised learning
The supervised learning approach requires the training data to be labeled and a variety of ma-
chine learning algorithms are based on this type of training: Linear Regression, Logistic Re-
gression, Naive Bayes, Decision Trees, K-Nearest Neighbors and Support Vector Machines, to
name a few, but they are mainly aimed at regression and classification. The working principle
of these algorithms is the learning of a mapping function:

y = f(x) (2.1)
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For each input x, an output y is mapped. The annotated data (labeled data) allows the algo-
rithms to derive and optimize the parameters of the mapping function by minimizing the cost
function which expresses the total prediction error of the learning system.

Unsupervised learning
On the other hand, unsupervised learning produces models that are able to extract the underly-
ing structure of data without the need of labeling. Generally, considerable time is saved by not
having to annotate the input for the algorithm to learn. This kind of algorithm learns without
a corresponding target of the output with the help of labels and is therefore more relevant for
different purposes than supervised learning. The algorithms under this category are generally
aimed towards clustering, density estimation and projections.

Self-supervised learning
A recent form of unsupervised learning that is catching the research community’s interest is
the self-supervised variant [53]. This method overcomes one of the major obstacles in ma-
chine learning, which is the need for large amounts of labeled data. Self-supervised learning
leverages unlabeled data by systematically holding back existing information, thus providing
surrogate supervision and the model is tasked to train on it. Different patterns of data con-
cealing allow the training of a model on multiple sub-tasks that would comprise together the
target task.

2.1.1 Loss Functions

The loss function is a method to assess how well a learning system models the data by quan-
tifying the resulting error. It basically outputs the difference between the model’s predictions
and the ground truth, also known as loss. Hence, a lower loss is always desirable as it corre-
lates to higher performance of the algorithm. There are multiple loss functions and selecting
the right one is important for the correct evaluation of a model. Cost functions are loss func-
tions applied to a set of observations then averaged across them, although these two different
terms are often interchangeable. When used for maximization or minimization problems, they
can also be referred as Objective functions.

Considering y the target value, ŷ the predicted value, a sample of size n, examples of common
cost functions for regression include:

L1 Loss or Mean Absolute Error:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.2)
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L2 Loss or Mean Squared Error:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.3)

These are two simple ways of quantifying the total distance from the target and predicted
value.

For classification tasks (CLS), the functions above do not capture the probabilities of the
classes, we need therefore cost functions such as the Logistic Loss, Hinge Loss or Kullback

Leibler Divergence Loss. Here, we give the example of Logistic Loss, also known as Cross-

Entropy Loss, for binary and multi-class classification, where p is the predicted probability of
a class label c, M is the number of classes, o is a given observation and y is a binary value that
indicates if a class label c is the correct classification for an observation o:

Binary Cross-Entropy Loss:

CrossEntropyLoss = −(ylog(p) + (1− y)log(1− p)) (2.4)

Multilabel Cross-Entropy Loss:

MultiCrossEntropyLoss = −
M∑
c=1

yo,clog(po,c) (2.5)

These loss functions are key to the training of supervised machine learning models. In con-
junction with an optimization algorithm, a procedure that we will introduce in the next sub-
section, they allow the rectification of the parameters of the original mapping function. This
leads to the gradual increment of the model’s quality after each batch of processed data.

2.1.2 Optimization Algorithms

Optimization in mathematics is the broad family of methods concerning the selection of the
best element from a set considering a defined criterion. In Machine Learning, the optimization
generally focuses on the minimization of the loss though iterative evaluations using the cost
function. One of the simplest and widely used algorithms is the Gradient Descent.

Gradient Descent
The gradient descent algorithm [59] is a iterative method that uses the gradient or derivative
of the cost function at a given point to determine the next step to consider in order to reach
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a minimum. The original algorithm is also known as Batch gradient descent, however this
version is deemed inefficient due to the calculation of gradients for the whole dataset in order
to determine just one update. A formal definition of the algorithm can be expressed as:

θ = θ − η · ∇θJ(θ) (2.6)

where J is the objective function to minimize, θ the parameters to update and η denotes the
learning rate, a hyper parameter that regulates the size of the update step. The equation
expresses the decrease of the parameters θ with regard to the gradient∇θJ(θ) in proportion to
the established learning rate η.

Stochastic Gradient Descent
Numerous optimizations of the Gradient Descent has been developed. For Machine Learning
applications, the Stochastic Gradient Descent (SGD) solves the deficiencies of the Batch Gra-
dient Descent by performing updates for each training example. Additionally, it allows online

updates, that are performed freely with new examples without revisiting the whole dataset.
When applying the correct learning rate, the convergence to a global or local minimum de-
pending on the convexity of the parameters θ can match the original gradient descent and even
avoid local minima thanks to its more granular or noisy update.

The main difference in the formal expression of SGD lies in the training example x(i) and the
corresponding label y(i):

θ = θ − η · ∇θJ(θ;x
(i); y(i)) (2.7)

Mini-batch Gradient Descent
The Mini-batch Gradient Descent is a variation that sits between the Batch and Stochastic
Gradient Descent. It updates the parameters not after each training example, but after a batch
of examples of a given size, hence the name of this gradient descent. This method proves itself
less computationally intensive than SGD due to grouped updates but still preserves the main
advantages of the stochastic variant. However, this introduces a new hyper-parameter to be
tuned which is the batch size n:

θ = θ − η · ∇θJ(θ;x
(i:i+n); y(i:i+n)) (2.8)

The role of the learning rate and its importance to the proper convergence for both Batch
and Stochastic Gradient Descent can be seen in Figure 2.1, where 4 different scenarios are
presented concerning the relation of η and an arbitrary constant C that represents the optimal
convergence condition of a given gradient.
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Figure 2.1: Gradient Descent Convergences (Taken from [36])

Adam Optimization
As shown in the scenario (b) and (c) of Figure 2.1, using a fixed learning rate requires many
steps before converging to a minimum, this number may be unacceptably large if the learn-
ing rate is too distant from the ideal scenario (a). Research aiming to reduce the number
of converging steps found effective approaches that compute adaptive learning rates for each
parameter of the objective function. The gradient descent method presents many analogies
to the effects of a ball rolling down a slope. The Newtonian mechanics inspired researchers
to borrow concepts such as momentum1 and moment2 and apply them to optimization prob-
lems.

Adam, short for Adaptive Moment Estimation (Kingma, 2015) [29], is an optimization algo-
rithm specifically designed for multi-layer neural networks. Kingma improves on the findings
of Adadelta [77] and the unpublished RMSprop [70]. Adam applies an adaptive learning rate
strategy using two moment estimates.

The first moment is the mean mt and it calculates the decaying average of previous gradients.
The second moment vt is the uncentered variance and it also computes the decaying average
of past gradients but squared. They are expressed in the following Equation 2.9 and Equa-
tion 2.10 where t is the time step, β1 and β2 are the exponential decay rates β1, β2 ∈ [0, 1) for
the first and second moment respectively. Then gt represents the gradient at a given time step
and each moment is computed based on their respective past values mt−1 and vt−1.

mt = β1mt−1 + (1− β1)gt (2.9)

vt = β2vt−1 + (1− β2)g2t (2.10)

1the quantity of motion of a moving body, measured as a product of its mass and velocity
2a combination of a physical quantity and a distance
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The authors of the Adam paper noticed that there was a bias towards 0 at the initial steps due
to the fact that estimates were initialized as vectors of 0’s as well. They decided to apply a cor-
rection to circumvent this issue and the resulting moments were modified as following:

m̂t =
mt

1− βt1
(2.11)

v̂t =
vt

1− βt2
(2.12)

Thus the resulting parameter update step for the Adam algorithm, which adapts from Adadelta
including a small number ε to prevent any division by zero, is:

θt+1 = θt −
η√
v̂t + ε

m̂t (2.13)

Kingma suggests that the default values for the newly introduced hyperparameters of 0.9 for
β1, 0.999 for β2, and 10−8 for ε work favorably.

2.2 Deep Learning

In the history of AI, the field knew two major periods named AI Winters. These periods
describe a time when the general interest in and support for AI vanished due to the combination
of several factors. The reasons for disillusion were such as a low in the hype, technological
blockers and the attention of scientists shifting towards other problems. This eventually led to
a general stagnation in the research.

2006 marked the end of the second AI winter, when Hinton, Osindero and Teh [24] published
their paper about an accelerated learning algorithm for densely-connected multi-layer neural
networks. Their work received a great acknowledgment from peers and was considered a
major breakthrough. Hinton et al. inspired the research community to retake neural networks
seriously by following their approach with deeper networks. Hence the term Deep Learning
was coined.

So, Deep Learning is based on neural networks and is a category of Machine Learning meth-
ods. Deng and Yu [17] define deep learning as a:

“Class of machine learning techniques that exploit many layers of non-linear information
processing for supervised or unsupervised feature extraction and transformation, and for
pattern analysis and classification.”
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Another definition suggested by LeCun [33], creator of the Convolutional Neural Networks
(CNN), describes deep learning models as hierarchical probabilistic models that can learn
representations with multiple layers of abstraction, and they are generally implemented as
deep neural networks.

Given enough data, these multi-layer neural nets are capable of automatically decomposing
a problem into smaller and more manageable abstractions. When compared to rule-based
methods, Deep Learning tend to generalize better but will still require a rigorous procedure to
achieve high performance. A significant number of researchers are now devoted to this fairly
novel approach and focusing on this field of AI, mainly due to the interest it sparked by the va-
riety of high-level tasks that it can achieve and by its improved performance. Numerous areas
such as speech recognition, computer vision, NLP are already benefiting from the advances in
deep learning and deploying systems for commercial use.

2.2.1 Neural Networks

The main approach for Deep Learning, the deep neural network, distances itself from the
shallow neural network by the larger number of hidden layers that form the network. Neural
networks are models that can be trained either with supervised or unsupervised learning. They
are composed of nodes analog in a certain way to the behavior of biological neurons and
their interaction. The manner a neuron would pass along a signal depending on its input,
inspired Frank Rosenblatt [58] to conceive the simplified mathematical model of a neuron
called the perceptron. From that point, researchers derived many models by building more
complex artificial neural networks with more nodes, more layers, different architectures and
mechanisms to achieve higher performance in specific tasks with specific inputs.

Structure
A typical artificial neural network is composed by an input layer, hidden layers and an output

layer of neurons. The number of hidden layers and the amount of neurons per layer can vary
depending on the design and purpose of the network. Figure 2.2 is an example of a basic
feed-forward neural net with 2 hidden layers.

Neuron Output
Each neuron receives one or multiple numeric values as inputs. Each input has an associ-
ated weight that expresses the importance of the given input to the output that the node will
compute (see Figure 2.3). The output y is expressed as the result of the activation function
f (section 2.2.1), the example uses the sigmoid function σ (Equation 2.15) to transform the
sum of weighted inputs wᵀx and biases b (the matrix product wᵀx of the transposed vector of
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weights by the vector of inputs is a shorthand for the sum
∑

xiwi
). This function can be written

as:
y = f(wTx+ b) (2.14)

Input #1

Input #2

Input #3

1
1+e−x

1
1+e−x

1
1+e−x

...

1
1+e−x

Hidden
layer 1

1
1+e−x

1
1+e−x

1
1+e−x

...

1
1+e−x

Hidden
layer 2

Output

Input layer Output layer

Figure 2.2: Neural network example with 2 hidden layers

Figure 2.3: Neuron output

Activation Functions
The above mentioned neuron inputs are transformed using an activation function (AF). These
have a mathematical and biological foundation, since they model the neuronal signal propa-
gation through an action potential also known as spike or nerve impulse.
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Figure 2.4: Activation Functions Plots (Taken from [57])

The choice of an AF is not trivial and depends on the nature of the considered problem. Deep
Learning deals mainly with non-linear functions because the expected output is a value ranged
between 0 and 1, indicating its degree of activation, whereas linear functions would yield
unrestricted outputs tending towards infinities. This non-linearity is at the core of the neural
network mechanism to model complex problems by abstracting down meaningful features.
Typical examples of AF include the Sigmoid function (σ) and the Hyperbolic Tangent function
(tanh), as shown in Figure 2.4. The non-linearity is achieved by using the Euler constant e
and their respective equations and derivatives are:

f(x) = σ(x) =
1

1 + e−x
(2.15)

f ′(x) = f(x)(1− f(x)) (2.16)

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.17)

f ′(x) = 1− f(x)2 (2.18)

The evaluation of subsequent gradient of an AF is key to mitigating certain disadvantages
when it comes to applying learning algorithms such as the gradient descent (see subsec-
tion 2.1.2). Researchers have incrementally improved the approaches for AF just as they did
with the optimizers. Currently, the most popular AF in deep learning is the Rectified Linear
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Units (ReLU) [42].
f(x) = x+ = max(0, x) (2.19)

f ′(x) =

{
1, if x > 0

0, otherwise
(2.20)

As we can see from the equations and the case c in Figure 2.4, the ReLU is much faster to
compute than the traditional Sigmoid or Tangent functions because of its linearity for positive
values. Two additional benefits make ReLU stand out.

First, its sparsity. This should not be confused with data sparsity, which denotes missing
information. Model sparsity refers to displaying fewer features and the ability to differentiate
them properly. A model showing the opposite is considered dense. The sparsity of ReLU
is observable in the regime x ≤ 0: the function strictly generates 0 and this helps a faster
convergence using the output of ReLU. The Sigmoid and TanH functions on the other hand
tend to generate non-zero values resulting in higher density.

Second, when x > 0, the gradient of ReLU is constant, contrary to the diminishing gradient of
the Sigmoid or Tangent gradients. The stable gradient leads to faster learning and is unaffected
by the problem of vanishing gradients that would prevent the weights of a neural network from
meaningful readjustments.

This activation function has already successors like the leaky ReLU (LReLU) and the
parametrized ReLU (PReLU) [11] but they come with different advantages as well as down-
sides, for example expensive computation. ReLU remains therefore as a solid referent.

2.2.2 Error Backpropagation

The crucial mechanism that leads to the enhancement of deep neural networks is the error

back-propagation that readjusts the weights of the system. The technique has been taking
shape since the 80’s but it holds its modern form from the work of LeCun [33].

During training, a neural network propagates the input data forward through the layers of
neurons, so from the input layer, through the hidden layers until the output layer. This phase
is called the forward pass and the parameters (weights) of the neurons shape the resulting
predicted values at the output layer. This prediction is then compared to the target value and
the deviation is measured with a loss function. Then this error is back-propagated through the
network informing each neuron about their parameter distance to the ground truth value and
allowing the correction of their weights.
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The direction of less error is determined by using optimizers like the gradient descent (subsec-
tion 2.1.2), although the particular hierarchical setup of the neural network requires a different
way of computing the cost function’s gradient. The mathematical principle that makes this
possible is the reiterative application of the chain rule [43]. Doing so, it is possible to decom-
pose the functions comprised in a node and calculate the partial derivative of the error:

δE

δwij
=
δE

δoj

δoj
δwij

=
δE

δoj

δoj
δnetj

δnetj
δwij

(2.21)

where E is the loss, wij is the weight parameter between a neuron j and the neuron j from the
previous layer, oj denotes the output of the previous neuron and netj is the weighted sum of
outputs oj .

2.2.3 Convolutional Neural Networks

In order to solve problems of different natures more efficiently, researchers explored alterna-
tives to the traditional feed-forward networks. Within the Computer Vision field, Convolu-
tional neural networks (CNN) [54] are highly popular, they are a class of neural networks that
are primarily used for image processing. Image classification, clustering, object and optical
character recognition are some of the applications.

CNNs have characteristic design concepts such as the convolutional and pooling layer that
reduce the amount of parameters and the dimensions of the data. The convolutional layer ap-
plies a filter that processes sequentially parts of the input matrix that represents an image, for
example, and transforms this input into a smaller matrix by the means of dot product opera-
tions. Doing so, the features, such as high contrast areas, edges, and contours are extracted.
The pooling layer works in a similar way but the objective is to compress the information and
turn it computationally more manageable. It operates by applying a filter that calculates the
maximum or the average of the submatrices. These architectural elements in combination with
the proper tuning of hyperparameters and regularization methods augment considerably their
efficacy.

2.2.4 Recurrent Neural Networks

While static visual information can be efficiently processed by CNNs, these are however not
the ideal approach to other forms of data that are sequential or time-dependent. Learning from
sequential data is better handled by a category of specialized neural networks called Recurrent
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Neural Networks (RNN) [37]. This architecture is especially relevant for NLP since a text
corpus is made of sequences of words and therefore sentences.

Sequential data is commonly divided by time and RNNs accept inputs that correlate with data
at a given time step. Their most prominent feature is the incorporation of a feedback loop.
Every time step’s output is fed back to the network, this provides a record of the previous state
that will affect the output of future steps, hence the name "recurrent". The persisting infor-
mation lets the network process upcoming inputs taking the previous ones into consideration.
The basic recurrence can be expressed as:

ht = fw(ht−1, xt) (2.22)

where ht is the new hidden state is computed with some function fw with parameters w, ht−1
is the previous hidden state and xt is the input at time step t.

The recurrent connections of an RNN can be visualized as unfolded or unrolled, see Figure 2.5.
Here, the original layer is replicated as many times as necessary to cover all the time steps to
process the whole sequence. Every replica shares the same parameters and the backpropaga-
tion is now called backpropagation through time (BPTT) because the gradients are cumulative
through the time steps.

Figure 2.5: Unfolded Recurrent Neural Network (Taken from [33])

However, the classical RNN present an important caveat. Because the gradients are accu-
mulated, thus multiplied with the same shared parameter the same amount of times as the
sequence length. When this becomes excessively long, the gradients have a tendency to either
explode (reaching incoherent large values) or vanish (values tending to zero).

Long-Short Term Memory
The Long-Short Term Memory (LSTM) [25] is a RNN that solves the above mentioned gra-
dient problems by introducing the concept of gates. These elements help regulating the flow
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of information inside the LSTM unit. The usual gates that are included are an input gate it, an
output gate ot and a forget gate ft. On top of that, LSTM maintains two hidden states at every
time step. First, the hidden state ht which is already present in traditional RNNs. Second,
the cell state ct which behaves as a memory that interacts with the gates. A LSTM can be
described as:

ft = σ(Wf [ht−1, xt] + bf )

it = σ(Wi[ht−1, xt] + bi)

ot = σ(Wo[ht−1, xt] + bo)

gt = tanh(Wg[ht−1, xt] + bx)

ct = it � gt + ft � ct−1
ht = ot � tanh(ct)

(2.23)

where gt can be seen as a supportive gate that computes how much to write to the cell state, �
indicates the element-wise product and W and b are respectively the weight matrices and bias
vector parameters which need to be learned during training.

The main idea from the LSTM is not only to assess the impact on the hidden state of each
word in the sequence, but also the words that are not meaningful enough and are thus safe to
"forget". In addition to these mechanisms, the way the units are connected through the internal
cell states carries the gradient forward and backwards in a cleaner flow reducing the likelihood
of gradient deterioration.

2.3 Natural Language Processing

2.3.1 Language Modeling

A language model [22] exploit through observations the characteristics of a language and how
the words relate, instead of describing it with rules, which would grow too complex. It is
a probabilistic model that is able to predict the word that will follow given a sequence of
words. In more elaborated models, more context will be taken into account, from sequences
of previous words, to sentences, paragraphs or entire documents. One can use a language
model to predict the continuity of a sentence but also to generate sentences.

N-Gram Models
An example of Language Model is the N-gram model. N-grams are simple models that are
defined by word sequences of length N . When N = 1, known as unigram, each word is taken
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as a unit and its probability is calculated by counting its occurrence in the document and divid-
ing by the total amount of words. For N = 2, a bigram, the probability calculation becomes
conditional taking into account the previous word and thus applies the same assumption as the
Markov condition. Finally for the rest of N-gram models, the calculation can be generalized
by considering all the N −1 precedent words. The effectiveness of the different N-gram mod-
els depends on the length of the targeted corpus data as well as the vocabulary that the model
can recognize.

2.3.2 Encoder-Decoder Model

An essential building block for NLP using deep neural networks is the Encoder-Decoder ar-
chitecture [68]. This design is composed of two blocks. The encoder block is responsible for
encoding an input sequence into a fixed dimensional representation vector, also known as the
context vector, which acts as the final hidden state of the encoder. This representation should
encode enough information that the input can be recreated. Then, it gets fed to the decoder
block which will then produce the output using only this internal representation. The encoder
and vector blocks are commonly implemented as LSTMs and this architecture is used for
sequence-to-sequence tasks such as machine translation. Advantages of the encoder-decoder
include the capacity to process sequences of arbitrary length into a fixed vector representation
and connect encoders to different decoders for training by passing the intermediate encoded
representation.

2.3.3 Word Embeddings

Figure 2.6: Projected relationships between word embeddings. (Taken from [39])

So, language models are statistical approaches, they require therefore quantifiable and con-
tinuous representations. But words, on the other hand, are discrete units. A straightforward

20



2.3 Natural Language Processing

approach to represent them in a quantifiable way is to encode the features with a vector and for
every word’s feature identify its location in a binary way, this is known as the one-hot vector.
It’s simplicity is shadowed by the high dimension of these vectors and the complexity that it
carries. To escape this limitation, the encoder-decoder model comes into play and is used to
encode a representation with a reduced dimensionality. A text corpus can then be encoded
into numerical vectors, also known as word embeddings.

Once words are encoded, a subsequent vector space model (VSM) is modeled. Then, sim-
ple linear algebra can be applied, enabling the calculation of the relationship between words.
Figure 2.6 showcases the famous example of King and Queen’s words association, the blue
arrow represents the vector projection modeling gender whereas the red one models the plu-
rality. Tomas Mikolov demonstrates that the same equation vec("King) - vector("Man) + vec-

tor("Woman") = vector("Queen"). This kind of composition can be extended to other entities
and their attributes, such as countries and their languages or currencies. This leads to the re-
trieval of basic inherent properties such as similarity and weighting. From this point, advanced
applications such as document similarity, term frequency and matching can be derived.

Different word embedding approaches have been implemented and pre-trained models have
been published, well known examples are Word2Vec [40], Glove [49] and FastText [23].
Word2Vec is the referential distributed word vector model that encodes words into embed-
dings using two different language modeling methods: the continuous bag-of-words (CBOW)
or the Continuous Skipgram models. CBOW as its name states, is based on the BOW model
but it predicts the probability of a target word considering the surrounding context words
within a window of a given size instead of the whole document. The Continuous Skipgram
model is the opposite and it tries to predict the context words given the target word.

The word embedding models present numerous limitations concerning the length of the used
corpus, the order and independence of words, but the major downside of the vector approach
is the inability to represent multiple meanings of a word. This is due to the association of
a single representation per word. When a word appears simultaneously in different contexts,
Word2Vec is unable to accurately learn its semantic nor syntactic nature, for example: "a bank

of fish" or "a bank holiday".

2.3.4 (Downstream) NLP Tasks

NLP provides nowadays a wide array of tasks to tackle problems of different scales from
part-of-speech tagging (POS) to Dialog systems. It is common for complex NLP tasks to
be broken down into multiple sub-tasks to attain the desired goal. When applying transfer
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learning (section 2.4), it is typical to use the term downstream task. There is no consensus in
the definition for it but Jay Alammar3, former Deep Learning content developer at Udacity4,
provides a concise one: "downstream tasks is what the field calls those supervised-learning

tasks that utilize a pre-trained model or component".

No matter the approach, –rule-based, machine learning or deep learning– NLP tasks can be
divided in the following categories:

Text Classification Tasks
Text classification generally doesn’t need to preserve the word order. The methods for this
task usually process the corpus as a whole with an approach similar to the bag of words. It
is used to predict labels and categories based on the dominant content, but it is also frequent
to see sentiment analysis. It is applied for offensive language and spam detection as well as
supporting the proper taxonomy of documents.

Word Sequence Tasks
Contrary to text classification, the word order is important for this kind of task as it deals with
sequences. The word order is especially relevant for language modeling (subsection 2.3.1),
therefore the derived tasks include prediction of previous and next words. Some models are
capable of extending the prediction to complete sentences. Another general capability is the
generation of text recursively inferred from the next sentence prediction. Notable applications
of this kind of tasks are Named Entity Recognition (NER), Part-of-Speech tagging ()POS),
language translation and text completion.

Text Meaning Tasks
Extracting the word embeddings (subsection 2.3.3) of a corpus, text meaning focuses on se-
mantics. This is generally used for tasks such as search, topic modeling, question answering.
The association of meaning to a word is well achieved in NLP, however, capturing the meaning
for sentences or documents presents challenges that current studies are still looking into.

Sequence to Sequence Tasks
This category could be considered an extension of the word sequence tasks. Also known as
seq2seq, these tasks take a sequence as an input and output a transformed one. For this pur-
pose, encoder-decoder methods and hidden representations are used. Common applications
are translation, summarization and Question Answering (QA) among others.

Dialog Systems
NLP is fundamental to power conversational agents. These systems require high performance

3http://jalammar.github.io/illustrated-bert/
4https://www.udacity.com/
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in natural language understanding to correctly detect users’ intent. Moreover, the agent is
expected to provide an answer. For this, the system can combine tasks from the different
categories above mentioned to achieve both understanding and answer generation tasks. De-
pending on the scope, integrating world knowledge is necessary.

Dialog systems can be split into two types, goal-oriented and conversational. The first one
aims to fulfill the intents of the user in a defined context and usually replaces the graphical
user interface where the desired transactions would be communicated. Many enterprises inte-
grate goal or task-oriented dialog as an interface for their services, a clear application can be
found in the hospitality industry, where concierge services for reservations and bookings are
increasingly being supported by goal-oriented dialog systems. The second system is broader
and without a specific end. Purely conversational agents have no other purpose than keeping
up a dialog flow as human as possible. They present challenges beyond NLU and answer gen-
eration, that include maintaining the state of the conversation, logical reasoning of the input
through world knowledge or paying the adequate attention to the different topics that are being
discussed. The conversational agents require, in other words, a certain capacity of memory
and active learning in order to emulate a human dialog. Nowadays, conversational bots such
as Mitsuku5 are highly performant in unrestricted Turing tests.

2.4 Transfer Learning

Transfer learning [30] is a sub-field within ML concerning the relation between the applied
datasets used for training and evaluation, and the overall underlying distribution. Pan and
Yang [47] define transfer learning as:

Given a source domain DS and its learning task TS , a target domain DT and its learn-
ing task TT , transfer learning aims to help improve the learning of the target predictive
function fT in DT using the knowledge from DS and TS , where DS 6= DT and TS 6= TT .

Thus, transfer learning defines an approach in which a base model from a certain source do-
main aimed for a task A can be repurposed to solve a different target task B possibly belonging
to a different target domain. Instead of training an entire model for each specific task from
scratch, the main idea is to only further train a base model with additional data which is better
suited to the target task, as seen in Figure 2.7. In certain cases, removing the interference of
the original domain would be desirable.

5https://www.pandorabots.com/mitsuku/
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Figure 2.7: Traditional ML setup vs. Transfer learning setup

The different categories of transfer learning are classified according to several situations. First,
whether the data is labeled in the original and the target domain, and second, the difference
between original task and the target task. Figure 2.8 summarizes concisely the existing taxon-
omy.

Ruder [60] proposes a scenario called positive forward transfer, when the transfer learning is
successful, in other words, when the performance of the target task using the fine-tuned model
increases. In contrast, the opposite scenario, the negative forward transfer can be observed
when fine-tuning harms the target task’s performance. The degradation of the pre-trained
model’s performance after the supplementary training is commonly due to the dissimilarity of
the new input. When the datasets for pre-training and fine-tuning are too distant, for example
two completely different languages, the weights of the model can revert to a random state and
lead to the observation of the phenomena called catastrophic forgetting.

The motivation that supports transfer learning includes numerous advantages. The lessened
amount of data required to adapt the base model to another domain and/or task, the subsequent
time and cost efficient training, and the overall good results are the main benefits that allowed
deep learning practitioners to quickly derive new models to handle different tasks.
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Figure 2.8: An overview of different settings of transfer learning (Taken from [47])

2.4.1 Fine-tuning

A well known approach to apply transfer learning to neural networks is copying and training
the first n layers, n being a variable that can be selected depending on the required specificity
to be retained for a certain target task. Two distinct approaches exist. On one hand, the fine-

tuning method, where the error on a specific task will be back-propagated and the original
weights will be readjusted. On the other hand, the frozen layers approach, in which only
the last layers will learn from the new data, the rest of the copied layer weights will remain
unchanged. The rationale for these approaches correlates with the findings of Yosinki about
the transferability of features in deep neural networks [76]. The study shows that the first (or
lower) layers of a deep neural network commonly encode general information and the last (or
higher) ones become increasingly specific. The transfer learning approach tends to hold the
first layers more valuable considering their capability to generalize and serve for a broader
range of domains and tasks.
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2.4.2 Domain Adaptation

The notion of domain adaptation is a class of transductive transfer learning. The definition of
domain differs in each field of ML and the main adaptations encompassed in NLP [35] are the
following ones:

• Adaptation between different corpora

• Adaptation from a general dataset to a specific dataset

• Adaptation between subtopics in the same corpus

• Cross-lingual adaptation

The current thesis focuses on the adaptation of a model trained with general language to the
legal language, the domain adaptation corresponds therefore to the second category listed
above which is the adaptation from a general to a specific dataset. The corpus data from
the specific domain is more likely to display a particular vocabulary belonging to the given
field, but could also attribute different semantics to words that are common to the general
domain language. Furthermore, the distribution and the frequency of the terms are possibly
skewed.

A relevant vocabulary is the cornerstone of many NLP applications. A representative vo-
cabulary is essential to produce meaningful word embeddings and, consequently, a body of
research has established that the low performance of NLP models on unfamiliar domain data
is due to the effects of out-of-vocabulary (OOV) words [7] [15]. Other studies show that the
insertion of domain specific vocabulary as an adaptation strategy leads to better performance
of their language models. [45][19][9]

2.5 BERT

The BERT [18] model’s architecture is composed of 12 bidirectional Transformer encoder
blocks [71], 768 hidden layers, and 110M parameters and is heavily based on Attention mech-
anisms [38]. Another important design characteristic of this model is its bidirectionality that
makes BERT different from traditional left-to-right trained language models. This would be
the case of the GPT Transformer model from OpenAI [52] that processes sequences in the
same fashion as reading a sentence in English. ELMo [50], on the other hand, concatenates
an LSTM trained left-to-right and another one right-to-left. It can be therefore considered
bi-directional, but ELMo is not a single neural network trained simultaneously in both direc-
tions.
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In this section, we introduce the concepts of Attention and Transformers that are essential to
the understanding of BERT’s architecture. To complete the overview on BERT, we provide
details on the pre-training and fine-tuning of the model.

2.5.1 Attention

Neural networks implementing the encoder-decoder model (subsection 2.3.2), which is com-
mon for solving sequence-to-sequence (seq2seq) [68] problems, use a fixed-length context
vector for internal representation. The fixed size of this vector makes this method ineffective
when dealing with longer sequences since it can’t retain all the information and tends to "for-
get" the initial inputs. Attention mechanism solves this problem by adding an additional layer
that normally sits between the encoder and the decoder operating on the context vector to help
the decoder capture global information from the input sequence. This layer doesn’t handle
the original reduced representation context vector, but weighs all the outputs of the encoder,
calculates the weighted sum and feeds the result to the decoder. It provides the hidden state of
all the encoder nodes to the decoder, acting as a memory.

In his work on machine translation using deep neural networks, Bahdanu [2] proposes an
alignment model to train neural networks to produce accurate translations with the help of
attention. Given an input sequence in English and another one in French, the model tries
to score the best matching words between the two inputs. For this purpose, the author uses
a bidirectional RNN encoder and an alignment function that assigns the score for each pair
of words, in his proposed solution the function in this case is a non-linear tanh activation
function.

The example above describes a common scenario of how attention can be applied to improve
seq2seq tasks. However, the concept of attention spawned into a family of attention mech-
anisms that differ in alignment score functions and other properties. We will briefly explain
the categories of Self-Attention and Multi-Headed Self-Attention that are relevant to the Trans-
former architecture.

Self-Attention
Self-attention, also known as intra-attention, is a mechanism that applies attention not between
two different sequences but to the same sequence instead. Each word of the input sequence
is paired with previous words with the highest attention score in order to compute a related
representation. This is particularly useful to the disambiguation and resolution of coreferences
and pronouns. Applied to NLP, it has a positive impact on tasks such as machine reading
comprehension or summarization.
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2.5.2 Transformers

A Transformer [71] is a neural network architecture proposed by Waswani et al. in 2017. The
Transformer implements the encoder-decoder pair but has a completely different structure
from RNN and CNN in design (see Figure Figure 2.9). Instead it relies completely on multi-
head self-attention mechanisms in each encoder (left block) and decoder (right block). This
kind of network is proven highly performant for solving language-oriented problems such as
syntactic parsing and language translation through sequence transduction.

Figure 2.9: Transformer Architecture (Taken from [71])

The following paragraphs will proceed to explain each component of the Transformer, from
bottom to top.

Positional Encoding
The positional encoding appends necessary information about the position of the tokens in
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the sequence. This is required because the Transformer model doesn’t rely on recurrence nor
convolutions. The authors propose using sinusoidal functions sinus and cosine to encode the
position of the token and the dimensions of the vector.

Multi-Headed Self-Attention
In the Transformer structure, we can see how the encoder processes input embeddings into
the attention sub-layer, which is in fact a multi-headed self-attention (section 2.5.1). Before
going into details with the Multi-Head attention proposed by Waswani, we need to explain
the different view adopted by the author. Their approach suggests to consider the attention
function as a mapping of a query (Q) and a key-value pair (K, V), where the output is the
weighted sum of the values and the weight assigned to each value is computed by a alignment
function of the query and the corresponding key.

This alignment or compatibility function as they name it is described as follow:

Attention(Q,K, V ) = softmax(
QKᵀ

√
dk

)V (2.24)

where Q, K and V are respectively the query, key and value. dk refers to the dimension of the
queries and keys.

The softmax function is a normalization function that accepts a vector z of K real numbers
and transforms the components of the vector into a probability distribution, that means after
applying softmax, each component zi of the vector will be bound by (0,1) and the sum of all
of them will yield 1. The formula is given as:

σ(z)i =
ezi∑k
j=1 e

zj
for i = 1, ..., K (2.25)

The multi-head mechanism runs through the scaled dot-product attention multiple times in
parallel. The resulting scaled dot-product attentions are then concatenated and linearly trans-
formed into the expected dimensions. The authors claim that this approach permits the at-
tention take into account "different subspace representations at different positions" improving
the performance of single head attention mechanisms. Figure 2.10 illustrates the processes
described above.

The output of the attention is normalized and passed to the feed forward network. Conse-
quently, the output of the encoder block is fed to the decoder, directly to the block which
as an identical structure as the encoder, except this block is preceded by a Masked Multi-
Head Attention that processes the output embeddings. This masking and the shifting of output
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Figure 2.10: Multi-headed scaled dot-product self attention (Taken from [71])

embeddings to the right are measures to make sure that the predictions are based on known
outputs for previous positions.

Residual Connection and Normalization
We can observe in figure Figure 2.9 residual connections (also known as skip connections)
short-cutting every sub-layer to the normalization layers. These skip connections serve for
both forward and backward passes and are mechanisms to avoid the problem of vanishing and
exploding gradients. We’ve seen similar workarounds in LSTM (section 2.2.4) by preventing
the repeated flow of gradients through non-linear activation functions such as sigmoid and
tanh. The normalization is applied to mitigate the problem known as covariate shift, which
refers to the distributions of the training and test sets being different. This disparity is reduced
by fixing the mean and the variance of the summed inputs of the layer.

Feed Forward Networks
The sub-layers that transform the output of the encoder and decoder are fully connected feed-
forward networks. According to the authors of the Transformer paper [71], they implement
two linear transformations with a ReLU activation in between.

2.5.3 Model Pre-training

The pre-training of BERT has been performed on 40 epochs over a 3.3 billion words English
corpus using the English Wikipedia dump and the BookCorpus [78] as training dataset. The
language modeling performed by BERT follows two different strategies: first, the masked
language model (MLM) and the next sentence prediction.
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Masked Language Model
In order to train a model that takes into account the surrounding context of a given word and
not just the sequence that preceded it, BERT relies on bi-directionality. BERT’s language
modeling masks randomly 15% of the input tokens. This produces a self-supervised training
setup in which the language model is tasked to predict only the masked tokens. By doing so,
the model can learn representations accurately in both directions simultaneously without the
risk for the model knowing before-hand what token is coming next.

Next Sentence Prediction
The second training method that BERT adopts to model its language is the next sentence
prediction. The purpose is to enhance the understanding of the relationship between sentences.
The algorithm selects sentence pairs A and B in two different ways: i) B is indeed the next
sentence of A and ii) B is randomly chosen and therefore not related to A. The model learns the
correlation of the next sentence by training 50% on case i) and another 50% on case ii).

2.5.4 Model Fine-Tuning

BERT’s input sequence is an array of tokens formatted with the special [CLS] hidden state
token at the beginning and the [SEP] separator token at the end. [CLS] is a token that encodes
the whole input for classification tasks. Note that when the sequence includes two sentences,
these should also be split with [SEP] to mark the transition between segments. The figure
Figure 2.11 shows how an input is broken down into token, segment and position embed-
dings.

Figure 2.11: BERT Input Example (Taken from [18])

The tokenization applied by BERT relies on the WordPiece tokenizer which allows the split-
ting of a word into more than two tokens. The main idea of dividing words into sub-units
allows the model to identify more words that belong to the existing vocabulary. In the ex-
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ample provided by Devon, "playing" is split into "play" and the token "##ing", the prefixing
of "##" denotes that this unit is a suffix of another token. This technique helps reducing the
instances of tokens that are out of vocabulary (OOV).

For fine-tuning, task-specific inputs should be fed following the format described above. The
provided example input is optimized for the next sentence prediction task, but it can be ex-
trapolated to other pairwise downstream tasks such as QA, paraphrasing and so on. However,
we must consider the limitation that BERT presents for the maximum sequence length which
is 512 tokens, including [CLS] and [SEP] tokens.

Figure 2.12: Downstream tasks fine-tuning using BERT (Taken from [18])
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Then, the input sequence will be transformed into token representations that will be subse-
quently inputted into the output layer. We adapt the output layer and use the pertinent rep-
resentations according to the task as shown in the figure Figure 2.12. The first downstream
task example a) provided by the authors is a Sentence Pair Classification Task and the binary
prediction is inferred from the Class Label C, that indicates if Sentence 2 follows Sentence 1.
The task b) represents a single sentence classification task, and similarly we use the hidden
state derived from the [CLS] token to show us the predicted label for the inputted sentence.
For these both classification tasks, the prediction is extracted by applying softmax on the hid-
den state of [CLS]. The Question Answering and Sentence Tagging or NER are token based
tasks so the [CLS] token won’t be use anymore, instead probabilities will be calculated per
token.

2.5.5 Feature Extraction

Contextualized word embeddings, in other words, embeddings that are trained bidirectionally
trained by BERT, can be extracted and applied to custom models in a similar way to how the
other word embeddings can be used. This approach is called feature-based and the embed-
dings diverge greatly depending on the layer where they are extracted. The authors of the
BERT paper indicate that the best results were found concatenating the last four hidden layers
of the model.
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3 Related Work

This chapter reviews the most relevant work related to transfer learning methods using context
vectors. Ensuing the release of BERT a body of research has studied the adaptation of this
particular model to different scientific fields. We then conclude the review by examining the
NLP research applied to the legal domain.

3.1 Transfer learning in NLP

The papers introducing ULM-FiT and ELMo, both published in 2018, received high accolades
from the NLP research community. They furthered the possibilities of transfer learning with
novel approaches and opened the path to the research direction leading to BERT.

3.1.1 ULM-FiT

ULM-FiT stands for Universal Language Model Fine-Tuning and it is the research on transfer
learning presented by Howard and Ruder [26]. The authors proposed in their paper the concept
of pre-trained language models. Their method is to train on a very large corpus of text to obtain
a general language model, then fine-tune it for any classification task. In the study, a variant of
LSTM called AWD-LSTM without any short-cut connections nor attention was used. For the
fine-tuning, Howard and Ruder suggest to use the frozen layers approach (subsection 2.4.1)
and gradually unfreeze and train the deeper layers to the network.

The researchers claim that ULM-FiT works across tasks varying in document size, number
and label type. They point out that the approach requires no custom feature engineering and
doesn’t require additional in-domain documents or labels. Fulfilling the goal of transfer learn-
ing, they managed to achieve the same error rate of a model trained from scratch on 20.000
examples by fine-tuning a pre-trained model with only 100 examples.
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3.1.2 ELMo

Embeddings from Language Models (ELMo) [50] is the approach suggested by Peters et.al
which was published almost simultaneously together with ULM-Fit. The novelty of their
model is the capacity to produce contextual embeddings and the bi-directionality of the lan-
guage model (biLM). However, the latter is not trained simultaneously, but rather a concatena-
tion of Forwards (predicts the following word given previous words) and Backward (predicts
precedent words given posterior words) LMs. ELMo also uses a pre-trained LSTM-based LM
and extracts each layer’s hidden state for the input sequence. The final embedding for each
word is calculated as the weighted sum of all those hidden states.

The obtained word embeddings are compatible with other existing embeddings such as Glove,
Word2Vec or FastText (subsection 2.3.3). In fact, the authors recommend to concatenate them
together. ELMo reported state-of-the-art results in 6 different downstream tasks including
classification, QA and NER.

3.2 Domain Specific BERT Models

Soon after the publication of BERT, several researchers tested the domain adaptation capa-
bilities of BERT by fine-tuning the language model to specific fields. It has been applied
to scientific, biological and clinical data yielding respectively the BioBERT, SciBERT and
ClinicalBERT pre-trained BERT language models. We will focus on the first two as their
approaches are significantly different from each other but relevant for our current study.

3.2.1 BioBERT

The first domain-specific pre-trained BERT is BioBERT [34], which is optimized for the
biomedical field. The authors Lee and Yoon use 4.5B words from the PubMed corpus and
13.5B words from PMC, both archives of biomedical and life science literature. The train-
ing of several models was reported to last between 10 days and 23 days depending on the
amount of data used and the dataset combinations. The hardware that served the training was
composed of 8 NVIDIA V100 GPUs with 32GB memory.

They initialize BioBERT with BERTBase, that means, the language model is built on top of
the learned weights from English Wikipedia and BookCorpus. Using different combinations
of datasets for language model adaptation, the researchers found that the best results were
found when combining both PubMed and PMC corpus through 470K pre-training steps, they
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labeled this BioBERT v1.0. Later, they release a v1.1 using only PubMed but pre-trained with
1M steps and this yielded general performance improvements over the v1.0.

Figure 3.1: Overview of the pre-training and fine-tuning of BioBERT (Taken from [34])

The biomedical language model was assessed with an array of 14 task-specific datasets com-
patible with NER, relation extraction (RE) and QA. To sum up, BioBERT improved the state-
of-the-art in 4 out of 8 datasets for NER and 1 out of 3 for RE, always considering F1 score
as a metric. For QA, measuring the Mean Reciprocal Rank (MRR), BioBERT exceeded the
state-of-the-art in all 3 datasets. BioBERT notably attains higher F1 scores in biomedical NER
(0.62) and biomedical RE (2.80), and a higher MRR score (12.24) in biomedical QA.

Lee and Yoon opted for not creating a customized vocabulary, but instead relied on the
WordPiece tokenizer to split OOV words into known sub-words or tokens. The main ra-
tionale behind this decision is the compatibility and interchangeability between BERTBase
and BioBERT models.

3.2.2 SciBERT

Opposed to BioBERT’s domain adaptation atop of BERTBase, Beltagy, Lo and Cohan [3]
pre-trained from scratch a BERT model using exclusively data from the Semantic Scholar
corpus. This corpus includes 1.14M biomedical and computer science papers equivalent to
3.1B tokens and the training process lasted for about a week using a single TPU v33 with 8
cores. The SciBERT model was then thoroughly tested against a collection of 12 task and
their corresponding domain specific datasets. These tasks, tackled using embeddings from
frozen layers and fine-tuning for posterior comparison, spawned from classification, different
sequence labeling and dependency parsing.

SciBERT obtained positive results and achieved state-of-the-art performance for 8 out of 12
tasks. In table 3.1, we can see how SciBERT substantially outperforms BioBERT on two
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datasets, one NER specific and another one RE specific. The rest of the results are comparable
but Beltagy underlines that the training has been done with much less data. It is important
to note that all highest results are obtained through the fine-tuning approach. Surprisingly,
BERTBase without domain adaptation also managed to achieve for a couple of tasks a perfor-
mance between the previous state-of-the-art and the new one set by SciBERT.

Table 3.1: Comparing SciBERT with the reported BioBERT results on biomedical datasets

Task Dataset BioBERT SciBERT

BC5CDR 88.85 90.01
NER JNLPBA 77.59 77.28

NCBI-disease 89.36 88.57

REL ChemProt 76.68 83.64

The authors of SciBERT complemented the domain adaptation with the insertion of custom
vocabulary they named SciVocab that matches the scientific domain. The author measured
the difference in performance with and without custom vocabulary and reported an average
increase of 0.60% on F1 score.

3.3 NLP research in the Legal Domain

AI is changing the way work is done in the legal profession. NLP helps attorneys better orga-
nize their knowledge by automatizing the processing of documents. It also makes information
easier to find and can even assist lawyers to be more persuasive. The methods powering these
tools are constantly improving, although research applied to the legal domain is a small frac-
tion when compared to other domains such as the biomedical domain.

3.3.1 Classification of Legal Documents

Sulea et al. [46] published their work on classification of legal case documents in French using
more traditional ML techniques. The researchers apply in particular an ensemble system based
on Support Vector Machine (SVM) classifiers. The classification was performed on predicting
the law area, the ruling, but also on estimating the date of the ruling. The authors report results
of 98% average F1 score in predicting a case ruling, 96% F1 score for predicting the law area
of a case, and 87.07% F1 score on estimating the date of a ruling.
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Another comparative study of legal text classifiers has been led by Howe et el. [27]. This
paper evaluates a wide range of classification methods including ULM-FiT, Glove and La-
tent Semantic Analysis (LSA), but it is the first study of this kind to also include the general
BERTLarge and BERTBase. The study was done using different training data constraint sce-
narios, feeding first only 10%, then 50% and finally 100% of the available corpus to estimate
the performance variation of the models. By doing so, Howe revealed that deep transfer learn-
ing approaches, mainly ULM-FiT and both BERT variants, outperform the other models under
the scarcest data scenario (the performance being measured using F1 score). Whereas Glove
performed the best with 50% and LSA stands out completely when the training data is made
fully available.

However, the authors note that the recall of the BERT models was superior when the data
had low and medium availability. Also, they underlined a critical aspect of BERT: these pre-
trained models were competing in disadvantage due to the fact that their architecture is limited
to a maximum sequence length of 512 tokens. BERT can only process a selected part of each
document, meaning that if crucial information would appear after the clipping, this wouldn’t
be taken into consideration for the classification fine-tuning.

3.3.2 NER, semantic matching and linking of Legal Documents

Recent research involving legal data has a major interest in NER believing that this would
carry a positive impact in more sophisticated applications such as information retrieval or
structured summarization. Examples of studies focusing in this NLP task are the one from
Glaser [21] and the MIREL project team [69]. Apart from that, a few other articles offer
their take on semantic matching and linking between legal documents, such as Landthaler and
Glaser [31] and Schaffer [66].

In their research on providing relevant legal information based on an arbitrary user selected
text, Landthaler and Glaser [31] obtained superior results using a word embedding approach
compared to TFIDF. They extracted the Word2Vec embeddings from segments of rental con-
tracts and legal comments, then used them to calculate sentence vectors and these vectors were
then compared with cosine similarity to finally rank them. It is important to note that the above
mentioned studies where Glaser — Research Assistant at the Technical University of Munich
— contributed were primarily conducted in German language. The datasets were nonetheless
manually created and relatively small.

Schaffer [66], on the other hand, compares a rule-based model, a logistic regression model
and a deep neural network model to link documents. The deep learning approach yielded the
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best performance while exhibiting an interesting setup. It was built with Doc2Vec [32] on a
bi-directional LSTM, nevertheless, BERT features were used for the word embeddings.

3.4 Information Retrieval with BERT

As confirmed by the authors of the previously described research papers, NLP plays a very
important role in enhancing related fields such as Information Retrieval (IR). The ranking
task is an elemental problem that IR solves. This can be summarized as: given a query q

and a collection D of documents that match the query, the system has to sort the documents
and return the results ordered by relevancy. Whether a document is relevant or not has to be
defined by a established criterion.

With the arrival of BERT, researchers in the field of IT tested the impact of contextual mod-
eling and reported positive findings. Dai and Callan [13] compared a variety of models on
Robust04 and ClueWeb09 datasets for search tasks and found that BERT outperformed tra-
ditional word embeddings like word2vec. Qiao et al. [51] studied the behaviors of BERT
in ranking with the MS MARCO dataset evaluating a passage reranking task and then the
TREC Web Track ad hoc tasks with ClueWeb documents. Their experiments were performed
by implementing 4 different BERT ranking models aimed at finding the highest contextual
similarity between query and document.

The first model, BERT (Rep), extracts the representations of both query q and document d, uses
the special hidden state token [CLS] of the last layer and directly applies cosine similarity to
measure the distance of the representations of both q and d. This method proved to be very
ineffective. The second model, BERT (Last-Int), concatenates instead those [CLS] tokens and
uses BERT to predict the pairwise probability of q and d. The third one, BERT (Mult-Int),
is a variation of the Last-Int model and it sums the [CLS] representations of each layer. The
last model, BERT (Term-Trans), is an elaborated architecture that uses translation matrices,
mean-pooling and linear combination with an extra neural network.

The researchers found the best results with their second approach, concatenation of [CLS]
tokens, BERT (Last-Int). This correlates with the precedent work of Nogueira on ranking
with BERT [44].
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4.1 Introduction

Machine learning in general requires streamlined workflows to carry out research efficiently.
This facet is even more relevant in the practice of deep learning, where the internals of deep
neural networks obfuscate the process and render debugging cumbersome. Without struc-
ture, the process can be error prone, the consequent study would lack robustness and become
hard to replicate. The large amount of steps such as data collection, data cleaning, data pre-
processing, training, evaluating, monitoring, loading and saving increase in complexity when
adapting to different tasks, models and datasets. To tackle these issues, the community devel-
ops and constantly improves a variety of tools to ease the processes. Popular NLP frameworks
and libraries for machine learning and deep learning include TensorFlow, Pytorch, Pytorch-
transformers [74], Gensim, spaCy, Scikit-learn, and the number keeps soaring.

With the surge of the transfer learning paradigm in NLP, the space for the development of tools
to apply this technique opened up. For startup ventures, this becomes an opportunity to pioneer
in the front of bringing research into industry. An open source contribution is the preferred
way for innovative business to reach the community of NLP specialists, ML practitioners and
enthusiasts.

Deepset decided therefore to seize the opportunity and create a framework with the goal of
making transfer learning straightforward for NLP experts to adopt but also for computer sci-
entists from different backgrounds to try out state-of-the-art NLP methods. The company
conceived FARM, Framework for Adapting Representation Models. This tool is core to the
experiments set up in this current research and provides a convenient way to streamline the
fine-tuning of language models and for downstream tasks. The author of this thesis con-
tributed mainly in the set up of the evaluation routines, the regression prediction head and the
user interface for inference.
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4.2 Components

The framework has been designed in a modular way with a clear separation of concerns. The
provided components allow the user to easily run fine-tuning for downstream tasks, monitor
the training and evaluate the resulting model at the end. The configuration for each mod-
ule is made as explicit as possible and the building blocks abstract away most of the usual
implementation overhead.

4.2.1 Data Handling

Proper data handling is essential to any deep learning environment. The framework supports
reading input files and creates processing ready datasets that can be used for other downstream
tasks including training, fine-tuning or running inference. The processor is the component
responsible for interfacing the input. A broad set of processors is made available covering
classification, regression, NER and SQuad among others. In case the user needs a custom
processor, they can follow the pattern of the existing ones and create an efficient handler in
a short time. Subsequently, the Data Silo manages the created dataset and feeds it into the
Dataloader. This includes parallelization to accelerate the data processing. Once the data is
read and formatted, the Datasilo forwards it to the pertinent module according to the specified
task. The flow of data is visualized in the Figure 4.1.

Figure 4.1: FARM Data Silo

4.2.2 Modeling

The FARM framework’s modeling revolves around the concept of Adaptive Models as we
can see in the Figure 4.2. This parent class is based on a pre-trained Language Model and
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it appends one or multiple Prediction Heads for a specific downstream task. It conducts the
forward passes, calculates the total loss of the neural network and back-propagates the result
to readjust the weights of the whole Adaptive Model itself. With this building block approach,
many combinations can be quickly implemented with minimum effort.

In a similar way to the Processor component, if a user needs a custom Prediction Head for
a specific task, they can implement one following the existing pattern. If relevant enough,
both new Processor and Prediction Head can be submitted through a pull request to the code
repository and be integrated as a contribution for everyone else to use.

Figure 4.2: FARM Adaptive Model

4.2.3 Running and Tracking

To proceed with the training of a new model, the user needs to set up the data handlers and the
Adaptive Model, configure the hyper-parameters and execute the training routine that’s made
available as a method of the Adaptive Model class. During the training, regular evaluations
on the development set will be performed. At the end, a final assessment of the performance
on the validation (or test) set will conclude the process and a new Adaptive Model object with
fine-tuned weights will be returned.

From the start of the run until the final evaluation, the performance on the downstream task
will be logged and there is also the option to track the training in real-time. The tracking
relies on another well known open source platform named MLFlow 1. The platform allows

1https://mlflow.org/
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the collection of the details of the run as well as monitoring the evolution of the training. On
top of that, the user interface includes the side-by-side comparison of multiple runs.

4.2.4 User Interface

Included in the tool set of FARM is the user interface for inference and testing. At the moment
of this study, several BERT models are deployed, mainly English, Multilingual and German
BERT. The available tasks that the user can try out include Question Answering (QA), Named
Entity Recognition (NER) and document classification. The interface is currently hosted on
DockherHub2 as a ready to use container, but future development will open source the code.
Users will be then able to deploy their own models, tasks, layout and inference visualizations.
This feature has two purposes: the first one is to help NLP enthusiasts understand the capa-
bilities of nowadays technology through a user friendly interface (see figure 4.3). Second, to
make it easy for software engineers to showcase their own developments and models.

Figure 4.3: FARM Inference UI

4.2.5 German BERT

Finally, the FARM framework integrates a separate contribution of deepset which is the pre-
trained German BERT model. The researchers behind the original BERT paper underline
the advantage of single language pre-trained BERT models by estimating that they perform

2https://hub.docker.com/
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about 3% better than the Multilingual BERT3 on translation tasks using the XNLI dataset
[12]. This German BERT model will serve as the base model for the future development of
fine-tuning experiments in this research. Here we outline the principal facts about its pre-
training approach and performance results. More details can be found in the post published
by deepset4.

Pre-training
To pre-train a single language model that can be compared to the BERTBase model, a corpus
matching the size of the English data dump from Wikipedia (2,500M words) and BookCorpus
(800M words) would be preferable. The 3,300M words used for the BERTBase pre-training
totals about 16 GB of uncompressed text data.

For the pre-training of the German BERT, the dump from German Wikipedia (6 GB), news
articles from different sources (3.6 GB) and the data from OpenLegalData (2.4 GB) has been
utilized. This total of 12 GB of data is less than the amount used in the original BERT due to
the lack of available quality text datasets. The data has been cleaned with custom scripts and
sentences were extracted with spacy v2.1. The SentencePiece library has been used to create
the WordPiece vocabulary and the suggested Tensorflow tools were applied to convert the text
into an acceptable input for the pre-training of BERT.

The training of the monolingual model using the above-mentioned data was performed using
Google’s original Tensorflow code on a single Google Cloud TPU v2. Following the rec-
ommendations from Devlin et al [18], 810K steps were trained with batches of 1024 short
sequences of 128 tokens length, then longer sequences of 512 tokens were trained through
30K steps. The BERTBase pre-training reported 1M steps but this is hardly comparable, as
the hardware that has been used for BERTBase is much more optimized, mainly 4 Cloud
TPUs in Pod configuration (16 TPU chips total).

Evaluation and results
The resulting pre-trained German BERT has been evaluated with 5 shared tasks. These en-
compass a sentiment classification task divided in two levels of granularity from germEval18
[73] (measured with macro F1 score), 2 NER tasks respectively from germEval14 [4] and
CoNLL03 [62] (measured with F1 score for sequence labeling evaluation) and a document
classification task 10kGNAD [63] (measured with accuracy). The results were compared with
the Multilingual BERT. As shown the Table 4.1, the German BERT outperforms Multilingual
in 4 out 5 tasks. The only task that Multilingual BERT performs better is CoNLL03. This
shared task includes a dataset in English. By running the NER task on it using BERTBase, the

3https://github.com/google-research/bert/blob/master/multilingual.md
4https://deepset.ai/german-bert

45

https://github.com/google-research/bert/blob/master/multilingual.md
https://deepset.ai/german-bert


FARM Framework

results were in the same range of Multilingual and German BERT confirming that the obtained
metric for German is correct.

Table 4.1: Pre-trained BERT model multi-task performance comparison

BERT Models
Shared Taks Multilingual cased Multilingual uncased German cased (ours)
germEval18Fine 0.441 0.461 0.488
germEval18Coarse 0.710 0.731 0.747
germEval14 0.834 0.823 0.840
CoNLL03 0.850 0.844 0.848
10kGNAD 0.888 0.901 0.905

4.3 Open Sourcing

So, are the efforts of creating and maintaining a large-scale project worth the dedication?
Studies show that the benefits tend to outbalance drawbacks when it comes to contributing in
open source software [41]. A successful open source project brings the attention of industry
and academy talents, reinforces the momentum for advancing the technique, promotes the
group or institution behind the initiative and captures many adherents. The most valuable
outcome resides without doubt in its collaborative aspect: the open source projects are resilient
due to the engagement of the supporters who actively participate in the implementation process
by either contributing, providing feedback, fixing bugs or raising issues.

Open sourcing is, nevertheless, challenging. The end goal is building a community around
the open source project. Reaching out for the target segment of users requires capturing their
attention and interest, but first, the authors need to find the proper channel to do so. A recent
study showed that social media and blog posts are still important platforms to share the news
about a new development [8].

In spite of the incubating state of FARM and the recentness of German BERT, several par-
ticipants of the GermEval 2019 competition5 used them for the shared task 2, Identification

of offensive language. This task is divided into 3 classification sub-tasks. The first one is
binary detection of offensive language, the second one is a fine-grained labeling using 3 sub-
categories and finally the third sub-task requires detecting if the offensive language was im-
plicit or explicit.

5https://2019.konvens.org/germeval
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4.4 Summary

Using the pre-trained German BERT model in combination with their own data pre-processing
and fine-tuning, Paraschiv and Cercel (UPB) [48] obtained good results. This led them to
the first position for both the shared task 2.1 and 2.2, binary and multi-label classification
respectively. On the other hand, the winning team for the task 2.3, Risch, Stoll, Ziegele and
Krestel (HPI) [55] solely used the FARM framework and German BERT.

4.4 Summary

FARM takes away most of the complexity by abstracting the common parts of modern deep
learning approaches for NLP. Its focus on transfer learning makes it the ideal framework to
work with pre-trained models. The relevance of usefulness of FARM has been validated by
the positive results at the GermEval 2019. Finally, the growing support by the open source
community will hopefully maintain the code repository at the pace of research and steer the
future design decisions to the right port.
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5 Methodology

The current chapter presents the considered data resource and how we use it to train a domain
specific BERT model as well as creating an adapted vocabulary. We also clarify the fine-tuning
methods and evaluation downstream tasks.

5.1 Introduction

In order to find the answers to the research questions, firstly, an adequate methodology has to
be defined. This will be heavily inspired by the related work and build upon previous research.
In fact, a similar approach to the domain adaptation that has been performed by BioBERT will
be adopted. Nonetheless, the available tasks and datasets for the legal domain in German
language are extremely different in nature. Therefore, we present in this section the chosen
dataset and the considered tasks to evaluate the fine-tuned model.

5.2 Dataset

Data selection
Legal data openly available in German is scarce. There are a number of internet resources,
mainly law portals, listing the rules of the German legal system. But few of them are aiming
to provide the available data for processing instead of consultation. The two online resources
that conform to the requirement of a minimally structured data that will allow data scientists
and machine learner engineers to operate with relative ease without recurring to scraping are
OpenLegalData and OpenJur. When compared, OpenLegalData is becoming an important
player in the scene of legal data mining, offering resources such as Jupyter Notebooks with
different analysis on their own data. In February 2019, they published a dump of their database
for public use in NLP. OpenLegalData also offers an API to conveniently fetch documents.
OpenJur has, on the other hand, more content, about 450.000 court decisions and verdicts
compared to the approximately 104.500 cases from OpenLegalData. Unfortunately, at the
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date of this research, exports of the database from OpenJur were not available nor the API was
ready. Hence, the selected dataset for the research is the one from OpenLegalData.

Data pre-processing
The data provided by the database dump of OpenLegalData is a collection of JSON structured
in the same way it would be obtained via API request. Each document is described by fields
such as:

1 {

2 "id": 318559,

3 "slug": "bgh-2019-03-26-xi-zr-37218",

4 "court": {

5 "id": 4,

6 "name": "Bundesgerichtshof",

7 "slug": "bgh",

8 "city": null,

9 "state": 2,

10 "jurisdiction": null,

11 "level_of_appeal": "Bundesgericht"

12 },

13 "file_number": "XI ZR 372/18",

14 "date": "2019-03-26",

15 "created_date": "2019-04-13T10:00:11Z",

16 "updated_date": "2019-06-11T12:49:20Z",

17 "type": "Beschluss",

18 "ecli": "ECLI:DE:BGH:2019:260319BXIZR372.18.0",

19 "content": "<h2>Tenor</h2>\n\n<div>\n <dl class=\"RspDL\">\n <dt/>\n '
<dd>\n <p>Die Beschwerde der Beklagten gegen die '

Nichtzulassung der Revision in dem Urteil des 6. Zivilsenats des Oberlandesgerichts '
Stuttgart vom 19. Juni 2018 wird zur&#252;ckgewiesen.</p>\n... "

20 }

The court block (lines 4-12) is an important metadata that will serve as a label for classifica-
tion. Then the text is included in the content field, although coded in HTML. The personal
data is already anonymized by OpenLegalData. For the current study, the text of each docu-
ment has been cleaned by removing all HTML enclosing tags and trimming the trailing spaces
and tabs. The resulting data is a TSV file with 104.500 case laws preserving every field but
with a ready to process cased corpus.

5.3 Tools and environment

Software
Deep Learning in both research and production has been dominated by the python program-
ming language. This is due to its lean learning curve and eco-system of data science oriented
tools. Between the two major open source machine learning framework, we choose PyTorch

50



5.4 Language Model Fine-tuning

(implemented by Facebook) over TensorFlow (by Google) because of its simpler approach and
reduced learning overhead. It is worth mentioning that at the moment of this thesis, the latest
Pytorch version was 1.2 and it didn’t offer support for Google Cloud TPUs until 1.3, although
it already included support of tools such as TensorBoard that was exclusive to TensorFlow.
Using PyTorch as foundation, we also use FARM (chapter 4) as an abstraction to streamline
all the experiments in this current study.

Hardware
All the deep learning computing that train faster on GPU was performed on Telekom Cloud
GPU-accelerated instances with 8 vCPUs, 64 GB RAM and NVIDIA V100 with 1 core, more
experiments were conducted on a server instance with the same settings on Google Cloud
Platform. The remote machines ran Ubuntus 16.04.6 LTS Xenial Xerus as operating system,
the local machine used MacOS 10.14 Mojave.

5.4 Language Model Fine-tuning

Following the principle of fine-tuning in transfer learning (section 2.4), we "pre-train" our own
domain specific BERT model using the German BERT language model (subsection 4.2.5) as
initialization in the same way as BioBERT (subsection 3.2.1) does. If we would pre-train
from scratch like SciBERT, we could expect better results, but resource limitations made the
expensive required hardware unattainable. Apart from that, it would have entailed a very long
computation time, more than a week according to the authors of SciBERT.

The language model fine-tuning process further trains the model on the domain specific data
making it faster as it should require less data. The training processes are the Next Sentence
Prediction task and the Masked Language Modeling task (subsection 2.5.3), which are the two
original self-supervised tasks for BERT pre-training. Using FARM, we set up the processor
for the domain data and an adaptive model with prediction heads for the respective tasks. Then
we fed a data sample containing 500MB of OpenLegalData documents. The LM fine-tuning
lasted about 12 hours on a cloud machine equipped with 4 V100 GPUs and reported positive
results included in Table 5.1

Table 5.1: German Legal BERT LM Fine-tuning results

Taks Test Acc. Test Loss Validation Acc. Validation Loss
Next Sentence Pred. 0.934 0.161 0.937 0.155
Masked LM 0.617 0.025 0.627 0.027
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5.5 Domain vocabulary insertion

When fine-tuning a pre-trained language model on domain specific data, the resulting model
has updated weights that represent better the characteristics and the vocabulary of the target
domain (subsection 2.4.2). Before starting the process, it is required to specify a custom vo-
cabulary file to incorporate into the base model. Therefore, we need to extract the vocabulary
relevant for the legal domain. A sample of 1.000 documents has been selected from the Open-
LegalData dataset and the Byte Pair Encoding algorithm (BPE) has been used to analyze the
words and sub-words units [65]. The tokenizer that we utilized is the one from German BERT.
This produced a collection of 145.380 words broken down in an array of tokens.

Once the collection of tokens was obtained, these tokens were compared against the segments
of a legal dictionary obtained through dict.cc. The new tokens that did not belong yet to the
original German BERT vocabulary were added, resulting in an increase from 27.000 to 29.910
tokens. There is a 90% overlap of the original vocabulary with the legal one.

With the insertion of our custom legal vocabulary, the tokenization provides different seg-
mentation of words affecting the input sequence for BERT and we expect to slightly im-
prove the performance in the same way SciBERT did by creating their own SciVocab (subsec-
tion 3.2.2).

5.6 Hyperparameters search

The hyperparameters can also be optimized to attain the highest performance [16][5]. These
are the parameters that the model cannot learn by itself and need manual adjustment. Examples
of hyperparameters include the learning rate, the number of training epochs, the train batch
size, the warm-up period, the dropout rate and all the parameters that could be adjusted in the
optimizer like the Adam optimization algorithm (section 2.1.2). Architectural configurations
such as the number of hidden layers and nodes could also be considered hyperparameters, but
we won’t alter these factors since we will be evaluating our BERT against existing ones fine-
tuned with the default values. For the downstream tasks we perform non exhaustive random
search mostly on the learning rate.
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5.7 Evaluation Tasks

The legal domain provides a rich context for applying NLP for a variety of goals. Inspired by
Dale’s review of NLP in the legal domain [14] and taking into account the idiosyncrasy of the
data structure from the information provided by OpenLegalData, three different downstream
tasks have been devised. The following tasks will serve to evaluate the different models in the
legal context: a classification task, a regression task and a semantic similarity task.

5.7.1 Baselines

For the tasks mentioned above, we compare the BERT model with other well-researched and
robust methods as baselines. This way, we can judge the impact of BERT and specifically our
German Legal BERT on tasks that cover different complexities and goals. The chosen baseline
models are the Bag-of-Words (BOW) complemented with term frequency–inverse document
frequency (TFIDF) [56] and FastText [23].

Bag-of-words with TFIDF
The bag-of-words is a model similar to the N-gram language model that counts only occur-
rences of words and disregards the order, but considering N = 1. TFIDF recalculates the
weight of the words taking the assumption that a term, that is rare throughout the whole corpus
and appears frequently in a given sentence, is more important to the meaning of the sentence
than words which are generally frequent in the corpus. From a semantic perspective and espe-
cially taking into account references and pronouns, this assumption is not always applicable.
Taking for example "a judge" and "the judge", the first can refer to any person practicing this
profession and the latter to a very specific and unique person. This model is very flexible and
can be used in a large variety of tasks.

FastText
FastText is a library designed to address text representation and classification. It is based on
word2vec, although it extends the model by treating the characters as the smallest unit and
not words as word2vec and Glove would do. FastText uses a character level N-gram model.
This makes it capable of constructing words that are OOV by computing word vectors using
N-grams from 3 to 6 letters. It is able to produce word embeddings from a corpus that can be
used for different downstream tasks but pre-trained word embeddings are made available and
the German pre-trained model will be used for the evaluations.
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5.7.2 Fine-tuning BERT for downstream task

Neural transfer learning (section 2.4) allows fine-tuning for a specific downstream task. In a
similar way to the Language Model Fine-tuning (section 5.4), we use the pre-trained BERT
models we aim to compare, copy the weights of each network, append an additional layer
for each downstream task and fine-tune the new structures. We included each task specific
output layer using the composition that FARM relies on, that is adding a prediction head to
the base model forming an adaptive model (subsection 4.2.2). Figure 5.1 displays the process
of fine-tuning by copying the model’s weight and feeding annotated data for a downstream
task.

Figure 5.1: Fine-tuning process

5.7.3 Classification

We implemented several classifiers that can take a case law as input and classify it in the
correct court and level of appeal. The application of laws and the trials corresponds to specific
courts depending on the nature of the case, this segmentation allows the classification. This
task is analog to the one researched by Sulea et al (subsection 3.3.1).

In order to implement TFIDF, we use the Scikit-Learn library (sklearn), mainly the TfidfVec-
torizer and the LogisticRegression methods. The relevant parameters are L2 normalization,
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maximum features set to 10.000 and using the word analyzer. For FastText, we use the default
classifier that comes included in the FastText library. The hyperparameters are as follow learn-
ing rate of 1.0, 5 epochs, using bi-gram, a bucket size of 200.000. The buckets is a concept
the authors use to define the dimension of the model in addition to the vocabulary size. The
remaining parameters are word vectors of size 50 and loss using hierarchical Softmax. The
proportion of the test sample is 20% of the available examples.

For BERT models, we take Multilingual BERT and German BERT as baselines for deep neu-
ral network approaches. But the relevant evaluation is centered in the German Legal BERT
Model. To fine-tune for this task, we use FARM, create an adaptive model with the classifica-
tion prediction head. FARM’s classifier for BERT deals with imbalanced classes by weighting
them with CrossEntropy. The output layer that has been added uses a simple feed forward
network and consequently applies a Softmax to obtain the prediction probabilities. The hy-
perparameters that we applied are: max. sequence length of 512 tokens, 5 epochs, batch size
of 32, learning rate set at 2 · 10−5 and 10% for the warm-up proportion.

5.7.4 Linear Regression

The linear regression task aims to predict the amount in dispute given a court decision. The
court resolutions are highly variable in content, length, style and even structure. Hopefully
they are all based on a predefined template and certain sections such as the case summary
or the reasoning for the judge decision are preserved. One very common element in most
litigations is the amount in dispute, where the plaintiff claims a certain amount of monetary
value to compensate for the damages they suffered. This current downstream task could be
used by the law practitioners to verify the adequateness of the monetary claim.

We use the same models as for the classifier, however, a degree of adaptations is required
to perform regression. The linear regression with TFIDF has been implemented again with
Tfidf-Vectorizer but this time using the sklearn LinearRegression function for computing the
ordinary least square regression. The Standard Scaler, a preprocessing function provided by
sklearn, was applied in order to remove the mean and scale to unit variance. We keep the same
parameters as in classification, applying L2 regularization (Ridge Regression) yield better re-
sults. The FastText library doesn’t offer linear regression, so we extract FastText sentence em-
beddings for the whole document and then feed them to the same LinearRegression function
as for TFIDF but in this case, L1 regularization (Lasso Regression) was the best option.

We implemented a prediction head for regression in FARM in order to fine-tune the BERT
models. It also features the Standard Scaler, it learns using the Mean Squared Error as cost
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function (see Equation 2.3) and outputs continuous predictions. The same hyperparameters
used for the classification performed equally well for regression, but we found that 8 epochs
performed best.

5.7.5 Semantic Similarity

Searching documents by similarity has many possible applications in the legal profession.
Recommendation systems and more efficient search engines would accelerate the legal re-
search for valid arguments based on precedent cases. This would impact positively the effi-
ciency of attorneys’ daily work.

We calculate the similarity with TFIDF using the cosine similarity between document pairs
and sorting the highest scoring ones. Cosine similarity calculates the cosine of the angle
between the two document vector representations and the result is bound by [0,1], 1 indicating
that the vectors are identical. The sklearn library comes again handy for this calculation. For
FastText, we also apply cosine similarity but it is well known that computing the pairwise
distance using this method directly on word embeddings yields poor results. We apply the
Smooth Inverse Frequency (SIF) [1] on the FastText embeddings before feeding them to the
cosine similarity.

The similarity using BERT models was implemented utilizing the Next Sentence prediction
head. We fit the tokens of the two documents to be compared into the expected input format
(subsection 2.5.4). The amount of tokens for each sequence is distributed evenly. The doc-
uments are then sorted by highest score, in other words the most similar ones, for posterior
evaluation.

User evaluation
However, the lack of proper labeling in the legal data renders the automatic evaluation of the
similarity task impossible. To be able to do so, a complete citation of related cases should be
attached to each document. This is unfeasible, not even manually by a lawyer, and it would
also require a much larger dataset of case laws as the existing citation network continuously
expands.

To circumvent this issue, we opted to evaluate the performance of the different models on
the similarity task by the means of a user evaluation. The experiment consists in emulating a
search based on a document, where ten hypothetical results describing supposedly related case
laws are presented to the user, and their task is to go through these documents and manually
determine if they are relevant or not to the reference document. The criterion for relevancy
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here is the similarity. Yet, the degree of required resemblance is arguable and the evaluation
should be ideally taken by a professional of the legal area.

We originally considered presenting 5 different case laws to each user to evaluate. But the
amount of time required per case law diverged from an average of 7 minutes for lawyers
and 15 minutes for non-lawyers. 5 case laws is an unfeasible evaluation due to its excessive
length. Therefore, a handpicked case where the results were not so trivial was chosen. This
case1 describes a claim against the tax office of Rheinland-Pfalz. The plaintiffs are a couple.
The wife suffers a car accident on the journey between home and workplace and the legal
dispute is whether the health treatment costs derived from the accident can be deducted as
income-related expenses from her income. The result is that the legal action is dismissed and
the claimers are ordered to pay the costs. This case is fairly complex and specific as it involves
a public institution, a car accident, treatment costs and taxes for a married couple. There are
many cases involving taxes related to the transportation to work, some concerning an accident
as well, but not dealing with the tax issue from the costs of the hospital care.

To prepare for this test, we produced the similarity matrix of the selected case with all the
different cases in the dataset using all the different models (Table 5.2). We serve the top 10
returned documents to the user to evaluate.

Table 5.2: Table of top ranked similar documents per model, document ids are shown with the
similarity score

Rank BOW + TFIDF +
Cosine Similarity

FastText + SIF +
Cosine Similarity

German BERT German Legal
BERT

1 119538, 0.6353414 137553, 0.9998200 133656, 0.9924986 133656, 0.9996964
2 133656, 0.6253577 125238, 0.9998052 137163, 0.9648799 89404, 0.9990593
3 140999, 0.5130107 91421, 0.9998046 89404, 0.6492820 90209, 0.9989531
4 132758, 0.5063738 136275, 0.9997901 107185, 0.4611582 140999, 0.9982892
5 167974, 0.5022549 100185, 0.9997861 105995, 0.3971383 162168, 0.9980289
6 66324, 0.4969475 80525, 0.9997857 115690, 0.3920132 104356, 0.9976148
7 66320, 0.4777645 162536, 0.9997842 110306, 0.3693900 133607, 0.9974799
8 112683, 0.4774234 108948, 0.9997798 91923, 0.3505391 92997, 0.9974213
9 137163, 0.4582637 137708, 0.9997791 71363, 0.3448213 98772, 0.9967712

10 135572, 0.4533617 103588, 0.9997768 98886, 0.2499939 105612, 0.9962702

We provide participants with an UI following the recommendations for information retrieval
systems with users outlined by Kelly [28]. Aware of the duration and the cognitively de-

1https://de.openlegaldata.io/case/fg-rheinland-pfalz-2016-02-23-1-k-207815

57

https://de.openlegaldata.io/case/fg-rheinland-pfalz-2016-02-23-1-k-207815


Methodology

manding task that is finding out which legal documents are the most similar ones, the user
experience is an aspect that received a lot of attention and the design of the interface has been
improved through several design iterations and extensive user testing.

The UI arrangement places the reference case in the left column, the user can browse through
ten hypothetical search results in the right column and the content of the selected result would
be loaded in the middle column for an easier side by side comparison. A retrieved document
can be mark as relevant or not using action buttons placed on the top and on the result pre-
view. The considered case law in the central column has its evaluation state represented using
background color (light green for relevant and light red for unrelevant) and it’s linked to the
preview thumbnail on the right column for easier recognition and action feedback as we can
see in Figure 5.2. This evaluation is preceded by a introductory page and the layout and colors
are chosen to evoke a professional feel according to the original desired user target.

Figure 5.2: User evaluation UI

As a within-subject experiment, the reference case law remains the same one for all the partic-
ipants, but the language model retrieving the pre-computed results is different for every new
user, updating the ranking of similar case laws.
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6.1 Introduction

In the current chapter, the experimental setup will be briefly outlined. We give an in depth
account of the obtained results and proceed to analyze them per downstream task. Inter-
pretation and discussion of the experimental results and the factors leading to them will be
provided.

6.2 Experimental Setup

6.2.1 Data

We adapt the OpenLegalData dataset section 5.2 for the classification, regression and sim-
ilarity tasks. For the classification, we preserve the labels about "Jurisdiction" and "Level
of Appeal" and the cleaned text resulting from pre-processing the corpus. Cases with no la-
bels were discarded, in the end we obtain 54.654 cases with "Level of Appeal" and 69.298
containing the "Jurisdiction" label.

For the regression task, we discarded the cases where no dispute amount was involved. The
relevant documents were reduced to 12.481 case laws. Then, we isolated the numerical value
describing the compensation and removed the sentence containing this amount in order to hide
it from the model during training.

6.2.2 Metrics

In this section we will give an overview of the different metrics that are used to measure the
quality fit of the models and the different downstream tasks. Most of them are common from
the field of Information Retrieval as it correlates with the matching quality of the returned
documents with the original query.
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F1 score
The F1 score considers both the precision P and the recall R of the test to compute the score.
The formula is given by Equation 6.1, where TP are true positives, FP are false positives and
FN are false negatives. The F1 score is the harmonic mean of the precision and recall, when
perfect precision and recall are reached, F1 returns 1.

F1 =
2PR

P +R
=

2TP

2TP + FP + FN
(6.1)

A macro-average F1 score computes the metric independently for each class and then take the
average, hence treating all classes equally:

FM
1 =

n∑
i=1

wiF1i (6.2)

A micro-average F1 score aggregates the contributions of all classes to compute the average
metric. In a multi-class classification setup, micro-average is preferable to mitigate class im-
balance:

F µ
1 =

2
∑n

i=1 TPi
2
∑n

i=1 TPi +
∑n

i=1 FPi +
∑n

i=1 FNi

(6.3)

R-Squared, Coefficient of Determination
The coefficient of determination, denoted R2, provides a measure of how well observed out-
comes are replicated by the model, based on the proportion of total variation of outcomes
predicted by the model.

R2 = 1− SSres
SStot

= 1−
∑

i(yi − ŷi)2∑
i(yi − y)2

(6.4)

Equation 6.4 describes R2 where SSres is the residual sum of squares and SStot is the total
sum of squares.

6.3 Classification

The first task refers to the classification of case laws according to their Jurisdiction and Level
of Appeal. Similar to the GermEval tasks for offensive language detection, there are two
different classification levels and the distribution of classes is unbalanced as we can see in
Figure 6.1 and Figure 6.2. We measure the performance of the classifiers with the weighted-
averaged F1 score, averaging the support-weighted mean per label. The results are shown
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Figure 6.1: Distribution of Level of Appeal labels

Figure 6.2: Distribution of Jurisdiction labels

on Table 6.1. The classification was highly effective across all the different models. The Ju-
risdiction that describes 6 different major courts, and therefore labels, was almost forecasted
perfectly. We believe that the nature and diversity of topics covered per jurisdiction -for ex-
ample constitutional, tax, social- permitted the classifiers cluster the case laws in well defined
areas of the vector space. The Level of Appeal is also very performant but not reaching the
accuracy levels of the Jurisdiction labels. The slightly lower F1 score is mostly due to the low
recall on one label, the Amtsgericht. In the test set, only 471 documents are tagged with this
court, resulting in a lower recall of 0.65 in the case of TFIDF. When compared to Bundes-
gericht, this area includes 6.161 documents and yields a recall of 0.99.
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Table 6.1: Results for classification task

Jurisdiction Level of appeal

TFIDF 0.99 0.95
FastText 0.99 0.97
Multilingual BERT 0.99 0.96
German BERT 0.99 0.97
German Legal BERT 0.99 0.96

Using the same hyperparameters for all the BERT models, we notice that German Legal BERT
did not outperform German BERT but yields close results. However, we would have expected
a bigger gap between the performance of Multilingual BERT and German BERT too, but the
results are comparable. This leads us to believe that the BERT models are reaching their
full potential for the classification task on this dataset, improving over TFIDF and matching
FastText.

6.4 Linear Regression

The linear regression task aims to predict the amount in dispute of a case. This amount is
estimated by the judge and it could vary considerably due to smaller details. We expect a loose
correlation with the semantics of the corpus and that it can be better reflected with models that
capture the context better.

Figure 6.3: Distribution of compensation values
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Upon first exploration of the data, we noticed that the distribution of the compensation
amounts follows the slope of a multiplicative inverse function ( 1

x
) indicating that most cases

were smaller than 10.000 EUR in disputed amount. However, we applied a ceiling to values
greater than 100.000 EUR to define a manageable range of predictions and this produced an
accumulation towards that end as we can see in Figure 6.3.

Table 6.2: Results for regression task

R2

TFIDF 0.47
FastText 0.35
Multilingual BERT 0.24
German BERT 0.37

German Legal BERT 0.38

In Table 6.2 we can observe the evaluation results of the linear regression task using the TFIDF,
the FastText embeddings and the fine-tuned BERT models. The closer the R-squared is to 1,
the better. In the current evaluation the best model corresponds to TFIDF which predicts better
the amount in dispute, the coefficient of determination is relatively low and doesn’t indicate
a strong correlation, however the Figure 6.4, which depicts the linear regression prediction
and the observations, subtly hints in favor of an existing correlation but as expressed by the
coefficient of determination, it is not significant.

Figure 6.4: Plot of linear regression on monetary values using the test set.
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The mediocre performance of the BERT models can be explained by the restriction on the
amount of data they can process, When traditional ML models like TFIDF and FastText can
be fed with entire documents independently of their length, BERT can only take a maximum
sequence length of 512. This is an issue already mentioned in many related literature, point-
ing out that BERT competes in disadvantage of amount of processed data. The German BERT
model shows only a marginal improvements over FastText for this regression task, the Ger-
man Legal BERT presents a very small improvement, but they both still perform better than
Multilingual BERT which is the model that scores the lowest in this case.

6.5 Similarity

Before deploying the user evaluation for the similarity task, we manually performed a sanity
check and verify that the given results contained relevant ones. To our surprise, the Multi-
lingual BERT scored high similarity for all the documents and wasn’t capturing the case’s
specifics. The top similar cases returned were all unrelated. We tested Multilingual BERT
with other corpora from Wikipedia and found out that it is capable of distinguishing general
context such as history, politics, science, but not so well between subcategories. This is most
likely due to the sampling of German data used to train the model that is also compatible with
other 103 languages. We decided therefore to exclude Multilingual BERT from the Similarity
task.

The similarity is measured by the Mean Average Precision (mAP) calculated from the answers
given by the participants of the evaluation. The formula for the Average Precision of an
individual evaluation response is:

AP@10 =
1

10

10∑
i=1

TPCount
i

(6.5)

where TPcount is the number of true positives at the position i. With all the collected answers
N , we can average them as:

mAP =
1

N

N∑
i=1

APi@10 (6.6)

We sought out for participants with the ideal profile in mind. Considering the technicalities
of the field, the subjects should be native German speakers, understand legal language and
have experience in legal research. This profile corresponds to the segment of law practitioners
which includes attorneys and judges. However, engaging professionals from this field turned
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out to be more challenging than expected, so the conditions were extended to German law
students and German native speakers with an interest in law. By the end of the evaluation, we
collected 16 answers, 4 per model. The results are turned into mAP per model is listed on the
table 6.3:

Table 6.3: Results for similarity task

mAP

TFIDF 0.2141
FastText 0
German BERT 0.2025

German Legal BERT 0.2565

Checking manually the set of returned documents, we noticed that it contains on average 2 case
laws that are easily identifiable as similar. TFIDF and German BERT are clearly indicating
this tendency. In certain cases the participants consider that another document ranked lower is
relevant to the case but there is a general consensus that the top 2 retrieved documents are very
similar. Nonetheless, when observing Table 5.2, we see that the TFIDF, German BERT and
German Legal BERT don’t share all the same top ranked documents, but the legal version still
yields a higher mAP. This indicates that other returned documents were found similar enough
to be relevant to the case. It is interesting to note that the decisions are more variable. This is
most likely due to the fact that some aspects of the reference case were shared in the retrieved
case but not all of them, making the user hesitant.

The pilot tests with different cases as reference showed that FastText with SIF was able to
retrieved relevant documents, however for this specific case, it was not capable of returning the
two documents that are definitely similar nor any other cases the users would have considered
relevant.

This similarity experiment shows that the fine-tuning on the legal domain had an effect on
the Next Sentence prediction head which is the fine-tuning setup we use to produce similarity
scores. The results are however not significant, and one can discuss about the usefulness of
retrieving documents that cover critical information partially.
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7 Conclusion and future work

7.1 Review

We presented an example of transfer learning of the recent BERT model to the legal do-
main. Based on related literature, we proceeded with an approach that doesn’t require the pre-
training of the whole model from scratch, but instead initializes the weights of the model with
an existing one, German BERT in our case. It is a convenient approach for several reasons:
First, when the volume of available text corpora is not large enough to match the specifications
for pre-training an entire new model. Second, the computational time, still considerably long
and dependent on the amount of additional training data, is much shorter than the traditional
pre-training that would expand over a week.

As suggested by Sebastian Ruder [60], the adaptation requires the source domain and the target
domain to share a common base. In our case, it is the understanding of the German language.
And following this principle, the adaptation was performed using the German BERT instead of
the Multilingual one, as the evaluations during the pre-training of the German model obtained
results that were superior to the Multilingual.

The creation of a custom vocabulary should help German Legal BERT model better the lan-
guage by weighting the additional embeddings more accurately. Nonetheless, the original
vocabulary already includes 90% of the legal vocabulary. This is one of the characteristics
that renders the legal domain especially hard to grasp for both humans and machines, many
of the day-to-day words are imbued with a different meaning when used in the legal context.
SciBERT, the pre-trained BERT model for scientific texts [3], improves around 0.60% on F1
across all the datasets but their original-scientific vocabulary overlap is just 47%. In our case
the effects of vocabulary use are rather diluted, specially when we don’t have a battery of
evaluations to firmly discern the improvement.

Fine-tuning for the classification task gave positive results for any BERTBase models, although
the language fine-tuning for the legal domain didn’t yield improvements over the base model
German BERT. For regression, all the BERT models are performing below the TFIDF and
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FastText baselines, and no major differences were present between them. However, when
it comes to the similarity task, the are noticeable contrasts. Multilingual BERT wasn’t able
to grasp the more fine grained differences between legal documents, as this model considers
them all similar because they belong to the same domain, whereas German and German Legal
BERT models are able to capture the similarities on the different legal topics. German Legal
BERT seems to be able to provide documents that are more related to the reference document
than German BERT.

7.2 Discussion

The German BERT model has been trained using a corpus from OpenLegalData among others.
We believe that the results of fine-tuning the language model would have been much more
significant if the model would have been pre-trained on more general information just like
BERTBase did with Wikipedia and Book Corpus. We think that German Legal BERT would
improve even more in the semantic similarity task, but not necessarily for classification and
regression, as fine-tuning for the tasks did yield similar results for Multilingual, German and
German Legal BERT. We can therefore recommend the use of TFIDF and Word embeddings
methods for common tasks such as classification especially when the task-specific data is
composed by long text documents.

One of the biggest weaknesses of BERT is the limitation in the accepted sequence length.
512 tokens is sufficient for many specific tasks – the GermEval shared tasks for instance –
but it is very far from enough in order to approach problems from the Information Retrieval
field effectively. For this kind of tasks, the model isn’t an out-of-the-box solution but rather
a building component capable of tackling auxiliary tasks for later assembling more complex
systems. Solving properly the length constraint with other methods is crucial in order to fully
exploit the potential of this model.

The similarity task could have benefited from a larger sample of participants and mainly from
the participation of more legal professionals. They could discriminate the relevancy of the
documents much better than just native German speakers. Depending on the user base taking
the evaluation, the criterion of the ranking would subtly shift. Attorneys would be able to
deem if a case is relevant or not beyond just the semantic or topic similarity. Details that
legally untrained users would have omitted would certainly be considered by lawyers.

The fine-tuning process saves considerable amounts of time and yields acceptable results. In
the comparative BioBERT (language model fine-tuning) and SciBERT (language model pre-
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training), the latter obtains better results but also at the cost of requiring more training data
and training for over a week on very expensive machines. If models keep growing, this would
lead to a not democratic situation for research, where only more favorable position institutions
will be able to perform experiments. Other downside that the research community showed
concerns about is the impact of the increasing interest in deep learning and the practice of
it on other social aspects such as sustainability. The carbon footprint of these computations
is surprisingly high and some researchers like Schwartz [64] already suggest new metrics to
tie together energy efficiency and performance of the model. We believe that if this mea-
sure would be applied to the comparison between BioBERT and SciBERT, BioBERT would
emerge victorious. In our case, the moderate improvements that the German Legal BERT
provided would probably not justify the pre-training of the model when taking the efficiency
considerations that Schwartz proposes. However, it will very likely produce much better re-
sults when adapting to a target domain that is further from the base domain. Transfer learning
in NLP is still at its early stage and will very likely become a key driver in the industry and in
research.

The low resourcing of German legal data and task-specific dataset makes the research in this
area difficult. In contrast, AI applied to the legal domain is growing exponentially in China1,
as the ethics guidelines and data privacy regulations are much more permissive. A clear ex-
ample is the amount of publicly available criminal cases on one single governmental portal of
Wenshu2 that sums up to almost 80 million documents. While still adhering to the strong data
protection laws of German, more efforts should be invested in the collection of quality legal
corpora as well as proper labeling for progress to be made in Germany.

7.3 Future work

As discussed above, data scarcity is a major obstacle. If there would be more available data,
we could pre-train from scratch German Legal BERT model to compare with the current one.
But as for now the other possible improvement using language fine-tuning would be train-
ing further with the remaining data of OpenLegalData and evaluating again. Alternatively,
the legal language utilizes many terms and expressions from current language to refer to no-
tions proper to the legal domain, being able to remove the ambiguity of these nuances would
eventually lead to an performance enhancement of the model. Extending the contextual word

1http://cail.cipsc.org.cn/
2http://wenshu.court.gov.cn/
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representations with specific world knowledge about law and legal language would definitely
be an interesting follow-up research.

Studying ways to solve the issue of the maximum sequence length so the BERT model can
produce document embeddings is a great challenge but also could produce interesting find-
ings. The document embedding problem has been approached by Mikolov with an extension
of Word2Vec called Doc2Vec [32], but there is still much room for improvement. The con-
textualized word embeddings from BERT would be an interesting approach to produce better
document embeddings.

The author of this work believes that in domains such as legal, the only way to attract the
professionals to participate in an experiment is in case the experiment itself provides them
direct value. Therefore, it is believed that the similarity task, would have a better participation
rate from attorneys if it would be a useful tool offered to them. This means, a full system with
a search engine where they can search for documents for the current cases they are dealing
with, would collect much more information about the performance of the model powering
the system. This would be the ideal experiment, but comes also with slight ethical issues.
Once the evaluation has been done, the most common thing to do is to stop the system to
avoid maintenance and infrastructure costs. If the tool results useful to the attorneys and
they integrate it to their daily workflow, it would be unethical to deprive them from this tool.
Alternatively, research on the effectiveness of NLP and IR methods could be viable on open
knowledge platforms such as OpenLegalData. Many indicators of document relevancy could
be anonymously measured through user behaviors and the tool would remain available to the
community as long as the project exists.
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