
1

Design Space Exploration of N Modular
FPGA Structures

Joseph Abdilla
Bsc. Thesis
July 2019

abdillaj42@gmail.com

F

Abstract—The purpose of this paper was to provide a design
space exploration of previously defined FPGA structures as
defined by Robert Glein et al. Using their methods to analyse the
reliability of such structures this exploration is undertaken using
both a Genetic algorithm and exhaustive search. Effort was
made to vary specification’s of voters using in these structures,
and show their effect on the structure’s reliability. It was seen
that artificially limiting the k metric, of the k of n voter, showed
improvement of a given structure’s reliability even when con-
sidering the possibility of correlation of errors overruling correct
results.

1 INTRODUCTION

R EDUNDANCY is defined by Laprie as: ”Re-
dundancy is the provision of functional

capabilities that would be unnecessary in a
fault-free environment.”.[JCL93] Modern sys-
tems, can be and are, expensive, safety critical,
complex, exposed to hazardous environments.
Any one of these factors require fault tolerance
something which harsh operating conditions
are only likely to reduce. One such area of
interest is space, where devices are subject to
large temperature fluctuations, chemical expo-
sure, and radiation, among other things. An
example being the Voyager space probes, uti-
lizing redundant parts in order to maintain
functionality as the craft aged and wear accu-
mulated.[Sim00]

This paper will discuss and analyse the miti-
gation of transient effects in both a commercial
and space-grade FPGA.

Figure 1. Diagram of the different radiation ef-
fects FPGA’s are susceptible to.[Mes14]

2 TYPES OF REDUNDANCY

The problem of providing redundancy will be
divided into two types, that of software and
hardware.

2.1 Software redundancy
Software redundancy is a far larger and open
problem when compared to Hardware redun-
dancy. [Dub] Simply paralyzing modules does
not fix the problem as the erroneous state is
present in all modules. It is difficult (if not
impossible) to reduce software modules into
defined types, frustrating attempts to create a
systematic method for redundancy planning.

This being one of the reasons that software
redundancy was not chosen as the focus for
this paper.



2

2.2 Hardware redundancy
This is what comes to mind for many when
the term ”redundancy” is thrown around. The
method of supplying multiple physical copies
of modules in order to ensure against the fail-
ure of any one.

2.2.1 Effects of a radiation environment on
Integrated Circuits
When thinking about designs for a high ra-
diation environment there are many factors
and metrics to take into account. Effects can
be split into types.[Tri16] Some examples are:
Overall effects: Total Ionizing Dose, Enhanced
Low Dose Rate Sensitivity. Transient effects:
Single Event Effects, Single Event Functional
Interrupts. Permanent destructive effects: Latch
Up, Stuck Bits. All of these effects affect semi-
conductor components in different ways and to
different degrees, permanent damage or down-
time being the result. Fig: 1 shows this in
diagram form. While permanent effects result
in damage of the device or module, the affect
of transient effects on device function can be
mitigated or even masked when they occur.

2.2.2 Physical component duplication
A simple example of spacial redundancy being
a system comprised of N units in parallel,
with only one functional at any one time, a
different one taking over the workload as soon
as a failure occurs. This assuming perfect unit
switching behaviour and perfect unit failure
detection. The equation for which being rather
trivial [Sch15]:

R(t) = e−λt
N−1∑
i=0

(λt)i

i!
(1)

Where λ is failures per hour, t is the system
operating time, N is the number of parallel
units, and R(t) is the system reliability from
0 to 1. Where 1 is completely reliable and 0 is
never reliable.

Fig. 2 shows that the decrease in reliability
gain for each additional unit added is asymp-
totic, as is expected from the equation. While
this model is certainly promising for the ap-
plications of parallelism it comes with some

Figure 2. Simple parallel implementation of
Hardware redundancy

caveats: the units cannot fail while not in use;
the is no loss of functionality during the switch-
ing (if there is any sequential processing occur-
ring, it is preserved). Therefore this approach
is more suited to devices such as power sup-
plies, or devices running non critical process-
ing/error tolerant processing, to components
that are already reliable as their multiplication
proportionally increases the mass and size of
the finished system. Here the first hints of the
law of diminishing returns is demonstrated.

3 THE FPGA AS HARDWARE REDUN-
DANCY

The methods discussed before each require
physical duplication at the component level,
this adds mass and cost proportional to the de-
gree of redundancy chosen. It would therefore
be beneficial to add redundancy in a different
form factor.

FPGA’s are increasingly used in signal pro-
cessing applications due to their flexibility and
high throughput due to their potential for con-
current processing. They also offer an oppor-
tunity for on chip modular redundancy, where
computation streams are duplicated to help
guard against erroneous results. All things that
make for a good fault tolerant design.

3.1 Not all FPGAs are created equal
Not merely a homogeneous mass of transis-
tors on a substrate the modern FPGA contains



3

Figure 3. Layout example of a commercial 6T
RAM cell shown with a 12T Rad-Hard cell.
[Cai+19]

many specialist executions blocks and sections,
each affected by radiation to different degrees.

In order to do this properly the differenti-
ation between the designs of Commercial Off
The Shelf (COTS) parts and Radiation Hard-
ened (Rad-Hard) ones must be made clear. In
order to facilitate this comparison two devices
were compared. Xilinx Rad-Hard Virtex-5QV,
and Xilinx Kintex-7.

Fig: 4 clearly shows the differences between
the weakness to radiation displayed by the
commercial part. These differences are embed-
ded in the technology used for each of these
primitives, and as such the function of the
design informs the primitives it uses and there-
fore it’s reliability.

COTS devices are consumer/industrial
grade in nature and are not designed with
radiation tolerance in mind, whereas Rad-Hard
are. They employ methods including (but not
limited to) 12 transistor static RAM, and inbuilt
error correcting coding. The drawbacks for a
Rad-Hard FPGA include a much higher price,
higher power usage, lower working frequency,
smaller possible design size, and being in a
larger transistor node among others. [Cor15]

3.2 Module and system reliability
Leading on from this one can start to get
an idea of just how unreliable a module is
based on the primitives it uses. In order to
do this first knowledge of the amount of each
primitive used is needed. This is most easily
done by passing a single FPGA design module
through the relevant tool-chain, this will output

the primitives used. This is the starting point.
Appendix A lists the resources available to the
two FPGAs under consideration.

Upri,mod = Upri ·
n,mod

ndevice,total
(2)

Upri,mod is the module upset rate for a spec-
ified primitive. To get the complete modules
upset rate each primitive must be summed up.

Utot,mod =

all,pri∑
pri

Upri,mod (3)

This has now given the module upset rate
according to the amount and type of primitives
used. This, however, is only a rate of failure.
Reliability will be calculated by assuming that
it decreases exponentially with time: [Rel]

Rmod,t = e−Utot,mod·t (4)

Rmod,t is the probability that the module does
not suffer any failures during the interval [0, t].
With t = 1s, and setting T = 3600 it becomes
simple to calculate the probability of failure per
hour (PFH) [Gle+15].

PFHmod = 1−Rmod,T (5)

Now an equation for the reliability of a
module has been found based on it’s used
primitives and their upset rate.

3.3 Voting
It is clear that a singular processing unit would
not provides a fault tolerant or reliable system.
Duplication on it’s own also may not provide
this. Therefore, a voting system is to be intro-
duced. The voter will be define by two metrics,
firstly n, this is the number of inputs it is
taking into consideration. Secondly k, this is the
minimum number of values which must be the
same for the value to be considered correct and
passed to the next stage of the signal chain.

Assuming a structure similar to Fig: 5a, a
value can be calculated for the reliability of
the system using k/2 + 1 voter. Using perfect
voter reliability (for now), Module reliability of
R(m), and the total system reliability Rsys.



4

Figure 4. Comparing the Heavy ion (HI) upset rate as function of the integral flux F(LETon)
for Kintex-7 (XC7K325T, purple marker and solid line) and Virtex-5QV (red marker) as well as
proton (P) upset rate as function of the integral flux F(Eon) Virtex-5QV only (orange marker) for
selected FPGA primitives in GEO and 7mm Al shielding. The markers of all curves from left to right
represents the upset rate at the onset of the Solar Maximum, Solar Minimum, Worst Week, Worst
Day and Peak 5 Minutes condition. [Gle+15]

Rsys =
n∑
i=k

(
n

i

)
R(m)i(1−R(m))n−i (6)

In order for a voter system to be effective,
the number of values being compared must be
greater than two (as with two values there is
no possibility to form a consensus as to which
is correct when an erroneous value occurs).

The design of the voter is also important to
the success of the design. Consider a 1 bit voter
of input vector size n, which requires at least
k correct inputs for the output to be deemed
”correct” and passed to the output, where k ≥
3. The value of k in this case is:

k =
⌊n
2
+ 1
⌋

(7)

Figure 5. Simple graphic showing possible voter
used for this analysis, where the value of ’n’ can
be as high as required. [Mes14]



5

Evaluating to:

(n, k) = (3, 2), (4, 3), (5, 3), (6, 4), (7, 4), (8, 5), ...
(8)

This voter types seems robust in that it al-
ways requires a complete majority of answers
for the result to be considered correct. This
brings up several questions on how to get more
out of the voter. A complete majority system
automatically assumes that there is only two
states for an answer 1 or 0, this provides clear
delineation between the states but simplifies
the types of incorrect answers that could be
produced. As FPGAs are often used with wide
data widths it is possible to introduce more
states. In this method the collisions between
erroneous values is sought, to determine if the
frequency of their occurrence outweighs the
frequency of the stated ”correct” output.

The probability that i incorrect values consist
of the same bit pattern is described by [Gle+15]:

2b

bi
(9)

Combining this with Eq. 6 the reliability of a
an N modular system that includes these error
duplication’s can be expressed [Gle+15].

Rsys =
n∑
i=k

(
n

i

)
R(m)i(1−R(m))n−i−

bn2 c∑
i=k

(
n

i

)
R(m)i(1−R(m))n−i · 2

b − 1

2b·i

As seen in Fig: 6, the probability of any spe-
cific number of erroneous values sharing the
same bit string decreases exponentially. This of
course requires that there be multiple errors
distributed among different computing mod-
ules within the same computation time (time
in which the result is calculated and output,
before the next calculation begins).

It should also be noted here that every SEU
does not ultimately become a SEFI, without
such the error is not visible to the outside world
and has not caused a computation error [Ste08].
This effect reduces the probability of an error
being asserted as ”correct” by a voter. However

Figure 6. The probability of error collision.
[Mes14]

Figure 7. Reliability of system made of n mod-
ules with K = 2. [Mes14]

this will not be discussed here for reasons of
simplicity.

To determine which of the two voting strate-
gies it is helpful to analyse the system reliabil-
ity when using the two voter types. For this the
standard floor type will be used along with one
with majority voting (with this value set to K =
2. This low K value is justified by relatively low
redundancy factors and the low probability of
an error collision. These two strategies, when
compared, show large differences as the order
of redundancy increases. Seen in Fig: 7 and Fig:
8

The lower the k value can be kept the lower
the redundancy factor need be for a certain



6

Figure 8. Reliability of system made of n mod-
ules with K = floor((n/2)+1). [Mes14]

level of reliability. This of course means fewer
FPGA resources used, meaning more resources
for other things and a lower upset rate overall.

Also of note here is that with traditional
voting there is no reason to consider using even
values for n because the resulting reliability
due to k is always lower than the reliability
bought by a system of n−1. Adding modules to
a voting system does not always mean a more
reliable system. However, with a fixed artifi-
cially limited value of k the reliability increases
whenever another module is added.

3.4 The cases
The analysis is split into two Cases, continuing
from the work of Robert Glein et al. [Gle+15]
using the three logic blocks De, Di, and Ld
for modules. The functions of these logical and
computation blocks is only important insofar as
they define which FPGA primitives the module
uses. Case 1 will be following on from Fig: 5
(top), with only the level of redundancy for
the modules changing. Case 2 will build on
this to add changes to the voter redundancy.
The whole module chain will be defined as
[A,B,C]. Where each letter represents the value
of n used for a particular module. The structure
under test will also be defined as either SV
(single voter) for Case 1, or NV (nth order
voter) for Case 2. Therefore also defining the
type of structure under test. The specific value

Method Speed Search completeness
Exhaustive search Slow Complete

Genetic Alg. Medium Partial
Table 1

Comparison of analysis methods

of k in use will be defined nearer the time of
computation.

3.5 Calculating primitives

A somewhat true mythos surrounds the realm
of Hardware Description Languages and FPGA
usage, that they take inordinate amounts of
time to software complete a compile-debug-
edit cycle. [Lav+10] With this in mind it was de-
cided to try and keep the process of reliability
calculation simple. There is a an argument (in
the interest of supreme accuracy) to generate
a test structure, have the tool analyse it and
determine the number of resource primitives
that are required, and whether it is viable size-
wise. From this a calculation can be made
into how reliable the structure is, the result
informing the creation of the next test structure.
Resource primitive values could taken from
a single version of the module under consid-
eration and then extrapolated linearly. While
this method is not as accurate as running the
module system through the relevant tool-chain,
it does provide a large time saving (1 hour per
system) [Gle+15].

Let M be a module using primitives p, it is
then duplicated by a redundancy order of n.

nM = np (10)

3.6 Problem analysis methods

Now that the method of Reliability calculation
has been established the analysis method can
be discussed. It is clear that the problem is one
of design space exploration. The most obvious
search method being a brute force exhaustive
search, however this is assumed to be the slow-
est option.



7

4 ANALYSIS

4.1 Genetic: n modular with one voter

In order to walk before we run the initial test
will be done using the top structure in Fig: 5.

First the amounts used for each block type
in terms of FPGA resources is calculated, then
the reliability for each module is determined.
This is then used to calculate the reliability of
the redundant module structure.

In order to implement a Genetic Algorithm a
species must first be defined. The species being
the overall container of genes, with genes being
the variables that the Algorithm can edit and
then compare results to establish the fitness of
the individual in question.

As for fitness criteria the area being utalised
will be the only metric, to ensure that the
evolved design will fit within the FPGA fabric
(as per SubSection 3.5). Other possible metrics
included: minimal power usage, area minimi-
sation, least amount of a particular resource.
However, these are more esoteric and require
more innate knowledge of the design than is
understood here.

For this first version Case 1 will be analysed
therefore the species has only three genes, one
for each of the N values of the modules. A
population is created randomly with upward
of 20 members, they are then passed through
the fitness function to determine their PFH, and
whether the structure fits within the FPGA’s
resources. If it does fit it can move the the
next stage, if not it is marked for removal from
the population. The population is then ranked,
with the lowest PFH as best specimen down
to the largest PFH, with preference given to
the smallest area if two are ofund with the
same PFH. The top most members are bred via
crossing of gene values, a random member is
then mutated, this makes up the next genera-
tion. The cycle then continues as many times
as specified.

This was done in Python 2.7 in cooperation
with Matlab due it’s ease of use and large num-
ber of libraries available. These libraries are
optimised and provide many specific functions
to aid and speed up these simulations. [19]

An initial population size of 20 individuals
was used, with 10 generations of evolution.

This was deemed enough as a steady state was
reaches after approximately 6 generations, and
so 10 was considered sufficient to ensure the
evolution completed.

4.2 Exhaustive
The simplest method to find the lowest PFH
of all the variations. To do this all module
redundancy variations are calculated and their
PFH determined, then the best is taken as
the result, again with preference given to the
smallest when equal PFH values are found.

4.3 N modular redundancy with singular
voters
Running the GA and the exhaustive search
on Case 1, using the De, Di, Ld blocks is
dependent on the highest value of redundancy
allowed, this was set at 8 to allow extensive
exploration of the design space. It is seen from
earlier there is very much a law of diminishing
returns when it comes to redundant modules,
where adding more only serves to use up ones
limited resources. It was found that after the
5th order of redundancy there was no reduc-
tion in the reported PFH.

The GA was run several times and pro-
duced many best individuals a recurring theme
among them was the limitation of high re-
source usage units such as Ld.

Table: 2 shows the results of the GA for single
voter structures for both k = floor((n/2) + 1)
and k = 2 specifications. k = 2 was chosen
due to the low likelihood of error collision for
higher data widths. The effects of altering these
widths will be discussed later.

These results show firstly that the GA was a
suitable method of finding the best individual
to satisfy the criteria of low PFH, they tally very
closely (if not exactly) to the results found via
an exhaustive search.

4.4 N modular redundancy with N voters
Results from the single voter proved the via-
bility of the GA approach, therefore the Nth
order voters were not implemented. These can
be seen in Table: 3. The GA again producing
very similar outputs to the Exhaustive search.



8

Test situation Best ind. (GA) Solar min. PFH Best ind. (EXH) Solar min. PFH
5Q SV k=flr(x) [5,3,3] 5.11e-08 [3,3,3] 5.11e-08

5Q SV k=2 [4,3,3] 5.11e-08 [3,3,3] 5.11e-08
K7 SV k=flr(x) [5,5,3] 1.13e-05 [3,3,3] 1.13e-05

K7 SV k=2 [4,4,4] 1.10e-05 [4,3,4] 1.10e-05
Table 2

Single voter structure analysis, data width is 16 bits

Test situation Best ind. (GA) Solar min. PFH Best ind. (EXH) Solar min. PFH
5Q NV k=flr(x) [5,3,3] 7.33e-12 [5,3,3] 7.33e-12

5Q NV k=2 [4,3,3] 7.33e-12 [4,3,3] 7.33e-12
K7 NV k=flr(x) [5,5,3] 2.37e-07 [5,3,3] 2.37e-07

K7 NV k=2 [5,4,4] 1.87e-11 [5,4,4] 1.87e-11
Table 3

Nth order voter structure analysis, data width is 16 bits

4.5 Analysing results
Comparing the PFH results in this paper to
the ones found through both the GA and Ex-
haustive search it is clear that there has been
no substantial reduction. While this is disap-
pointing, upon looking back at SubSection 3.3
a reason for this is seen. Adding more modules
has diminishing returns, the asymptotes of Fig:
7 are reached, and there is no further reduction
in the PFH.

With this upper limit now firmly established
it provides limits on the design space to be
analysed by either search method. The search
space open to the Exhaustive method being
exponentially proportional to the Nth order
tested, with there being (N − 2)3 structures to
compute.

4.6 Effects of data width
Here the value of b from SubSection 3.3 will
be altered to see it’s effects on PFH values.
The problem the arises when using a set value
for K, under consideration here as k = 2,
is that there is the opportunity for erroneous
values to be asserted as correct. With k = 2
an erroneous value need only be produced
at least twice due to upsets and it could be
considered ”correct”. This problem becomes
worse the lower the value of K. The width of
the data and FPGA primitive usage being used
within the implementation has been assumed
to scale linearly. Fig: 9 shows that the larger
the data width in use the lower the PFH, the

lower the data width the more likely the same
error string occurs multiple times during one
calculation cycle.

This will be done for system [5, 4, 4] for the
Kintex 7 in nth order voter setup. To calculate
the primitives for this calculation, the values
for [5, 4, 4] were taken. Seeing as these values
are for b = 16, this value was scaled linearly
for the other tested b vlaues. When comparing
the the results of k = 2 and k = floor((n/2)+1)
for the structure, it is possible to see how useful
this limiting of K is. For the sake of graphical
clarity only 3 of the 5 radiation metrics have
been draw, but they are typical of the results.
Firstly it is seen that altering the data width
for k = floor((n/2) + 1) does alter the PFH,
errors are never considered in such number as
to override a correct answer, therefore the only
reason for change is the increasing primitive
usage. The resulting PFH increases with used
primitives (as to be expected). While with k = 2
the PFH reduces as the width increases, this
is attributed to both the reducing likelihood
of error collision as width increases and the
value of k providing impetus to reduce the
PFH. Despite the two converging toward simi-
lar PFH values, there is never a time where the
fixed k system becomes less reliable than the
traditional system. This is the main interesting
result of this work.

5 CONCLUSION
During the course of this work it has become
clear just how limited adding more than 3



9

Figure 9. Effects of changing the data width. [Mes14]

modules in parallel is for increasing the relia-
bility of a system. When this limit is reached
further gains may be had by changing the
voter structure as per Case 2. Improvements
may also be had by fixing the K value of the
voters, however this must be done thoughtfully
so as to not reduce the reliability through the
increased likelihood of error collision.

In summary it has been confirmed that
through use of redundancy and voter struc-
tures it is possible to utalise a COTS FPGA to
gain a similar reliability to one which has been
Radiation Hardened. It has also been shown
that even with the prospect of error collision
and reducing data width the k = 2 implemen-
tation may produce a more reliable system.

5.1 Dependability of results

It will be pointed out here again that these
results are simulated and there has been mi-
nor concessions to perfect accuracy to ensure
within time. These concessions centre around
the calculation of the used FPGA primitives for
each of the tested structures, as noted in Section
3.5. While this would effect the resulting PFH
value produced for a given structure; it is not
believed that the difference would be a good
trade for the hour (on average) it takes to get

exact primitive usage results for each structure
under test.

As for future developments it has been
shown that different voter structures can pro-
duce very different and sometimes more reli-
able results than either the single or N voter
structure. [ALA07]

The other important future development
needed is proper validation of these results,
via proper calculation of the used primitives
in each stage of the structures.



10

APPENDIX A
UPSET RATE COMPARISON OF TWO FP-
GAS

See next page.

APPENDIX B
THANKS

The author wishes to thank Dr Daniel Ziener
for his help through the supplying of source
code to aid this work, in addition to his help
as a supervisor. Gratitude is also extended to
Dr Leila Bagheriye and Dr Gijs Krijnen for their
roles as supervisors.

REFERENCES

[JCL93] J.C.Laprie. Dependable Computing
and Fault Tolerance: Concepts and
Terminology. 1993.

[Sim00] R. Simpson. Voyager 1 Instrument
Host Information. 2000. URL: https :
/ / pds - rings . seti . org / voyager /
spacecraft/vg1host.html.

[ALA07] B. Baykant ALAGOZ. Hierarchical
Triple-Modular Redundancy (H-TMR)
Network For Digital Systems. 2007.
URL: https://arxiv.org/ftp/arxiv/
papers/0902/0902.0241.pdf.

[Ste08] L. Sterpone. Electronics System De-
sign Techniques for Safety Critical Ap-
plications. 2008. URL: https ://link.
springer . com / content / pdf / 10 .
1007%5C%2F978-1-4020-8979-4 2.
pdf.

[Lav+10] Christopher Lavin et al. 2010. URL:
http://rapidsmith.sourceforge.net/
papers/LavinFPL10.pdf.

[Mes14] G. C. Messenger. Radiation harden-
ing. In AccessScience. McGraw-Hill
Education. 2014. URL: https ://doi .
org/10.1036/1097-8542.566850.

[Cor15] Xilinx Corp. Radiation-Hardened,
Space-Grade Virtex-5QV FPGA
Data Sheet. 2015. URL: https :
/ / www . xilinx . com / support /
documentation / data sheets /
ds692 V5QV Data Sheet.pdf.

[Gle+15] Robert Glein et al. Reliability of
Space-Grade vs. COTS SRAM-Based
FPGA in N-Modular Redundancy.
2015. URL: https://ieeexplore.ieee.
org/document/7231159.

[Sch15] Fred Schenkelberg. 2015. URL: https:
//accendoreliability.com/standby-
redundancy - with - equal - failure -
rates-and-perfect-switching/.

[Tri16] Rakesh Trivedi. A survey of radiation
hardening by design (rhbd) techniques
for electronic systems for space applica-
tion. 2016.

[Cai+19] Chang Cai et al. Heavy-Ion Induced
Single Event Upsets in Advanced 65
nm Radiation Hardened FPGAs. 2019.

[19] DEAP Project. 2019. URL: https :/ /
deap.readthedocs.io/en/master/.

[Dub] Elena Dubrova. URL: https : / /
people . kth . se / ∼dubrova /
FTCcourse / LECTURES / lecture7 .
pdf.

[Rel] ReliWiki. Life Data Analysis Reference
Book by ReliaSoft Corporation. URL:
http : / / reliawiki . com / index .
php / Time - Dependent System
Reliability (Analytical).



11

Figure 10. Data for the upset rate for the two FPGAs, data from CREME96. [Gle+15]


