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Abstract

Driving behavior plays a vital role in determining road safety and also greatly
impacts fuel efficiency. Eco-driving is an efficient and economical way of driving,
which contributes to the decrease in fuel consumption and pollution. This thesis
work deals with the driving behaviour analysis from the perspective of eco-driving
rules. Classification of the driving behavior is based on the features which are ex-
tracted from the time-series signals collected from On-Board Diagnostic (OBD-II)
port of a vehicle. Two methods of classification are proposed: a scoring algorithm
based on fuzzy logic and unsupervised learning method. The scoring algorithm is
designed to provide a quantitative feedback. The unsupervised learning methods
are explored for classifying the drivers behaviour. In order to evaluate these meth-
ods, the real-world driving data collected from different vehicles is used. The results
show that there is a high correlation between the calculated score and the fuel con-
sumption. Further, unsupervised learning concepts are also employed to distinguish
among different driving behaviors.
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Chapter 1

Introduction

Driving behavior is an important factor in determining the road safety and its impact
on the environment. According to the surveys conducted by different institutions
and the literature referred, road accidents stand at 9th position in the list of leading
causes of deaths in the world [1]. According to the World Report on Road Traffic
Injury and Prevention published by World Health Organization (WHO), nearly 1.25
million people die in road crashes each year and an additional 20-25 million are in-
jured or disabled [2]. Also, according to this report [2], one of the main cause of road
accidents is aggressive driving. Aggressive driving is defined by the driving behav-
ior where events such as sudden acceleration, abrupt lane change, harsh braking are
present. It is also observed that the rate of accidents is directly linked to the driving
behavior where these driving maneuvers are present. Sometimes these maneuvers
are inevitable and depends on the driving conditions present on the road. Consider-
ing all the cases discussed, it is safe to say that there is a need to monitor the driving
behavior. A system is required which is capable of analyzing the driving behavior
and providing feedback to cope up with the increasing rate of road accidents.

The automotive industry is largely made up of gasoline and diesel based vehi-
cles. Technological advancements in the past few decades have introduced us to an
alternate range of vehicles mostly comprising of electric and hybrid vehicles. Yet the
majority of the vehicles active on the roads have internal combustion engines that
use gasoline and diesel. Emissions caused due to these gasoline and diesel based ve-
hicles are the primary source of pollution [3]. Transport sector, the fastest growing
industry sector among others, is also based on the vehicles with internal combus-
tion engines. As the fastest growing industry sector, its contribution to the climate
change is very dominant and it is increasing rapidly [4]. CO2 and short-lived climate
pollutants such as black carbon are the highest contributor for the global warming
effect.

To cope up with this ever increasing rate of global warming and climate change,
vehicle manufacturers are required to follow various rules and regulations. Cleaner
fuels are also introduced to tackle with these environmental changes. It is not pos-
sible to completely omit gasoline and diesel based vehicles, but as an individual, it
is possible to make efficient use of the available resources and contribute towards
reducing the pollution. Following greener driving style, sometimes also referred as
"eco-driving" style can lead to the reduction of pollution. Ecological (Eco) driving
not only contributes in reducing the pollution but has other benefits too. These ben-
efits are reduced cost of journey and lesser mechanical stress on the engines [5]. A
real-time or an offline analysis of the journeys keeping the eco-driving context in
picture can be used to improve the driving styles.
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Applications of driver behavior analysis extend beyond the safety and ecologi-
cal factors. Insurance companies are often found providing incentives based on the
driver’s behavior. A driver with good driving skills and safer driving approach gets
more discount on the insurance policy when compared to a driver with aggressive
driving skills. Another application of driver behavior analysis can be to track the
performance and efficiency of the driver in the logistics sector. Goods and com-
modities that are being shipped are at a greater risk due to aggressive driving. This
risk can be minimized by analyzing the trips made and providing feedback or nec-
essary driving lessons to the driver. This application of driving behavior analysis
often comes under fleet management.

Fleet management is defined as the organisation and management of commer-
cial vehicles such as cars and trucks. The main objectives of fleet management are
to reduce costs, improve efficiency and ensure compliance of the regulations across
the entire fleet. Fuel alone accounts for 33% of the fleet’s operating costs [6]. To
improve the fuel efficiency, companies invest in training the driver by gathering the
data from the trips driven by them. Based on the trip’s data, feedback is provided
to the driver for improving the efficiency. Surveys conducted in [7] shows that the
feedback given to the drivers are qualitative in nature, and lacks quantitative sug-
gestions. Qualitative suggestions are based on the observations made on the driving
behaviour such as "efficient" or "inefficient". Quantitative suggestions generally re-
fer to a value, score or a rating. One of the reasons for the feedback to be qualitative
is the excessive amount of processing involved in quantitative analysis to generate
a score or rating. This excessive processing is present due to the large number of
parameters that describe the driver’s profile.

The driver’s profile comprising of different parameters is gathered from the trips
driven by the drivers. This profile accounts for large quantities of information and is
generally referred to as Big-Data. To analyze this data and differentiate the driving
behaviour, unsupervised learning can be applied. This unsupervised learning is a
type of machine learning algorithm which is used to discover the unknown proper-
ties of the data. With the application of unsupervised learning on driver’s profile,
it is possible to classify the driving behavior as "eco" or "aggressive". In the sources
and literature reviewed during this thesis work, this method for classification has
not been applied for eco-driving classification and will be presented in this work.
Apart from this method of classification, fuzzy logic is also used to provide quanti-
tative rating to the drivers.

As per [7], it is evident that providing quantitative or qualitative feedback to
the drivers have improved their fuel consumption. This concept is well known as
gamification where scoring, competition, and rewards are used to motivate a user.
Research has shown that providing feedback through game elements has a better
effect compared to the normal advices [8]. To quantify the driver’s trip, scoring
concept from the gamification can be used.

1.1 Research Questions

In the past, eco-driving training has been given to the drivers, and, on an average
a fuel consumption improved by 5-10% [9][10][11]. The literature survey based on
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driver’s behavior (presented in Chapter 2) indicates that there is no eco-driving scor-
ing model available currently that reflects the driving behaviour, whereas, there are
several scoring models for aggressive driving [12] [13] [14] [15]. In this thesis work,
an approach is taken towards designing a scoring model from the eco-driving rules.
Unsupervised learning algorithms have been used to classify whether a driving be-
haviour is safe or unsafe [16]. Eco-driving is in general attributed to safe driving,
however, far too little attention has been paid to shown the correlation between eco-
driving and safe driving.

This research work seeks to address the following questions:

• What are the parameters that best characterize the eco-driving behaviour?

• How can a scoring model be developed from these parameters?

• To what extent unsupervised machine learning algorithms are applicable to
classify the driving behaviour?

• Are eco-driving and safe driving correlated?

• How do the external factors influence eco-driving?

1.2 Thesis Outline

Chapter 2 provides the background for eco-driving, related work and the basic the-
ory of the methods used. Chapter 3 explains the methods used. Chapter 4 presents
the results of the methods. Finally, Chapter 5 concludes the thesis and presents a
section for the future work.
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Chapter 2

Background

2.1 Eco-driving [17]

It is clearly evident from the recent advances that the world is moving towards eco-
nomical and ecological technology for transportation. Although engineers and sci-
entists put numerous efforts on developing an efficient engine, when it comes to
achieving that efficiency, the highest responsibility lies on the user (driver). Every
year the average fuel efficiency of the new vehicles goes up significantly. If a driver
is not well educated in terms of eco-driving, all the inputs that goes into making an
efficient vehicle is of no use. Therefore, there is a need to educate people about the
approach towards eco-driving.

There are 5 golden rules for eco-driving:

1. Greater anticipation - Driving by anticipating the road and traffic conditions
continuously helps in achieving a greater efficiency since there won’t be any
abrupt changes to the acceleration or deceleration of the vehicle which is a
major cause for loss in efficiency. Anticipating the traffic and road ahead gives
a cushion and preparedness and use of vehicles momentum to save the fuel by
braking smoothly.

2. Drive at a constant speed - The value of fuel efficient speed varies from ve-
hicle to vehicle since it majorly depends on the engine capacity. Therefore,
every vehicle has a different cruising speed and it usually is between 60 to 90
km/hr. The best efficiency is achieved when the throttle inputs are minimum
and when the vehicle is mostly travelling because of the momentum.

3. Maintaining optimum air pressure - Tires are the final point of contact for
the vehicle on road, lower tire pressure leads to more resistance which leads
to more load on the engine finally decreasing the efficiency. Higher pressures
are also unsafe since there is compromise of grip on the road. Optimum tire
pressure leads to a low rolling resistance translating to higher fuel efficiency.

4. Shifting gears at lower engine speeds - In case of vehicles with gears shifting
early would be useful to conserve fuel. Shifting gears up early drops the engine
speed considerably and also reduces fuel consumption.

5. Reducing the unnecessary load in the vehicle - Any unnecessary weight in
the vehicle would bear an extra load on the vehicle which would require extra
fuel to move the load hence it is a good idea to remove the ancillary load from
the vehicle. While driving at high speeds, open windows create a drag which
also bears an extra load on the engine.
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2.2 Driving Parameters and Features

Driving behaviour analysis is a complex mechanism. Several features/parameters
contribute to identify the driving behaviour as events. In this section, the features
that affect the driving behaviour in general will be discussed.

2.2.1 Speed

Speed is an important factor in assessing a drivers performance and it is defined
as rate of change of distance per unit time, measured by an internal speedometer
with units such as kilometers per hour (km/hr), miles per hour (mph) and meter
per second (m/s). It is obtained externally from an On-board diagnostics port-II
(OBD-II) or through a GPS device such as smartphones. Aggressive driving is a
behavioural pattern in which the driver is associated with over-speeding, swerving
and cornering. Eco-driving is a classification in which the driver tends to conserve
as much fuel as possible by driving at an economical speed.

2.2.1.1 Influence of Speed on Aggressive Driving

Risk of accidents increases at higher speeds as found in [18]. Increase in the legal
speed limits also caused a higher fatality risk [19]. Smartphone based insurance
telematics are disrupting the industry due to the ease of implementation and avail-
ability. Handel et al. have listed Figure of Merits (FoMs) that characterize the aggres-
sive nature of the driver using the smartphone GPS and sensors such as accelerome-
ter and gyroscope [13]. These FoM’s shown in Figure 2.1 are measured based on the
following -

• FoM observability - The correlation between the sensor and measurements.

• Event stationary - The time length during which the events make up for the
FoM.

• Actuarial relevance - The importance of the FoM for the risk assessment

• Driver influence - The extent to which the driver influences the FoM.

From the Figure 2.1 it can be seen that speeding has a high relevance on driver’s
behaviour. Other parameters such as swerving and cornering are considered for
scoring the driver’s behaviour. Swerving is defined as an abrupt change in direction
of the vehicle, for example number of rapid lane changes while overtaking. Cor-
nering is defined as a turn taken at high speed which increases the risk of vehicle
roll-over or skidding.

Relative speeding in reference to the legal speed limits of the road is obtained by
reverse geo-coding the GPS co-ordinates which is provided by OpenStreetMap API.
Over-speeding may be detected by comparing the road data with the vehicle speed
at a certain location. Percentage of the time in which the driver exceeds the limits
is used to determine the magnitude of over-speeding. Smoothness in driving is a
measure about the driver’s anticipation and the ability to cruise for longer duration.
A driver who achieves a higher average speed may not be regarded as aggressive.
Whereas the density vs speed distribution can be used to verify the smoothness in
the quality of driving.
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FIGURE 2.1: FoM table for aggressive driving [13]

FIGURE 2.2: Density Plot of Speed Distribution [20]

Figure 2.2 shows density vs speed plot comparison of two drivers. It can be seen
that #9197 travels at slower speed but accelerates and decelerates frequently. This
could also mean that #9197 is experiencing more traffic.

2.2.1.2 Influence of Speed on Eco-driving

Speed has a direct influence on the fuel efficiency. Driving at very high speeds or
very low speeds will result in increased fuel consumption [21]. Driving speed and
fuel efficiency form a U-shaped curve. There is a certain range at which the fuel effi-
ciency is maximum and it is dependent on the vehicles engine specifications. Steady
driving i.e. cruising at a constant speed using inertia contributes to reduced fuel
consumption [22]. The speeds in the U-shaped curve are usually below the speed
limits of highways. European Environment Agency showed that reduction in speed
limits on a highway by 10 km/hr increased the fuel efficiency by 10% for diesel and
18% for gasoline cars [7].
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2.2.1.3 Statistical Features

For classification of the driver based on the speed several statistical features are de-
rived from this temporal signal. They are Mean/Average, Standard Deviation, Min-
imum, Maximum, Kurtosis and Skewness.

Skewness is a measure of symmetry of a data set. Histogram of a perfectly sym-
metric data will have a skewness of 0. Kurtosis indicates the "peakedness" of the
data. A data set can be classified as platy kurtic, normal kurtic or lepto kurtic. Us-
ing these classifications of speed data based on the mentioned kurtosis distributions
driving can be classified as highway/urban style. A highway driving will have kur-
tosis greater than 3 (k > 3) and an Urban driving with kurtosis less than 3 (k < 3) will
be classified as platy kurtic [23].

2.2.2 Acceleration/Deceleration

Aggressive driving style is characterized by hard acceleration and deceleration. To
gain speed or reduce speed one accelerates and decelerates. The aim of eco-driving
is to reduce the magnitude of these variations.

External sensors such as accelerometers and gyroscopes can be used to measure
the acceleration and differentiating speed acquired from a GPS also results in accel-
eration/deceleration value. Deceleration is negative acceleration, in transportation
terms it is called as braking. Unit of acceleration is m/s2 or km/hr/s. Further, ac-
celeration can be classified into longitudinal and lateral types. Swerving behaviour
is captured by a high sample rate accelerometer and gyroscope [24], in this paper
the authors have measured the curvature of the curves to classify the maneuvers as
swerving, lane changes, and parking. Figure 2.3 shows the plots for the x-axis of
gyroscope. It can be seen that the swerving and turning can be differentiated based
on the sign changes and the amplitude of the signal.

FIGURE 2.3: Various maneuvers captured by accelerometer and gy-
roscope [24]

Driving features extracted from the sensors support the fact that aggressive drivers
have higher g-forces for both acceleration and deceleration [25]. Sudden changes in
speed while driving indicates an aggressive driver pattern. In [26] the authors have
considered 2.74m/s2 as the limits for hard acceleration and deceleration, normal ac-
celeration/deceleration from 0.1m/s2 to 2.74m/s2 and cruising range from 0.1m/s2

to -0.1m/s2. Other papers have used similar limits in defining the aggressive be-
haviour of the driver. Statistical features extracted from acceleration are average,
maximum, standard deviation, skewness and kurtosis.
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2.2.2.1 Impact on Eco-driving

Fuel efficiency is maximized when acceleration and braking are reduced. Accel-
erating to higher speed reduces the time to anticipate the traffic ahead leading to
application of brake and hence losing the energy gained to attain a certain speed.
Instantaneous fuel consumption is higher during acceleration as opposed to decel-
eration. During acceleration the engine needs continuous fuel supply, but during
deceleration (without brake and accelerator pedal pressed) fuel is only necessary to
keep the engine from turning off. This kind of deceleration is referred to as engine
braking.

FIGURE 2.4: Fuel Consumption during acceleration, deceleration and
cruising [27]

In Figure 2.4 it can be seen that the acceleration has higher instantaneous fuel
consumption compared to deceleration and cruising. However, sharp deceleration
indicates lack of anticipation and has an effect on the overall fuel consumption due
to the loss of inertia [27].

2.2.3 Engine Speed and Fuel Consumption

OBD-II provides engine sensor related information such as -

• Throttle Position

• Manifold Pressure

• Mass Air Flow (MAF)

• Injection Valve

• Idle Speed Valve

Engine Speed is a factor that has a significant weight in fuel consumption, for
this reason engine speed is often one of the first parameters that are examined for
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evaluating fuel efficiency . Fuel consumption is often represented as the amount of
fuel (in Litres) consumed per 100 km. A gasoline engine uses a spark plug to trigger
the combustion of fuel and air mixture, whereas a diesel engine compresses air and
fuel until it reaches a temperature for self-ignition. For a given speed instantaneous
fuel consumption is calculated as the ratio of fuel flow to the speed [28]. In many
vehicles, fuel rate data is not available due to the missing sensor between fuel tank
and engine or the manufacturer chooses not to make the data available. But using
MAF, fuel flow is calculated by considering air-to-fuel ratio and fuel density [29].

FIGURE 2.5: RPM vs
Fuel Consumption

[29].

FIGURE 2.6: Throttle
Position vs Fuel Con-

sumption [29].

Figures 2.5 and 2.6 show the dependence of fuel consumption on engine speed
and throttle position. It can be seen that there exists a linear relationship between
these variable. In the Figure 2.6 it can be seen that the fuel consumption at 0% throt-
tle reaches nil value. Automotive manufacturers use engine braking i.e. coasting
in a gear with throttle closed to achieve higher fuel efficiency. Engine Control Unit
(ECU) takes input from several different sensors such as MAF, Throttle Position Sen-
sor (TPS), manifold pressure, engine RPM, gear, and air intake temperature among
several other parameters considered. ECU then takes these inputs and computes the
amount of time fuel has to be supplied to the engine to keep it from turning off. So,
coasting in neutral consumes more fuel than in engine braking [30].

Idling is defined as the time spent in keeping the engine running with zero dis-
tance covered. It is more fuel efficient to switch off the engine than leave the engine
running [31]. A car that is idling typically causes 0.4 g/s of CO2 emissions, Reducing
idling time, by turning off the engine might therefore lower fuel consumption. In the
Table 2.1 taken from [32], shows the amount of time a driver spends in idling state
impacting the fuel efficiency, emitting greenhouse gases with zero distance traveled.

Road Type Average Idling Min. Idling Max Idling
Urban 15% 0% 50%

All 10% 0% 37%

TABLE 2.1: Percentage of Idling Time [32]
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2.2.3.1 Gear Shifting and Engine Speed

Choice of shifting gears at a certain engine speed is personal and distinguishable
among other eco-driving parameters. It is influenced less by the driving context, but
can be affected by the power-to-mass ratio of the vehicle. A higher power-to-mass
ratio enables the vehicle to be driven at higher gear at low speeds. An eco-driver
will shift into higher gear at a certain RPM (usually lower). In [11] the authors have
listed four golden rules for eco-driving. Two of the rules are related to gear shifting
and RPM. They are -

• Shift up as soon as possible - Shifting to a higher gear around 2000-2500 RPM
will result in a better fuel efficiency

• Maintain a steady speed - Use the highest gear possible and drive with low
engine RPM.

Every gear corresponds to a fixed ratio, while gear shifting or braking results in
intermediate speed and RPM values. Driving style is characterized by the moment
just before changing the gears indicated by velocity and acceleration.

FIGURE 2.7: Veloc-
ity vs Acceleration
for different gears.
Representing good
eco-driving behaviour

[32].

FIGURE 2.8: Veloc-
ity vs Acceleration
for different gears.
Representing bad
eco-driving behaviour

[32].

In the Figures 2.7 and 2.8 from [32] shows the plots for eco-driving styles related
to gear changes. Shifts to different gears are indicated by colours, bad eco-drivers
tend to accelerate more and then shift to higher gear. From this study the authors
found that there is a large bandwidth in average RPM at which the gear transitions
from lower to higher gear among the drivers. This large bandwidth means there
is quite some room for improvement by driving efficiently. In terms of fuel con-
sumption, the lower the RPM the better. The average engine speed, acceleration
and velocity and the slope of the fit are performance indicators of the gear changing
behaviour. These parameters are to be considered as one of the eco-driving parame-
ters.

2.2.4 Positive Kinetic Energy and Relative Positive Acceleration

Positive Kinetic Energy (PKE) is associated with the driver’s anticipation of the traf-
fic. It is the ratio of all the positive accelerations encountered to the distance traveled.
This variable measures the aggressiveness of driving and depends on the number of
variations and magnitude of speed. In [11] the authors have considered PKE as one
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of the performance indicators for golden rules of eco-driving. PKE represents the
driver’s ability to keep the kinetic energy as minimum as possible. A rash driving
will be associated with a high PKE and a smooth driving will have a low PKE [11]
[33].

Relative positive acceleration (RPA) is defined as the product of the instanta-
neous speed and the instantaneous positive acceleration divided by total trip dis-
tance. This variable is commonly used for validating the driving behaviour in emis-
sion testing. In emission legislation, the product of velocity and positive acceleration
(“vapos”) is often used as an indication of how aggressive the driving style was dur-
ing a trip [32].

RPA =
∑(v ∗ a)

D
(2.1)

In the Equation 2.5 v and a are instantaneous velocity and accelerations respectively.
Lower RPA indicates that the driver is less aggressive.

2.2.5 Weather

Weather can have a direct or indirect influence on vehicle fuel consumption. Rain
and snow accumulate on the road and this changes the friction between the wheels
and tarmac. As a result wheel slippage increases in turn affecting fuel efficiency [34].
In [31] it is reported that the weather affected fuel consumption of public transport
buses in two ways, they are -

• On hot days heavy usage of air-conditioning caused a drop in fuel efficiency

• Heavy rainfall caused traffic jams which led to longer idling duration.

In [15] authors have considered a speed reduction factor for different intensi-
ties of rainfall, every segment is enriched with weather conditions through calls to
Weather API.

2.3 Related Work

The impact of eco-driving advices and training is experimented in [11]. Two ex-
periments were performed in which the first experiment was only to provide the
advice and in the second experiment a group of drivers were given training related
to eco-driving. The advices that were provided are according to the eco-driving rules
which are described in the previous section. The metrics used to measure the eco-
driving behaviour are positive kinetic energy, gear shifting and engine braking. The
results of the experiments found an average reduction of 12% fuel consumption. The
authors used logistic regression to estimate the influence each of the parameter has
for the eco-driving behaviour. It was found that average RPM shift up, Index Gear
RPM and PKE are most significant. As these parameters contribute in evaluating the
driver, they may as well be used for scoring applications in eco-driving. Idling and
high RPM driving has not been taken into consideration in this paper, which also
has an impact on fuel consumption.

In [35] the authors have considered driving below speed limit and elimination
of idling as the advices along with anticipation, cruising and acceleration behaviour
for eco-driving. CAN bus and GPS signals are used to evaluate the data set from
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four vehicles. Radar plot as seen in Figure 2.9 is used to evaluate the eco-driving
behaviour of the four vehicles. Evaluating based on the advices provided, Vehicle
3 performs the worst as it idles for long duration, accelerates at higher RPM and
uses more fuel while accelerating. Vehicle 2 is very fuel efficient as it cruises for
longer duration and ranks higher for most of the parameters except for the speed
limits. Vehicle 1 is best at driving within speed limit and accelerating moderately
but mostly drives through city areas. Vehicle 4 idles the least but ranks third on all
other parameters. From these observations the authors conclude that not just one
parameter on it’s own but a combination of all of them contribute to achieving a
good fuel efficiency. These two related works have used several features that de-
scribe the eco-driving behavior.

FIGURE 2.9: Evaluation of Eco-driving Advice [35]

Data mining techniques have been used to differentiate and alert the drivers
about their driving behaviour by Constantinescu et al. [36]. In-house developed
GPS is used to acquire the driving information from 23 drivers. In this paper the au-
thors have used statistical features derived from speed, acceleration, and braking to
classify the driving behaviour using hierarchical clustering algorithm. The drivers
were categorized into 5 groups of aggressiveness, ranging from very aggressive to
non-aggressive. To reduce the number of variables, principal component analysis
was used. The authors use principal component analysis to identify the significant
features.

UDRIVE [32] is a large scale European project that has collected naturalistic driv-
ing data in different countries. In this project the authors have analyzed various
eco-driving related factors such as braking, gear shifting and choice of speed on the
roads. Based on these factors the drivers and their behaviours are compared coun-
try wise. The researchers in this project try to correlate eco-driving and safe driving,
but they also mention that there existed no method to measure the safety aspect at
that time. Bijman et al. have differentiated safe and unsafe driving using statistical
features of speed and acceleration [16]. In this research clustering algorithm is used
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to classify the driving behaviour. Based on the statistical tests they found that strong
accelerating, harsh braking and standard deviation of acceleration as the most im-
portant features. As a result, from these features four clusters were obtained. Among
these four clusters, one cluster clearly represented safe driving behaviour and one,
compared to the others, showed unsafe driving behaviour indications. One of the
future recommendations of the author is to use a dimensionality reduction technique
to reduce the features and observe if it results in good clusters.

Eco-driving profiling has been combined with Gaming concepts to provide feed-
back to the driver [37]. In this state-of-the-art research paper the authors have con-
sidered fuel efficiency and throttle position sensor as the most important features to
profile a driver behaviour. Driving events have been categorized as eco and non-eco
driving events. From the naturalistic driving data that has been collected through
enviroCar database, the authors have proposed a mobile app that alerts the drivers in
case of an aggressive event. To give a final score to the driver, throttle position sensor
and fuel efficiency is combined. The flowchart of the algorithm is as seen in Figure
2.10. The scoring algorithm represented in this paper gives a final score based only
on the fuel efficiency and throttle position values. This enables the driver to compete
and get a higher score, but the reason for a particular score is difficult to arrive at just
based on the two parameters.

FIGURE 2.10: Fuel efficiency score algorithm [37]

2.4 Theory

In this section the theory required to understand the methods used in this thesis are
presented.
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2.4.1 Fuzzy Logic [38]

Fuzzy, the name itself represents that it is imprecise. Fuzzy sets form the base of
fuzzy logic. The universe of discourse for classical sets is split into members and
non-members. Therefore, classical sets can only represent either ’0’ or ’1’, whereas,
using fuzzy logic the range from 0 to 1 can represent multiple values. Which means
that fuzzy values can be partially true as well as partially false, similar to the anal-
ogy of "The glass is half-full" and "The glass if half-empty".

A classical set ’A’ is represented in an universe ’U’ by membership function

µA(x) =

{
1, x ∈ A
0, x /∈ A

(2.2)

and for a fuzzy subset ’A’ in the universe of discourse ’U’ the membership func-
tion µA(x) is as shown in equation 2.3

µA(x) =


1, x ∈ A
0, x /∈ A
(0, 1) x possibly belongs to A but not sure

(2.3)

This definition allows to map linguistic names to the fuzzy set. These names are
adjectives that characterize the fuzzy set.

FIGURE 2.11: A rep-
resentation of classical

set [38]

FIGURE 2.12: A repre-
sentation of fuzzy set

[38]

An example of classical set representation and fuzzy set representation is as seen
in Figures 2.11 and 2.12 respectively. The boundaries of temperatures in classical set
are distinct and precise, whereas in the fuzzy set it is represented vaguely, similar to
the way in which a human brain processes a range of variables. In this example, we
have seen how to represent certain temperature using a single fuzzy set. Figure 2.13
represents temperature using three fuzzy sets low, medium and high. The shape of the
membership function is subjective and it can be applied as per the human decision
making capabilities. This is one of the advantages of using fuzzy logic.

Using fuzzy sets requires certain rules to be established. A set of implication
forms a rule base. A simple example of an implication can be seen below:

I f x is A then y is B; (2.4)

Where A and B are the fuzzy sets. The implication can be divided into two parts.
If x is A will be the antecedent and then y is B is the consequent. Determining the
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FIGURE 2.13: Representation of multiple fuzzy sets[38]

degree of truth or degree of membership to which an antecedent belongs is called
as fuzzification. The values to the degree of membership can be in the range (0, 1).
If the value is ’0’then it does not belong to the fuzzy set, if it ’1’then it completely
belongs to the fuzzy set, anywhere in between ’0’ and ’1’ represents a degree of un-
certainty. In the figure 2.13 a temperature of 140 belongs to high with a membership
of 0.7 and to medium with a membership of 0.3.

Commonly used shapes to define input and output membership functions are:

• Singleton

• Gaussian

• Trapezoidal or triangular

Defuzzification

Defuzzification is the process of obtaining a crisp value from the fuzzified input sets.
One of the most commonly used defuzzification method is Centre of Gravity. In this
method, input membership function chops the output membership function at the
fuzzified values. Then the area under the curve of the output membership function
is computed, and the centroid value of this shape is the crisp value, which represents
the output.

2.4.2 Supervised Learning

Supervised learning is a type of machine learning algorithm. In supervised learning,
algorithms learn to fit a function that maps an input space to an output space. Given
a set of input variables ’x’, the learning algorithm fits a function to predict the output
variable ’y’.

y = f (x) (2.5)

The data set for supervised learning is split into training and testing data. The
training data consists of inputs and respective labels, which are the outputs that are
to be predicted on the test data. The main goal of a supervised learning model is to
predict the output variable when it is tested on a new set of input data. For this the
model has to be generalized. What it means is that, the model should not fit exactly
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to the training data, which is called as over-fitting. Also, the prediction of the output
should not deviate largely from the expectation, called as under-fitting. These con-
cepts can be further explained clearly using bias and variance.

Bias is the difference between the correct value that is to predicted and the av-
erage prediction. A large prediction difference between the target and actual value
results in high bias. Variance explains the spread of the data on which the model has
been trained. When the model fits exactly to the training data, it also fits to the ran-
dom noise that comes along with it which leads to high variance. An under-fitting
model will have high bias and an over-fitting model will have high variance. Bias
can be reduced by increasing the complexity of the model, and variance can be re-
duced by increasing the size of the training data. An optimal model will have low
bias and low variance. To minimize the prediction error one has to also consider the
bias-variance trade-off.

FIGURE 2.14: A model
with high bias.

FIGURE 2.15: A model
with high variance

FIGURE 2.16: A model with low bias and low variance

To give an example for supervised learning, let us consider a driver score rating
algorithm based on a set of inputs. The range of driver scores are on a scale of 0-
10. A driver’s profile is described by a number of features such as average speed,
acceleration and average RPM. This forms the input space of the model. When the
supervised learning model is trained on this type of information, it learns from the
observations in the input and output space. Given a set of new data the supervised
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algorithm will be able to predict the score of the driver.

There are two types of supervised machine learning algorithms:

• Classification - In this type of supervised learning the output space contains
labels or classes such as "car", "bike", "truck".

• Regression - In this type of supervised learning the output space has a contin-
uous variable such as fuel consumption.

Decision Trees

Decision trees are a type of supervised learning algorithms used for classification
and regressions tasks. They form a tree like structure with a root node, branches
and leaf nodes. The nodes in the tree represent the features and the branches repre-
sent the values. Data is broken into fragments and with that the tree grows longer.
Traversing along the decision tree will lead to a classification.

FIGURE 2.17: An example of decision tree

To give an example for the decision tree, let us consider an example of driving
style. The score range is from 0-10, where 0 is the least and 10 is the best. In this data
set the driver has to classified as efficient or inefficient. If a decision has to be made,
the tree has to be followed from the root node until the leaf. When there is a new
observation (instance), if the aggressive driving score is less than 5 then the result
is inefficient. If the score is greater than or equal to 5 aggressive then the decision is
passed to the next node. If the eco-driving score is greater than or equal to 5 then the
driver is classified as efficient. In this way the decision tree makes predictions about
the future instances.

One of the major benefits of the decision trees is that they are easy to interpret.
But the decision trees are prone to over-fitting by creating complex trees. This can be
avoided by ensemble learning methods which will be explained in the next section.
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2.4.2.1 Ensemble Learning

In supervised machine learning, models are combined to achieve better performance.
This combination is termed as Ensemble [39]. There are different types of Ensemble
Learning models categorized based on the way they are combined:

• Voting - Models are combined to achieve better predictions. There exists two
types of models. Soft voting is a type where the average predictions of the
different models are combined to achieve a better performance. In Hard voting
the accuracy of the best model is selected from the ensemble.

• Bagging - In this type of ensemble learning, the data set is split into several
subsets. To predict an instance the model averages the probabilities all of the
models. This way the variance is reduced significantly.

• Boosting - The models are sequentially arranged to form an ensemble. The
model adjusts its weights according to the prediction. If the prediction is cor-
rect, it decreases the weight, otherwise it increases the weight. Finally all the
models weigh in together to predict an instance.

• Stacking - A stack of supervised learning models also called as base learners
are trained on a set of data. The output of this prediction is fed as input to
another set of models. These models predict the output, if it is satisfactory.
Otherwise the number of stacks may be increased.

In order to increase the accuracy of prediction, ensemble models are used in ma-
chine learning often. One of the most commonly used machine learning model is
Random Forest. In this thesis, this model is used to evaluate the feature importance.

Random Forest

Random forest is a collection of many decision trees. Decision trees are prone to
over-fitting individually [40]. As explained earlier, this leads to high variance and in
turn causes errors in prediction. A collection of decision trees will solve the problem
of higher variance. Every decision tree is trained on a random subset of data. The
errors caused by each decision tree is random and when they are averaged what
remains is the actual prediction that was desired. Figure 2.18 represents an ensemble
of decision trees.

Feature Importance

An advantage of using ensemble models is that they provide the importance for vari-
ables used to predict the output. Feature importance is calculated by the number of
times a feature is used to split a node. To give an example for the usage of feature
importance, let us consider driving related features as inputs. The features can be
acceleration, deceleration, speeding among others. The output variable is fuel con-
sumption. When an ensemble model is fit to this data set, it is possible to see which
feature has more predictive power over others. We will use this feature to determine
the weights of the features in our scoring algorithm. It will be discussed in the next
chapter.
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FIGURE 2.18: Random Forest

2.4.3 Unsupervised Learning

Unsupervised learning is a type of machine learning algorithms where the data set
comprises of only inputs. Which means that the data set has no labels and classes.
In supervised learning we have seen that there exists a ground truth to train the
model and later make predictions on the data set. Therefore, the approach taken
to perform the learning tasks in unsupervised learning is very much different from
that of supervised learning. Algorithms are left to themselves to perform the task
and discover the patterns in the structure in the data. One has to take heuristic
approach to validate the tasks performed by unsupervised learning algorithms.

Unsupervised learning consists of two major types:

• Clustering - It is the process of finding similar patterns in a data. There are
different clustering algorithms, and usage of these algorithms is dependent on
the type of data.

• Association - Association allows establishing relations within the database. For
example, a group of people who prefer electric cars over regular cars.

2.4.3.1 Clustering

Clustering is a process of gathering or grouping data points. It is done is a way
where the points belonging to one cluster are very similar and the points belonging
to other clusters are dissimilar. In this section, different clustering algorithms will
be discussed. Clustering algorithms are one of the common types in unsupervised
learning.

Dissimilarity measures

In cluster analysis, to determine the similarity or associativity between two data
points one has to specify a distance metric. This is called as dissimilarity measure.
Most commonly used distance measures are:
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• Euclidean Distance - It is the measure of the distance between two points in
two or three dimensional space.

deuc(x, y) =

√
n

∑
i=1

(xi + yi)2 (2.6)

• Manhattan distance - In this method the distance is measured along the axes
at right angles.

dman(x, y) =
n

∑
i=1
|(xi − yi)| (2.7)

2.4.3.2 K-Means

One of the most popular and commonly used algorithm in unsupervised learning is
k-means [41]. The algorithm initially requires k as the number of clusters the data
points have to be grouped into. The algorithm starts by placing k centroids ran-
domly. Then, each data point is assigned to the cluster based on the least euclidean
distance between the point and the cluster. Let X = x1, x2, ...xn be the set of data
points that needs to be grouped into the cluster set S = s1, s2, ..sk. The data points
have d dimensions. Then, each data point x assigned to cluster k can be expressed
as:

argminsiεS


√√√√ d

∑
i=0

si − xi

 (2.8)

In the next step the centres are re-positioned as per the mean of the data points in
that cluster. Hence the name k-means.

si =
1
si

∑
xiεsi

xi (2.9)

These steps are performed until the clusters reach convergence.

K-means is an extremely fast and less complex algorithm compared to other clus-
tering algorithms and has a time complexity of O(log n). The drawbacks also have
to be considered while using this algorithm. One has to specify the number of clus-
ters which is not known a priori. For this, it requires evaluation methods which will
be discussed later in this chapter. Since the measure of the distance between the
points in euclidean distance, it is sensitive to outliers. Apart from the drawbacks,
the algorithm is relatively simple to interpret and use.

Hierarchical Clustering

Hierarchical clustering is a type of clustering where similar data points are grouped
together in a hierarchical manner [42]. It is composed of two main types, they are
Agglomerative and Divisive Clustering. These two types of clustering methods de-
pend on the distance metric and linkage criteria, which has to be determined. Dis-
tance metric measures the separation between two points, which means the similar
points are closer and the dissimilar points are farther from each other. Linkage cri-
teria determines from where the distance is measured between two clusters. For
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example, we could consider an average/mean distance between two clusters, in this
case we re measuring the distance from the middle of one cluster to another. There
are other types of linkage criteria which will be explained in this section.

First let’s look into the different types of hierarchical clustering.

• Agglomerative Clustering - In this type of hierarchical clustering, every data
point is considered a cluster initially. Depending on the distance metric and
linkage criteria, the closet points will merge together to form a cluster. This
process is repeated until all the data points are assigned to a to one single clus-
ter. The result is represented as a dendrogram, which has a tree like structure.

• Divisive Clustering - In this type of hierarchical clustering, all the data points
are initially considered to be one single cluster. Divisive clustering follows a
top-down approach. Instead of merging the clusters, in this method the dis-
similar points are split into different clusters. This process is repeated until the
entire set of data points are on their own.

Agglomerative clustering is applicable for small clusters, whereas divisive clus-
tering is applicable for very large clusters in general.
There are four types of linkage criteria that can be specified:

Let i and j be the clusters and x is the set of data points.

• Single Linkage - In this type of linkage, two points that have the least distance
among the clusters are considered as the reference point of measurement. Sin-
gle linkage is also called as Nearest Neighbour Clustering. For single linkage
criteria, the distance function can be expressed as:

dSL(i, j) = min
xiεi,xjεj

d(xi, xj) (2.10)

• Complete Linkage - Here the distance between two points among the clusters
are farthest from each other. In other words these points are least similar.

dCL(i, j) = max
xiεi,xjεj

d(xi, xj) (2.11)

• Average Linkage- In this type of linkage the distance is measured from the
mean of the clusters.

dAL(i, j) =
1

NiNj
∑
xiεi

∑
xjεj

d(xi, xj) (2.12)

• Ward’s Linkage - It is the most commonly used linkage criteria which is suit-
able for various types of data sets. The aim of this method is to minimize
intra-cluster variance.

dW(i, j) = ||xi − xj||2 (2.13)

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN), is a cluster-
ing algorithm based on the density of data points [43]. In this type of clustering
method, the data points that are closely packed are grouped into a cluster. In certain
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scenarios where the data is non-linearly spaced DBSCAN outperforms centroid and
hierarchical clustering methods. For example, if the data set forms concentric cir-
cles which are densely packed, then the DBSCAN can clearly cluster inner and outer
ring. Whereas other algorithms fail because they require the data to be spread out in
spectral manner.

DBSCAN requires two parameters to be specified, they are eps and minPts. eps
defines the minimum distance for which a data point will be included in the cluster,
and minPts represents the number of points in that group. The clusters expand if
there are neighbouring minPts within eps radius. The expansion stops if the criteria
is not satisfied. Every point in the data is checked for this criteria. Points that are not
in the cluster are considered as noise. DBSCAN is a very powerful algorithm if used
with right parameters. One needs to have the knowledge of the dataset to use this
algorithm.

2.4.3.3 Cluster Evaluation Techniques

Evaluation of the clusters is important to determine the quality that they represent.
If the objects in the cluster are similar, then the cluster quality is high. Low inter-
cluster similarities and high intra-cluster similarities is a good representation of the
clusters formed in the entire data set.

Silhouette score

Silhouette score is an evaluation technique in which a data point’s distance is mea-
sured with respect to other data points in the same cluster, and with the data points
in the other neighbouring clusters [44]. Quality of the cluster is determined by the
score. A higher score indicates a good cluster representation.

Mathematically it can be represented as seen in the Equation 2.14. Let i be the
data point which belongs to the cluster a, and let a(i) represents the mean distance
between i and other points in the same cluster, b(i) represents the mean distance
between i and the neighbouring clusters. Then silhouette score s(i) is expressed as -

s(i) =
b(i)− a(i)

max(a(i), b(i))
(2.14)

It is clear from the equation that the range of s(i) is [-1,1], where ’1’ represents the
best score and ’-1’ represents the least score. By measuring the silhouette score for
each data point and then averaging it among the cluster population will represent
the score for a cluster.

Elbow method

Clustering algorithms such as k-means requires the number of clusters to be spec-
ified [45]. This parameter is often referred to as hyperparameter. Elbow method is
one of the most commonly used technique to determine the number of clusters.

The metric that determines the elbow point is Within-Cluster Sum of Squares
(WCSS). It is the measure of variability of the data points within the cluster. A clus-
ter that is compact will have smaller sum of squares, and a cluster that is spread
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will have larger value. But the sum of squares increases with the number of data
points. Elbow point is located where the WCSS reduces significantly from the previ-
ous observation. From Figure 2.19, it can be seen that the WCSS value drops when
the number of clusters is 3. It can also be seen that WCSS drops significantly when
cluster number is 2. This makes it quite ambiguous to use the elbow method. One
has to resort to empirical methods and/or silhouette score technique to determine
the number of clusters.

FIGURE 2.19: An example showing elbow point.

2.4.4 Dimensionality Reduction

As the number of features in the data set increases, it becomes difficult to interpret
or visualize in 2 or 3 dimensions. Dimensionality reduction techniques reduce the
number of features in a data set into principal components such that these compo-
nents account for most of the information. The number of principal components is
much lesser than the original original number of features.

2.4.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is dimensionality reduction technique where
a set of possibly correlated variables are converted into a set of linearly uncorre-
lated variables called principal components [46]. It is a statistical procedure which
uses orthogonal transformation, which means each of the principal components are
orthogonal to the preceding ones. The first component accounts for the highest vari-
ance. The remaining components amount to the remaining variability. The first step
is to form a covariance matrix C represented mathematically as:

C =
n

∑
i=1

(xi − x̂)− (xi − x̂)T

n− 1
(2.15)
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where x̂ is the sample mean. Next step is to calculate the eigen values (characteristic
roots) and eigen vectors (principal components) from the covariance matrix. We
obtain eigen values λ by solving the equation below.

|C− λI| = 0 (2.16)

To obtain eigen vectors v we solve the Equation 2.17.

(C− λI)v = 0 (2.17)

Every eigen vector has an eigen value, they form pairs. Eigen vector represents
the axis with most variance and eigen value is the corresponding coefficient, which
represents the magnitude of the variance. Sorting the eigen vectors in the order of
their eigen values from highest to lowest, we obtain the principal components.

2.4.4.2 T-Stochastic Neighbour Embedding

T-Stochastic Neighbour Embedding (t-SNE) is a popular dimensionality technique
which is applicable on non-linear data sets as well [47]. t-SNE retains the local struc-
ture better than other dimensionality reduction techniques. The high-dimensional
points create a probability distribution that direct the relationship between other
points in the high dimensional space. Then the same probability distribution is fol-
lowed in the low dimensional space as best as possible to map the neighbouring
points.

The conditional probability that a point xi picks xj as a neighbour in high dimen-
sional space can be expressed as:

pij =
exp(−||xi − xj||2/2σ2

i )

∑k 6=i(exp||xi − xk||2/2σ2
i )

(2.18)

The probability function follows Gaussian distribution, therefore σi represents
the variance of the Gaussian centred on xi. To capture the local structure well Gaus-
sian distribution is used. In other words, the points that are spaced farther have low
σi than the ones that are close by. This how t-SNE retains the local structure.

We want to capture the same probability distribution in the lower dimensional
space as well. Let qij represent the conditional probability in low dimensional space,
yi and yj are the low dimensional counterparts of xi and xj. We want qij to be as
similar as possible to pij. Therefore the conditional probability in lower dimensional
space is -

qij =
exp(||yi − yj||)2

∑k 6=i exp(−||yi − yk||2)
(2.19)

If the mapping between qij and pij is modeled correctly then these two condi-
tional probabilities will be equal. t-SNE aims to minimize the difference between
them by using a cost function. The cost function used minimizes the sum of Kullback-
Liebler divergence over the entire set of data points using gradient descent method.
The cost function is mathematically represented as:

C = ∑
i

KL(Pi||Qi) = ∑
i

∑
j

pijlog
pij

qij
(2.20)
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Thus minimizing the KL between high dimensional point xi and low dimen-
sional point yi using gradient descent results in better mapping.

2.5 Summary

In this chapter, eco-driving and the golden rules of eco-driving were introduced.
Followed by that, the parameters that are related with the driving behaviour are
discussed. Also, related work on which this thesis is based on was presented. At
last, theory of the concepts used in this thesis were presented.
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Chapter 3

Methodology

3.1 Overview

Vehicle’s fuel consumption and eco-driving is greatly influenced by the driving be-
haviour. In Chapter 2 eco-driving rules and their implications on the fuel consump-
tion were discussed. These rules are also explored in this chapter. Apart from these
rules, this chapter also focuses on driving behaviour classification. This classification
is a two step process: step 1 is feature extraction, and step 2 is driving behaviour cat-
egorization using scoring and clustering. Feature extraction from the continuous
time-series OBD-II data is considered as a challenge. Some features such as Gear
Shifting, Engine Braking, Cruising etc. are not readily available from the time-series
data and extensive amount of processing is required to extract these features. Al-
though feature extraction is considered as a challenge, it improves the accuracy of
the classification model.

Pre-processing

Scoring Clustering

Feature Extraction

Driving Behaviour
Classification

Time Series 
OBD-II data

FIGURE 3.1: Brief overview of the methodology to classify driving
behaviour.
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There are multiple ways to do behaviour classification, for e.g. supervised learn-
ing where the ground-truth about the driving behaviour is known. The complexity
of driving behaviour makes it difficult to gather the ground-truth labels, making
supervised learning a difficult approach for classification. Instead, we use a scor-
ing technique and clustering algorithms (unsupervised learning) to categorize the
driver behaviour. Figure 3.1 presents an overview of the work flow used to classify
the driving behaviour.

This chapter starts with a discussion about the feature extraction from contin-
uous time-series data. These features along with the fuzzy logic model are used
to generate a trip-level scoring algorithm. Later, in this chapter the workflow for
clustering algorithm is presented.

3.2 Pre-processing and Feature Extraction

The OBD-II time-series data consists of raw information provided by the vehicle’s
ECU like speed, engine RPM etc. This raw information is used along with the eco-
driving rules to extract the features that characterize the driver’s behaviour and af-
fect the fuel efficiency. In this section, these features along with the methods and
calculations used to extract them are discussed.

There are a lot of signals that are provided by the vehicle’s ECU, but only a few
of these signals are utilized here. These signals are listed below:

• Speed (v) - The velocity of the vehicle expressed in kilometres per hour (km/hr).

• Engine Speed (RPM) - Engine speed expressed as the number of revolutions
per minute.

• Throttle Position - The value of the accelerator position expressed in percent-
age. The value ranges from 14% (closed throttle) to 100% (fully open throttle).
It regulates the rate of air flow into the engine.

• Mass Air Flow (MAF) - To maintain an optimal air-to-fuel ratio, the engine
uses MAF sensor to regulate the fuel flow. This fuel flow is expressed in grams
per second (g/s).

• Instantaneous Fuel Consumption - Some car manufacturers provide the fuel
consumed by the vehicle at a given instant. Fuel efficiency is expressed in
Litres per Hundred kilometres (L/100km).

The frame rate of the time-series OBD-II signals is not uniform across different
vehicles. Depending upon the number of requests to ECU, this frame rate can be
as high as 100 Hz (only one signal acquired). At this high frame rate, no significant
changes are observed in the signals. Therefore, a frame rate of 1 Hz is chosen which
is sufficient to acquire all the signals and observe desired signal changes. The pre-
processing stage presented in Figure 3.1 takes care of down-sampling the frame rate
to 1 Hz across all the data sets.

3.2.1 Harsh Acceleration and Deceleration

Harsh acceleration and deceleration, as explained earlier in Chapter 2, are some of
the important features that are derived from the speed signal v as presented in the
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Equation 3.1. These features are indicative of fuel efficiency and aggressive driving
behaviour.

a =
∆v
t

(3.1)

The acceleration/deceleration are classified as harsh based on a minimum veloc-
ity change of 11 km/hr per second. This minimum value of velocity change is based
on the literature from [26]. To utilize these features in the scoring algorithm, the
number of harsh acceleration and deceleration are counted. Since the trips driven
can be of varying distances, the counted values are measured as number of events
per 100 km. Necessary signal conditioning is done to ensure that an event is not
counted multiple times.

3.2.2 Positive Kinetic Energy

In the previous section, harsh acceleration and deceleration were discussed. Apart
from counting the number of these events, it is also important to analyze their in-
tensities. The feature discussed in this section takes care of this. It accounts for the
intensity of the speed gains. It is generally defined as the energy consumed per unit
distance traveled and is abbreviated as PKE. Aggressive drivers tend to accelerate
to higher speeds at a faster rate, therefore this feature also represents the aggressive-
ness for the driving style. Equation 3.2 provides a mathematical representation of
positive kinetic energy, where v f is the final velocity, and vi is the initial velocity.
The denominator D is the total distance traveled.

PKE =
∑(v2

f − v2
i )

D
when

dv
dt

> 0 (3.2)

Similar to PKE, another feature viz. NKE (Negative Kinetic Energy) is also present
which represents the intensity of harsh deceleration. For the collected data sets, both
the energy parameters were calculated and plotted. From the plots it was observed
that both the features are highly correlated which indicates that a driving style has
similar acceleration and deceleration levels. Therefore, negative kinetic energy is
not taken into consideration for determining the trip characteristics. This will also
help in reducing the number of features to extract, thus reducing the complexity of
scoring model.

3.2.3 High RPM and Idling

High RPM (engine speed) is a parameter that has a huge impact on the fuel con-
sumption [29]. According to the eco-driving rules, the driver is always advised to
maintain lower RPM. To classify the engine speed as high or low, there is a threshold
value which is dependent on the type of fuel used by the vehicle. Gasoline engines
operate at a higher engine speeds compared to the diesel engines. The threshold for
different engines is presented in Table 3.1.

Fuel Type RPM-Threshold
Gasoline 3000

Diesel 2500

TABLE 3.1: Threshold values for High Engine Speed
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When the engine speed for a given fuel type exceeds the set threshold, it is con-
sidered as a high RPM event. Along with the event identification, the time for which
the engine is running at higher RPM is measured. This feature is expressed as the
percentage of total engine run-time.

Idling, as discussed earlier in Chapter 2, is an anticipatory behaviour of the
driver. It is represented as the amount of time when the vehicle speed is zero with
a running engine. This behavior leads to unnecessary fuel consumption and can be
reduced by turning off the vehicle during long stops. Mathematical representation
of this feature is presented below.

Event =

{
v = 0 & RPM > 0 : Idle
v > 0 : Non− idle

(3.3)

In the given representation, v is the speed of the vehicle at a given instant. Similar
to high RPM event, idling is also represented as the percentage of engine run-time.

3.2.4 Cruise

Cruising is defined as the ability to maintain a constant speed (minimum speed de-
viation from a center value) over certain duration of time. According to one of the
eco-driving rules, maintaining a stable speed is required to achieve a greater fuel ef-
ficiency. Cruising is not available as a direct parameter from the time series OBD-II
data, but has to be derived from the speed of the vehicle. There are multiple ways in
which cruising behavior can be identified. One way is to check the acceleration and
deceleration, and if they are within a certain range, cruising behavior is identified.
With this technique, it is possible that every short segment will be classified under
cruising. But it should not be the case and only the actual cruising should be identi-
fied. Therefore, in this section, another approach is mentioned which makes use of
the sliding window mechanism.

i+1i ... i+n...Time

i+1i ... i+n...

Sliding Window

i+1i ... i+n...

Stride

FIGURE 3.2: Sliding window method.

Figure 3.2 presents a generic sliding window of frame size n. At a given instance
n values of speed are loaded onto the sliding window and after performing required
calculations (explained later), the window slides to capture new data. It is difficult



3.2. Pre-processing and Feature Extraction 31

to decide the ideal window size of n but it will be safe to say that if a very short
window is taken, very high cruise percentages will be obtained. This might not de-
pict the true scenarios of cruising on a highway. In contrast to this, if a very large
window size is taken, then smaller cruise events might not get registered. To tackle
with this window size problem, an appropriate window size of 5 is chosen based on
some preliminary experimentation.

To classify the sequence of speed values as a cruising event, it has to satisfy cer-
tain criteria. As per this criteria, the standard deviation of the speed values in the
window should be less than 1 km/hr to register a cruising event. The value for stan-
dard deviation is chosen from the literature [27] and verified based on the prelimi-
nary experimentation. This sliding window approach is applied at every instance of
the time series signal and a counter is used to keep a track of the cruise events.

3.2.5 Engine Braking

Engine braking is generally associated to the anticipatory driving behaviour. En-
gine braking is an event when the vehicle slows down using the engine’s retarding
forces instead of the actual braking system. Engine braking differs significantly with
respect to the type of the fuel used. In gasoline engines, fuel is cut-off when the
throttle position is closed, whereas, in diesel engines there is no concept of throttle
valve, so it uses exhaust valve to give the same effect of engine braking. Regardless
of the fuel type, engine braking helps in achieving higher fuel efficiency and it also
shows the anticipatory driving behaviour. To measure engine braking, two methods
are proposed.

• Method 1 - In this method, instantaneous fuel consumption, mass air flow and
speed of the vehicle are considered to calculate engine braking. The main idea
here is that the air to fuel ratio is constant during the normal operation of the
vehicle, but during engine braking, the fuel flow is cut-off and the air to fuel
ratio (AFR) drops significantly. Equation 3.4 shows the formula to compute
AFR.

AFR =
Inst.Fuel Consumption ∗ Speed

MAF
(3.4)

AFR is obtained from the standard instantaneous fuel consumption calcula-
tions which will be discussed later in the upcoming section. This method is
applicable only for gasoline engines as they have fuel cut-off mechanism. In
diesel engines there is no intake valve, so fuel cut-off to the engine chamber
results in engine braking. The effect of engine braking is higher in gasoline
engines compared to the diesel engines due to the fact that fuel-cutoff in gaso-
line engines cause vacuum development in the engine chamber. In such cases,
the engine has to work against the vacuum which causes engine braking. To
compute the amount of engine braking, a drop in AFR is considered and all
such events are aggregated to compute engine braking for the whole trip.

• Method 2 - The method discussed earlier works only for gasoline engines
where the instantaneous fuel consumption is available. For the diesel engines,
a sliding window approximation method is proposed. This approach is sim-
ilar to the cruising approximation presented earlier. The main differences in
both method 1 and method 2 lie in the criterion required to consider an event
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as engine braking event. In this method, the engine RPM values present in the
sliding window should be in the decreasing order to qualify as an engine brak-
ing event. Similar behavior is observed when normal brakes are applied. The
classification between normal and engine braking is performed by taking into
account the standard deviation of the sliding window. The standard deviation
for normal braking is significantly higher than engine braking. The sliding
window size and the standard deviation values are set by validating against
the first method.

Using the above explained methods, engine braking is calculated for both gaso-
line and diesel engines and is expressed as a percentage of the trip duration.

3.2.6 Gear Shift

Fuel efficiency improves greatly when the gears are shifted at an optimal engine
speed. One of the eco-driving rules suggests that the gears should be shifted up at
around 2000-2500 RPM. The fuel type of the vehicle also plays a role in determining
the shift point. Table 3.2 shows the engine speed limits considered for gear up shifts
[48]. The raw time series OBD-II data does not contain any information about the
gear position of the vehicle, so, an algorithm is presented in this section to detect
gear shifts.

Fuel Type RPM-Threshold
Gasoline 2500

Diesel 2000

TABLE 3.2: Eco-driving shift up RPM
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FIGURE 3.3: Speed vs RPM plot.

To understand this algorithm, it is first important to understand what gear ratio
means. Gear ratio is defined as the number of turns which input shaft makes to ro-
tate the output shaft once. The speed of the vehicle depends on the engine RPM and
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the gear ratio which is dictated by the gear under use. To understand more about
this gear ratio, a random data set was analyzed and a plot between engine RPM and
vehicle speed were plotted. This plot is presented in Figure 3.3. From this plot, it
can be observed that multiple straight lines are obtained with unique slope values.
Each slope can be identified as a gear present in a vehicle. From this observation, an
algorithm was designed to obtain the gear ratios, which is later used to identify the
gear.

The steps taken to detect the gear ratios are listed below.

1. Generate an array of RPM to speed ratio.

2. Apply histogram analysis on the array with a bin size of one.

3. Detect the position of peaks in the histogram.

4. Filter the closely spaced peaks, to make the gear ratio distinct.

5. Sort the position of the peaks in descending order to obtain the gear ratio and
store it as an array.

The peak positions obtained from the aforementioned algorithm represent the
gear ratios of a vehicle. Next task in gear detection is to detect the actual gear in
which vehicle is currently driven. This gear position will later be used to detect the
transition or switch from lower gear to a higher gear. Figure 3.4 shows the result of
the gears identified after applying the gear detection algorithm.
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FIGURE 3.4: Speed vs RPM plot after applying the gear detection al-
gorithm

From the detected gears, it is important to detect number of up-shifts present in
a trip to evaluate the driver. The process of detecting an up-shift is described below.

1. Compare the current RPM speed ratio to the previously obtained gear ratio
array.
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2. Assign the respective gear number by finding the nearest value in gear ratio
array.

3. When a shift is detected from lower to higher gear, the maximum engine speed
around the transition is noted.

From the aforementioned method, engine speed at which up-shifts are performed
can be detected. By computing the total number of gear up shifts in a trip, the aver-
age RPM at which the gear is shifted and the total number of high RPM gear shifts
are derived. The methods described above are applicable to manual and automatic
transmission vehicles.

3.2.7 Fuel Consumption

As the name suggests, this feature is very important in detecting the fuel efficiency
and classification of drivers. Fuel consumption is calculated using the MAF values.
At any given instant when the vehicle is moving the fuel consumed in litres per
kilometer is given by the Equation 3.5 [28].

Inst.Fuel Consumption[l/km] =
Fuel Flow[l/hr]
Speed[km/hr]

(3.5)

The above method is applicable only when the vehicle is moving. In scenarios
where the vehicle is stationary, fuel consumption is calculated using Equation 3.6.

Fuel Flow[l/h] =
MAF ∗ 3600
AFR ∗ FD

(3.6)

To perform the above calculations, values for Air-fuel Ratio (AFR) and Fuel Den-
sity (FD) for Gasoline and Diesel engines are shown in the Table 3.3.

Fuel Type AFR FD (g/dm3)
Gasoline 14.7:1 820

Diesel 14.5:1 720

TABLE 3.3: Values for AFR and FD [28]

3.3 Design of Scoring Model

Fuzzifer Fuzzy Inference
Engine Defuzzifier

Fuzzy Rules and
Fuzzy Sets

Feature Score

FIGURE 3.5: Fuzzy Inference System

In this section, a fuzzy logic based scoring algorithm is proposed. The trip-level
features mentioned earlier are first fuzzified (converting crisp values to fuzzy val-
ues) using the defined fuzzy rules. These fuzzified values are then provided to the
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Fuzzy Inference Engine. This engine make use of fuzzy values and rule base to per-
form aggregation. Aggregation is the process by which the fuzzy sets that represent
the outputs of each rule are combined into a single fuzzy set. After this step, de-
fuzzification is applied to get an output score. Finally, the trip level scores for all the
features are weighted individually and averaged to obtain a single trip-level score.
Fuzzy sets, fuzzy rules, and the defuzzification methods will be explained in this
section. Later, an architecture for the scoring algorithm will also be presented. An
overview of a Fuzzy Inference System (FIS) is presented in Figure 3.5.

3.3.1 Fuzzy Sets

In the scoring algorithm, the trip-level features which were explained in the previ-
ous section are used as inputs to the FIS. An input fuzzy set is represented by four
linguistic variables: Very Low, Low, Medium and High (VL, L, M, H). These lin-
guistic variables enables us to define fuzzy rules, which is later linked to the output
fuzzy set. The shape of the input membership function is chosen to be trapezoidal.
The limits for each fuzzy set have been defined based on the available data sets. For
example, if the maximum idling for any trip in the data set is 20% of the engine run-
time then the value is split into four equal parts. This limit (20%) is assumed as the
highest possible value that can be attained. For other features such as harsh acceler-
ation, the maximum values are very high for short trips. In this case, the values of all
the trips are plotted on a histogram and the peak of the histogram is considered to
be the maximum. Figure 3.6 represents a generic input fuzzy set for all the input fea-
tures. The concept of the membership functions will be explained in the upcoming
section.
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FIGURE 3.6: Input Fuzzy Set

Regarding the output fuzzy set, the score (0-100) is divided into four linguistic
variables: Very Inefficient, Inefficient, Efficient, Very Efficient (VI, I, E, VE). Figure
3.7 represents the output fuzzy set.

3.3.2 Fuzzy Rules and Defuzzification

The fuzzy rules are defined based on the impact of the feature on the fuel consump-
tion. Basically the input fuzzy set is mapped to the output fuzzy set. For example, if
IDLE = VERY LOW => SCORE = VERY EFFICIENT. All of the input features
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FIGURE 3.7: Output Fuzzy Set

Feature Value Score - Positive
Impact on Fuel
Efficiency

Score - Negative
Impact on Fuel
Efficiency

High Very Efficient Very Inefficient
Medium Efficient Inefficient
Low Inefficient Efficient
Very Low Very Inefficient Very Efficient

TABLE 3.4: Fuzzy rules mapping input membership function to out-
put membership function.

except the features related to gear shifts are single-input, single-output fuzzy sets
and require four rules in total. The rules for the gear shift are combined together
to give a single score. The number of rules for this case increase from four to eight.
An input membership function may trigger one or more output membership func-
tion depending on the rules and membership degree. To get a score from a fuzzified
value, defuzzification process is applied. The chosen method for the defuzzification
is Centre-of-Gravity (COG). This method computes the centroid of the area of the
output fuzzy set at which it is triggered (Degree of Membership). If more than one
output fuzzy set is triggered then the area covering both the fuzzy sets is taken into
consideration. Table 3.4 shows the way the input and output fuzzy sets are mapped
to give a score.

3.3.3 Scoring

Now that we have described the methods to provide score for every feature at the
trip level, next step is to aggregate the scores to provide the score for the entire trip. A
simple averaging is not enough as each feature contributes differently. Some features
may contribute heavily in determining the fuel consumption. In the next chapter, the
data sets used in this project will be introduced. On these data sets, we apply the
Random Forest Regression model to determine the Feature Importance. Then the
weights for the trip-level features are determined based on the feature rank, using
which the weighted average is calculated and a final trip-score is provided. Figure
3.8 illustrates the final approach taken to design the scoring model.
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FIGURE 3.8: Trip-level scoring model

3.4 Design Decisions

A generic scoring algorithm takes into consideration the following attributes:

1. Target Value - A high score is provided if a variable/feature is able to meet the
target value. For example, if a car is able to attain 70% of cruising in the whole
trip it will be given a high score. Here, 70% is the target value.

2. Range and Sensitivity - Range typically sets certain limits to which a feature
belongs. Sensitivity reflects the degree of change in input that affects the out-
put.

3. Weight - To give relatively more importance to a feature than others, appropri-
ate assignment of weights to a features are necessary.

We consider the above mentioned attributes and select fuzzy-logic to model the
scoring algorithm. In fuzzy-logic the target value and range is set by defining the
limits for the fuzzy sets. Slope of the fuzzy sets represent the sensitivity. But weights
cannot be given using fuzzy logic. Therefore, we fuzzify and defuzzify every feature
to obtain a single score for each parameter. By doing so, a quantitative feedback in
the form of score is provided for every feature. In equation based scoring algorithms
the target value and range have a definite limits. This requires expert knowledge
and experience to set the limits, whereas by using fuzzy-logic these limits can be
relaxed by overlapping the fuzzy sets. Also, the numerical ranges are represented
linguistically, which makes it easier to reason and interpret. Multiple related features
can be combined together to give a single score. Fuzzy logic is beneficial when it
comes to approximation, vagueness and uncertainty. Overall, fuzzy-logic provides
more flexibility in designing a scoring algorithm.

3.4.1 Design Decisions in Fuzzy Logic

The approach we have taken to design a scoring model is to fuzzify and defuzzify all
the features. Another possible approach could be to fuzzify all the features at once
and defuzzify to give a final score. The reasons for taking the former approach are:

• When two features were combined, the number of rules doubled in our case. If
we were to combine, all the features the number of fuzzy rules would be very
high.
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• By fuzzifying all the features together, the priorities for each feature are equal.

Input fuzzy sets are overlapped to give a continuous range on defuzzification.
Centre of Gravity is chosen as the defuzzification method because it provides a con-
tinuous variation by considering the area under the curve. Other defuzzification
methods either provide a minimum or maximum value of the output fuzzy set.

3.5 Clustering

In the previous sections, feature extraction at the trip level based on the eco-driving
rules were discussed. Along with feature extraction, a method to calculate score is
also discussed. In this section, another technique is discussed to classify the drivers.

In this technique, no ground truth regarding the driving behavior is assumed
and an unsupervised learning is performed on the features extracted from the data
sets. Typically unsupervised learning consists of clustering where a cluster is visu-
alized in 2 or 3 dimensional space. The features extracted cannot be visualized in
this limited dimensional space, so there is a need to reduce the dimensions keeping
implied data intact. This is done using dimensionality reduction techniques. The
process of clustering is presented in Figure 3.9.

Normalization Dimensionality
Reduction ClusteringFeature Vector

Unsupervised Learning

FIGURE 3.9: Clustering workflow.

Before reducing the number of dimensions, the features have to be standard-
ized. This standardization process has to be carried out because the magnitude
of extracted features varies largely. For example, average gear shift RPM is in the
range of 1500-3500, whereas Cruise percentage varies from 0-100%. Although these
features are different from each other, their varied magnitude can affect the classifi-
cation. Dimensionality reduction techniques and clustering algorithms are sensitive
to the magnitude of the features. We use standard scaler method for normalization
as seen in Equation 3.7. Where µ and σ are mean and standard deviation of the
feature x.

z =
x− µ

σ
(3.7)

Using PCA and t-SNE (discussed earlier in Chapter 2), nine features are reduced
to two dimensions. Later, k-Means and Hierarchical clustering methods are used to
categorize the driving behaviour. This leads to 4 different combinations, compris-
ing of 2 dimensionality reduction techniques and 2 clustering algorithms. All these
combinations will be tried to see which one brings out more meaning out of the data.
To interpret the clusters formed from these combinations, the previously developed
scoring algorithm is used to see if the scores among these clusters are unique.
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3.6 Feature extraction for safe/unsafe driving

This section helps in establishing a relation between eco driving and safe driving.
The features for safe / unsafe driving are extracted based on the research conducted
in [16]. These features are based only on the speed as the source of the data was GPS
signal. The features that are used to classify safe/unsafe trips are listed below:

• Maximum Speed

• Mean Speed

• Standard deviation speed

• Maximum acceleration

• Mean Acceleration

• Standard deviation acceleration

• Harsh Acceleration

• Harsh Braking

Previously, harsh acceleration and braking features were derived. The rest of the
features mentioned above are statistical derivatives of speed and acceleration. These
features will go through the clustering process described in the previous section. The
clusters formed from these features will be compared with the clusters obtained for
eco-driving behaviour. This comparison will help in concluding a relation between
eco driving and safe driving.

3.7 Summary

This chapter focused on extracting various features which are important to analyze
the driving behavior. Apart from the feature extraction, scoring model based on
fuzzy logic was discussed. The design decisions made in the scoring algorithm were
mentioned. The method of performing clustering on the features extracted and dif-
ferent clustering techniques were also mentioned in this chapter.
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Chapter 4

Performance Evaluation

4.1 Data sets and Devices

In this section, we will explain the data sets used to model and evaluate the scor-
ing and clustering process described earlier in Chapter 3. There are total three data
sets available out of which one is an open source data set taken from [49]. The car
used in this open source data set was a Seat Leon with a Diesel engine. The data
was recorded at trip level and most of the routes consisted of trips between the Ger-
man cities of Stuttgart, Reutlingen, Boblingen and Karlsruhe. The number of drivers
who had participated in the acquisition of this data set are unknown. The trips were
driven during the months of February, March, July and August. The device used to
collect the data is a PLX Kiwi 3 with the help of OBD-II Doctor smartphone applica-
tion.

The second data set was collected using a Volkswagen Jetta with a Gasoline en-
gine. All the parameters present in first data set along with an additional parameter
viz. instantaneous fuel consumption are present in this data set. The car was driven
by two drivers around the city of Orlando, Florida. Initially PLX Kiwi 4 was used to
collect the data as it had SD card logging capabilities. But due to technical failures,
this device was replaced by a new OBD-II device viz. OBD Link MX+. Although,
both the devices are capable of logging the data via a smartphone application using
Bluetooth protocol, the preferred choice was OBD Link MX+ as it was more reliable.
Figure 4.1 and Figure 4.2 presents the devices used to log the data.

FIGURE 4.1: OBD Link
MX+, The device used
for data acquisition

[50]

FIGURE 4.2: PLX Kiwi
4 [51]
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The third data set was collected using a Peugeot 207 which was driven around
the city of Enschede. This data set relatively consists of very less number of trips
compared to the other data sets presented earlier.

Table 4.1 shows the detailed summary of the data sets. In the first data set DS1
the parameter indicating fuel consumption was not present. Therefore, MAF was
used to calculate the fuel consumption. The shorter trips (less than 10 km) were
removed after calculating the fuel efficiency as they resulted in unrealistic values for
fuel consumption. After filtering out the trips, there were a total of 64 trips left from
this data set.

Data set DS1 DS2 DS3
Vehicle Seat Leon VW Jetta Peugeot 207

Fuel Type Diesel Gasoline Gasoline
Transmission Manual Automatic Manual
# of Drivers 1 2 1

# of Trips 81 35 7
Total Distance (km) 4234 2297 110

Device PLX Kiwi 3 OBD Link MX+ OBD Link MX+
Sampling Rate (Hz) 10 2 2

TABLE 4.1: Summary of the data sets

The second data set DS2 was collected for evaluation and modeling purposes. In
this data set, all the parameters along with the fuel consumption data were present.
To differentiate between eco-driving and aggressive driving behavior, one of the
driver was instructed to drive in an aggressive manner and other one to drive in
rather non-aggressive manner (based on the theoretical driving rules presented ear-
lier in Chapter 2). This instructed driving helped in setting the limits for the scoring
algorithm.

The third data set DS3 was collected to compare the scores and perform be-
havioural analysis among the drivers. The detailed descriptive statistics of the data
sets are presented in Appendix A.

4.2 Evaluation Methods

The weights for the scoring algorithm are chosen based on the feature importance of
different parameters. This feature importance is available in the ensemble machine
learning algorithms. First, the evaluation metrics for ensemble learning method is
presented. Then, the evaluation techniques for clustering algorithms are presented.

4.2.1 Performance Metrics for Ensemble Learning Models

We compare different ensemble learning algorithms with their default hyperparam-
eters. The commonly used metric for regression algorithms is Mean Absolute Error
(MAE). Further, MAE is converted into percentage as it is easier to conceptualize.
Mean Absolute Percentage Error (MAPE) represents MAE in percentages. These
metrics are robust to outliers, hence they are selected for measuring the performance
of the models.
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MAE =
1
n ∑ |actual − predicted| (4.1)

MAPE =
100%

n ∑ |
actual − predicted

actual
| (4.2)

Based on the obtained accuracy’s for different models, the model with highest
accuracy is selected. Usually the default hyperparameters (settings of the machine
learning model that can be tuned) don’t give the highest accuracy, therefore, these
values had to be tweaked. For this, a grid search with k-fold cross validation method
was used. Using this method, the hyperparameters are searched for a large number
of combinations.

4.2.2 Cluster Evaluation Techniques

A few clustering algorithms require the optimal number of clusters to be determined
beforehand. One of them is k-Means clustering algorithm, where the number of
clusters k has to be determined. The methods used for determining this optimal
number are discussed below.

Silhouette Score

We measure the silhouette score for all the points in the cluster. Averaging the score
over all of the clusters result in a certain value. A higher average silhouette score
is preferred. This will be the first evaluation criteria to determine the number of
optimal clusters.

Elbow Method

We determine the Within-Cluster Sum of Squares (WCSS) for k number of clusters.
The optimal number of clusters is represented by the elbow point. If the elbow point
cannot be decided from the plot, then we will use a combination of silhouette score
to determine the optimal number of clusters.

Dendrogram

Hierarchical clustering methods form clusters in a hierarchical manner, which can
be represented by a tree like structure called dendrogram. The roots of the dendro-
gram represent the trips and the vertical stems represent the distances between these
trips. Using dendrogram, we can determine the number of clusters through visual
inspection.

4.3 Results and Discussions

4.3.1 Feature Importance

Three ensemble learning models were evaluated to see which model provides the
highest accuracy. The data set is splitted as 70% data for training and 30% data
for testing. The input space comprises of nine features that were derived, and, the
output space is fuel consumption. Out of the three (Random Forest, Gradient Boost,
Extra Trees) regression models suggested, Random Forest performs slightly better
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than the other two models. Figure 4.3 shows the accuracy of the models on the two
data sets. The results are shown for the default hyperparameters (baseline model).
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FIGURE 4.3: Performance of ensemble models for two sets

Random Forest model, due to better accuracy, was chosen to obtain the impor-
tance of the features. Random Forest model was tuned by performing 5-fold cross
validation with Grid Search on both the data sets (DS1 and DS2). This method re-
turns best parameters which further improves the accuracy of the model. Using
these parameters the model accuracy improved by 0.9% for DS1 and 0.83% for DS2.
Although an accuracy above 90% is preferred, the obtained results show that the
data is good enough to evaluate the feature importance.
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FIGURE 4.4: Feature Importance for data set DS1
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Now, the Random Forest model was used with the best parameters for each data
set to get the feature importance. The plots for feature importance for DS1 and DS2
are as seen in Figures 4.4 and 4.5.
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FIGURE 4.5: Feature Importance for DS2

It can be seen from the feature importance of plot for DS1 that Cruise, Idling and
driving at High RPM are the most important features followed by Gear Shifting. One
of the drawbacks of using feature importance property is that it shows reduced im-
portance for correlated features [52]. To overcome this drawback, we evaluate fea-
ture importance of DS2 and check the Pearson correlation between these features.
The results are surprising as PKE which had the lowest importance shows up on the
top of the list. Pearson correlation between Cruise and PKE is -0.67, which can be a
possible reason for the drop in the rank of PKE. The rest of the features are nearly of
similar importance.

The features related to gear shifting in DS2 are ranked very low. This low ranking
is due to the fact that the car which was used to generate data set DS2 is automatic
(no manual transmission system). The two aforementioned feature importance plots
are used to decide the weights for each feature. The weights used in the scoring
algorithm are as seen in Table 4.2.

Feature Approximate Weight (%)
PKE 25

Cruise 20
Idling 15

High RPM 10
Gear Shift 10

Harsh Acceleration 7.5
Harsh Deceleration 7.5

Engine Braking 5

TABLE 4.2: Weights used in the scoring algorithm
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The features PKE and Cruise account for 45% of the total weight. Idling is an in-
dependent feature and ranks higher in feature importance plots, therefore it is given
a higher value than the rest. To decide the weight for the rest of the features the
correlation analysis is applied with reference to the feature importance. Gear Shift
and High RPM are equally correlated with fuel efficiency, hence an equal weight
is assigned. Harsh Acceleration and Deceleration are equally correlated with each
other and show a high correlation with PKE. Therefore, the weights given are com-
paratively low and equal. Engine braking shows a positive correlation with fuel
efficiency, which was unexpected. The reason for this is that the trips which were
driven aggressively have higher fluctuation in speed. So, this results in an increased
braking naturally. To minimize the adverse effects of engine braking on the score,
a low value is assigned. Having decided the weights in the scoring algorithm, next
step is to validate the scoring algorithm.

4.3.2 Validation of the Scoring Algorithm

Validation of the scoring algorithm is done against the fuel consumption as it is the
main dependent variable for eco-driving. Data worth 16 trips was collected sep-
arately with Volkswagen Jetta. The car was driven by two drivers and different
routes (Highway and City) were taken. Some of the trips are driven while following
eco-driving rules, whereas the others are driven aggressively. The fuel consumption
was directly taken from the vehicle’s fuel gauge (display) and after every trip the
fuel gauge was reset.
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FIGURE 4.6: Score vs Fuel Consumption

From the Figure 4.6 it can be observed that the score and fuel consumption are
highly correlated. To quantify the relationship between the two variables, we per-
form Pearson Correlation analysis. It is found that the two variables have a corre-
lation magnitude of -0.84, which is quite high in the range of -1 to 1. A negative
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correlation indicates that a higher score results in lesser fuel consumption. This way
the scoring algorithm is validated against the fuel consumption.

4.3.3 Comparing Drivers based on the Scoring Algorithm

The three data sets described earlier in Table 4.1 comprises of the driving data of
four drivers. Data set DS2 comprises of two drivers, the rest of the two data sets are
driven by one driver. We compared the average and standard deviation of the scores
to observe if consistent driving is the key characteristic of certain drivers.

Analysis is performed on the drivers and results are tabulated in Table 4.3. From
this table, it is observed that driver B and D are the most consistent drivers because
the standard deviation of their score is low. The average score for driver D is slightly
low due to the city driving conditions. In city driving conditions, the cruising behav-
ior is reduced and idling behavior is increased which contributes to a lower score.
Driver A’s trips mostly are driven on the German highways, and these trips are not
very efficient because certain trips are driven at very high engine speeds. Driver C
was instructed to driver aggressively to check the model behavior. Generation of
lowest score among all other drivers indicate that aggressive behavior is captured
by the model.

Data set Driver Average Score
Std. Deviation
of Score

Remark

DS1 A 66 8
Inefficient -
Highway driving

DS2 B 85.24 4.67 Efficient driver
C 49.15 9.15 Aggressive driver

DS3 D 74.3 3.8
Consistent driver -
City driving

TABLE 4.3: Aggregated trip-level scores of the drivers

From the data sets, it is observed that the drivers have driven their vehicle at
varying speeds. This might be because of the different speed limits imposed by the
authorities at different places. The highest speed limit in Florida is 80 miles per hour
(128 km/hr). The maximum speed of the drivers in DS2 is 126 km/hr, which is well
within the speed limits of Florida state. Since, German highways do not have speed
limits, the maximum speed achieved by driver A is 217 km/hr. The maximum speed
achieved by driver D is 96 km/hr, this might be due to the suburban speed limits in
the Netherlands. Overall, the drivers B and D are efficient and consistent compared
to the other drivers.

To test and verify the generalizability of the scoring algorithm on trips that are
not present in the data set, an experiment was conducted. In this experiment, two
drivers participated and the car used was a Renault Megane. The chosen route was
from Enschede-Cologne for the first driver and Cologne-Enschede for the second
driver. This experiment also served as a means to portray the gamification concept
of the scoring algorithm developed.

From the Figure 4.7 it is observed that first driver is more efficient than the second
driver. Fuel consumption obtained from the car’s dashboard also verifies this fact.
The comparison of score ad fuel consumption is presented in the Table 4.4. The
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car’s dashboard displayed the distance traveled without fuel consumption, which is
basically engine braking. The total amount of engine braking for the entire trip was
8%, which was calculated as a part of feature extraction. The car’s display showed
that the distance traveled without fuel consumption as 15 km for a total trip length of
192 km, which amounts to 7.8%. This way the feature extraction for engine braking
is verified.
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FIGURE 4.7: Score comparison of the two drivers

Driver Score
Fuel Consumption
(L/100km)

1 87 5.1
2 72 6.5

TABLE 4.4: Score and fuel consumption for Enschede-Cologne trip

4.3.4 Clustering

We use the second data set (DS2) to perform clustering as it is more diverse in terms
of driving behaviour. First, we reduce the number of dimensions using PCA and
t-SNE. Then, we perform clustering using k-Means and agglomerative methods.
Later, we compare the different methods and determine which method is more ap-
plicable for this data set. The clusters obtained are evaluated with the scores ob-
tained from the scoring algorithm.

4.3.4.1 Principal Component Analysis

By applying PCA on the data set, the number of features are reduced to a few prin-
cipal components. The number of components is decided based on the scree plot. In
this analysis, highly correlated features are transformed into linearly uncorrelated
features. From Figure 4.8, it is clear that the two principal components PC1 and PC2
obtained account for more than 80% of the variance. It means that the nine features
can be represented with these two principal components.
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FIGURE 4.8: Scree plot showing the variance of principal components

The summary of principal components of the data set are shown in Table 4.5. In
PC1, cruise and PKE have the largest coefficients, whereas, in PC2, idling and gear
shift features have the largest coefficients. The coefficients with large magnitudes
will determine the position of the trips on a two dimensional projection.

Feature PC1 PC2
Harsh Acceleration 0.32 0.31
Harsh Deceleration 0.29 0.45
PKE 0.39 0.07
Engine Braking 0.36 -0.21
Cruise -0.39 -0.13
Idling 0.28 0.41
High RPM 0.30 -0.35
Gear Shift Average 0.31 -0.41
% of High RPM Shifts 0.29 -0.40

TABLE 4.5: Summary of the component loadings

4.3.4.2 T-Stochastic Neighbour Embedding

t-SNE is a non-linear dimensionality reduction technique mostly used for visualiza-
tion purpose. One of the advantage of using this technique is that it brings similar
points in higher dimensional space closer when projected onto the lower dimen-
sional space. To perform t-SNE one has to consider tuning a few important parame-
ters. They are : number of components required, perplexity and number of iterations
to converge. For this data set, the number of components to keep is set to 2, as we
want to visualize in two dimensions. Perplexity is set to 14, and the number of it-
erations is set to 10000. These parameters are set by trial and error experimentation
[53].
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4.3.4.3 k-Means Clustering

First we perform k-means clustering with PCA reduced population, then we will
experiment with t-SNE. For k-means clustering, the k value has to be determined.
We use silhouette score and elbow method to arrive at this number.
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FIGURE 4.11: PCA projection of k-means clustering

From the Figure 4.9 the elbow point is not very clear as it can be 2, 3 or 4. There-
fore, elbow method is not considered. In the Figure 4.10 the highest score is obtained
when the number of clusters are 3. So, the optimal number of clusters from these
plots are considered to be 3.

Figure 4.11 shows the clusters obtained by reducing the dimensions through
PCA. Among the three clusters obtained, cluster 2 represents the trips driven effi-
ciently. The other two clusters are driven not so efficiently and cluster 3 has the most
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aggressive trips. The trips in cluster 3 are driven at high RPM and have a higher
harsh deceleration count compared to cluster 2.

Next, we reduce the features using t-SNE and cluster with k-Means. Figure 4.12
and 4.13 show the cluster evaluation methods. The elbow point drops when the
number of clusters are 2 and 4, which makes it ambiguous. Silhouette score is high-
est when the cluster number is 2. Therefore, the number of optimal clusters is con-
sidered to be 2.
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The clusters obtained from t-SNE projection of k-means is as seen in Figure 4.14.
The obtained clusters clearly differentiate the driving behaviour. Cluster 1 repre-
sents the trips driven in an inefficient way. Cluster 2 represents the trips that are
driven in a very efficient manner. From this plot a clear distinction can be made
between the driving behaviour.

Cluster PCA t-SNE
1 49.6 49.1
2 83.5 85.2
3 42.3 -

TABLE 4.6: Average scores of the clusters obtained by k-means clus-
tering

To interpret the clusters, we use the trip-level score as the ground truth. Table
4.6 shows the average scores of the trips obtained by k-means clustering. The scores
between the clusters are significantly different. In the previous section, we have
shown the correlation between fuel consumption and trip-score. Therefore, if the
score for a given cluster is high, it indicates that the fuel efficiency is high which is a
characteristic of eco-driving.

4.3.4.4 Hierarchical Clustering

Hierarchical clustering can be performed in two ways : agglomerative and divisive.
When the number of data points are less, the choice to be made is agglomerative
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FIGURE 4.14: t-SNE projection of k-means clustering

clustering. Further, the linkage criteria and the dissimilarity measure has to be speci-
fied for performing clustering. We choose ward linkage criteria and euclidean distance
measure for performing clustering, as these are the commonly used parameters. To
decide the the number of clusters, we visualize the dendrogram of the PCA and t-
SNE projections. The length of the vertical lines of the dendrogram represent the
dissimilarity between clusters. The longer the lines, more dissimilar are the clusters.

From figure 4.15 and 4.16 it is observed that the the lines colored in blue have
the largest vertical distance. This is used to determine the number of clusters. From
both PCA and t-SNE projections it clear that two clusters can be formed. We specify
this parameter to perform agglomerative clustering and then project the results on a
scatter plot.

From the Figures 4.17 and 4.18 two clusters are obtained. Among the two clus-
ters, one of them is driven efficiently and the other one is driven aggressively. The
clusters formed using PCA and t-SNE have the exact same trips, which validates the
clusters obtained and the dimensionality reduction techniques. Table 4.7 shows the
average scores of the clusters, it is observed that the scores among the clusters are
equal.

Cluster PCA t-SNE
1 49.1 85.2
2 85.2 49.1

TABLE 4.7: Average scores of the clusters obtained from agglomera-
tive clustering
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4.3.4.5 Comparing PCA and t-SNE

Although we had very few trips in our data set, PCA and t-SNE both were appli-
cable to perform dimensionality reduction. PCA provides clear information about
the number of components, their component loadings and separates correlated vari-
ables. Regarding t-SNE, it doesn’t provide any information about it’s lower dimen-
sional components. Hence, it has to be treated with extra attention because of it’s
black-box nature. Having the ground truth in the form of scores of the trips helps
making t-SNE interpretation simpler.

There were no inputs that are required to be provided to the PCA algorithm for
performing dimensionality reduction, but to get a good cluster representation using
t-SNE, several hyperparameters have to be tuned. The hyperparameter tuning for
t-SNE is more of a guess work. Comparing the clusters obtained visually, t-SNE
clusters are compactly grouped compared to the PCA. This means, the local structure
of the data points (trips) are well preserved using t-SNE.
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4.3.4.6 Comparing K-means and Agglomerative Clustering

K-means clustering requires the number of initial clusters to be specified. For this,
we had to perform cluster evaluation techniques before performing the actual clus-
tering. Agglomerative clustering groups the trips without the need of any input. Us-
ing the dendrogram, the optimal number of clusters can be decided. To compare the
best performing combination of the dimensionality reduction technique and cluster-
ing algorithm we use silhouette score for assessment. From Table 4.8, it observed
that the clusters obtained from the combination of k-means and PCA has the highest
silhouette score. Clustering on PCA reduced population has a better score than the
t-SNE reduced population.

k-means Agglomerative
PCA 0.60 0.55
t-SNE 0.51 0.51

TABLE 4.8: Silhouette scores for the combination of dimensionality
reduction techniques and clustering algorithms

Overall, the combination of clustering and dimensionality reduction techniques
provide a good classification of driving behaviour from the trip-level features. This
also means that the feature vectors that were derived are a good representation of
the eco-driving behaviour. This is also validated against the scores generated at the
trip-level from the scoring algorithm.

4.3.5 Evaluation of external factors on eco-driving

Route choice and weather affects the driving behaviour. To show the effects of route
choice, a trip was planned from point A to B using two routes in the city of Orlando,
Florida. The first route passes through the city, and the second route takes a high-
way. The route taken through the city had 14 stops (due to traffic) and the highway
route had 4 stops. The distances for the city and highway were 46 and 50 kilometres
respectively. Both the trips were driven by a single driver in an efficient manner.

The route taken through the city resulted in a fuel efficiency of 6.1 L/100km,
whereas, the other route resulted in a fuel efficiency of 5.2 L/100km. Due to the
traffic (stop-lights), idling was higher by 7%, cruising reduced by 15% and positive
kinetic energy increased by 40% in comparison to the trip which took the highway
route. The overall improvement of 14% in fuel efficiency was observed. Since, the
scoring algorithm is designed based on the parameters that affect the fuel consump-
tion, the trip driven through the city received a score of 73 and the trip driven by the
highway received a score of 88. Through this experiment, it was inferred that apart
from the driving behaviour route choice also influences the eco-driving.

The trips in the data set DS1 presented earlier are driven in Germany. These
trips have the date and location of the journey recorded. Using these labels, the
historical weather information [54] was gathered to analyze the effects of weather
in the driving behavior. The weather data includes temperature, humidity, wind
speed and precipitation. The city at which the trip started is taken as the reference
for the weather data. To see the relation between weather and the driving behaviour,
correlation analysis was performed. After this, trip-level scores were checked to see
any effects of weather on the driving behavior.
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FIGURE 4.19: Correlation of eco-driving features and weather

From the correlation map in the Figure 4.19 it can be observed that most of the
weather parameters have very less correlation with the driving features. However,
the humidity and High RPM features show a correlation of -0.31. It can be inferred
that when the humidity is low (good weather), the driver seems to drive aggres-
sively at higher engine speeds. The average speed also shows a positive correlation
of 0.2 with the humidity indicating that the driver chooses to drive at higher speeds.
Research conducted in [55] shows that the drivers display aggressive behaviour with
the increase in temperature. The temperature and humidity show a correlation of
-0.45 which means that the decrease in humidity results in the increase of temper-
ature. So, temperature and humidity are linked to the driver’s higher engine speeds.

The scores in a given calendar month didn’t show significant difference on oc-
casions when there was heavy precipitation. The amount of data that is used to
perform driving analysis with respect to weather is considerably less. Historical
weather information that is extracted is also subject to the weather station that pro-
vides the data. Having accurate location and larger data set might have provided
better results.

4.3.6 Safe driving and Eco-driving

The parameters that were described in the previous chapter for characterizing safe /
unsafe driving are used to perform clustering. From the eco-driving features, harsh
acceleration and deceleration are removed as these are present in the safe/unsafe
feature set. The average silhouette scores for a combination of dimensionality re-
duction techniques and clustering algorithms are calculated. The results obtained
are displayed in Table 4.9. PCA produced a higher score for safe / unsafe feature
set due to the less number of trips which resulted into scattered data points. The
performance of t-SNE is nearly the same in both the feature sets. Also, agglom-
erative clustering performs slightly better than k-means method. Therefore, t-SNE
and agglomerative clustering were used to obtain the clusters. From the resulting
clusters, analysis was performed on the overlap of safe and unsafe driving against
eco-driving trips.

From the silhouette scores the optimal number of clusters that can be formed are
2 for both the feature sets. The results obtained from clustering on the two feature
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sets are as seen in Figure 4.20 and 4.21. It is observed that the cluster 1 (green) in both
the figures score higher than cluster 2 (red). The scores for the clusters are presented
in Table 4.10. The average score for cluster 2 even after removing two features are
the same compared to the one obtained in Table 4.7.

Technique Safe/Unsafe features Eco-driving features
PCA k-means 0.60 0.51

Agglomerative 0.60 0.51
t-SNE k-means 0.53 0.54

Agglomerative 0.54 0.54

TABLE 4.9: Silhouette scores for a combination of dimensionality re-
duction and clustering algorithms
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Cluster Safe/Unsafe Eco-driving
1 85.58 85.25
2 51.71 49.15

TABLE 4.10: The scores of the clusters obtained from two feature sets

By comparing the cluster labels of each trip we observe that only one trip from
cluster 1 of safe/unsafe feature set does not belong to the cluster 1 of eco-driving
feature set. This resulted into a very high overlap of 97% between safe driving and
eco-driving.

The average values of the two feature sets (safe/unsafe and eco-driving) are seen
in Table 4.11. It is observed that the standard deviation of the acceleration is higher
in cluster 2 compared to the cluster 1. Also, the features harsh acceleration and
deceleration have very high average values in cluster 2 for safe/unsafe feature set.
In the feature set related to eco-driving, PKE is significantly high in the cluster 2.
Also, the cruising, high RPM and features related to gear shift are higher. So, cluster
2 among both the feature sets are considered as unsafe and inefficient trips.
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Safe/Unsafe Eco-driving
Feature Cluster 1 Cluster 2 Feature Cluster 1 Cluster 2
Harsh Acc. 2.92 23.6 PKE 1455 4995
Harsh Dec. 4.11 18.9 Cruise 72.4 31
Mean Speed 86.4 61.9 Idling 6.1 14
Max Speed 122 122 High RPM 0 3.86
Std. Speed 33 35 Avg. Gear Shift 2069 2487
Max. Acc. 14.16 21.63 % High RPM Shift 14 36.5
Std. Acc. 1.76 2.69 Engine Braking 5.8 19.05

TABLE 4.11: Averages of two feature sets among the clusters

4.4 Summary

This chapter presented the results of the methods discussed earlier in Chapter 3.
Firstly, the results obtained from the Random Forest’s feature importance were pre-
sented. Secondly, the scoring algorithm is validated against fuel consumption. Then,
the different drivers among the data sets were compared. Third, the unsupervised
learning was performed and different methods were compared. Fourth, the effects
of external factors on eco-driving behaviour were presented. Lastly, the correlation
between safe-driving and eco-driving results are presented.





59

Chapter 5

Conclusion

This thesis work presented a detailed description of the parameters which are ob-
tained from the vehicle’s ECU. Feature extraction process along with the scoring
model based on fuzzy logic were also described in the earlier chapters. This scor-
ing model helps in classification of driver behavior as economic (eco) or aggressive.
Another technique which is based on clustering was also introduced to perform the
classification of driving behavior.

During the literature survey, important eco-driving rules were noted down. Based
on these rules, nine features were extracted from the time-series data collected from
the vehicle. On these extracted features, random forest model is used which eval-
uates the importance of features for characterizing eco-driving behavior. From this
analysis, it was observed that positive kinetic energy (PKE), cruising, idling and high
RPM driving are the important features which best characterize the eco-driving be-
havior. Also, there are some parameters like engine braking which had very less
correlation with the fuel consumption, and thus do not contribute much to the eco-
driving behavior.

To perform the quantitative evaluation of driving behavior, a fuzzy logic based
scoring model was developed. This model makes use of all the extracted features
from the data set. The scoring model is validated by checking the correlation with
fuel consumption. Based on this analysis, it was observed that calculated score and
the fuel consumption were highly correlated. This analysis helps in concluding that
the scoring model works well to classify the eco-driving behavior. Using this scoring
algorithm, the drivers among the data sets were compared. It was found that some
drivers are consistent and efficient, while the others are aggressive. This aggressive
behavior is also reflected in the scoring model.

Apart from the scoring model, another technique based on unsupervised ma-
chine learning concepts was used to classify the driving behavior. Design space
was explored for two dimensionality reduction techniques and two clustering algo-
rithms. Based on this exploration, a combination of PCA (dimensionality reduction
technique) and K-means (clustering technique) provided better results. These results
were based on their silhouette score. From the results obtained, it can be concluded
that the combination of dimensionality reduction techniques and clustering algo-
rithms can distinguish the driving behaviour clearly. Among the clusters that were
obtained, at least one of them represented eco-driving behavior which indicates that
machine learning algorithms can be employed for driving behavior classification.

Literature survey was performed to identify the features that relate to safe and
unsafe driving. An analysis was performed using the clustering algorithm based on



60 Chapter 5. Conclusion

these features. The results obtained from this analysis were compared to the analysis
made for eco-driving. These results showed an overlap of 97% between eco-driving
and safe-driving. This observation concludes that safe-driving and eco-driving are
highly correlated to each other.

Data sets were also analyzed to check the effect of route choice and weather on
the driving behavior and fuel consumption. Based on the limited data set, very less
correlation was found between weather and driving behavior. It was also observed
that route choice affects the fuel consumption and thus the eco-driving behavior.

5.1 Future Work and Recommendation

The results and conclusions presented in this thesis are based on the limited time
frame available for this work. Due to this, there are a few tasks which were left
unattended, and, few tasks which required more inputs in terms of data sets and
time. Following points present future work and recommendations if this thesis work
is carried out further :

• Collection of more data to tune the limits and weights present in the scoring
algorithm.

• Identification of more features to make the scoring model more accurate.

• Integration of scoring model into a smartphone application or vehicle to give
real-time feedback to the drivers about their driving behavior.

• Currently, the scoring model does not differentiate between city and highway
driving. Provisions should be made in the model to identify these different
scenarios and adjust the model accordingly for accurate results.

• Cruising speed is vehicle dependent. Implementation of this scoring model
based on vehicles specifications can lead to better cruising scores.

• Contextual information like road conditions and traffic information can be in-
cluded to accurately analyze the driving behavior.

• Currently, the scoring model is meant for cars. This scoring model can further
be extended to analyze the driving behavior on buses and long-haul trucks.

• Real-time feedback generation should be added to the model to make the sys-
tem more informative.

• Cars tested in this work had a standard transmission. This model should
be extended to account for different types of transmissions like Continuous-
Variable-Transmission (CVT).
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Appendix A

Descriptive Statistics

A.1 Descriptive statistics for DS1

The Table A.1 shows the mean, standard deviation, minimum and maximum of the
features derived. These statistics are useful for determining the limits for the scoring
algorithm. The trips in this data set are driven in the south-west region of Germany.

Feature Mean Std. Dev. Min. Max.
Harsh Accel.
per 100 km

5.9 5.5 0 36.49

Harsh Decel.
per 100 km

7.07 8.51 0 58

PKE 3447 966 2148 8181
Engine Braking
(%)

11 1.9 6.5 15.45

Cruise
(%)

37 10 9.51 61.16

Idling
(%)

7.02 3.84 0.52 21.63

High RPM
(%)

1.71 2.50 0 10.11

Avg. Shift-up
RPM

1989 73 1806 2182

% of High RPM
up-shift

44 10 19 65

TABLE A.1: Descriptive statistics of the features derived for DS1. (N
= 63)
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A.2 Descriptive statistics for DS2

The Table A.2 shows the mean, standard deviation, minimum and maximum of the
features derived for the second data set. These statistics were used to decide the
limits for the scoring algorithm. The trips in this data set are driven in and around
the city of Orlando by two drivers. Clustering was performed on this data set.

Feature Mean Std. Dev. Min. Max.
Harsh Accel.
per 100 km

9 16 0 86

Harsh Decel.
per 100 km

7.97 11.03 0 52.9

PKE 2446 1782 873 7409
Engine Braking
(%)

9.5 7.7 2.95 36.5

Cruise
(%)

60.7 20.7 11.18 86.26

Idling
(%)

8.4 5.5 0 23.25

High RPM
(%)

1.14 3.12 0 16.43

Avg. Shift-up
RPM

2189 294 1739 3070

% of High RPM
up-shift

20 16.7 0 71.43

TABLE A.2: Descriptive statistics for DS2. (N = 35)
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A.3 Descriptive statistics for DS3

The Table A.3 shows the mean, standard deviation, minimum and maximum of the
features derived for the second data set. This data set was collected to analyze the be-
haviour of the driver using the scoring algorithm. It is observed that engine braking
is not registered. The signals for throttle position and instantaneous fuel consump-
tion didn’t work as expected. A total of 7 trips were collected around Enschede.

Feature Mean Std. Dev. Min. Max.
Harsh Accel.
per 100 km

0 0 0 0

Harsh Decel.
per 100 km

1.48 2.86 0 7.46

PKE 3288 426 2764 3946
Engine Braking
(%)

0 0 0 0

Cruise
(%)

26.35 11.53 0 37.33

Idling
(%)

5.5 4.82 2.02 16.89

High RPM
(%)

0 0 0 0

Avg. Shift-up
RPM

1870 104 1704 2051

% of High RPM
up-shift

0.7 2.11 0 5.97

TABLE A.3: Descriptive statistics for DS3. (N = 7)
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Appendix B

Correlation Maps

The Figure B.1 represents the correlation between the derived features and the fuel
consumption for the first data set DS1.
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FIGURE B.1: Correlation map for DS1
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The Figure B.2 represents the correlation between the derived features and the
fuel consumption for the second data set DS2.
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FIGURE B.2: Correlation map for DS2

From both the Figures B.1 and B.2 it can be observed that engine braking which
is supposed to have negative correlation with the fuel consumption, in fact has no
correlation in DS1 and has positive correlation in DS2.
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