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Abstract— Long distance running involves high risks of
injuries for which it is important to identify and detect such
risks during running. A sensing system consisting out of
inertial sensors is chosen, though these are sensitive to errors.
The estimated 3D orientation should be acquired drift free.
By exploiting the cyclical behaviour of running, three drift
reduction methods are proposed to estimate the 3D orientation.
The first method will remove the mean of the angular velocity.
The second method rotates the angular velocity first to the
axis on the knee perpendicular to the sagittal plane. The third
method will set a custom offset on the angular velocity such
that the drift is minimized. The results show that exploiting the
cyclical behaviour of walking and running can help to reduce
the drift when the 3D orientation is estimated. It is shown that
the same phases in different gait cycles have a similar estimate
of the 3D orientation. A custom offset, for both method 2 as
for method 3, delivers the best results. An accuracy of at least
2 degrees can be achieved for both walking and running. It is
expected that with this method, sensors can operate individually
on any position on the body during running without the need
of extensive calibration beforehand.

I. INTRODUCTION

Long distance running involves high risks of injuries [1].
It is important that such risks are identified and detected
to inform the individual runner during running. These risks
might be caused by a less optimal running technique due to
fatigue. To detect the change in technique and the additional
risks, the movements of the subject should be analyzed,
which is done with human motion tracking. There are a
number of tracking solutions, each with their advantages and
disadvantages. The sensors must be self-contained due to the
ambulant behaviour of running and may not be a burden to
the runner themselves. Therefore a light weight and small
sized system is required.

Due to the constraints mentioned, a minimal set of three
inertial sensors for this system is chosen. Two sensors will
be placed on each tibia and one for on the sacrum. The
tibia is a bone positioned in the front of the lower leg
and provides a rigid fixation point for inertial sensors as
there is only a minimum amount of soft tissue between the
bone and the skin. As this bone is adjacent to the knee it
is expected to get information about the knee too, which
is valuable information as a significant amount of injuries
involves the knee [2]. The sacrum is chosen as it is near the
center of mass while standing and therefore interesting to
know what happens during long distance running [3]. Note
that the research focuses on the usage of one inertial sensor.
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Fig. 1. The Strapdown Inertial Navigation Algorithm. Source: Adapted
from [5]

Inertial sensors (often referred to as Inertial Measure-
ment Units, (IMU)’s) are microelectromechanical systems
(MEMS) sensors and often lightweight and small in size.
In addition to that the sensors are self-contained, they
can be used individually to calculate the 3D orientation,
acceleration, velocity and position without the use of any
external system. An inertial sensor consists of a combination
of accelerometers, gyroscopes and are sometimes combined
with magnetometers. Often these sensors are able to measure
in three dimensions [4]. To acquire the among others the
orientation and position, a strapdown inertial navigation
algorithm can be used. The algorithm utilizes the gyroscope
signals to acquire an estimated 3D orientation to rotate the
accelerometer signals to the global coordinate system. After
this the gravity can be subtracted and velocity and position
can be derived. This is shown in Fig. 1.

However, it is known that using numerical integration
is inherently prone to errors, often labeled as integration
drift. Gyroscopes and accelerometers are subject to offsets,
thermo-mechanical white noise, flicker noise, temperature
effects and calibration errors. When integrated, most errors
become significant over a certain amount of time as their
errors are add up. The offsets, also known as bias, and the
thermo-mechanical white noise limit the performance the
most [5].

Even in modern systems the integration drift is still a prob-
lem and should be corrected for. The correction can either
be applied based on sensor fusion or with domain specific
assumptions. Sensor fusion uses an additional sensing system
with a Kalman filter or a variation on it to combine it with
the data of the inertial sensors. A downside of this method
is that extra sensors are needed, counteracting the minimal
sensor set and therefore the burden to the runner [6].

A domain specific assumption which is often used during
walking is the zero velocity update, which assumes that the
velocity of (a sensor on) the foot is zero during the stance
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Fig. 2. The sensor body frame Ψs with angular velocity ωs is aligned
with the sensor body. The 3D orientation can be estimated with the use of
eq. (1). By using this time dependent rotation matrix, the angular velocity
ωsinit with respect to the initial orientation can be calculated. ωs may be
rotated first to the partial segment frame Ψa, such that the axis xa resembles
with the axis on the knee perpendicular to the sagittal plane. In a drift-free
estimated 3D orientation ωainit is identical for both approaches

phase. This method is less suitable for running at higher
velocities, as the stance phase is too short [7], [8], [9]. In
some work periodic movements are exploited for analytical
integration using adaptive filtering methods, such as the
weighted-frequency Fourier linear combiner (WFLC) or the
band-limited multiple Fourier linear combiner (BMFLC).
The measured signals can be modelled with these filters and
analytically integrated with the Fourier series. Both are not
verified for running [6], [10].

To the best of the author’s knowledge, there currently
does not seem to be a solution for the drift-free 3D orienta-
tion estimation for periodic movements with a single IMU.
Therefore a new method in drift cancellation is required.
In this research three new methods of drift cancellation are
proposed by exploiting the cyclical nature of running. The
main idea revolves around the following assumption: If a
person is running with a constant speed along a straight
line, the gait cycles and its values should be similar to
respectively the other gait cycles and its values. With such
a method sensors can operate individually on any position
on the body during running without the need of extensive
calibration beforehand. This work focuses on the drift-free
estimation of 3D orientations.

This leads to the research question: How can the cyclical
nature of running be used to acquire drift-free estimates of
the 3D orientation using a single inertial sensor?

II. METHOD

This section will provide the necessary theory and present
the methods to cancel the drift with the use of the cyclic
behavior. First, the theory about the estimation of the 3D
orientation is given in Section II-A. Analysis of the influence
of bias on the drift is shown in II-B. The three methods for
drift compensation using cyclical behaviour are proposed in
Section II-C. Information about the experimental measure-
ment is elaborated on in Section II-D and finally the analysis
of the results is explained in Section II-E.

A. Orientation and integration

The orientation estimation of the sensor body frame Ψs

depends on previous rotations, as the rotation from the sensor
body frame Ψs to the sensor body frame with respect to
the initial orientation Ψsinit is time dependent. Therefore the

rotation is done with an adaptation to the differential equation
expressed in eq. (1) [11].

The time dependent rotation matrix RRRsinit
s expresses the

rotation from the sensor body frame Ψs to the sensor body
frame with respect to the initial orientation Ψsinit . ṘRRsinit

s is the
time derivative of RRRsinit

s . ω̃ωω
s,sinit
s is a skew-symmetric matrix,

see eq. (2), consisting of the components of the angular
velocity vector of the sensor body frame Ψs with respect to
the sensor body frame with respect to the initial orientation
Ψsinit , expressed in the sensor body frame Ψs.

ṘRRsinit
s = RRRsinit

s · ω̃ωωs,sinit
s (1)

ω̃ωω
s,sinit
s =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2)

In [12] it is explained that besides the actual rotation value
around an axis, the order of the rotation also affects the ori-
entation. The rotations are non-commutative. However when
the individual rotations are small enough by minimizing the
time step, the order of rotation may be neglected [12]. The
sampling frequency must therefore be large enough.

B. Drift analysis

It is shown in earlier work that the offsets and the
white noise, sometimes referred to as angle random walk,
are usually the most important sources of error [5]. These
integrated errors propagate through the strapdown inertial
navigation algorithm and increase over time [13]. Drift in the
estimated 3D orientation should be minimized as it affects
the rotated acceleration too.

A gyroscope can be modelled as (3), where the measured
angular velocity ωs,e is influenced by the the gain g, bias b
and stochastic component σ . For an ideal calibrated sensor
the gain is correct and the bias and stochastic component
are zero, such that the output of the gyroscope is an angular
velocity without errors. This will result in a drift-free 3D
orientation estimation. Even though with calibrating and
subtracting bias b an offset be may still be present, as not
the complete offset b̂ is subtracted, see (4).

ωs,e = g(ωs)+b+σ (3)

b̂ = b+be (4)

It is expected that the bias has the largest influence on the
drift. The effect of the stochastic component is assumed to
be minimal, since the errors result in a drift growing over the
square root of time, while the offset grows linearly over time
[5]. If the stochastic component is smaller than the offset this
expectation holds. The gain is assumed to be correct.

In the situation that the bias is the only major influence
on the drift in the orientation estimation, the effect can be
analysed. (5) shows the solution of ṘRR for the first iteration.
The mc components are constants of the initial rotation
matrix. Note that the measured angular velocity consists out
of the ideal angular velocity and the error in the offset,
ωe,x = ωx + be. It can be seen that the offset will cause a



drift in the orientation. The magnitude of this drift depends
on orientation in each iteration.

ṘRR1 =

m12ωe,z−m13ωe,y m13ωe,z−m11ωe,x
m22ωe,z−m23ωe,y m23ωe,z−m21ωe,x
m32ωe,z−m33ωe,y m33ωe,z−m31ωe,x

m11ωe,y−m12ωe,x
m21ωe,y−m22ωe,x
m31ωe,y−m32ωe,x

 (5)

In the case where only a 1D motion exist, such that
the rotation is only about one axis, the orientation can be
presented as (6) and (7). Where the angular velocity around
the axis is ωx, ṘRRi the time derivative of (1), n a sample and
i the iteration of the time derivative. It is expected that the
initial and final orientation of a periodic movement are the
same. Since the rotation is only about one axis, it is expected
that the offset will be equal to the mean. Similar equations
can be achieved with both ωy and ωz. The derivations are
shown in section V-B.

ṘRRi =

0 ∏
i
n=1(ωx,n−be) ∏

i
n=1(ωx,n−be)

0 ∏
i
n=1(ωx,n−be) ∏

i
n=1(ωx,n−be)

0 ∏
i
n=1(ωx,n−be) ∏

i
n=1(ωx,n−be)

 ·F(i) (6)

F(i) =



i ·mod(4) = 0

0 m13 −m12

0 m23 −m22

0 m33 −m32


i ·mod(4) = 1

0 −m12 −m13

0 −m22 −m23

0 −m32 −m33


i ·mod(4) = 2

0 −m13 m12

0 −m23 m22

0 −m33 m32


i ·mod(4) = 3

0 m12 m13

0 m22 m23

0 m32 m33



(7)

C. Drift compensation

Determining the orientation and cancelling the drift will
be done by exploiting the cyclical behavior of running. The
main idea revolves around the following assumption: If a
person is running with a constant speed along a straight line,
the cycles and its values should be similar to respectively the
other cycles and its values. Therefore in the orientation es-
timation the same phases in different cycles should estimate
the same orientation.

The first method will remove the mean of the angular
velocity. The second method rotates the angular velocity
to the axis on the knee perpendicular to the sagittal plane.
The third method will instead of removing the mean, set an
custom offset such that the drift is minimized.

In each method, the signal was truncated to a full number
of cycles. Note that a cycle is defined as one whole period
of a gait cycle that starts and end with the same event, the
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Fig. 3. Marking the cycles of ωs,y using zero crossing on the falling edge
of the signal.
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Fig. 4. The approach for each method. (a) shows method 1, (b) shows
method 2 and (c) shows method 3.

method should work for any event that is distinguishable in
the measured angular velocity data. The axis with the most
dominant rotation around the axis on the knee perpendicular
to the sagittal plane was used to truncate the signal. This
was done by using the zero crossing of the falling edge, this
is just before the leg comes in contact with the ground. In
this work the axis was ωs,y. Due to the sampling frequency,
a sample point with the value zero is not always defined,
therefore the closest value is marked as the zero crossing.
The marking is shown in Fig. 3.

1) Method 1: Mean subtraction: Since each cycle is
expected to be very similar, there will be almost no variation
between the cycles in the measured data. It is expected that
this holds for the estimated orientation too. It is assumed
that any bias in the measured data would result in a linear
deviation in the orientation. Over a whole number of cycles,
the mean of the measured data should therefore be equal to
zero. This situation is mathematically described in (5). By
subtracting the mean, the linear drift may be removed.

This zero-mean angular velocity ωs(zero−mean) will be
integrated using the differential equation (1) with the identity
matrix III as initial orientation to acquire the orientation of the
sensor with respect to the initial orientation. To compare this
method with the following two methods, the orientation will
be rotated with RRRa

s to a partial segment coordinate frame with
the same rotation matrix as used in method 2.



2) Method 2: Rotation to partial segment coordinate
frame: During a measurement the orientation of the sensor
is likely not aligned with the segment, due to the need to
rigidly attach it to the body, for example in this research
on the tibia. Since the orientation estimation itself is non-
commutative, errors can arise. By ensuring a small time step,
an attempt is made to minimize this effect. It is expected that
during running the tibia will mostly rotate around the axis on
the knee perpendicular to the sagittal plane. Since each cycle
is will be similar, the sensor body frame may be rotated to a
partial segment coordinate frame, such that most variation
of the angular velocity is around one axis. The angular
velocity around the other two axes will be smaller. With
this method a uni-axial movement is approached, therefore
the order of rotation will matter less. It is expected that the
rotated angular velocity can be modelled by (6) and the mean
can be subtracted to remove the error in the offset be.

For the rotation to the partial segment coordinate frame,
three axes should be determined to create the rotation matrix
RRRa

s . Principal component analysis (PCA) is used to determine
the axis on the knee perpendicular to the sagittal plane. PCA
is a statistical procedure that can show the relationship be-
tween variables by constructing principal components (PC),
which are orthogonal and linear combinations [14]. This is
done by first subtracting the mean from the data itself. Then a
vector is determined which finds the largest possible variance
of projections of the data points on that specific vector, this
results in PC1. It is assumed that during running the highest
variation in angular velocity ωωωs is around the axis on the
knee perpendicular to the sagittal plane. By taking a number
of complete gait cycles PC1 should resemble this axis.

Two additional axes have to be determined for the con-
struction of the rotation matrix RRRa

s . It may be that there is a
variation in drift as the values of two remaining axes differ
depending on the rotation. Though it is expected that the
results will be similar due to the fact that the majority of
the variation in the angular velocity is covered by PC1. This
rotation matrix is also used for the other two methods.

For determining the rotation matrix RRRa
s eq. (8) is used. The

unit axis ys is used with PC1 to find a perpendicular third
axis. This third axis is used with PC1 to make ys orthogonal.
The three axes are rows in the rotation matrix.

ys = [0 1 0]
za

s = PC1× ys

za
s =

za
s

||za
s ||

ya
s = za

s ×PC1

ya
s =

ya
s

||ya
s ||

RRRa
s = [PC1;ya

s ;za
s ]

(8)

After the signal is rotated, the mean will be subtracted
of the angular velocity ωa and this result will be integrated
in the same manner as in the mean subtraction method by
using the differential equation (1) with the identity matrix III
as initial orientation.

(a) (b)

Fig. 5. Placement of the sensors on the tibia’s

3) Method 3: Custom offset: This method starts with
the same reasoning as the mean subtraction method, the
expectation is that there should be a minimal variation in
the orientation between the cycles in a drift-free estimation.
However, instead of using the zero-mean of the angular
velocity ωωωs(zero−mean), a custom offset is used that subtracts
a constant from ωs,x, ωs,y and ωs,z. This custom offset will
be determined with an iterative approach to remove the drift.
In the ideal situation, be as shown in (4) is subtracted from
each of the axes.

After the custom offset has been subtracted, the angular
velocity ωωωs(o f f set) will be integrated as done in the mean
subtraction method. To compare the results with method 2,
the orientation is rotated to the partial segment coordinate
frame with the same rotation matrix RRRa

s used in the previ-
ous method. The amount of drift is calculated and a new
improved custom offset is determined. This is done until an
average standard deviation of all cycles of the orientation of
less than 2◦ is found.

D. Participants and measurement setup

The measurements were performed with two healthy male
subjects with running experience. With age: 23.5 ± 1.5,
mass: 81.5 ± 11.5kg and height: 1.88 ± 0.12m. Both
participants were informed about the experimental procedure,
the purpose of the acquired data and the risk involved.
Both participants signed an informed consent. The mea-
surement was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Ethical
Committee of the faculty.

The subjects were measured consecutively. Two sensors
were placed on the tuberositas tibia of the right and left
leg of the first subject, see Fig. 5. The sensors of the left
and right tibia were also placed respectively on the left and
right tibia of the second subject. The sensors were fixed with
double-sided tape between the sensor and the subject’s skin
and reinforced with additional tape over the sensor onto the
leg. This rigid approach was done to minimize the tremors
of the sensor itself and ensure that the position of the sensor
was fixed. The measurement proceeded as follows:

The subject stands upright for a number of seconds. The
subject squats five times, making sure the knees are pointed
forward. The subject raises his right leg while supporting his
balance by holding on to a bar, next he swings his lower leg
back and forth five times. This is repeated with the other leg.



The measurement continues with walking and running on a
large treadmill (ForceLink, Culemborg, the Netherlands) for
90 seconds for each speed. The speeds were 4, 6, 10, 12
and 14km/h. Between each walking and running there was
a small break to start the next measurement, the subject was
asked if he needed rest and if he would like to continue.

1) Material: For the measurement wireless inertial sen-
sors (Xsens Technologies B.V., the Netherlands) were used.
These were the MTw Awinda of which the unprocessed
accelerometer and gyroscope data could be extracted. The
sensors were wireless connected with the Awinda Station,
ensuring a sample frequency of 100Hz. The MTw sensors
had either firmware version 2.0.8 or 2.1.2. The weight of
one sensor is 16 gram. The range of the acceleration is
±160m/s2, the range of the gyroscope is ±2000deg/s ≈
±34.91rad/s.

E. Method analysis

As mentioned in section II-C, the purpose of the methods
is to minimize the drift in the estimation of the 3D orienta-
tion.

The analyzation of the results is done using quaternions,
to which the rotation matrix of the estimated orientation is
converted to. A quaternion can be used as representation of
a rotation or an orientation. It is defined as q = q0+qqq = q0+
(iiiq1+ jjjq2+kkkq3). q0 is referred to as the scalar part, whereas
the qqq is the vectorial part [16]. With q0, the magnitude
of the rotation between the initial orientation and another
orientation can be shown. Whereas q0 = 1 means there is
no orientation difference and q0 = 0 indicates a rotation
of 180◦[17]. Since the initial orientation is just before the
impact of the leg on the ground, it is expected that without
drift in each cycle the scalar is between 0 and 1.

The amount of drift will be represented by the average of
the standard deviation of all samples in the cycles. A lesser
drift would result in a lower average standard deviation, as
it is expected that the orientation in each phase of the cycle
will be nearly the same.

Note that the quaternion representation is solely used for
determining the drift in the orientation.

For the custom offset method, the offset was determined
manually, however the optimization process can be done
automatically. The data was analyzed offline in MatLab
R2016b.

III. RESULTS

First important aspects of the measurement data are show.
Then the results are in order of the presented drift cancel-
lation methods. Note that only the data of subject 1 while
running 12km/h is displayed in the figures, the results are
representative for both the other speeds and for subject 2.
Besides that only the data of the sensor on the right tibia
was processed.

The gyroscope is subdue to noise, while stationary on a flat
surface the standard deviation is 0.0048, 0.0051 and 0.0050
rad/s for respectively ωs,x, ωs,y and ωs,z.

Fig. 6. The mean and standard deviation of all samples in each cycle of
each axis of unprocessed angular velocity ωs in rad/s in the sensor body
frame Ψs.

Axis\Speed 10km/h 12km/h 14km/h
Average standard deviation of ωs,x (rad/s) 0.7079 0.7000 0.8748
Average standard deviation of ωs,y (rad/s) 0.3399 0.3357 0.4486
Average standard deviation of ωs,z (rad/s) 0.4727 0.4675 0.5776

TABLE I
THE AVERAGE STANDARD DEVIATION OF ALL SAMPLES IN EACH CYCLE

OF EACH AXIS OF ωωωs IN RAD/S FOR SUBJECT 1.

Axis\Speed 10km/h 12km/h 14km/h
Average standard deviation of ωs,x (rad/s) 0.6743 0.7679 0.9848
Average standard deviation of ωs,y (rad/s) 0.2479 0.3307 0.4988
Average standard deviation of ωs,z (rad/s) 0.3437 0.4531 0.5946

TABLE II
THE AVERAGE STANDARD DEVIATION OF ALL SAMPLES IN EACH CYCLE

OF EACH AXIS OF ωωωs IN RAD/S FOR SUBJECT 2.

The unprocessed angular velocity ωs can be seen in Fig.
6, were all the cycles have a normalized length. The mean
and standard deviation in each part of the cycle are plotted.
The number of cycles for subject 1 at 12km/h is 140. There
appears to be more variation at changes in the angular
velocity. Table I and II show the average standard deviation
of all samples of in each cycle of each axis of ωωωs for subject
1 and 2.

Fig. 7 shows the scalar of the quaternions of the orientation
estimation over the number of samples for without any drift
compensation in Fig. 7a and each of the drift compensation
methods. Fig. 7d and 7c show a zoom of the first and last
part of the measurement, to indicate the cyclic behaviour
and its differences over time. Note that Fig. 7c shows the
scalar of the quaternions of method 2, however without
the mean subtraction before the 3D orientation estimation.
It appeared that the with the mean subtraction, method 2
produced similar heavily drift results to method 1. The offsets
of the custom offset method are in Table III and IV.

Fig. 8 shows the mean and standard deviation of all
samples in each cycle of q1, q2 and q3 of the estimated
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Fig. 7. The scalar of the quaternions of the 3D orientation estimation over
time in seconds for (a) no compensation, (b) method 1: mean subtraction, (c)
method 2: rotation to partial segment, however without the mean subtraction
and (d) method 3: custom offset are visualized.

Axis/Speed 4km/h 6km/h 10km/h 12km/h 14km/h
ωs,x 0.0500 0.0470 0.0740 0.0935 0.1185
ωs,y -0.0050 0.0020 -0.0030 -0.0048 -0.0023
ωs,z -0.0015 -0.0065 -0.0060 -0.0049 -0.0004

TABLE III
OFFSETS USED FOR THE ANGULAR VELOCITY ωωωs IN RAD/S FOR THE

CUSTOM OFFSET METHOD FOR SUBJECT 1.

Axis/Speed 4km/h 6km/h 10km/h 12km/h 14km/h
ωs,x 0.0275 0.0380 0.0650 0.0940 0.1200
ωs,y -0.0018 -0.0055 -0.0080 -0.0110 -0.0080
ωs,z -0.0110 -0.0148 -0.0160 -0.0150 -0.0105

TABLE IV
OFFSETS USED FOR THE ANGULAR VELOCITY ωωωs IN RAD/S FOR THE

CUSTOM OFFSET METHOD FOR SUBJECT 2.

3D orientation. This is for the orientation without drift
compensation in Fig. 8b, method 1 in Fig. 8a, method 2
without the mean subtraction in Fig. 8c, method 3 in Fig. 8d
and method 2 with a custom offset in Fig. 8e.

IV. DISCUSSION

A. Measured data

As seen in Fig. 6, where the mean and standard deviation
of all the cycles of each axis are plotted, the measured
angular velocity ωs is cyclical. Both the y and z axes seem
to have a large component of the rotation around the axis
perpendicular on the sagittal plane. This is as expected as
the sensors where not placed such that the sensor was in
a forward direction, but on the flat part of the upper tibia
facing inward, as shown in Fig. 5.

The average and the average standard deviation over all
cycles of the unprocessed angular velocity is shown in Table
I for subject 1 and Table II for subject 2. The variation
in the cycles may be caused by a slight variation in the

walking or running pattern. Since the methods are based on
the cyclical behaviour, there is a limit to the accuracy the
methods can achieve if the running pattern deviates from
cyclical behaviour. The noise of the gyroscope is two orders
of magnitude smaller than the standard deviation of the
cycles. Therefore the noise does not influence the methods
significantly, as expected in section II-B.

B. No compensation

The estimated 3D orientation without any compensation
for the drift shows a strong drift, as shown in Fig. 7a. For
both subjects it has been observed that the drift increases
slightly at 14km/h and decreases slightly at 10km/h, with
respect to 12km/h. This is likely due to the fact that a higher
speed has a higher number of cycles during the 90 seconds
of the measurement. The higher number of cycles leads to
more variation in the orientation and therefore more drift.

C. Method 1: Mean subtraction

The mean subtraction method seems not be able to reduce
the drift, as shown in Fig. 7b. In fact, the drift is larger than
without a compensation. This shows that when the dominant
rotation in the signal is present in at least two axes, the mean
in the angular velocity does not resemble the extra offset be.

D. Method 2: Rotation to partial segment coordinate frame

The mean subtraction after the rotation to partial segment
coordinate frame does not seem to work either. It gave a
similar results as method 1, Fig. 7b. However, the drift is
significantly reduced without the mean subtraction, shown in
Fig. 7c. Although the 3D orientation was still affected by the
minor rotations of the other two axes, the mean subtraction
seems not to resemble the extra offset be in a 1D dominant
situation.

It can be seen in Fig. 7c that the drift increases over time.
This is emphasized by the large standard deviation showed
in Fig. 8c.

For this method it was noticed that besides the PC1 as
x-axis in the partial segment coordinate system, the other
two orthogonal axes significantly influenced the amount of
drift. Instead of the chosen unit axis ys = [0 1 0], unit
axis [0.5571 0.3714 0.7428] was used which showed much
less drift. Remarkably, when the PCA was taken as rotation
matrix the estimated orientation showed an amount of drift
comparably to the amount of drift with no drift compensation
at all. This suggest that this method might be optimized
besides the use of a custom offset as mentioned earlier.

It was noted that the determined z-axis and corrected y-
axis in the rotation to Ψa for subject 2 was approximately
180◦ turned with respect to subject 1.

E. Method 3: Custom offset

With the custom offset method the drift is minimized
by manual optimization for both walking and running. The
offsets can be seen in Table III and Table IV for subject 1
and 2. It seems that higher velocities need a higher offset in
ωs,x, though the offsets of ωs,y and ωs,z do not show such
a clear consistent relation.
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Fig. 8. The average and standard deviation of all samples in each cycle with normalized length of q1, q2 and q3 of the estimated 3D orientation. The
estimated 3D orientation without any compensation is shown in (b). Method 1 is shown in (a), method 2 without mean subtraction is shown in (c) and
method 3 is shown in (d). (e) shows method 2 with a custom offset. Note that (d) is optimized to a lower average standard deviation.



Speed (km/h) q1 q2 q3 Average standard deviation
4 -0.3036 (0.0183) 0.0801 (0.0413) -0.3116 (0.2015) 0.0870
6 -0.3250 (0.0068) 0.0249 (0.0045) 0.0002 (0.0155) 0.0089
10 -0.3297 (0.0120) -0.0216 (0.0111) 0.0407 (0.0142) 0.0124
12 -0.3550 (0.0164) -0.0036 (0.0087) 0.0525 (0.0160) 0.0137
14 -0.3610 (0.0167) 0.0376 (0.0128) 0.0220 (0.0212) 0.0169

TABLE V
AVERAGE, STANDARD DEVIATION AND AVERAGE STANDARD DEVIATION OF THE QUATERNIONS q1 , q2 AND q3 FOR SUBJECT 1 USING THE OFFSETS IN

TABLE III.

Speed (km/h) q1 q2 q3 Average standard deviation
4 0.3088 (0.0235) 0.0245 (0.0060) -0.0107 (0.0211) 0.0169
6 0.3530 (0.0098) 0.0152 (0.0058) -0.0309 (0.0169) 0.0108
10 0.3872 (0.0188) 0.0141 (0.0134) -0.0399 (0.0160) 0.0161
12 0.4323 (0.0151) 0.0144 (0.0118) -0.0143 (0.0201) 0.0157
14 0.4524 (0.0200) 0.0514 (0.0241) -0.0373 (0.0244) 0.0228

TABLE VI
AVERAGE, STANDARD DEVIATION AND AVERAGE STANDARD DEVIATION OF THE QUATERNIONS q1 , q2 AND q3 FOR SUBJECT 2 USING THE OFFSETS IN

TABLE IV.

In Fig. 7d it can be seen that the scalar of the quaternion
is repetitive and does approach the value 1 in each cycle,
meaning that the orientation is almost the same to the initial
orientation. Though, over the number of samples the scalar
decreases slightly in variation. This means that the variation
from the initial orientation is less. This might be due to a
drift that is not compensated for, such as a non-ideal custom
offset, a bias that changes over time or integrated white noise.
Another assumption is that the actual running differed over
time, where the lower leg may had a smaller extension during
the strides. In the zoom of the initial and last part the scalar
shows the same behaviour except for the amplitude, the most
likely reasoning therefore is the changing running pattern. In
addition to that at 10km/h the orientation during running has
a lower variation, while at 14km/h there is a larger variation.

Fig. 8d shows that the custom offset performs better than
method 1 and 2. The average and standard deviation of all
samples in each cycle of q1, q2 and q3 are shown. For most
cases, the average standard deviation can be optimized below
0.017, which translates to approximately 2 degrees for each
axis in Euler Angles.

The estimated 3D orientation of subject 2 at 14km/h was
subject to a non-linear drift in q2 and q3, a second-order
behaviour was noticed. It might be that the runner shifted
his orientation slightly during the running back and forth.
Another cause may be an instability of the offset which
may change over time. A constant offset over the whole
running period can not compensate for this. The estimated
3D orientation of subject 1 at 4km/h shows a relative large
standard deviation, though the drift seemed linear more
optimized offsets were not found.

On the contrary of the mean subtraction in method 2, a
custom offset was used instead and the drift compensation
showed similar results as method 3. This is shown in Fig.
8e. It was noticed that, to achieve an average standard
deviation below 2 degrees, the required offsets of ωa,x were
significantly lower than for method 3, as shown in Table VII.

Subject/Speed 10km/h 12km/h 14km/h
Subject 1 0.0080 0.0080 0.0070
Subject 2 -0.0100 -0.0100 -0.0125

TABLE VII
OFFSETS USED FOR THE ANGULAR VELOCITY ωωωa,x IN RAD/S FOR

METHOD 2 WITH CUSTOM OFFSET.

F. Limitations and recommendations

Method 2 shows that in a signal with a 1D dominant
rotation the drift can be reduced by rotating one axis such
that the dominant rotation is around this axis. Though it was
found that the rotation of the other two axes mattered. The
method may therefore be optimized.

The custom offset method only applies for a bias which
causes linear deviations. Drift caused by white noise is not
directly accounted for, neither is drift that is non-linear and
time dependent.

The current method with custom offset is not yet robust
to changes in the running pattern. The method has only been
tested for a constant speed, as each constant speed required
a unique offset. A varying speed would not likely work with
the constant custom offsets. Besides that, it is assumed that
the subject is running in a straight line without turns or
running up and down a certain gradient.

The methods are only tested for the sensor on the right
tibia. Since it is based on the cyclical nature of running, it
is expected that method 2 with a custom offset and method
3 work for the left tibia too. For other body parts were a
cyclical behaviour is present method 3 is expected to work
too. Method 2 with a custom offset might work as well,
though this depends on the rotation of the body part. This
has to be verified.

V. CONCLUSION

This work shows that exploiting the cyclical behaviour of
running can help to reduce the drift when the orientation
is estimated. The same phases in different cycles have a
similar estimate of the 3D orientation. A custom offset, for
both method 2 as for method 3, delivers the best results.
An accuracy of at least 2 degrees can be achieved for both
walking and running.



(a) (b)

Fig. 9. (a) Anatomical planes of the human body. Source: [18]. (b) Location
of the tibia (red) in the human body. Source: [19]

Fig. 10. Running phases: 1. Stance phase absorption. 2. Stance phase
generation. 3. Swing phase generation. 4. Swing phase reversal. 5. Swing
phase absorption. Source: [20]

APPENDIX
A. The human body

The human body can be divided into three orthogonal
planes, in this paper they are referred to as the frontal plane,
the transverse plane and the sagittal plane. See Fig. 9a. The
direction of forward movement is perpendicular to the frontal
plane, towards the front of the body.

As mentioned in the introduction, a minimal set of three
sensors is chosen to identify and detect risks during running.
In this research the method is only applied on the motions
of the tibia, see Fig. 9b and 5. It is expected that during
running the most variance in angular velocity of the tibia,
is around the axis on the knee perpendicular to the sagittal
plane. It is assumed that when a person stands straight, the
tibia is aligned perpendicular to the transverse plane.

During running, several phases in the gait cycle can be
differentiated, as pictured in Fig. 10. It is important to
identify these phases in the measurement data to distinguish
each running cycle. It is expected that between the swing
phase absorption (5) and the stance phase absorption (1) a
peak will be measured by the accelerometer due to the impact
of the leg hitting the ground. It is expected that the gyroscope
measures a peak during the swing phase, depicted as 3 in the
figure.

B. Derivation drift analysis

This section shows the derivation of equations (5), (6)
and (7). The differential equation for the 3D orientation
estimation is:

ṘRRsinit
s = RRRsinit

s · ω̃ωωs,sinit
s (9)

(10)

Where ω̃ωω
s,sinit
s is the skew-symmetric matrix:

ω̃ωω
s,sinit
s =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (11)

The meaning of (11) and (9) are explained in Section II-A.
For the following derivations the notation of the reference
frame is omitted. Equation (5) is the result of the first
iteration of the following matrix multiplication with an initial
rotation matrix. The measured angular velocity consists out
of the ideal angular velocity and the error in the offset,
ωe,x = ωx + be. Note that since the derivation is only one
iteration of the differential equation, the unique angular
velocities for every iteration are omitted for this derivation.

ṘRR1 =

m11 m12 m13
m21 m22 m23
m31 m32 m33

 ·
 0 −ωe,z ωe,y

ωe,z 0 −ωe,x
−ωe,y ωe,x 0

 (12)

ṘRR1 =

m12ωe,z−m13ωe,y m13ωe,z−m11ωe,x
m22ωe,z−m23ωe,y m23ωe,z−m21ωe,x
m32ωe,z−m33ωe,y m33ωe,z−m31ωe,x

m11ωe,y−m12ωe,x
m21ωe,y−m22ωe,x
m31ωe,y−m32ωe,x

 (13)

In equation (6) and (7) only a 1D rotation about one
axis exists. For this derivation the axis is the x-axis, but
the derivation is similar for the other two axes. This results
in the following matrix multiplications:

ṘRR1 =

m11 m12 m13
m21 m22 m23
m31 m32 m33

 ·
0 0 0

0 0 −ωe,x,1
0 ωe,x1 0

 (14)

ṘRR2 =

0 m13ωe,x1 −m12ωe,x1
0 m23ωe,x1 −m22ωe,x1
0 m33ωe,x1 −m32ωe,x1

 ·
0 0 0

0 0 −ωe,x,2
0 ωe,x2 0


(15)

ṘRR3 =

0 −m12ωe,x1ωe,x2 −m13ωe,x1ωe,x2
0 −m22ωe,x1ωe,x2 −m23ωe,x1ωe,x2
0 −m32ωe,x1ωe,x2 −m33ωe,x1ωe,x2


·

0 0 0
0 0 −ωe,x,3
0 ωe,x3 0

 (16)

A pattern exists, as the first column of ṘRRi is always 0 and
the constant of the initial rotation matrix is alternating be-
tween the second and third column. The signs of the columns
are switched every two iterations. With this knowledge the
product of the unique angular velocities and the signs and
constants of the initial rotation matrix can be generalized.



ṘRRi =

0 ∏
i
n=1(ωx,n−be) ∏

i
n=1(ωx,n−be)

0 ∏
i
n=1(ωx,n−be) ∏

i
n=1(ωx,n−be)

0 ∏
i
n=1(ωx,n−be) ∏

i
n=1(ωx,n−be)

 ·F(i) (17)

F(i) =



i ·mod(4) = 0

0 m13 −m12

0 m23 −m22

0 m33 −m32


i ·mod(4) = 1

0 −m12 −m13

0 −m22 −m23

0 −m32 −m33


i ·mod(4) = 2

0 −m13 m12

0 −m23 m22

0 −m33 m32


i ·mod(4) = 3

0 m12 m13

0 m22 m23

0 m32 m33



(18)
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Fig. 2. The sensor body frame Ψs with angular velocity ωs is aligned
with the sensor body. The 3D orientation can be estimated with the use of
eq. (1). By using this time dependent rotation matrix, the angular velocity
ωsinit with respect to the initial orientation can be calculated. ωs may be
rotated first to the partial segment frame Ψa, such that the axis xa resembles
with the axis on the knee perpendicular to the sagittal plane. In a drift-free
estimated 3D orientation ωainit is identical for both approaches

phase. This method is less suitable for running at higher
velocities, as the stance phase is too short [7], [8], [9]. In
some work periodic movements are exploited for analytical
integration using adaptive filtering methods, such as the
weighted-frequency Fourier linear combiner (WFLC) or the
band-limited multiple Fourier linear combiner (BMFLC).
The measured signals can be modelled with these filters and
analytically integrated with the Fourier series. Both are not
verified for running [6], [10].

To the best of the author’s knowledge, there currently
does not seem to be a solution for the drift-free 3D orienta-
tion estimation for periodic movements with a single IMU.
Therefore a new method in drift cancellation is required.
In this research three new methods of drift cancellation are
proposed by exploiting the cyclical nature of running. The
main idea revolves around the following assumption: If a
person is running with a constant speed along a straight
line, the gait cycles and its values should be similar to
respectively the other gait cycles and its values. With such
a method sensors can operate individually on any position
on the body during running without the need of extensive
calibration beforehand. This work focuses on the drift-free
estimation of 3D orientations.

This leads to the research question: How can the cyclical
nature of running be used to acquire drift-free estimates of
the 3D orientation using a single inertial sensor?

II. METHOD

This section will provide the necessary theory and present
the methods to cancel the drift with the use of the cyclic
behavior. First, the theory about the estimation of the 3D
orientation is given in Section II-A. Analysis of the influence
of bias on the drift is shown in II-B. The three methods for
drift compensation using cyclical behaviour are proposed in
Section II-C. Information about the experimental measure-
ment is elaborated on in Section II-D and finally the analysis
of the results is explained in Section II-E.

A. Orientation and integration

The orientation estimation of the sensor body frame Ψs

depends on previous rotations, as the rotation from the sensor
body frame Ψs to the sensor body frame with respect to
the initial orientation Ψsinit is time dependent. Therefore the

rotation is done with an adaptation to the differential equation
expressed in eq. (1) [11].

The time dependent rotation matrix RRRsinit
s expresses the

rotation from the sensor body frame Ψs to the sensor body
frame with respect to the initial orientation Ψsinit . ṘRRsinit

s is the
time derivative of RRRsinit

s . ω̃ωωs,sinit
s is a skew-symmetric matrix,

see eq. (2), consisting of the components of the angular
velocity vector of the sensor body frame Ψs with respect to
the sensor body frame with respect to the initial orientation
Ψsinit , expressed in the sensor body frame Ψs.

ṘRRsinit
s = RRRsinit

s · ω̃ωωs,sinit
s (1)

ω̃ωωs,sinit
s =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 (2)

In [12] it is explained that besides the actual rotation value
around an axis, the order of the rotation also affects the ori-
entation. The rotations are non-commutative. However when
the individual rotations are small enough by minimizing the
time step, the order of rotation may be neglected [12]. The
sampling frequency must therefore be large enough.

B. Drift analysis

It is shown in earlier work that the offsets and the
white noise, sometimes referred to as angle random walk,
are usually the most important sources of error [5]. These
integrated errors propagate through the strapdown inertial
navigation algorithm and increase over time [13]. Drift in the
estimated 3D orientation should be minimized as it affects
the rotated acceleration too.

A gyroscope can be modelled as (3), where the measured
angular velocity ωs,e is influenced by the the gain g, bias b
and stochastic component σ . For an ideal calibrated sensor
the gain is correct and the bias and stochastic component
are zero, such that the output of the gyroscope is an angular
velocity without errors. This will result in a drift-free 3D
orientation estimation. Even though with calibrating and
subtracting bias b an offset be may still be present, as not
the complete offset b̂ is subtracted, see (4).

ωs,e = g(ωs)+b+σ (3)

b̂ = b+be (4)

It is expected that the bias has the largest influence on the
drift. The effect of the stochastic component is assumed to
be minimal, since the errors result in a drift growing over the
square root of time, while the offset grows linearly over time
[5]. If the stochastic component is smaller than the offset this
expectation holds. The gain is assumed to be correct.

In the situation that the bias is the only major influence
on the drift in the orientation estimation, the effect can be
analysed. (5) shows the solution of ṘRR for the first iteration.
The mc components are constants of the initial rotation
matrix. Note that the measured angular velocity consists out
of the ideal angular velocity and the error in the offset,
ωe,x = ωx + be. It can be seen that the offset will cause a



drift in the orientation. The magnitude of this drift depends
on orientation in each iteration.

ṘRR1 =




m12ωe,z −m13ωe,y m13ωe,z −m11ωe,x
m22ωe,z −m23ωe,y m23ωe,z −m21ωe,x
m32ωe,z −m33ωe,y m33ωe,z −m31ωe,x

m11ωe,y −m12ωe,x
m21ωe,y −m22ωe,x
m31ωe,y −m32ωe,x




(5)

In the case where only a 1D motion exist, such that
the rotation is only about one axis, the orientation can be
presented as (6) and (7). Where the angular velocity around
the axis is ωx, ṘRRi the time derivative of (1), n a sample and
i the iteration of the time derivative. It is expected that the
initial and final orientation of a periodic movement are the
same. Since the rotation is only about one axis, it is expected
that the offset will be equal to the mean. Similar equations
can be achieved with both ωy and ωz. The derivations are
shown in section V-B.

ṘRRi =




0 ∏i
n=1(ωx,n −be) ∏i

n=1(ωx,n −be)
0 ∏i

n=1(ωx,n −be) ∏i
n=1(ωx,n −be)

0 ∏i
n=1(ωx,n −be) ∏i

n=1(ωx,n −be)


 ·F(i) (6)

F(i) =




i ·mod(4) = 0




0 m13 −m12

0 m23 −m22

0 m33 −m32




i ·mod(4) = 1




0 −m12 −m13

0 −m22 −m23

0 −m32 −m33




i ·mod(4) = 2




0 −m13 m12

0 −m23 m22

0 −m33 m32




i ·mod(4) = 3




0 m12 m13

0 m22 m23

0 m32 m33




(7)

C. Drift compensation

Determining the orientation and cancelling the drift will
be done by exploiting the cyclical behavior of running. The
main idea revolves around the following assumption: If a
person is running with a constant speed along a straight line,
the cycles and its values should be similar to respectively the
other cycles and its values. Therefore in the orientation es-
timation the same phases in different cycles should estimate
the same orientation.

The first method will remove the mean of the angular
velocity. The second method rotates the angular velocity
to the axis on the knee perpendicular to the sagittal plane.
The third method will instead of removing the mean, set an
custom offset such that the drift is minimized.

In each method, the signal was truncated to a full number
of cycles. Note that a cycle is defined as one whole period
of a gait cycle that starts and end with the same event, the
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Zero crossing to mark cycles

Fig. 3. Marking the cycles of ωs,y using zero crossing on the falling edge
of the signal.

(a)(a)

(b)(b)

(c)
Fig. 4. The approach for each method. (a) shows method 1, (b) shows
method 2 and (c) shows method 3.

method should work for any event that is distinguishable in
the measured angular velocity data. The axis with the most
dominant rotation around the axis on the knee perpendicular
to the sagittal plane was used to truncate the signal. This
was done by using the zero crossing of the falling edge, this
is just before the leg comes in contact with the ground. In
this work the axis was ωs,y. Due to the sampling frequency,
a sample point with the value zero is not always defined,
therefore the closest value is marked as the zero crossing.
The marking is shown in Fig. 3.

1) Method 1: Mean subtraction: Since each cycle is
expected to be very similar, there will be almost no variation
between the cycles in the measured data. It is expected that
this holds for the estimated orientation too. It is assumed
that any bias in the measured data would result in a linear
deviation in the orientation. Over a whole number of cycles,
the mean of the measured data should therefore be equal to
zero. This situation is mathematically described in (5). By
subtracting the mean, the linear drift may be removed.

This zero-mean angular velocity ωs(zero−mean) will be
integrated using the differential equation (1) with the identity
matrix III as initial orientation to acquire the orientation of the
sensor with respect to the initial orientation. To compare this
method with the following two methods, the orientation will
be rotated with RRRa

s to a partial segment coordinate frame with
the same rotation matrix as used in method 2.



(a) (b)

Fig. 9. (a) Anatomical planes of the human body. Source: [18]. (b) Location
of the tibia (red) in the human body. Source: [19]

Fig. 10. Running phases: 1. Stance phase absorption. 2. Stance phase
generation. 3. Swing phase generation. 4. Swing phase reversal. 5. Swing
phase absorption. Source: [20]

APPENDIX
A. The human body

The human body can be divided into three orthogonal
planes, in this paper they are referred to as the frontal plane,
the transverse plane and the sagittal plane. See Fig. 9a. The
direction of forward movement is perpendicular to the frontal
plane, towards the front of the body.

As mentioned in the introduction, a minimal set of three
sensors is chosen to identify and detect risks during running.
In this research the method is only applied on the motions
of the tibia, see Fig. 9b and 5. It is expected that during
running the most variance in angular velocity of the tibia,
is around the axis on the knee perpendicular to the sagittal
plane. It is assumed that when a person stands straight, the
tibia is aligned perpendicular to the transverse plane.

During running, several phases in the gait cycle can be
differentiated, as pictured in Fig. 10. It is important to
identify these phases in the measurement data to distinguish
each running cycle. It is expected that between the swing
phase absorption (5) and the stance phase absorption (1) a
peak will be measured by the accelerometer due to the impact
of the leg hitting the ground. It is expected that the gyroscope
measures a peak during the swing phase, depicted as 3 in the
figure.

B. Derivation drift analysis

This section shows the derivation of equations (5), (6)
and (7). The differential equation for the 3D orientation
estimation is:

ṘRRsinit
s = RRRsinit

s · ω̃ωωs,sinit
s (9)

(10)

Where ω̃ωωs,sinit
s is the skew-symmetric matrix:

ω̃ωωs,sinit
s =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


 (11)

The meaning of (11) and (9) are explained in Section II-A.
For the following derivations the notation of the reference
frame is omitted. Equation (5) is the result of the first
iteration of the following matrix multiplication with an initial
rotation matrix. The measured angular velocity consists out
of the ideal angular velocity and the error in the offset,
ωe,x = ωx + be. Note that since the derivation is only one
iteration of the differential equation, the unique angular
velocities for every iteration are omitted for this derivation.

ṘRR1 =




m11 m12 m13
m21 m22 m23
m31 m32 m33


 ·




0 −ωe,z ωe,y
ωe,z 0 −ωe,x
−ωe,y ωe,x 0


 (12)

ṘRR1 =




m12ωe,z −m13ωe,y m13ωe,z −m11ωe,x
m22ωe,z −m23ωe,y m23ωe,z −m21ωe,x
m32ωe,z −m33ωe,y m33ωe,z −m31ωe,x

m11ωe,y −m12ωe,x
m21ωe,y −m22ωe,x
m31ωe,y −m32ωe,x




(13)

In equation (6) and (7) only a 1D rotation about one
axis exists. For this derivation the axis is the x-axis, but
the derivation is similar for the other two axes. This results
in the following matrix multiplications:

ṘRR1 =




m11 m12 m13
m21 m22 m23
m31 m32 m33


 ·




0 0 0
0 0 −ωe,x,1
0 ωe,x1 0


 (14)

ṘRR2 =




0 m13ωe,x1 −m12ωe,x1
0 m23ωe,x1 −m22ωe,x1
0 m33ωe,x1 −m32ωe,x1


 ·




0 0 0
0 0 −ωe,x,2
0 ωe,x2 0




(15)

ṘRR3 =




0 −m12ωe,x1ωe,x2 −m13ωe,x1ωe,x2
0 −m22ωe,x1ωe,x2 −m23ωe,x1ωe,x2
0 −m32ωe,x1ωe,x2 −m33ωe,x1ωe,x2




·




0 0 0
0 0 −ωe,x,3
0 ωe,x3 0




(16)

A pattern exists, as the first column of ṘRRi is always 0 and
the constant of the initial rotation matrix is alternating be-
tween the second and third column. The signs of the columns
are switched every two iterations. With this knowledge the
product of the unique angular velocities and the signs and
constants of the initial rotation matrix can be generalized.


