
1

Hardware-Efficient Real-Time Statistical Analysis
on Streaming Data

Niels Sulzer
Bachelor Assignment Committee:

dr.ing. D.M. Ziener, dr.ir. A.B.J. Kokkeler, dr.ir. R.A.R. van der Zee
Computer Architecture for Embedded Systems (CAES)

Faculty of Electrical Engineering, Computer Science and Mathematics (EEMCS)
University of Twente, Enschede, the Netherlands

November 2019

Abstract—An algorithm for statistical analysis on streaming
data is designed and implemented. In the context of an audio
amplifier controller, the algorithm aims at providing power
statistics from voltage and current streams for real-time efficiency
optimisations. To reduce computational complexity of the design,
downsampled approximations of the input signals are used
to calculate the statistics. Several techniques are discussed to
optimise the arithmetic operations of the algorithm, with focus on
serial arithmetic and eliminating the need for division. A proof-
of-concept is implemented in VHDL and synthesised for UMC
65nm to give an idea of the physical size such an algorithm could
have.

I. INTRODUCTION

AMPLIFIER controllers with programmable transfer can
be custom configured to match any particular load,

usually a speaker. Statistical analysis of the output in real time
would reveal even more opportunities to improve efficiency.
Real time power statistics can be used to reduce wear on the
speaker and improve audio quality by detecting and correcting
for compression, and to optimise power draw to improve
efficiency especially for battery powered devices.
A particular amplifier controller uses loop filter slices which
allow for programmable amplifier transfer. Each loop filter
slice can be configured to represent current or voltage, and
thus power measurements and statistical calculations would be
possible. Currently, however, there is no direct way of moni-
toring the output of the loop filters on this amplifier controller
chip itself. When power measurements can not be done on
chip, an external DSP (Digital Signal Processor) is required
to sample the data streams from the amplifier controller chip
and do calculations. For each audio sample at 48kHz, the loop
filter outputs one frame of 512 samples. Sampling this stream
with the external DSP over I2S, regardless at which sample
frequency, puts an unnecessary load on the external DSP just
to acquire the stream, not to mention following calculations.
The proposed solution is to integrate at least parts of the
calculation of statistical measures into the amplifier controller
chip itself to reduce or eliminate the need for an external
DSP. This statistics block, represented by the green section in
Figure 1, would be an algorithm which calculates maximum,
minimum, mean and mean-squared on the streaming data from
each of the eight loop filter slices (red block in Figure 1) or

power data which is a combination of one voltage and one
current slice. A basic overview of the statistics block is shown
in Figure 2. While there is one output for each statistic per
loop filter slice, where a combination of two loop filter slices is
used (for power) one of two outputs would be unused. Besides
defining some loose requirements, no previous work has been
done on implementing this algorithm.
This report will focus on the techniques used in such an
algorithm, investigating the computational complexity of each
statistical calculation at the algorithm and the hardware arith-
metic level. The full algorithm for all eight loop filter slices
will not be implemented. Rather, a proof-of-concept will be
implemented to work on two loop filter slices (one for current
and one for voltage) and calculate the statistics of either the
input current of voltage stream or the combined power data,
resulting in one output per statistic. The proof-of-concept will
be written in VHDL and synthesised for UMC 65nm to get
an approximation of the physical size of the algorithm and
available slack time.

First, each statistical measure will be presented in Section
II. Section III presents methods for downsampling as a way to
reduce the number of calculations required to calculate each
statistic. In Section IV the computational complexity of the
statistical measures and their downsampled approximations
are investigated with respect to the hardware arithmetic that
underlies the algorithm. In Section V the design choices
regarding implementation of the algorithm in hardware are
detailed. The implementation in VHDL and the results of
synthesis are presented in Section VI. Section VII presents
discussion of the results of synthesis and suggestions for
further research. Finally, Section VIII concludes this report.

II. STATISTICAL MEASURES

The statistical measures maximum, minimum, mean and
mean-squared will be calculated. The statistics are explained
below in terms of a generic signal xrns, n P 1, . . . , N but can
apply to any input signal whether it represents current Irns,
voltage V rns or power prns � V rnsIrns.

2

Fig. 1. Basic architecture of amplifier controller chip. Statistical Measurement
block in green.

8 Loop Filter
Streams

8x Min
8x Max
8x Mean
8x Mean-Square

Statistics

Fig. 2. Overview of statistics block with inputs for all loop filter slices. Where
a combination of two loop filter slices is used (for power) one of two outputs
would be unused.

A. Mean

The mean x̄ is given by:

x̄ �
1

N

Ņ

n�1

xrns (1)

B. Mean-Squared

The mean-square x̄2 of a signal xrns is a variation on RMS
which does not require the computationally complex square
root operation. Mean-square over N samples is defined as:

x̄2 �
1

N

Ņ

n�1

xrns2 (2)

C. Maximum and Minimum

The maximum (max) and minimum (min) are calculated
over the same period of N samples over which mean is
calculated. The difference between the maximum or minimum
and the mean is a measure of the gain compression. If the
audio signal is more compressed the average and maximum (or
minimum) will be closer together. Determining the maximum
and minimum relies on comparators comparing, bit by bit,
the value of the current sample xrns to the previous sample
xrn�1s, and will be discussed in more detail later. What must
be mentioned is the assumption that, since the signal xrns is
centred around 0, the minimum and maximum will always be
a negative and a positive number respectively.

III. DOWNSAMPLING

Due to the computational complexity of calculating the
exact statistical measures of N samples, some suggestions are
made to reduce the number of operations required. The main
method explored for reducing the number of operations is to
reduce the number of samples on which the statistical measure
is calculated; this is a sort of downsampling. The signal
xrns, n P 1, . . . , N is downsampled by a factor w (herein
also called the window size), resulting in the downsampled

approximation x̂rns, n P 1, . . . , Nw which has N
w samples. The

statistical measures based on the downsampled signals are then
calculated similarly to (1) and (2), but using x̂. For example,
downsampled mean-square ˆ̄x2 would be calculated as:

ˆ̄x2 �
1

N{w

N{w̧

n�1

x̂rns2 (3)

Note that the summation is done over fewer values. For a
power signal prns � V rnsIrns the same principle can be
applied. In this case, the methods of downsampling apply to
the voltage and current signals such that the downsampled ap-
proximation of prns � V rnsIrns becomes p̂rns � ÎrnsV̂ rns.
For example, downsampled mean power ˆ̄p is then given by:

ˆ̄p �
1

N{w

N{w̧

n�1

ÎrnsV̂ rns (4)

A. Methods for Downsampling

Two methods for downsampling are explored and compared:
1) Discarding Values: The most basic way of reducing the

number of samples is taking every wth sample, discarding
the rest. The downsampled approximation sequence becomes
x̂rns � xrnws, similarly p̂rns � IrnwsV rnws [1].

2) Block Mean: A more robust method is to downsample
w samples by taking their mean. The downsampled signal of
xrns becomes:

x̂rns �
1

w

kw̧

i�pk�1qw�1

xris, k � 0, ...,
N

w
(5)

To approximate power using this method would require
taking the mean of both the current and voltage signal to get
Îrns and V̂ rns before multiplying these, as done in (4). First
multiplying V rns and Irns and then approximating would
yield no reduction in total number of operations compared
to the direct method, as seen in Table I for the mean power
calculation (see row: Approx. after mult.).

Block mean downsampling has more consistent perfor-
mance compared to discarding values. Accuracy of the dis-
carding values method suffers as quick changes in xrns are
lost. The nwth sample is not representative of of the past w�1
samples. On the other hand, discarding samples has negligible
computational complexity, compared to the block mean, which
requires w additions per approximated sample. Nonetheless,
block mean approximation is chosen as the preferred method,
as the accuracy of downsampling by discarding values is
entirely up to chance.

B. External DSP

If the computational complexity is still too high even after
downsampling, one could use the same methods in conjunc-
tion with an external DSP. The downsampled approximation
would be calculated on the amplifier controller chip and the
remaining calculations would be done on the DSP. This would
already be an improvement on the current implementation,
putting less load on th external DSP and requiring less frequent

3

communication between the DSP and amplifier controller. For
example, mean calculations on xrns could be split between
the amplifier and the external DSP. Combining equations (1)
and (5) gives:

ˆ̄x �
1

N{w

1

w

N{w̧

k�1

�
kw̧

i�pk�1qw�1

xris

�
(6)

The brackets are evaluated on the amplifier controller, and the
outside is evaluated on the external DSP. The division could
be moved entirely onto the DSP, since division 1

N only has
to happen once. The option of offloading to the DSP is not
further explored as it is not the end goal, but rather a possible
intermediary solution.

IV. ARITHMETIC OPERATIONS

In making the calculation of statistics a real-time process
while using as few resources as possible, close attention must
be paid to the computational complexity of each calculation.
In order to get a sense for how computationally intensive
each statistical measure and its downsampled approximation
are, they are broken down into the number of basic arith-
metic operations required. The basic arithmetic operations
are addition/subtraction, multiplication (this includes squaring)
and division. To add a further step of abstraction and make
comparisons of computational complexity more direct, each
of the arithmetic operations are reduced to the number of
clock cycles required for an operation on n bits. In general,
the arithmetic can be optimised for either space efficiency or
speed (fewer clock cycles). Optimising for smaller area, at
the expense of more clock cycles, is done by using serial
arithmetic, in contrast to parallel. Each of the arithmetic
operations as well as the comparator required for min and max,
will be discussed with regards to the implementations that
could be used in hardware. In the case of area efficiency, this
mainly comes down to a choice of serial or parallel arithmetic.

A. Addition/Subtraction

Summation, which is central to the statistics presented, is
performed using an accumulator which stores the current sum
in a register then adds the next sample using one of the
addition methods discussed and stores the result back in the
same register [2]. The underlying operation of this operation
being addition. Addition and subtraction of two’s complement
numbers can be simplified by the principle a� b � a� p�bq
making subtraction equivalent to complementing followed by
addition [3] Addition can be implemented either as a serial
operation where one bit is added per clock cycle, or parallel
where the entire operation occurs in one clock cycle. Serial
addition takes n clock cycles per addition of two n-bit numbers
[4], whereas the parallel adder takes only one. Both of these
methods are useful, depending on how many clock cycles are
available to compute the addition. In the downsampling block,
there is only one clock cycle to compute the addition of the
next sample to the sum, whereas in later blocks there are w
clock cycles to add the next sample of the downsampled signal
to the sum. The serial adder loads both operands into shift

Fig. 3. Finite state machine of serial adder [6]. Inputs a and b are bits from
input shift registers, output s goes to output shift register. Y is the carry-out
of the full adder.

Fig. 4. Cascade of full adders (FA) creating a parallel adder [8].

registers and a single full adder adds two bits at a time, holding
the carry bit for the next set of two bits [5]. The full adder is
shown in Figure 3, showing the inputs and outputs a, b, and
s to and from shift registers.
The parallel adder, in contrast, requires one full adder per

input bit. The carry is propagated from each adder cell to the
next, owing to the name Ripple Carry Adder [4]. The cascade
of 4 full adders is shown in Figure 4. An n-bit adder would
require a cascade of n full adders. The downside to ripple
carry adders is the long propagation delay from the first input
to the last output due to the carry bit. There are methods to
reduce the carry propagation delay such as carry lookahead
adders [7], which will not be further discussed, but provide
much opportunity for further research.

B. Multiplication

Multiplication is based on addition and shifting, and can
therefore be implemented parallelly or serially. Multiplication
is done by generating a partial product for each bit of the
input, and then summing the partial products to get the final
product [9]. The addition is done using an adder, and therefore
multiplication of n bits will also take n clock cycles. Partial
products are formed by combinational logic, and their addition
is done in a running fashion rather than storing all partial
products in the end. Parallel multiplication computes more
than one partial product per clock cycle [4] in the same fashion
as the serial procedure.

C. Division

In general, division is the most demanding of the basic
arithmetic operations, especially signed division. However,
there are also methods that are extremely efficient, given
certain constraints. Fortunately, in this application division is
only used to divide by the divisors w or F , both of which are

4

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY OF STATISTICAL

MEASURES DIRECTLY AND DOWNSAMPLED USING MEAN. NUMBER OF
CLOCK CYCLES CALCULATED WITH n�16, N�216 ANDw �1024

Statistic Add’s Mult’s Div’s Clock Cycles

Mean
Power

Exact N N 1 2097152
Downsmpl. 2N N

w
1 2098176

Downsmpl.
after mult. N N 1 2097152

Mean-Sqr.
Power

Exact N 2N 1 3145728
Downsmpl. 2N 2N

w
1 2099200

V/I Mean
Exact N 0 1 1048576
Downsmpl. N 0 1 1048576

V/I Mean-
Square

Exact N N 1 2097152
Downsmpl. N N

w
1 1049600

free to be chosen. If the divisor is constrained to powers of
two, bit shifting becomes an option. Bit shifting is the most
basic method of binary division. Shifting n bits to the right
is equivalent of division by 2n, hence the constraint on the
divisor. When the same number format is kept after division,
the downside to shifting this is the loss of precision as the
rightmost n bits are lost.In an application where the number
format is not fixed however, virtual shifting can be used. A
virtual bit shift virtually moves the implied decimal point
changing the representation of the number, but not the bit
pattern [10]. This requires no shifts and results in no loss of
precision, but has to be taken into account when the value is
used elsewhere later.

The computational complexities of the exact and (mean)
downsampled implementation of each statistical measure in
terms of the basic operations are shown in Table I. The
number of clock cycles required using serial addition and
multiplication with n � 16 bits are also given as a clear
representation of the improvement in computational complex-
ity from using downsampling for power and mean-square
calculations. For downsampling a window size of w � 1024 is
used. Each statistic is represented as only taking one division
as all division operations could be reduced to one, however
when using virtual shifting division has no computational
cost anyway. Interestingly, the mean power takes more clock
cycles when downsampling because of the number of additions
required. On the other hand, the smaller area of an adder
compared to a multiplier is not represented.

D. Comparator

As mentioned, the comparator is essential to the minimum
and maximum statistics. In the same way that addition and
multiplication can be run serial and parallel, so can the
comparator. The serial method makes use of a combinational
circuit that compares only two bits per clock cycle, and repeats
this process n clock cycles to compare two n-bit words. The
comparison is done MSB first. If two bits are equal, the next
two bits are considered, until a difference is found [7]. The
one bit comparator is based on the equations [11]:

Fig. 5. Combinational logic of 1-bit comparator [12].

(A¡B) = AB̄
(A B) = ĀB
(A=B) = ĀB̄ + AB

The resulting combinational logic for a one bit comparator is
shown in Figure 5. In the parallel method, a combinational
more complex logic circuit takes two n-bit inputs A and B
and outputs whether A=B, A¡B or A B [11]. Of course,
between the fully parallel and fully serial implementations are
any number of different combinations of comparing k bits
at a time with combinational logic for l clock cycles where
k � l � n. In the interest of reducing the area of the circuit
and considering that there are w clock cycles to complete the
comparison where w"n, a serial implementation is preferred.
In the serial case where the new number, call it A, is compared
to both the maximum and minimum this is done one after the
other. First, A is compared to the current stored maximum
Bmax. Then if A Bmax, A is compared to the current stored
minimum Bmin. This would take a maximum of 2n clock
cycles if the maximum and minimum only differ by the least
significant bit and A=Bmin.

E. Number Formats

The inputs V and I (the direct output of the loop filters) are
16-bit signed (two’s complement) fixed point format with 1
integer bit and 14 fractional bits; call this format A(1,14).
The range of these is from �p21q to 21 � 2�14 [10]. The
number formats that will be used in the arithmetic are of
great importance as these define the required size of arithmetic
blocks and the number of clock cycles that operations take.
There are two extremes to choosing number formats; maximal
precision or smallest arithmetic implementation. The higher
the precision, the more bits are required requiring larger
hardware. The proof-of-concept will be implemented in the
worst-case with respect to size, where no precision is lost
throughout. This is means that any modifications made in the
future should not result in a larger physical area. While the
algorithm should work for any w and F , these do play a role
in determining the number formats of the accumulators used in
every block. For an accumulator of size α with input number
format A(a,b) the maximum absolute input to the accumulator
will be |�p2aq|, and the maximum number reached by the
accumulator will therefore be α � 2a, requiring log2α� a bits.
The number format of the accumulator will therefore have to
be A(ra �log2αs,b) in order to avoid overflow.

5

F. Window Size

Until this point, the downsampling window size has al-
ways been left as w, and the total samples over which the
statistics are calculated has been left as N . This is because
the algorithm should be generally applicable to any window
sizes N � Fw, F P N, where F � N

w represents the
number of downsampled samples are considered for the total
statistic. Nonetheless, some consideration should be given to
the window sizes with regards to efficiency. As mentioned, the
output of the loop filter slices is grouped into frames of 512
samples. These 512 samples can be seen as one upsampled
(repeated) audio sample with added high frequency noise. If
the audio signal is sampled at 48kHz the loop filter runs at
512 � 48kHz � 24.576MHz Taking the average of a frame
should therefore give approximately the original sample. The
minimum recommended window size therefore is 512, as
going smaller only results in two similar consecutive values
at the expense of more computational complexity. In general,
frames will be kept together, making w a multiple of 512.
More window sizes, represented in the number of frames, are
compared in Figure 6, calculating the mean-square power of
various songs. Large Errors only start to show for a window
size of more than 2 frames (w � 2 � 512 � 1024). By a
window size of 64 frames the error stays constant at 100% and
the reduction in complexity is negligible. The reason for all
the downsampled approximations reaching 100% error is that,
because these signals are centred around zero, the averages
of V and I get closer and closer to zero. Thus, the error is
calculated between 0 and the actual value, resulting in a 100%
error. As an example, and for consistency between displayed
number formats and the VHDL implementation w and F will
be fixed hereafter. Since it provides a good trade-off between
complexity and accuracy, w � 1024 will be used. The value
for F determines how long of an audio sample is used for the
statistics. Owing to an original specification for the algorithm,
F � 216 will be used, equivalent to 2.73 seconds of 48kHz
audio. For consistency in the implementation and in the VHDL
code, w�1024, F � 216 and a clock frequency of 24.576MHz
are used hereafter.

V. HARDWARE IMPLEMENTATION

Having explored various methods for implementing the
statistical measures and the underlying arithmetic, those ideas
will be brought together. The details of the algorithm as it
will be implemented in VHDL will be discussed, with especial
focus on the design of the accumulators which are central to
the calculation and number formats used. As mentioned, this
implementation will serve as a proof-of-concept for the full
block that would take all eight loop filter inputs. The block
diagram of this algorithm is given in Figure 7, the sample rates
are given below, where F � N

w . The other blocks are shown
in Figures 8 to 10, based on the mathematics behind each
statistic. For all parts of the algorithm, the number formats
at each stage are also indicated. Even though fixed point
number formats are used, the arithmetic is the same as for
two’s complement integers while keeping careful track of the
position of the virtual decimal point.

Fig. 6. Comparison of percentage error and computational complexity of
various window sizes w (represented in frames of 512 samples) using mean-
square calculation. The songs used are of various genre and compression
levels.

Downsmpl.
V

Downsmpl.
I

Min Power
A(3,28)

Max Power
A(3,28)

Mean
Mean Power

A(3,28)

Mean-Sqr.
Mean-Square

Power A(7,56)

Min/Max

Statistical Measures Block (stats)

fs
fs
w

fs
w

fs
Fw

A(1,14) A(1,14) A(3,28)

Fig. 7. Block diagram of Statistical Measurements algorithm. Sample rates
and number formats indicated below.

A. Downsampling

The downsampling block is shown in Figure 8. The sum-
mation of the mean used in downsampling, as used in (5),
is achieved using an accumulator (Acc.). The inputs to the
accumulator are both positive and negative, centred around
zero. Thus, it is expected that the output value of the accumu-
lator is in the same range as the input, however consecutive
positive or negative values need to be taken into account so that
these do not cause an overflow. Due to the upsampled nature
of the signals, there will always be at least 512 consecutive
values with the same sign. As explained above, in order to
avoid an overflow the number format of the accumulator will
have to be A(r1� log2p1024qs,14)=A(11,14). There is only
one clock cycle to complete each addition, therefore addition
in the downsampling block will be implemented parallelly.
Since the downsampled approximation is expected to have
the same range as the input, the number format after division
can be the same as the input format, A(1,14). The division
itself is done with a virtual bit shift by log2w, and then
discarding the excessive bits. That is to say, the 16 MSB’s
of the accumulation register will be read out, and the decimal
inferred in a new position.

6

Downsample

xrns

Acc. 1
w

x̄rnws

fs
fs
w

fs
w

A(1,14) A(11,14) A(1,14)

Fig. 8. Block diagram of Downsampling algorithm. Sample rates and number
formats indicated below.

B. Multiplier

The multiplication after downsampling will be implemented
serially, since there are w clock cycles to do the operation
before the next frame. In order to avoid overflow or precision
loss the output format will be 32-bit A(3,28) [10]. When only
one input signal is used (for example voltage), this has to be
converted from A(1,14) to A(3,28) by sign extension before
going into the following blocks, as it would otherwise require
different hardware to do computations on this number format.

C. Mean

The mean block is similar to the downsampling block. It is
shown in Figure 9. The accumulator in this block will be serial
however, as there are w clock cycles per addition. The input
is A(3,28) from the multiplier. The accumulator adds F inputs
rather than w. Due to this, the required number format of the
accumulator will be A(3�log2p2

16q,28)=A(19,28). Division is
done similarly to the downsampling block as well, this time
shifting by log2pF q and keeping 32 bits to match the input
number format.

Mean
xrnws

Acc. 1
F

x̄rnwF s

fs
w

fs
Fw

fs
Fw

A(3,28) A(19,28) A(3,28)

Fig. 9. Block diagram of Mean algorithm. Sample rates and number formats
indicated below.

D. Mean-Squared

The mean-square block is shown in Figure 10. The square
will be implemented similarly to the multiplier already dis-
cussed. The number format of the square will be A(7,56) to
allow for the maximum value and avoid loss of precision. The
accumulator will have to have number format A(23,56) and be
implemented serially like in the mean block. The division will
again be done with a virtual shift by log2pF q as previously
described, resulting in an output format the same as the input
format to the accumulator A(7,56).

E. Comparator

Both the input and output formats of the comparator are
A(3,28). The comparator will be implemented serially as
described in Section IV-D. Since the input is 32-bit, the
comparator will take at most 64 clock cycles to complete.

xrnws

x2 Acc. 1
F

x̄2rnFws

Mean-Sqr.

fs
w

fs
w

fs
Fw

fs
Fw

A(3,28) A(7,56) A(23,56) A(7,56)

Fig. 10. Block diagram of Mean-Square algorithm. Sample rates and number
formats indicated below.

TABLE II
AREA OF ALGORITHM BLOCKS

Block Area 65nm (µm2) Area 55nm (µm2) Slack (ns)
Total (stats) 12249 9922 34.392
ë Downsample 629 509
ë Accumulator 629 509
ë Adder 193 156

ë Multiplier 1772 1435
ë Mean 1131 916
ë Accumulator 1131 916
ë Adder 438 355

ë Mean-Sqr. 6268 5077
ë Square 4481 3630
ë Accumulator 1786 1447
ë Adder 678 549

ë Comparator 1451 1175

F. Synthesis

The amplifier controller is manufactured on a 55nm process.
However, due to the non-availability of synthesis libraries for
this process, UMC 65nm is used. Scaling area between the
process nodes is straightforward, as 55nm is a half node shrink
from 65nm. To convert from 65nm to 55nm each dimension
scaled by a factor of 0.9; a total factor of 0.81.

VI. RESULTS

The VHDL code for each of the algorithm blocks is given
in Appendix A. The blocks are created in a modular fashion to
allow future expansion. Unfortunately, out of time constraints
default library implementations of addition (+), multiplication
(*) and comparison (,¡) are used rather than specific serial
implementations. The size of each of the synthesised blocks
is presented in Table II. The area of sub-blocks is for that
individual block, not the sum of all instances of the block
For example, the downsampling block is actually implemented
twice; once for voltage, once for current, but not represented
twice in the table. The slack of high level blocks is also
measured, using a clock period of 1

512�48kHz � 40.69ns.
Unfortunately, serial arithmetic has not been implemented,
resulting in a larger area.

VII. DISCUSSION AND FURTHER RESEARCH

As mentioned, the results presented above represent a
worst case area with highest precision. On one hand, by
properly choosing window sizes and due to the nature of the
input signal, is is possible to avoid division entirely, greatly
reducing computational complexity. On the other hand, not

7

using serial multiplication results in the majority of the area
of the algorithm coming from the multiplication and square
blocks. Without implementing serial multiplication, the only
way to reduce the area would be to sacrifice precision and
discard LSB’s as is done with division. Division does discard
some values, log2w or log2F , depending on where it is
implemented, reducing precision. However, for the presented
application, where a downsampled approximation of the input
signal is central to the design, it is questionable whether the
error introduced by rounding is significant at all. More precise
tuning could be done depending on the accuracy required
by the output and the size of the accumulators. It would be
possible to keep the word length at 16-bits throughout, while
losing precision at every step. Another feature that sticks
out is how often certain blocks are repeated, especially the
accumulator and adder. Sharing the accumulator between
blocks would already result in a decrease of total area. The
latency introduced by this is not expected to be an issue, as
there is a lot of slack time left per clock cycle.

Since the algorithm developed in this report only serves as
a proof-of-concept, there are many opportunities to continue
research on the topic. First and foremost, an implementation
of serial addition, comparing and especially multiplication
would make a dramatic difference. Dedicated arithmetic for
performing the square operation which is more efficient than
regular multiplication may also reduce computational com-
plexity. With the number of possibilities there are for a
comparator implementation, more investigation could be done
in to the most optimal configuration for a comparator. Another
drawback of the current implementation is that each arithmetic
block is implemented separately. Sharing resources such as
the accumulation logic between Mean and Mean-Square and
between both downsampling blocks would reduce the size of
the total algorithm. With respect to the number formats, and
the number of bits used, a statistical analysis on the input
signal may be useful to be able to better predict the range
of data at each stage of the input, thus reducing the number
of bits used at each operation. The maximum value of the
accumulators (α�2a), as presented in Section IV-E, will almost
certainly never be reached for an audio signal, meaning bits
are wasted. While optimising the number of bits, however, the
design of the arithmetic units should be taken into account.
The serial arithmetic may be based on two- or four-bit blocks
and should be compatible with the number of bits used to
represent values. In terms of the real-life application of the
algorithm, the proof-of-concept algorithm presented in Figure
7 can be expanded to work on 8 input signals, pairs of any of
which could be used for power calculations.

VIII. CONCLUSION

The proof-of-concept algorithm designed provides a good
platform for further investigation and design of the full algo-
rithm. Downsampling using the mean has clear advantages
in reducing computational complexity, and can be simply
implemented. Completely eliminating the need for division
greatly reduces complexity and area of the algorithm. While

the implemented proof-of-concept has inefficient use of area,
techniques are presented that could be immediately imple-
mented in an update to this design, using serial arithmetic
and effective sharing of algorithmic blocks.

REFERENCES

[1] R. Veldhuis, “Sampling-Rate Conversion,” in Lecture Notes Discrete-
Time Signal Processing, May 1, 2018 ed., Enschede, 2018, ch. 7, pp.
85–101.

[2] S. F. Ismael and B. Shukr, “A Novel Way to Design and
Implement Statistical Operations based on FPGA,” International
Journal of Computer Applications, vol. 167, no. 9, pp. 8–
11, jun 2017. [Online]. Available: http://www.ijcaonline.org/archives/
volume167/number9/ismael-2017-ijca-914359.pdf

[3] M. Murdocca and V. P. Heuring, Computer Architecture and Organiza-
tion: An Integrated Approach. New Jersey: John Wiley & Sons, Inc.,
2007.

[4] M. Vlăduţiu, Computer Arithmetic, 1st ed. Berlin, Heidelberg:
Springer-Verlag Berlin Heidelberg, 2012. [Online]. Available: http:
//link.springer.com/10.1007/978-3-642-18315-7

[5] A. A. Mallya, A. S. B, F. J. Sequeira, S. Hebbar, and D. Divakar,
“FSM Serial Adder,” International Journal of Latest Technology in
Engineering, Management & Applied Science, vol. V, no. VI, pp. 65–67,
2016.

[6] S. Shirani, “Serial Adder,” Ontario.
[7] J. Wakerly, “Combinational Logic Design Practices,” in Digital design:

Principles and Practices. New York: Prentice-Hall, 2000, ch. 5, pp.
273–428. [Online]. Available: http://bida.uclv.edu.cu/bitstream/handle/
123456789/9935/Criptogr.pdf?sequence=1t&uisAllowed=y

[8] A. Al-Khalili, “Parallel Adders,” Quebec.
[9] W. Stallings, “Computer Arithmetic,” in Computer Organization and

Architecture : Designing for Performance, 8th ed. New Jersey: Prentice
Hall, 2010, ch. 9, pp. 305–347.

[10] R. Yates, “Fixed-Point Arithmetic: An Introduction,” 2007. [Online].
Available: https://courses.cs.washington.edu/courses/cse467/08au/labs/
l5/fp.pdf

[11] M. Morris Mano, Digital Logic And Computer Design By, 2nd ed.
Englewood Cliffs: Prentice-Hall.

[12] E. Coates, “Binary Comparators,” 2018. [Online]. Available: http:
//www.learnabout-electronics.org/Digital/dig43.php

http://www.ijcaonline.org/archives/volume167/number9/ismael-2017-ijca-914359.pdf
http://www.ijcaonline.org/archives/volume167/number9/ismael-2017-ijca-914359.pdf
http://link.springer.com/10.1007/978-3-642-18315-7
http://link.springer.com/10.1007/978-3-642-18315-7
http://bida.uclv.edu.cu/bitstream/handle/123456789/9935/Criptogr.pdf?sequence=1{&}isAllowed=y
http://bida.uclv.edu.cu/bitstream/handle/123456789/9935/Criptogr.pdf?sequence=1{&}isAllowed=y
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf
https://courses.cs.washington.edu/courses/cse467/08au/labs/l5/fp.pdf
http://www.learnabout-electronics.org/Digital/dig43.php
http://www.learnabout-electronics.org/Digital/dig43.php

8

APPENDIX A
VHDL CODE

A. Statistical Measurements (stats)

1 LIBRARY IEEE;
2 USE IEEE.std_logic_1164.ALL;
3 USE IEEE.numeric_std.ALL;
4

5 ENTITY stats IS -- top block
6 |GENERIC(w : integer := 1024;-- approximation window size
7 | | |log2w : integer := 10; -- log2 of approx. window size
8 | | |F : integer := 65536;-- window size
9 | | |log2F : integer := 16); -- log2 of window size

10 |PORT (clk , reset: IN std_logic;
11 | |v,i: IN signed(15 downto 0); -- voltage, current stream
12 | |psel: IN std_logic; -- select power or voltage
13 | |maxi: OUT signed(31 downto 0); -- max
14 | |mini: OUT signed(31 downto 0); -- min
15 | |meanOut: OUT signed(31 downto 0); -- mean
16 | |meansqrOut: OUT signed(63 downto 0)); -- mean-square
17 END ENTITY stats;
18

19 ARCHITECTURE bhv of stats IS
20 |SIGNAL clk2 : std_logic; -- clock for F, 'slower blocks'
21 |COMPONENT downsmpl IS -- approximation block
22 | |GENERIC(w: integer;
23 | | | |log2w: integer);
24 | |PORT(clk,reset: IN std_logic;
25 | | |xExact : IN signed(15 downto 0); -- A(1,14)
26 | | |xApp : OUT signed(15 downto 0)); -- A(1,14)
27 |END COMPONENT;
28

29 |COMPONENT mult IS -- multiplier
30 | |PORT(a,b : IN signed(15 downto 0); -- A(1,14)
31 | |y : OUT signed(31 downto 0)); -- A(3,28)
32 |END COMPONENT;
33

34 |COMPONENT mean IS -- mean block
35 | |GENERIC(F : integer;
36 | | | |log2F : integer);
37 | |PORT(clk,reset: IN std_logic;
38 | | |x : IN signed(31 downto 0); --A(3,28)
39 | | |y : OUT signed(31 downto 0)); --A(3,28)
40 |END COMPONENT;
41

42 |COMPONENT meansqr IS -- mean-sqr block
43 | |GENERIC(F : integer;
44 | | | |log2F : integer);
45 | |PORT(clk,reset: IN std_logic;
46 | | |x : IN signed(31 downto 0); --A(3,28)
47 | | |y : OUT signed(63 downto 0)); --A(7,56)
48 |END COMPONENT;
49

50 |COMPONENT comp IS -- compare block
51 | |GENERIC(F : integer);
52 | |PORT(clk,reset: IN std_logic;
53 | | |x : IN signed (31 downto 0); --A(3,28)
54 | | |maxi,mini : OUT signed(31 downto 0)); --A(3,28)
55 |END COMPONENT;
56

57 |SIGNAL vApp,iApp : signed(15 downto 0); -- A(1,14)
58 |SIGNAL pApp,vtmp,app : signed(31 downto 0); -- A(3,28)
59 |SIGNAL clktmp : std_logic := '0';
60 |SIGNAL reset1 : std_logic; -- reset for 'slower blocks'
61 BEGIN
62 |PROCESS(clk,reset) -- clock divider
63 | |VARIABLE counter : integer range 0 to w;
64 |BEGIN
65 | |IF reset = '1' THEN
66 | | |counter := 0;
67 | | |clktmp <= '0';
68 | |ELSIF rising_edge(clk) THEN
69 | | |counter := counter + 1;
70 | | |IF counter = w/2 THEN
71 | | | |clktmp <= NOT clktmp;
72 | | | |counter := 0;
73 | | |END IF;
74 | |END IF;
75 | |clk2 <= clktmp;
76 |END PROCESS;
77

78 |PROCESS(clk) -- reset for slower
79 | |VARIABLE c : integer range 0 to w; -- blocks. Waits for
80 |BEGIN -- first downsample
81 | |IF reset ='1' THEN -- to complete

82 | | |c := 0;
83 | |ELSIF c < w THEN
84 | | |c := c + 1;
85 | | |reset1 <= '1';
86 | |ELSE
87 | | |reset1 <= '0';
88 | |END IF;
89 |END PROCESS;
90

91 |approxV : downsmpl GENERIC MAP(w => w, log2w => log2w)
92 | | | | | |PORT MAP(clk => clk, reset => reset,
93 | | | | | | | |xExact => v, xApp => vApp);
94 |approxI : downsamp GENERIC MAP(w => w, log2w => log2w)
95 | | | | | |PORT MAP(clk => clk, reset => reset,
96 | | | | | | | |xExact => i, xApp => iApp);
97 |VItoP : mult PORT MAP(a => vApp, b => iApp, y => pApp);
98 |
99 |vtmp(28 downto 14) <= vApp(14 downto 0); -- Format v

100 |vtmp(31 downto 29) <= (others => vApp(15));|-- as A(3,28)
101 |
102 |app <= |pApp WHEN psel = '1' ELSE -- power calculations
103 | | |vtmp WHEN psel = '0'; -- voltage calculations
104

105 |meansqr1 : meansqr GENERIC MAP(F => F, log2F => log2F)
106 | | | | |PORT MAP(clk => clk2, reset => reset1,
107 | | | | | | |x => app, y => meansqrOut);
108 |mean1 : mean GENERIC MAP(F => F, log2F => log2F)
109 | | | | |PORT MAP(clk => clk2, reset => reset1,
110 | | | | | | |x => app, y => meanOut);
111 |comp1 : comp GENERIC MAP(F => F)
112 | | | |PORT MAP(clk => clk2, reset => reset1,
113 | | | | | |x => app, mini => mini, maxi => maxi);
114 END ARCHITECTURE bhv;

B. Downsampling

1 ENTITY downsmpl IS
2 |GENERIC(w: integer;
3 | | |log2w: integer);
4 |PORT(clk,reset: IN std_logic;
5 | |xExact : IN signed(15 downto 0); -- A(1,14)
6 | |xApp : OUT signed(15 downto 0)); -- A(1,14)
7 END ENTITY downsmpl;
8

9 ARCHITECTURE bhv of downsmpl IS
10 |COMPONENT accumulator IS
11 | |GENERIC(w,inBits,outBits: integer);
12 | |PORT(clk, reset : IN std_logic;
13 | | |x : IN signed(15 downto 0); -- A(1,14)
14 | | |y : OUT signed(15+log2w downto 0)); -- A(11,14)
15 |END COMPONENT;
16

17 |SIGNAL xAcc : signed(15+log2w downto 0); -- A(11,14)
18 BEGIN
19 |acc: accumulator GENERIC MAP(w => w, inBits => 16,
20 | | | | | | | |outBits => 16+log2w)
21 | | | | |PORT MAP(clk => clk,reset=>reset,
22 | | | | | | |x => xExact, y => xAcc);
23 |xApp <= xAcc(15+log2w downto log2w); -- divide A(1,14)
24 END bhv;

C. Accumulator

1 ENTITY accumulator IS
2 |GENERIC(w : integer;
3 | | |inBits,outBits : integer);
4 |PORT(clk, reset : IN std_logic;
5 | |x : IN signed(inBits-1 downto 0);
6 | |y : OUT signed(outBits-1 downto 0));
7 END accumulator;
8 ARCHITECTURE bhv of accumulator IS
9 |SIGNAL reg : signed(outBits-1 downto 0); -- acc. resister

10 BEGIN
11 |PROCESS (clk, reset)
12 | |VARIABLE count : integer range 0 to w;
13 |BEGIN
14 | |IF (reset='1') or count = w THEN
15 | | |y <= reg;
16 | | |reg <= (others => '0');
17 | | |count := 0;
18 | |ELSIF rising_edge(clk) THEN
19 | | |reg <= reg + x;
20 | | |count := count + 1;
21 | |END IF;
22 |END PROCESS;
23 END bhv;

9

D. Multiplier

1 ENTITY mult IS
2 |PORT(a,b : IN signed(15 downto 0); -- A(1,14)
3 | |y : OUT signed(31 downto 0)); -- A(3,28)
4 END mult;
5 ARCHITECTURE bhv of mult IS
6 BEGIN
7 |y <= a*b;
8 END bhv;

E. Mean

1 ENTITY mean IS
2 |GENERIC(F : integer;
3 | | |log2F : integer);
4 |PORT(clk,reset: IN std_logic;
5 | |x : IN signed(31 downto 0); --A(3,28)
6 | |y : OUT signed(31 downto 0)); --A(3,28)
7 END mean;
8

9 ARCHITECTURE bhv of mean IS
10 |COMPONENT accumulator IS
11 | |GENERIC(w,inBits,outBits: integer);
12 | |PORT(clk, reset : IN std_logic;
13 | | |x : IN signed(31 downto 0); --A(3,28)
14 | | |y : OUT signed(31+log2F downto 0)); --A(19,28)
15 |END COMPONENT;
16

17 |SIGNAL xAcc : signed(31+log2F downto 0); --A(19,28)
18 BEGIN
19 |acc: accumulator GENERIC MAP(w => F, inBits => 32,
20 | | | | | | | |outBits => 32+log2F)
21 | | | | |PORT MAP(clk => clk,reset=>reset,
22 | | | | | | |x => x, y => xAcc);
23 |y <= xAcc(31+log2F downto log2F); -- divide A(3,28)
24 END bhv;

F. Mean-Sqr.

1 ENTITY meansqr IS
2 |GENERIC(F : integer;
3 | | |log2F : integer);
4 |PORT(clk,reset: IN std_logic;
5 | |x : IN signed(31 downto 0); --A(3,28)
6 | |y : OUT signed(63 downto 0)); --A(7,56)
7 END meansqr;
8

9 ARCHITECTURE bhv of meansqr IS
10 |COMPONENT sqr IS
11 | |PORT(x : IN signed(31 downto 0); --A(3,28)
12 | | |y : OUT signed(63 downto 0)); --A(7,56)
13 |END COMPONENT;
14 |COMPONENT accumulator IS
15 | |GENERIC(w,inBits,outBits: integer);
16 | |PORT(clk, reset : IN std_logic;
17 | | |x : IN signed(63 downto 0); --A(7,56)
18 | | |y : OUT signed(31+log2F downto 0)); --A(23,56)
19 |END COMPONENT;
20

21 |SIGNAL xsqr : signed(63 downto 0); --A(7,56)
22 |SIGNAL xAcc : signed(63+log2F downto 0); --A(23,56)
23 BEGIN
24 |sqr1 : sqr PORT MAP(x => x, y => xsqr);
25 |acc: accumulator GENERIC MAP(w => F, inBits => 64,
26 | | | | | | | |outBits => 64+log2F)
27 | | | | |PORT MAP(clk => clk,reset=>reset,
28 | | | | | | |x => xsqr, y => xAcc);
29 |y <= xAcc(63+log2F downto log2F); -- divide A(7,56)
30 END bhv;

G. Square

1 ENTITY sqr IS
2 |PORT(x : IN signed(31 downto 0); -- A(3,28)
3 | |y : OUT signed(63 downto 0)); -- A(7,56)
4 END sqr;
5 ARCHITECTURE bhv of sqr IS
6 |SIGNAL tmp : signed(63 downto 0);
7 BEGIN
8 |y <= x*x;
9 END bhv;

H. Min/Max (Comparator)

1 ENTITY comp IS
2 |GENERIC(F : integer);
3 |PORT(clk,reset: IN std_logic;
4 | |x : IN signed (31 downto 0); --A(3,28)
5 | |maxi,mini : OUT signed(31 downto 0)); --A(3,28)
6 END comp;
7

8 ARCHITECTURE bhv of comp IS
9 |SIGNAL maxMem, minMem : signed(31 downto 0);

10 BEGIN
11 |PROCESS(clk,reset)
12 | |VARIABLE count : integer range 0 to F;
13 |BEGIN
14 | |IF reset = '1' OR count = F THEN
15 | | |mini <= minMem;
16 | | |maxi <= maxMem;
17 | | |maxMem <= (others => '0');
18 | | |minMem <= (others => '0');
19 | | |count := 0;
20 | |ELSIF rising_edge(clk) THEN
21 | | |IF x > maxMem THEN
22 | | | |maxMem <= x;
23 | | |ELSIF x < minMem THEN
24 | | | |minMem <= x;
25 | | |END IF;
26 | | |count := count + 1;
27 | |END IF;
28 |END PROCESS;
29 END bhv;

	Introduction
	Statistical Measures
	Mean
	Mean-Squared
	Maximum and Minimum

	Downsampling
	Methods for Downsampling
	Discarding Values
	Block Mean

	External DSP

	Arithmetic Operations
	Addition/Subtraction
	Multiplication
	Division
	Comparator
	Number Formats
	Window Size

	Hardware Implementation
	Downsampling
	Multiplier
	Mean
	Mean-Squared
	Comparator
	Synthesis

	Results
	Discussion and Further Research
	Conclusion
	References
	Appendix A: VHDL Code
	Statistical Measurements (stats)
	Downsampling
	Accumulator
	Multiplier
	Mean
	Mean-Sqr.
	Square
	Min/Max (Comparator)

