

Infrastructure as Code
Towards Dynamic and Programmable IT systems

Sotirios Naziris

November, 2019

Infrastructure as Code

Towards Dynamic and Programmable IT systems

A thesis submitted in fulfillment of the requirements

for the Master of Science degree

in

Internet Science and Technology

Faculty of Electrical Engineering, Mathematics

and Computer Science

Author

Name: Sotirios Naziris

Institute : University of Twente

7500 AE Enschede

The Netherlands

Graduation Committee

Chairman: Dr. L. Ferreira Pires (UT)
Members: Dr. M. J. van Sinderen (UT)

ing. R. IJpelaar (Thales)

i

Abstract

The manual installation and configuration of IT systems has been a tedious and time

consuming process that created several challenges to the engineers during the

maintenance and management process of the IT systems. The introduction of cloud

computing in combination with the rise of the virtualization technology have managed to

address some of these challenges. However, these virtualized cloud systems are

followed by a huge portfolio of new tools and platforms that are difficult to learn and

maintain.

As a result, organizations started investigating the software-defined technology as a new

and effective way to meet these new standards and serve the constantly increasing

demand of the industry. The software-defined technology describes every part of an IT

system that can be performed entirely by software, ranging from the infrastructure to the

deployment level of an IT system.

The goal of this research project was to investigate the software-defined technology and

suggest how it can be used in order to improve the static IT infrastructure of an

organization. The literature study of this research focuses on the concepts and the

available software-defined tools at each layer of an IT system. Based on the knowledge

acquired from the literature study, a reference architecture of the infrastructure and the

network layer of a generic software-defined system was proposed that describes the

interconnections between the different software-defined concepts. The next step was the

design of a software-defined system that uses specific tools and technologies, and is

based on a specific list of requirements. The requirements were formed by studying the

needs of an actual mission critical organization.

The final step was the validation of the design, which was performed by conducting a

series of semi-structured interviews with seven industry experts. The validation results

showed that the software-defined technology can improve the scalability, upgradability

and documentation of an IT system, but the proposed design involves high levels of

complexity, which might affect the performance and the required learning curve of the

system. Overall, the interviewees acknowledged the potential of this technology and

mentioned that its current maturity is inadequate for mission critical systems. Based on

these remarks, a list of recommendations and several aspects that require additional

future research are included in this thesis.

ii

Preface

This thesis was written to fulfill the final step of my “Internet Science and Technology”

master programme at the University of Twente. The report had been written within a

seven months period, started on May 2019 and was officially finalized on November

2019.

The project was inspired and performed in cooperation with Thales Nederland, which is

a company that specializes in naval systems, logistics and air defense systems and they

are in constant search of new technologies that could help them improve their current

systems.

At this point, I would like to express my sincere gratitude to all the people that helped me

complete this master thesis project. First of all, I would like to thank my university

supervisors, Luis and Marten for their guidance throughout this research procedure.

Their feedback was really useful on improving the structure of the thesis and finding the

correct research approach.

Furthermore, I would like to thank my supervisors from Thales for their useful feedback

and support. I would like to thank Remco for his help especially on the technical part and

for our great cooperation during our weekly meetings. I would also like to thank Gerrit

Binnenmars for coming up with the idea of this project and for challenging me to think

creatively and unconventionally. In addition, I would like to acknowledge the help from

Andreas Frank who showed great interest into my project and provided fruitful feedback

on the writing of this master thesis project. Additionally, I would like to express my

gratitude to the rest of the Thales employees who participated in the validation

interviews and offered their valuable insights on my designs.

Moreover, I would like to thank my parents for supporting me throughout my entire life

and for giving me the opportunity to continue with my studies abroad. Last but not least,

I would like to thank my girlfriend Virginia for her love and emotional support during the

tough times that I faced during the completion of this project.

I hope that the reading of this thesis will be useful and interesting to you, and you can

always contact me in case you have any questions or comments.

Sotiris

Enschede, Netherlands

iii

Table of contents

Abstract ... i

Preface ... ii

Table of contents ... iii

List of Figures .. vi

List of Tables .. vii

Acronyms ... viii

1 Introduction ... 1

1.1 Problem Statement ... 1

1.2 Software-Defined Concept .. 2

1.3 Scope .. 3

1.4 Research Methodology ... 4

1.5 Literature Study ... 5

1.6 Thesis Structure .. 6

2 Software-Defined Infrastructure .. 7

2.1 General Elements ... 7

2.2 Benefits of Infrastructure as Code .. 10

2.3 Provisioning Tools ... 12

2.3.1 Terraform ... 12

2.3.2 Openstack Heat ... 14

2.3.3 Comparison of the provisioning tools ... 14

2.4 Configuration Tools ... 15

2.4.1 Chef ... 15

2.4.2 Puppet ... 17

2.4.3 Ansible ... 18

2.4.4 Saltstack .. 19

2.4.5 Comparison of the configuration tools ... 20

3 Software-Defined Technology at the Network Layer ... 22

3.1 Software-Defined Networking ... 22

3.1.1 Southbound Interfaces ... 24

iv

3.1.2 Northbound Interfaces ... 25

3.1.3 SDN Controllers ... 26

4 Software-Defined Computing .. 31

4.1 Benefits of SDC .. 32

4.2 SDC Tools ... 33

5 Preparation of the design - Case Study .. 35

5.1 Requirements .. 35

5.2 Overview of the Design ... 37

5.3 Selection of Tools ... 40

5.3.1 Provisioning Tool ... 41

5.3.2 Dynamic Platform .. 41

5.3.3 Configuration Tool ... 42

5.3.4 SDN Support and Controller .. 43

6 Infrastructure Design ... 44

6.1 Provisioning .. 44

6.1.1 Creating Virtual Machines .. 44

6.1.2 Provisioning Bare Metal Machines .. 46

6.1.3 Provisioning Containers ... 48

6.2 Configuration ... 50

6.3 Architecture Realization of the Infrastructure Layer .. 50

7 Network Design ... 53

7.1 Creating virtual networks .. 53

7.2 Securing virtual networks .. 55

7.3 Connectivity with physical networks .. 57

7.3.1 VXLAN and VTEPs .. 58

7.3.2 OVSDB and Openflow support .. 58

7.3.3 L2 Gateways .. 60

7.3.4 Configuring the connections .. 61

7.4 Architecture Realization of the Network Layer .. 62

7.5 Traffic flow within the network ... 63

8 Physical Architecture of the Design .. 68

8.1 Supported design .. 68

v

8.2 Possibly improved design ... 69

9 Validation .. 71

9.1 Validation approach .. 71

9.2 Results .. 72

9.2.1 Current and future proposed design of the infrastructure layer 73

9.2.2 Design of the network layer ... 73

9.2.3 Performance .. 74

9.2.4 Scalability and Upgradability .. 75

9.2.5 Reusability ... 75

9.2.6 Traceability .. 76

9.2.7 Learnability and Complexity ... 76

9.2.8 Costs .. 77

9.2.9 Maturity .. 78

9.3 Discussion of the results ... 78

10 Conclusions ... 81

10.1 Answers to research questions ... 81

10.2 Limitations ... 85

10.3 Contributions ... 86

10.4 Recommendations .. 87

10.5 Future work ... 88

Appendix A .. 90

Appendix B .. 92

Appendix C .. 95

Appendix D .. 96

Appendix E .. 97

Appendix F .. 99

Appendix G .. 100

Appendix H .. 101

Appendix I .. 102

Appendix J ... 103

Appendix K .. 106

vi

References .. 121

List of Figures

Figure 1: Overview of the DSRM .. 4

Figure 2: Main elements of the software-defined infrastructure ... 9

Figure 3: Sample Terraform workflow .. 13

Figure 4: Basic structure of Chef ... 16

Figure 5: SDN vs traditional networks .. 23

Figure 6: Interfaces and SDN controllers... 27

Figure 7: The architecture of Opendaylight ... 28

Figure 8: Comparison of hypervisor (a) and container-based (b) deployments 31

Figure 9: Design steps for the software-defined system ... 38

Figure 10: Realization of the infrastructure (a) and network (b) layer of a generic

software-defined system ... 38

Figure 11: VM configuration model ... 45

Figure 12: Overview of the objects in Cobbler .. 46

Figure 13: Bare Metal Configuration Model... 47

Figure 14: Container cluster configuration model... 49

Figure 15: Architecture realization of the supported infrastructure layer 51

Figure 16: Architecture realization of the future possibly improved infrastructure layer .. 52

Figure 17: Configuration models of the network components .. 53

Figure 18: Security group configuration model ... 55

Figure 19: FWaaS and security group protection ... 56

Figure 20: FWaaS configuration model and related concepts ... 56

Figure 21: Components of a Openflow & OVSDB physical switch 59

Figure 22: Components of an Open vSwitch .. 60

Figure 23: Architecture realization of the network layer .. 62

Figure 24: Traffic flows for scenario 1 .. 64

Figure 25: Traffic flow for scenario 2 .. 65

Figure 26: Traffic flows for scenario 3 .. 66

Figure 27: Traffic flows for scenario 4 .. 67

Figure 28: Physical Architecture of the current design .. 68

Figure 29: Physical architecture of the possibly improved design 70

Figure 30: Terraform file for creating VMs ... 90

vii

Figure 31: Terraform file for provisioning bare metal machines with Cobbler 92

Figure 32: An example of a kickstart file .. 94

Figure 33: Terraform file for provisioning container clusters of containers 95

Figure 34: Terraform file for creating Openstack network ... 97

Figure 35: Terraform file for creating floating IPs ... 98

Figure 36: Terraform file for creating security groups .. 99

Figure 37: Terraform file for creating firewalls .. 100

Figure 38: Transport Zone example ... 101

List of Tables

Table 1: Comparison of the provisioning tools .. 14

Table 2: Comparison of the configuration tools .. 20

Table 3: Requirements of the system ... 37

Table 4: An overview of the selected tools .. 40

Table 5: Networks of the topology .. 63

Table 6: List of experts with their experience in years ... 72

viii

Acronyms

API Application Programming

Interface

AWS Amazon Web Services

BNSF Base Network Service

Function

CapEx Capital Expenditures

COE Container Orchestration

Engine

COTS Commercial off the Shelf

CPU Central Processing Unit

DDoS Distributed Denial of Service

DHCP Dynamic Host Configuration

Protocol

DLUX Opendaylight User Experience

DNS Domain Name System

DSL Domain Specific Language
FWaaS Firewall as a Service

GPU Graphical Processing Unit

GUI Graphical User Interface
HAL Hardware Abstraction Layer

HCL Hashicorp Configuration

Language

IaaS Infrastructure as Service

IaC Infrastructure as Code

NaaS Networking as a Service

NFV Network Function Virtualization

NIC Network Interface Card

NOS Network Operating System

ODL Opendaylight

OpEx Operating Expenditures

OS Operating System

OVS Open vSwitch

OVSDB Open vSwitch Database

PAD Programmable Abstraction of

Data

PXE Preboot Execution

Environment

QoS Quality of Service

SAL Service Abstraction Layer

SDC Software Defined Computing

SDD Software Defined Deployment

SDI Software Defined Infrastructure

SDN Software Defined Networking

SDx Software Defined Everything

TEP Tunnel Endpoint

TFTP Trivial File Transfer Protocol

ToR Top of the Rack

VLAN Virtual Local Area Network

VTEP VXLAN Tunnel Endpoint

1

1 Introduction

1.1 Problem Statement

Setting up IT infrastructures has always been a long and challenging procedure,

especially in the past, in which it used to be a tedious manual process. The servers were

physically installed rack by rack and the hardware components were manually

configured according to the requirements of the operating systems and the running

applications.

The manual installation, configuration and maintenance of the infrastructure is an

expensive and time consuming process with a high chance of error. Specialized staff is

required to perform the setup work (e.g., network engineers to set up the physical

network, storage engineers to maintain the physical drivers, etc.) and real estate should

be acquired to house all this hardware equipment. In addition, these huge data centers

need maintenance, which adds up extra costs for security and operating costs, such as

electricity and cooling. The servers are also prone to configuration errors and they tend

to be inconsistent, as they are provisioned by many different engineers who are not in

constant communication with each other and they do not share the same scope and

goals. This often leads to undesired configuration abnormalities and errors, which can

be crucial to the proper functionality of the entire system. Finally, in a traditional manual

infrastructure, creating an isolated environment for testing and disaster recovery

simulations is very costly and time consuming to be a feasible strategy, and the only way

for testing and improving the system is to actually experience a disaster, which is highly

risky and stressful.

The introduction of cloud computing appeared as a promising solution to many of these

previously mentioned problems. The rise of the cloud technology is highly related to the

evolution of the virtualization technology, in which an application is abstracted away

from the hardware which is emulated by a software layer called hypervisor. The

combination of these technologies offers a more efficient way to set up and configure a

relatively simple configuration, which would address the problems of scalability and

agility of the infrastructure. However, many IT organizations still face problems with the

configuration inconsistency of these systems. They tend to use processes and

structures that they used to manage software before the introduction of the cloud

technology, and most of the times the used tools are unable to keep up with the really

short provisioning time (seconds or minutes) required by the new systems.

2

Furthermore, cloud computing promotes the usage of scripts. Writing scripts offers some

benefits compared to the manual configuration, such as the automation and

standardization of a company’s IT processes. Nevertheless they are not able to entirely

solve the management and configuration problem. Scripts can highly vary in the way

programmers write them and that means that multiple scripts performing the same task

can coexist in an organization, causing troubles to the system administrators who have

to spend a lot of time and effort on each script to understand it and potentially use it.

Another important issue caused by scripting is their size and their complexity. The size

of a script grows as the configuration gets more complex and demanding, which results

in huge script files that are almost impossible to be understood by an engineer who is

new to the organization, creating a feeling of uncertainty for the operation of the system.

Finally, scripts are not suitable for long term configuration because they cannot provide

idempotence to the system, since scripts cannot ensure the same results if they run

several times. Idempotence is a key condition for long term configuration and

management of the system, and even though it can be ensured by scripts, it is very hard

to implement and most of the times it is not worth the effort.

1.2 Software-Defined Concept

In the last 5 years, the industry has been trying to make the next big step towards the

improvement of the configuration and the deployment of the entire IT infrastructure.

Their main goal is to completely move away from any hardware dependence and create

a more dynamic and responsive platform of software functionality. The term that fully

describes this movement is software defined everything (SDx), which can be defined as

follows:

“SDx is any physical item or function that can be performed as or automated by

software” [1].

The SDx is an umbrella term that can be encountered at the following levels:

 IT infrastructure level (Software-Defined Infrastructure - SDI)

 Network level (Software-Defined Networking – SDN)

 Computing level (Software-Defined Computing - SDC)

 Application deployment level (Software-Defined Deployment - SDD)

The new software-defined infrastructure should include and connect the technologies

covered by all these levels and support applications on top of them that can connect to

each other and ultimately support end users applications.

3

1.3 Scope

This thesis answers the following main research question:

“How can the software-defined technology be used to improve a static IT infrastructure
of an organization?”

This research question cannot be directly used as a basis for a academic research

because it is quite general. Therefore, it is divided into the following sub-questions:

Q-1

Which are the relevant SDx technologies/ tools at each level of an

IT system?

Q-2

What does the SDx technology offer at each level of an IT

system?

Q-3

How to build a reference architecture for a generic software-

defined system?

Q-4

How to build a software-defined system for a specific case study?

Q-5 How can a software-defined system be validated?

The primary goal of this research is to examine and evaluate the software-defined

technology in practice by designing and describing an entirely software-defined IT

architecture model that fulfills a specific list of requirements derived from a mission

critical organization. Additionally, this software-defined system should be validated

according to several aspects that define the quality of a software system such as

functionality, performance and scalability. The validation process will determine whether

the software-defined technology should be used in production-level deployments, or the

maturity of this type of systems is inadequate for high-end systems, and improvement is

required.

4

1.4 Research Methodology

The structure of this research follows the Design Science Research Methodology

(DSRM) defined by Peffers [2]. The design science methodologies of Wieringa [3] and

Henver [4] were also studied during the selection process; however they were not

chosen, as they are not suitable for this specific research project. Wieringa’s

methodology is a very thorough and strict method that provides a blueprint for

performing design science research. This methodology converts the design science

problems into a strict set of questions and steps that adds complexity and limitations

during the research process. In contrast, the Henver’s design science framework gives

more space and freedom to the researcher by proposing a cyclical process of

development and evaluation. This framework is based on three design research cycles

that are a combination of scientific literature and practical testing, which is not the

appropriate approach for this research project.

The DSRM by Peffers is the selected approach as it provides a less strict iterative model

that provides guidelines to the researcher throughout the entire research process and is

based on strong literature knowledge. Figure 1 depicts an overview of the DSRM.

Figure 1: Overview of the DSRM

Based on the DSRM, the research process was divided into the following phases:

1. Problem identification and motivation: A systematic literature research was

performed in order to identify the problems that exist in the existing IT systems

and indicate the benefits of the software-defined technology at each level of an IT

system.

5

2. Defining the objectives of the solution: This phase defined the objectives of the

desired fully software-defined system. The objectives are translated into a list of

requirements that were formed by studying the needs of a real mission critical

organization.

3. Design and development: This phase includes the design of the artifact, which is

a fully software-defined system. The design is based on the list of requirements

from phase 2.

4. Demonstration and evaluation: The DSRM has two separate phases for the

Demonstration and the Evaluation of the artifact. In this research, these two

phases are included in one phase because using the artifact for solving an actual

problem is infeasible during a master thesis project due to time and practical

limitations. In this phase, the proposed design is presented and validated by a

group of experts by using semi-structured interviews in order to define the strong

and weak points of this design and suggest possible improvements.

5. Communication: This phase communicates the importance of this research by

discussing the validation results and pointing out its contributions to the academic

community and other interested organizations. This research will be published

and archived into the University of Twente’s repository, and the results will be

presented in a Master thesis presentation.

1.5 Literature Study

To seek answers to the previously formed research questions, it is necessary to have a

better insight on the software-defined technology. The first step towards this objective,

was to conduct a systematic search on the available literature. Each level of the

software-defined concept (infrastructure, network, computing, deployment) was

thoroughly analyzed and explained. After understanding the concepts, the components

and the architecture of each software-defined level, the most popular relevant tools and

technologies at each level were listed, explained and compared. The literature review

was mostly performed with the use of the following academic databases:

 Google Scholar

 IEEE Xplore Digital Library

 Scopus

 ResearchGate

Besides these four platforms, knowledge was gathered by studying several technical

documentation, presentations and books created by the industry, and by attending some

6

online courses explaining this technology. The learning process of writing a master

thesis was also improved by studying several previous projects conducted at the

University of Twente. The Google search engine was mainly used to search on

websites, forums and blogs related to the software-defined technology.

1.6 Thesis Structure

This thesis is further organized as follows. Chapters 2 to 4 explain in detail the required

background knowledge on the software-defined technology. The most popular tools and

technologies at each level are also listed, described and briefly compared in these

chapters. Chapter 2 explains the concepts related to software-defined infrastructure,

Chapter 3 introduces the reader into the field of software-defined networking and

Chapter 4 analyzes the technology related to software-defined computing. Chapter 5

includes the preparation of the design and the description of a specific case study,

where a list of generic requirements, the architecture realization of a general software-

defined system and the selection of specific tools are presented. Chapter 6 includes the

actual design of the infrastructure layer of the software-defined system using the

specified tools and Chapter 7 synthesizes and explains the design of the network layer.

Chapter 8 includes the physical representation of the design and Chapter 9 is the

validation of the design and the discussion of the validation results. Chapter 10 is the

final chapter and presents the conclusions and some suggestions for future work.

7

2 Software-Defined Infrastructure

The introduction of cloud and virtualization was followed by an enormous number of new

tools and platforms, which has led to a huge portfolio of systems for the IT enterprises

which often requires even more time for maintenance. The industry has also evolved

since then, and the demand for more flexible and easily accessible services has

dramatically increased in the past few years.

This increasing demand, combined with the high need to cope with the continuously

growing IT world has forced the organizations to seek for new and effective ways to

meet the new high industry standards. As a result, more and more organizations made a

step towards the software-defined approach. The level of the software-defined approach

that refers to the IT infrastructure is called Software Defined Infrastructure (SDI) [5]. The

Software Defined Infrastructure (which is mostly called Infrastructure as Code or IaC by

the industry) is an attempt to address the high demand of IT services by maximizing the

potential of the current IT infrastructure. A definition for IaC given by Kief Morris [6] is:

“Infrastructure as Code is an approach to managing IT infrastructure for the age of the

cloud, microservices and continuous delivery that is based on practices from software

development “.

2.1 General Elements

The main elements [6] of Infrastructure as Code are the definition files (also referred as

code), the automation tools, the dynamic infrastructure platform and the application

programming interfaces. These elements are explained with more detail below.

Definition Files

Definition files are the key element of IaC. The components of the infrastructure are

defined and configured through these files. The IaC tools use these files as inputs to

configure/ provision instances of the components of the infrastructure. The infrastructure

components could be many things such as a server, a part of a server, a network

configuration, etc.

Each IaC tool is followed by a different name for the definition files. For example,

playbooks for Ansible, recipes for Chef and manifests for Puppet. The definition files are

basically text files and they are treated as such. The most common formats for definition

8

files are JSON, YAML or XML, and some tools define their own domain specific

language (DSL) to allow developers to describe these files.

Dynamic Infrastructure Platform

A dynamic infrastructure platform grants the bases for provisioning and managing the

main infrastructure resources, such as servers, storage and network components, and

ensures that they can be programmable.

There are several available dynamic infrastructure platforms. The most known examples

are the public IaaS cloud services, like Azure and AWS and private IaaS, like Openstack

[7]. The infrastructure can also be managed using virtualization systems such as

VMware vSphere, which do not run in the cloud. Moreover, some organizations use

tools as Cobbler and Foreman [8] to manage an infrastructure entirely on bare metal

physical hardware.

The dynamic infrastructure platform is not affected whether it runs in the cloud, on virtual

machines or bare metal, however it is essential to be programmable, on demand and

self-service. Programmable refers to the previously mentioned definition files and implies

that the dynamic platform should support configuration and management via these files.

The term on-demand entails that the platform provides the users with the capability to

create and destroy resources instantly in a matter of minutes or even seconds. Finally, a

self-service platform does not only offer quick deployment of resources, but also

supports the ability to change and customize resources based on the user requirements.

Automation Tools

There are two different categories of automation tools for setting up the infrastructure:

provisioning tools and configuration tools. Provisioning tools are used to specify and

allocate the desired resources. These tools use the dynamic infrastructure platform to

implement the allocation. Examples of these tools are Terraform, Openstack Heat and

CloudFormation by Amazon. Configuration tools are used to configure and manage the

already provisioned resources with the required dependencies and settings. There are

plenty of available tools on this category, but the three most popular ones are Puppet,

Chef and Ansible.

Application Programming Interfaces (API)

APIs [9] are generally used to define the programming interfaces of a software

component so it can be used by other software components. In this case, the

9

applications and the tools should be able to connect and exchange information with the

underlying platform, and APIs is the main solution to this.

APIs are offered by the automation tools in order to provision and configure the

resources of the infrastructure in the way described in the definition files. Even when

using the off-the-shelf tools, the engineering teams must occasionally write their own

custom scripts and extensions to program the tools against their API, so the used tools

should support a wide variety of programming languages that the team is experienced

with.

REST-based APIs are the most used as they offer remote access, ease of use and high

flexibility. Many tools and dynamic platforms support some programming language-

specific libraries including useful classes and structures that can be used to easily

deploy the components of the infrastructure and apply operations on them.

Figure 2 illustrates an overview of the elements and the interconnections between them.

The idea is that the user creates the definition files that describe the infrastructure, and

these files are inserted into an automation tool that via an API instructs a dynamic

platform to create and manage the infrastructure resources.

Figure 2: Main elements of the software-defined infrastructure

10

2.2 Benefits of Infrastructure as Code

This section summarizes the benefits [6] of using IaC to deploy, manage and update the

IT infrastructure in an organization.

Easily and Fast Reproduced Systems

By using IaC, the administrators (and even developers) can provision and set up an

entire infrastructure from the ground up by simply writing some scripting and definition

files.

Each element of the infrastructure can be repeatedly reproduced reliably and
effortlessly. The IaC scripts describe all the necessary steps for creating and
provisioning the requested resource, for instance which software should be installed, its
correct version, hostname etc.

Writing these scripts is much easier compared to old manual way, and the development
and production of the systems becomes much faster and simple. New services and new
applications can be deployed on the infrastructure easily, which has led to a more
efficient software development process.

Disposable Systems

IaC has improved the old static systems into dynamic, disposable systems that are able

to change in a fast and easy way. The resources of the new dynamic infrastructures are

easily created, destroyed, updated, resized and relocated in the system. Nevertheless,

the deployed software is able to run even when the server which it runs on, is deleted,

moved or resized. Improvements and patches to the infrastructure became easier as the

changes can be handled smoothly. This is crucial in large scale cloud infrastructures

where the system cannot rely on the underlying hardware.

Configuration Consistency

Human errors have always caused problems to the consistency of the configuration,

even when standard procedures for configuration are followed. The human factor

created some slight deviations in configurations that were challenging and time

consuming to debug.

The implementation of IaC fully standardizes the configuration of the infrastructure,

leaving little space for human errors. As a result, the chances of encountering

11

incompatibility problems are greatly reduced, and the execution of the running

applications become more consistent and smooth.

Self-Documented Systems and Processes

IT teams have always been struggling to keep their documentation useful and accurate.

Updates and improvements are implemented in a high pace so it is almost impossible

for the documentation to be up to date with them. In addition, many people prefer to

write the descriptive documents in their own way and in many cases they skip

explanations as they consider them obvious or unnecessary for the reader. Therefore,

most documents are not a fair representation of what really happens.

IaC has managed to solve this problem by enclosing and explaining all the necessary

steps to execute a process in the definition files and the tools that actually carry out the

procedure. An additional small piece of documentation is necessary in that case as well.

The documents should be close (physically and meaningfully) to the code that they

explain to help people acquire a good understanding of the underlying procedures.

Version Everything

Having the entire infrastructure codified in definition files opens the opportunity to use

version control techniques to keep track of the committed changes, and roll back to

previous stable version when an error occurs.

The Version Control System (VCS) offers a log file with all the implemented changes,

the reason of the changes and the entity that made them. This feature is really useful for

debugging purposes. Each feature of the system is identified by tags and version

numbers, improving the tracing and fixing of more complicated abnormalities.

Furthermore, the VCS supports the automatic start of a series of required actions upon

the request of a new change, which is a feature of the continuous integration and

continuous delivery approach.

Continuously Tested Systems and Processes

Automated testing is one of the most important practices that has been added to the

infrastructure development with the introduction of IaC. Writing automated tests for a

running infrastructure is challenging, but its correct implementation can lead to a clean,

simple and functional infrastructure.

12

People are more confident to make changes if they receive fast feedback of the

proposed changes. Testing is performed simultaneously with the development and that

is crucial for an automated infrastructure, in which a small mistake can quickly cause

significant damage.

Increased Efficiency in Software Development

IaC has boosted the productivity of the software developers. The software development

cycle turned into a more efficient process, as the IT infrastructure can be deployed

rapidly, easily and in several stages.

Developers can easily create their own sandbox system to launch and experiment with

their code. Testing and security checking can take place in separate staging systems,

and the application can be simply deployed and managed on the systems by using IaC

tools. These tools can also delete the environments that are not used, freeing valuable

computing power. Moreover, by shutting down all the unused resources the

development environment remains clean and simple. That further increases the

productivity of the engineering team, as they find a clean and friendly environment to

deploy and they do not have to spend time erasing unused components from previous

projects.

2.3 Provisioning Tools

Provisioning is the first step in order to build a concrete and functional infrastructure.

Provisioning tools aim at setting up the foundational infrastructure components. Most of

the provisioning tools are supported by an infrastructure vendor, such as Amazon or

Google, but there are also tools that support multiple vendors. The most popular vendor

specific provisioning tools are CloudFormation for AWS [10], Cloud Deployment

Manager for the Google Cloud Platform [11] and Azure Resource Manager for Microsoft

Azure Clouds [12]. The most popular open source provisioning tools are:

2.3.1 Terraform

Terraform [13] is an infrastructure automation tool developed by HashiCorp four years

ago and it is written in the Go programming language. It is the first multi-cloud

infrastructure tool that allows the user to automate and set up infrastructure elements

from several cloud vendors simultaneously, as well as custom in-house solutions.

13

Terraform describes the infrastructure through the configuration files which are written in

its own developed domain-specific language called Hashicorp Configuration Language

(HCL). These files are compatible to JSON and are used to deploy the requested

resources. These files can be easily shared and reused to create the same environment

elsewhere.

Terraform also provides execution plans, which describe the procedure that is followed

in order to reach the desired state of the infrastructure. The execution plan first gives an

overview of that happens by the time it is called and then Terraform actually sets up the

infrastructure by executing this plan. In addition, Terraform is able to create a graph of

the infrastructure resources by parallelizing the creation and modification of any non-

dependent resource. The use of the execution plan combined with the produced

resource graph provides more automation towards changes with less human

involvement, as the user has more insight on the Terraform’s functionality, avoiding

possible human errors.

Figure 3: Sample Terraform workflow [14]

Terraform stores the state of the managed infrastructure in a local file called

terraform.tfstate. This file can also be stored remotely which is useful when working in a

remotely distributed team. This local state is used to create the execution plans and

make the necessary infrastructure changes. After each performed operation, Terraform

refreshes the state in order to match the actual real time infrastructure. Figure 3 shows a

common Terraform workflow. In this example, AWS is used as a dynamic cloud

infrastructure platform and S3 is used to back up the tfstate file.

14

2.3.2 Openstack Heat

Heat [15] is a product of the Openstack Foundation and is the main tool of the

Openstack Orchestration program. Like the previous tools, Heat uses template files in

the form of text files to deploy and set up multiple cloud resources of the desired IT

infrastructure.

The infrastructure resources that can be used include: servers, volumes etc. The

Openstack Telemetry [16] is also supported by Heat so that the user can include in the

template file a scaling group [17] as a possible resource. In addition, the user can

declare the connections and the dependencies between the resources. Heat uses these

relationships in order to call the Openstack APIs that are responsible for the creation of

the infrastructure, as prescribed by the user. The user can easily change the

infrastructure by simply modifying the template file, and then Heat takes all the

necessary steps to adjust the infrastructure to the desired state. Heat also deletes all the

unused resources after application finishes its execution.

Heat supports an Openstack-native Rest API as well as a Cloud Formation-compatible

Query API and the Heat template files are highly integrated with popular software

configuration management tools such as Puppet and Chef. The Heat team is currently

making the Heat template format compatible with the AWS Cloud Formation template

format, so that many existing Cloud Formation templates can also be run on Openstack.

2.3.3 Comparison of the provisioning tools

A comparison of the described provisioning tools is illustrated in Table 1. The tools are

compared based on their availability, the support of specific platforms and the used

configuration language.

Metrics Terraform
Openstack

Heat
Cloud

Formation

Cloud
Deployment

Manager

Azure
Resource
Manager

Availability
Open

source
Open
source

Closed source Closed source
Closed
source

Supported
Platforms

Multiple
platforms

Openstack AWS Google Cloud Azure

Configuration
Language

DSL (HCL) DSL (HOT) YAML, JSON YAML JSON

Table 1: Comparison of the provisioning tools

15

Terraform and Openstack Heat are open source software, whereas the rest of the tools

are proprietary solutions, which are free for setting up a limited number of resources.

Terraform is the only tool from the list that supports multiple dynamic platforms, enabling

the combination of different resources from a variety of vendors. The other solutions are

attached to a specific dynamic platform such as Openstack, AWS, Google Cloud and

Azure. Terraform and Openstack Heat use domain specific languages for managing the

configuration, which are YAML-based, while the rest of the tools use YAML or JSON for

describing their definition files.

2.4 Configuration Tools

Once the elements of the infrastructure are provisioned, they need to be configured.

Configuration management tools are used for this purpose. There are many available

tools on the market, and each one of them has its own advantages and disadvantages.

However, all of them serve the same goal; to configure the deployed resources

according to the configuration settings. The most popular open source configuration

tools based on the numbers of commits and stars in GitHub, are described in the

following section.

2.4.1 Chef

Chef [18] is a configuration management tool that helps automate the IT infrastructure.

Chef can manage infrastructures in the cloud, on bare metal as well as in a hybrid

environment. Chef is a cl oud agnostic tool that works with many popular cloud service

providers, such as Microsoft Azure, AWS, Openstack and Cloud Platform. The first

version of Chef was developed in Ruby, however the latest version is partly written in

Erlang and Ruby. Chef can support infrastructures up to 10.000 nodes.

The main components that form Chef are:

 Chef workstation: System that is used by the user to interact with Chef. With the

Chef workstation, the user is able to develop cookbooks and recipes, manage

the nodes of the infrastructure, synchronize the chef repository and upload

cookbooks and other files to the chef server. The user can interact with the chef

server using knife, which is a command line tool. The chef repository stores

everything that is related to the chef server and nodes. Chef supports multiple

workstations for a single chef server.

16

 Chef Client node: A virtual or physical machine that is managed by Chef. Chef

can also manage nodes located in the cloud. Each node has to include an agent

known as chef client in order to interact with the chef server. The configuration of

a node is performed through a built in tool called Ohai, which is used to describe

the node attributes to the chef client.

 Chef Server: A system that holds everything that is essential for configuring the
nodes. The server stores the cookbooks, the used policies on the nodes and
some metadata that describe the nodes that are managed by Chef. The Chef
client which is installed on each node asks for the configuration details, such as
recipes and templates from the server, and then applies the configuration to the
specified node.

Figure 4: Basic structure of Chef [19]

Chef transforms infrastructure into code by using text files called cookbooks, which are

the fundamental unit to configure and distribute policies in Chef. Cookbooks define

complete scenarios, and include everything that is essential to run this scenario.

Cookbooks are used to group and organize recipes. Recipes are basically scripts written

in Ruby that specify the required resources and the order of their application [20]. Ruby

is chosen as the reference language for creating cookbooks, with the support of an

extended DSL for specialized resources. The chef client is equipped with a variety of

resources to support the most common infrastructure scenarios, nevertheless the DSL

17

can always be extended whenever there is more resources with more capabilities are

needed.

Chef comes into two versions: commercial and open source. The commercial version is

called Enterprise Chef and offers high availability deployment support. It is equipped

with some additional features regarding security and reporting. The open source version

has almost all the features of the commercial version except for the extra security and

reporting. In addition, open source Chef does not support the installation of components

on multiple servers.

2.4.2 Puppet

Puppet [21] is another popular configuration management tool that helps organize and

configure servers. Puppet executes the configuration plans through an abstraction layer

that describes the configuration elements as generic objects.

The user has to declare the resources and their attributes and that are given to Puppet

as input to properly configure the resources. Puppet receives the catalog of the

described resources and compares the existing state of the resources with the described

one. Then it decides which actions need to be taken in order to reach an agreement

between the requested state and the current state of the resources. This approach is

declarative [22], since the user declares how the configuration should look like and then

Puppet takes all the necessary actions to reach that intended configuration. This is the

main difference with Chef, which follows a procedural approach in which the user has to

describe the necessary steps to reach the desired state.

In Puppet, the resource definition files are called manifests and are written in a DSL,

quite similar to Ruby. However, the user cannot simply write Ruby code in the manifests

and have them executed. The manifests can be executed over and over again resulting

to the same results that always match the described state.

Puppet has two main components for configuring servers: the puppet agent and the

puppet master. The puppet program itself is called Puppet agent when it runs in a

daemon mode on the server. The puppet master is a daemon that runs on the master

server of the cluster and defines which configurations would apply to which server and

also stores all the configuration information in a central location. The puppet agent asks

the configurations from the puppet master at specific time intervals, and when there is a

need of change the puppet agent actually implements the change. The communication

18

between these two components is performed over a secure encrypted channel by using

the SSL protocol.

2.4.3 Ansible

Ansible [23] is another powerful configuration management tool. The uniqueness of

Ansible compared to other management tools is that it is also used for deployment and

orchestration. Ansible is especially developed to be simple, secure, reliable and easy to

learn. It offers a variety of features for an expert user but it is equally accessible to less

skilled users.

Ansible does not use agents, and no additional software should be installed on the

remote servers in order to manage them. Ansible manages the remote machines by

using the remote management frameworks that already exists natively on the OS, for

instance, SSH for Linux and UNIX machines and WinRM for Windows machines. The

absence of agents results in less resource consumption on the managed machines

when Ansible is not operating on them. Ansible also improves security by functioning in

a push-based model where the remote machines receive only the necessary parts of the

code (called modules), and the remote machines cannot interact or interfere with the

configuration of the other machines. These features made Ansible suitable for high

security and high performance systems.

In Ansible, the definition files to configure, automate and manage the IT infrastructure

are called Playbooks. These files are written in YAML format and they describe how to

perform an operation by clearly stating what should be done by each component of the

infrastructure. Each Playbook consists of a list of plays that describe the automation

process to a set of hosts, called the inventory. Each play includes several tasks that

refer to a single host or a group of hosts in the inventory. Each task calls a module,

which is a small piece of code that performs a specific job. The tasks vary from simple

jobs to complex operations. Ansible can also enclose Playbook tasks into units known

as roles. Ansible uses roles to apply commonly used configurations in several scenarios

in a rapid and easy way.

Ansible was developed in a way that facilitates extensibility. The user has always the

possibility of extending the native 450+ Ansible modules by writing his own modules.

The built-in modules are written in Python and PowerShell, but the user can use any

programming language to develop new ones, with the only restriction that they have

19

JSON as input format and produce JSON as output format. In addition, Ansible can be

extended to support dynamic inventory, which allows the Playbooks to be executed on a

group of machines and infrastructure that are not constant and statically defined, but can

run a public or private cloud provider that supports the dynamic creation and deletion of

the resources. Ansible supports most of the well-known cloud providers and can always

be extended to support new providers by simply writing a custom program (in any

programming language) that gives a JSON inventory definition as output.

Ansible is an open source project promoted by Red Hat. The paid commercial version of

Ansible is called Red Hat Ansible Tower, and offers management to complex multi-tier

deployments by adding control and technical support to Ansible supported systems.

2.4.4 Saltstack

Saltstack [24] is a configuration management tool that is also used for orchestrating the

infrastructure. It configures, changes and updates the IT infrastructure through a central

repository. It can operate on physical, virtual and cloud servers.

Like the previous IaC tools, Saltstack aims to automate the administrative and code

deployment tasks and reduce the chance of human error, by removing the manual

processes as much as possible. In order to achieve that, Saltstack uses both the push

and the pull method to configure the servers. It pulls configuration files and code from a

central repository such as Github, and then it pushes these files to the servers remotely.

Saltstack has two main components: the Salt master and the Salt minion. The master is

the central server and all minions are connected to it to get instructions. The connection

between the master and the minions is encrypted based on cryptographic hashes. The

minions can be commanded by the master after using public key authentication. The

minions can run without a master, but the full potential of Saltstack is leveraged in a

master-minions network. The user can push updates and configuration files through the

master to the minions, or schedule the minions to check the master at specific time slots

and pull available updates and configurations. The Saltstack’s management architecture

is highly event-driven and offers self-dependence and healing to the system, as it

leverages both the push and pull methods for updating and recovering from errors.

Saltstack includes some other important features, such as the Salt reactors, agents,

minions, grains and pillars. The Salt reactors are responsible for listening for new events

on the minions, while the Salt agents use secure shell to run commands on the target

nodes. The minions are agents themselves that are installed on the remote servers to

20

push commands. The Salt grains provide valuable information about the managed

servers and the Salt pillars are the configuration files.

Saltstack is different from the other configuration management tools because it is fast

and can operate in a multithreaded manner, so that it can perform multiple tasks

simultaneously. In addition, Saltstack is developed in Python and uses it to write the

configuration scripts. However, it can also render scripts developed in other languages

such as YAML and JSON. That makes Saltstack a language agnostic tool that is easily

accessible to a wide audience of software developers.

Saltstack is an open source framework that is operated from the Command Line

Interface (CLI). The paid edition is called Saltstack Enterprise and comes with some

additional features, such as a GUI support and the support for Windows, macOS and

Solaris servers. The Enterprise version can also store the events in a database, offering

an auditable history of the events to the user.

2.4.5 Comparison of the configuration tools

Table 2 represents a comparison between the previously mentioned configuration tools.

There is a wide variety of factors, which can be used to compare this sort of tooling but

for the purpose of this research the five most suitable metrics were selected.

Metrics Chef Puppet Ansible Saltstack

Configuration
Language

Ruby
DSL (Ruby-

based)
YAML

YAML, Python,
JSON

Enterprise
Version

Yes Yes Yes Yes

Architecture Master-Agent Master-Agent Master only Master-Agent

Configuration
Method

Pull Pull Push Push and Pull

OS Support
Master (Linux)

Agents (Linux &
Windows)

Master (Linux)
Agents (Linux &

Windows)

Master (Linux)
Agents (Linux &

Windows)

Master (Linux)
Agents (Linux &

Windows)

Table 2: Comparison of the configuration tools

All the described tools provide high levels of scalability. These tools are able to manage

large infrastructures with more than 10.000 nodes and the user should only declare the

IP or the hostname of the nodes that require configuration, and the tools perform the

21

desired configuration. Furthermore, all tools provide an enterprise supported version,

which comes with different prices depending on the size of the infrastructure.

Chef, Puppet and Saltstack follow a master-agent architecture, while Ansible requires

only the installation of the master on the server machine and no additional software is

installed on the client machines. Chef and Puppet follow the pull configuration method,

while Ansible uses the push method. Saltstack uses both push and pull methodes to

configure the servers. It pulls configuration files and code from a central repository and

then it pushes these files to the servers remotely.

Chef and Puppet use Ruby-based configuration languages for managing their definition

files, which requires a basic understanding on programming in order to use them

efficiently. On the other hand, Ansible and Saltstack use YAML for configuration, which

is a user-friendly configuration language. Saltstack also offers support for Python and

JSON.

22

3 Software-Defined Technology at the Network Layer

Over the past decades, server virtualization has been a remarkably beneficial

technology and has managed to improve the IT infrastructure significantly by providing

agility, flexibility and scalability to the systems. The success of the server virtualization

formed the starting point of the research on new technologies that aim to achieve such a

level of virtualization of the network infrastructure.

The new technologies in this field are the Software Defined Networking (SDN) and the

Network Function Virtualization (NFV). These approaches aim to contribute to a more

virtualized network infrastructure that is dynamic and highly scalable. SDN and NFV are

often considered as the same technology; however there are two independent

technologies which are certainly related. NFV is mainly focused on deploying

infrastructure services on commercial off-the-shelf hardware, while SDN is the tool that

dynamically controls the network resources. NFV was developed by the

telecommunication providers with the goal of reducing CapEX, OpEx and the power

consumption of the service provider networks, while SDN tries to provide programmable

network control and configuration. Therefore, the main area of operation of the NFV

technology is service provider networks, whilst SDN mainly operates on datacenters and

cloud environments. The following sub-sections give a more detailed description of the

SDN technology as it is more relevant to the purpose of this research.

3.1 Software-Defined Networking

The traditional IP networks are widely used all around the globe; however they can

cause several difficulties during the configuration and management process due to their

high complexity. Each individual network device should be configured independently

using in many cases some especially designed commands in order to reach the

described high level network policies. Furthermore, the networks should be adaptable to

dynamic load changes and occasional errors. The current IP networks have limited

support for automatic configuration and error resolving actions, resulting to difficulties

when dealing with a dynamic environment. The level of complexity in the present IP

networks increases since they are vertically integrated. This means that the control

plane (controls the data traffic) and the data plane (forwards the data in the network) are

stacked together on the network devices, lowering the levels of the flexibility in the

network. Another serious challenge for the network researchers and engineers is that

23

the Internet in its current form is a huge and important part of our society, and it is highly

challenging to improve it in terms of performance and physical infrastructure. Setting up

new physical network infrastructure and developing new Internet protocols requires time,

money and lot of engineering effort. At the same time, the Internet applications and

services have become more sophisticated with more functionalities and demands, and it

is critical for the current Internet to grow in terms of scalability and performance to face

these newly emerged challenges.

The idea of programmable networks has been proposed as a promising solution to

tackle the problems at the current network infrastructure. Specifically, the academia

introduced Software-Defined Networking (SDN) [25] as a paradigm to lift the constrains

at the current network systems. The main goal of SDN is to provide agile, scalable and

programmable networks. SDN separates the control plane from the underlying hardware

(routers, switches) that forwards the data into the network (data plane). By detaching the

control plane from the data plane, the network devices are simply responsible for

forwarding data, and the control of the network is now enclosed in a logical central

controller (or network operating system – NOS). Figure 5 shows the difference between

a traditional network infrastructure and a SDN network in which the control plane is

independent from the data plane, and it is located in the SDN controller.

Figure 5: SDN vs traditional networks [26]

The SDN architecture is composed by three main elements:

 SDN Applications: Software programs that interact with the SDN controller via the

API. The network infrastructure is described and constructed by these

applications based on the gathered information from the SDN controller. The SDN

APIs are divided into two categories: the Northbound API and the Southbound

API. The Northbound API is the link between the SDN applications and the SDN

24

controller. The Southbound API defines the communication between the

controller and the physical devices.

 SDN Controller: It is the main component of the SDN architecture. It controls the

SDN devices via the southbound API and the SDN applications through the

northbound API. The purpose of the controller is to provide a programmable and

intelligent network.

 SDN devices: They are the networking devices, such as routers and switches that

forward and route the data in the network, based on the flow tables described by

the SDN controller via the southbound API. The devices can be real hardware

switches or virtual ones. The virtual switches are implemented using Open

vSwitch (OVS) [27].

3.1.1 Southbound Interfaces

OpenFlow [28] is the most popular open southbound standard for SDN. The forwarding

devices known as OpenFlow switches are mainly composed by two components: flows

tables and an abstraction layer. The abstraction layer allows secure communication

between the switches and the SDN controller via the OpenFlow protocol. Flow tables

include several flow entries, which decide where and how the flow packets should be

forwarded and processed. Basically, flow entries are match-action rules that dictate what

action needs to be taken when a specific match is encountered. Flow entries generally

include: 1. Match fields, which are used to match incoming packets, 2. Counters, which

are used to gather information and keep statistics for the particular flow such as the

number of received packets, the duration of the flow etc. and 3. Set of instructions or

actions that should be implemented when a match is found. Through the OpenFlow

protocol, a controller can create, add, update and remove flow entries from the flow

tables on the switch.

By the time a new packet arrives at an OpenFlow switch, the packet header is compared

with the matching field parts of the flow entries. If there is a match, the device takes the

necessary set of actions described in the matched flow entry. This can be a reactive

(triggered by a arrival of a packet) or proactive process. A match is expressed through

specific values on fields within packet headers and a flow match statement can be for

instance a specific source IP address or a range of IPs for the packet or the protocol of

the packet being TCP or UDP. In case of no matching, the set of taken actions is

described on the instructions explained in the miss flow entry of the table. The miss flow

entry is an essential component for each flow table in order to handle table misses. This

entry describes a series of necessary actions in case of no matching such as dropping

25

the packet, moving on the next flow table or forwarding the packet to the controller using

the OpenFlow channel.

OVSDB [29] is another popular southbound interface. OVSDB was introduced as a part

of OVS, but currently is supported by several switch platforms. The network

administrators use Openflow to program the flow entries of a switch and OVSDB to

configure the switch, itself. Using OVSDB, allows the engineers to create, delete and

configure bridges, ports and tunnel interfaces on the switch.

Other interfaces that are suitable as a southbound standard are ForCES, POF, OpFlex,

Openstate, ROFL, Hardware Abstraction Layer (HAL) and Programmable Abstraction of

Data – path (PAD) [28].

3.1.2 Northbound Interfaces

Unlikely the southbound API, which is focused on the hardware, the northbound API is

mostly a software-based environment. In these systems, the implementation is a central

driver and the standardization mostly comes later. For the southbound interface,

OpenFlow is a commonly accepted standard but there is not a widely accepted

northbound API yet.

Defining an open and standard northbound interface is essential for the development

and the promotion of application portability among the various control platforms. Each

SDN controller has its own specific northbound API, and each of them has its own

particular definitions. SFNet [30] is an example of a northbound API. It converts higher

level application requirements into lower level service requests. However, the

functionality of SFNet is restricted to queries that only ask the congestion state of the

network, such as bandwidth reservation and multicast.

It is questionable whether a single northbound API would ever be developed and

accepted as the common standard, as the network applications are quite complex with

plenty different requirements. For instance, a northbound interface aiming at supporting

security applications is most likely different from an API focusing on routing applications.

26

3.1.3 SDN Controllers

The configuration and management of most of the current networks is performed by

using low-level unique commands and device-focused proprietary network operating

systems, such as Cisco IOS [31] and Juniper JunOS [32]. In addition, the current

network operating systems are not able to provide general functionalities for the entire

network and they only provide device-specific functionalities.

SDN is a promising solution that is trying to face the current networking problems by

separating the control plane from the data plane. The idea is to handle the control plane

separately inside a central logical network operating system (NOS), which is known as

the controller. The controller is an essential component of the SDN architecture and it is

the cornerstone for configuring the network based on policies described by the network

administrator. It is quite similar to the traditional operating systems and it decouples the

system from the lower level device specific instructions on the forwarding devices.

The controller is basically the brain of the entire network and it has an overall view of all

the network devices, the connections between them and the best routes between the

hosts. This global view helps the controller act rapidly, efficiently and smartly regarding

the direction of the flows, the control and the network recovery in case of a link error.

The controller has predefined routes for every link in the network and in case of error an

alternative route is always available. Another important feature of the controller is the

capability to provide network virtualization. This capability allows the creation and

maintenance of virtual networks on physical infrastructure in an abstract way, similar to

server virtualization. Furthermore, a controller should be able to create the requested

number of flows and maintain them. Thus, the flow creation time and the manageable

number of flows per second are two important indicators for the performance of the

controller. The number of the supporting APIs is another major factor for the controllers.

The controller should support southbound APIs to control the switches and northbound

APIs to control the upper layer applications. The more APIs a controller supports, the

more flexible it becomes, and especially for the northbound APIs that allow the dynamic

configuration of the network by the applications based on specific requirements. For

example, the support of the OpenFlow protocol is really important for the majority of the

available SDN controllers. This is a matter of high importance as the OpenFlow is the

widely accepted southbound API, and it is responsible of taking the necessary decisions

in case of no matching in the existing entries in the flow control table on the hardware

switch. The controller has to decide whether to drop the packet or create a new flow to

forward it.

27

Figure 6: Interfaces and SDN controllers [38]

There is a huge variety of available controllers both commercial and open source. Some

examples of commercial controllers [33] are: the Cisco Application Policy Infrastructure

Controller (APIC), the HP Virtual Application Networks SDN Controller, the NEC

ProgrammableFlow PF6800 Controller and the VMware NSX Controller. The most used

open source controllers are POX, Ryu, Trema, Floodlight and OpenDayLight. POX [34]

is a controller developed in Python, and it is focused on debugging SDN errors,

developing programming models and managing virtualized network resources. Ryu [35]

is a component-based controller, which means that it comes with a group of pre-defined

components. The network operator can create custom controller applications by

modifying these pre-defined components. The components can be developed in any

programming language, and the choice is up to the operator and the requirements of the

applications. Trema [36] is a controller supported by NEC labs and it aims to offer an

easy to code system with high performance. Ruby is used as the scripting language to

increase productivity, and C is used as the compiler language to boost performance.

The Floodlight [37] controller includes a set of modules, and each of these modules

grants a service to the other modules and to the control application via a Java API or a

REST API. The controller is able to run on Linux, Mac and Windows systems.

28

OpenDayLight is explained with more details in the following sub-section, as it is the

current most popular SDN controller among the users’ community and the vendors, and

further analysis seems necessary. Figure 6 illustrates the described SDN controllers with

all the supported protocols and the connections between them.

Opendaylight

All the previously mentioned SDN controllers support only Openflow as the southbound

protocol, however recent studies has showed that Openflow-based SDN architectures

are inadequate for high-performance networks, and new architectures that support wide

range of southbound interfaces should be invented.

Opendaylight (ODL) [39] was introduced by the industry to solve the previously

mentioned problem. ODL is developed in Java and is supported by any hardware and

operating system that has Java support. In addition, it is an open source project that

tries to gather a contributing community around it to improve the code and use it for the

development of commercial products.

Figure 7: The architecture of Opendaylight [40]

The ODL architecture is represented at Figure 7. The architecture consists of three basic

layers [40]: the network applications and services, the controller platform and the

29

southbound interfaces. The controller controls the data plane elements, but they are a

separate layer outside the controller.

A. Controller platform

The main elements of the controller platform are:

 The Base Network Service Functions (BNSFs): These functions gather statistics

and information about the components of the whole network, their state and their

capabilities. They also offer access to the collected information to the network

application via the northbound APIs. The current main built-in network services

are: the topology manager, the statistics manager, the switch manager, the

forwarding rules manager, the inventory manager and the host tracker.

 The Platform Network Service Functions: They are plugins services that improve

the functionality of the SDN controller with specific networking tasks. Some

noticeable pluggable services are the affinity metadata service, the virtual tenant

network manager, the L2 switch, the service function chaining, the group-based

policy and the authentication, authorization and accounting service.

 The Service Abstraction Layer (SAL): It is the main element of the ODL

controller, as it enables the support of multiple southbound protocols via the

southbound plugins. SAL also offers the Device Discovery service that is used by

the Topology Manager to build the topology of the network and form the

capabilities of the network components.

B. Southbound Interfaces

The main responsibility of the southbound protocols is to establish a communication

between the SDN controller and the data plane elements. ODL uses the southbound

plugins to support several southbound protocols that can manage, configure and monitor

the data plane elements. Furthermore, the southbound protocols improve the

compatibility of ODL with heterogeneous networks and other technologies. Some

southbound protocols that are supported are OpenFlow, Open vSwitch Database

(OVSDB), SNMP, BGP-LS/ PCEP and NETCONF.

C. Network Applications and Services

At the higher layer of the architecture, are the network applications and services that are

responsible for the management, the control and the monitoring of the entire network.

These applications are highly related with multiple services from the control platform,

such as the VTN manager and coordinator. These applications are also responsible for

30

the orchestration and the redirection of the traffic based on the requirements of the

network. ODL offers northbound APIs that support communication between the

applications of the top layer. The northbound APIs in ODL are mainly supported by the

OSGi framework and bidirectional REST APIs. Some supported network applications

are:

 the openDayLight User eXperience (DLUX) which is a web-based user interface.

 the VTN coordinator that offers REST APIs to the users to build and manage

virtual networks.

 the SDNi Wrapper that offer communication between different SDN controllers.

 the DDoS protection which is an application that detects and protects against

DDoS attacks.

 the Openstack Neutron that supports the creation of virtual networks in the

Openstack cloud platform.

31

4 Software-Defined Computing

Software defined computing (SDC) [41] uses virtualization techniques to compute the

necessary functions in the system. The virtualization technology decouples CPU and

memory resources from the physical hardware, resulting to pools of resources that can

be used wherever they are needed.

The industry uses two popular technologies to achieve SDC transformation of their

systems: virtual machines (VMs) and containers. A VM is defined as an isolated

software framework that runs its own operating system and applications as a physical

machine. A VM in order to run requires a hypervisor which is a piece of software that is

placed between the hardware and the OS. The hypervisor provides the capability to the

hardware to share its resources among the VMs that run on top of it. The hypervisor is

also responsible for managing and monitoring the VMs. A container [42] on the other

hand is a unit of software that packages up code and all its dependencies, so that the

application can run quickly and reliably from one computing environment to another.

Containers act as sandboxes that isolate software from the environment, and grant the

functionality of the application regardless of possible differences in the deployed

environments. One advantage of the containerization technology over VMs is that they

do not need a fully functional OS to run, like virtual machines.

Figure 8: Comparison of hypervisor (a) and container-based (b) deployments [42]

32

4.1 Benefits of SDC

SDC abstracted the data center from the physical hardware and added flexibility and

automation to the system, which was a huge challenge a decade ago. Some of the most

important benefits of SDC are discussed in the following section [43].

Shared Resource Pooling

One of the biggest advantages of SDC is the elasticity that it offers to the system. By

adding a virtual layer between the physical hardware and the operating system, the

utilization of the resources becomes easier and much more flexible. The resources are

grouped into logical pools and the virtual machines/ containers can use and share the

same physical resource. Upon an increase in demand, the VMs /containers can be

configured to use more resources, in contrast with the bare metal servers, where the

resources are limited and it is difficult and sometimes even impossible to upgrade the

hardware.

Server Consolidation Anywhere

A virtual server is basically a file and as file it can be deployed everywhere in an easy

manner. It can be deployed in a data center and serve almost all the traffic, on the laptop

of a software developer for running tests and developing code or it can run in the cloud,

where users worldwide can manage it through a browser.

Automation

The levels of automation in the new systems have dramatically increased with the

introduction of SDC. The system can automatically migrate VMs and containers in case

of error with no actual impact on the user experience. The system also automatically

monitors the performance and the traffic load on the VMs/ containers, and takes the

necessary actions to reach balance and efficiency between the hosts and the requested

resources. In addition, the system can automatically start new resources in case of high

demand, and shut down unused resources in periods of low demand.

Prioritizing

SDC provides the user with the capability to give higher priority to some servers over

others. The administrator can set a minimum threshold for resources of a critical server,

ensuring that the server always has the necessary resources to perform some essentials

functions. Furthermore, the administrator can determine the order in which the VMs/

33

containers mitigate in case of error. Standard system cannot be served by one-sized

solution for everything, and SDC can solve this by providing the necessary granularity to

manage each server independently.

4.2 SDC Tools

The main elements of the SDC technology, as already mentioned, are virtualization

techniques, such as VMs and the relatively new containerization technology. The main

software, that creates and monitors the VMs, is the hypervisor. The hypervisor is

basically a software layer that allows several VMs with different operating systems to run

simultaneously at a physical machine. The hypervisor can be divided into two

categories: the Type1 and the Type2 hypervisors. Type1 hypervisors, also known as

bare metal hypervisors, run directly on the hardware, while the Type2 run as

applications on an existing operating system on the hardware. The most used Type1

hypervisor solutions are KVM, Xen, VMWare ESXi, while the most used Type2

hypervisors are Microsoft Hyper-V and Oracle VirtualBox. The most popular tool for

creating and deploying containers is Docker. Other popular tools for running containers

are lxc, runc and rkt.

KVM

KVM (Kernel Based Virtual Machine) [44] is a part of Linux and was developed to run on

x86 machines. KVM has a kernel module called kvm.ko that transforms the Linux kernel

into a hypervisor allowing the VMs to run directly on hardware. The user can use the

Virtual manager (GUI) and virsh applications (CLI) to control and manage the created

VMs.

Xen

Xen [45] is one of the most popular Type1 open-source hypervisors. It also comes in a

commercial version from Citrix, and Oracle VM is another paid implementation of Xen.

Xen is based on the para-virtualization technology, in which the host guest operating

systems are aware that they do not run on their specified hardware. This requires some

extra modification of the guest OS, but it comes with increased performance. The Xen

Project platform is compatible with many cloud platforms such as Openstack and

Cloudstack.

34

VMWare ESXi

VMWare is the biggest player in the hypervisor market in terms of revenue and total

share. VMware offers both types of hypervisor. It offers ESXi, which is a Type1

hypervisor, and VMWare Fusion which is a Type 2 hypervisor and runs on desktops and

laptops. VMWare ESXi can be downloaded for free [46]. ESXi is bare metal hypervisor

that runs on a physical server directly. That increases its efficiency compared to hosted

architectures and can partion hardware in an effective way to reduce costs for the

customers, by increasing consolidation.

Oracle VirtualBox

VirtualBox [47] is a Type2 hypervisor that runs on Linux, Windows, Macintosh and

Solaris hosts. It can run both on 32-bit and 64-bit host operating systems, which makes

it highly portable. The VMs can be imported and exported in the VirtualBox by using the

OVF (Open Virtualization Format). It also supports OVFs that were created by a different

virtualization software.

Docker

Docker [48] is the main tool for creating, deploying and running containerized

applications. Docker is a bit similar to a virtual machine hypervisor, but unlike a

hypervisor, Docker allows the applications to use the same Linux kernel as the system

that they run on, and the only requirement is to include components, such as

dependencies and libraries which are not installed on the host machine. This increases

the performance and the scalability, and also lowers the size of the application. Docker

is an open source framework with a huge community that supports and contributes to it.

35

5 Preparation of the design - Case Study

In this chapter, a specific case study is described that identifies the needs and

requirements of an existing organization that is willing to improve their current systems

with the use of the software-defined technology. Therefore, the purpose of this case

study is to identify the required knowledge from a real-world organization and translate it

into a list of requirements that express the desired functionality and behavior of a future

fully software-defined system.

This research was performed in cooperation with Thales Nederland, which is a mission

critical organization that is in constant search of new technologies that can be used to

improve their current systems in order to remain competitive in the market and provide

high-end products to their customers. Therefore, mission critical organizations are highly

interested in this recently emerged software-defined technology as a way to improve

their current systems in regards to scalability, programmability and configurability.

5.1 Requirements

The first step towards the design and implementation of a fully software-defined system,

is the definition of a list of requirements that the new system should fulfill in order to

function properly and support all the mandatory use cases. Several meetings and

discussions with the Thales engineers were required to acquire a better understanding

of the currently used systems and compile a list of requirements that describe the

desired future software-defined system. The resulting list of requirements (Table 3)

mainly focuses on the infrastructure and the network layer of the system, with some

additional general requirements. Based on the discussion with the Thales engineers and

the personal understanding of the future system, the level of importance of each

requirement was also identified and listed. These requirements are used in Chapter 5.3

as a basis for choosing the appropriate software-defined tools and technologies that

have been used to design a prototype of the new software-defined system.

The list of requirements includes some specific terminology that should be defined and

explained in order to facilitate the interpretation of the requirements:

 System: The product of this research, which is a combination of software and

hardware components that collaborate with each other in order to provide the

functionality described by the requirements .

36

 Declarative approach [22] : In this approach the user declares the desired state

and structure of the model and a deployment engine enforces that state. The

opposite is the imperative approach where the user has to explicitly describe in

detail the required procedure to reach that state.

Requirements Level of
Importance

Type

1. The infrastructure layer of the system
must follow a declarative approach.

High Infrastructure

2. The network layer of the system must
follow a declarative approach.

High Network

3. The software components of the system
must be implemented by using open
source technologies.

High General

4. The user of the system must be able to
select between different kind of devices
based on the capabilities of the
available nodes (e.g., console nodes,
server nodes, diskless nodes, switches,
data diodes, firewalls, gateways).

High Infrastructure

5. The user of the system must be able to
determine for each node of the system
at least the following capabilities: CPU
architecture, amount of memory,
number of cores, disk size, amount of
network connections, GPU card and IO
card.

High Infrastructure

6. Each node in the system must have a
unique identification, either MAC
address, serial number or GUID.

High Infrastructure

7. The user of the system should be able
to select the OS that runs on the nodes
of the system.

Medium Infrastructure

8. The user of the system must be able to
provision virtual machines, bare metal
servers and containers.

High Infrastructure

9. The system must support the network
connection between the system nodes
and the network devices.

High Network

10. The system should support redundant
connection of nodes (e.g., bonding).

Medium Network

37

11. The user of the system should be able
to create multiple separated networks by
selecting the desired network
technology (e.g., VLAN, VXLAN).

Medium Network

12. The user of the system should be able
to manage the network topology based
on the minimum required bandwidth and
the burst behavior of traffic.

Low Network

13. The user of the system should be able
to manage the network topology based
on the quality of service (e.g. latency
and jitter).

Low Network

14. The system must support and manage
the connection between physical and
virtual networks.

High Network

Table 3: Requirements of the system

5.2 Overview of the Design

The purpose of this chapter is to combine the acquired knowledge regarding the

software-defined technology of Chapters 2- 4 with the requirements identified in Chapter

5.1 with the higher goal of designing a software-defined system from the ground up.

Figure 9 depicts an overview of the high-level steps required for the design of the

software-defined system. This design procedure is the most appropriate approach based

on the personal understanding of the software-defined technology in general and the

interconnections between the relevant tools. Step 1 is the provisioning of the

infrastructure, therefore a suitable tool should be selected. In step 2, a dynamic platform

that offers SDN features is selected, while the choice of an adequate infrastructure

configuration tool takes place in step 3. Afterwards, in step 4 the entire infrastructure

layer should be checked whether it offers support of the SDN / NFV technologies, and

step 5 is the selection of a SDN controller for the management and configuration of the

entire network of the system. A more detailed description of the design steps and the

tool selection can be found in the following sections.

38

Figure 9: Design steps for the software-defined system

The realization of the infrastructure and the network layer of a generic software-defined

system is shown in Figure 10. This illustration is focused on the fundamental

components and concepts of a software-defined system and the interactions between

them, and it is highly based on the design steps from Figure 9. The arrows in Figure 10
depict the communication between the components, which is performed mainly by using

APIs.

Figure 10: Realization of the infrastructure (a) and network (b) layer of a generic software-defined system

The main components of the infrastructure layer are:

 Provisioning Tool: The user describes the desired infrastructure resources in the

definitions file that differ based on the selected tool, and the provisioning tool

translates these files via API calls into instructions for a dynamic platform that

sets up the requested resources.

39

 Dynamic Platform: The main building block of the infrastructure. It is responsible

for setting up the computing resources of the system. The dynamic platform

should be compatible with a declarative provisioning tool in order to achieve

central control and management of the system. The dynamic platform can be a

cloud platform or a software tool that is able to provision computing resources.

 Infrastructure Resources: The main computing elements of the system where the

applications are deployed. They can be bare metal or virtual servers along with

clusters of containers.

 Configuration Tool: Configures and installs the required software/ applications on

the provisioned computing resources.

While the network layer is composed of:

 Provisioning Tool: The same provisioning tool as the infrastructure layer. In this

case, the user describes the capabilities of the network resources and is able to

group the computing resources into separate networks, which can be physical or

virtual.

 Dynamic Platform: The same dynamic platform as the infrastructure layer. It

should be able to create virtual and physical networks and equip them with the

necessary network resources.

 SDN Controller: The central “brain” of the network layer that controls, manages

and configures the network resources. The controller should be able to control

and configure physical and virtual network resources such as switches, and

should provide northbound APIs that communicate with the dynamic platform.

The idea is that the dynamic platform creates the networks and the controller

manages them.

 Network Resources: The main elements that provide the desired functionality of

the network layer. The typical example of network resources are the virtual and

hardware switches, which are responsible for forwarding data between the

networks. Other common network resources are firewalls, data diodes and load

balancers.

40

5.3 Selection of Tools

The selection of tools that are used in the designed system is mainly based on the list of

requirements of Chapter 5.1. Requirements with high level of importance are the main

factors in the selection process, while requirements with medium or low importance level

have lower priority in this procedure. The order of selection is based on the design steps

shown in Figure 9. A complete list of the selected tools can be found in Table 4.

Scope Tool Reasoning

Provisioning

Terraform

 Open source

 Supports multiple dynamic
platforms.

 The alternative options are
vendor specific solutions.

Dynamic Platform

Openstack (VMs)

Cobbler (Bare Metal)

 Open source

 Private cloud solution

 Extensive support by
Terraform

 Provides SDN functionality
(Neutron)

 Open source

 Supported by Terraform

 Alternatives are proprietary
solutions that do not offer
private functionality.

Configuration

Ansible

 Open source

 Agent-less deployment

 Fast and reliable

 Secure as it uses SSH to
push modules

 Supports dynamic
inventories

 Already used in Thales

SDN Controller

OpenDaylight

 Open source

 Support of wide variety of
southbound protocols,
including Openflow,
OVSDB, NETCONF

 Openstack compatible

Table 4: An overview of the selected tools

41

5.3.1 Provisioning Tool

Provisioning is the most important step for building a fully functional IT infrastructure.

Therefore, the choice of the provisioning tool is critical for the entire software-defined

system and should focus on offering scalability and maintainability to the system.

A comparison of the available provisioning tools is available at Table 1 in Section 2.3.3.

Terraform is the most suitable solution from the list, as it is an open source

(Requirement 3) and declarative solution (Requirement 1) that uses the HCL files to

specify the desired state of the infrastructure and then uses APIs to reach that state. In

addition, Terraform supports resources from multiple cloud providers simultaneously,

and is capable for supporting several custom in-house solutions. As a result, the system

has support for multiple dynamic platforms (e.g., Openstack, AWS, Azure, Google Cloud

Platform) within the same HCL file which offers a wide range of infrastructure resources

to build on, leading to more dynamic and scalable systems. Other provisioning tools are

closed source (e.g., CloudFormation, Cloud Deployment Manager, Azure Manager) and

vendor specific solutions (e.g., Openstack Heat), which automatically bonds the system

to a specific platform and limits the number of available building resources.

5.3.2 Dynamic Platform

The dynamic platform offers the programmable resources that are used by the

provisioning tool to set up the IT infrastructure. The most suitable platform for this

specific use case is Openstack [49]. Public cloud platforms such as AWS, Google Cloud

and Azure cannot serve the requirements of this particular use case, as the new

software-defined system should be an open source private solution that could meet the

privacy and security aspects of a mission critical organization such as Thales, and is

located and managed locally by the engineers of the organization. The alternative cloud

solutions can provide the usage and configuration of private servers that are specifically

assigned to a customer by the vendor, however these servers are still located and

managed at the central datacenters of the vendor.

Openstack is an open source software that can create private clouds that are managed

and deployed locally. It is a free platform that is backed up by several large enterprises,

and has strong community support that is constantly working on updates and new

releases. Openstack can manage the pools of computing, storage and networking

resources via the Openstack API or the Horizon dashboard [50]. Openstack is highly

modular, as it can run with a minimum set of core services or function with a variety of

additional services. It also supports communication with a wide range of external cloud

42

providers such as AWS and Google Cloud Engine. In addition, it supports an extensive

list of hypervisors, such as KVM, Xen and VMware ESXi, making it optimal for a

heterogeneous IT infrastructure. Moreover, most of the Openstack resources are

supported by Terraform, which is an important reason that led to the choice of

Openstack. Another significant argument for selecting Openstack, is the support of the

SDN technology. Neutron [51] is the SDN Openstack project that provides networking-

as-a-service (NaaS) in virtual compute environments. Furthermore, Openstack Magnum

[52] is an Openstack project that enables the use of container orchestrators such as

Kubernetes1 [53] in Openstack. With Magnum, the user can create entire clusters of

containers that are managed by one of the supported orchestrators.

The new software-defined system, in addition to VMs and containers, should also be

capable of provisioning bare metal machines (Requirement 8). Openstack supports bare

metal provisioning with an integrated service, called Ironic [54]. However, the Ironic

features are not supported by the current release of Terraform. For this reason, another

solution is required for provisioning bare metal machines. Cobbler [55] was selected as

the most suitable tool to fulfill that role. Cobbler is an open source software that

automates the provisioning process of multiple bare metal servers with the use of

services such as DHCP, TFTP and DNS. The PXE interface (Preboot Execution

Environment) is used to provision the bare metal servers from a central administration

point. Several main features of Cobbler, such as the creation and deletion of bare metal

serves, are currently supported by Terraform, which is the distinctive factor compared to

other bare metal provisioning tools such as Foreman.

5.3.3 Configuration Tool

Configuration tools are used to configure and manage the already provisioned resources

with the required dependencies and settings. A comparison of the most used

configuration tools is available at Table 2 in Section 2.4.5, and Ansible is the preferred

configuration software for this specific use case.

Ansible was selected over Chef, Puppet and Saltstack as it offers agent-less deployment

which adds speed and reliability to the system, compared to the master-agent

deployment model of Chef and Puppet. In addition, the agent-less model eliminates

points of failure and several performance problems in the system, and the use of SSH

for the communication between the nodes improves the overall security of the

infrastructure. Moreover, Ansible offers a fast and easy installation and overall is a fairly

easy solution for new users. Ansible can also support the dynamic nature of Cobbler and

Openstack, where new hosts are constantly spinning up and shutting down in response

to the demands of the systems. Ansible can serve that demand with the use of dynamic

1. Kubernetes is an open source software that automates, scales and manages the deployment of

containerized applications. Kubernetes is mainly used with Docker to build and manage containers.

43

inventories [56], which come into the form of scripts that can be added to Cobbler and

Openstack directories to keep track of the infrastructure.

Thales has already been using Ansible for configuring servers and fulfills the

requirements of their current infrastructure adequately. The choice of Ansible makes it

unnecessary for Thales to migrate to another configuration software, saving the required

additional time and effort for learning a new technology.

5.3.4 SDN Support and Controller

A programmable network infrastructure is also crucial for the proper functionality of the

new software-defined system. A virtualized network layer is more adjustable to changes

and can offer higher levels of scalability when compared to the traditional physical

networks, which are highly dependent on the hardware. Therefore, the entire

infrastructure layer should enable the use of SDN technology.

As it is mentioned in Section 5.3.1, Openstack Neutron offers several SDN features to

the system. Neutron can create, delete and configure virtual networks and the

connections between them. In addition, Neutron can virtualize some particular network

components, such as switches, gateways, routers, firewalls and DNS. Openstack uses

the Open vSwitch technology to virtualize the network layer. Open vSwitch creates the

virtual switches that connect the virtual machines to each other, forming virtual networks.

Basically, the virtual machines connect to virtual ports on virtual bridges on top of a

virtual switch. Furthermore, most of the networking features of Openstack are also

supported by Terraform, offering the desired declarative approach (Requirement 2) to

the network layer.

Openstack supports the connection of a virtual network to an external physical network.

However, it is unable by default to manage and configure the physical networks. The

configuration and management of the physical switches requires the additional support

of a SDN controller. OpenDaylight (ODL) was selected among the available SDN

controllers. ODL is the only available SDN controller that provides supports for a wide

range of southbound protocols, such as Openflow, OVSDB and NETCONF. The

Openflow and OVSDB plugins enable ODL to manage both virtual and hardware

switches. In addition, ODL is compatible with Openstack, forming a complete solution for

the network layer that combines both the virtual and the physical networking

infrastructure into one functional system. Moreover, the open-source nature of ODL

fulfills the requirements for this case study (Requirement 3).

44

6 Infrastructure Design

The design of the software-defined system is a challenging process as it involves

several new technologies that are highly dependent on each other in order to produce a

fully functional system. The distinction of infrastructure layer and network layer facilitates

and simplifies the design process, as the tool selection has been performed to fulfill the

requirements at each layer. The design of the infrastructure layer is firstly described in

this chapter, since it is the basis for designing a functional software-defined network,

which is explained in Chapter 7.

6.1 Provisioning

The initial step towards the development of an IT infrastructure is the provisioning of the

required components and resources, such as VMs and bare metal machines. Terraform

is the selected provisioning tool and can represent a large variety of infrastructure

components with the form of Terraform resources. Terraform provisions the resources of

a dynamic platform, and a Terraform provider is used to interact with the APIs and

expose the resources from the corresponding dynamic platform. Terraform allows its

users to declare resources from different providers in the same or in different HCL files.

In this particular use case, the Openstack and Cobbler providers are used for

provisioning VMs and the bare metal machines, respectively. Openstack should be

installed on the entire data center of the organization, while Terraform and Cobbler

should be installed on the central control nodes for building the infrastructure.

6.1.1 Creating Virtual Machines

Terraform creates VMs [57] in Openstack by combining several resources from the

Openstack provider. The user has a wide variety of options for the configuration of an

VM instance in Openstack (Figure 11). Amongst others, the user is able to select:

 VM Name: Unique name that characterizes the VM instance.

 Image: Installed OS on the VM. The user can create several different images [59]

using a separate Terraform resource. The names of these images are later used

during the creation of the VMs. The configuration of an image includes:

 Name of the image

45

 OS URL: Url address of the preferred OS that Openstack downloads and

uses.

 Image Format: E.g., iso, qcow2, vhd, etc.

 Hypervisor: Type of hypervisor [60] that is used to create the VM. (e.g.,

qemu, vmware, xen, lxc)

 CPU Architecture of the VM : E.g., x86_64, arm, ppc65

 Flavor: Capabilities of the VM. The user can create several flavors [61] and based

on the configuration of the flavor, the user can define several types of nodes for

the system (e.g., central server nodes, console nodes, diskless nodes etc.). The

configuration of a flavor includes:

 Name of the flavor

 RAM: Size of the available RAM on the VM

 CPU: Number of virtual cores on the VM

 Disk Size: Capacity of the VM

 GPU: Number of virtual GPUs on the VM [62]

 I/O: Number of physical I/O that the VM can use[63].

 Network: Network where the VM is assigned to.

 Security Group: Group of network access rules that control the traffic types that

interact with an instance.

 Availability Zone [58]: Groups of compute hosts that are responsible for launching

the VM instances.

 Authentication Key Pair: Public keys that are used to access a created VM.

Figure 11: VM configuration model

More technical details are available in Appendix A.

46

6.1.2 Provisioning Bare Metal Machines

Terraform uses the Cobbler provider [64] to provision bare metal machines. Cobbler

performs provisioning by using the PXE standard to boot the machines over the network.

PXE [65] works with the Network Interface Card (NIC) of the machine by transforming it

to a boot device. The NIC of the client broadcasts a request to the DHCP server, which

responds with the IP address of the client, the address of the TFTP server and the

location of the boot files on the TFTP server. After receiving these data, the client

connects with the TFTP server in order to receive the boot image. The TFTP server

responds by sending the boot image and the client executes it. The boot image

searches by default the PXE configuration directory on the TFTP server, seeking the

boot configuration files. After finding the required files, the client downloads them and

loads them in order to start the installation. The DHCP and the TFTP services are both

managed by Cobbler, which is based on a specific set of objects for the provisioning

process. The basic Cobbler objects [66] are:

 Distribution: It basically describes the OS. It includes details about the kernel and

the initrd and some other kernel related data.

 Profile: It indicates a distribution, a kickstart file and occasionally repositories.

 System: It indicates the machine for provisioning. It uses profiles for configuring

the machine and holds information about IP and MAC addresses.

 Repository: It carries mirroring data for a yum or rsync repository.

 Image: It points to the file path where the OS is located. The image object is used

to replace the distribution object in case specific files cannot be divided into the

kernel and initrd categories.

Figure 12: Overview of the objects in Cobbler [66]

47

Figure 13: Bare Metal Configuration Model

Terraform uses the Cobbler provider to translate all the Cobbler objects to the

corresponding Terraform resources for provisioning bare metal machines (Figure 13).

The system [67] object is the main element during the configuration, as it determines the

desired machine for provisioning. The configuration of a system resource includes:

 Name of the system resource

 Profile: The name of the preferred profile for the provisioned machine. The user

can create several profiles [68] by using the respective Terraform resource. The

configuration of a Terraform profile resource includes:

 Name for the profile resource

 Name of the preferred distribution: Distributions [69] are a separate

Terraform resource. The configuration of the distribution includes:

 Name for the distribution

 OS Breed: E.g., Redhat, Fedora, CentOS, Ubuntu

 OS Version: E.g., trusty

 OS Architecture: E.g., i385, x86_64, ia64, etc.

 Kernel Path: Path in the filesystem that indicates the kernel files.

 Initrd Path: Path in the filesystem that indicates the initrd files.

 Path to the selected kickstart file

48

 Name of the repo resource: The user creates repos [70] with a separate

Terraform resource and declares the name of the preferred repo resource

during the configuration of the profile. The repo resource includes a name

for the resource and a url address for the yum or rsync mirror.

 Hostname: The hostname of the machine after provisioning.

 MAC address: The MAC address of the machine that is selected for provisioning.

 IP address: The preferred IP address of the machine after provisioning.

 Power options: Aspects regarding power management, such as the type, the user

and the password.

More technical details can be found in Appendix B.

6.1.3 Provisioning Containers

Magnum is the Openstack API service that enables the creation and management of

container clusters in Openstack. Magnum offers container orchestration engines (COE)

as first class resources in Openstack for the control and management of the clusters.

Openstack Heat is used by Magnum for orchestrating the OS image that contains

Docker and the selected COE, and runs that image on virtual machines or bare metal

machines in a cluster configuration. The preferred COE for this case study is

Kubernetes, as it has surged in popularity in the past several years and it is currently

one of the biggest open source communities (more than 58.000 star in GitHub [71]). The

descripted Magnum features are integrated in Terraform.

The configuration of a cluster [72] in Terraform is shown in Figure 14 and it includes:

 Name of the cluster

 Template: The name of the used template for the cluster. A template describes

the parameters of the cluster. The user can create several cluster templates [73]

using a separate resource. The template configuration consists:

 Name of the template

 COE: The name of the preferred orchestration engine for the cluster. The

supported COEs are Kubernetes, Docker Swarm and Apache Mesos.

 OS Image: The OS that is installed on the nodes of the cluster. The

supported images differ based on selected COE. Fedora-atomic and

CoreOS are the only available for Kubernetes cluster, while Fedora-atomic

and Ubuntu are the available images for Docker Swarm and Apache

Mesos, respectively.

49

 Master flavor: The capabilities of the master nodes in the cluster.

 Worker flavor: The capabilities of the worker nodes in the cluster.

 Network driver: Driver that performs networking between the nodes of the

cluster (e.g., flannel, calico).

 Server type: The type of the server of the cluster. The user can select

between virtual and bare metal servers, however Ironic, which is the bare

metal provisioning service of Openstack, is not supported by Terraform. As

a result, Magnum cannot create bare metal clusters using Terraform.

 DNS IP: IP address of the DNS server for the cluster.

 Labels: Important external features based on the selected COE (e.g.,

monitoring features, such as Prometheus with Grafana and dashboard

feature for Kubernetes).

 Master Nodes: Number of master nodes in the cluster

 Worker Nodes: Number of worker nodes in the cluster

 Keypair: Used for the secure communication between the cluster nodes (e.g., ssh

key pair).

Figure 14: Container cluster configuration model

More technical details can be found in Appendix C.

50

6.2 Configuration

The configuration of the provisioned resources is the next step towards the development

of a functional software-defined system. The automation of the configuration procedure

is performed with Ansible, which is installed on the central control nodes and can

configure and install software on the machines by pushing out small programs, called

modules. Once modules are installed, Ansible uses SSH to execute them and removes

them automatically after their execution.

In this specific case study, Ansible should manage virtual machines created with

Openstack and bare metal servers provisioned by Cobbler. As a result, there is a

fluctuation at the inventory of Ansible as new hosts are spinning up and shutting down in

response to the demands of the system. Ansible supports these options via a dynamic

external inventory system [56]. Ansible offers two different techniques for supporting

dynamic inventory: the inventory plugins and the inventory scripts. The inventory plugins

are a more recent solution and they use the latest updates of the Ansible’s core.

However, only Openstack has support for an inventory plugin and Cobbler should be

managed using the inventory scripts.

Ansible should be able to select hosts for configuration based on specific attributes such

as the OS distribution, the CPU architecture, network interfaces, etc. Ansible supports

this feature by using facts [74], which are basically system properties that are collected

by Ansible when it is executed on a machine. Facts can be collected into a file as output

for reporting the state of the system or they can be used into a playbook for making

runtime decisions.

More technical details on the configuration with Ansible are available in Appendix D.

6.3 Architecture Realization of the Infrastructure Layer

The purpose of this section is to map the described selected tools from the previous

chapters to the generic components described in Figure 10a and explain the

interconnections between them in order to realize the architecture of the infrastructure

layer. The architecture realization of the supported infrastructure layer is shown in Figure

15. This suggested architecture is supported by the current available features of the

selected tools. Terraform is the main provisioning tool, which uses the Openstack

provider to create VMs and the Cobbler provider to provision bare metal machines for

high-end applications that require real hardware.

51

Figure 15: Architecture realization of the supported infrastructure layer

Openstack has support to a wide variety of hypervisors, and KVM is illustrated as

default. Cobbler provisions the bare metal servers through the network using the PXE

standard. Ansible is used for the configuration and the installation of software on the

provisioned servers (VMs and bare metal).

The support of containerized applications is mandatory (Requirement 8), and

Kubernetes should be installed on the computing machines. There are two possible

ways to create a Kubernetes cluster, namely with Openstack Magnum and Ansible. With

the use of Openstack Magnum, the user can create Kubernetes clusters that are

deployed on both VMs and bare metal machines. However, the deployment on bare

metal machines is not available, as Ironic is not supported by Terraform in the current

release. The other solution for supporting Kubernetes is via Ansible, which should install

Kubernetes on the VMs and the bare metal machines, and then Kubernetes can be

instructed and configured via the Kubernetes provider in Terraform. The Ansible

52

approach is preferred, as it offers consistency on the configuration of the system while

one tool is used for the configuration of VMs and bare metal machines. In addition,

Ansible can install Kubernetes with a wide variety of network drivers, whereas Magnum

can only install Kubernetes with Calico or flannel as network drivers, which is quite

restrictive for a number of use cases.

Figure 16: Architecture realization of the future possibly improved infrastructure layer

Figure 16 depicts the future possibly improved architecture for the infrastructure layer. In

this architecture, Openstack is responsible for both the provisioning of VMs and bare

metal machines. Cobbler is replaced by Ironic, which is the Openstack service for

provisioning bare metal machines. The Ironic features are not supported by the current

release of Terraform, however the Terraform community is working on improvements

and releases a new version of the Openstack provider almost once per month. Based on

the rate of releases, the integration of Ironic into the Openstack provider of Terraform is

highly possible in the upcoming future. The creation of VMs follows the same steps as in

Figure 15, while Ansible is still used for the configuration of the provisioned machines.

However, in this case, the Kubernetes cluster can be deployed both on bare metal and

VM servers by Openstack Magnum with the cooperation of Ironic for provisioning the

bare metal clusters.

53

7 Network Design

The creation of a programmable and scalable network infrastructure that is centrally

controlled, is essential for obtaining a complete software-defined system. The software-

defined network layer should be able to create virtual networks, offer connectivity among

them, create virtualized network functionalities (e.g., firewalls) and offer connectivity

between the created virtual networks and the current physical ones. Neutron is the

integrated Openstack service that offers networking as a service, and most of the

networking features of Neutron are supported by Terraform.

7.1 Creating virtual networks

Figure 17: Configuration models of the network components

The configuration models for the supported network components of the Openstack

provider are displayed in Figure 17. The user should first create and configure a network

in Openstack. The configuration of an Openstack network [75] with Terraform includes:

 Name: A unique name for the created network.

 Shared: The administrator can define whether the network is accessible by any

other users/ tenants.

 External: The user specifies whether the network has external routing facility.

54

 Physical network (Optional): The IP of the physical network that this network

resource would be mapped to. These networks are called provider networks,

while the default Openstack networks that are not mapped to a physical network

are called tenant networks.

 Network type: E.g., VLAN, Flat, GRE

Subnetworks [76] can be created on top of a network with a different Terraform

resource. The subnetworks host the compute instances (e.g., VMs) of the infrastructure.

The configuration model of a subnetwork resource includes:

 Name: A unique name for the subnetwork.

 Parent network ID: The ID of the network that this subnetwork belongs to.

 Cidr: The IP range of this subnetwork based on the IP version.

 IP version: E.g., IPv4 or IPv6

 Gateway IP: The IP address of the default gateway used by the instances of this

network.

 DHCP: The user can determine whether the DHCP name server is enabled on

this subnetwork.

Instances in the same network have by default layer 2 connectivity to each other. In

case it is necessary to have layer 3 connectivity between instances connected to

different networks, a virtual router should be created. The Openstack provider offers a

separate resource for creating virtual routers [77]. The subnetworks are connected to a

virtual router by using the router interfaces [78], which are a separate Terraform

resource. Two router interface resources should be created to connect two subnetworks

with one router. The first interface resource would connect the router with the first

subnetwork and the second interface would connect the other subnetwork with the same

router. The subnetworks are connected to the same router, which connects them to

each other. Neutron uses the L2 and the L3 agents to perform the required networking

and agents are facilitated by the Open vSwitch technology. The configuration of a router

interface includes the IDs of the router and the subnetwork that should be connected.

The L3 agent, except the virtual router, also offers a service called floating IP [79].

Floating IPs are assigned to instances, making them accessible from external public

networks. As a result, an Openstack instance can have a private IP and a floating IP.

The private IP is mostly used internally to grant access between the instances in a

tenant network, while the floating IP is used to access the instance from public networks.

More technical details are available in Appendix E.

55

7.2 Securing virtual networks

Openstack uses a collection of network access rules to limit the types of traffic that can

interact with an instance. This collection of rules is called security group. An instance

can have one or more assigned security groups. The rules in a security group control the

traffic that is allowed to an instance and if an incoming traffic does not match with a rule

from the group, is denied by default.

Figure 18: Security group configuration model

Figure 18 illustrates the configuration options during the creation of a security group with

Terraform. Terraform uses two different resources in order to create security groups and

rules. The configuration of a security groups [81] includes a unique name for the security

group and the ID of the tenant/ user that can use this security group. The configuration

of a security group rule [82] is more complex, and consists of:

 Direction: The type of the traffic (e.g., ingress or egress)

 Layer 3 protocol: E.g., IPv4 or IPv6

 Layer 4 protocol: E.g., TCP, UDP, ICMP

 Max port range: The allowed maximum port range.

 Min port range: The allowed minimum port range.

 Security group ID: The ID of the security group that this rule will be part of.

56

Figure 19: FWaaS and security group protection [83]

More technical details about security groups can be found in Appendix F.

Openstack can also secure layer 3 networking by deploying Firewalls-as-a-Service

(FWaaS). Firewalls are deployed on the virtual routers, while security groups operate on

instance level (Figure 19). The main elements of an Openstack firewall are the rules and

the policies, which are basically an ordered collection of rules. Firewalls operate

differently based on the used driver. For instance, a firewall that uses IP tables as a

driver, would use IP table rules, while an Open vSwitch driver implements firewalls using

flow entries in the flow tables.

Figure 20: FWaaS configuration model and related concepts

57

Firewalls, policies and rules are created using unique separate Terraform resources,

whose configuration is depicted in Figure 20. The configuration of a firewall [84] consists

of:

 Name: A unique name for the firewall resource.

 Policy ID: The ID of the used policy resource. The user can create several

policies [85] using the corresponding Terraform resource. A policy resource

consists of:

 Name: A unique name for the policy resource.

 Rules: An array of one or more firewall rules that characterize the policy.

Rules are created using a different Terraform resource, whose

configuration include:

 Name: A unique name for the rule resource.

 Action: The user defines the action in case of a firewall match (e.g.,

allow or deny)

 Protocol: The protocol on which the firewall functions (e.g., TCP,

UDP, ICMP)

 IP version: E.g., IPv4 or IPv6

 Source IP: The source IP address on which the firewall rule

operates.

 Destination IP: The destination IP address on which the firewall rule

operates.

 Source port: The source port on which the firewall rule operates.

 Destination port: The destination port on which the firewall rule

operates.

 Enabled: The user can define whether the firewall is enabled or

disabled.

 Associated Routers: A list of routers that this firewall should be deployed on.

More technical details about the configuration of FWaaS can be found in Appendix G.

7.3 Connectivity with physical networks

In order to form a functional network layer that supports a wide variety of use cases, it is

necessary to be able to connect the virtual network infrastructure created by Neutron

with the current physical networks (Requirement 14).

58

The implementation of a SDN controller is required for the configuration and

management of both the virtual and the physical network infrastructure. The virtual

network infrastructure consists of virtual machines and containers connected to each

other via virtual switches such as Open vSwitch, while the physical infrastructure

contains bare metal servers that are connected via real hardware switches such as ToR

(Top of the Rack) switches. Opendaylight is the selected SDN controller, as it offers a

wide range of southbound protocols, including Openflow and OVSDB, and it is highly

compatible with Openstack. The selected network switches (virtual and physical) should

support the VXLAN technology and the OVSDB and Openflow protocols in order to

provide the required connectivity and be properly controlled by the ODL controller.

7.3.1 VXLAN and VTEPs

The connectivity between virtual and physical networks is provided by using VXLAN

technology. VXLAN [87] offers scalability, extensibility and flexibility, and provides multi-

tenancy across the data centers by extending the Layer - 2 connectivity over Layer - 3

segments, making it a suitable solution for cloud environments. VXLAN handles the high

scalability of the ever-expanding cloud systems by extending the 12-bit segment ID of

the simple VLAN technology to a 24-bit one, providing around 16 million IDs for

networking [88]. VXLAN uses VTEPs (VXLAN Tunnel Endpoint) to map end devices to

VXLAN and encapsulate and de-encapsulate VXLAN traffic. A VTEP can be either a

hardware VTEP (e.g., a ToR switch) or a software VTEP (e.g., OVS). A VXLAN tunnel

can be established between a hardware and a software VTEP.

7.3.2 OVSDB and Openflow support

The switches (virtual and physical) should support both the OVSDB and the Openflow

protocol to be correctly configured by the controller. The components of a physical

switch that supports Openflow and OVSDB can seen in Figure 21.

OVSDB is used for the configuration of the switch (e.g., configuration of bridges, ports,

tunnel interfaces). In an OVSDB enabled switch, there is always an OVSDB server,

which is controlled by the OVSDB client. The OVSDB client is deployed both on the

switches and the SDN controller. The server maintains an OVSDB database schema.

For the virtual switches (OVS), the schema is called OVS database schema, while for

the physical switches, the schema is called HWVTEP schema [89]. The schema stores

59

in several tables control and statistical details gathered by the OVSDB clients on the

switches and the SDN controller. The OVSDB client either on the controller or on the

switches, monitors the schema for modifications to this information and can add or

delete rows to the schema. This information provides a method through which the

switches and the SDN controller can exchange information [90]. For instance, the

physical switches capture MAC addresses of entities in the physical network and push

this information to the schema so that the SDN controller that is connected to that

physical switch can access the MAC addresses. The other way around, the SDN

controller can collect MAC addresses of entities from the virtual network and push these

data to the schema. As a result, the physical switches with connections to the SDN

controller can access the MAC addresses.

Figure 21: Components of a Openflow & OVSDB physical switch

In contrast, the Openflow protocol is used to control the forwarding pipeline of the switch

by managing the flow entries, which are match-action rules that dictate what action

needs to be taken when a specific match is encountered. An Openflow switch is

equipped with an Openflow agent that creates the connections to the SDN controller.

The Openflow agent speaks with the database on the switch to get information about the

configuration of the switch.

60

The architecture of an OVS (Figure 22) is different from the architecture of a physical

switch. The OVSDB server remains the same, but the OVSDB client and the Openflow

agent are integrated into an entity called ovs-vswitchd, which is basically a daemon that

implements the virtual switch.

Figure 22: Components of an Open vSwitch [91]

7.3.3 L2 Gateways

Openstack Neutron needs to have the L2 Gateway [92] plugin installed in order to

support the connectivity with physical networks. The L2 gateway plugin is a relatively

new service that basically bridges the virtual VXLAN tenant networks created by Neutron

to physical VXLAN network via the OVSDB Hardware VTEP enabled physical switch.

The L2 Gateway solution has two main components [93]:

 L2GW service plugin: It is deployed on the control node of the system. It is

responsible for notifying the L2GW agent and normal L2 OVS agents running on

compute hosts about changes in the network and share information about the

VTEP IPs between them.

 L2GW agent: It is deployed on a network node. The main responsibility of this

agent is to connect the OVSDB server running on the hardware switch and

change the database based on information received from the L2GW service

61

plugin, so it basically acts as an ovsdb-client. The control node and the network

node could be the same machine.

7.3.4 Configuring the connections

Opendaylight should have an overview of all of the devices that are part of the network.

For that purpose, ODL uses Transport Zones which are logical groups of all the devices

that are part of the network. In the Transport Zone format, the devices are called Tunnel

Endpoints (TEPs). The user should declare all the physical switches in the Transport

Zone by passing the ID of the device. An example of Transport Zone JSON file and

more technical details can be found in Appendix H. The TEPs of the virtual switches are

automatically passed to Opendaylight by Neutron and they should not be declared into

the Transport Zone file.

The next step is the configuration of the ToR switches, which is highly dependent on the

vendor of the switch. However, the main configuration steps are almost the same,

namely the configuration of the interfaces on the switch that connect to the bare metal

machines and the configuration of the connection with the manager software

(Opendaylight in our case).

The following configuration step is the creation [94] of a L2 Gateway on the ToR switch.

The user should first create a provider VLAN network that has external routing facility

and is accessible by users/ tenants. The next step is the creation of a subnetwork on top

of this network. The IP range of this subnetwork should include the IP addresses of the

bare metal machines that consists the physical network.

After the creation of the Opestack subnetwork, the user should create a L2 gateway and

relate it to the corresponding physical TOR device by using the specific commands. The

commands to do this are represented in Appendix H.

The final step is the connection of the L2 Gateway to a provider Openstack network,

which would result in the creation of the VXLAN tunnels. The command to implement

this can be found in Appendix H. If there are several ToR switches, the user can create

several L2Gateway connections to each of the switches. The L2Gateway support is a

relatively new feature of Openstack Neutron and it is not supported by the current

version of Terraform.

62

7.4 Architecture Realization of the Network Layer

A suggested architecture realization of the network infrastructure is depicted in Figure

23. This architecture maps the components of the generic software-defined network

layer from Figure 10b to the specific products and features described in Chapter 7. For

the integration of Opendaylight with Openstack, the networking-odl plug-in has to be

installed on Openstack. This plug-in passes the Openstack network configuration to the

Opendaylight controller and basically offloads all the networking tasks of Neutron to

Opendaylight. REST APIs are used for the communication between Openstack and

Opendaylight. Opendaylight uses NetVirt [95] which is a network virtualization solution

for supporting the Neutron features of Openstack.

Figure 23: Architecture realization of the network layer

63

The connectivity between the virtual networks and the physical networks is provided by

deploying VXLAN tunnels between the virtual and the hardware switches. In order to

achieve that VXLAN connectivity, Neutron deploys a L2GW on the physical switches.

Opendaylight configures the OVS switches (SW VTEP) created by Openstack-Neutron

and the physical ToR switches (HW VTEP) using the Openflow and OVSDB protocols.

The physical switches should support Openflow, OVSDB and VXLAN encapsulation.

7.5 Traffic flow within the network

In order to have a better understanding of the network infrastructure, the traffic flows

between different components of the network are displayed and explained. A simple

network topology was defined for that purpose. This topology consists of a control node,

a network node, two compute nodes, two bare metal servers and an external component

(e.g., a radar for the Thales case). A hardware switch that supports Openflow, OVSDB

and VXLAN encapsulation, provides the required connectivity between all these

components.

The OpenDaylight controller is deployed on the control node, while the networking

features of Openstack, such as the L3 router, are installed on the network node. The

control, the network and the two compute nodes have Open vSwitch installed, whereas

none of the two bare metal servers support Open vSwitch and they form an external

VXLAN network. Each compute node hosts two virtual machines (VM1 and VM2 on

compute node 1 and VM3 and VM4 on compute node 2 accordingly). VM1, VM2 and

VM3 are in the same Openstack tenant VXLAN network (Network 1). Network 2 is a

provider VXLAN network that consists of the external bare metal servers 1&2. VM2 is

also part of Network 2. The external component (e.g., the radar) forms a flat provider

network (Network 3).

Name Type Components

Network 1

VXLAN tenant

VM1, VM2, VM3

Network 2

VXLAN provider

Bare Metal 1 &2, VM4

Network 3

Flat provider

External Component

Table 5: Networks of the topology

64

Four traffic scenarios were defined. The first three scenarios use the default functionality

of Neutron for managing the L2 and L3 traffic and the functionality of the Opendaylight

controller is not used. Scenario 1 shows the traffic that flows between the virtual

machines, while scenario 2 depicts the traffic between the bare metal servers and the

virtual machines. Scenario 3 examines the exchanged traffic between the radar and both

the virtual and the bare metal machines. In Scenario 4, the Opendaylight controller is

used to manage entirely the virtual and the hardware switches. This scenario leverages

the functionality of the SDN controller to forward traffic between different networks.

Scenario 1: Traffic between virtual machines

In this scenario VM1 exchanges data with VM2. These two VMs are in the same network

and they share the same host. As a result, the traffic will be forwarded by the virtual

switch in the compute node 1. The traffic flow between VM2 and VM3 is depicted with

the green line. These VMs are still in the same network but they are deployed on

different hosts. Therefore, the exchanged data should pass also through the physical

switch that connects the two compute nodes. On the other hand, the traffic between

VM3 and VM4 has also to pass through the L3 router on the network node in order to

arrive to its destination. This happens because VM3 and VM4 are in different networks

(VM3 in Network 1 and VM4 in network 4).

Figure 24: Traffic flows for scenario 1

65

Scenario 2: Traffic between bare metal machines and virtual machines

The two bare metal servers are in the same VXLAN provider network (Network 2) and

they can directly communicate to each other through the physical switch. VM4 is also a

part of Network 2, so it can exchange traffic with the bare metal servers (e.g. Bare Metal

1 in Figure 25) through the Open vSwitch and the physical switch. L3 router is not used

in this case, as the two components are in the same network. The VXLAN provider

network has connectivity with the Openstack components via the L2 GW that is

assigned on the physical switch. However, that does not apply for the traffic flow

between VM1 and bare metal 2. These components are in two separate networks, thus

the L3 router on the network node is used for forwarding the traffic to the proper

destination.

Figure 25: Traffic flow for scenario 2

Scenario 3: Traffic with an external component

The external component (e.g., a radar) is in a separate flat provider network (Network 3).

As a result, all the traffic that is exchanged between the radar and the other components

of this topology should be directed to the L3 router in order to be properly forwarded.

66

Figure 26: Traffic flows for scenario 3

Scenario 4: Traffic managed by Opendaylight

The L2 and L3 forwarding is managed entirely by the Opendaylight controller in this

scenario. This eliminates the need for the Neutron L3 agent for routing. The controller

uses Openflow and OVSDB to configure the switches to route the incoming IPv4

packets. IPv6 packets are not supported [96]. As a result, the L3 forwarding is performed

on the switches and not on the network node in which the Neutron L3 agent is deployed.

Floating IPs are also supported by Opendaylight driver, however, the FWaaS feature is

not currently supported.

As it is shown in Figure 27, traffic between different networks is not forwarded to the

Neutron L3 agent anymore. Instead the switches take care of routing packets between

instances that are part of separate networks.

67

Figure 27: Traffic flows for scenario 4

68

8 Physical Architecture of the Design

In this chapter the physical architectures of the proposed designs are described. The

main physical components of the system in both cases are a controller node, a network

node, the computing nodes which are divided into the virtualization and the bare metal

nodes, and a physical switch that provides the required connectivity between the nodes.

The functionality of the network node can be integrated into the controller node, however

for redundancy reasons, it is recommended to have them separated. The minimum

hardware requirements for the nodes of the system can be found in Appendix I.

8.1 Supported design

Figure 28: Physical Architecture of the current design

Figure 28 depicts the physical architecture of the supported design (Figure 15). The

controller node in the current design hosts the following software components:

 The main management features of the Openstack platform, such as the compute

management service, the image management service and the web user interface

(Horizon).

 Open vSwitch agent that comes with the installation of Openstack, and is also

deployed on the network and virtualization nodes.

69

 L2-GW service plug-in that speaks with the L2-GW agent on the network node.

 Networking-odl plug-in that passes the Openstack network configuration into

Opendaylight controller

 OpenDaylight controller that has NetVirt installed.

 Ansible for configuring the compute nodes and installing Kubernetes on them.

 Cobbler for the provisioning of the bare metal computing nodes.

 Terraform for writing the HCL files that set up the resources of the infrastructure.

The networking service (Neutron) of Openstack is installed on the network node.

Neutron installs the following software on the network node:

 Open vSwitch agent

 L3 agent that basically creates the virtual routers in the system and enables L3

connectivity between nodes of different virtual networks. However the

functionality of the L3 agent is replaced by the ODL controller

 FWaaS agent that deploys virtual firewalls on the virtual routers.

 L2-GW agent that is basically an ovsdb client that speaks with the ovsdb server

on the hardware switch.

 DHCP agent that assigns IP addresses to the components of a virtual network

Virtualization nodes are compute nodes that are responsible for hosting virtual

machines. Openstack compute services and the selected hypervisor (e.g., KVM) are

deployed on the compute nodes. Openstack deploys virtual machines on the

virtualization nodes and Kubernetes is deployed on them by Ansible.

In contrast, bare metal nodes are computing nodes that are used as pure bare metal

solution and do not run virtual machines. Ansible is used to deploy Kubernetes on the

bare metal nodes and configure the VLAN interfaces. The created containers run directly

on the bare metal machine. The L2-GW is used to provide connectivity between the bare

metal nodes and the virtual networks created by Openstack.

8.2 Possibly improved design

Figure 29 shows the physical architecture of the possibly improved design (Figure 16).

In this design, the controller node hosts the same Openstack services as the current

design with some additional software:

 Magnum that creates Kubernetes clusters on the compute nodes.

 Heat that is used by Magnum to deploy the Kubernetes clusters.

70

 Ironic that provisions the bare metal computing nodes. Cobbler is not installed on

the controller node in this design.

Figure 29: Physical architecture of the possibly improved design

The network node and the virtualization nodes host almost the same components as the

current design with the exception of the L2-GW agent, which is not required in this

design. Kubernetes cluster in this case are created by Magnum and Ansible is only used

for some additional configuration.

The bare metal nodes in this design have the Openstack compute (Hypervisor) and

networking services (Open vSwitch) installed on them. The installation of Open vSwitch

on the bare metal nodes, integrates them with the rest of the Openstack networks

making the L2-GW unnecessary. Kubernetes is installed on these nodes by using

Magnum in combination with Ironic, which installs by default the required Openstack

components on these nodes.

71

9 Validation

This chapter describes the validation process for the designs of this research, which is

based on the expert opinion validation method [3]. Several interviews were conducted in

order to gain the opinion of the experts on the proposed design. The validation approach

and the validation results are presented in this chapter.

9.1 Validation approach

The validation of the design follows a qualitative approach, which is the most suitable

validation technique for this specific research project, as the rest of the validation

techniques [3] are not applicable for this project. Real-world testing of this design was

impossible as real-world circumstances could not be reached due to the restrictions of

the projects of a mission critical organization. For instance, Thales builds and tests the

IT infrastructure on real-world environment such as ships, making real-world testing

infeasible in the scope of a Master thesis project. In addition, using this design for

solving a real-world problem for a mission critical organization requires additional

requirements, which are derived by the needs of their customers and are strictly

restricted to specific personnel within the organization.

Testing the design in a minimum testing environment and comparing it with a current

system is not possible either. Setting up a minimum version of this design requires

specific hardware, such as several bare metal machines and specialized physical

switches. The lack of this specialized hardware in combination with time limitations

makes this validation method impractical for this design. Furthermore, comparing the

design with an existing system of a critical mission organization in regards to some

quantitative aspects such as performance is practically impossible. For instance, in our

case study, Thales has a wide variety of systems for each use case and each system

uses different technology that differs highly from the proposed design. As a result, there

is no direct match to an existing Thales system for proper comparison.

The qualitative validation approach is based on a series of semi-structured interviews.

Seven IT experts in four relevant IT fields took part in the interviewing process. These

four areas of expertise are: Cloud Architecture, Infrastructure & Software Architecture,

Systems Design and Networking .The working experience of the interviewees varies and

has an average of 20 years. The majority of the participants (5 out of 7) have been

working for Thales for several years, providing useful insight into the Thales projects and

72

systems, while two participants combine plethora of external knowledge with the Thales

internal insight.

Interviewees Company Profession Experience in IT

Interviewee 1 Thales (external) Cloud Architect ~40
Interviewee 2 Thales System Engineer ~20
Interviewee 3 Thales Software Architect ~20
Interviewee 4 Thales Infrastructure Architect 30
Interviewee 5 Thales Cloud Architect 22
Interviewee 6 Thales Systems Architect ~30
Interviewee 7 Thales Network Engineer 5

Table 6: List of experts with their experience in years

The interviews were performed face-to-face with the participants and the duration of

each interview was approximately one hour. The participants’ responses were archived

using written notes. The notes were analyzed afterwards and were formally documented

in shorts reports. The validation interview and the resulting interview reports are

available in Appendix J and Appendix K respectively.

The interview consisted of ten semi-structure questions focusing on several major

quality characteristics such as functionality, performance, modifiability, reusability,

traceability, learnability, maturity and potential costs. These aspects are derived from the

ISO 25010 [98] standard, which is the main standard for evaluating the quality of a

software product. Before conducting each interview, a short description of the software-

defined technology along with the proposed design was sent to each participant

approximately two weeks in advance. The interviewees were able to ask questions

regarding the design and the used technology during that two weeks period and also

during the first ten minutes of the interview.

9.2 Results

The results gathered from the seven conducted interviews are presented in this chapter.

The results are categorized into nine sections based on the topic of each interview

question, discussing respectively the proposed current and future infrastructure layer,

the proposed network layer, performance, scalability, upgradability, reusability,

traceability, and the maturity of the software-defined technology.

73

9.2.1 Current and future proposed design of the infrastructure layer

All experts agree that both designs conceptually manage to meet the defined generic

requirements. They both provide VMs, bare metal machines and containers in one

system. However, the majority of the interviewees believe that Openstack is a complex

and heavy platform that adds another layer of abstraction, but a few experts

characterized it as a reasonable solution for an organization that searches for a private

cloud solution.

Regarding the current proposed design, some experts referred to Cobbler as a

functional solution for provisioning bare metal machines, but they would rather have a

more modern alternative solution. That is the main reason that convinced most of the

participants to select the future design as an improved solution that offers one dynamic

platform for provisioning and controlling all infrastructure resources. Using only one tool

for provisioning reduces the complexity of the system by reducing the number of

software interfaces between the components. Fewer interfaces lead to a system that

requires less effort for development and debugging. However, the advantage of this

solution is also its main downside according to one of the experts. Controlling everything

with one tool (Openstack in this case) creates high dependence on this selected

technology. Solutions that focus entirely on one open-source tool, tend to include high

risk levels. The selection of open-source tooling can be crucial for the organization in

case the selected tool becomes obsolete and eventually is not supported anymore.

According to the experts, a configuration management tool, such as Ansible, is required

in this design in order to push updates and patches to the system, however they believe

that this design is a temporary solution for the problem. The long term solution should be

an immutable system that is self-healed and patched. Moreover, some interviewees

claimed that the future design should be based entirely on containers and microservices

that would completely replace virtual machines. On the other hand, there are experts

who believe that virtual machines would be still needed in the future for running legacy

applications that require high levels of security.

9.2.2 Design of the network layer

According to the experts, the network infrastructure meets in principle the requirements

that were set. The SDN controller provides control over physical and virtual switches

offering connectivity between physical and virtual networks. In addition, the network

administrators are able to control the traffic within the network via the northbound REST

API by writing their own applications and scripts, making the entire network

74

infrastructure programmable. The supported security features such as the virtual

firewalls and security groups are also useful additions of these design. However, one

expert mentioned that learning and using this new network design would be a challenge

for the engineers as it requires a completely different mindset from the currently used

network layer. This network design would be solid and useful only if the engineers

change their way of designing and building the networks.

Some experts expressed their concern about Openstack regarding its complexity and

size, which indirectly affects the choice of the SDN controller. The experts described

Opendaylight as a reasonable choice as it is highly compatible with Openstack.

However, in case Openstack is replaced, the selection of the SDN controller might also

have to change. In addition, a few experts referred to Kubernetes and its interaction with

the SDN controllers. They commented that it would be handy in future to have

Kubernetes controlling and managing both the physical and virtual switches via the

northbound API of the controller.

The majority of the experts believe that this network design still misses some important

specialized network requirements in order to be used by Thales in production. One of

these requirements is the efficient support of multicast traffic between the nodes of the

network, which is not addressed in this research. Furthermore, one participant

addressed the compatibility of this design software-defined design with some specialized

in-house appliances such as hardware firewalls and dedicated proxy servers. The same

expert is also skeptical whether Thales needs the large virtual networks offered by

VXLAN and he mentions that additional research is required on the VXLAN technology

in order to identify the exact benefits that it offers.

9.2.3 Performance

All experts mentioned that real-time testing is required to acquire a clear overview of the

performance of this design. The majority of the interviewees believe that in principle the

performance of the network layer should not cause performance issues and they cannot

spot any potential bottlenecks. However, experimentation and testing with the described

specialized OVSDB hardware switches is required to determine their exact failover time

and latency. According to some experts, the virtual switches offer decent performance

levels, which in some cases can be even higher than the performance of the currently

used hardware.

Potential performance issues might arise at the infrastructure layer. This design is based

on the virtualization technology, which by default adds some performance penalties due

to the additional abstraction layer. In addition, the performance of this design might be

75

jeopardized by the high complexity that is introduced by Openstack and the big number

of software interfaces that it creates. All these software interfaces should function

concurrently on a regular basis, which might increase the start-up times in case of an

error. Overall, the experts evaluated the performance as a crucial factor when deciding

whether a theoretical design should be implemented or not and actual testing is

necessary for determining the efficiency of a system.

9.2.4 Scalability and Upgradability

Most experts mentioned that in principle this design is designed to be highly scalable.

Terraform offers an overview of the entire infrastructure and is able to discover if it is up

to date. Scalability is also improved with Openstack, which is able to manage, scale and

upgrade the virtual part of the design. One interesting comment made from some

interviewees is that this design can easily scale up but it would be challenging to scale it

down. Scaling up requires a large IT infrastructure for provisioning the resources that is

mostly found in big data centers. This design cannot scale down easily due to

Openstack, which requires at least three to four servers to run properly. Another expert

mentioned that the scalability of this design is still manually enforced by the user by

changing values into he configuration files, and it is not a fully dynamic solution yet.

The upgradability of this design is also at the desired levels according to the majority of

the interviewees. The used declarative tools such as Ansible, Terraform and

Kubernetes, push updates and patches whenever it is required. This new system is

easier to update compared to the old one where everything has to be reinstalled

whenever a new update is required. Nevertheless, one interviewee expressed his

concerns about the upgradability of this design. He believes that updating resources in

this design would be a challenge for the engineers as they would have to deal with all

the dependencies between the involved software interfaces. Updating one component of

the infrastructure would require updating several other dependent components, which

requires time and effort.

9.2.5 Reusability

Most of the interviewees agreed that the proposed design can be used by many different

organizations that run a variety of applications. The usability of this design depends on

the size of the IT infrastructure of the organization. This design mostly refers to

organizations that want to create large cloud-based systems. As a result, this design

might not be the most suitable solution for Thales, where most of the projects are based

on small-sized systems. This design might be used within Thales only for setting up the

76

infrastructure of large battleships, which is relatively uncommon. Furthermore, some

interviewees mentioned that this design should be able to combine and manage all the

different security domains that exist between the different Thales projects, in order to be

used in production.

According to one expert, the reusability of this design is also dependent on the area of

expertise of the organization. Some components of this design might need to change

based on the use case. For instance, an organization that decided to follow a container-

based approach, will not need VMs and the entire part of this design that is responsible

for the creation of the VMs will be obsolete. On the other hand, an organization that

needs legacy applications will keep the part that creates VMs.

9.2.6 Traceability

Most of the interviewees mentioned during the interviews that system error tracking

system is better described with the term ‘observability’ than the term ‘traceability’.

Observability is not covered in this design and some additional software components

should be added in order to form a proper monitoring pipeline. The goal of this pipeline

would be to monitor hardware and software components as one entity and not as

individual components. The administrators would be able to get insights on the

configuration of the components and identify and fix the errors. However, some experts

believe that error tracking would be challenging even with the addition of the monitoring

pipeline. This design consists of several different software components that would

complicate the error tracking of this system.

All the experts agreed that the software-defined technology improves and facilitates the

documentation of the system. Code files are used for describing the system, making the

system self-explanatory. Comments are used on top of the code to better describe the

functionality of the infrastructure resources. In addition, the code files can be uploaded

to a version control system such as Git in order to keep track of the changes and roll

back to previous versions.

9.2.7 Learnability and Complexity

Overall, the interviewees agreed that the complexity of this design is relatively high due

to the big number of involved software components. Many experts also referred to

Openstack as a really complex system that requires time and effort for proper

understanding and operation.

77

During the discussion about the required learning curve, several different opinions were

expressed. Most experts agree that the learning curve would be high at the beginning

but it would decrease in the long term. For the short term, it would be challenging to

learn and use the system because it combines many different and difficult to grasp

technologies such as Kubernetes, Openstack and software-defined networking.

Furthermore, some interviewees mentioned that the initial effort would be high as the

proposed design requires a change of mindset from the engineers. The way of designing

and building the new system is completely different from the current way of thinking. The

new system requires better collaboration between the development and the operation

teams. The teams should consist of more DevOps people that have a good

understanding of the entire stack. Some experts believe that it would mostly challenge

the development teams because they will have to learn and understand the

infrastructure concepts, while some other interviewees claimed that the operation teams

would have to put more effort into learning and managing this new technology due to its

high complexity. Nevertheless, most interviewees concluded that on the long term this

technology would be easier to learn and use as the people would have become familiar

with it. However, some experts disagree by mentioning that the learning curve of this

technology would not decrease in the future because of the involved complexity, which

will cause problems during the testing and maintenance procedure, especially in the

network part.

According to some experts, the age of the engineers is another important factor that

affects the required learning curve. One expert commented that the required knowledge

would be significantly lower for a senior engineer compared to the learning curve of a

young inexperienced engineer. On the other hand, a few experts believe that the

younger the engineer the lower the required learning curve. Older people are used to

the old way of thinking that would be hard to change, whereas it is easier for the young

engineers to immediately embrace the new mentality that is introduced by the software-

defined technology.

9.2.8 Costs

In the discussion about the potential implementation costs of this design, several

conflicting viewpoints were expressed. Several interviewees believe that the

implementation costs would be even lower than the current values. This new technology

runs on COTS hardware, which is generally cheaper than the currently used specialized

hardware. In addition, the physical OVSDB-enabled switches that are used in this design

are relatively expensive at the moment, but their price will decrease in the future

following the generic rule of every brand new technology. Some experts also added that

78

the high levels of automation that are introduced by this new technology would save time

and effort from the engineers, resulting into reduced expenses. Furthermore, this

technology is mainly based on the virtualization technology, which is highly efficient with

the utilization of the available resources preventing over- and under-utilization of the

hardware.

On the other hand, some interviewees mentioned that the implementation of this design

would be unfeasible for Thales due to the high levels of complexity, which are mainly

caused by Openstack. These experts believe that this technology requires extensive

training of the engineers, which would be expensive. People should become experts on

this technology in order to understand and manage all the included software

components. Moreover, the licenses for the selected tools would be high-priced even

though the used technology is open source. Thales always selects the most supported

software version, especially in case the in-house knowledge is inadequate for managing

and debugging the selected tools. According to one expert, an actual business plan is

required in order to accurately estimate the potential implementation costs of this design

and decide whether this technology is actually worth implementing.

9.2.9 Maturity

All the interviewees agreed that the software-defined technology has already been used

in production by several organizations but it is still considered immature for the purposes

of Thales. Thales prefers to use technologies that are highly established in the market,

while software-defined technologies are relatively new and are still under improvement.

The majority of the interviewees found the infrastructure layer much more mature than

the network layer, which was characterized as a promising technology with plenty of

useful functionalities. As a conclusion, all the interviewees acknowledged the potential of

the software-defined technology and mentioned that follow-up research is required in

order to further investigate important aspects such as redundancy, safety, performance

and specialized features at the network and infrastructure layer.

9.3 Discussion of the results

The interviewees mentioned that the proposed designs of this research are really

complex systems, as they include numerous software interfaces resulting to a system

that is difficult to understand and debug. An approach for decreasing the overall

complexity of the system would focus on the design of several smaller sub-systems that

79

better define the responsibilities of each project of the organization. Applications with

different life cycles would be split into different sub-systems, and the system designer

would mainly focus on connecting all these sub-systems together rather than designing

one large system that fulfills the requirements of all the projects of the organization.

The interview results showed that the proposed designs can easily scale up to

thousands of servers; however it is challenging to scale down to small number of servers

with these designs. Openstack is the main reason for this, as it requires at least three

servers for the minimum installation. As a result, the potential of these designs can be

fully leveraged by organizations that have large cloud-based IT infrastructures, and

organizations with smaller IT infrastructures could better focus on solutions that use

microservices.

In addition, these designs can adequately serve the requirements of the current market

by providing support for virtual machines, bare metal machines and containers into one

system, however many experts think that the future infrastructure will probably be a fully

immutable system that will be mainly based on containerized applications. As a result,

the proposed design can be characterized as a medium term solution, and several

components of this design might change in future in order to achieve long term

functionality. The components that have higher chances to be replaced in future are

Openstack and Ansible, because Openstack is a complex and heavy system and

configuration management tools such as Ansible would be unnecessary in an

centralized immutable system.

Regarding the learning curve of this design, several different viewpoints were presented

and overall the experts agreed that the required learning curve is dependent on the

experience and the age of the engineers that are available in the organization. These

different viewpoints can be explained by the fact that the experts have different

backgrounds and different ages. Experts who are more familiar with the concepts of the

software-defined technology are confident that the learning curve would be relatively

low, while experts with less experience with the software-defined concepts were

skeptical about the required learning curve. Overall, it is clear that organizations with

employees that have a good understanding of the entire software development cycle

and are familiar with the software-defined techniques have better chances of

successfully building and maintaining a fully software-defined system, whereas

companies that lack this kind of expertise will face some challenges in the initial phase

of understanding and setting up the system.

Another remarkable point that can be derived from the results concerns the

implementation costs of these proposed designs. The experts opinions are again

controversial on this topic, which is justified by the fact that the costs are highly

80

dependent on the learning curve; the higher the learning curve the higher the costs. The

hardware costs for implementing these designs should be lower in the long term, as the

software-defined technology is based on COTS hardware, which is relatively cheap and

easy to find. Therefore, the hardware costs might be even lower than the current values

and the determinant factor during the calculation of the potential costs would be the in-

house expertise of the engineers.

From the results it can also be seen that the overall maturity of the software-defined

technology is considered inadequate for mission critical organizations such as Thales.

These organizations have several critical requirements that need support for specific

features and certain performance values must be reached before using the technology

into production level environments. That implies that further research and testing is

required on several fields and especially on performance, which is a crucial aspect for

the success of an IT system.

81

10 Conclusions

The conclusions presented in this chapter have been drawn by examining and

answering briefly the research questions that were defined in the first chapter. The

limitations and the contributions of this research project are also described in this

chapter. Based on the limitations, possible future work and recommendations are listed

and analyzed.

10.1 Answers to research questions

 On this section, a short summary for each sub-question is presented, concluding to an

answer to the main research question.

1. Which are the relevant SDx technologies/ tools at each level of an IT system?

The software-defined technology is an umbrella term that is identified in several

layers of an IT system. This research mainly focused on the infrastructure (SDI) and

the network layer (SDN). The computing layer (SDC) and deployment layer (SDD)

are considered parts of the infrastructure layer.

The SDI technology uses definition/ code files for describing and automating the

provisioning and configuration process of the infrastructure. These code files are

passed as inputs to specific tools (IaC tools) that are responsible for provisioning and

configuring the requested infrastructure resources. The IaC tools do not provision the

resources themselves, instead they instruct a dynamic platform via APIs to set up

and manage the needed resources. The majority of the provisioning tools are

vendor-specific solutions, such as CloudFormation for AWS, Cloud Deployment

Manager for the Google Cloud Platform and Azure Resource Manager for Microsoft

Azure Clouds. Terraform is presented as a more general solution that supports

several dynamic platforms and is highly extensible, serving several use cases. The

most used tools for the configuration of the infrastructure are Chef, Puppet, Ansible

and Saltstack. All described configuration tools are highly scalable and their selection

highly depends on the problem that needs to be solved and the current system of the

organization.

SDN is the main software-defined technology at the network layer. NFV is another

significant technology in this field, but it is not thoroughly analyzed in this research

82

project as it is mainly used by the telecommunication providers. SDN abstracts the

control plane from the hardware, making the network devices only responsible for

forwarding data into the network. The control of the entire network is assigned to a

central software controller that offers APIs for communicating with the network

applications and the network devices. The network applications are used or

developed by the network administrators for managing and constructing the network

infrastructure based on the gathered information from the controller. The network

devices are responsible for forwarding the data into the network and can be either

virtual or physical devices. There are several available open-source controllers and

Opendaylight stands as the most popular controller at the moment. Opendaylight

supports several communication protocols and is supported by an active open-

source community, making a great free solution for a variety of use cases.

VMs and containers are the main technologies at the computing level, forming the

fundamentals for building an entire software-defined system. There are several

vendors for the creating virtual machines with VMware being the leading one, while

Docker is the main framework for building and managing containerized applications.

2. What does the SDx technology offer at each level of an IT system?

At the infrastructure layer, the engineers are able to set up the entire infrastructure by

describing the desired resources in the definition files, which is relatively simple and

fast, resulting to increased efficiency of the entire software development cycle. The

developers can use the IaC tools to easily create their own sandbox environment for

testing without the need of the operation team, which increases their productivity by

saving valuable time and effort. The use of the software-defined technology also

improves the scalability and upgradability of the infrastructure. The engineers can

easily create, delete, resize and relocate the infrastructure resources by simply

changing some lines in the configuration files. The functionality of the deployed

software applications is maintained regardless the applied changes. In addition, the

use of code files improves the configuration consistency, as the engineers use a

standardized configuration format, which leaves little space for potential human

errors. Furthermore, the software-defined technology leads to self-explained systems

that require little additional documentation. The code is enriched with comments that

describe in detail the resources of the infrastructure at each part of the code. Last but

not least, having the entire infrastructure described by code files, enables the

engineers to use a central version control system for keeping track of the changes

and rolling back to previous versions in case of an error.

83

The SDN technology enables the control and management of the entire network

infrastructure from a central point with the use of the SDN controller. This simplifies

the configuration and the debugging of the network resources, eliminating the need

of configuring each specialized device individually using specialized commands. This

technology also improves the scalability of the network infrastructure, as the

administrator is able to easily provision new virtual resources based on the traffic

demands of the underlying network. The administrator can combine virtual and

physical network resources into one infrastructure providing support for a variety of

use-cases. The SDN technology also offers programmability to the network, as the

configuration of the network is performed via code files or GUIs. The administrator

can automate several routine network operation procedures by writing case-specific

scripts that are passed to the SDN controller, which will lower the operational costs of

the network infrastructure. The hardware costs are also reduced, as this technology

is based on “white box” hardware, which is cheap and easy to find.

At the computing level, the software-defined technology adds a virtualization layer

between the hardware resources and the operating system, which offers elasticity

and flexibility to the system. The utilization of the resources becomes much more

efficient as resources are created or deleted based on the demand. The virtual

computing resources are described into code files, which can be easily shared

among different teams. The engineers can set up their resources following the same

steps in many different environments, ranging from local development laptops to

large cloud systems. Furthermore, the engineers have the capability of prioritizing

their resources, giving higher priority to some resources over others.

3. How to build a reference architecture for a generic software-defined system?

In order to answer this question, a problem analysis approach was performed that

aimed to identify the main components of the reference architecture of a generic

software-defined system. The problem analysis was performed via a literature study

that focused on the difficulties that the engineers face during the construction of the

existing IT infrastructure. After the identification of the problem, a further literature

study was conducted in order to acquire the necessary knowledge on the software-

defined concepts and tools at each level of an IT system.

The reference architecture is based on the concepts of the software-defined

technology and presents the interconnections between them. The reference

architecture is mainly focused on the infrastructure and the network layer. The

computing level is part of the infrastructure layer. The main components of a generic

84

software-defined system are: a provision tool, a dynamic platform, the infrastructure

and network resources, a network controller and a configuration tool. The

administrator describes the desired infrastructure resources into code files that are

inserted to the provisioning tools, which instructs via a REST API the dynamic

platform to build and manage the required resources. The provisioning tools can

create infrastructure and network resources. The configuration tool is used for

additional configuration of the resources. At the network layer, a central controller is

added to control the entire network infrastructure. The controller can communicate

with the dynamic platform via the northbound APIs and configures the network

resources via the southbound APIs.

4. How to build a software-defined system for a specific use case?

For answering this question, the requirements for the specified use case were

identified and listed. A list of requirements was compiled after discussing with the

engineers of the case-study organization about the current needs and the future

plans of the company. To facilitate the design process, the requirements were

categorized into infrastructure, network and general requirements, and the

importance level of each requirement was determined. Based on the requirements,

specific software-defined tools were selected that refer to the components of the

described reference architecture of a generic software-defined system.

The case study for this research project is a large high tech company that is mainly

focused on the privacy and the performance of the IT system. Openstack was

selected as the main dynamic platform for managing and building the infrastructure

resources, while Terraform and Ansible are the chosen provisioning and

configuration tools, respectively. Opendaylight is the proposed SDN controller for this

specific use case.

5. How can a software-defined system be validated?

The expert opinion was used to validate the design of this research project as the

most suitable validation method for this specific case study. The design was

presented and explained to seven experts from four relevant IT fields: Cloud

Architecture, Infrastructure & Software Architecture, Systems Design and

Networking. The experts expressed their opinion on several aspects of the design

through semi-structured face-to-face interviews. All the interviewees acknowledged

the potential of the software-defined technology and mentioned that the current stage

85

of the technology is relatively immature and further research is required to acquire a

clear picture on the performance of this design.

Main question: “How can the software-defined technology be used to improve a

static IT infrastructure of an organization?”

As a conclusion to the research, it should be mentioned that software-defined

technology can be used in several layers of an IT system ranging from the infrastructure

to the deployment layer. The software-defined technology improves the scalability,

upgradability and the documentation of the system by using code files that are easy to

understand and use, and improves the entire development cycle of the organization by

automating the provisioning and configuration of the system resources. Overall, the

software-defined technology is a popular and relativity new topic that introduced several

new concepts and tools. These tools are already being used by a big number of

organizations, but insights on some crucial factors are still missing for a number of

organizations that focus on specialized products. This research project can be used as a

reference point for understanding these concepts and the interconnections between

them, and could be the basis for follow-up research projects that would help

organizations in making the right steps towards the implementation of the software-

defined technology into production level environments.

10.2 Limitations

This research project was restricted by the following limitations:

 Lack of specialized hardware: An actual implementation of the proposed design

was not possible due to the specialized hardware that is required. The involved

high prices of this hardware were a deterrent factor in the scope of a Master

thesis project.

 Time limitation: Conducting tests for measuring and analyzing all the software

quality aspects, was infeasible due to the time limitation of a Master project.

 Limited academic literature: The software-defined technology gathered the

attention of the academic world the last couple of years; as a result the amount of

available academic work is limited.

 Limited practical expertise: During the validation interviews, most experts

mentioned that they are aware of the concepts of the software-defined

technology, however they lack of practical experience with the involved tools,

86

which limited their feedback on the conceptual level and the approach of the

design, and their feedback on the potential practical issues was based on

assumptions.

 Unsynchronized documentation: The software-defined technology is improving

rapidly and the relevant documentation is occasionally not up to date with the

latest versions of the tools, which created challenges during the research

procedure.

 High uncertainty levels: The software-defined technology is characterized by

constant releases of new versions for the existing tools and the regular

development of brand new tools that aim to improve the existing situation. This

adds high levels of uncertainty during the process of tool selection, as the

selected tool might be replaced in the close future by another solution, which

would result to a completely different architecture.

10.3 Contributions

This research project offers several contributions to the academic world and practice:

 This Master thesis described, analyzed and slightly compared the software-

defined concepts and the tools at the infrastructure layer. This knowledge already

existed in technical documentations and books written by industry experts but it

had never been presented in an academic project. As a result, this Master thesis

project presented the concepts and tools of the software-defined infrastructure in

an academic document for the first time.

 The details of each layer of a software-defined system were included in several

separate academic papers, although there was no academic document that

included an overview of the all concepts and tools of the entire software-defined

term. This research project can be seen as an academic survey that presents a

detailed overview of all layers of a software-defined system in combination.

 This research can be beneficial for the industry because it shows the

interconnections between the concepts and tooling of the software-defined

infrastructure and the software-defined networking with a real use case example

that uses the existing software-defined tools. The majority of the technical

documentation includes examples of how to use the tools at each level, but not

examples that combine technologies from the network and the infrastructure layer

into one design.

 This project presents a logical way of designing a software-defined system from

the ground up, which can help the organizations identify the existing problems

87

and form a list of requirements that describe the desired future functionality of the

software-defined system. Based on these requirements and the described

reference architecture, they can select the most appropriate software-defined

tools for their use case.

 This research can be used as a reference point for understanding the concepts of

the software-defined technology, and both the academic community and the

industry world can use it as a basis for future work.

10.4 Recommendations

Based on the personal understanding of the technology and the opinions from some

experts, several recommendations are proposed:

 The selection of specific tools and technologies is highly based on each

organization and the specific time they want to go on production. The designs

proposed in this research are short to medium term solutions and they mainly

refer to companies that aim to deliver a production level infrastructure

immediately or in a short time period. Companies that seek for long term solutions

should focus mostly on microservices architectures that are based on the

containerization technology, as these technologies are highly scalable, less

complex and easy to develop and deploy. It is highly possible that containers

would completely eliminate the need of virtual machines, as they are constantly

improving and they might also able to serve legacy or high-security applications

that are currently supported only by virtual machines.

 Mission critical organizations should further investigate the software-defined

technology in regards to some specialized features and appliances such as

multicast, firewalls and dedicated proxies.

 Organizations should keep in mind that some parts of the proposed design, such

as the configuration management tools, might drastically change in the future and

can be entirely replaced by technologies that aim to provide a fully immutable and

self-healing system.

 Organizations that have several projects with several separate IT infrastructures

should focus on designing small software-defined systems that specifically serve

the requirements of each project. The organization should focus on finding a

mechanism to connect this small sub-systems rather than designing one large

software-defined system that fulfills the requirements of all projects. These large

systems are complex and difficult to debug, as they include many software

interfaces between the involved components.

88

 The organizations should invest time during the selection of the open-source tool

for their use case, because there is a significant chance for the chosen tool to

become obsolete in the future resulting to an unusable infrastructure.

 The organizations should wait before choosing a software-defined solution for

their existing network infrastructure, as the SDN technology is relatively immature

and the involved specialized hardware is highly priced at the moment. The prices

of this specialized hardware will probably drop in the future, following the generic

rule of every brand new technology.

 The organizations should focus on hiring more people that have a DevOps

mindset and are able to understand and work with both infrastructure and

development concepts and processes. The software-defined technology

combines technologies from the entire development cycle, and experienced

DevOps teams are crucial for the success of an organization that uses software-

defined techniques.

10.5 Future work

Several points can be further researched by the academia in the future:

 Performance: Further research is required on the overall performance of the

system. Thorough insights of the performance of the system can be gained by

building a fully functional prototype of the proposed designs with all the

necessary hardware and software components and testing the prototype with

real world testing environments. Benchmark testing environments can be created

that would focus on the performance of the virtual switches, especially on the

failover time and the latency.

 Availability: Future research projects should focus on the redundancy of the

software-defined technology. Redundancy is a crucial factor in mission critical

systems, which cannot afford system outages and single points of failures should

be eliminated.

 Security: Security and safety requirements are very important for every IT system

and further research on this field seems necessary. The research could focus on

how the software-defined technology handles different security domains that

exists in one system. Additional research can focus on identifying the

vulnerabilities of the available software-defined tools and finding methods to

increase their security.

89

 Observability: Researchers should investigate the available practices that could

increase the observability of a software-defined system. The first step towards

observability would be the addition of a monitoring and tracing pipeline into the

proposed designs. These tools would use logs, metrics and events to keep track

of the state of the entire system.

 Storage: Further research is needed regarding the storage of data in a software

defined system. The traditional ways of storing data are not efficient when they

are used in a software-defined system, because they are monolithic solutions

that are mainly based on proprietary hardware. As a result, future research is

needed on storage techniques that are software-defined.

 Public solutions: This research was mainly focused on private cloud solutions for

building and managing the infrastructure resources. However, public cloud

technologies have showed great signs of improvement the last couple of years,

and they can also offer private features that can be useful to mission critical

organizations that require high security standards. Organizations can save

money by outsourcing their infrastructure to public clouds, instead of setting up

their own private cloud system, which requires expensive specialized hardware.

 Bare metal provisioning: Further research is required on the modern bare metal

provisioning tools. Some examples of advanced bare metal provisioning tools are

Metal3 [99], which is a Kubernetes API for managing bare metal hosts and Digital

Rebar [100], which is a data center provisioning tool designed with a cloud native

architecture.

 Network layer: The SDN technology seems to be in its early stages and further

research is necessary to fully leverage its capabilities. One field of future

research is the combination of the SDN controllers with the container

orchestration engines such as Kubernetes. For instance, there might be some

available northbound APIs for the controllers that establish direct communication

with the container orchestration engines or maybe the network capabilities of

Kubernetes will significantly improve in the future, making a SDN controller

unnecessary.

 Maturity model: Future research could focus on the definition of a maturity model

that would help organizations acquire a clear overview of their current IT system.

This model should assist the organizations in clarifying the level of automation

and hardware abstraction of their existing IT systems, and based on that level, a

list of suggestions should be available to help them convert their current system

to a fully software-defined one.

90

Appendix A

Creating VMs with Terraform – Openstack

Terraform can create VMs in Openstack by combining several resources from the

Openstack provider. A Terraform file that includes all the required resources to create a

VM is shown in Figure 30. This file includes three separate resources: the

openstack_compute_instance_v2 resource, which is the main required resource for

creating a Openstack VM, the openstack_images_image_v2 resource and the

openstack_compute_flavor_v2 resource. In the compute_instance resource the user is

able to define a name for the VM (e.g., basic), a name for the selected image (e.g.,

Ubuntu), a flavor name (e.g., my_flavor), a key pair, the preferred security groups (e.g.,

the default security group), an availability zone where the VM will run on and the name

of the network where the VM is assigned to.

Figure 30: Terraform file for creating VMs

The user should first use the openstack_images_image_v2 resource to create images

that would be later used during the creation of the VMs. In the image_source_url field

91

the user can pass the url of the preferred OS that Openstack would download and use,

and in the disk_format field the user should declare the format of the image (e.g. iso,

qcow2, vhd, etc.). In the properties field, the type of the hypervisor (e.g. qemu, vmware,

xen, lxc) and the CPU architecture of the VM (e.g. x86_64, arm, ppc65) can be passed

as key-value pairs. The user should also define a name for the image that would be

used by the compute_instace resource in the image_name field when creating a VM.

The openstack_compute_flavor_v2 resource is needed for setting the capabilities of the

VMs. The name of the flavor resource is set in the name field, which is used in the

flavor_name field of the compute_instance resource to configure the VMs. In the ram,

vcpus and disk field, the user can determine the size of available ram, the number of

virtual cores and the capacity of the VMs accordingly. The system should also support

the selection of virtual GPUs and I/O devices. The extra_specs field is used for that

purpose. The user declares the desired number of vGPUs by typing resources:VGPU=

<number of vGPUs> in the extra_specs field. The vGPU support is not enabled by

default, and the supported GPU devices should be defined on the compute nodes that

carry the corresponding hardware. Practically the same procedure applies when

enabling the support for I/O devices. In the extra_specs field, the user should add the

line pci_passthrough:alias = <number of devices> to allow full access of physical PCI

devices to the VMs. Similar to the vGPUs, the PCI devices are not enabled by default

and configuration is required on the compute and control nodes for enabling the PCI

passthrough feature and set aliases [59] for the PCI devices. The user can create

several flavors and based on the configuration of the flavor, the user can define several

types of nodes for the system (e.g. central server nodes, console nodes, diskless nodes

etc.).

92

Appendix B

Provisioning Bare Metal Machines with Terraform – Cobbler

The main resources for provisioning a bare metal machine with Terraform using the

Cobbler provider are: the cobbler_system resource, the cobbler_profile resource and the

cobbler_distro resource. A Terraform file that includes all the necessary resources for

provisioning a bare metal machine can be found in Figure 31.

Figure 31: Terraform file for provisioning bare metal machines with Cobbler

The user should first use the cobbler_distro resource in Terraform to create a distribution

within Cobbler. In the kernel and initrd field, the user must indicate the exact paths to the

kernel and the initrd on the filesystem accordingly. These paths do not exist in the file

system of Cobbler by default and the user has to manually download the image of the

preferred OS, mount it, import it into Cobbler and point out the created paths into the

distribution resource. The user should also determine in the distribution resource, a

93

name for the distribution, the breed of the OS (e.g., Redhat, Fedora, Centos, Ubuntu

etc.), the version of the OS (e.g., trusty) and the architecture of the OS (e.g., i385,

x86_64, ia64 etc.) in the corresponding fields.

The next step is to associate the distribution with the profiles. The cobbler_profile

resource is responsible for that purpose. The user has to choose a name for the profile

in the name field and can pass the name of the preferred distribution into the distro field.

In addition, the exact path to the preferred kickstart file should be declared into the

kickstart field. The kickstart file should be created outside the scope of Cobbler and a

kickstart file usually contains information regarding the initial configuration of the

machine, such as the mode of installation (graphical or text), keyboard layout and

system language, disk partitioning, the root password etc. An example of a kickstart file

is depicted in Figure 32. Moreover, the user can assign repos to a profile in the repos

field. The repos are created with the use of the cobbler_repo resource and their names

are passed to the repos field in the profile resource. The user also should give the url

address for the mirror repository and the breed of that repository (e.g., apt, yum, rsync).

The last step is to link the machines with the preferred profiles for installation. The

cobbler_system resource serves that objective. In the name field the user should select

an appropriate name for the system, and in the profile field the user should declare the

name of the preferred profile that was created previously with the cobbler_profile

resource. The hostname of the machine can also be assigned in the hostname field. In

the interface block, the user can choose the machine for provisioning by declaring the

MAC address of the machine in the corresponding field and the preferred IP address of

the machine after the provisioning, is passed into the ip_address field.

94

Figure 32: An example of a kickstart file

95

Appendix C

Provisioning Clusters of Containers with Terraform – Magnum

The main Terraform resources for creating container clusters in Openstack are the

openstack_containerinfra_clustertemplate_v1 and openstack_containerinfra_cluster_v1

resources. Figure 33 illustrates a Terraform files that uses these resources to provision a

Kubernetes cluster.

Figure 33: Terraform file for provisioning container clusters of containers

The user should first describe the parameters of the cluster in the

openstack_containerinfra_clustertemplate_v1 resource in Terraform. A name for the

cluster template should be declared in the name field, while the preferred OS image that

is used for the nodes of the cluster, is selected in the image field. The name of the

preferred COE should be passed into the coe field. In addition, the user can choose the

capabilities of the worker nodes and the master of the cluster by selecting values in the

flavor and the master_flavor fields correspondingly. The user should also declare the IP

address of a DNS server for the cluster and choose an appropriate network driver (e.g.,

flannel) in the corresponding field.

96

 In the server_type field the user can select the type of the servers for the cluster nodes.

The available options are “vm” and “bm” for virtual machines and bare metal serves

respectively. Moreover, in the labels block, the user can enable or disable important

external features of the selected COE. For the Kubernetes case, Magnum supports the

Kubernetes dashboard and Prometheus with Grafana for monitoring. The user can

enable or disable these features by typing true or false in the respective fields.

The next step is the actual deployment of the cluster by referring to the attributes defined

in the particular cluster template. The Terraform openstack_containerinfra_cluster_v1

resource is used for creating the clusters. The user should choose a name for the cluster

in the name field and should associate the cluster template by assigning the respective

id of the template to cluster_template_id field. Furthermore, the user has the option to

determine the size of the cluster by declaring a specific number for the master nodes

and the worker nodes in the corresponding fields. Additionally, the selection of a specific

key pair (e.g., ssh key pair) for the communication between the nodes is done via the

keypair field.

Appendix D

Configuration with Ansible

Ansible uses the inventory plugins and the inventory scripts to manage dynamic

inventories. Openstack has support for an inventory plugin, while Cobbler is managed

using inventory scripts. For the Cobbler case, the user should download the respective

script and place it into the hosts’ directory of Ansible. In addition, the user has to include

a cobbler.ini file into the ansible directory to let Ansible know where the Cobbler server is

located. Openstack has support for both plugin and script dynamic inventories. The

dynamic inventory script works in the same way as Cobbler, while the inventory plugin

should first be enabled in the Ansible configuration file, and a separate yaml file should

be declared that includes a plugin field where the enabled plugin is declared. This yaml

file should be called every time an Ansible playbook is executed.

97

Appendix E

Creating networks with Terraform – Openstack Neutron

The main Terraform resources for creating networks components in Openstack are

shown in Figure 34.

Figure 34: Terraform file for creating Openstack network

Networks can be created by using the openstack_networking_network_v2 resource in

Terraform. The user has to select a name for the network in the respective field, and in

the shared field the user can decide whether the network is accessible by any other

tenants/ users. In the external field, the external routing facility of the network can be

determined. The possible values are true and false and false is the default option. In the

98

segments block, the type of the network can also be defined in the network_type field.

The default option, which is VXLAN, is not displayed and the other available choices are

flat and GRE.

Subnetworks can be created on top of a network with the

openstack_networking_subnet_v2 Terraform resource. The user should set a name for

the subnetwork and pass the network id of the parent network in the corresponding

fields. In the cidr field, the user can assign a value for the IP range for this subnetwork

(e.g., 192.168.199.0/24). The user also has the option to select the IP version of the

network (IPv4 or IPv6), assign an IP for the subnetwork gateway and enable or disable

the support of DHCP. DHCP is enabled by default. Compute instances (VMs) can be

later created in the specified subnetworks by using the network field in the compute

instance resource of Terraform.

The openstack_networking_router_v2 resource should be used for the creation of the

virtual router. The name field is the only mandatory field for the creation of this resource.

The router resource should be combined with the

openstack_networking_router_interface_v2 resource in order to connect the router to a

subnetwork. In the router and subnet id fields the user should declare the ids of the

router and the subnetwork that should be connected.

Figure 35: Terraform file for creating floating IPs

Floating IPs can be created in Terraform with the openstack_compute_floatingip_v2 [79]

resource (Figure 35). The user should only declare the name of the pool from which to

obtain the floating IP (e.g., public pool). The floating IP is assigned to an instance via the

openstack_compute_floatingip_associate_v2 [80] resource, where the id of the floating

IP and the instance should be filled in in order for the assignment to take place.

99

Appendix F

Creating security groups networks with Terraform – Openstack

The security groups can be created with the openstack_networking_secgroup_v2

Terraform resource, while the rules are created with the

openstack_networking_secgroup_rule_v2 resource. In the security group rule resource,

the user should choose the direction of the rule (ingress or egress), and the layer 3

protocol type in the ethertype field (IPv4 or IPv6). In addition, the allowed layer 4

protocol (tcp, udp, icmp) for a specific port range can be selected in the protocol field. In

the port_range_min/max field the user can determine the lower and the upper part of the

allowed port range (between 1 and 65535), and in the security_group_id field the id of

the security group that this rule will be part of, should be declared. The user can create

several rules with the security group resource and assign them into one or more security

groups created by the security group resource in Terraform.

Figure 36: Terraform file for creating security groups

100

Appendix G

Creating Firewalls with Terraform – Openstack

Rules are created in Terraform with the openstack_fw_rule_v2 resource. The user

should select the protocol (tcp, udp, icmp, any) on which the firewall functions and the

implemented action in case of a firewall match in the respective fields. The available

actions are allow and deny. In the source and destination port field, the corresponding

ports on which the firewall rule operates are declared. There is also the enabled field,

where the user can enable or disable the specific rule. True is the default option. Policies

are created with the openstack_fw_policy_v1 resource where the user passes an

ordered array of one or more rules. The actual firewall is created via the

openstack_fw_firewall_v resource, where the user should declare the id of the policy

that would be deployed on that firewall. Additionally, the firewall can be associated with

specific routers at the associated_routers field. Figure 37 illustrates a Terraform file that

uses these resources to create a firewall.

Figure 37: Terraform file for creating firewalls

101

Appendix H

Configuring the connections

Figure 38: Transport Zone example

The user should pass the dpn-id of the device into the Transport Zone in order to

declare it. The dpn-id is the datapthid of the br-int in decimal format. The Transport Zone

example that is shown in Figure 38 creates a Transport Zone named TZA of type

VXLAN. This Transport Zone includes a TEP with dpn-id 95311090836804, a tunnel

interface named eth2 and local endpoint ip 192.168.57.101.

The user before creating the L2 gateway should create and configure a Neutron network

and subnetwork. The IP of the bare metal machines should be in the same subnetwork

created by the subnet create command.

The next step is the creation of the L2 gateway and its allocation of the physical TOR

device. The user should use the neutron l2-gateway-create command to create the

gateway by passing the name of the ToR device in the name argument in the device flag

and the id of the current used openstack project in the tenant_id flag.

102

The final step is the connection of the L2 gateway to the provider network. The neutron

l2-gateway-connection-create command is used for that purpose. The user should give

as arguments the name of the provider network and the name of the previously created

L2Gateway.

Appendix I

Hardware Requirements

The minimum hardware requirements [97] for the controller and the network nodes are:

 A 64-bit x86 processor with at least 1 core

 16 GB of RAM

 40 GB of disk space

 A minimum of 2 NICs of 1 Gbps. Additional NICs are needed for bonded

interfaces or tagged VLAN traffic.

While the minimum requirements for the computing nodes are:

 A 64-bit x86 processor with at least 4 cores. The AMD-V or the Intel VT hardware

virtualization extensions should be enabled on the virtualization compute nodes.

 6 GB of RAM

 40 GB of disk space

 A minimum of 2 NICs of 1 Gbps. Additional NICs are needed for bonded

interfaces or tagged VLAN traffic.

103

Appendix J

Validation Interview

Participant’s Information and Agreement

Name: Date:

Job Title: Company:

Years of Experience in the IT sector:

I agree to be listed in the master thesis with my name, job title and company, in

the chapter concerning the validation of the design:

□ Yes

□ No

Questions

1. How would you evaluate the functionality of the current proposed design? Does this

design serve all the high importance requirements?

2. How would you evaluate the functionality of the future-possibly improved design?

Does this design serve all the high importance requirements?

104

3. How you evaluate the functionality of the network infrastructure?

4. Can you give your opinion on the potential performance [e.g. latency, utilization of

resources] of this design (current and future)? Do you recognize any parts of the

system that might affect the performance positively or negatively?

5. What do you think about the scalability and upgradability of the system?

6. What do you think about the reusability [can it be used in a wide variety of use cases]

of the design ?

105

7. What do you think about the traceability (documentation of the system, error tracking

etc.) of the design?

8. What do you think about the complexity and the required learning curve [in short and

long term] from an average engineer in order to use and manage this system? What

problems do you think they might face during this process ?

9. Do you think that the implementation of the design is feasible regarding the potential

costs (e.g. hardware, people) ?

10. What do you think about the maturity of this design and the software-defined

technology in general?

106

Appendix K

Interview Reports

Interviewee 1

Interviewee 1 is a Cloud Architect working at Thales as an external consultant. He is

highly experienced in cloud systems and IT in general with around 40 years of

experience in this field.

According to Interviewee 1, the current proposed design seems to be solid and serves

all the requirements that were set. The designing approach of this system is the

appropriate one and has a natural flow of thinking. This design serves the current goals

of the current situation in the industry because it combines VMs, bare metal machines

and containers in one system. However his main concern lies on Openstack because it

is heavy and quite complex, but it is a reasonable solution for an organization that wants

a private cloud solution and needs support for all the previously mentioned technology.

In his opinion, this design most likely would change in the future to a system that is fully

based on microservices and containers and has no need for virtual machines. In that

case, Openstack most likely will be replaced by another tool. Regarding the use of

Cobbler, Interviewee 1 sees no obvious drawback but he is not really experienced with

this tool.

The future possibly improved design is also solid and again serves all the requirements

that were set. The only difference with the previous one is that it uses Ironic instead of

Cobbler. Ironic is a project that started as an Openstack service but now is a stand-

alone service that is used by other tools as well. For example the Kubernetes cluster API

uses Ironic to provision bare metal machines that run Kubernetes. This Kubernetes

cluster API cannot provision VMs and is a bleeding edge technology that is a completely

container based solution. Ansible and other similar configuration management tools

might also not be used for future designs that provide immutable systems that are self-

healed and patched, but for the current situation a configuration tools such as Ansible is

necessary to push updates and patches to the system.

Interviewee 1 is not an expert when it comes to networking, but he thinks that this design

manages to fulfill the requirements and offers connectivity between the virtual and

physical networks. The SDN controller manages to control both the virtual and the

physical switches. The addition of the controller enables us to write our own applications

and scripts for controlling the traffic in our networks, because it offers the northbound

APIs for that purpose. It make sense to use Openstack Neutron for creating the virtual

107

networks as it is especially designed for that purpose and it also offers virtual services

like firewalls and routers. It is nice that on top of that network we can still deploy

Kubernetes with its own network functionality. It would be really interesting if in some

years from now Kubernetes will be able to speak to the controller through the

northbound API and provide all this network functionality, as Kubernetes networking is

quite limited in its current version.

Interviewee 1 has not a clear picture of the potential performance of this design. He

does not spot any specific bottlenecks or potential performance issues but he is not

willing to dive into conclusions before testing is performed. The complexity of Openstack

might cause some performance problems but he has not practical experience with

Openstack in order to be entirely sure.

The scalability and upgradability of this design seems to be at a very good level.

Terraform has an overview of the system and can discover if it is up to date. Openstack

can manage, scale and upgrade the virtual part of the design adding extra scalability

and Ansible is there to push updates and patches when it is necessary.

Interviewee 1 believes that this design can be used by many different organizations and

it is highly dependent on the area of expertise of the organization. Some components

might need to change depending on the use case. For instance, an organization that

decided to follow a container-based approach will not need VMs and the entire part of

this design that has to do with VMs will not be necessary any more. On the other hand,

an organization that needs legacy applications needs the VMs part, but in his opinion

VMs will go obsolete in the future. Currently they offer better security but the security of

the containerization technology has also made great progress the last couple of years.

Overall, this design is a good solution for companies that want a combination of

functionalities and a good medium term solution. Companies that want to use up to edge

technologies should focus more on container-based solutions and some components of

this design might be replaced.

Interviewee 1 prefers the term observability instead of the term traceability. Observability

is a big topic on its own and it is not properly addressed in this design. The main concept

is to monitor hardware and applications in total and not as individual components. In

order to have proper observability in this design, an extra component is needed. This

component should be a monitoring pipeline that decouples the different layers in the

system.

In the question regarding the complexity and the required learning curve, Interviewee 1

answered that the more the tools the biggest the learning curve. Openstack is a really

complex system that requires time and effort in order to learn and use it properly. For the

108

short term, it will be difficult for an average engineer to learn and use this system

because it combines many difficult technologies such as Kubernetes, Openstack,

software-defined networking. Generally speaking, this new software-defined world is

really complex as the engineers need to have a good understanding of the full stack.

This new world requires more DevOps people and not only people who are experts on

their fields. People except their technical knowledge, should also change their general

mentality. On the long term, this technology would be used with much less effort, but

currently it is quite difficult to learn because it is relatively new.

Regarding the potential costs for implementing this design, Interviewee 1 mentions that

they highly depend on the version of the software that the organization would choose to

use. Most of these used tools have the open source free version and the enterprise one.

The selection of the version is highly related to the available expertise inside the

company. If the company has people who are experienced with this kind of technology

then they would most likely go with the free version. On the other hand, companies that

are inexperienced with this kind of technology, they would most likely choose the

enterprise version that provides expert support. Regarding the hardware, this design

definitely saves a lot of money because it uses COTS hardware which is at least less

complex. These new hardware switches that support Openflow and OVSDB are

relatively expensive now but they will become cheaper in the upcoming years. Every

brand new technology is overpriced during its first release.

In Interviewee 1’s opinion the technology that is used for the infrastructure layer is

mature enough for a production level environment. Terraform is some sort of standard

for that purpose but he cannot really grade the maturity of Openstack. Some years ago,

Openstack was not mature enough but in that time private clouds were not a popular

solution. Most of the organizations used to choose public cloud solutions. However this

has started to change the last couple of years and many companies have moved to

private cloud solutions. So maybe the maturity of Openstack has also increased till then.

The SDN seems to be in its early stages but it is a promising technology that offers

really useful functionalities. Companies should focus on how quickly they want to go to

into production. If they want to go to production immediately this design can offer them

what they seek for. A company that wants to go to production some years from now

should really focus on this software defined technology as well. However they most likely

should replace some components of this design. Overall, companies should focus on

this technology if they want to achieve a scalable, upgradable and immutable system

that will last several years,.

109

Interviewee 2

Interviewee 2 is currently working at Thales as a System Engineer and has changed

several roles during his career. He has been working for Thales for around 20 years.

Interviewee 2 thinks that the proposed design meets the set requirements. There is a

high level description of the infrastructure from a central location, which is performed by

Terraform. However, there are two tools for managing and creating the infrastructure

resources: Openstack and Cobbler. In the near future, it should be one tool for building

the infrastructure. This solution is not the ideal one and can be characterized as a

temporary solution for the problem. Ansible seems to be necessary in this design for

configuring the resources and installing software on them (e.g. Kubernetes), but for the

near future Ansible does not seem necessary. Its role might be replaced by a central

component. Ansible is still quite a manual approach for configuration.

Interviewee 2 finds the future design better than the current design as it has one

dynamic platform for controlling everything. The more the tools the higher the complexity

of the system. The central provisioning and description of the infrastructure is still there

with Terraform. It is nice that there is only one tool for creating VMs, Bare metal servers

and Kubernetes containers. The desired solutions should have as less as possible

interfaces between the components to reduce complexity. The advantage of this solution

is also its main downside. Openstack controls everything, so there is high dependence

on it. Solutions that focus mostly on one open source tool are quite risky because the

choice of these tools might be the wrong one. A wrong selection might lead to a tool that

is not supported anymore and eventually will disappear.

Regarding the network infrastructure, Interviewee 2 mentions that it differs highly from

the current networking infrastructure of Thales. People should first change their way of

designing and building the networks. If they manage to change their mindset, then this

design seems solid. Everything is centrally controlled: both the physical and the virtual

elements. His main concern lies on the compatibility of some used network appliances

such as firewalls and dedicated proxies with the software-defined technology. Can these

appliances be part of a software-defined network or should be replaced? In addition

further research is needed on the VXLAN technology because it is relatively new. Does

Thales actually needs these large networks created by VXLAN and what are the benefits

of it?

According to Interviewee 2, this design is highly based on the virtualization technology,

which by default adds some performance penalties due to the extra abstraction layer.

The performance issues most of the times arise from the network or the computing

servers. In this design the network seems to be efficient and the performance problems

110

might arise from the computing environment. At the moment we do not have a clear

picture of the performance as no performance studies have been conducted. Thales

should invest time and effort on conducting additional studies on the performance with

real world testing environments. Benchmark testing environments should be created that

would provide a good reference point for future testing. That would detect and indicate

the components of the system that cause performance issue. Overall, this design should

work in practice but we do not know how efficient it will be. Based on the performance

we can decide whether an actual implementation of this design is worth the effort.

The scalability and the upgradability of the design are at proper levels according to

Interviewee 2 because this system was designed to scale easily. However this design is

not fully dynamic yet when it comes to scalability. The optimal solution would be a

design that scales optimally based on performance. The application will ask for the

required capabilities, such as CPU, RAM, storage and the system will allocate the

application to the node with the highest possible performance. In this proposed design,

the scaling is somehow manually enforced by the user. The optimal design should

provide automatic scalability, which would be enforced by some rules that describe how

the applications would use the infrastructure. In this design, Kubernetes does that, but it

is only one component of the solution. This design is the initial approach that would lead

the way on how to reach the future optimal scalability.

Interviewee 2 mentions that this design can be used for several projects within Thales.

His main concern is how this design would handle the several different security domains

that exist within Thales. Currently each domain has its own infrastructure. The desired

situation is to have one infrastructure for every domain. If this proposed design can

manage to handle these security domains properly, then it should be used for many

different projects.

When answering the question about the traceability of the design, Interviewee 2

indicated that there is no error tracking in this design and a monitoring pipeline should

be added. The ideal solution in his opinion would be a resilient system that detects the

hardware and software failures and automatically recovers from them without the human

intervention. These failures most likely would affect the performance of the system, but

the system should be able to determine how much it was affected and take the

necessary actions to secure performance. The downtime of the system should remain

low as much as possible. In addition, a decision making component should be included

to make the best possible option in each case and reach the best possible solution.

Regarding documentation, Interviewee 2 finds this design self-explanatory. The code

files are the documentation and the engineers can use a version control tool to check

the version of the infrastructure and keep track of the changes over time.

111

When it comes to learning curve, Interviewee 2 thinks that an initial effort is surely

required by the engineers. Especially due to the fact that this design is way different

from the current one, and the way of designing and building infrastructure differs highly

from the current one. The learning curve should not be a problem for an experienced

engineer. A junior engineer with only a few years of experience might face problems.

The engineers should have a good understanding of each component of the system.

The engineers should understand the functionality and the reasoning for using each

component such as VMs, bare metal machines and Kubernetes components. In

addition, knowledge on the cloud native technology is needed. However, in the long

term this system should be much easier to use. The user can set up infrastructure

resources by simply configuring some definition files. The components of the system are

hidden by the user and everything is arranged by the system itself.

Interviewee 2 believes that this design is surely feasible regarding the costs and its

implementation will reduce the costs. More computing power will be offered with less

footprint. Everything will be automated and that will save time for the engineers. The

engineers will be able to easily build multiple prototypes for testing without worrying

about the costs. In addition in the long term specialized hardware will be unnecessary.

Everything will be able to run on “white boxes”. People definitely need training but this

should not require significant costs. An experienced engineer might need one to two

days of training and an inexperienced one might need one month.

In the conclusion of the interview, Interviewee 2 referred to the maturity of this design

and the software-defined technology in general. He finds the infrastructure layer of this

design not mature yet as many aspects of the system are not known, such as security

and performance. There is no real time testing available. However this technology is

headed to the correct direction and has a lot of potential. There are many available

solutions and it is really interesting to see which solution will prevail in the end. The

network layer on the other hand seems to be mature and production ready. Many

organizations have already been using this technology for setting up their networks and

they are many available solutions. Of course, more initiatives are needed but overall,

Thales should definitely invest time and effort on this technology.

112

Interviewee 3

Interviewee 3 is a Software Architect in Thales with approximately 20 years of

experience in the field of IT. The last couple of years he has also started to take on more

managerial responsibilities within Thales.

Interviewee 3 thinks that the proposed design should in theory fulfill the set

requirements, but he does not really like the use of Openstack because it is really

complex and adds another layer of abstraction. On the other hand, he finds the future

design better than the current one. The future design makes use of Ironic for

provisioning bare metal machines. It would be nice if Terraform could speak directly to

Ironic. However, in the future design the problem with Openstack still remains.

Regarding the network part, Interviewee 3 mentions that conceptually it should work but

it cannot be used by Thales because many important network requirements are still

missing, such as the support of multicast.

According to Interviewee 3, the design should not face any performance issues. He does

not spot any potential bottlenecks and he mentions that the virtual switches that are

used are good enough for the Thales purposes. In addition, he believes that in principle

the infrastructure and the network layer of this design are scalable and upgradable.

However, when it comes to reusability, he believes that this design is not ready to serve

the projects within Thales, but maybe it is useful for other organizations. In order to use

that design for Thales, further research is required on aspects like redundancy and

performance. Furthermore, he commented that tracking errors in this design is difficult

because it involves many software components. The related documentation for this

design is relatively easy to find because all the used tools are open source. The

configuration files describe the infrastructure but some sort of extra documentation

explaining in more details the system is required.

When discussing the complexity of the design, Interviewee 3 mentioned that this design

is really complex because it involves several software components. He is also confident

that the people within Thales are capable of learning how to use and manage this

design. Development is easy in this design but the testing part would be difficult as the

people that perform testing understand simple methods and commands and learning this

new way of thinking would be challenging. Also solving problems in the network part

would be challenging.

According to Interviewee 3, the potential costs for this design will not be high.

Specifically, he mentions that the hardware costs will be minimum because this design

uses COTS hardware, and cost would be reduced due to the easier maintainability.

Training is definitely important and should be done but it would not be expensive.

113

Generally, Interviewee 3 focuses mostly on the performance and the fulfillment of the

desired requirements and the costs are not his main priority.

Concluding the interview, Interviewee 3 believes that the maturity of this design and the

software-defined technology in general is not at the desired level for Thales. However

the maturity of this technology seems to be at the appropriate level for other

organizations as they already use it in production. Interviewee 3 would like to see further

research on the available dynamic platforms that are able to provision bare metal

machines, and also on some other alternatives for the SDN controllers. In addition,

follow-up research is required on redundancy and performance. Security is not his main

concern for the time being.

Interviewee 4

Interviewee 4 works as an IT Infrastructure Architect at Thales and he has more than 30

years of experience in the IT sector.

Interviewee 4 believes that both the proposed and the future design for the infrastructure

layer are really complex. Both designs consist of too many different software

components and they are both based on Openstack, which is really complex and in his

opinion outdated. These designs theoretically serve the requirements that were set, but

they cannot be used for the Thales case. This design is meant for large IT systems and

it cannot work efficiently for smaller systems. Most Thales projects consist of small

systems with a small number of servers. This design requires at minimum four servers.

This proposed design is a general approach that can create VMs, bare metal and

containers; however Thales should mainly focus on Kubernetes and containers.

Kubernetes can use Ironic to provision bare metal machines and can also create VMs.

The VMs functionality in Kubernetes is not mature yet but it would improve in the future.

Interviewee 4 also expressed his doubts about Terraform and whether it is the best

available solution. In case, Thales needs VMs could use the old-fashion way of doing so,

as there are not used often.

Regarding the network infrastructure, Interviewee 4 finds the selection of Opendaylight

reasonable because it is compatible with Openstack, but he personally thinks that

Openstack is not the best choice. So if Openstack is replaced from this design, then

ODL might not be the optimal choice of SDN controller. Thales should focus on the

integration of Kubernetes with the SDN technology and investigate the potential

opportunities. A SDN controller might not even be necessary and Kubernetes might be

able to handle the networking of the entire infrastructure.

According to Interviewee 4, all these software components that should function

concurrently all the time, might cause high start-up times and that would jeopardize the

114

performance. In addition, the complexity caused by all these software interfaces might

cause latency problems. Interviewee 4 cannot spot any potential performance issues at

the network layer. The virtual switches are capable of handling the use of Thales,

offering maybe even faster performance than the currently used hardware.

Interviewee 4 mentions that this design offers higher scalability and it is meant for

building large systems. Scaling down with this design is difficult. Maintainability is also

challenging because it includes many different software components and It would be

difficult to find and fix the errors. Furthermore, the engineer would face difficulties

upgrading this design because there is too much dependency between the software

components. Upgrading one component requires pushing updates to several other

ones.

Interviewee 4 believes that this design cannot be used for different projects within

Thales because most projects use small systems. Even in case a bigger system is

required, it would be better to split it into smaller better defined systems. Applications

with different life cycles should be separated into different systems with better defined

responsibilities.

Interviewee 4 mentions there is not observability support in this design and a monitoring

pipeline should be added to serve that purpose. Nevertheless, error tracking would be

difficult because there is too much software involved. In general, documentation is

improved with the use of software-defined tools.

In the discussion about the learning curve, Interviewee 4 mentioned that this design

would have high learning curve both for short and long term. This design would be

difficult to learn and use due to its complexity. This design requires people who are

experts in this field and have a good understanding of the relations between the involved

software. That requires advanced training, which is costly. This design is based on open

source technologies; however if the company does not have experienced people in

house, they will need to choose the supported version, which is expensive. So overall,

Interviewee 4 believes that the implementation of this design is expensive due to its high

complexity.

Interviewee 4 concluded the interview by stating that this design and the software-

technology is not mature yet for the Thales case, but the situation will improve with

further future research. He is confident that investing time and effort on this technology

is the correct direction for Thales and he would like to see further research on the

network part, and how Kubernetes can be used in combination with the SDN technology.

115

Interviewee 5

Interviewee 5 is an experienced Cloud Architect with 22 years of experience in this field.

Currently he works as full-time employee at Thales, and before moving to Thales he

used to work as a Cloud consultant for several different organizations. Interviewee 5 is a

passionate advocate of Cloud Native technologies.

Interviewee 5 thinks that the current proposed design meets the requirements, and it

should work conceptually, but he characterized it as the old way of building this kind of

systems. Ironic is a useful feature but unfortunately it is not supported by this version of

Terraform. Cobbler is definitely a solution for provisioning bare metal but he would like to

see a more immutable solution in which Ansible is not used or it is only used to prepare

the images. In an immutable system, each server is almost identical to each other and

when one is unavailable, is immediately replaced with another one. On the other hand,

Interviewee 5 found the future design much better than the current one because

everything is controlled by Openstack. In this case Openstack is one big control plane

that uses plugins services to perform the several tasks. However that makes Openstack

really big in size and complexity.

Interviewee 5 finds huge potential in the design of the network infrastructure, and he

especially liked the potential of the ODL controller because the network administrator

can control physical and virtual switches, and it offers a REST API to control it, making it

programmable. He would like to see Openstack replaced with another tool/platform,

such as Kubernetes. Kubernetes might be able to control the physical switches in the

future.

Regarding performance, Interviewee 5 mentions that all these virtualization layers that

exist in this design might cause performance issues. Whenever an additional abstraction

layer is added, it comes with a price, which can be in availability, complexity or latency.

Moreover, Interviewee 5 says that the scalability of a design is always dependent on the

size of the system. The proposed design can is easily scale up in theory but it requires a

really big infrastructure to build on. This design is mostly meant for big cloud system

and it is not designed for smaller ones. For example Openstack by default requires for 4

- 5 servers to run. Furthermore, he commented that conceptually this design should be

easily upgradable because it includes Terraform, which is a declarative solution.

According to Interviewee 5, the reusability of this design depends highly on the

infrastructure size of the organization. This design can work for organizations that use

really big cloud-based datacenters and maybe it can also be used by Thales on really

big vessels that have relatively big datacenters. However this design is not applicable for

most of the Thales projects that require smaller systems.

116

Interviewee 5 mentions that the concepts of traceability are better defined by the term

observability. Observability is really important for monitoring the components of the

system and get insights on the configuration and identify the component that might

cause errors. In this design there is no monitoring so an observability pipeline should be

added.

Interviewee 5 believes that the learning curve for the development teams would be low

because Terraform is really easy to learn and use. However, things would be difficult for

the operation teams that would have to install and learn all these components and the

dependencies between them. The operation team should consist of really well-trained

people that have a good overview of the entire stack. Overall the learning curve for the

development team would be easy, but for the operation team it would be really high. In

addition, the maintainability of this system would be challenging due to the high

complexity. In general, the organization should consists of DevOps team that work

together in order to properly manage and use this design. Considering the potential

costs, Interviewee 5 thinks that this design is not feasible for the Thales case, mainly

because of Openstack, which is really complex resulting to high costs for training and

maintenance.

In the final question regarding the maturity of this design, Interviewee 5 answered that

the used technology is definitely mature but it includes high levels of complexity,

especially Openstack. The software-defined technology in general lacks of

standardization, which is a sign of immaturity. He would like to have follow-up research

that focuses on the ODL controller and on an open infrastructure API for provisioning

bare metal machines using immutable images. In addition, he would like to see further

research on the public clouds and proprietary solution because buying hardware and

setting up private clouds might be more expensive that outsourcing everything to a

public cloud as long as the security requirements are met. In the conclusion of the

interview, Interviewee 5 mentioned that we should design smaller and simpler solutions

and not spending money and effort on big complicated systems. As a passionate

supporter of the cloud native movement, he ended the interview by expressing his

preference on container-based solutions mentioning that containers are the future in the

IT world.

Interviewee 6

Interviewee 6 works as a System Architect at Thales and he has approximately 30 years

of experience in designing IT systems.

Theoretically speaking, Interviewee 6 mentioned that the current proposed design is

interesting and should work, but he has no real practical experience with these tools so

117

he cannot be certain about the functionality of this design in practice. Cobbler is able to

provision bare metal properly and Openstack seems to be really complex in his opinion.

The same comments apply also for the future design. Interviewee 6 is really focused on

the maturity and the complexity of Openstack. If Openstack is mature and simple

enough, then this design should work. However all these technologies are relatively new

and they are always changing, so further research and practical testing on Openstack

are required to acquire a clear understanding of these tools.

Regarding the network infrastructure, Interviewee 6 mentions that he is familiar with the

technologies in concepts, but again he lacks of practical experience with them. In

principle, this network design is great but he cannot be certain if it is applicable for

Thales. He would like to learn more about security, redundancy and how this technology

manages some specialized network requirements such as multicast. He also has some

concerns about the maturity of the ODL controller and how redundant it can be.

Interviewee 6 could not give a certain answer regarding the potential performance of the

design. He cannot recognize any potential bottlenecks and needs additional real-time

performance testing in order to have a clear of the efficiency of this design. Several

network features, such as routing are performed by the controller and that might be a

performance issue. Of course this design should combine high performance with high

redundancy in order to be used in production.

According to Interviewee 6, the scalability of this design depends on the size of the

available infrastructure. This design seems to perform well in large cloud systems;

however the Thales case is not close to this. Thales uses small sized system with

maximum four servers in size, so he is not sure how this design handles lower

scalability. In his opinion, the upgradability of this design seems to be at a decent level

because it uses tools such as Kubernetes and Ansible. However the main goal is to

create a higher abstraction layer where we can create systems at a higher level and

avoid diving into tools and configuration files.

Interviewee 6 is certain that this technology can be used for different use cases, but he

is not sure about the reusability of this specific design. In order to use it in many

different cases we have to create a higher abstraction layer for the applications and the

system should be independent from the application. To achieve that we have to define a

good mix of the limitations and identify what is feasible for our use case. Regarding the

traceability of this design, Interviewee 6 mentioned that this design completely lacks

observability and a monitoring pipeline should definitely be added in the future.

Interviewee 6 is highly concerned about the complexity of this design and he thinks that

the required learning curve will be relatively high as it requires a good system design in

118

advance and this system should be completely hardware independent, which is a

challenging process. In order to achieve this way of thinking we need specialists who are

difficult to find or train, as a result their selection should be performed carefully. The

recruitment or training of experts is an expensive process. In case we do not manage to

acquire the necessary experts, then we should choose the supported version of these

tools which also comes with relatively high costs. Overall, a thorough and well organized

business plan is needed to estimate the exact costs.

Interviewee 6 concluded that the used technologies are unstable and their maturity is not

at the proper levels for Thales at this point of time. However this is a good opportunity

for Thales to learn more on these kinds of technologies by conducting further research

on topics such as redundancy, safety, performance and specific network features.

Interviewee 6 is really curious to see if the promises of the software-defined technology

would actually manage to meet reality.

Interviewee 7

Interviewee 7 is a network engineer at Thales with 5 years of experience in the IT sector.

Interviewee 7 is mainly focused on the network layer combining an overview of the

infrastructure layer. Interviewee 7 is familiar with the software-defined concepts and

tooling.

Interviewee 7 is confident that the current proposed design covers the defined

requirements and it can combine VMs, bare metal machines and containers in one

system. Of course, this design is not optimal because there are many separate tools for

provisioning the resources. The ideal design should have one central dynamic platform

for building the entire infrastructure. This technology is really new for the use case of

Thales and further research is required in order to be used into production

environments. Thales uses in production only mature and as simple as possible

solutions. On the other hand, Interviewee 7 finds the future design much better

compared to the current one because it offers one dynamic platform for building all the

required infrastructure resources. Development and debugging will be easier in this

design because the engineers will only have to focus on learning and using only one

tool. One downside of this design might be the complexity of Openstack but there were

no alternatives that met the defined requirements.

Interviewee 7 mentions that the network infrastructure is complex as it involves many

new technologies, but it is really promising and useful because we can control and build

networks from a central point, which is the SDN controller. The ODL controller seems to

have potential. One downside is that we need special HW switches that support OVSDB

and Openflow, which are not available at Thales at the moment, but most likely we will

119

acquire them in the future. He also likes the fact that this technology includes many

security features such as virtual firewalls and security groups to control the flow of the

traffic. We need testing with real HW switches to see how this system behaves in a real

environment. Furthermore, this network infrastructure is based entirely on VXLAN

tunneling. This technology handles quite well unicast traffic, however it is not clear how it

handles multicast, which is used by many applications within Thales. The debugging

process of the network might be challenging due to its complexity but Interviewee 7

thinks that the controller would be able to facilitate it.

Regarding the performance, Interviewee 7 mentions that the network part will not cause

any performance issues as long as the required hardware is available. The virtual

switches do not seem to cause any performance problem. Of course additional research

and actual testing is required to identify and measure the failover time of the virtual

switches. Actual testing with these specialized physical switches would also be

interesting and it would provide a better insight on the performance of the entire network.

Furthermore, the performance of the infrastructure layer should be the desired one

because we are always able to select the most suitable infrastructure resources for each

specific use case.

According to Interviewee 7, this software-defined system is designed to be easily

scalable and it will not face any scalability issues. This design also has better

upgradability compared to the currently used systems at Thales, where everything has

to be reinstalled whenever a new update is released. High levels of upgradability are

reached with the use of Terraform and Ansible.

Interviewee 7 mentions that this design might serve many different projects for a wide

range of organizations that support different kinds of applications. For Thales this

technology might be used for setting up the infrastructure for the combat management

system, and maybe for building the infrastructure of a big battleship. However his main

concern lies on how this technology manages the different security domains that exist at

the naval domain. The customers of Thales have many different requirements that

restrict the flow of data between two different security domains.

Code files are used to describe the entire infrastructure, which significantly improves the

documentation of the system according to Interviewee 7. On top of the code, the

engineers can write comments that describe the functionality of each resource. In

addition, these code files can be version controlled by version control system such as

Git. The engineers would be able to keep track of the changes and roll back to previous

versions easily. Regarding the observability, he think that something is missing.

Openstack offers some monitoring but an extra monitoring pipeline is needed in his

opinion. However this was not the goal of this research project.

120

Interviewee 7 believes that the required learning curve depends on the experience and

the age of the engineers in the organization. If the organization has young people, it

would be easy to train them on how to use and maintain this new system. Older people

have a different mindset, which might be a bit difficult to change. This new technology

requires a different view of the entire system. The developers should also understand

the infrastructure concepts, so some additional training for the development teams might

be necessary. This technology of course is complex as it includes many different

components with many different interfaces; as a result there are higher changes of

errors. That would increase the required time and effort for maintenance. Overall,

Interviewee 7 believes that the learning curve will not be really high and the engineers

will manage to cope with this new technology.

During the discussion about the potential costs, Interviewee 7 mentioned that the

hardware costs will not be high and they maybe be even lower that the current values.

This technology runs on different kind of COTS hardware, which automatically reduces

the costs. In addition, this specialized OVSDB switches will become cheaper in the close

future. These switches are quite expensive at the moment as every new technology after

its release. Furthermore, this design uses virtualization technology that utilizes the

resources of the infrastructure efficiently. On the other hand, licenses for the supported

version of the tool might be costly. Thales always selects the tool version that offers the

best support. In total, Interviewee 7 believes that this design would be cheaper in the

future and the prices will drop by the time this design is used in many different projects.

Currently each project in Thales uses a different infrastructure, and this design will

replace that with one infrastructure for every project.

In the conclusion of the interview, Interviewee 7 referred to the maturity of the software-

defined technology. In his opinion, this technology is relatively new and it is still under

improvement. This technology is used by many companies so its maturity is sufficient,

but for the Thales case this technology is still immature. For Thales this is a really big

step and follow up research is required. He would like to see additional research on the

topics related to performance, redundancy and security. For the Thales customers

performance is the most important aspect, so most of the future research should focus

on this aspect.

121

References

1. SDx Central, “What is Software Defined Everything”, Retrieved on 5 August, 2019,

from: https://www.sdxcentral.com/cloud/definitions/software-defined-everything-sdx-part-1-

definition/

2. Peffers, K., Tuunamen, T., Rothenberger, M., & Chatterjee, S., “A Design Science

Research Methodology for Information Systems Research”, 2007, Journal of

Management Information Systems(24), 45-77
3. Roel J. Wieringa, “Design Science Methodology for Information Systems and

Software Engineering”, Springer, 2014, p. 1-63

4. Alan R. Hevner, "A Three Cycle View of Design Science Research," 2007,

Scandinavian Journal of Information Systems: Vol. 19: Iss. 2 , Article 4

5. Jieyu Lin, Rajsimman Ravichandiran, Hadi Bannazadeh, Alberto Leon-Garcia,

“Monitoring and Measurement in Software-Defined Infrastructure”, 2015 IFIP/IEEE

International Symposium on Integrated Network Management (IM), 2015, pp. 742-

745

6. Kief Morris, “Infrastructure as Code: Managing Servers in the Cloud”, O’Reilly Media

Inc., 1st Edition, 2016, p. 5 – 40

7. Openstack, “Adding Speed and Agility to Virtualized Infrastructure with Openstack”,

Whitepaper, 2015, Retrieved on 27 November, 2019, from:

https://www.openstack.org/assets/pdf-downloads/virtualization-Integration-whitepaper-

2015.pdf

8. Foreman, Retrieved on 11 September 2019, from: https://theforeman.org/

9. Medhi Medjaoui, Erik Wilde, Ronnie Mitra, Mike Amundsen, Kin Lane, “Continuous

API Management: Make the Right Decisions in an Involving Landscape”, O’Reilly

Media inc., 1st Edistion, 2019, p. 3

10. Amazon, “AWS CloudFormation”, Retrieved on 5 August, 2019, from:

https://aws.amazon.com/cloudformation/

11. Google, “Cloud Deployment Manager”, Retrieved on 5 August, 2019, from:

https://cloud.google.com/deployment-manager/

12. Microsoft, “Azure Resource Manager Overview”, Retrieved on 5 August, 2019, from:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview

13. HarshiCorp, “HarshiCorp Terraform”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/

14. Prassanna J*, Anjali R Pawar, Neelanarayanan V, “A Review of Existing Cloud

Automation Tools”, Asian Journal of Pharmaceutical and Clinical Research, vol. 10,

2017, p. 471-473

15. Openstack, “Openstack Heat”, Retrieved on 5 August, 2019, from:

https://wiki.openstack.org/wiki/Heat

https://www.sdxcentral.com/cloud/definitions/software-defined-everything-sdx-part-1-definition/
https://www.sdxcentral.com/cloud/definitions/software-defined-everything-sdx-part-1-definition/
https://www.openstack.org/assets/pdf-downloads/virtualization-Integration-whitepaper-2015.pdf
https://www.openstack.org/assets/pdf-downloads/virtualization-Integration-whitepaper-2015.pdf
https://theforeman.org/
https://aws.amazon.com/cloudformation/
https://cloud.google.com/deployment-manager/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview
https://www.terraform.io/
https://wiki.openstack.org/wiki/Heat

122

16. Openstack, “Telemetry”, Retrieved on 5 August, 2019, from:

https://wiki.openstack.org/wiki/Telemetry

17. Amazon, “Auto Scaling Groups”, Retrieved on 5 August, 2019, from:

https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html

18. Navin Sabharwal, Manak Wadhwa, “Automation through Chef Opscode: A Hand-on

Approach to Chef”, Apress publications, 1st Edition, 2014, p. 5

19. Chef, “Learn Chef: An Overview of Chef”, Retrieved on 5 August, 2019, from:

https://docs.chef.io/chef_overview.html

20. Gregory Katsaros, Michael Mezel, Alexander Lenk, Jannis Rake-Revelant, Ryan

Skipp, Jacob Eberhardt, “Cloud application portability with TOSCA, Chef and

Openstack: Experiences from a proof of concept implementation”, IEEE International

Conference on Cloud Engineering, 2014

21. James Loope, “Managing Infrastructure with Puppet ”, O’Reilly Media Inc, 1st Edition,

2011, p. 1

22. Christian Endres, Uwe Breitenbucher, Michael Falkenthal, Oliver Kopp, Frank

Leymann, Johannes Wettinger, “Declarative vs. Imperative: Two Modeling Patterns

for the Automated Deployment of Applications”, Proceedings of the 9th International

Conference of Pervasive Patterns and Applications, 2017, p. 22-27

23. Redhat, “Ansible in Depth”, Whitepaper, Retrieved on 27 November, 2019, from:

http://www.cmsdistribution.com/wp-content/uploads/2016/09/Ansible-in-Depth-

Whitepaper.pdf

24. Colton Myers, “Learning SaltStack”, Packt Publishing, 2nd Edition, 2016, p. v

25. Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, Steve Uhlig, “Software-Defined Networking: A

Comprehensive Survey”, Proceeding of the IEEE, 2014

26. Bilal R. Al-Kaseem, Hamed S. Al-Rawshidy, “SD-NFV as an Energy Efficient

Approach For M2M Network Using Cloud-Based 6LoWPAN Testbed ”, IEEE Internet

of Things Journal, vol. 4, 2017

27. Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith

Amidon, Martin Casado, “The Design and Implementation of Open vSwitch”,

Proceedings of the 12th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 15), 2015

28. Nick McKeon, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Lary Peterson,

Jennifer Rexford, Scott Shenker, Jonathan Turner, “OpenFlow: Enabling Innovation

in Campus Networks”, ACM SIGCOMM Computer Communication Review 38, 2008,

p. 69-74

29. B. Pfaff, B. Davie, “The Open vSwitch Database Management Protocol”, Retrieved

on 29 August, from: http://www.hjp.at/doc/rfc/rfc7047.html

https://wiki.openstack.org/wiki/Telemetry
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.chef.io/chef_overview.html
http://www.cmsdistribution.com/wp-content/uploads/2016/09/Ansible-in-Depth-Whitepaper.pdf
http://www.cmsdistribution.com/wp-content/uploads/2016/09/Ansible-in-Depth-Whitepaper.pdf
http://www.hjp.at/doc/rfc/rfc7047.html

123

30. Kok-Kiong Yap, Te-Yuan Huang, Ben Dodson, Monica S. Lam, Nick McKeown,

“Towards Software-Friendly Networks ”, ApSys ’10: Proceedings of the first ACM

Asia-pacific workshop, 2010, p. 49-54

31. Cisco, “Cisco IOS Technologies”, Retrieved on 5 August, 2019, from:

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-technologies/index.html

32. Juniper Networks, “Junos OS Overview”, Retrieved on 5 August, 2019, from:

https://www.juniper.net/us/en/products-services/nos/junos/

33. Jim Doherty, “SDN and NFV Simplified: A Visual Guide to Understanding Software

Defined Networks and Network Function Virtualization”, Pearson Education Inc.,

2016, p. 210

34. GitHub, “The POX network software platform”, Retrieved on 5 August, from:

https://github.com/noxrepo/pox

35. GitHub, “Ryu SDN Framework”, Retrieved on 5 August, 2019, from:

http://osrg.github.io/ryu/

36. GitHub, “Trema: Full-Stack OpenFlow Framework in Ruby and C”, Retrieved on 5

August, 2019, from: http://trema.github.io/trema/

37. Project Floodlight, “Floodlight OpenFlow Controller”, Retrieved on 5 August, 2019,

from: http://www.projectfloodlight.org/floodlight/

38. Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx, Kpatcha Bayarou, “Feature-

based comparison and selection of Software Defined Networking (SDN) controllers”,

World Congress on Computer Applications and Information Systems (WCCAIS),

2014, p. 1-7

39. The Linux Foundation projects, “OpenDayLight”, Retrieved on 5 August, 2019, from:

https://www.opendaylight.org/

40. Ahmad Hemid, “Facilitation of the OpenDaylight Architecture”, Computer Science

Conference for University of Bonn Students (CSCUBS), 2017

41. SDx Central, “What is Software Defined Compute?”, Retrieved on 5 August, 2019,

from:https://www.sdxcentral.com/networking/sdn/definitions/what-is-software-defined-

compute/

42. David Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes”, IEEE

Cloud Computing, 2014, vol. 1, no. 3, pp. 81-84

43. WEI-Tech Brief, “Five Game-Changing Advantages of Software Defined Computing”,

Whitepaper, Retrieved on 27 November, 2019, from:

https://cdn2.hubspot.net/hubfs/1774733/Tech_Briefs/Tech_Brief_-_5_Game-

changing_Advantages_of_Software_Defined_Computing.pdf

44. Redhat, “Linux-KVM”, Retrieved on 5 August, 2019, from: https://www.linux-

kvm.org/page/Main_Page

45. The Linux Foundation Projects, “Xen project”, Retrieved on 5 August, 2019, from:

https://xenproject.org/

https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-technologies/index.html
https://www.juniper.net/us/en/products-services/nos/junos/
https://github.com/noxrepo/pox
http://osrg.github.io/ryu/
http://trema.github.io/trema/
http://www.projectfloodlight.org/floodlight/
https://www.opendaylight.org/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-software-defined-compute/
https://www.sdxcentral.com/networking/sdn/definitions/what-is-software-defined-compute/
https://cdn2.hubspot.net/hubfs/1774733/Tech_Briefs/Tech_Brief_-_5_Game-changing_Advantages_of_Software_Defined_Computing.pdf
https://cdn2.hubspot.net/hubfs/1774733/Tech_Briefs/Tech_Brief_-_5_Game-changing_Advantages_of_Software_Defined_Computing.pdf
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://xenproject.org/

124

46. Vmware, “Vmware vSphere”, Retrieved on 5 August, 2019, from:

https://my.vmware.com/web/vmware/info/slug/datacenter_cloud_infrastructure/vmware_vsph

ere/6_0#open_source

47. Oracle, “Virtual Box”, Retrieved on 5 August, 2019, from: https://www.virtualbox.org/

48. Opensource.com, “What is Docker”, Retrieved on 5 August, 2019, from:

https://opensource.com/resources/what-docker

49. Openstack, Retrieved on 5 August, 2019, from: https://www.openstack.org/

50. Openstack, “Horizon: The Openstack Dashboard Project”, Retrieved on 5 August,

2019, from: https://docs.openstack.org/horizon/latest/

51. Openstack, “Neutron”, Retrieved on 5 August, 2019, from:

https://wiki.openstack.org/wiki/Neutron

52. Openstack, “Magnum”, Retrieved on 5 August, 2019, from:

https://wiki.openstack.org/wiki/Magnum

53. Kubernetes, Retrieved on 5 August, 2019, from: https://kubernetes.io/

54. Openstack, “Ironic”, Retrieved on 5 August, 2019, from:

https://wiki.openstack.org/wiki/Ironic

55. Cobbler, Retrieved on 5 August, 2019, from: https://cobbler.github.io/

56. Ansible, “Working with Dynamic Inventory”, Retrieved on 5 August, 2019, from:

https://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html#inventory-

script-example-cobbler

57. Terraform, “openstack_compute_instance_v2”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/compute_instance_v2.html

58. Openstack, “Select hosts where instances are launched”, Retrieved on 5 August,

2019, from: https://docs.openstack.org/nova/latest/admin/availability-zones.html

59. Terraform, “openstack_images_image_v2”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/images_image_v2.html

60. Openstack, “Useful image properties”, Retrieved on 5 August, 2019, from:

https://docs.openstack.org/glance/rocky/admin/useful-image-properties.html

61. Terraform, “openstack_compute_flavor_v2”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/compute_flavor_v2.html

62. Openstack, “Attaching virtual GPU devices to guests”, Retrieved on 5 August, 2019,

from: https://docs.openstack.org/nova/queens/admin/virtual-gpu.html

63. Openstack, “Attaching physical PCI devices to guests”, Retrieved on 5 August, 2019,

from: https://docs.openstack.org/nova/stein/admin/pci-passthrough.html

64. Terraform, “Cobbler Provider”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/cobbler/index.html

65. Oracle, “PXE Booting and Kickstart Technology”, Retrieved on 5 August, 2019, from:

https://docs.oracle.com/cd/B16240_01/doc/em.102/e14500/appdx_pxeboot.htm

66. IBM Developer, “Automate and manage systems installation with Cobbler”, Retrieved

on 5 August, 2019, from: https://developer.ibm.com/articles/l-cobbler/

https://my.vmware.com/web/vmware/info/slug/datacenter_cloud_infrastructure/vmware_vsphere/6_0#open_source
https://my.vmware.com/web/vmware/info/slug/datacenter_cloud_infrastructure/vmware_vsphere/6_0#open_source
https://www.virtualbox.org/
https://opensource.com/resources/what-docker
https://www.openstack.org/
https://docs.openstack.org/horizon/latest/
https://wiki.openstack.org/wiki/Neutron
https://wiki.openstack.org/wiki/Magnum
https://kubernetes.io/
https://wiki.openstack.org/wiki/Ironic
https://cobbler.github.io/
https://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html#inventory-script-example-cobbler
https://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html#inventory-script-example-cobbler
https://www.terraform.io/docs/providers/openstack/r/compute_instance_v2.html
https://docs.openstack.org/nova/latest/admin/availability-zones.html
https://www.terraform.io/docs/providers/openstack/r/images_image_v2.html
https://docs.openstack.org/glance/rocky/admin/useful-image-properties.html
https://www.terraform.io/docs/providers/openstack/r/compute_flavor_v2.html
https://docs.openstack.org/nova/queens/admin/virtual-gpu.html
https://docs.openstack.org/nova/stein/admin/pci-passthrough.html
https://www.terraform.io/docs/providers/cobbler/index.html
https://docs.oracle.com/cd/B16240_01/doc/em.102/e14500/appdx_pxeboot.htm
https://developer.ibm.com/articles/l-cobbler/

125

67. Terraform, “cobbler_system”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/cobbler/r/system.html

68. Terraform, “cobbler_profile”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/cobbler/r/profile.html

69. Terraform, “cobbler_distro”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/cobbler/r/distro.html

70. Terraform, “cobbler_repo”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/cobbler/r/repo.html

71. GitHub, “Kubernetes”, Retrieved on 20 Septemeber, 2019, from:

https://github.com/kubernetes/kubernetes

72. Terraform, “openstack_containerinfra_cluster_v1”, Retrieved on 5 August, 2019,

from: https://www.terraform.io/docs/providers/openstack/r/containerinfra_cluster_v1.html

73. Terrafrom, “openstack_containerinfra_clustertemplate_v1”, Retrieved on 5 August,

2019, from:

https://www.terraform.io/docs/providers/openstack/r/containerinfra_clustertemplate_v1.html

74. UnixArena, “Ansible – How to use facts on Playbooks”, Retrieved on 5 August, 2019,

from: https://www.unixarena.com/2018/08/ansible-how-to-use-facts-on-playbooks-

conditional-check.html/

75. Terraform, “openstack_networking_network_v2”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/networking_network_v2.html

76. Terraform, “openstack_networking_subnet_v2”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/networking_subnet_v2.html

77. Terraform, “openstack_networking_router_v2”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/networking_router_v2.html

78. Terraform, “openstack_networking_router_interface_v2”, Retrieved on 5 August,

2019, from:

https://www.terraform.io/docs/providers/openstack/r/networking_router_interface_v2.html

79. Terraform, “openstack_compute_floatingip_v2”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/compute_floatingip_v2.html

80. Terraform, “openstack_compute_floatingip_associate_v2”, Retrieved on 5 August,

2019, from:

https://www.terraform.io/docs/providers/openstack/r/compute_floatingip_associate_v2.html

81. Terraform, “openstack_networking_secgroup_v2”, Retrieved on 5 August, 2019,

from: https://www.terraform.io/docs/providers/openstack/r/networking_secgroup_v2.html

82. Terraform, “openstack_networking_secgroup_rule_v2”, Retrieved on 5 August, 2019,

from:

https://www.terraform.io/docs/providers/openstack/r/networking_secgroup_rule_v2.html

83. Openstack, “Firewall-as-a-Service (FWaaS)”, Retrieved on 5 August, 2019, from:

https://docs.openstack.org/neutron/pike/admin/fwaas.html

84. Terraform, “openstack_fw_firewall_v1”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/fw_firewall_v1.html

https://www.terraform.io/docs/providers/cobbler/r/system.html
https://www.terraform.io/docs/providers/cobbler/r/profile.html
https://www.terraform.io/docs/providers/cobbler/r/distro.html
https://www.terraform.io/docs/providers/cobbler/r/repo.html
https://www.terraform.io/docs/providers/openstack/r/containerinfra_cluster_v1.html
https://www.terraform.io/docs/providers/openstack/r/containerinfra_clustertemplate_v1.html
https://www.unixarena.com/2018/08/ansible-how-to-use-facts-on-playbooks-conditional-check.html/
https://www.unixarena.com/2018/08/ansible-how-to-use-facts-on-playbooks-conditional-check.html/
https://www.terraform.io/docs/providers/openstack/r/networking_network_v2.html
https://www.terraform.io/docs/providers/openstack/r/networking_subnet_v2.html
https://www.terraform.io/docs/providers/openstack/r/networking_router_v2.html
https://www.terraform.io/docs/providers/openstack/r/networking_router_interface_v2.html
https://www.terraform.io/docs/providers/openstack/r/compute_floatingip_v2.html
https://www.terraform.io/docs/providers/openstack/r/compute_floatingip_associate_v2.html
https://www.terraform.io/docs/providers/openstack/r/networking_secgroup_v2.html
https://www.terraform.io/docs/providers/openstack/r/networking_secgroup_rule_v2.html
https://docs.openstack.org/neutron/pike/admin/fwaas.html
https://www.terraform.io/docs/providers/openstack/r/fw_firewall_v1.html

126

85. Terraform, “openstack_fw_policy_v1”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/fw_policy_v1.html

86. Terraform, “openstack_fw_rule_v1”, Retrieved on 5 August, 2019, from:

https://www.terraform.io/docs/providers/openstack/r/fw_rule_v1.html

87. Pica8, “Improving Overlay Solutions with Hardware-Based VXLAN Termination”,

Whitepaper, Retrieved on 27 November, 2019, from: https://www.pica8.com/wp-

content/uploads/pica8-whitepaper-VXLAN-overlay.pdf

88. SDx Central, “What is VXLAN”, Retrieved on 16 September, 2019, from:

https://www.sdxcentral.com/networking/virtualization/definitions/what-is-vxlan/

89. Open vSwitch, “Open vSwitch Manual – hardware_vtep database schema”,

Retrieved on 5 August, 2019, from: http://www.openvswitch.org/support/dist-

docs/vtep.5.html

90. Juniper Networks, “Understanding the OVSDB Protocol Running on Juniper Network

Devices”, Retrieved on 5 August, 2019, from:

https://www.juniper.net/documentation/en_US/junos/topics/concept/sdn-ovsdb-junos.html

91. VMWare Inc, “The Open vSwitch Database Management Protocol”, Retrieved on 5

August, 2019, from: https://tools.ietf.org/html/rfc7047#section-1.2

92. Openstack, “Neutron/ L2-GW”, Retrieved on 5 August, 2019, from:

https://wiki.openstack.org/wiki/Neutron/L2-GW

93. Networkop.co.uk, “Openstack SDN – Interconnecting VMs and Physical Devices with

Cumulus VX L2 Gateway”, Retrieved on 5 August, 2019, from:

https://networkop.co.uk/blog/2016/05/21/neutron-l2gw/

94. Opendaylight, “NetVirt: L2Gateway Howto”, Retrieved on 5 August, 2019, from:

https://wiki.opendaylight.org/view/NetVirt:_L2Gateway_HowTo

95. Opendaylight, “NetVirt”, Retrieved on 5 August, 2019, from:

https://wiki.opendaylight.org/view/NetVirt

96. Opendaylight, “OVSDB Integration: L3Fwd”, Retrieved on 3 September, 2019, from:

https://wiki.opendaylight.org/view/OVSDB_Integration:L3Fwd

97. Redhat, “Prepare for Opendaylght installation”, Retrieved on 29 August, 2019, from:

https://access.redhat.com/documentation/en-

us/red_hat_openstack_platform/11/html/opendaylight_and_red_hat_openstack_installation_

and_configuration_guide/prepare_for_opendaylight_installation

98. ISO 25000, “ISO/IEC 25010”, Retrieved on 30 September, from:

https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0

99. GitHub, “Metal3 Documentantion”, Retrieved on 24 October, 2019, from:

https://github.com/metal3-io/metal3-docs

100. Digital Rebar, Retrieved on 24 October, 2019, from: https://rebar.digital

https://www.terraform.io/docs/providers/openstack/r/fw_policy_v1.html
https://www.terraform.io/docs/providers/openstack/r/fw_rule_v1.html
https://www.pica8.com/wp-content/uploads/pica8-whitepaper-VXLAN-overlay.pdf
https://www.pica8.com/wp-content/uploads/pica8-whitepaper-VXLAN-overlay.pdf
https://www.sdxcentral.com/networking/virtualization/definitions/what-is-vxlan/
http://www.openvswitch.org/support/dist-docs/vtep.5.html
http://www.openvswitch.org/support/dist-docs/vtep.5.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/sdn-ovsdb-junos.html
https://tools.ietf.org/html/rfc7047#section-1.2
https://wiki.openstack.org/wiki/Neutron/L2-GW
https://networkop.co.uk/blog/2016/05/21/neutron-l2gw/
https://wiki.opendaylight.org/view/NetVirt:_L2Gateway_HowTo
https://wiki.opendaylight.org/view/NetVirt
https://wiki.opendaylight.org/view/OVSDB_Integration:L3Fwd
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html/opendaylight_and_red_hat_openstack_installation_and_configuration_guide/prepare_for_opendaylight_installation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html/opendaylight_and_red_hat_openstack_installation_and_configuration_guide/prepare_for_opendaylight_installation
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/11/html/opendaylight_and_red_hat_openstack_installation_and_configuration_guide/prepare_for_opendaylight_installation
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?limit=3&limitstart=0
https://github.com/metal3-io/metal3-docs
https://rebar.digital/

	Abstract
	Preface
	Table of contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Software-Defined Concept
	1.3 Scope
	1.4 Research Methodology
	1.5 Literature Study
	1.6 Thesis Structure

	2 Software-Defined Infrastructure
	2.1 General Elements
	2.2 Benefits of Infrastructure as Code
	2.3 Provisioning Tools
	2.3.1 Terraform
	2.3.2 Openstack Heat
	2.3.3 Comparison of the provisioning tools

	2.4 Configuration Tools
	2.4.1 Chef
	2.4.2 Puppet
	2.4.3 Ansible
	2.4.4 Saltstack
	2.4.5 Comparison of the configuration tools

	3 Software-Defined Technology at the Network Layer
	3.1 Software-Defined Networking
	3.1.1 Southbound Interfaces
	3.1.2 Northbound Interfaces
	3.1.3 SDN Controllers
	Opendaylight

	4 Software-Defined Computing
	4.1 Benefits of SDC
	4.2 SDC Tools

	5 Preparation of the design - Case Study
	5.1 Requirements
	5.2 Overview of the Design
	5.3 Selection of Tools
	5.3.1 Provisioning Tool
	5.3.2 Dynamic Platform
	5.3.3 Configuration Tool
	5.3.4 SDN Support and Controller

	6 Infrastructure Design
	6.1 Provisioning
	6.1.1 Creating Virtual Machines
	6.1.2 Provisioning Bare Metal Machines
	6.1.3 Provisioning Containers

	6.2 Configuration
	6.3 Architecture Realization of the Infrastructure Layer

	7 Network Design
	7.1 Creating virtual networks
	7.2 Securing virtual networks
	7.3 Connectivity with physical networks
	7.3.1 VXLAN and VTEPs
	7.3.2 OVSDB and Openflow support
	7.3.3 L2 Gateways
	7.3.4 Configuring the connections

	7.4 Architecture Realization of the Network Layer
	7.5 Traffic flow within the network

	8 Physical Architecture of the Design
	8.1 Supported design
	8.2 Possibly improved design

	9 Validation
	9.1 Validation approach
	9.2 Results
	9.2.1 Current and future proposed design of the infrastructure layer
	9.2.2 Design of the network layer
	9.2.3 Performance
	9.2.4 Scalability and Upgradability
	9.2.5 Reusability
	9.2.6 Traceability
	9.2.7 Learnability and Complexity
	9.2.8 Costs
	9.2.9 Maturity

	9.3 Discussion of the results

	10 Conclusions
	10.1 Answers to research questions
	10.2 Limitations
	10.3 Contributions
	10.4 Recommendations
	10.5 Future work

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	Appendix I
	Appendix J
	Appendix K
	References

