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Management summary 
 

The electricity network of Liander needs to be reinforced so that the energy transition can be facili-

tated. Unfortunately, Liander is unable to perform all desired investments due to a lack of technical 

personnel. Therefore, a prioritisation between projects is required. An investment can be an asset 

purchase and installation, maintenance, inspection and disposal. We argue that the attractiveness of 

a single investment depends on the entire investment strategy. For example, the attractiveness of a 

major maintenance action is meagre if the asset is to be replaced shortly after. Our research objective 

is to build a simulation model which can assess the life cycle costs of an investment strategy. We build 

the simulation model for a case study on power transformers, with the intent of it being generalisable 

to other assets. 

 

The idea behind assessing the costs of an asset is central in life cycle costing. The approach allows for 

making decisions based on a single measure, and relies on monetising the impact of investments. A 

fair cost measure is essential to a life cycle costing analysis. We measure the life cycle costs in terms 

of equivalent annuitized costs, which are the annuity equivalent of the net present value. The measure 

allows for a fair comparison of mutually exclusive alternatives with unequal lives. 

 

In order to simulate an asset’s life cycle, we need to know the relationship between failures and 

maintenance. A maintenance action is aimed at restoring the condition of an asset, such that the 

probability of failure decreases. The underlying trade-off is the reduction in the risk of failure and the  

maintenance costs. We model the relationship between the asset’s condition and the probability of 

failure with a degradation model. Our degradation model is based on a Markov chain model, which is 

a discrete-time stochastic model. The States 1,… ,𝑁 correspond to the conditions of ordinally ranked 

data or ranges of values for continuous data. The degradation transition probabilities of the Markov 

chain dictate the likelihood of degrading from one state to another in the next period, and 

maintenance restores the condition to certain states with their own transition probabilities. 

 

A major contribution of our research lies in fitting transition probabilities for our case study on power 

transformers. Power transformers fulfil the role of transforming a voltage into another voltage. We 

apply the maximum likelihood approach of Hoskins et al. (1999) to find stationary transition 

probabilities describing the degradation of power transformers. The approach finds the transition 

probabilities such that the likelihood of the observations is maximised, and it is applicable to interval-

censored data with transitions spanning over different time intervals. Applying this to our case study, 

where the conditions good, moderate, bad and failed correspond to States 9, 6, 1 and 0 respectively, 

results in the following probability matrix: 

 

                        9.000 6.000 1.000 0.000   

𝑃̂𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =

9
6
1
0

[

0.686 0.221 0.092 0.001
0.000 0.850 0.148 0.002
0.000 0.000 0.979 0.021
0.000 0.000 0.000 1.000

]  
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However, the assumption that the transition probabilities are constant during the power transformer’s 

life cycle may be too restrictive. We consider the possibility that the probabilities depend on the asset’s 

age and the time spent in a state. We fit transition probabilities for age categories with the maximum 

likelihood approach of Hoskins et al. (1999), and find large differences between categories. We test 

whether the transition probabilities depend on the time spent in a state by fitting a semi-Markov model 

with the method described by Black et al. (2005). Due to a lack of data we are unable to obtain reliable 

results, but we believe that the method may be interesting for Liander if more data are provided. 

 

We build a simulation model with transition probabilities dependent on the age category to generate 

random paths for the condition of an asset throughout its life. The purchase, installation, (preventive 

and corrective) maintenance, inspection, disposal and failure costs are registered and used to calculate 

the equivalent annuitized costs at the end of the trial. This is repeated one million times in order to 

generate a distribution of the life cycle costs given an investment strategy. We find that the impact of 

maintenance is rather small, and argue that the impact of maintenance in our model is too small due 

to the unrewarded replacement of components. After maintenance is performed on an older asset 

and certain components have been replaced, these components are unlikely to degrade soon. The 

transition probabilities of our simulation model depend only on the asset’s age, and not the age of the 

components. 

 

We recommend Liander to expand the model by fitting an asset degradation model on a component 

level, so that the age of each component is correct after a maintenance action. Furthermore, we also 

recommend that Liander puts more research into the asset degradation and investment strategy 

decisions, in order to make the simulation model more realistic. Nevertheless, the main steps required 

to go from data to an analysis of an asset’s life cycle costs for an investment strategy by means of a 

simulation model are useful for any asset manager who wishes to improve his or her decision making. 

Therefore, we advise to take the following steps: 

1. Scope the asset category. The simulation results are only reliable if the assets have similar 

degradation behaviour. If it is uncertain whether we can assume that certain asset categories 

have similar behaviour, the transition probabilities can be determined for subsamples in order 

to compare them.  

2. Gather the condition, failure and cost data. Extract the data on the condition, failures and 

costs of the asset. The condition data should be ordinally ranked to be used in a Markov model. 

Continuous data can be categorised such that condition indices are available. 

3. Classify the failures. The failures are to be classified based on whether they are preventable 

through maintenance or not. Preventable failures have a relation to the asset’s condition, 

while the other failures happen irrespective of the condition assigned at an inspection. 

4. Complete condition data. The conditions of an asset are known throughout different moments 

in time. Only the preventable failures should be added to the condition data. The failures are 

assigned to a new state. 
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5. Find the transitions. The transitions between the conditions of an asset are extracted from the 

condition data. Two subsequent conditions together with the time between the conditions 

form a transition, as long as no maintenance activities have been performed on the asset 

between the observations. 

6. Fit the transition probabilities. The transitions can be used to fit transition probabilities 

through a maximum likelihood estimation. The transition probabilities can be stationarity or 

dependent on more than just the current state, but the assumptions underlying the transition 

probabilities should be appropriate. 

7. Find the probability of unpreventable failure. The probability of failure resulting from the 

transition probabilities only covers the probability of a preventable failure. The probability of 

the other failures should be found as well. The other failures do not depend on the asset’s 

condition, but may depend on other factors. 

8. Find cost parameters. The cost data should be used to find the parameters of the cost items. 

The cost items may be influenced by multiple factors, and may be different for every asset. 

9. Define the investment strategy decisions. The aspects on which to base an investment 

strategy decision should be defined. These aspects are the factors which influence the 

decision, such as age.  

10. Complete the simulation model. The states, parameters, degradation model and investment 

strategy decisions should be put into a simulation model. The simulation model’s logic of our 

research is available for reference. 
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Chapter 1 Introduction 

 

In Section 1.1 we introduce Liander and its activities. Next, we identify the core problem of our 

research in Section 1.2. In Section 1.3 we set out to explain the research objective, and in Section 1.4  

we discuss the research questions which will help us achieve the research objective. Section 1.5 covers 

the methodology we follow in order to answer the research questions. Subsequently, we discuss the 

scope of this thesis in Section 1.6. Lastly, we explain the outline of this thesis in Section 1.7. 

 

1.1 Liander 

 

Liander N.V. (in short Liander) is a Distribution System Operator (DSO), which means that it is 

responsible for operating, maintaining and developing its energy network. This network consists of 

90,000 km of electricity cables and 42,000 km of gas pipelines used to transport electricity to over 3.1 

million customer connections and gas to over 2.5 million customer connections (Alliander, 2018). The 

catchment area of Liander covers the provinces Gelderland, Noord-Holland, Zuid-Holland, Flevoland 

and Friesland – as shown in Figure 1. 

 

Liander is part of Alliander, which is a group of 

companies operating in the Dutch energy sector. 

Alliander is owned by the provinces Gelderland, 

Noord-Holland and Friesland, and municipalities in 

the catchment area of Liander’s network. The 

province Gelderland is the largest shareholder with 

almost 45% ownership. 

 

Liander, Enexis and Stedin are the largest Dutch 

regional DSOs. In the Netherlands the electricity 

network of a regional DSO mainly consists of a 

medium voltage and a low voltage network. The 

high voltage electricity network is almost entirely 

the responsibility of the nationwide Transmission 

System Operator (TSO) TenneT. Only small parts  of 

it are the responsibility of the regional DSOs. An 

overview of the Dutch electricity network is given 

in Figure 2. The Dutch gas network is structured in 

a similar way as the electricity network. The 

nationwide TSO for the gas network is Gasunie Transport Services. The regional DSOs are responsible 

for the networks which connect customers to the network of the nationwide TSO. An overview of the 

Dutch gas network is given in Figure 3. 

 

Figure 1: The catchment area of Liander (Alliander, 2019). 
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Figure 2: Overview of the electricity network. 

 

 
Figure 3: Overview of the gas network. 

 

The figures show that the largest sources of power generation are connected to the customers by first 

the network of the nationwide TSOs and subsequently the network of a regional DSO. Smaller sources 

of power generation are directly connected to customers by the network of a regional DSO. The figures 

also show that the electricity and gas networks have a circular structure. The circular structure allows 

for rerouting in case a part of the network fails. 
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Liander’s assets can be categorised in two groups. The first and largest group consists of those which 

are buried and left unchanged until they are ultimately replaced. The assets are relatively cheap 

compared to the costs of digging, and consequently no inspections or maintenance actions are 

performed for them. An energy network consists of so many of them that the purchase and installation 

costs are important when considering grid expansion. Examples of assets belonging to this group are 

cables, insulating joints and gas pipelines. The second group consists of assets which are placed above 

ground. These are typically more expensive and cheaper to reach since digging is not required, and 

hence inspection and maintenance actions are performed for those assets. Examples of assets which 

are part of this group are switchgear and power transformers. 

 

1.2 Problem identification 

 

Every year Liander decides where to invest in its networks. An investment is aimed at corrective or 

preventive replacement, corrective or preventive maintenance, inspection, grid expansion or 

alterations. Liander manages a vast portfolio of heterogeneous assets and it plans to invest €844 

million in their networks in 2019 (Alliander, 2019). Currently, Liander is unable to perform all 

investments they desire because of two reasons. First, Liander’s ambitions are limited by its available 

technical personnel. Second, Liander aims to facilitate the energy transition which requires a lot of 

investments. The energy transition refers to the liberalisation of the energy sector, an increase in 

decentralised energy production and changes in energy consumption (Verbong and Geels, 2007). The 

capacity of the electricity network has to be increased rapidly in order to facilitate these changes, 

though Liander does not have enough technical personnel to perform all of these investments in 

addition to their regular ones aimed at the conservation of the network. Because of this mismatch 

between demand and supply, Liander has to prioritise certain investment decisions over others. 

 

The prioritisation process is difficult because Liander is unable to benchmark the attractiveness of an 

investment strategy. An investment strategy is the entire set of investment decisions for an asset from 

now until retirement. We argue that we are interested in the attractiveness of an investment strategy 

rather than a stand-alone investment for an asset, because the attractiveness of an investment 

decision depends on the other plans Liander has for it. If Liander wishes to replace the asset in the next 

year, it is probably unwise to perform preventive maintenance in this year. Figure 4 shows two 

examples of alternative investment strategies that make it possible to consider the impact of a change 

in the preventive maintenance decision at the start of 2022 given the remainder of the investment 

strategy. Due to the inability to benchmark an investment strategy, the prioritisation of investments 

process relies on expert advice. These experts have to conduct research in order to advise Liander in 

their investment decisions, and consequently the prioritisation process is time consuming and 

expensive. 
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Figure 4: Alternative investment strategies. 

 

The benchmark of investment strategies is possible if a model which is able to quantify their 

attractiveness exists. Unfortunately, Liander does not have such a model. It is desirable that this model 

would be generic, so it can be applied to investment strategies for different assets. This would enable 

asset managers to assess the huge and diverse amount of investment opportunities, instead of having 

to limit the number of opportunities which can be assessed. 

 

An example of an asset for which it is unclear what investment strategy should be followed is the case 

of the circuit breakers. Liander has to decide between maintenance and preventively replacing the 

circuit breakers. The problem here is that Liander is unable to express the attractiveness of each 

alternative. Ergo, the debate about which alternative is better remains inconclusive and Liander’s asset 

managers have to make their investment strategies based on expert opinions. 

 

Figure 5 shows the problems identified in this section and the causal relation between them. 

 

 
Figure 5: A graphical display of the problem cluster. 

 

The core problem is that Liander is unable to quantify the attractiveness of an investment strategy. 
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1.3 Research objective 

 

The core problem identified in the previous section should be targeted by the research objective. The 

research objective is to build a simulation model which can assess the life cycle costs of an investment 

strategy. This means that we provide insight in the life cycle costs of an asset given an investment 

strategy. Follow-up activities such as the optimisation of the life cycle costs by making changes in the 

investment strategy are neither part of the simulation model, nor our research. 

 

A simulation model is desired because it gives insight in the possible savings of an alternative 

investment strategy and allows for a validation of the underlying models. The simulation model works 

on the principle of a Monte Carlo simulation, for which repeated random sampling is used to determine 

a range of possible outcomes. The advantage of repeated random sampling is that it is practical for 

modelling the stochastic process of asset degradation for our research. We build the simulation model 

for a case study on power transformers, but are unable to test whether we can make certain 

assumptions underlying our degradation model. We refer to our simulation model as a proof of 

concept, as the degradation model underlying the simulation model requires more research. Changes 

in the degradation model can be implemented in our simulation model without much trouble, whereas 

these may not be so easy to implement in an analytical model. 

 

The measure life cycle costs is used in literature to refer to the cumulative cost of a product over its 

life cycle (International Electrotechnical Commission [IEC], 2014). The idea behind looking at the 

cumulative cost rather than individual cost items is that cost items interact. The trade-offs that are 

made in alternatives in the simulation model should therefore be scored on the cumulative cost, as 

certain individual cost items may decrease while others may increase. The simulation model only 

considers costs and not benefits, because the benefits are only measureable on a network scale and 

difficult to distribute fairly among all the assets in the network. 

 

The research objective does not specify for which asset the simulation model should be able to assess 

the life cycle costs. Section 1.1 explains the difference between the assets which are buried and those 

which are placed on the surface. Our research focuses on the assets which are placed above ground, 

and, more specifically, a case study on power transformers. The reason for this is that these are 

inspected and maintained, and the investment strategy is consequently more complex. If we are able 

to quantify the costs of a complex investment strategy, the method should also be applicable to a 

simpler investment strategy for which inspections and maintenance actions are not relevant. The input 

of the simulation model is flexible, so the model can be reused for other assets. Admittedly, other 

assets may show other degradation behaviours than power transformers. 
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1.4 Research questions 

 

As stated in the previous section, our research objective is to build a simulation model which can assess 

the life cycle costs of an investment strategy. We answer the following sub-questions in order to 

achieve our research objective: 

 

RQ1: How can Liander measure the life cycle costs of an asset? 

A method to translate cash flows into a single measure is required in order to compare strategies on 

life cycle costs. We investigate how Liander can measure their life cycle costs considering the 

characteristics of our alternatives. 

 

RQ2: Which models in literature explain the degradation behaviour of assets and to what extent are 

they applicable to our research? 

The asset degradation model should explain the changes in the condition over time and the impact of 

a maintenance intervention. The model should ideally be applicable to all inspection data and assets. 

We investigate which modelling options are available for our research. 

 

RQ3: How can Liander’s data be used to fit the parameters which describe the asset degradation? 

The previous research question suggests an asset degradation model which explains its condition 

throughout its life. We focus on fitting the degradation model’s parameters on Liander’s data. 

 

RQ4: How well does the simulation model perform on a case study? 

We aim at testing whether we can use a simulation model to assess the life cycle costs of an asset. In 

order to do so, we build a simulation model for our case study on power transformers. The components 

essential to the simulation model are identified in the first three research questions. As stated earlier, 

we believe more research into the degradation behaviour is required. Therefore, the simulation model 

of the fourth research question is merely a proof of concept. 

 

1.5 Methodology 

 

We investigate the first research question by performing literature research. We get acquainted with 

the concept of life cycle costing and study the cost measures discussed in literature. 

 

With the second research question we aim to gain insights in the modelling of degradation behaviour 

of an asset and its interaction with maintenance. A literature study has the potential to give new 

insights which may be applicable to our research. The degradation models of assets are mainly 

discussed in reliability engineering literature. 

 

For the third research question we investigate methods in literature to find appropriate model 

parameters. The research question is answered in a hands-on manner, which means that we do not 
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merely describe methods, but also apply them to Liander’s data. The intended end results of the third 

research question are model parameters based on Liander’s data fit through methods found in 

literature. The parameters can be used for our simulation model. 

 

We answer the fourth research question by building a Monte Carlo simulation model in the 

programming language R, and by performing a case study on power transformers. We test the model 

for multiple investment strategies. 

 

1.6 Scope 

 

In this section we shortly introduce the investment decisions, and discuss whether they will be taken 

into account in our research. Besides that, we explain what constitutes an asset for our research. 

 

Preventive and corrective maintenance is carried out to retain a system in or restore it to an operating 

condition (Do et al., 2015). Preventive maintenance is performed before a failure has occurred and 

corrective maintenance is performed after a failure has. Maintenance actions are performed on 

Liander’s above ground assets, and for this reason both preventive and corrective maintenance will be 

part of our research. 

 

Replacement refers to the activity of placing an asset for use in place of an existing one (Institute of 

Electrical and Electronics Engineers [IEEE], 2000). Corrective replacement is replacement after the 

asset to replace has failed and preventive replacement is replacement before it has failed. These 

investment decisions are relevant for Liander’s entire asset portfolio and will be taken into account for 

our research. 

 

Inspection is an examination or measurement to verify whether an item or activity conforms to 

specified requirements (IEEE, 2000). The asset can be monitored continuously through sensors or in 

discrete time by personnel. Continuous monitoring is applied to some of Liander’s cables and manual 

inspection is applied to the more expensive assets. Investment decisions are based on the results of 

an inspection, and we therefore take inspections into account. 

 

Grid expansion increases the capacity of a network. For Liander, a new part of the network can be 

constructed, or the current network can be replaced or restructured such that its capacity increases. 

The replacement of an asset is already in the scope of our research, but grid expansion has 

consequences for a part of the network and not just a standalone asset. Consequently, grid expansion 

goes beyond the scope of our research and will not be included. 

 

An alteration is any change or addition to the asset other than ordinary repairs or replacements (IEEE, 

2000). We see an alteration as an effort aimed at changing the functionality of an asset, for example 

adding the ability to change the volume of the TV to a remote control. Alteration efforts are not 

focused on conservation and therefore do not fall under the scope of our research. 
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The decisions regarding the scope for the investment decisions are summarized in Table 1.  

 

Investment decision In scope Not in scope 

Preventive maintenance X  

Corrective maintenance X  

Preventive replacement X  

Corrective replacement X  

Inspection X  

Grid expansion  X 

Alteration  X 

Table 1: Investment decisions considered in our research. 

 

We often refer to the term asset, and this term could use some clarification because of its broad 

definition. Investopedia (2019) defines an asset as a resource with economic value that an individual, 

corporation or country owns or controls with the expectation that it will provide a future benefit. This 

definition is quite broad and consequently a wide variety of asset types exists, for example buildings, 

inventory, bonds, brand names and drilling rights. A more fitting definition for our research is provided 

in the Netherlands technical agreement 8120, which describes the requirements for a safety, quality 

and capacity management system for electricity and gas network operations for Dutch DSOs and TSOs. 

The agreement defines asset as a physical asset necessary in order to achieve the primary objectives 

of the organisation (NEN, 2014). As the primary objectives of Liander are operating, maintaining and 

developing its energy network, we refer to the assets in Liander’s network when using the term. 

 

1.7 Thesis outline 

 

Each research question described in Section 1.4 is answered in a chapter specifically dedicated to it. In 

Chapter 2 we answer the first research question by introducing the cost items and researching the 

procedure for expressing costs into a single measure. We aim at finding a model which is able to 

simulate the degradation of an asset over time in Chapter 3. This is necessary to answer the second 

research question. The second research question lays the foundation for the third research question, 

which is covered in Chapter 4. In this chapter we discuss the methods for fitting parameters of the 

degradation model. The ability to find model parameters and simulate an asset’s life with these model 

parameters plays a vital role for the simulation model. We explain the simulation model in Section 5.1, 

and use the remainder of Chapter 5 to discuss a proof of concept of the simulation model by working 

out a case study. Finally, we discuss our conclusions, recommendations and limitations in Chapter 6.  
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Chapter 2 Cost engineering 

 

In this chapter we investigate how Liander can measure the life cycle costs of an investment strategy. 

First, we introduce the concept of life cycle costing in Section 2.1, as this is the basis for the comparison 

of investment strategies throughout the entire thesis. In Section 2.2 we discuss the relevant cost items 

and in Section 2.3 we introduce the cost criteria enabling us to express the attractiveness of an 

investment strategy. Lastly, we provide a conclusion to this chapter by summarising the most 

important findings in Section 2.4. 

 

2.1 Life cycle costing 

 

The IEC (2014) defines life cycle costing (LCC) as a process of economic analysis to assess the costs of 

an asset over its life cycle or a part thereof. The purpose of life cycle costing is to support decisions on 

the acquisition, exploitation, rehabilitation and disposal of assets (van den Boomen et al., 2016). The 

IEC (2014) describes the following contributions of an LCC analysis: 

• Assessment of economic viability of alternatives, for example alternative asset designs, 

disposal options, asset usages and maintenance policies. 

• Identification of cost items and major cost drivers. 

• Long-term financial planning. 

While the main contribution of LCC is the assessment of alternatives, the identification of major cost 

items and the timing of these cost items allows organisations to financially prepare for them. 

 

LCC is said to overcome the failures in which the initial costs were emphasised without consideration 

of subsequent costs (Taylor, 1981; Woodward, 1997). Decisions which are made on the basis of initial 

costs are unlikely to be optimal, as the commitment to a certain alternative usually leads to 

unconsidered costs in the future. For example, the acquisition of a machine leads to maintenance and 

operational costs in the future, but these are not considered if only initial costs of acquisition are taken 

into account. The trade-off between costs that LCC seeks to assess is shown in Figure 6. The dashed 

and solid lines represent two 

alternatives which are considered. 

Note that the cost categories 

presented in the figure are not 

standard for an LCC analysis. LCC 

focuses on economic sustainability, 

but it can be integrated with Life 

Cycle Assessment (LCA) in order to 

trade off economic as well as 

environmental impacts (Haanstra 

et al., 2019).  

 

Figure 6: Trade-off of costs (Taylor, 1981). 
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2.2 Cost items 

 

In this section we introduce and clarify the cost items relevant during an asset’s life cycle. The following 

cost items can be identified: purchase costs, installation costs, (preventive and corrective) 

maintenance costs, inspection costs, disposal costs, failure costs and other costs. 

 

Purchase and installation costs occur when an asset is bought and placed. These costs should involve 

the costs for all activities required to install it at the desired location, such as transportation costs, the 

asset’s price, the costs of installation and the costs of testing the installation. When an asset is not 

new, the investment strategy can still be compared by setting the purchase costs equal to its market 

value and by neglecting the installation costs. 

 

Preventive and corrective maintenance costs are costs which are incurred when attempting to improve 

the condition of an asset. Maintenance is only performed on assets which are above ground. 

Preventive maintenance is generally cheaper than corrective maintenance, because the asset is 

typically in a better condition and circumstances are less dangerous to the maintenance crew. An asset 

can be damaged due to a failure in such a way that it poses a danger to the maintenance crew, for 

example an asset which normally does not conducts electricity but does after a failure. The 

maintenance crew has to work more carefully, and consequently corrective maintenance is more 

expensive than preventive maintenance. 

 

Inspections are almost exclusively performed on assets which are above ground. The inspection costs 

are the costs attributable to assessing their conditions. Inspections can be purely visual or test-based. 

Visual inspections are based on the asset’s physical appearance, and test-based inspections involve 

tests which are aimed at determining the condition of an asset’s attributes. An example of a test is the 

measurement of the dielectric strength of oil in oil-filled switchgear. The measurement allows for 

appropriate actions to be performed in case the oil is in a bad condition. 

 

Disposal costs are made whenever the decision is made to replace the asset, whether preventive or 

corrective. The asset has to be uninstalled and disposed. It may still have residual value, since the 

material may be sold or the asset may perform another purpose. Hence, the net cash flow at the end 

of life may be positive. 

 

Failure costs arise in case of a loss of functionality. The exact definition of a failure and the associated 

costs differ per asset. A cable either fails or not, but other assets may not function entirely as intended 

while not being seen as a failure. 

 

Other costs are the costs which do not fall under the cost items mentioned above. For example, the 

costs of the loss of electricity due to the asset’s inefficiency. These costs are important when comparing 

competing assets with different losses. 
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2.3 Cost criterion 

 

The costs of an investment strategy should be comparable to those of another one. A cost criterion 

translates multiple cost items into a single measure, and we explore literature to find which cost 

criteria exist. First, we introduce the concept of financial discounting in Subsection 2.3.1, which is an 

underlying concept for all cost criteria. Second, we discuss two cost criteria in Subsection 2.3.2. 

 

 Financial discounting 

 

The idea behind financial discounting is that money now is worth more than money in the future 

because of the lost opportunity of doing something with it now and the risk of not receiving it later. 

For this reason Sullivan et al. (2014) argue that a study which involves the commitment of money for 

an extended period should incorporate a so-called time value of money. The concept that a time value 

of money exists is intuitive, since borrowing and lending money usually involves an interest being paid 

and people thus accept that money now is worth more than money later. Sullivan et al. (2014) describe 

the following formulas and parameters which are generally used in literature to translate value from 

one moment in time to another: 

 

𝑃 = 
1

(1 + 𝑟)𝑁
× 𝐹 (2.1) 

 

𝐴 = 
𝑟(1 + 𝑟)𝑁

(1 + 𝑟)𝑁 − 1
× 𝑃 (2.2) 

 

𝐹 =
(1 + 𝑟)𝑁 − 1

𝑟
× 𝐴 (2.3) 

 

𝑟 is the effective discount rate per period, 𝑁 is the number of periods, 𝐴 is the annuity equivalent 

(amount is paid at the end of every period for 𝑁 periods), 𝐹 is the future equivalent and 𝑃 is the present 

equivalent. 

 

The appropriate discount rate for discounting cash flows is debatable and depends on the context of 

the project which is valuated. The general view is that riskier projects require a higher discount rate, 

because investors would want a higher reward for the risk they are taking. However, in studies which 

only consider costs, it is undesirable to use a higher discount rate for riskier projects. Imagine two 

projects A and B with an identical negative cash flow (cost) at the same moment in the future and it is 

believed that project A is riskier than project B. If we apply Eq. (2.1) with a higher discount rate for 

project A than for project B, the present equivalent of project A is a smaller negative value than the 

present equivalent of project B. This shows that determining a discount rate for a project should be a 

careful consideration. Sullivan et al. (2014) recommend quantifying the variability of the estimated 

cash flows and discounting at a single rate. In other words, by incorporating the stochasticity in 
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outcomes, the discount rate no longer needs to be changed. Most companies use their weighted 

average cost of capital (WACC) as the discount rate. The following formula shows how the WACC can 

be calculated (Sullivan et al., 2014): 

 

𝑊𝐴𝐶𝐶 =  𝜆(1 − 𝑡)𝑖𝑏 + (1 − 𝜆)𝑒𝑎 (2.4) 

 

𝜆 is the fraction of total capital obtained from debt, 𝑡 is the effective income tax rate, 𝑖𝑏 is the before-

tax interest paid on borrowed capital and 𝑒𝑎 is the after-tax cost of equity capital. 

 

The interest rate that a company pays to its bondholders is typically lower than the returns on equity 

capital. This is caused by the differences in risks that a bondholder and shareholders are bearing in 

case the company is going through financially difficult times. Instinctively a company would be inclined 

to increase their debt-to-equity ratio and thus pay a lower WACC. The problem with this logic is that 

bondholders and shareholders alike will demand a higher return due to an increased risk. 

 

 Cost measuring methods 

 

A cost measuring method describes how the cash flows are to be translated into a single criterion used 

to compare alternatives. Sullivan et al. (2014) describe two methods to calculate a measure to compare 

alternatives. 

 

The first method is the annual worth method. This method works by calculating the annuity equivalent 

of all cash flows using Eq. (2.1)-(2.3). When revenues are absent, the result of summing all the annuity 

equivalents are the equivalent annuitized costs (EACs). In case of mutually exclusive projects, the 

project with the lowest EACs should be selected. An unconstrained project cannot be evaluated based 

on EACs, as revenues need to be present in order for the evaluation to make sense. We do not consider 

two methods proposed by Sullivan et al. (2014), as they only differ with the annual worth method in 

the moment in time to which the cash flows are translated. These are the present worth method and 

the future worth method. 

 

The second method is the internal rate of return (IRR) method. The method solves for the discount 

rate which equates the equivalent worth of cash inflows to the equivalent worth of cash outflows. The 

criterion on which projects should be selected that follows from solving the aforementioned equation 

is the internal rate of return. For mutually exclusive projects the project with the highest IRR should be 

chosen. An unconstrained project should be performed if the IRR is higher than the pre-determined 

discount rate, which is often the WACC. 

 

We want to evaluate mutually exclusive projects based on costs. In case of mutually exclusive projects 

the IRR and EACs methods may differ due to the former being an absolute method and the latter a 

relative method. The internal rate of return method is not suitable for our research because of three 

drawbacks. First, we are evaluating projects based on costs. The method is only suitable when an 
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evaluation is based on a trade-off between costs and benefits, which is not true in our case. This by 

itself is enough reason not to use this method. Second, computing the IRR is too computationally 

extensive considering that the calculation of the IRR needs to happen for every trial. Third, the IRR is 

not suitable for mutually exclusive alternatives because it is a relative measure. The alternative which 

performs best on the relative measure may not be the best on an absolute measure, while we are 

interested in the alternative that performs best in absolute terms. The annual worth method does not 

have these drawbacks. Therefore, we express the costs in terms of the EACs criterion in our simulation. 

 

2.4 Conclusions 

 

Our research is based around the concept of life cycle costing, which is a method used to support life 

cycle decisions for asset management. The research objective, a simulation model for life cycle 

decisions, helps in making life cycle decisions because it assesses the impact on costs of an investment 

strategy. 

 

The cost items relevant for a simulation model to assess the impact on costs have been identified in 

this chapter. These cost items are purchase costs, installation costs, (preventive and corrective) 

maintenance costs, inspection costs, disposal costs and failure costs. A description of the cost items is 

given in Section 2.2. 

 

Financial discounting and cost measuring methods have been introduced in Section 2.3. Financial 

discounting should be incorporated in the simulation model in order to take the time value of money 

into account, since Liander’s investment strategies can easily span a period of 60 years. A key step for 

financial discounting is picking a discount rate. The simulation model will automatically work with the 

WACC of Liander, but it is possible to change the discount rate. We translate the net present value into 

the annuity equivalent, so that we have the EACs. We prefer the EACs method over the IRR method 

for our simulation model.  
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Chapter 3 Asset degradation 

 

In this chapter we discuss three models which are employed in literature to model the degradation of 

assets. The models are lifetime distribution, Markov chain and Lévy process models, and we discuss 

them in Sections 3.1, 3.2 and 3.3 respectively. In Section 3.4 we compare the models and decide which 

model(s) will form the basis for our simulation study. 

 

3.1 Lifetime distribution models 

 

Lifetime distribution models are models for which an asset can only be in a failed and a not failed 

condition. The degradation from not failed to failed happens at a random time to failure, and a lifetime 

distribution model requires finding a density function of the time to failure in order to analyse the 

failure behaviour of the asset. In Subsection 3.1.1 we introduce lifetime distributions. We discuss 

literature on how to expand a lifetime distribution model beyond the time to first failure in Subsection 

3.1.2. 

 

 Introduction to lifetime distributions 

 

A lifetime distribution model works by fitting a distribution for the time to failure. The model only 

concerns the time to first failure, after which the asset will be replaced. Some common distributions 

in the domain of reliability engineering are the Exponential distribution and the Weibull distribution. 

Larsen and Marx (2012) describe how the parameters of a distribution can be estimated by means of 

maximum likelihood. 

 

𝑓(𝑡) is the probability density function and 𝐹(𝑡) is the cumulative distribution function (Larsen and 

Marx, 2012). In survival analysis studies the reliability 𝑅(𝑡) is used to represent the probability of an 

event not having happened until time 𝑡, in our case the probability of an asset not having failed until 

time 𝑡. The reliability can be calculated with 𝑅(𝑡) = 1 − 𝐹(𝑡).  

 

 Expanding beyond the time to first failure 

 

A downside to a model only based on the time to first failure is that it lacks the ability to account for 

multiple failures per asset. However, Yañez et al. (2002) and Gunckel et al. (2015) explain how the 

method can be expanded to include multiple failures per asset by modelling the effect of corrective 

maintenance, also known as a repair. They give an overview of modelling options to model corrective 

maintenance in Figure 7. 
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Figure 7: Overview of options for including corrective maintenance (Yañez et al., 2002). 

 

An asset can be restored to any of the five following conditions (Yañez et al., 2002; Gunckel et al., 

2015): as good as new, as bad as before, better than before but worse than new, better than new and 

worse than before. The categories in Figure 7, perfect repair, normal repair and minimal repair, differ 

in the assumption about what condition the asset is restored to after corrective maintenance. 

 

A perfect repair process is synonymous to a repair to a condition which is as good as new. The process 

assumes that the different times to failure are independent and identically distributed, so subsequent 

times to failure for an asset are independent. This assumption seems most reasonable for cases for 

which the damaged part of an asset is entirely replaced. The processes which fall under the category 

of the perfect repairs use the same lifetime distribution to draw a new time to failure at the start and 

each time the asset is repaired. This is similar to saying that the age of it is zero again, even though it 

clearly is not. The term virtual age refers to the age that the model assumes for the asset, and it is a 

measure that represents its condition. An asset with a lower virtual age has a longer expected time to 

failure. The virtual age after a failure is reset to zero under the assumption of perfect repair. 

 

A minimal repair is a repair after which the asset is in the same condition as before the repair. This 

means that its reliability is the same as it was at the moment it failed. The assumption is most 

reasonable for assets consisting of a lot of components of which just the one that failed is replaced or 

restored after a failure. In such cases there is no reason to believe that the asset’s reliability has 

increased, because almost all components are still in the same condition as before. The virtual age 

assumed by the models is therefore the same as the asset’s actual age, so that the reliability remains 

the same before and after the failure. It should be possible to draw a time to failure conditional on the 

current age in order to model this. This is identical to acting as if the asset has never failed until the 

moment of failure and drawing a new time to failure given that information. 

 

A normal repair can restore an asset to any of the five conditions mentioned earlier, and is therefore 

the most flexible. However, the process in this category is also the most computationally extensive. 

This process is the Generalised Renewal Process (GRP). The GRP introduces a new variable known as 

the quality of repair (𝑞), which determines the condition the asset is restored to after corrective 
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maintenance. 𝑞 = 0 corresponds to as good as new, 𝑞 = 1 corresponds to as bad as before, 0 < 𝑞 <

1 corresponds to better than before but worse than new, 𝑞 < 0 corresponds to better than new, i.e. 

an upgrade, and 𝑞 > 1 corresponds to worse than old, i.e. a poorly executed repair. The virtual age is 

the product of 𝑞 and the asset’s real age. A higher 𝑞 leads to a higher virtual age and thus a lower 

reliability. Due to the flexibility of GRP, it can be applied to model the effect of corrective maintenance 

regardless of the type of repair. Similar to minimal repair, the new time to failure after a repair is drawn 

conditional on that the asset has survived till the virtual age. The difference is that the virtual age is 

not the same in those two methods, unless 𝑞 = 1. 

 

Figure 8 shows the real age against the virtual age for perfect repair, minimal repair and normal repair. 

Perfect repair restores an asset’s condition to as good as new, and the virtual age is modelled as if it 

zero again after each repair. The virtual age is identical to the real age for minimal repair, such that the 

reliability after a repair is the same as before a repair. The normal repair, also known as GRP, can 

restore an asset to any condition. The GRP in Figure 8 is modelled such that the asset is restored to a 

condition which is better than before but worse than new, since the virtual age is lower than the virtual 

age of the minimal repair and higher than the virtual age of the perfect repair. Note that a different 𝑞 

than the 𝑞 that corresponds to better than before but worse than new, which is 0 < 𝑞 < 1, would lead 

to a different plot of real against virtual age. 

 

 
Figure 8: From left to right: perfect repair, minimal repair and normal repair - real against virtual age (Gunckel et al., 2015). 

 

The procedure of fitting a lifetime distribution becomes more cumbersome if corrective maintenance 

is included. Instead of only data on the time to first failure, data on the time to the second and 

subsequent failures are also available. As stated earlier, the GRP is the most computationally extensive 

option to include corrective maintenance. The process introduces a new variable 𝑞 which also has to 

be determined by fitting a probability distribution. Yañez et al. (2002) and Gunckel et al. (2015) 

describe methods which can be used to perform a maximum likelihood estimation of the parameters 

for a Weibull distribution for the perfect repair, minimal repair and GRP. In case of GRP, this includes 

an estimation of the quality of repair parameter 𝑞. 
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3.2 Markov chain models 

 

The degradation of assets can be measured or observed. A range of measurements or certain 

characteristics of observations can be used to assign a state to the asset which indicates its condition. 

A Markov chain model can subsequently be used to describe the degradation of the asset. In this 

section we introduce Markov chains. 

 

A Markov chain is a discrete-time stochastic model in which an asset can be in States 1,… , 𝑁. Every 

discrete time interval, 𝑡 = 0,1,… the asset can change to another state or remain in its current state. 

The state at time 𝑡 is 𝑋𝑡. A stochastic process is said to have the Markovian property if 

𝑃(𝑋𝑡+1 = 𝑗|𝑋0 = 𝑘0, 𝑋1 = 𝑘1, … , 𝑋𝑡−1 = 𝑘𝑡−1, 𝑋𝑡 = 𝑖) = 𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) for 𝑡 = 0,1, … and 

every sequence 𝑖, 𝑗, 𝑘0, 𝑘1, … , 𝑘𝑡−1 (Häggström, 2002). This means that the probability of going to a 

certain state in the next period is independent of the states the asset was in prior to the current state. 

The probabilities of going from one state to another state are stationary if they do not change over 

time, so if 𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) = 𝑃(𝑋1 = 𝑗|𝑋0 = 𝑖) for all 𝑡 = 1,2, … . First, we discuss stationary 

Markov models. Afterwards, we discuss non-stationary Markov models. 

 

A transition matrix with stationary transition probabilities between four states looks as follows: 

 

                11,2 21,2 31,2 41,2   

𝑃 =

1
2
3
4

[

𝑝1,1 𝑝1,2 𝑝1,3 𝑝1,4

𝑝2,1 𝑝2,2 𝑝2,3 𝑝2,4

𝑝3,1 𝑝3,2 𝑝3,3 𝑝3,4

𝑝4,1 𝑝4,2 𝑝4,3 𝑝4,4

]  

 

With 𝑝𝑖𝑗 ≥ 0 for all 𝑖 and 𝑗, and ∑ 𝑝𝑖,𝑗 = 14
𝑗=1  for all 𝑖. 𝑝𝑖,𝑗 is the probability of going from State 𝑖 to 

State 𝑗. A state is absorbing if it is impossible to leave the state once entered, so State 𝑖 is absorbing if 

𝑝𝑖,𝑖 = 1. Figure 9 shows a state transition diagram for the transition matrix 𝑃. Note that not all 

probabilities are shown, which indicates that not all transitions are possible. State 4 is absorbing and 

States 1, 2 and 3 are transient, which means that the system is not able to return to these states from 

every state. In this case the system cannot return to States 1, 2 and 3 from State 4. 

 

 
Figure 9: State transition diagram. 
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𝑃 describes the transition probabilities over a single time interval. 𝑃𝑛 describes the transition 

probabilities over 𝑛 time intervals. A four-state transition matrix over a period of 𝑛 intervals looks as 

follows: 

 

                  11,2
𝑛 21,2

𝑛 31,2
𝑛 41,2

𝑛    

𝑃𝑛 =

1
2
3
4 [

 
 
 
 
𝑝1,1

𝑛 𝑝1,2
𝑛 𝑝1,3

𝑛 𝑝1,4
𝑛

𝑝2,1
𝑛 𝑝2,2

𝑛 𝑝2,3
𝑛 𝑝2,4

𝑛

𝑝3,1
𝑛 𝑝3,2

𝑛 𝑝3,3
𝑛 𝑝3,4

𝑛

𝑝4,1
𝑛 𝑝4,2

𝑛 𝑝4,3
𝑛 𝑝4,4

𝑛
]
 
 
 
 

  

 

𝑃𝑛 is the 𝑛th power of matrix 𝑃, which means that its calculation requires matrix multiplication. This 

means that (𝑝𝑖,𝑗)
𝑛 is not by definition equal to 𝑝𝑖,𝑗

𝑛 . The following equations shows how 𝑃𝑛 can be 

used to calculate the expected distribution after 𝑛 intervals 𝐸 with the initial distribution 𝐶 

(Häggström, 2002): 

 

𝐸 = 𝐶𝑃𝑛 (3.1) 

 

𝐸, 𝑃 and 𝐶 are matrices, so first 𝑃𝑛 can be calculated with matrix multiplication and the result can 

subsequently be matrix multiplied with 𝐶. 𝐶 has dimensions 1 × 𝑟 and 𝑃 has dimensions 𝑟 × 𝑟. 𝑃𝑛 

then also has dimensions 𝑟 × 𝑟. 𝐸 consequently has dimensions 1 × 𝑟. Applying Eq. (3.1) to the four-

state Markov chain example looks as follows: 

 

[𝑒1 𝑒2 𝑒3 𝑒4] = [𝑐1 𝑐2 𝑐3 𝑐4] [

𝑝1,1 𝑝1,2 𝑝1,3 𝑝1,4

𝑝2,1 𝑝2,2 𝑝2,3 𝑝2,4

𝑝3,1 𝑝3,2 𝑝3,3 𝑝3,4

𝑝4,1 𝑝4,2 𝑝4,3 𝑝4,4

]

𝑛

  

                                   = [𝑐1 𝑐2 𝑐3 𝑐4]

[
 
 
 
 
𝑝1,1

𝑛 𝑝1,2
𝑛 𝑝1,3

𝑛 𝑝1,4
𝑛

𝑝2,1
𝑛 𝑝2,2

𝑛 𝑝2,3
𝑛 𝑝2,4

𝑛

𝑝3,1
𝑛 𝑝3,2

𝑛 𝑝3,3
𝑛 𝑝3,4

𝑛

𝑝4,1
𝑛 𝑝4,2

𝑛 𝑝4,3
𝑛 𝑝4,4

𝑛 ]
 
 
 
 

  

 

Markov chain models can be used to assess the performance of an investment strategy. The 

investment strategy first stipulates when an inspection should be performed and subsequently what 

action should be chosen knowing the state of the asset. This action can be to do nothing, to perform 

maintenance or to replace the asset. The state changes depending on the action chosen. 

 

Up till this point only stationary Markov models have been discussed. However, the Markovian 

property underlying stationary Markov models may not be a realistic assumption for modelling certain 

stochastic processes, especially when modelling asset degradation. An asset condition is likely to enter 

a state near the boundary with the preceding state before moving through the interval over time until 

it crosses the other boundary (Black et al., 2005). This means that the probability of going to another 

state is likely to increase with the number of time intervals spent in a state. A semi-Markov model 
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relaxes the Markovian property, which means that the transition probabilities depend on the number 

of time intervals an asset has spent in a state for semi-Markov models. 

 

The model proposed by Black et al. (2005) only allows for a transition to the current and next state. 

The probability of going from State 𝑖 to State 𝑖 + 1 during the 𝑚th time interval after entering State 𝑖 

is 𝑝𝑖,𝑖+1(𝑚). This means that the asset has been in State 𝑖 for 𝑚 − 1 consecutive time intervals. The 

probability of an asset following a certain route is more difficult to calculate than for the stationary 

Markov model. For example, the probability of an asset starting and staying in State 1 for three time 

intervals and going to States 2 and 3 in the time intervals after that is 𝑝1,1(1) × 𝑝1,1(2) × 𝑝1,1(3) ×

𝑝1,2(4) × 𝑝2,3(1). 

 

Black et al. (2005) model the time spent in State 𝑖 as a stochastic variable with probability density 

function 𝑓𝑖(𝑡) and cumulative density function 𝐹𝑖(𝑡). The probability that the asset is still in State 𝑖 

after time 𝑡 is 𝑅𝑖(𝑡), which is defined as 1 − 𝐹𝑖(𝑡). The unconditional probability of an asset leaving 

State 1 during the third time interval is 𝐹1(3) − 𝐹1(2), as it should degrade before the third time 

interval, but not before the second. The unconditional probability of an asset staying in State 1 during 

the third interval is 𝑅1(3), as it should not degrade before the third time interval, and thus also not 

the second time interval. Logically, if an asset does not degrade before the third time interval, it also 

does not degrade before the second time interval. The probability of going from State 𝑖  to State 𝑖 + 1 

in the 𝑚th time interval given that it is in State 𝑖 after 𝑚 − 1 time intervals is calculated as follows 

(Black et al., 2005): 

 

𝑝𝑖,𝑖+1(𝑚) =
𝐹𝑖(𝑚) − 𝐹𝑖(𝑚 − 1)

1 − 𝐹𝑖(𝑚 − 1)
(3.2) 

 

Going from State 𝑖 to State 𝑖 + 1 is identical to leaving State 𝑖, as it is only possible to go to the current 

and next state. The advantage of fitting a probability density function to the time spent in a state is 

that a few parameters can describe the probability of remaining and leaving the state for all 𝑚. 

 

The semi-Markov transition probabilities can be used to model the degradation after a replacement or 

maintenance action. The asset spends the first period in a certain state after a replacement or 

maintenance action brought it there. For example, a new asset starts in a state which is as good as 

new. The semi-Markov transition probabilities can be used to model the degradation of the asset to a 

worse state. A maintenance action restores the condition of the asset, and the same degradation 

process repeats. The semi-Markov model has time-dependent transition probabilities, but not 

necessarily age-dependent transition probabilities. As the asset’s condition is restored after a 

maintenance action, the time spent in the state is reset. Consequently, the probability of degradation 

is not increasing as the age increases. Therefore, the transition probabilities could ideally be expressed 

as a function of the time spent in a state and the age of the asset: 

 

𝑝𝑖,𝑖+1(𝑚, 𝑎𝑔𝑒) =
𝐹𝑖(𝑚) − 𝐹𝑖(𝑚 − 1)

1 − 𝐹𝑖(𝑚 − 1)
× 𝐺(𝑎𝑔𝑒) (3.3) 
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This approach has not been investigated by other researchers to the best of our knowledge. The reason 

for this may be that the model relies on too many parameters which are difficult to estimate. 

 

3.3 Lévy process models 

 

Lévy processes are continuous-time stochastic processes with independent and stationary increments, 

which means that the probability distribution of the increments 𝑋𝑡+ℎ − 𝑋𝑡 depends only on ℎ for all 𝑡 

(van Noortwijk, 2009). It is possible to make discrete jumps as well as continuous random walks with 

Lévy processes. A well-known example of a Lévy process is the Wiener process, which assumes that 

the increments have a Normal distribution with 𝜇 = 0 and 𝜎2 = ℎ. The increments of the degradation 

level are modelled with non-decreasing distributions such as the compound Poisson process and the 

Gamma processes, as this ensures that the quality level decreases over time (Yang & Klutke, 2000). 

Compound Poisson processes can be used to model degradation due to discrete shocks and Gamma 

processes can be used to model fatigue-degradation. A measurement can be performed at an 

inspection, and this measurement is linked to a degradation level. 

 

Figure 10 shows a random path for the degradation level 𝑋𝑡 between the moment the asset starts 

degrading and the moment of failure. The model assumes that 𝑋0 = 0, and that 𝐿 is the degradation 

level at which the asset fails. As long as 𝑋𝑡 < 𝐿 the asset is in the working zone, and if at some moment 

in time 𝑋𝑡 ≥ 𝐿 it stops working and has failed. Moments 𝑡1 and 𝑡2 could be moments of inspection 

with degradation levels 𝑋𝑡1
 and 𝑋𝑡2

 respectively. Random paths can be generated starting from 𝑋𝑡1
 

and 𝑋𝑡2
 in order to approximate a distribution of the time to failure. This distribution should form the 

basis for the investment decision. 

 

 

Figure 10: A random path for the asset degradation level 𝑋𝑡  (Do et al., 2015). 
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3.4 Conclusions 

 

The three asset degradation models described in literature can be used in a simulation model. First, 

we summarise the models presented in this chapter. Afterwards we compare the models and choose 

the model which is most appropriate. 

 

A lifetime distribution model is built around a probability density function of the time to failure. The 

impact of corrective maintenance can be included through modelling a virtual age of the asset after a 

failure. 

 

A Markov chain model is a discrete-time stochastic model in which the condition of an asset is a 

stochastic variable. Each time interval an asset has certain transition probabilities of remaining in the 

current state or going to another state. A Markov chain model with stationary transition probabilities 

follows the Markovian property, which dictates that the probability of going to a certain state depends 

only on the current state. Semi-Markov models relax the Markovian property and have transition 

probabilities which depend on the number of time intervals an asset has spent in a state as well as the 

current state. 

 

Lévy process models are continuous-time stochastic processes with independent and stationary 

increments. The model can be used in a simulation by generating a random path for a measureable 

property of an asset for which the increment distribution is fit based on historical data.  

 

The models differ in their approach to the degradation of assets as well as the time. Lifetime 

distributions describe the degradation between an operating and a failed state in continuous time. A 

Markov chain can incorporate multiple conditions in discrete time, and it can be used on ordinally 

ranked and continuous data. The continuous data should be grouped for them to be usable for a 

Markov chain model. The degradation in Lévy processes is modelled as a continuous process in which 

the asset condition can take any value higher than the starting level. 

 

The group of assets for which inspection and maintenance is relevant, is placed above ground. Certain 

inspections of Liander measure a property of an asset in order to get to know the condition, while 

other inspections are visual and subjective indications of its condition. The measurements may take 

any variable, while the subjective indications are ordinally ranked. Lifetime distributions are too limited 

to model the degradation of these assets, as more than two conditions are relevant which these 

distributions are unable to capture. A Markov model would be able to incorporate the ordinal data as 

states. Measurements can be split into states by grouping the measurements within certain ranges. 

Lévy processes can be applied to the measurement data, but not to the ordinally ranked data.  

 

We choose to model the asset degradation with a Markov model, as the Markov model is applicable  

to the different types of inspection data of Liander. In the next chapter we investigate how we find 

appropriate transition probabilities.  
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Chapter 4 Fitting model parameters 

 

We are interested in fitting model parameters which are representative for an asset’s degradation. In 

Section 4.1 we describe the available data to fit transition probabilities. We fit them and test if the 

they are age-dependent in Section 4.2. The next step is to test whether the transition probabilities are 

dependent on the time spent in a state, which we discuss in Section 4.3. In Section 4.4 we explain how 

the probability of failure is determined and in Section 4.5 we test the accuracy of our estimations. We 

conclude this chapter in Section 4.6. Overall, we use this chapter to describe the road from data to 

final transition probabilities used for the case study. 

 

4.1 Data description 

 

Liander performs inspections on their above ground assets. The inspections reveal the asset condition, 

and inspectors assign the condition codes 9, 6 or 1. The Conditions 9, 6 and 1 are interchangeable with 

the words good, moderate and bad respectively. Unsurprisingly, new assets start in Condition 9 and 

subsequently degrade to worse conditions. An inspection reveals the condition of an asset, and Liander 

subsequently decides whether or not to perform maintenance and when to inspect again. A 

maintenance action is aimed at restoring the asset to a higher condition, from which it degrades to 

worse conditions again. 

 

The condition codes are registered in Liander’s database for inspection data. Inspections and 

maintenance actions are performed on the asset classes power transformers and switchgear. 

Inspectors assign condition codes to components as well as the overall condition of the power 

transformer. We focus on the overall condition code assigned to power transformers, because data on 

component replacements are lacking. The overall condition code is decided upon by means of the 

expert opinion of the inspector, and is therefore subjective. 

 

The data set contains information on inspections and maintenance actions of 655 power transformers. 

The power transformer failures are registered up to 2015 in a different database. The condition codes 

have been registered actively only in the last few years. Figure 11 shows the number of registered 

inspections per month. We can observe that only few inspectors assign condition codes before 2014. 

Inspections prior to January 2012 are disregarded and also not shown in Figure 11, because they are 

only a fraction of the total number and deemed too far before the broad adoption of assigning 

condition codes at an inspection.  
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Figure 11: Number of observations per month between 2012-2019. 

 

A transition between condition codes is never observed as soon as it happens, we only know a 

transition has occurred sometime between two inspections. Failures are an exception to this 

statement, because Liander can monitor an asset failure without an inspection. For the other 

conditions the data show the condition has changed or remained the same, but it does not tell us when 

the condition has changed. This type of data is referred to as interval-censored data, as the data only 

show in which interval an event has taken place and not exactly when. Figure 12 shows examples of 

this type of data for three assets. When condition code 9 is assigned to the asset, a blue bar is placed 

on the timeline. The same holds for condition codes 6 and 1 with the grey and purple bars respectively. 

Asset 1 is inspected and revealed to be in Condition 1 and in Condition 9 right afterwards. Then, after 

a period of time a new inspection is performed and the asset is observed to still be in Condition 9. 

Asset 2 is in Condition 9 at first and in Condition 1 after a while, and Asset 1 is in Condition 9 two 

inspections in a row and in Condition 6 at the next inspection. The difficulty here is that we do not 

know exactly when transitions have occurred and even how many. Asset 2 may have jumped from 

Condition 9 to Condition 1 through Condition 6 or immediately to Condition 1. 
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Figure 12: Visual representation of interval-censored data (blue, grey and purple represent Conditions 9, 6 and 1 
respectively). 

 

An additional difficulty to the interval-censored data is Liander’s inconsistent maintenance regi-

stration. Asset managers claim that maintenance activities are not always registered, and consequently 

it is unclear in which cases the observed data are influenced by maintenance activities. A degradation 

model is aimed at modelling the degradation of the asset without any interventions. When the data 

are filled with transitions which are influenced by maintenance actions, the observed transitions are 

not representative for the degradation. Whenever the maintenance data are available, we remove the 

transition influenced by maintenance. Furthermore, we remove transitions to a better condition, as 

the transition is most likely caused by unregistered maintenance. However, we must acknowledge that 

the transition may in some cases be accredited to the subjectivity of the inspector. This means that the 

removed transitions may not have always been caused by maintenance. The poor data quality is 

acceptable, because we can use the data to find a method for fitting model parameters. The method 

can be applied by Liander once they gathered more reliable data. Having discussed the available data 

and the data quality, we can now set out to find the transitions and the transition probabilities.  

 

4.2 Stationary transition probabilities 

 

In this section we investigate whether stationary transition probabilities are appropriate for the 

degradation modelling of Liander’s assets. In Subsection 4.2.1 we estimate stationary transition 

probabilities and in Subsection 4.2.2 we test whether this stationarity may be assumed. 

 

 Estimating stationary transition probabilities 

 

In this subsection we discuss how we estimate stationary transition probabilities based on Liander’s 

data described in the previous section. We estimate the probabilities for a one-year period. 
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As mentioned in the previous section, the conditions assigned to power transformers are 9, 6 and 1. 

Additionally, a power transformer can completely lose its functionality due to a failure. Conditions 9, 

6 and 1 correspond to States 9, 6 and 1 respectively. State 0 corresponds to an asset failure. This results 

in the following state space, 𝑆 = {9,6,1,0}. State 0 is an absorbing state, as an asset cannot escape the 

state without interference. Table 2 shows the number of power transformer with a certain number of 

observations. 

 

Number of 

observations 

Number of power 

transformers 

0 56 

1 112 

2 141 

3 129 

4 93 

5 68 

6 37 

7 12 

8 4 

9 2 

10 1 

Total 655 

Table 2: Number of observations per power transformer. 

 

A transition is defined by the observation before, the observation after and the time between the 

observations. We determine the time between observations by taking the number of days and dividing 

it by 365. The number resulting from this calculation is rounded to the nearest quarter, e.g. 2.45 years 

becomes 2.50 years. Power transformers with zero or one observations yield no transitions, because 

we need two observations for a transition. We find a total of 843 transitions of which 214 transitions 

are from a worse condition to a better condition. As discussed in the previous section, we remove 

these transitions and have 629 remaining transitions. Table 3 shows the number of transitions from 

each state to another. 

 

    To 

From 

9 6 1 0 
Total 

9 149 119 45 1 314 

6 0 194 73 1 268 

1 0 0 45 2 47 

0 0 0 0 0 0 

Total 149 313 163 4 629 

Table 3: Overview of transitions between states. 
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Only four transitions have the state of failure as the end state, while a total of thirty-one failures have 

occurred in the period 2012 to 2015. We only consider the period 2012 to 2015 because the inspection 

data start in 2012 and the failure data stop in 2015. The number of failures which could be linked to a 

transition is low for two reasons. First, the condition before a failure is not always known, meaning 

that we do not know the transition between a condition to the state of failure. Second, not all failure 

causes are considered in the condition code assigned at an inspection. Only the failure causes which 

are monitored at an inspection should be considered for the transitions, as the start state is not 

relevant for the failure causes which are not monitored. We can use the transitions to estimate 

transition probabilities. Hoskins et al. (1999) apply maximum likelihood and least squares approaches 

to estimate stationary transition probabilities with transitions spanning over different time lengths. It 

is important that the time length is taken into account for the probability estimation, because the 

length of a transition influences the probability. The longer a transition takes, the higher the probability 

of severe degradation. Both approaches of Hoskins et al. estimate a transition matrix 𝑃̂. Maximum 

likelihood does this by maximising the probability of the observed transitions. In Chapter 3 the 

probability of a transition from State 𝑖 to State 𝑗 in 𝑛 time intervals is denoted by 𝑝𝑖,𝑗
𝑛 . This probability 

can be derived from 𝑃𝑛 by finding the probability of going from State 𝑖 to State 𝑗. We can calculate the 

probability of all 629 transitions for a given 𝑃, because we can calculate 𝑃𝑛 to find 𝑝𝑖,𝑗
𝑛 . If we assume 

independence between transitions, we can calculate the likelihood that a transition matrix 𝑃 caused 

the transitions (Hoskins et al., 1999): 

 

𝐿(𝑃) = 𝐿1(𝑃) × 𝐿2(𝑃) × …× 𝐿𝑁(𝑃) = ∏𝐿𝑘(𝑃)

𝑁

𝑘=1

 

 

𝐿𝑘(𝑃) is the probability of the 𝑘th transition and 𝑁 is the total number of transitions. Besides 𝑃, 𝐿𝑘(𝑃) 

depends on the 𝑖, 𝑗 and 𝑛 of transition 𝑘. The likelihood 𝐿(𝑃) becomes extremely small for a high 

number of transitions 𝑁, and consequently it makes more sense to take the log-likelihood, log 𝐿(𝑃) 

(Hoskins et al., 1999): 

 

𝑙𝑜𝑔 𝐿(𝑃) = log  𝐿1(𝑃) + log  𝐿2(𝑃) +…+ log  𝐿𝑁(𝑃) = ∑ log𝐿𝑘(𝑃)

𝑁

𝑘=1

 

 

Note that the same transition matrix 𝑃̂ maximises both the likelihood and the log likelihood function, 

so the outcome is the same irrespective of the function that is used. We apply the log likelihood as the 

objective function and use a non-linear solver algorithm in R. 

 

Least squares chooses 𝑃̂ such that the squared distance between the transitions and the predictions is 

minimised. The transitions 𝑘 are to be aggregated based on the time between inspection 𝑛 and 

ordered by State 𝑖 before and after.  
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Table 4: Start state before an n-year transition.             Table 5: End state after an n-year transition. 

 

Table 4 shows the number of assets in a certain state before the transition and Table 5 shows the 

number of assets in a state after the transition. For example, of the transitions spanning over a two-

year period, eighteen are in State 9 at the start and eleven are still in State 9 after the two years. We 

can calculate the expected number of assets 𝐸 per state with Eq. (3.1), knowing the transition matrix 

𝑃 and the start population 𝐶. The start populations are ordered per year in Table 4. This allows us to 

calculate the squared difference between the observed population and the expected population for 

State 𝑖 after a transition of 𝑛 time intervals (Hoskins et al., 1999): 

 

Years 9 6 1 0  Years 9 6 1 0 

0.25 27 25 5 0  0.25 14 30 13 0 

0.50 25 26 5 0  0.50 10 30 15 1 

0.75 35 19 7 0  0.75 20 23 17 1 

1.00 33 16 8 0  1.00 17 23 17 0 

1.25 27 20 1 0  1.25 9 28 11 0 

1.50 16 22 5 0  1.50 7 25 11 0 

1.75 18 26 3 0  1.75 6 23 18 0 

2.00 18 24 4 0  2.00 11 21 13 1 

2.25 12 20 3 0  2.25 4 22 9 0 

2.50 15 8 2 0  2.50 4 16 5 0 

2.75 11 13 2 0  2.75 6 11 9 0 

3.00 10 12 1 0  3.00 6 8 8 1 

3.25 12 9 0 0  3.25 4 12 5 0 

3.50 7 9 0 0  3.50 7 7 2 0 

3.75 13 8 0 0  3.75 6 11 4 0 

4.00 12 4 1 0  4.00 4 10 3 0 

4.25 1 2 0 0  4.25 1 2 0 0 

4.50 2 2 0 0  4.50 0 3 1 0 

4.75 2 1 0 0  4.75 1 2 0 0 

5.00 4 1 0 0  5.00 4 1 0 0 

5.25 2 1 0 0  5.25 1 2 0 0 

5.50 3 0 0 0  5.50 2 0 1 0 

5.75 2 0 0 0  5.75 1 1 0 0 

6.00 1 0 0 0  6.00 1 0 0 0 

6.25 0 0 0 0  6.25 0 0 0 0 

6.50 0 0 0 0  6.50 0 0 0 0 

6.75 2 0 0 0  6.75 1 1 0 0 

7.00 2 0 0 0  7.00 0 1 1 0 

7.25 2 0 0 0  7.25 2 0 0 0 

Total 314 268 47 0  Total 149 313 163 4 
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𝑆(𝑃) = ∑∑(𝑒𝑡,𝑗 − 𝑛𝑡,𝑗)
2

𝑗𝑡

 

 

𝑒𝑡,𝑗 is the expected number of observations in State 𝑗 at time 𝑡. 𝑛𝑡,𝑗 is the actual number of 

observations in State 𝑗 at time 𝑡. For example, if the expected population in State 9 after three years 

is ten and the observed population is two, the squared distance for this state and transition time is 

(10 − 2)2. 

 

Least squares estimates transition matrix 𝑃̂ such that the total squared distance is minimised. We apply 

the total squared distance as the objective function and use a non-linear solver to find the transition 

matrix which minimises the objective function. Appendix A describes the derivation of a transition 

probability matrix using a non-linear solver in more detail. We find that the transition probabilities 

converge to three digits after the decimal point regardless of the starting values. The maximum 

likelihood and least squares approaches result in the following transition probabilities: 

 

                        9.000 6.000 1.000 0.000   

𝑃̂𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =

9
6
1
0

[

0.684 0.225 0.090 0.001
0.000 0.849 0.148 0.003
0.000 0.000 0.981 0.019
0.000 0.000 0.000 1.000

]  

 
               9.000 6.000 1.000 0.000   

𝑃̂𝑙𝑒𝑎𝑠𝑡 𝑠𝑞𝑢𝑎𝑟𝑒𝑠                 =

9
6
1
0

[

0.506 0.256 0.228 0.009
0.000 0.895 0.101 0.004
0.000 0.000 0.908 0.092
0.000 0.000 0.000 1.000

]  

 

We observe that the transition probabilities per year differ substantially. 𝑝1,1 and 𝑝1,0 differ more than 

five percent,  𝑝9,1 differs more than ten percent and 𝑝9,9 differs more than fifteen percent. We believe 

the maximum likelihood results are superior to the least squares results for two reasons. Firstly, the 

least squares result gives a high probability to 𝑝9,1, while this transition is observed less than half as 

often in the one-year transitions. Secondly, the least squares method does not use the information of 

each individual transition. It rather uses the aggregated data with the states before and after a 

transition. The individual transition is disregarded, and this could lead to illogical probabilities. 

Appendix B confirms this suspicion by comparing the transition probabilities based on non-imputed 

and imputed data. The transition probabilities estimated with the least squares method differ 

substantially, while the transition probabilities estimated with the maximum likelihood method do not. 

Everything considered, we prefer the maximum likelihood approach over the least squares approach, 

and will use it in the next subsection to test for stationarity of transition probabilities. 

 

A difference between the transitions observed in reality and those assumed possible by the maximum 

likelihood estimator exists for the transitions to a state of failure. As stated in Section 4.1, the power 

transformer failures are observed at the moment they happen. The method for estimation is applicable 
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to interval-censored data, which means that we do not know when a transition happens. Therefore, 

the maximum likelihood estimator assumes that a failure can happen any time between the start and 

end of the transition, while the transition is certain to happen in the last quarter of the transition 

period. We adjust the estimator such that a failure can only happen in the final quarter. The 

distribution 𝐸 in the quarter prior to the failure can be calculated with Eq. (3.1): 

 

𝐸 = 𝐶𝑃𝑛−1 

 

𝑛 is the number of quarters in the transition period and 𝐶 is the starting distribution. For example, if 

the asset starts in State 9, the starting distribution is [1 0 0 0]. We calculate 𝐸, which is the 

distribution in the quarter prior to a failure. We can use this matrix as our starting distribution 𝐶 to 

calculate the distribution 𝐸 after another quarter of degradation. However, we know the asset has not 

failed yet. Therefore, we calculate the starting distribution conditional on no failure in the first 𝑛 − 1 

quarters with the following equation: 

 

[𝑐9 𝑐6 𝑐1 𝑐0] = [
𝑒9

1 − 𝑒0

𝑒9

1 − 𝑒0

𝑒1

1 − 𝑒0
0] 

 

The starting distribution 𝐶 in the quarter prior to a failure is now known and we can use it to calculate 

the distribution 𝐸 after another quarter of degradation with the following equation: 

 

𝐸 = 𝐶𝑃 

 

𝐸 is the distribution after another quarter of degradation. The matrix 𝐸 is structured as follows: 

[𝑒9 𝑒6 𝑒1 𝑒0]. 𝑒0 is the probability of our transition to the state of failure, where the failure takes 

place in the last quarter. If transition 𝑘 is a transition to the state of failure, we follow the steps 

described above to calculate 𝑒0. 𝐿𝑘(𝑃) is then set equal to 𝑒0 rather than 𝑝𝑖,𝑗
𝑛  when estimating 𝑃̂ with 

maximum likelihood. The estimation results in the following transition probabilities: 

 

                        9.000 6.000 1.000 0.000   

𝑃̂𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =

9
6
1
0

[

0.686 0.221 0.092 0.001
0.000 0.850 0.148 0.002
0.000 0.000 0.979 0.021
0.000 0.000 0.000 1.000

]  

 

The difference between the estimated probabilities using both maximum likelihood approaches is only 

subtle. We prefer the estimator applied above, as it best matches reality. 

 

On a final note, the probability of failure is underestimated because of two reasons. First, as mentioned 

earlier in this section, we only consider failures due to causes which are monitored at inspections in 

order to find the probabilities of going to State 0. Failures due to causes which are not monitored at 

an inspection are also failures, and should therefore be incorporated in the calculation of the 
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probability of failure. Second, the relative frequency of transitions to a state of failure is lower due the 

fact that we only have failure data up to 2015, while the other transitions are considered up to the 

present. A smaller period means fewer failures, which results in a relatively lower number of 

transitions to the state of failure compared to the number of transitions to another state. We address 

these issues in Section 4.4. 

 

 Testing for stationarity 
 

We have discussed the procedure for estimating stationary transition probabilities in the previous 

subsection. In this subsection we discuss the appropriateness of assuming stationary transition 

probabilities. 

 

Assuming stationary transition probabilities would imply that the transitions have the same probability 

of occurring each year regardless of the age and the time spent in a state. In this subsection we focus 

on the age and in Section 4.3 we focus on the time spent in a state. To test the assumption of age-

independence we split the data in age categories and estimate the transition probabilities for each age 

category. We exclude transitions to State 0 due to the limited number of observations. The age 

categories are 15 years and younger, 16 to 30 years, 31 to 45 years and 46 years or older. The asset’s 

age is its age at the start of the transition. Table 6 shows the transition probabilities per age category 

estimated with maximum likelihood. The number of transitions per age category is shown in the top 

left corner of each matrix. The number of transitions is 788 instead of the 629 mentioned earlier, 

because we impute the data as described in Appendix B. With Imputing data we mean that certain 

transitions spanning over a period longer than two years are split into multiple transitions. The 

advantage is that these transitions can be distributed over the age categories more accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ≤ 15 years   16-30 years 

n=167 9 6 1  n=141 9 6 1 

9 0.881 0.110 0.008  9 0.645 0.266 0.090 

6 0.000 0.827 0.173  6 0.000 0.921 0.079 

1 0.000 0.000 1.000  1 0.000 0.000 1.000 

 31-45 years   ≥45 years 

n=260 9 6 1  n=210 9 6 1 

9 0.442 0.391 0.167  9 0.482 0.427 0.091 

6 0.000 0.837 0.163  6 0.000 0.813 0.187 

1 0.000 0.000 1.000  1 0.000 0.000 1.000 

 All ages      

n=778 9 6 1      

9 0.685 0.240 0.074      

6 0.000 0.847 0.153      

1 0.000 0.000 1.000      

Table 6: Transition probabilities per age category. 
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The transition probabilities differ substantially between the age categories. The probability of 

remaining in the State 9 seems to decrease with age, while the probability of remaining in State 6 

seems to be fairly constant. The decline in the probability of remaining in State 9 is also very steep, 

with a difference of over forty percent between the age categories of assets of 15 years and younger, 

and assets between ages 31 to 45. We would like to test whether the difference in transition 

probabilities is statistically significant. Anderson and Goodman (1957) describe a statistical test for 

exactly this purpose. We test the null hypothesis (𝐻0) that the transition probabilities are stationary 

against the alternative (𝐻1): 

 

𝐻0: 𝑝𝑖,𝑗(𝑡) = 𝑝𝑖,𝑗 (𝑡 = 1,2,3,… , 𝑇) 

𝐻1: 𝑝𝑖,𝑗(𝑡) ≠ 𝑝𝑖,𝑗 (𝑡 = 1,2,3,… , 𝑇) 

 

If 𝐻0 is rejected, we may not assume stationarity. Anderson and Goodman (1957) state that the 

transition probabilities are to be calculated with the following equation: 

 

𝑝̂𝑖,𝑗(𝑡) =
𝑛𝑖,𝑗(𝑡)

𝑛𝑖(𝑡−1)
  

 

Where 𝑛𝑖,𝑗(𝑡) is the number of transitions which started in State 𝑖 at time 𝑡 − 1 and are in State 𝑗 at 

time 𝑡 and 𝑛𝑖(𝑡 − 1) is the number of transitions starting in State 𝑖 at time 𝑡 − 1. 𝑝̂𝑖,𝑗 is calculated 

similarly with all transitions rather than only the transitions of a certain period. The probabilities in 

Table 6 are estimated from multi-year transitions and our age categories are also not per year but 

rather per fifteen years. We prefer our estimator over the estimator of Anderson and Goodman 

because it is applicable to our transitions which span different time lengths. Our sample size is too 

small to find enough transitions starting at a certain age category and ending in the next age category. 

Therefore, we apply the test with the transition probabilities of Table 6 in order to demonstrate how 

Liander may use such a test in the future when more transitions are available. We acknowledge that 

the test is not performed as it should be. 

 

Anderson and Goodman (1957) calculate the following test measure to test 𝐻0: 

 


𝑖
2 = ∑∑𝑛𝑖(𝑡 − 1)

𝐽

𝑗=1

(𝑝̂𝑖,𝑗(𝑡) − 𝑝̂𝑖,𝑗)
2

𝑝̂𝑖,𝑗

𝑇

𝑡=1

 

 

𝑡 = 1,2,3,…𝑇 are the age intervals, 𝑗 = 1,2, … 𝐽 are the states and 𝑛𝑖(𝑡 − 1) are the number of assets 

in State 𝑖 before the transition. Remember that we calculate 𝑝̂𝑖,𝑗(𝑡) and 𝑝̂𝑖,𝑗 differently than should be.  

Table 7 shows the values for 𝑛𝑖(𝑡 − 1) for all 𝑖 and 𝑡, i.e. 𝑛9(0) = 147 and 𝑛9(3) = 58. 
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State 𝑖 ≤15 years 16-30 years 31-45 years ≥46 years 

9 147 75 105 58 

6 15 56 136 132 

1 5 10 19 20 

Total 167 141 260 210 

Table 7: Number of assets starting in each state per age group. 

 


𝑖
2 has a Chi-square distribution with (𝐽 − 1) × (𝑇 − 1) degrees of freedom and a test for all states at 

once is performed with the test statistic as the sum of all individual test statistics and 𝐽 × (𝐽 −

1) × (𝑇 − 1) degrees of freedom (Anderson and Goodman, 1957). We take a significance level of 0.05. 

Table 8 shows the results of the test and the decision of 𝐻0. 

 

State 𝑖 2 𝑃(𝑋 > 2) Degrees of 

freedom 

Decision of 𝐻0 

9 71.235 0.000% 6 Reject 

6 3.674 72.065% 6 Not reject 

1 0.000 100.000% 6 Not reject 

All states 74.910 1.083% 18 Reject 

Table 8: Results of the test for stationarity. 

 

For State 9 and States 9, 6 and 1 combined we find that we reject 𝐻0, which implies that we may not 

assume stationarity for these transition probabilities. Especially for the transition probabilities of State 

9 we find that we may not assume stationarity with a high significance. This result is not surprising, 

considering that a gap of forty percent exists between the youngest and second oldest age category. 

As the test is not carried out as supposed to, we cannot rely on the decisions. We assume that the 

transition probabilities are age-dependent, because the difference between the transition proba-

bilities between age categories is substantial. 

 

4.3 Semi-Markov transition probabilities 

 

In this section we investigate whether the transition probabilities depend on the time spent in a state. 

 

Intuitively, an asset entering a state is likely to have a higher probability of remaining in the state than 

one which has been in the state for a while. The asset which has just entered the state is among the 

best in the state, while the one which has already been in the state for a while is among the worst in 

the state. We would like to test whether the probability of leaving the state is in fact increasing as the 

time spent in the state is increasing. An asset enters a state after maintenance and subsequently starts 

degrading to worse states. Therefore, the moment of maintenance is the moment the time spent in a 

state starts running. Preferably a test similar to the test in Subsection 4.2.2 is performed to see whether 

the transition probabilities are dependent on the time spent in a state. This would require the 
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transition and the time since the last maintenance to be known in order to estimate transition 

probabilities. Unfortunately, only few maintenance actions are followed by two inspections in the data 

set. 

 

Another approach to find evidence for transition probabilities being dependent on the time spent in a 

state is fitting a semi-Markov model, which is introduced in Section 3.2. If we find a probability 

distribution that shows a high dependence on the time spent in a state, we can argue that the 

probabilities are in fact dependent on the time spent in a state. Black et al. (2005) propose a method 

for fitting a density function to the time till degradation from a state to another state for interval-

censored data. The inspection result and the time since maintenance should be determined after a 

maintenance activity bringing the asset to a predefined state. In our case we look at the maintenance 

activities bringing the asset to State 9. We exclude State 0 due to a lack of observations. Table 9 shows 

the number of power transformers in each state a certain number of years after a maintenance action 

brings the asset to State 9. 

 

The table shows a high number of power transformers degrading to States 6 and 1 within a year. 

Besides that, we do not observe a real pattern of assets slowly degrading to a lower state as time 

progresses, possibly due to a lack of observations after three years since maintenance. Therefore, we 

do not believe that we can use this data to see if the transition probabilities are dependent on the time 

spent in a state. Instead, we use this data to show how the probabilities of a semi-Markov model can 

be fit according to Black et al. (2005), so that Liander can use this when they have more data available. 

 

Time since 

maintenance 
9 6 1 

1 16 19 12 

2 3 10 5 

3 9 8 4 

4 5 2 2 

5 1 0 0 

6 2 1 0 

7 0 1 1 

Table 9: Number of inspections revealing a condition grouped per number of years since maintenance. 

 

The approach described in Black et al. (2005) allows for a one-state transition per time interval. The 

data in Table 9 suggest that States 9, 6 and 1 can be reached within a year. Therefore, we use a semi-

annual time interval, since power transformers can now degrade twice in a year and still reach State 1 

from State 9. We use two Weibull distributions to describe the probabilities of degrading from State 9 

to State 6 and from State 6 to State 1. 𝛼9,6 and 𝛽9,6 are the Weibull parameters of degrading from 

State 9 to State 6, and 𝛼6,1 and 𝛽6,1 are the Weibull parameters of degrading from State 6 to State 1. 

Note that the degradation behaviour may be better described with another distribution function than 

the Weibull distribution. For now, we are only interested in demonstrating the procedure for fitting a 
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distribution to the data for future reference. The key is to find the parameters that best fit the data in 

Table 9. 

 

For each year since maintenance the power transformers have a certain probability of being in States 

9, 6 and 1. The sum of these probabilities is 1. We can calculate the probabilities by determining all 

possible routes, and then assigning probabilities to these routes. We use the probability of being in 

State 1 two years after maintenance as an example. We can make four semi-annual one-state jumps 

in two years. One possible route would be to start and stay in State 9 for the first year, then go from 

State 9 to State 6 and subsequently go from State 6 to State 1. We denote this route as 9,9,9,6,1. The 

probability of each transition depends on the state and the time spent in the state. The probability of 

staying in State 9 during the first half year is denoted by 𝑝9,9(0.5). The probability of remaining in State 

9 in the second half year is  𝑝9,9(1.0). This logic can be applied to all probabilities so that the probability 

of the route can be calculated. Table 10 shows all routes from State 9 to State 1 for a two-year period 

along with the probability of the route. 

 

Route Probability 

9,9,9,6,1 𝑝9,9(0.5) × 𝑝9,9(1.0) × 𝑝9,6(1.5) × 𝑝6,1(0.5) 

9,9,6,6,1 𝑝9,9(0.5) × 𝑝9,6(1.0) × 𝑝6,6(0.5) × 𝑝6,1(1.0) 

9,9,6,1,1 𝑝9,9(0.5) × 𝑝9,6(1.0) × 𝑝6,1(0.5) × 1 

9,6,6,6,1 𝑝9,6(0.5) × 𝑝6,6(0.5) × 𝑝6,6(1.0) × 𝑝6,1(1.5) 

9,6,6,1,1 𝑝9,6(0.5) × 𝑝6,6(0.5) × 𝑝6,1(1.0) × 1 

9,6,1,1,1 𝑝9,6(0.5) × 𝑝6,1(0.5) × 1 × 1 

Table 10: Routes for starting in State 9 and ending in State 1 for a two-year period. 

 

The probability of remaining in State 1 is one, as State 1 is absorbing. Eq. (3.2) describes how 𝑝9,6(𝑚) 

and 𝑝6,1(𝑚) are calculated with the Weibull distribution. We also know 𝑝9,9(𝑚) = 1 − 𝑝9,6(𝑚) and 

𝑝6,6(𝑚) = 1 − 𝑝6,1(𝑚). This allows us to calculate the probability of all routes for a certain 𝛼9,6, 𝛽9,6, 

𝛼6,1 and 𝛽6,1. The sum of the probabilities of all routes is the probability of being in State 1 two years 

after maintenance, for example 0.4. The probability of finding four assets in State 1 after two years is 

now 0.44. We can perform this process for all combinations of state and number of years since 

maintenance. The product of the probabilities resulting from this process is the likelihood of the 

observations. Similar to finding the stationary transition probabilities in Section 4.2, we use a non-

linear solver to find the parameters which maximise the log likelihood. 

 

It should be noted that this process is computationally extensive, as the number of routes explodes as 

the number of years since maintenance increases. The highest number of routes is 106 for being in 

State 1 after fourteen semi-annual transitions. We find values of 0.260, 0.017, 0.479 and 0.903 for the 

parameters 𝛼̂9,6, 𝛽̂9,6, 𝛼̂6,1 and 𝛽̂6,1 respectively. It should be noted that the solver finds different 

parameter values for different starting values, meaning that the result may be a local optimum. Table 

11 shows the probabilities corresponding to the obtained parameters. 
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𝑚 𝑝9,9(𝑚) 𝑝9,6(𝑚) 𝑝6,6(𝑚) 𝑝6,1(𝑚) 

0.5 0.620 0.380 0.743 0.257 

1.0 0.778 0.222 0.828 0.172 

1.5 0.836 0.164 0.862 0.138 

2.0 0.868 0.132 0.881 0.119 

2.5 0.888 0.112 0.894 0.106 

3.0 0.902 0.098 0.904 0.096 

3.5 0.912 0.088 0.911 0.089 

4.0 0.920 0.080 0.917 0.083 

4.5 0.927 0.073 0.922 0.078 

5.0 0.932 0.068 0.926 0.074 

5.5 0.937 0.063 0.930 0.070 

6.0 0.941 0.059 0.933 0.067 

6.5 0.944 0.056 0.935 0.065 

7.0 0.947 0.053 0.938 0.062 

Table 11: Probabilities dependent on time spent in a state. 

 

We observe that the estimated probabilities of staying in a state increase as the time spent in a state 

increases. This pattern also seems observable in our observations. Even though the approach seems 

applicable for Liander, for now we do not have sufficient data to make any claims on the dependency 

of the time spent in a state. 

 

4.4 Probability of failure 

 

In the previous section we concluded that a lack of data prevents us from investigating whether the 

transition probabilities depend on the time spent in a state. Considering that the transition 

probabilities differ substantially between the age categories, we believe that we should continue with 

the age-dependent transition probabilities. The problem with the age-dependent transition 

probabilities in Section 4.2 is that the probability of going to State 0, the state of failure, is not 

estimated due to a lack of data. In this section we estimate the transition probabilities from States 9, 

6 and 1 to State 0. 

 

Eq. (3.1) dictates that the distribution of assets over the states after a year of degradation can be 

calculated as follows: 

 

𝐸 = 𝐶𝑃 

 

Writing out this equation for States 9, 6, 1 and 0 results in the following equation: 
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[𝑒9 𝑒6 𝑒1 𝑒0] = [𝑐9 𝑐6 𝑐1 𝑐0] [

𝑝9,9 𝑝9,6 𝑝9,1 𝑝9,0

𝑝6,9 𝑝6,6 𝑝6,1 𝑝6,0

𝑝1,9 𝑝1,6 𝑝1,1 𝑝1,0

𝑝0,9 𝑝0,6 𝑝0,1 𝑝0,0

] 

 

Matrix multiplication shows that we can calculate 𝑒0 with the following equation: 

 

𝑒0 = [𝑐9 𝑐6 𝑐1 𝑐0] [

𝑝9,0

𝑝6,0

𝑝1,0

𝑝0,0

] 

 

𝑒0 is the probability of being in State 0 after a year of degradation, 𝑝𝑖,0 is the probability of going from 

State 𝑖 to State 0 and 𝑐𝑖 is the current number of assets in State 𝑖. We can use historical data to 

approximate 𝑐9, 𝑐6, 𝑐1, 𝑐0 and 𝑒0 for all age categories and subsequently estimate the probability of 

going from States 9, 6 and 1 to State 0. We start with approximating 𝑒0 and subsequently approximate 

𝑐9, 𝑐6, 𝑐1 and 𝑐0. 

 

We approximate 𝑒0 by calculating the number of failures per age category per year. From 2012 to 2015 

thirty-one failures occurred. The causes of twenty-four failures are preventable with maintenance, 

while the causes of the remaining seven failures are not. We refer to the first group of failures as 

preventable failures, and to the latter group as unpreventable failures. We only consider the 

preventable failures for now. We find the age of the power transformer at the time of failure, and 

assign the failure to an age category. Next, we sum the number of transformers in each age category 

for the years 2012, 2013, 2014 and 2015. Now we have the number of failures and the number of 

possible failures. 𝑒0 is the number of failures divided by the number of possible failures. Table 12 shows 

𝑒0, the expected percentage of failing power transformers per year. The general trend seems to be 

that the expected percentage of failing power transformers increases as the age increases, which is as 

expected. 

 

Ages 𝑒0 

≤15 years 0.000 

16-30 years 0.002 

31-45 years 0.013 

≥46 years 0.027 

Table 12: Percentage of preventable failures per age category per year. 

 

𝑐9, 𝑐6, 𝑐1 and 𝑐0 can be derived from the inspection data. The asset’s age and condition are gathered 

for all inspections. These inspections are categorised in age groups. The percentage of observations in 

each state is an approximation of the distribution of assets over the states. For example, if 200 out of 

a 1000 inspections indicate an asset is in State 9, we assume that the starting distribution in State 9 is 

0.2. Table 13 shows the percentage of assets in each state per age category. A failure becomes 

apparent immediately and is subsequently fixed. Therefore, 𝑐0 is always zero. The table shows that the 
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percentage of assets in State 9 declines as the their age increases. The reverse holds true for States 6 

and 1. 

 

Ages 𝑐9 𝑐6 𝑐1 𝑐0 

≤15 years 0.665 0.250 0.085 0.000 

16-30 years 0.411 0.495 0.095 0.000 

30-45 years 0.295 0.494 0.211 0.000 

≥46 years 0.206 0.573 0.221 0.000 

Table 13: Percentage of assets in each state. 

 

We now know 𝑐9, 𝑐6, 𝑐1, 𝑐0 and 𝑒0 for all age categories. We can use the following equation derived 

earlier: 

 

𝑒0 = [𝑐9 𝑐6 𝑐1 𝑐0] [

𝑝9,0

𝑝6,0

𝑝1,0

𝑝0,0

] 

 

We can simplify this equation, because 𝑐0 is always zero. The following equation remains: 

 

𝑒0 = [𝑐9 𝑐6 𝑐1] [

𝑝9,0

𝑝6,0

𝑝1,0

] 

 

We have three unknown variables, namely 𝑝9,0, 𝑝6,0 and 𝑝1,0. Therefore, we have to make an 

assumption for the relative likelihood of the three probabilities. In Subsection 4.2.1 our estimation for 

all ages resulted in 𝑝9,0 = 0.001, 𝑝6,0 = 0.002 and 𝑝1,0 = 0.021. We assume that the probabilities 

have the same proportion for all age categories. We can now rewrite our equation such that the 

relative likelihood between 𝑝9,0, 𝑝6,0 and 𝑝1,0 remains the same: 

 

𝑒0 = [𝑐9 𝑐6 𝑐1]

[
 
 
 
 
1 0 0

0
0.002

0.001
0

0 0
0.021

0.001]
 
 
 
 

[

𝑝9,0

𝑝9,0

𝑝9,0

] 

 

We can rewrite this into the following equation: 

 

𝑒0 = [𝑐9 × 1 𝑐6 ×
0.002

0.001
𝑐1 ×

0.021

0.001
] [

𝑝9,0

𝑝9,0

𝑝9,0

] 

 

Again, we rewrite this equation: 
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𝑒0 = [𝑐9 × 1 𝑐6 ×
0.002

0.001
𝑐1 ×

0.021

0.001
] [

1
1
1
] 𝑝9,0 

 

Now, we can calculate 𝑝9,0 with the following equation: 

 

𝑝9,0 =
𝑒0

[𝑐9 × 1 𝑐6 ×
0.002
0.001 𝑐1 ×

0.021
0.001

] [
1
1
1
]

 

 

Then, the probabilities 𝑝6,0 and 𝑝1,0 can be calculated with the relative likelihood from earlier: 

 

[

𝑝9,0

𝑝6,0

𝑝1,0

] =

[
 
 
 
 
1 0 0

0
0.002

0.001
0

0 0
0.021

0.001]
 
 
 
 

[

𝑝9,0

𝑝9,0

𝑝9,0

] 

 

We calculate 𝑝9,0, 𝑝6,0 and 𝑝1,0 for each age category. The resulting probabilities are shown in Table 

14. Note that the probabilities used to express the relative likelihood of probabilities 𝑝9,0, 𝑝6,0 and 𝑝1,0 

are rounded to three digits after the decimal points. We use unrounded numbers to calculate the 

probabilities shown in Table 14. 

 

Ages 𝑝9,0 𝑝6,0 𝑝1,0 

≤15 years 0.000 0.000 0.000 

16-30 years 0.000 0.001 0.011 

31-45 years 0.002 0.005 0.047 

≥46 years 0.004 0.011 0.093 

Table 14: Probabilities of preventable failures. 

 

The table shows the probabilities of preventable failures. However, we are also interested in 

unpreventable failures, because these also impact the assets life cycle. The percentage of 

unpreventable failures per age category is shown in Table 15. We assume that these probabilities are 

age-dependent. 

 

Ages 𝑒0 

≤15 years 0.000 

16-30 years 0.002 

31-45 years 0.007 

≥46 years 0.002 

Table 15: Percentage of unpreventable failures per age category per year. 
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These probabilities are added to 𝑝9,0, 𝑝6,0 and 𝑝1,0 in Table 14, as the unpreventable failures have the 

same probability of occurring irrespective of the current state. The resulting probabilities are shown in 

Table 22 in Appendix C. Subsequently, the probabilities of failure can be added to the age-dependent 

transition probability matrices of Subsection 4.2.2. In Appendix C we also explain the procedure to add 

the probabilities, and show the resulting age-dependent transition probability matrices which include 

State 0. The age-dependent transition probability matrices allow us to model the complete asset 

degradation, which brings us a step closer to being able to analyse a trade-off between the costs of an 

investment strategy. 

 

4.5 Validation 

 

In the previous sections of this chapter we estimated age-dependent transition probability matrices. If 

these matrices are to be used for decision making purposes, we would like to be certain of them. For 

this reason we perform a validation. We do this by determining a 95% confidence interval for the age-

dependent transition probabilities. The transition probabilities to State 0 are omitted, as these are 

estimated differently. 

 

For a binomially distributed random variable, the maximum likelihood estimator for 𝑝 is 𝑘 𝑛⁄  and the 

100(1 − 𝛼)% confidence interval for 𝑝 when 𝑛 is large is approximated by the following formula 

(Larsen and Marx, 2012): 

 

𝑘

𝑛
± ɀ 𝛼/2

√
(𝑘 𝑛⁄ )(1 − 𝑘

𝑛⁄ )

𝑛
 

 

𝑘 is the number of successes, 𝑛 is the total number of attempts and ɀ 𝛼/2 is the value for which 

𝑃(𝑍 ≥ ɀ 𝛼/2) = 𝛼/2 with 𝑍 standard normally distributed. If we were to estimate our transition 

probabilities by dividing the transitions from State 𝑖 to State 𝑗 divided by the transitions from State 𝑖, 

we would be able to use the formula. A transition from State 𝑖 to State 𝑗 would count as a success, and 

a transition starting from State 𝑖 would count as an attempt. For example, our estimate for 𝑝9,9 would 

become the number of transitions from State 9 to State 9 divided by the number of transitions from 

State 9. The problem is that the transitions in our data cover an unequal number of years, which is why 

we used a different maximum likelihood estimator to estimate transition probabilities. Therefore, we 

cannot use the formula presented by Larsen and Marx (2012). 

 

Another method to determine a confidence interval is the bootstrap. The bootstrap method relies on 

sampling with replacement. For example, the estimation of the transition probabilities for assets of 

fifteen years or younger is based on 167 observed transitions in this age category. For a single 

bootstrap sample 167 transitions are sampled with replacement, which means that certain transitions 

are drawn multiple times while others are not drawn at all. Next, the transition probabilities are 

estimated based on the bootstrap sample. This is repeated for 𝑏 bootstrap samples. The 2.5% and 
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97.5% quantile of the 𝑏 estimated probabilities are the respective lower and upper bound of the 95% 

confidence interval. Table 16 shows the confidence interval for the transition probabilities per age 

category after taking 1,000 bootstrap samples. 

 

Ages n 
𝑝9,9 𝑝9,6 𝑝9,1 𝑝6,6 𝑝6,1 

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

≤15 167 0.841 0.922 0.070 0.148 0.003 0.025 0.705 0.948 0.052 0.295 

16-30 141 0.540 0.735 0.190 0.360 0.039 0.149 0.868 0.971 0.029 0.132 

31-45 260 0.336 0.544 0.302 0.487 0.100 0.244 0.776 0.887 0.113 0.224 

≥46 210 0.340 0.611 0.307 0.568 0.035 0.175 0.753 0.868 0.132 0.247 

All 778 0.644 0.726 0.203 0.282 0.049 0.098 0.813 0.876 0.124 0.187 

Table 16: 95% confidence interval for transition probabilities per age category. 

 

The confidence intervals of the estimated probabilities are wide. Most of the intervals are wider than 

0.100 and some extreme cases are wider than 0.250. Even the age category with the largest sample 

size, transformers age 31 to 45, has confidence intervals spanning over 0.200. The confidence intervals 

for the probabilities for all ages is considerably smaller, with a maximum of 0.082. The confidence 

intervals can therefore be reduced by combining multiple age categories. Adding onto the uncertainty, 

the estimation of the transition probabilities to State 0 is unreliable, because the data are estimated 

based on only thirty-one failures. In summary, we should keep the uncertainty in the confidence 

interval in mind when basing decisions on the estimated parameters. 

 

4.6 Conclusions 

 

In this chapter we have discussed the estimation of transition probabilities for the degradation of 

power transformers. Section 4.1 introduces the inspection data set covering power transformers. We 

use the condition codes 9, 6 and 1 together with a failure as the state space. The data covers 655 power 

transformers in the period 2012 to 2019. Although the data allows for estimating transition 

probabilities, a few data quality issues arise. The data only covers eight years of inspections and 

maintenance actions are not always registered. 

 

In Section 4.2 we discuss the estimation of stationary transition probabilities, together with its 

application to the power transformer data. We explain the estimation approaches which are applicable 

to transitions covering multiple years found in Hoskins et al. (1999) in Subsection 4.2.1. The maximum 

likelihood approach is our preferred estimator, and it works by finding the transition probability matrix 

with maximises the likelihood of the observed transitions. In Subsection 4.2.2 we estimate and 

compare the maximum likelihood estimates for different age categories. We use the test of Anderson 

and Goodman (1957) in order to test whether we may assume stationary transition probabilities or 

not. Unfortunately, we are unable to test the hypothesis as intended. The transition probabilities differ 
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substantially between the age categories, so we assume that the transition probabilities are age-

dependent. 

 

In Section 4.3 we attempt to test if the transition probabilities depend on the time spent in a state. 

The moment of entering a state is known after the registered maintenance activities. The number of 

assets in each state a certain number of years after a maintenance activity bringing the asset to State 

9 can be used to find transition probabilities dependent on the time spent in a state. The procedure 

for estimating these transition probabilities is mentioned in Black et al. (2005). The results show an 

increasing probability of remaining in a state as the time spent in a state increases. However, not much 

data are available for more than three years after maintenance, so the results are unreliable. 

 

We aim to find the missing age-dependent transition probabilities of a power transformer failure  in 

Section 4.4. A lack of data complicates the estimation of the probabilities with maximum likelihood, 

because we can only find a state before a failure in four out of thirty-one cases. The transition 

probabilities to the state of failure caused by failure causes which are preventable with maintenance 

are determined first. We do this by leveraging the fact that the expected number of assets in each 

state is the result of a matrix multiplication between the current distribution of assets over the states 

with the transition probability matrix. Subsequently, we use the expected number of failures and the 

average asset distribution over the states for each age category to find the missing transition 

probabilities. The probability of failure due to failures causes which are not monitored with inspections 

are added to the transition probabilities. Although the results are based on only thirty-one failures, we 

find that the method has logical results. 

 

The transition probability matrices per age category are estimated with a small sample size, with only 

141 transitions in the smallest age category of assets. Hence, we perform a validation of our results in 

Section 4.5. A confidence interval is determined for all transition probabilities per age category by 

means of bootstrap sampling. The confidence intervals are wide even without the estimation of the 

transition probabilities to the state of failure, which is based on only thirty-one failures. 

 

All in all, the entire road of data to transition probabilities has been covered in this chapter. Although 

the resulting transition probabilities are not particularly reliable, our aim of finding a method to 

estimate the transition probabilities has been achieved. Furthermore, Liander can use the methods in 

Sections 4.2, 4.3 and 4.5 to fit transition probabilities, test for stationarity, fit transition probabilities 

dependent on the time spent in a state and assess the confidence interval of the transition probabilities 

on their own data once the data quality has improved. We use the transition probabilities estimated 

in this chapter to perform a proof of concept in the next chapter.  
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Chapter 5 Proof of concept 

 

In this chapter we introduce and apply a simulation model which assesses the life cycle costs of an 

asset for an investment strategy. We explain the simulation model in Section 5.1. In Section 5.2 we 

introduce the case study to test our model. Then, in Section 5.3, we compare the current investment 

strategy to different strategies in order to see whether the impact of the investment decisions is as 

expected. We assess the sensitivity of the input parameters in Section 5.4, and we conclude this 

chapter in Section 5.5. 

 

5.1 Simulation model 

 

In this subsection we discuss the model which simulates an asset life cycle. In Subsection 5.1.1 we 

discuss the cost, degradation and other parameters which are inputs for the simulation model. We 

explain the simulation model’s logic in Subsection 5.1.2. Lastly, we discuss the model’s assumptions in 

Subsection 5.1.3. 

 

 Input parameters 

 

The simulation model should assess the impact of an investment strategy on the costs occurring during 

an asset’s life. It relies on modelling the asset degradation and the impact of maintenance to simulate 

the asset’s condition. Besides that, the simulation model requires the costs of the cost items we have 

introduced in Section 2.2. Lastly, the user’s input is needed in the form of an investment strategy 

together with the number of trials. 

 

The asset degradation can be modelled with a transition probability matrix for each identified age 

category. The states, the start state and the probability of going from a state to another state are 

known. Maintenance actions can be used in an attempt to restore an asset’s condition to a better 

condition. Each maintenance action also has a transition probability matrix per age category. Note that 

the age categories for the transition probability matrices of asset degradation and maintenance are 

also inputs of the simulation model. 

 

The cost items are purchase and installation costs, preventive and corrective maintenance costs, costs 

of inspection, disposal costs, failure costs and other costs. The discount rate is used to translate the 

value of these costs from one moment in time to another. Different types of maintenance actions may 

be applicable to an asset, for example a minor, medium and major maintenance action. The costs for 

each  maintenance action are required. The additional cost of repairing a failed asset for each 

maintenance action is required as well. 
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The user can define an investment strategy which the simulation model follows. The inspection, 

maintenance and replacement decisions can based on the condition and age. For example, assets 

found in State 6 at ages ten to twenty are inspected again after five years. 

 

 Model structure 

 

The input parameters are used to simulate an asset’s life cycle for all trials. The simulation is based on 

a Monte Carlo simulation for which random sampling is used to generate different paths for the life of 

an asset. The random sampling takes place to determine the condition of an asset after a period of 

degradation and after a maintenance action. At the end of the trial, the cash flows and their timing are 

known. These are used to calculate the EACs. For each trial a new asset life cycle is simulated and the 

corresponding EACs are calculated, allowing us to assess the spread in life cycle costs of an investment 

strategy. The logic of simulating a random asset life cycle is shown in Figure 13. The items numbered 

filler to filler are explained in more detail. 

 

 
Draw State 𝑗 at end of Period 𝑖. 

 

The condition of an asset at the end of a period is random. The probability of going to each condition 

depends on the asset’s age and the current condition. For example, the probabilities of a 44-year old 

asset currently in State 9 going to States 9, 6, 1 and 0 is 0.438, 0.388, 0.166 and 0.008 respectively. 

These probabilities are dictated by the transition probability matrices. To determine a random 

condition for our example after a period of degradation, we draw a random number 𝑥 ∈ 𝑈[0,1]. The 

next condition is determined with the following logic: 

 

𝑁𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 = {

9, 𝑥 < 0.438
6, 𝑥 ≥ 0.438 ⋀ 𝑥 < 0.826
1, 𝑥 ≥ 0.826 ⋀ 𝑥 < 0.992
0, 𝑥 ≥ 0.992

 

 

This example shows how the transition probability matrices for each age category and the current state 

can be used to randomly determine the next state. 

 

 
Replacement conditions met? 

 

The replacement conditions are met in three cases. The first case is when an asset has reached the age 

after which corrective maintenance is applied and it fails. The power transformer is considered to be 

too old to be worth saving with a reparation and is replaced. The second case is when the asset is 

retired at a pre-specified age. The asset can be retired after this age if an inspection reveals its 

condition to be critical. The critical conditions are specified in the model input. Additionally, if all 

conditions are specified to be critical, the asset is replaced when it hits the pre-specified age without 
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an inspection being needed. The third case is when an asset has failed and cannot be repaired. The 

asset is damaged too much to be worth repairing, and is replaced instead. 

 

 
Figure 13: Logic of the simulation model. 
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Maintenance conditions met? 

 

The conditions at which maintenance is performed can differ per age category. The states and age at 

which maintenance should be applied is given for each maintenance action, as explained in the 

previous subsection. Maintenance can only be applied after a failure or after the condition of the asset 

has been revealed by an inspection. 

 

 
Store cash flow for performed maintenance action in Period 𝑖. 

 

Each maintenance action has its own cost. Besides that, it is possible to add an additional cost to a 

maintenance action in case of an asset failure. A failed asset is more expensive to perform a 

maintenance action on in some cases, for example when additional safety precautions have to be 

followed. 

 

 
Draw State j after performed maintenance action. 

 

Similar to drawing the state after a period of asset degradation, the state after a maintenance action 

is also dependent on the current age and state. As opposed to an asset’s condition degrading, the 

maintenance action is aimed at improving its condition. The process of drawing a new state after a 

maintenance action is similar to the process of drawing a new state after a period of degradation. 

 

 
Determine next inspection moment. 

 

The next inspection moment is dependent on the current age and state. The inspection intervals are 

determined in the investment strategy. The inspection interval is added to the current asset’s age to 

find the new age at which an inspection will occur. Note that an asset failure may occur before the 

next inspection interval. When this happens and the asset is repaired, the new state and age are used 

to determine a new age for inspection. 

 

 Assumptions 

 

In this subsection we address four assumptions of the simulation model.  

 

The first assumption is that time is discrete rather than continuous. The implications of this assumption 

are that an inspection, a maintenance action and asset degradation can occur at the end of a period. 

Of course, the period length is chosen by the user, so the period length can be chosen such that it is 

appropriate for the case at hand. 

 



 

46 
 

The timing of cash flows is a second assumption. The timing of cash flows impacts the EACs, as a cash 

flow at a later moment is discounted more heavily and thus results in lower EACs. We assume end-of-

period cash flows, as this corresponds to the timing of inspections and maintenance actions. 

 

A third assumption is that costs are constant. For the cost items purchase cost, installation costs, 

inspection costs and disposal costs this assumption seems reasonable, while the costs of the other cost 

items may vary. The maintenance costs may be higher than expected due to some unforeseen 

problems. The failure costs depend on multiple factors. For example, a failure of a power transformer 

leads to power outage. The longer the power outage lasts, the more Liander has to pay to compensate 

customers and hence the higher the failure costs. Getting insight in the spread of the cost items is a 

cumbersome task. Due to time constraints, we assume costs are constant. 

 

The fourth assumption is about the transition probabilities. The transition probabilities of degradation 

and maintenance impact depend only on the asset’s age and current condition. In reality, other factors 

impacting the transition probabilities may exist. An example would be the time spent in a state 

discussed in Section 4.3. 

 

The assumptions of constant costs and transition probabilities depending only on the current state and 

the asset’s age may be invalid in certain cases. This may also mean that the investment strategy would 

allow for investment decisions based on the costs of the decision rather than only the age and the 

state. For example, an asset would be repaired if the costs of the reparation would be lower than a 

certain amount. These options are currently not implemented. 

 

5.2 Case study 

 

We have introduced the power transformer inspection data in Chapter 4, and used them to estimate 

transition probabilities. In this section we start out by introducing the power transformers themselves. 

We subsequently discuss the input data used for the simulation model. 

 

The simulation model is applied to a case study regarding power transformers. Power transformers 

are a part of the electricity grid and fulfil the role of transforming a voltage into another voltage. Energy 

is transmitted at high voltage as much as possible for two reasons. First, energy losses are lower when 

electricity is transmitted at high voltage. Second, fewer cables are required to transmit electricity at 

high voltage, leading to lower purchase costs. The voltage is lowered so that the energy can be 

distributed to customers. This task is performed with power transformers. Power transformers are 

often categorised by their voltage, cooling system and manufacturer. Liander’s power transformers 

are categorised by the voltages 150 kV, 110 kV, 50 kV, 20-35 kV and 1-20 kV. The most common cooling 

systems are oil natural-air natural (ONAN), oil natural-air forced (ONAF) and oil forced-air forced 

(OFAF), which refer to the method for cooling the windings of a power transformer. 
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The transition probabilities determined in Chapter 4 are based on data from 150 kV, 110 kV and 50 kV 

substations and 20 kV and 10 kV control stations. At a substation the voltage is transformed from high 

voltage to a lower one. A 150 kV substation may for example transform the 150 kV to 10 kV. A control 

station is used to keep the voltage at the desired level. The voltage drops when electricity is being 

transported over a long distance. The control station has a power transformer which is able to convert 

the lowered voltage to the initial voltage. The power transformers in this data set have different 

cooling systems and have been produced by different manufacturers. These three factors, the voltage, 

cooling system and manufacturer, may influence the transition probabilities. 

 

The costs for the case study of a 80 MW power transformer are based on internal documents, input 

from experts and assumptions. Table 17 shows the cost items used in the simulation. Note that the 

residual value is not a cost but a revenue. 

 

Cost item Cash flow 

Purchase €700,000 

Installation €80,000 

Inspection €1,000 

Regular maintenance €5,000 

Revision (after failure) €250,000 

Residual value −€80,000 

Disposal €20,000 

Failure €100,000 

Other €0 

WACC 0.037 

Table 17: Cost items. 

 

The costs are debatable for some items. For example, a power transformer loses energy and this loss 

costs money. The calculation of the money lost depends on the percentage of capacity used, and is 

case dependent. For now, we do not consider this cost as it would require more research, and it is not 

required for a proof of concept. In general, the costs are merely indications of the actual cost 

parameters and are only used for the purpose of testing the simulation model. 

 

For the asset degradation, we use the age-dependent transition probabilities shown in Table 23 of 

Appendix C. The impact of the maintenance actions, regular maintenance and revision, is estimated 

using the condition codes before and after the maintenance action. The transition probabilities of a 

regular maintenance action are calculated as follows: 

 

𝑝̂𝑖,𝑗 =
𝑛𝑖,𝑗

𝑛𝑖
  

 



 

48 
 

Where 𝑛𝑖,𝑗 is the number of transitions starting in State 𝑖 before maintenance and ending in State 𝑗 

after maintenance, and 𝑛𝑖 is the number of transitions starting in State 𝑖 before maintenance. Table 

18 shows the transition probabilities after a regular maintenance action per age category. A revision 

only receives a condition after the maintenance action, and not before. However, the condition code 

after the revision is almost exclusively Condition 9. The probability of going to State 9 after a revision 

is therefore one, except when the asset is in the failed state. A failure can only be repaired by a revision 

and not by regular maintenance, but only for around 50 percent of the failures. Therefore, the 

following transition probabilities are used to determine the state after a revision: 

 

                              9.000 6.000 1.000 0.000   

𝑃𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 =

9
6
1
0

[

1.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000
1.000 0.000 0.000 0.000
0.500 0.000 0.000 0.500

]  

 

 

 

We do not test whether the transition probabilities are age-dependent or not, as we merely intend to 

test the model on a case study. The parameters in this section allow us to simulate an asset’s life cycle 

and assess the life cycle costs over this life cycle. 

 

5.3 Benchmark 

 

In this section we compare the current investment strategy with alternatives to see whether an 

improvement is possible. In Subsection 5.3.1 we discuss the current investment strategy and run the 

simulation model to assess the life cycle costs. The logic behind finding the current investment strategy 

is having a strategy of reference. We compare alternatives to this strategy in Subsection 5.3.2. 

 

n=100 ≤ 30 years  n=74 31-40 years 

 9 6 1 0   9 6 1 0 

9 1.000 0.000 0.000 0.000  9 1.000 0.000 0.000 0.000 

6 0.408 0.592 0.000 0.000  6 0.500 0.500 0.000 0.000 

1 0.480 0.400 0.120 0.000  1 0.625 0.292 0.083 0.000 

0 0.000 0.000 0.000 1.000  0 0.000 0.000 0.000 1.000 

n=112 41-50 years  n=72 ≥51 years 

 9 6 1 0   9 6 1 0 

9 1.000 0.000 0.000 0.000  9 1.000 0.000 0.000 0.000 

6 0.250 0.750 0.000 0.000  6 0.229 0.771 0.000 0.000 

1 0.387 0.387 0.226 0.000  1 0.367 0.333 0.300 0.000 

0 0.000 0.000 0.000 1.000  0 0.000 0.000 0.000 1.000 

Table 18: Transition probabilities after regular maintenance. 
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 Current investment strategy 

 

In this subsection we first describe the investment strategy employed by Liander for power 

transformers. Then, we use the simulation model to assess the performance of the current investment 

strategy. We use the current strategy to more easily assess the impact of changes in the investment 

strategy to the EACs in the next subsection. 

 

The investment strategy currently employed by Liander is discussed with experts. Liander does not 

follow a pre-defined investment strategy, but follows the advice of experts. This means that the 

current investment strategy cannot be captured easily and we have to make some assumptions. A 

strict rule is that no inspections and maintenance actions are performed during the first twelve years, 

unless an asset fails. Afterwards, regular maintenance is applied every three, five or ten years. The 

interval for regular maintenance depends on the type of power transformer and is independent of 

the current asset condition. We use an interval of five years for our analysis. Regular maintenance is 

always accompanied by an inspection. A revision is assumed to be performed only in case of a failure. 

The asset’s age of replacement is not specified currently, since the moment of replacement is based 

on expert opinions. Power transformers can reach ages up to 60 years. Therefore, we set the age for 

corrective replacement to thirty-five and the age for preventive replacement to 60. The asset is 

replaced at age 60 no matter the condition. 

 

We simulate the life of the power transformer one million times. Afterwards, the EACs are calculated 

for each life cycle. Figure 14 shows a loss exceedance curve of the EACs under the current investment 

strategy. The loss exceedance curve shows that the EACs of a power transformer are certain to be 

higher than  €33,071 under the current investment strategy. These costs correspond to having no 

failures at all and just the regular maintenance and inspections every five years since year twelve. The 

probability of this scenario is actually quite high, as this best case scenario happens in 34.0% of the 

trials. We also observe a rapid increase as soon as the EACs rise above €33,544, instead of a smooth 

line with steadily increasing costs. This small jump is caused by a failure in the final few years before 

preventive replacement at age 60. The tail is caused by an unrepairable failure happening between 

ages sixteen to thirty. The purchase and failure costs are now spread over a short period of time, 

resulting in extremely high EACs. 
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Figure 14: Loss exceedance curve of the current investment strategy. 

 

 Alternative investment strategies 

 

Now that we know the performance of the current investment strategy, we set out to compare it to 

alternatives. In the comparisons we are going to make in this subsection, Alternative 1 refers to the 

investment strategy currently followed by Liander and Alternative 2 refers to the alternative we wish 

to investigate. 

 

The first alternative investment strategy we are investigating is having a smaller interval for regular 

maintenance and inspections. Instead of performing maintenance and an inspection every five years 

starting from age twelve, we perform maintenance and an inspection four years after finding the 

power transformer in State 9 and two after finding it in one of the other states. The goal of this 

alternative strategy is to reduce the tail by having a more conservative maintenance strategy. Figure 

15 shows the loss exceedance curves for Alternatives 1 and 2. Overall, we can observe that the curves 

are not massively different. Alternative 1 performs better on the best scenarios, similar on the tail and 

worse between the tail and the best scenarios. This can be explained by the more conservative 

maintenance strategy of Alternative 2. Alternative 1 is cheaper for those scenarios where the asset has 

no failures, as less maintenance is required. Instead of lowering the tail, the more conservative 

maintenance strategy lowers the scenarios before the tail. This may be due to the fact that even for 

the Conditions 9 and 6, there still exists a probability of failure for the age category sixteen to thirty 

years. And these failures cannot always be repaired. This means that we are unable to eliminate the 

tail, as a probability of failure will always exist. 
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Figure 15: Loss exceedance curves of Alternative 1 (current strategy) and Alternative 2 (more maintenance). 

 

As the tail seems to be difficult to reduce, we switch our focus to the trade-off between the increasing 

risk of failure as the age increases and the benefit of not having to replace the asset for another year. 

We compare the current strategy to a strategy where preventive replacement is performed at age 50, 

so ten years earlier. Figure 16 shows the performance of both investment strategies. We observe that 

Alternative 1 has lower EACs for the best scenario, while the two alternatives are comparable in all 

other cases. Intuitively, we may best the current investment strategy by increasing the age of 

preventive maintenance. However, the probability of failure is the same for assets older than 50 years. 

This means that the risk of a failure does not increase, but the costs are spread over more years. In 

reality the risk is likely to increase, so the resulting performance would be unreliable. 

 

 
Figure 16: Loss exceedance curves of Alternative 1 (current strategy) and Alternative 2 (earlier preventive replacement). 
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The third alternative we compare to the current strategy is an alternative with age-dependent 

maintenance rules. The first inspection is performed at age twelve. Afterwards, an inspection is 

performed six years after finding the asset in State 9 and four years after finding it in another state 

until age thirty. From age thirty until replacement the inspection interval is five years in State 9 and 

three years in another state. A revision is still only performed in case of corrective maintenance. 

Regular maintenance is performed if the asset is found in State 1 before age thirty and in States 6 and 

1 after age thirty. The alternative investment strategy is more age-dependent than the current 

strategy. Figure 17 shows the performance of the two competing investment strategies. Once again, 

the difference between the two strategies is only marginal. 

 

 
Figure 17: Loss exceedance curves of Alternative 1 (current strategy) and Alternative 2 (age-dependent maintenance). 

 

The last alternative we will investigate is a run to failure investment strategy. This means that we 

perform no inspections or maintenance actions, and when the asset fails we remove it. Figure 18 shows 

the performance of the current strategy versus the run to failure strategy. The curve of the run to 

failure strategy is coarse, because each additional year of survival leads to hugely different EACs than 

not having survived that year. In the best case scenario the alternative strategy is better than the 

current strategy. The worst case scenario of the alternative strategy is also better than the worst case 

scenario of the current strategy. The reason for this is that the asset is not repaired at a young age just 

to fail again and become unrepairable soon after. Yet, 88.0% of the EACs curve is to the right of the 

curve of the current investment strategy, suggesting that the run to failure strategy is probably not 

recommendable. 
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Figure 18: Loss exceedance curves of Alternative 1 (current strategy) and Alternative 2 (run to failure). 

 

5.4 Sensitivity analysis 

 

In the previous section we have observed that the EACs are not too different when comparing two 

investment strategies. In this section we investigate to what extent the parameters influence the EACs. 

The sensitivity of the EACs depends on the investment strategy. We use the current investment 

strategy for this analysis. 

 

First, we evaluate the sensitivity of the EACs regarding the cost parameters. To do this, we run the 

simulation with different cost parameters and evaluate the effect on the EACs. We evaluate the impact 

of a five percent increase and decrease of the cost parameters on the 2.5% quantile, the average and 

the 97.5% quantile of the EACs. Table 19 shows the results of the sensitivity analysis. We make sure 

that the one million trials which describe the life cycle of a power transformer are identical even if a 

cost parameter is changed, so that the results are unaffected by randomness. 

 

We observe that the purchase costs have by far the most influence on the EACs. This indicates that the 

purchase costs dominate the greatest proportion of the EACs. The 2.5% quantile is mainly affected by 

the purchase and installation costs, because these costs are made for sure even in an extremely 

fortunate scenario in which the asset experiences no trouble. Similarly, the average EACs are also 

affected mainly by the purchase and installation costs. The EACs at the 97.5% quantile are most 

sensitive to the purchase costs, installation costs, failure costs, revision costs and WACC. The life cycles 

of the assets which have an EACs above the 97.5% quantile are the worst case scenarios, and hence it 

makes sense that the costs which are made in cases of a failure heavily influence the 97.5% quantile. 

Surprisingly, the purchase costs still have a bigger impact on the 97.5% quantile. 
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Parameter Change 𝑞0.025 Average 𝑞0.975 

Standard None 33,071  36,648  49,650  

Purchase 

costs 

+5% 34,532 (+4.42%) 38,232 (+4.32%) 51,449 (+3.62%) 

−5% 31,611 (−4.41%) 35,064 (−4.32%) 47,797 (−3.73%) 

Installation 

costs 

+5% 33,238 (+0.50%) 36,829 (+0.49%) 49,856 (+0.41%) 

−5% 32,905 (−0.50%) 36,467 (−0.49%) 49,444 (−0.41%) 

Inspection 

costs 

+5% 33,078 (+0.02%) 36,655 (+0.02%) 49,655 (+0.01%) 

−5% 33,065 (−0.02%) 36,642 (−0.02%) 49,645 (−0.01%) 

Failure costs 
+5% 33,071 (+0.00%) 36,687 (+0.11%) 49,842 (+0.39%) 

−5% 33,071 (+0.00%) 36,610 (−0.10%) 49,458 (−0.39%) 

Disposal costs 
+5% 33,076 (+0.02%) 36,656 (+0.02%) 49,664 (+0.03%) 

−5% 33,067 (−0.01%) 36,640 (−0.02%) 49,635 (−0.03%) 

Regular 

maint. costs 

+5% 33,105 (+0.10%) 36,680 (+0.09%) 49,674 (+0.05%) 

−5% 33,037 (−0.10%) 36,616 (−0.09%) 49,626 (−0.05%) 

Revision costs 

(corrective) 

+5% 33,071 (+0.00%) 36,663 (+0.04%) 49,950 (+0.60%) 

−5% 33,071 (+0.00%) 36,633 (−0.04%) 49,350 (−0.60%) 

Residual 

value 

+5% 33,053 (−0.05%) 36,615 (−0.09%) 49,592 (−0.12%) 

−5% 33,090 (+0.06%) 36,681 (+0.09%) 49,708 (+0.12%) 

WACC 
+5% 33,062 (−0.03%) 36,588 (−0.16%) 49,258 (−0.79%) 

−5% 33,081 (+0.03%) 36,711 (+0.17%) 50,031 (+0.77%) 

Table 19: Sensitivity analysis of the EACs for the cost parameters. 

 

Next, we evaluate the sensitivity of the EACs to the transition probabilities. The sensitivity of the EACs 

to the transition probabilities is important, considering that the confidence intervals of the transition 

probabilities are wide. We investigate the influence of the transition probabilities by adding 0.05 to 

and subtracting 0.05 from the probabilities whenever the resulting probability would be between zero 

and one. Note that the change of the cost parameters is relative, while the change of the transition 

probabilities is absolute. The sum of the probabilities of going from a state to another state should add 

up to one, so the sum of the unchanged probabilities either decrease or increase by the same 0.05. 

The decrease or increase is spread over the unchanged probabilities in such a way that the proportion 

between the other probabilities remains the same. For each transition probability, we analyse the 

effect on all age categories once and not separately for every age category. The reason for this is that 

the sensitivity towards the transition probabilities of a certain age category depends on the investment 

strategy. Furthermore, the analysis of the sensitivity for each combination of age category and 

transition probability would become quite extensive. Admittedly, the sensitivity of each individual 

transition probability also depends on the investment strategy, since for example a maintenance 

focused strategy would have a greater sensitivity to the probability of remaining in State 9 as more 

time is spent in State 9. Table 20 shows the influence of the changes to the transition probabilities on 

the 2.5% quantile, average, and 97.5% quantile of the EACs. 
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Parameter Change 𝑞0.025 Average 𝑞0.975 

Standard None 33,071  36,648  49,650  

𝑝9,9 
+0.05 33,071 (+0.00%) 36,522 (−0.34%) 48,756 (−1.80%) 

−0.05 33,071 (+0.00%) 36,736 (+0.24%) 49,967 (+0.64%) 

𝑝9,6 
+0.05 33,071 (+0.00%) 36,626 (−0.06%) 49,880 (+0.46%) 

−0.05 33,071 (+0.00%) 36,659 (+0.03%) 49,231 (−0.84%) 

𝑝9,1 +0.05 33,071 (+0.00%) 36,826 (+0.49%) 49,967 (+0.64%) 

𝑝9,0 +0.05 33,071 (+0.00%) 86,605 (+136.32%) 609,591 (+1127.78%) 

𝑝6,6 
+0.05 33,071 (+0.00%) 35,958 (−1.88%) 45,821 (−7.71%) 

−0.05 33,071 (+0.00%) 37,180 (+1.45%) 51,873 (+4.48%) 

𝑝6,1 
+0.05 33,071 (+0.00%) 36,878 (+0.63%) 49,967 (+0.64%) 

−0.05 33,071 (+0.00%) 36,353 (−0.80%) 48,756 (−1.80%) 

𝑝6,0 +0.05 33,071 (+0.00%) 51,415 (+40.29%) 153,420 (+209.00%) 

𝑝1,1 −0.05 33,071 (+0.00%) 44,763 (+22.14%) 107,302 (+116.12%) 

𝑝1,0 +0.05 33,071 (+0.00%) 44,763 (+22.14%) 107,302 (+116.12%) 

Table 20: Sensitivity analysis of the EACs for the transition probabilities. 

 

The table shows that we find an effect towards the expected positive or negative direction. The EACs 

decrease when the probability of remaining in a state increases, and they increase when the probability 

of remaining in a state decreases. The EACs increase when the probability of going to States 0 or 1 

increases. Unsurprisingly, an increase of the probability of failure has the biggest effect on the EACs. 

An absolute increase of 0.05 is quite large for the probabilities of failure, considering that most of them 

are smaller than 0.05. For example, 𝑝9,0 is 0.000, 0.002, 0.008 and 0.006 for age categories 15 years 

and younger, 16 to 30 years, 31 to 45 years and 46 years or older respectively. An increase of 0.05 is a 

relatively hard increase. The 97.5% quantile of the EACs increases with 1127.78%, because the least 

fortunate scenarios have shorter lives due to failures and increased failure and revision costs. An 

increase in 𝑝6,0 and 𝑝1,0 also leads to a huge increase in the 97.5% quantile of the EACs for similar 

reasons. For the other probabilities, an increase and decrease of 0.05 is only a small change relative to 

the width of the confidence intervals determined in Section 4.5. Even then, we observe an effect of up 

to 7.71% on the 97.5% quantile and up to 1.88% on the average value of the EACs. This suggests that 

the confidence interval of the transition probabilities is too wide for the simulation results to be 

reliable, as the effect of a relatively small change of the transition probabilities already has a significant 

impact on the EACs. 

 

5.5 Conclusion 

 

In this chapter we propose a simulation model to assess the life cycle costs of an asset and test the 

simulation model on a case study. We test the model by applying it to our case study of power 

transformers. 
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In Section 5.1 we discuss the simulation model which assesses the life cycle costs of an investment 

strategy by generating random life cycles of an asset. The condition of the asset throughout its life 

cycle is based on a Markov chain. The model allows for age-dependent transition probabilities between 

the states and maintenance actions bringing the asset to a higher state with a certain probability. The 

simulation model uses cost parameters to keep track of the costs made during a life cycle of the asset 

and calculates the EACs when the it is replaced. 

 

We introduce power transformers and the inputs of the simulation model in Section 5.2. We perform 

a case study on power transformers, which are able to transform a voltage to another level. Power 

transformers are maintained through regular maintenance and a revision. The input parameters are 

based on an 80 MW power transformer. 

 

In Section 5.3 we discuss the current investment strategy and compare it to alternatives. The current 

investment strategy is difficult to formulate, as it is not followed right now. Consequently, the results 

of the benchmark should not be interpreted as outperforming the current situation, but rather 

comparing an investment strategy similar to the current one to alternatives. Overall, we observe that 

the performance of the different strategies does not deviate by a wide margin. 

 

We investigate the sensitivity of the EACs curve to the model parameters in Section 5.4. Of the cost 

parameters, the EACs curve is most sensitive to the purchase costs. The transition probabilities have a 

large impact on the EACs, considering that the change in transition probabilities is relatively small 

compared to the width of the confidence intervals we have discussed in Section 4.5. 

 

The results in Sections 4.4 and 4.5 indicate that the impact of maintenance in our model may be smaller 

than the impact of maintenance in reality. In our model, regular maintenance and revisions have a 

certain probability of improving the condition of the power transformer. After this improvement, the 

probability of degrading back to a lower state is high for older assets. This means that the benefit of a 

maintenance action is short-lived. We think this effect is smaller than it should be due to component 

replacements. When components are replaced, their state is better than would be expected for an 

asset of a certain age. An unrewarded replacement of components would explain the small difference 

between the EACs curves of different investment strategies. The limited ability of maintenance to 

extend the life cycle of the power transformers leads to a difficulty in making a true difference with an 

investment strategy. In the next section we make suggestions to improve the current assessment of 

the performance of an investment strategy. 
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Chapter 6 Conclusions and recommendations 

 

In Section 6.1 we present the most important findings of our research. Then, in Section 6.2, we make 

recommendations for Liander in order to continue with our findings. Lastly, we discuss the limitations 

of our research and give suggestions for further research in Section 6.3. 

 

6.1 Conclusions 

 

Our research objective is to build a simulation model which can assess the life cycle costs of an 

investment strategy. The model we propose is a Monte Carlo simulation model which uses a Markov 

chain model to simulate the condition of the asset throughout its life cycle. The states of the Markov 

chain model correspond to an asset’s conditions and a failure. The assignment of cash flows to specific 

events, such as purchase, failure and maintenance actions, allows for generating a stream of cash flows 

for a randomly generated life cycle while following an investment strategy. The equivalent annuitized 

costs are calculated from this stream of cash flows, which are the annuity equivalent of the net present 

value. It allows for a fair comparison of mutually exclusive alternatives with unequal lives. Ultimately, 

the process of generating a random life cycle can be repeated to get insight in the spread of the life 

cycle costs of an investment strategy. 

 

The simulation model only allows for transition probabilities and investment strategy decisions 

dependent on the asset’s age and condition. We are unable to verify whether the transition 

probabilities should depend on the time spent in a state for our case study. If this is the case, more 

research needs to be done in order to allow for transition probabilities dependent on an asset’s age 

and the time spent in a state. Therefore, the simulation model is a proof of concept rather than a 

finalised simulation model. Furthermore, the assumption of constant costs of our simulation model 

may need further research. We make the assumption to be able to perform a proof of concept, but we 

are not sure whether this assumption holds true in reality. 

 

The proof of concept shows the spread of equivalent annuitized costs for multiple investment 

strategies. We observe that a change in the investment strategy leads to substantially different costs. 

This is supported by the sensitivity analysis, which shows that the equivalent annuitized costs are 

dominated by the purchase costs. We argue that the impact of maintenance in our model is too small 

due to the unrewarded replacement of components. After maintenance is performed on an older asset 

and certain components have been replaced, these components are unlikely to degrade soon. The 

transition probabilities of our simulation model depend only on the asset’s age, and not the age of the 

components. Therefore, the transition probabilities may not be representative for an actual case. We 

provide solutions for this issue in the next section. 
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6.2 Recommendations 

 

We make five recommendations to Liander regarding the application and improvement of a life cycle 

costing analysis for assets. 

 

First, we advise Liander to expand the simulation model for multiple components. The proof of concept 

has shown that the impact of maintenance may not be reliable when assessing the life cycle costs of 

an asset consisting of components which are replaced during its life. A degradation model for each 

component would allow for an improved accuracy. These transition probabilities per component 

would have to be included in the simulation model. In order to estimate these probabilities, Liander 

needs to track more data on its assets. An asset breakdown structure defines which components 

belong to an asset, and would allow for tracking events on a component level. The inspection data are 

already stored on component level, so the main change would be the registration of component 

replacements and maintenance. Of course, the danger of the simulation model becoming too 

extensive arises when introducing the degradation on a component level. For example, the investment 

strategy decisions would depend on multiple conditions rather than one. Therefore, Liander would 

need to be pragmatic in their approach. The decisions may for example be dominated by certain 

components, which can be used to simplify the problem. 

 

Second, Liander should gather more data to test whether the transition probabilities depend on the 

time spent in a state and the asset’s age. If Liander were to implement an asset breakdown structure 

and register data consistently, an analysis of realistic transition probabilities can be performed. The 

outcomes of a simulation or optimisation model can only be reliable if the inputs are realistic. 

Moreover, more data would allow for a more reliable estimation of the transition probabilities per age 

category. The confidence intervals are wide in our current analysis, and we therefore argue that the 

transition probabilities are too unreliable to use for decision making. 

 

Third, Liander should investigate the cost parameters. In our research we assume constant costs for 

simplicity. In reality, this assumption may not be true. The decision for corrective maintenance may 

depend on the costs of repairing the asset, which is not included in our simulation. Liander should 

research whether costs directly influence the decision, and whether they are constant or not. 

Furthermore, Liander can opt to include the environmental impact of decisions in its estimation of cost 

parameters. This requires monetisation of environmental impact. Liander aims to weigh sustainability 

into its decisions, and letting environmental factors play a role in the decisions would accomplish just 

that. 

 

Fourth, Liander should analyse the appropriateness of the degradation model for other assets. Even 

between power transformers differences in the asset degradation may exist. An overview of which 

assets have similar degradation behaviours is required if the model is to be applied for decision making. 

For now, the model assumes that the transition probabilities depend only on age. This may not be true 

for certain assets. 
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Fifth, we recommend that Liander keeps assets on the same or nearby substations and control stations 

in mind. Power transformers and other assets are placed together on control stations and substations. 

Performing actions on multiple assets at the same or nearby substations and control stations results 

in low travelling times. Deviating from an investment strategy may be worth it if a large reduction in 

travelling time can be achieved. Liander should consider this trade off when deciding which actions to 

perform at a certain moment and location. 

 

6.3 Limitations and further research 
 

We discuss five limitations and suggest directions for further research. 

 

First, the application of the Markov model is currently time-based rather than usage based. The asset 

degradation may depend on the intensity of the usage rather than time for certain cases. The 

transitions would no longer be defined by the time between the two observations, but by the usage of 

the asset between the two observations. We did not perform such an analysis. The recommendation 

for further research is to consider the possibility that the degradation is driven by the intensity of usage 

rather than time. 

 

The second limitation of our research is that it only shows a method but does not show a reliable case 

study due to data issues. The case study is not usable to improve the investment strategy. Further 

research could perform similar research on a case study with a more complete dataset while also 

modelling the asset on a component level. This would show whether an investment strategy can be 

outperformed, and by how much. 

 

Third, the test for stationarity of Anderson and Goodman (1957) is based on a different estimator 

function than the estimator function used in our study. The test is therefore performed differently 

than intended. An adjusted test which is applicable to our estimator function would be most welcome. 

Additionally, we would also like to test whether the transition probabilities depend on the time spent 

in a state. Black et al. (2005) describe how we can fit these transition probabilities based on our data. 

A test to see whether these differ substantially from the stationary transition probabilities would 

indicate which transition probabilities are realistic. 

 

The fourth limitation is the absence of an optimisation algorithm which can find the optimal life cycle 

decisions. The development of this algorithm is premature for Liander, as gathering reliable data has 

to be their first priority. Other companies may have gathered reliable data already, and can put 

research effort into optimising an investment strategy. Furthermore, the optimisation of the 

investment strategy for a single asset is only suboptimal. As stated earlier, the other assets which are 

nearby also need to be considered in order to perform a more complete optimisation. Two possible 

directions for an algorithm are Approximate Dynamic Programming (ADP) and enumeration. ADP is a 

modelling framework that offers several strategies for tackling the curses in large, multi-period, 

stochastic optimisation problems (Powell as cited in Mes and Rivera, 2017). According to Mes and 
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Rivera (2017), the common denominator in ADP is that optimisation is used in combination with 

simulation. The algorithm estimates a value function through simulation, and iteratively attempts 

several decisions before moving forward in time. This algorithm is interesting, because we already have 

a simulation model. Enumeration is a brute force method, which calculates an objective function for 

all solutions. Liander can use business rules to reduce the solution space to a manageable size, e.g. a 

period of at least three years should remain between consecutive maintenance actions. The objective 

function would be the expected equivalent annuitized costs, and a method to calculate or approximate 

them quickly is required to make enumeration possible. 

 

Lastly, the fifth limitation is that the cost reduction of an optimised investment strategy may be 

disappointing due to technological advancements and changes in legislation. For example, an asset 

which is new may already be technologically outdated before its end of life. Similarly, an asset may 

have to be replaced prematurely due to new legislation which forbids certain materials. So, the 

theoretical cost reduction may not materialise when following an optimised investment strategy.  
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Appendix A: Solving for the transition probabilities 
 

We use the non-linear optimisation R package “NLoptR” to estimate the transition probabilities. This 

package minimises a non-linear objective function. Since the log likelihood objective function should 

be maximised, we minimise the negative log likelihood function. The least squares objective function 

should already be minimised. 

 

The NLoptR package allows users to determine which optimisation algorithm should be used. However, 

only few algorithms are able to handle constraints. The probabilities for each row in the transition 

matrix have to add up to one. A constraint is able to make sure that this condition is met. We want to 

be able to use certain optimisation algorithms which are unable to handle constraints as they are 

faster. Therefore, we have to find another method to make sure the probabilities add up to one. We 

do this by making use of conditional probabilities. The following matrix shows how the transition 

probability matrix: 

 

𝑃 = [

𝑎𝑏 𝑎(1 − 𝑏)𝑐 𝑎(1 − 𝑏)(1 − 𝑐) 1 − 𝑎
0 𝑑𝑒 𝑑(1 − 𝑒) 1 − 𝑑
0 0 𝑓 1 − 𝑓
0 0 0 1

] 

 

𝑎 = 𝑃𝑟𝑜𝑏(9 → 9,6,1), 𝑏 = 𝑃𝑟𝑜𝑏(9 → 9|9,6,1), 𝑐 = 𝑃𝑟𝑜𝑏(9 → 6|6,1), 𝑑 = 𝑃𝑟𝑜𝑏(6 → 6,1), 𝑒 =

𝑃𝑟𝑜𝑏(6 → 6 | 6,1), 𝑓 =  𝑃𝑟𝑜𝑏(1 → 1). 𝑏, 𝑐 𝑎𝑛𝑑 𝑒 are conditional probabilities. For example, 𝑏 is the 

probability of remaining in State 9 given that the asset will not go to State 0. The sum of the 

probabilities in each row adds up to one for all 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ∈ 𝑈(0,1). Constraints are no longer 

required and the number of parameters to estimate is the same as the number of parameters if 

constraints were used. 

 

Not all probabilities in the transition probability matrix are dependent on parameters. These 

probabilities are certain because we have removed the transitions for which the state improves. 

Consequently, we already know that these transitions are never going to happen in the observed data, 

so estimating them is unnecessary. 
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Appendix B: Imputing data 
 

The identified transitions span up to 7.25 years. Whenever a transition goes from a state to the same 

state and it is longer than two years, we split it into multiple transitions. For example, a transition from 

State 9 to State 9 in 7.25 years is split into three transitions from State 9 to State 9 in two years and 

one transition from State 9 to State 9 in 1.25 years. This can be done because we know the degradation 

can only cause a condition to go down, and hence we know the condition would be in State 9 at all 

moments in time during the 7.25 years. Table 21 shows the transition probabilities estimated by the 

maximum likelihood and least squares approaches with imputed and non-imputed data. 

 

 

The transition probabilities for the imputed and non-imputed data estimated by maximum likelihood 

are the same up to three decimal places. The transition probabilities for the imputed and non-imputed 

data estimated by least squares are substantially different. This shows that the least squares approach 

can be deceiving, as the data are not different but the estimated transition probabilities are. 

 

 

 

 

 

 

 

 

 

 

 Maximum likelihood, non-imputed   Maximum likelihood, imputed 

 9 6 1 0   9 6 1 0 

9 0.684 0.225 0.090 0.001  9 0.684 0.225 0.090 0.001 

6 0.000 0.849 0.148 0.003  6 0.000 0.849 0.148 0.003 

1 0.000 0.000 0.981 0.019  1 0.000 0.000 0.981 0.019 

0 0.000 0.000 0.000 1.000  0 0.000 0.000 0.000 1.000 

 Least squares, non-imputed   Least squares , imputed 

 9 6 1 0   9 6 1 0 

9 0.506 0.256 0.228 0.009  9 0.869 0.023 0.105 0.003 

6 0.000 0.895 0.101 0.004  6 0.000 0.986 0.014 0.000 

1 0.000 0.000 0.908 0.092  1 0.000 0.000 0.935 0.065 

0 0.000 0.000 0.000 1.000  0 0.000 0.000 0.000 1.000 

Table 21: Transition probabilities estimated by the maximum likelihood and least squares approaches based on imputed 
and non-imputed data. 
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Appendix C: Transition probability matrices 
 

In Section 4.4 we have addressed how we find the probability of failure for the age categories. 𝑝9,0, 

𝑝6,0 and 𝑝1,0 are estimated for the preventable failures. The unpreventable failures have a probability 

of occurring which is independent of the current state of the asset. Therefore, these probabilities can 

be added to 𝑝9,0, 𝑝6,0 and 𝑝1,0 to find the actual probability of failure, both by a preventable and an 

unpreventable cause. 

 

Ages 𝑝9,0 𝑝6,0 𝑝1,0 

≤15 years 0.000 0.000 0.000 

16-30 years 0.002 0.003 0.012 

31-45 years 0.008 0.012 0.054 

≥46 years 0.006 0.013 0.095 

Table 22: Probabilities of preventable and unpreventable failures. 

The probability matrices from Subsection 4.2.2 Table 6 are transformed to four states with the 

following rule: 

 

                         996(1 − 𝑝 90)    696(1 − 𝑝90 )     196(1𝑝 90) 096   

𝑃 =

9
6
1
0 [

 
 
 
𝑝9,9

∗ (1 − 𝑝9,0) 𝑝9,6
∗ (1 − 𝑝9,0) 𝑝9,1

∗ (1 − 𝑝9,0) 𝑝9,0

0 𝑝6,6
∗ (1 − 𝑝6,0) 𝑝6,1

∗ (1 − 𝑝6,0) 𝑝6,0

0 0 1 − 𝑝1,0 𝑝1,0

0 0 0 1 ]
 
 
 
  

 

Where 𝑝𝑖,𝑗
∗  is the probability of going from State 𝑖 to State 𝑗 before adding State 0, so the probability 

as presented in Table 6. Table 23 shows the transition probability matrices per age category after 

adding State 0. 

 

 

 ≤15 years   16-30 years 

 9 6 1 0   9 6 1 0 

9 0.881 0.110 0.008 0.000  9 0.643 0.265 0.089 0.002 

6 0.000 0.827 0.173 0.000  6 0.000 0.918 0.079 0.003 

1 0.000 0.000 1.000 0.000  1 0.000 0.000 0.988 0.012 

0 0.000 0.000 0.000 1.000  0 0.000 0.000 0.000 1.000 

 31-45 years   ≥46 years 

 9 6 1 0   9 6 1 0 

9 0.438 0.388 0.166 0.008  9 0.479 0.425 0.090 0.006 

6 0.000 0.827 0.161 0.012  6 0.000 0.803 0.184 0.013 

1 0.000 0.000 0.946 0.054  1 0.000 0.000 0.905 0.095 

0 0.000 0.000 0.000 1.000  0 0.000 0.000 0.000 1.000 

Table 23: Transition probabilities per age category, including State 0. 


