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Abstract

De Vrije Energie Producent (DVEP) is an energy supplier and Balance Responsible Party (BRP)

in the Dutch energy market. They are responsible for buying and selling energy on behalf of their

customers. To do so, they have to nominate the expected electricity production and consumption of

their portfolio for every hour of the following day. Hereby, it is crucial to predict these two volumes

as precisely as possible. Forecasting the demand side is rather straightforward. The production

side, however, is much more complicated for a wind based portfolio because of uncertainty. A

bad forecast can become costly due to imbalance costs and it is thus desirable to have the wind

power forecast as precise as possible. Being as precise as possible, however, is not always the most

bene�cial strategy, as pro�table imbalance prices may be harvested otherwise. This is the topic of

the second part of the project. Combined, this translates into the following research question:

Which model, based on historical market and weather data, can provide the most accurate and

pro�table day-ahead electricity bidding when considering a wind-based electricity portfolio?

From literature we �nd that normalized bias (NBIAS), normalized mean absolute error (NMAE)

and normalized root mean square error (NRMSE) are appropriate measures to assess the forecast

performance. The research at hand is done for a share of DVEP's wind portfolio, which includes

15 wind parks and a capacity of 55.1 MW and considers the period from 01-07-2018 till 01-07-2019.

We �rstly compare the two current forecasters and �nd that they have very similar results, with

an NMAE of 7.47% and 7.13% for Forecast 1 and 2, respectively. When this wind power portfolio

is considered as a whole, we can not state that both forecasts are signi�cantly di�erent. Besides,

when we take the wind speed or day hour into account and rearrange the data based on this, it

can be concluded that Forecast 2 outperforms Forecast 1. Wind direction and temperature are

also tested, but deliver less explicit results. This is also substantiated with �ndings in case of big

forecast di�erence between Forecast 1 and 2.

After this, we develop other strategies based on Forecast 2 to determine the best bidding volume

for the day-ahead bidding. In order to �nd the ideal bidding volume that deviates from a strategy

of zero imbalance, earlier research stressed that forecasting of prices is crucial. However, due to the

characteristic of the Dutch energy market being a dual pricing market, this is a very di�cult task.

To �nd the ideal bidding strategy for the day-ahead market, we use two approaches: The point

forecasts and the probabilistic forecast. The point forecasts includes next to the above mentioned

forecasts also an average of both. For the probabilistic strategy we use empirical distributions of

both historical prices and production data related to the forecast volume of Forecast 2. These

distributions create scenarios for which the bidding volume is optimized: This is done without

restriction, but also with restrictions due to VaR and ES. From the probabilistic strategies the

strategy of VaR 0 with a dependent price/production resampling was found to be the best, however

this approach was still not better than the day-ahead bidding of the point forecasts, from which

Forecast 2 was the best. We conclude that it is wise to use Forecast 2 as input for the day-ahead

bidding instead of the currently used Forecast 1.
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1
Introduction

This chapter starts with a short introduction of the problem owner, De Vrije Energie Producent

(DVEP). After that, we introduce the context of the problem at hand. In Section 1.3 the problem

is decribed in more detail, such that in Section 1.4 the research objective and questions can be

presented. We conclude the �rst chapter with the scope of the report (Section 1.5) and its outline

(Section 1.6).

1.1 Introduction to DVEP

DVEP is a Dutch energy company based in Hengelo, providing electricity trading possibilities

to small electricity-producing companies (wind farms, solar parks, greenhouse farmers) as core

business. It was founded in 2003 as a one-man company and since then DVEP has been growing

steadily. In the mid of 2017, DVEP had 70 employees. At the end of that year, DVEP was

bought by the American LPG distribution company UGI International, as an entry possibility to

the European market.

DVEP trades its energy portfolio on the Dutch energy markets but is also active on the German,

Belgian and French ones. As a Balance Responsible Party (BRP), one of the main responsibilities

for DVEP is to balance production and consumption of its electricity portfolio. They ensure that

the energy produced by clients is sold as pro�tably as possible and on the other hand, the consumed

energy of other clients is bought under good conditions. This can include long-term deals, with

a lifetime from months to years, up to trades on intraday basis, which are cleared up till �ve

minutes before the hour starts. While long term deals have the goal to reduce the risk of high price

�uctuations, short term intraday deals are needed to balance out di�erences between expected and

realized production and consumption. To achieve this, DVEP has its trading desk from which they

are active on four di�erent energy markets: The longterm market, spot market for the day-ahead

trading, the over-the-counter market for intraday deals and the imbalance market. The di�erent

markets will be explained in more detail in Section 2.1.

Clients for DVEP are, as mentioned before, both producing and consuming parties. Producers for

the electricity portfolio are wind, Combined Heat and Power Plants (CHP), bio-energy and solar

energy, which are all sustainable energy sources. On the other hand, DVEP delivers energy to

di�erent organizations, like municipalities or schools.

1



1. Introduction

1.2 Research context

We all have experienced a situation that our weather app tells us that it is rainy outside, but in fact,

the sun is shining bright. While it only causes some annoyance for us, it can mean high losses for

companies depending on the weather, like DVEP. They are highly dependent on the performance

of the wind power forecasts when estimating their clients electricity productions. These forecasts

are used to bid the hourly production volume at the day-ahead market. Based on the demand

and o�er of all BRPs, the electricity prices for each hour of the following day are determined, the

so called APX spot prices. However, as a certain volume was nominated, the BRPs are obliged

to deliver and consume this exact amount: DVEP has to ensure the balance of its portfolio. For

a BRP like DVEP, this can be a di�cult task because many producers in their portfolio produce

electricity with sun and wind energy. These energy sources are highly dependent on the weather,

which is even with just one day ahead very di�cult to forecast. In consequence, there can be a big

di�erence between forecast and production.

To ensure a working electricity grid, it is crucial that the grid remains stable: Production and con-

sumption have to match. The grid operator, which is TenneT in the Netherlands, is responsible for

this and is thus constantly monitoring the grid. To balance out the di�erences between forecasted

and realized production, TenneT makes use of the imbalance market. Depending on the market

situation TenneT issues the prices for feed-in and consumption at the imbalance market every 15

minutes, such that the balance of the market is ensured at all times. This can result in prices that

range from -75¿ per MWh to 175 ¿ per MWh in just one hour (or even bigger di�erences).

Figure 1.1: The imbalance of 20-09-2019.

Figure 1.1 shows the imbalance price for 20-09-2019 with the characteristic price spikes, where the

red line represents the APX price, the day-ahead price from 19-09, green corresponds with the

price for feed-in and blue is the price for consumption. The green line is almost not noticeable

since those two prices are very often the same. A highly positive price corresponds to an under-

production, which can be caused by less production than expected but also by much more demand

than forecasted. On the other hand, a highly negative price corresponds to an overproduction of

electricity, which is caused by the opposite e�ects. Those two situations can be caused by imprecise

weather forecast or unforeseen downtime of electricity plants.

For every hour of the day ahead, a auction for electricity takes place: To illustrate the buy and sell

2



1. Introduction

Figure 1.2: Schematic of buy and sell scenarios for the day ahead auction.

scenarios we can consult Figure 1.2, where hour X represents a sell situation and hour Y represents

a buy scenario on the spot market. For each hour, a forecast of energy consumption (red) and

production (blue) are used to determine the expected consumption and production volumes. As

can be seen, a great part of the consumption is hedged with long term deals (green) to reduce

the risk of price variability. With these parameters known, we can understand the situations in

both hours: In hour X, the long term deals together with the forecast production volumes exceed

the expected energy consumption of this hour. This means that at the spot market the expected

remaining energy is sold. However, in hour Y, the long term deals plus the expected electricity

production is less than the needed volume based on the consumption forecast. As consequence, for

this hour additional volumes will be bought in at the day-ahead market. One could easily argue,

that hour X can be highly bene�cial, while a situation like in hour Y is undesirable. However,

we need to keep in mind that the red and blue boxes are only forecasts. While the consumption

forecast is quite accurate, the production forecast can be o� the real production volume. When we

consider the hour X and a situation where the energy production is much lower than the forecast,

there is a di�erence between consumption and production. Assuming there is no intraday market,

the remaining volume to �ll up the production block thus needs to be bought at the imbalance

price. However, when we see Figure 1.1, the imbalance prices are highly volatile thus sometimes

not desirable to rely on. Prices may get highly positive or negative, such that the extra buy of

electricity can be bene�cial, when prices are below the APX spot price, or disadvantageous, when

the imbalance prices are higher than the APX spot price. To be less dependent on the imbalance

market, the traders try to clear the outstanding positions at the intraday market. This is a market,

which is open until �ve minutes up to delivery for the local market (60 min before delivery for the

European market). However, we notice also that in certain moments an over or underproduction

could even be more bene�cial. In the case of high imbalance prices, we theoretically want to

produce more electricity than the forecast volume. In this case, we can sell the surplus volume

at the intraday market or the imbalance market for a higher price than at the day-ahead market.

3



1. Introduction

Figure 1.3: Production versus forecast for 16-09, based on portfolio.

This is only a short description of the situation we are dealing with, the following report will dive

deeper the di�erent situations.

1.3 Problem description

The performance of the forecast is crucial for an energy trader with a substantial amount of wind

power producers. To forecast wind energy production, DVEP has contracts with two di�erent

forecasters. Until now, there is no measure of the performance of the two di�erent forecasts and

Forecast 1 is always used. This is because this forecaster is providing the forecasts already for

several years, while Forecaster 2 is providing forecasts just since June 2018. However, it is not

known, if this forecaster is indeed better than the other forecaster.

In Figure 1.3 we show the forecast production against the actual production for 16-09-2019. Both

forecasts have been made on 15-09 at 09:00. Here we can already see the di�erence between the

two forecasters. The red line represents the realized production, while yellow and blue refer to

Forecast 1 and 2, respectively. Based on this example, which re�ects only one day, the forecast

of Forecaster 2 would have been better than Forecaster 1 at all times of the day. DVEP seeks to

have this comparison standardized, such that they can tell which of the two forecasts is forecasting

more precise and under which conditions this is the case. We predict that wind directions and wind

speeds in�uence the forecast performance. Next to that, also the forecast horizon can be a source

of di�erence. Currently, the bidding for the day-ahead market is almost always the same as the

Forecaster 1. Only in cases that Forecaster 2 is deviating from this forecast signi�cantly, a di�erent

bidding volume is chosen. However, it can be the case that this is not always the most pro�table

strategy. In case of very low forecast volumes, it can be pro�table to bid even less volume at the

day-ahead market. In this way, we can reduce the risk of big losses in case of high imbalance. On

the other hand, in case of remaining volume, this can be sold at the imbalance market or intraday

market. It can be concluded that the bidding strategy for the day ahead market is currently heavily

relying on the experience of the trader.

4



1. Introduction

1.4 Research objective and questions

The problem description can be translated into research objectives and questions: The �nal objec-

tive of this research is to develop a model with which we can make day-ahead electricity biddings

more accurately and pro�table. To achieve this goal, several topics have to be clari�ed and under-

stood:

The Dutch electricity market and the impact of sustainable energy sources on it have to be under-

stood, such that we can make statements regarding bidding strategies later on.

Next, we have to �nd performance metrics for the present forecast models and apply these both

in the general case as well as for the di�erent conditions of weather and forecast horizon. The

performance metrics are based on scienti�c literature and adapted for the case at hand.

With this knowledge, we want to �nd a model to make statements about the relation between

the APX price and the imbalance price and �nally formulate a rule regarding bidding volumes

in particular situations. Again, this has to be applied to the Dutch market and in particular the

portfolio of DVEP.

While a risk-adapted bidding strategy will be incorporated in the model, it remains to be decided

to which extent a risk analysis of the model will be included. The main question that needs to be

asked is the following:

ˆ Which model, based on historical market and weather data, can provide the most accu-

rate and pro�table day-ahead electricity bidding when considering a wind-based electricity

portfolio?

To answer this main question, several other questions have to be asked:

ˆ A.1: How is the Dutch energy market organized and what is the impact of wind energy on

the market?

ˆ A.2: Which measures are appropriate to evaluate the performance of wind power forecasts?

� A.2.1: What metrics are proposed by literature to estimate the error of wind power

forecasts?

� A.2.2: Which of the wind power forecasts available for DVEP is the best based on the

proposed metrics?

ˆ B.1: What is the in�uence of weather-speci�c or other performance-in�uencing conditions

and can we, with the choice of two di�erent forecasts, �nd the ideal forecast depending on

di�erent conditions?

� B.1.1: Which conditions can in�uence the performance of a wind forecast?

� B.1.2: Which conclusions can we draw regarding the optimal forecaster depending on

the before determined conditions?

ˆ C.1: Which model is most appropriate to predict the relationship of the APX price and the

imbalance price, and which variables are necessary for this?

� C.1.1: What models are proposed by literature to estimate the optimal bidding strategy

for day-ahead electricity trading and how can these be applied to the Dutch energy

market?

� C.1.2: What are the possible risks of this model?

� C.1.3: Can this model improve the performance of day-ahead trading in the case of

DVEP?
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1.5 Research scope

It is apparent that the electricity market is a complicated �eld, especially now that uncertain

power sources like wind energy become more important. This is why it is impossible in the frame

of a master's thesis to discuss the research objectives comprehensively and ultimately, but certain

assumptions have to be made and the scope needs to be limited.

It is not our goal to discuss the technical characteristics of forecasting methods, but only apply

outcomes of the two forecasts DVEP uses for their biddings. These two forecasts come from two

di�erent commercial parties DVEP has contracts with. We do not consider the whole wind portfolio

of DVEP, but 16 wind parks in di�erent locations of The Netherlands, which we chose based on

location. The data considered comes from these 15 wind parks between 01-07-2018 till 01-07-2019.

We have to set the transactions at the intraday markets aside, since historical price data at this

market is very hard to gather due to the Over The Counter characteristic of the market. There is

no set price like at the other two markets. As a consequence we assume for this report that every

imbalance is settled at the imbalance market, while in reality the traders have still the possibility

to reduce the imbalance at the intraday market.

1.6 Report outline

After this introduction, we continue with a discussion of relevant literature. The goal of the

literature study is to answer the Research Questions A.1, A.2.1 and C.1.1 and prepare for the other

questions. In Chapter 3 the current situation at DVEP is examined. This includes the explanation

of the selected wind parks and based on this, general historical wind data are analyzed. Based

on this, we compare the forecast performance of both Forecasters under di�erent conditions to

answer the Research Questions A.2.2 and B.1. After this, we also describe the market data of the

previous year, which is needed to set up a possible solution for Research Question C.1.1. This is

explained in chapter 4. The results of the developed simulations are explained in Chapter 5 and

with this, we can �nally answer Research Question C.1.3. The thesis is �nalized with Chapter

6, where we conclude the research and give based on this, recommendations. This chapter also

consists of propositions for further research and points the limitations of this project out.
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2
Theory

In this chapter we introduce the literature in this topic. To begin with, we explain the Dutch

energy market in more detail and seek to answer research question A.1. In the following we answer

question A.2.1 regarding appropriate methods for error measurements. The last part deals with

optimal bidding strategies and proposed options by the literature, which answers question C.1.1

2.1 Dutch energy market

Tanrisever et al. (2015) investigated the Dutch electricity market and the impacts of the dereg-

ulation on the market. Like most of the other European electricity markets, the Dutch market

has a liberalized form since the 1998 Electricity Act, such that customers and suppliers have more

freedom in buying and selling electricity. This has led to a more reliable, sustainable and e�cient

electricity market. Instead of one organization responsible for the whole vertical supply chain, the

chain is now split up into di�erent entities. It is not the scope of this report to discuss the di�erent

entities of the Dutch electricity in detail. However, the di�erent markets will be introduced to

understand the di�erent clearing possibilities for a balance responsible party like DVEP. Figure

2.1 shows a good scheme of the markets and participators per market (TenneT, 2019a).

Figure 2.1: The di�erent time frames of the wholesale electricity market (TenneT 2019).

We can say that the market is separated in three di�erent markets, which all serve a di�erent

purpose: Forward and Futures markets concentrate on long term deals to ensure price stability

for both buyer and seller and hedge possible risks. This market is not in�uenced by wind power

forecasts, thus not in the scope of this report.

The next market closer to the moment of clearing is the day-ahead market: On the day-ahead
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2. Theory

Figure 2.2: The bidding ladder to determine the upward or downward regulation prices (TenneT

2019).

market, electricity can be bought or sold for each hour of the following day. At the day-ahead

market, this hour is the shortest possible time unit for trading, which is the program time unit

(PTU). This market is particularly interesting to us, as it is highly in�uenced by the forecasts for

wind and solar energy. It is important to realize that the communicated orders for the following

day are binding, thus the market participant is required to match their bidding with their �nal

production or consumption. Until 12:00 at the day before delivery (Day-1) the market participants

are required to place their anonymous buy and sell orders which are then matched such that at

12:55 the prices are published by the transmission system operator (TSO). In the Netherlands,

this is TenneT. These contracts are traded on the Amsterdam Power Exchange (APX).

As it is very unlikely that the bidding volume of the day before matches the actual production

volumes, the market participants can adjust their positions at the intraday market. Here, electricity

can be bought and sold up until 5 minutes before the physical delivery of the electricity, such that

one can adjust according to new information. The goal is here to reduce the imbalance between the

bidding of the day before and the actual productions. Also in cases of bene�cial intraday prices,

the traders might decide to trade here. The positions are cleared over the counter between the

market participants.

If these intraday trades do not result in a complete balance in the market, which occurs very

often, the TSO uses the imbalance market to ensure balance. On the imbalance market, all market

participants are required to buy or sell the volumes they di�er from the forecast volume. The

prices at the imbalance market are issued by the TSO and based on the upward/ downward bids

of the balancing service provider (BSP), which have a reserve volume to counteract imbalance in

the market (TenneT, 2019b).

Figure 2.2 shows how the prices are determined: In case of upward regulation, upward bids are

ordered depending on their marginal price, the highest bid needed to ensure grid balance is then
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Figure 2.3: The imbalance price for 11-06-2019.

the imbalance price. The shortest time unit at the imbalance market, however, is 15 minutes,

such that the PTU at the imbalance market is 15 min. It is important to notice, that the bidding

volumes at the day-ahead market are done for one hour, this means there can be four di�erent

imbalance prices issued for the same bidding volume of an hour.

To regulate the production, the TSO handles four di�erent regulation states:

ˆ Regulation state 0: No up- or downward regulation is applied.

ˆ Regulation state +1: Only upward regulation is applied. This implies an underproduction

in the respective PTU.

ˆ Regulation state -1: Only downward regulation is applied. This implies an overproduction

in the respective PTU.

In cases where both upward and downward regulation takes place, the development of the balance

delta determines the state of regulation. The balance delta is determined as di�erence between

activated upward bids and activated downward bids:

ˆ When the balance deltas within a PTU continuously increase or is constant,regulation

state +1 applies.

ˆ When the balance deltas within a PTU continuously decrease or is constant,regulation

state -1 applies.

ˆ Regulation state 2: When the balance deltas both increase and decrease in the same PTU,

regulation state 2 is applied.

In the Netherlands, a dual imbalance pricing is applied, which means that in regulation states 0,-1

and +1 the same prices for both feed and consume are used, while in regulation state 2, the prices

for those situations di�er (TenneT, 2019b).

Figure 2.3 shows the imbalance price of 11-06-2019, which displays the high variance in prices

within a very short period of time. It is important to consider that imbalance prices are handled

in di�erent ways by the national grid operators. We have to di�erentiate between single and dual

pricing systems, which have a great in�uence on the ideal bidding strategies. The Dutch electricity

market handles a dual pricing system, while Germany and Spain, for example, handle a single

pricing system. A single price implies that prices for feed-in and consume are the same, while the

dual system can have di�erent prices for feed-in and consume in the same imbalance PTU (Bal,

2013). Unlike other European countries, there are no restrictions regarding the feed and consume
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prices with respect to the APX price.

According to Mulder and Scholtens (2013), the impact of wind energy on the day-ahead price is

still rather low. In 2013, the price was mainly correlated to the marginal costs of gas-�red power

plants, when the share of wind turbines was 0.88% of the Dutch energy production. In 2019, the

share of wind energy increased to 1.7% (CBS, 2019). This shows that wind energy has an increased

volume, but compared to conventional energy it is still very small. They conclude, however, with a

further increase of renewables, it can happen that the prices will be driven by weather conditions

and scarcity in peak supply (Mulder & Scholtens, 2013). Due to lack of more recent literature on

this topic, it is likely that this level has not been reached yet.

2.2 Forecast models

A forecast is an essential part of the decision making on the electricity market. A BRP uses

forecasting in the �rst place to predict their production and demand, but also predictions of the

di�erent prices can be made. Here, especially the production side is of great interest due to the

high shares of wind and solar power. Since solar electricity production is not considered here, we

concentrate on models to forecast the power output of wind turbines. Also, the demand side needs

to be forecast, as well as market and imbalance prices.

In the following, we present a short introduction to wind forecasting methods. We do not dive

into the forecasting method for the other variables. Although there are complex forecasts, also

naive forecasts can predict wind power well. They are used as benchmark model for advanced

techniques. Pinson (2018) gives as example the random guess, where for each PTU a random

value between 0 and the maximum capacity is chosen, and the persistence approach, where the

forecast of each PTU is the latest measured value. Even though these forecasts look not smart,

they are still di�cult to beat by more advanced techniques. Wang et al. (2011) classify the more

advanced forecasts into two groups of methods, physical approach and statistical approach, and

three time horizons, immediate-short-term, short-term and long-term forecast.

The physical approach is based on lower atmosphere or numerical weather prediction and uses

weather forecast data like temperature. The data is provided by a meteorological service and is

then transformed for the speci�c wind turbine into expected wind power output.

The statistical approach , on the other hand, does not consider meteorological conditions. Using

arti�cial intelligence and time series analysis, the forecasts are obtained.

The immediate-short-term forecast considers forecast horizons until 8 hours ahead and is

needed for real-time grid operations and regulatory actions. These forecasts are generally based

on the statistical approach.

The forecast horizon of theshort-term forecast includes the day ahead and is used for dispatch

planning and operational security. This is the most important forecast to predict the day-ahead

volumes.

The long-term forecast looks several days ahead and is needed for applications like maintenance

planning. They consider usually the physical approach with numerical weather prediction.

Although slightly di�erent, all methods include the following steps:

Firstly, the wind speed is determined, with which the wind power predictions can be made. As

last step regional forecasts are made by up- or downscaling (Foley, Leahy, & McKeogh, 2012).

10



2. Theory

2.3 Measuring forecast models

When working with highly weather-dependent electricity production like wind or solar, the usage

of forecasting models is very important. However, as we see in Figure 1.3, this forecast can never

exactly predict the actual production. This is why it is necessary to assess the quality of the

forecast models extensively.

In general, we are interested in the prediction error for each lead timet + k, when predicted at

time t, which is the di�erence between the predicted and realized value. We de�ne this here as:

et + k j t = E �
t + k � Ê t + k j t (2.1)

When applied to the wind power forecasting, this meansE �
t + k is the realized energy production at

t + k and Ê t + k j t is the prediction of electricity, forecast at time t (Madsen et al., 2006).

However, in this way, only the error for every lead timet + k can be captured. In order to measure

the overall error of the prediction, we want to consider all t in the time horizon.

To start with, we want to �nd the model bias, which can be seen as a trend of the predictor.

To capture the model bias, we calculate the mean of the error for each horizon over the whole

evaluation period. The model bias for itself is scale dependent, which makes it di�cult to compare

di�erent wind parks. This is why we normalize the error measure. Possibilities are to use the in-

stalled production capacity or the measured production power. However, the latter is not feasible

in this case, as zero or negative production is possible.

BIAS =
1

NT

NX

t =1

et + k j t

NBIAS =
BIAS
pinstal

(2.2)

Where NT refers to the number of prediction errors for each look-ahead timek for the considered

time horizon and pinstal refers to the production capacity of the respective wind park.

A positive NBIAS implies an underestimation, while a negative NBIAS signi�es that, on average,

the forecast was higher than the realized production. A bigger absolute value of NBIAS means

that there is a big systematic error, while with a NBIAS close to 0, no trends are detectable. The

NBIAS however, tells hardly anything about the predictors performance, because it is averaging

all prediction errors. NBIAS of 0 does not directly imply a perfect forecast.

This is why it is appropriate to use the normalized mean absolute error (NMAE) and normalized

root mean squared error (NRMSE) (Madsen et al., 2006), (?, ?).

MAE =
1

NT

NX

t =1

jet + k j t j

NMAE =
MAE
pinstal

(2.3)
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RMSE =

vu
u
t 1

NT

NX

t =1

et + k j t
2

NRMSE =
RMSE
pinstal

(2.4)

The MAE and RMSE give more information about the performance since they both use absolute

values, positive and negative estimations cannot cancel each other out. While the BIAS and MAE

are regarded as �rst-moment error measure, thus associated directly with the production of the

wind farm, is the RMSE a second-order estimator of the error. This means it deals with the

variance of the prediction error and give larger e�ects to larger prediction errors (Madsen et al.,

2006). In this way, the RMSE is useful to detect a forecasting model with big outliers. The results

of these measures are easy to interpret, a bigger MAE or RMSE imply a larger error. Due to the

squaring of errors, it can be expected that the RMSE will lead to bigger error measures.

Kariniotakis et al. (2004) performed research on the impact of on-site characteristics on power

prediction model performance. They selected six di�erent wind parks in Germany, Spain, Denmark

and Ireland. The wind parks were located at di�erent distances from the shoreline and di�erent

heights and terrain. Based on location we chose two of the wind parks as a comparison for the

wind parks in our portfolio: The German wind park was located 8km from the shoreline of the

Baltic sea, while one of the Danish wind parks was in the close proximity of the shoreline of the

North sea. The size of the German wind park was 1MW, while the Danish wind park was bigger,

with an installed power of 21 MW. The MAE of these two wind parks was both around 10% of the

nominal power (Kariniotakis et al., 2004). Other wind parks in the article were located in a more

di�cult terrain, which resulted in lower prediction performance. It is important to consider the

year of publication, such that it can be expected that forecasts have improved since then because

of better wind turbines and more precise computing models. However, it gives the indication that

a MAE below 10% should be expected for the wind parks of our study

2.3.1 In�uence of weather conditions on forecast performance

Next to the general performance of the forecasts, we are also interested in the performance under

speci�c weather conditions like certain wind directions or higher wind speeds. When investigating

literature on this, it got clear that this topic can only be discussed in a broad manner, as only

few research papers were found on this topic. Next to that, the exact forecast models used for the

wind power forecasts here at the company are not known. However, it can give a good indication

about possible in�uences of weather conditions which can be validated later on in this study.

Draxl (2012) discussed the in�uence of wind speeds on the forecast performance of a mesoscale

model. Although they consider the forecast of wind speeds, this can also be used as a metric for

the wind power forecast. They found out there is a dependence of the error measure on the forecast

wind speed. With wind speeds higher than 10 m/s, the forecast is likely to overpredict the wind

speed, while with low wind speeds (under 5m/s) an underprediction appeared to be more likely.

When considering the RMSE, this is less for low winds compared to high winds.
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2.4 Optimal bidding strategies

When discussing the optimal bidding strategies for a wind power dominated portfolio, we need to

de�ne the problem at �rst.

We know that every market participant has to issue their expected energy production for every

hour of the next day. However, we also know that the TSO issues the imbalance prices for every

PTU, which is 15 mins. This is why we want to know the revenue of the market participant for

every PTU t + k. The t refers to the moment of bidding, while k means the leadtime, which can

be 13 to 36 hours. The revenue for the PTUt + k depends on the bidding volumeE b, the spot

price � AP X and the imbalance costsI C . The formula can be found in Equation 4.1. The market

participant can in�uence the revenue by issuing the optimal bidding volume V b, which in�uences

the imbalance costs. The APX price is not known at the moment of bidding and we assume the

condition of price taking. This implies that the price can not be in�uenced by our bidding volume.

This assumption can be justi�ed with the fact, that when considering the day-ahead market of

August 2019, the portfolio considered accounts for 0.37% of the total traded volume.

Rt + k = E b
t + k � AP X + I C

t + k (2.5)

The imbalance cost depend on the sign of the imbalance and can be de�ned as the following (The

subscript t + k is omitted for clarity.):

I C =

8
>>><

>>>:

� sell (E � � E b); E � > E b

� buy (E � � E b); E � < E b

0 ; E � = E b

(2.6)

The �rst row refers to a moment of downward regulation, which implies positive imbalance, while

the second row refers to a upward regulation, a negative imbalance. For the theorical case, that

E � and E b are the same, it is clear that the imbalance cost are 0.

This shows that we have to deal with four di�erent uncertainties, the realized production, the spot

price at the APX, as well as the two imbalance prices for sell and buy,� sell and � buy , respectively.

2.4.1 Uncertainties

To start with, it is important to investigate the uncertainty of power production. With the wind

power forecasts at hand we can indeed make a sound approximation about the expected produc-

tion, but is has to be clear that the forecast is never exactly true. Usaola and Angarita (2007)

analyzed the distribution of power production depending on predicted value. When plotting the

frequency of occurrence for di�erent power levels, they found out that for low or high predictions,

the shape of the frequency distribution of the real production is similar to exponential, while in the

medium range, the distribution is more Gaussian. Next to that, also the forecast horizon was of

in�uence: With longer time between the forecast and realization, the probability density function

tends to �atten out.

The uncertainty of the electricity prices is the other big factor. Moreno et al. (2012) state that the

modelling of prices is crucial for the revenue model. Especially the ability of forecasting imbalance

13



2. Theory

prices determines the goodness of the model. Still, several articles use known prices or average

imbalance prices. However, as imbalance prices can highly di�er, the results from these approaches

may widely di�er from reality.

Bueno et al. (2010) tried to optimize the revenue for the trader on the intraday market and iden-

ti�ed the imbalance price as highly variable and di�cult to forecast parameter. Based on �ndings

on the hourly imbalance prices throughout one year, they were able to make a heuristic approach

to forecast the imbalance price. This was due to the fact that there is a daily pattern recognizable.

Based on this, a mean imbalance value for each day hour was used. However, it remains to be

validated if this is also the case in the Dutch energy market. Next to that, the paper is from 2010,

when liquidity in the intraday market was still low. Since 2018, the European markets are inter-

connected, which results in higher liquidity and a lowering in variance of prices and thus di�erence

throughout the day.

Chaves-Ávila et al. (2014) investigated the impact of di�erent imbalance rules on European energy

markets and forecast the di�erent prices using Seasonal Autoregressive Integrated Moving Average

(SARIMA). With this model, weekly and daily seasonality can be well captured. They can also

forecast the day ahead, positive and negative imbalance prices in the Dutch energy market with a

MAE of 4.95%, 31.35% and 34.11%, respectively.

With the knowledge how others have dealt with the di�erent uncertainties of electricity bidding,

we can introduce propositions made by academics how to determine ideal bidding volumes. Pinson

et al. (2007) distinguishes between two general approaches: point predictions or probabilistic ap-

proaches.

2.4.2 Point Predictions

A point prediction strategy can be seen as base line of bidding strategies. Given a look-ahead

time t + k, they estimate the average power output betweent + k and t + k � 1. This implies

that it is reasonable to forecast the wind energy produced in this period as product of the average

power production by the temporal forecast resolutiont r . Depending on the forecast horizon, the

resolution can range from 15 min to 1 h. However, for the application in power system management

or trading, the time resolution is usually sampled to 1h (Pinson, 2006)

Ê t + k j t = p̂t + k j t t r (2.7)

Ê t + k j t and p̂t + k j t refer to the energy and power forecast, respectively, depending on their issued

time t for the lead time t + k (Pinson et al., 2007). When there is no more further information

about the future wind production, this is the volume E b that will be bid in the day ahead market

for the PTU t + k:

E b = Ê t + k j t (2.8)

We consider the current approach at DVEP as a point prediction.

2.4.3 Probabilistic Forecast

Instead of assuming that E � is a given fact that needs to be predicted as good as possible with

Ê t + k j t , we can understand this problem also in a probabilistic way. In this way we seeE t + k as a
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Figure 2.4: Example of two loss functions (Pinson et al., 2007).

random variable, whereE �
t + k is one possible realization of this variable.

Pinson et al. (2007) compared the trading results of point prediction versus probabilistic forecast

on the Dutch energy market in year 2002: A simple persistence forecast is indeed the worst

performing strategy, while using advanced forecasting techniques like fuzzy NN predictions increase

the revenue. However, the best results were obtained when four loss functions could be de�ned,

which include quarterly averages for both upward and downward dispatch prices. It was de�ned

that the ideal volume was the bidding volume with the least imbalance. This can be translated in a

loss function, which is de�ned as function that is strictly increasing, when the imbalance is unequal

to zero. This is because the market participant can not expect to gain from imbalance. See Figure

2.4 as an example of the lossfunction, where the market-based function refers to average buy or

sell imbalance prices and the advanced function re�ects the sensitivity of a market participant on

volume deviations, thus its risk appetite. On the x-axis, the imbalance is displayed in a normalized

manner, while on the y-axis, the perceived loss is shown.

Based on this, they proposed two optimization situations:

ˆ Minimization of imbalance costs, thus increasing the revenue.

ˆ Reduction of maximal loss. In case of unpredictable weather conditions, it can be more

bene�cial to improve the worst possible scenario.

When the comparison of the naive forecast and advanced trading strategy is made, the persistence

method realized 79.1% of the revenue of the perfect prediction and the advanced trading method

accomplished 92.1% compared to the perfect prediction.

Chaves-Ávila et al. (2014) used the forecasts of the di�erent prices to formulate an improved bid-

ding strategy as well. Compared to bidding the expected strategy, the models incorporating the

price forecast improved the average income per hour by 18%. It is important to mention that this

result also includes the intraday market trading.

Zhang et al. (2012) use the assumption of normally distributed hourly wind power output. With

this assumption three di�erent models for the Spanish day-ahead market are made: They propose

three di�erent models: expected pro�t-maximization (EPS), chance-constrained programming-

based strategy (CPS) or multi-objective bidding strategy (ECPS). Here, the EPS yields the highest

revenues, however we have to notice that this is also the riskiest strategy.
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Eransus (2016) applied a bidding strategy for the spanish market based on forecast imbalance

length, thus whether the imbalance is positive or negative. The forecast was again made with

a SARIMA and in 66% of the hours the sign of imbalance could be forecast. This strategy was

compared to a point forecast 7% could be saved when only at the day ahead market is nominated.

Zugno et al. (2013) considered the Nord Pool market and came up with to possible strategies:

Expected Utility Maximization (EUM) and the restricted EUM. The EUM can be seen as risk

neutral strategy, which can deviate heavily from the point forecast. The restricted EUM however

is a compromise of those two, where the constraint can be in the decision space or probability

space. A constraint in decision space means that the bidding volume may not deviate more than

a de�ned percentage from the point forecast. On the other hand, the constraint in the probability

space constrains the bids with a imbalance ratio. With this models it was found that the contrained

strategies (� 20%) delivered the best result.

2.5 Risk assessment in energy trading

As we consider methods to improve the bidding volume at the day ahead market, it is important

to look at ways to counteract the risk of high losses. The spot price of electricity as well as the

imbalance price are highly volatile, such that risk of high losses can be very high when the market

has evoloved in an opposite way to the forecast. Here we introduce methods to adapt for possible

risks of high losses, which are mentioned in literature.

According to Moreno et al. (2012), most articles consider Value at Risk (VaR) or Expected Short-

fall (ES) as risk constraining parameter in the optimization.

The VaR is generally de�ned as maximum loss over a given time horizon, at a pre-de�ned con�-

dence. A one monthV aR95% of e 100,000 thus means that we are 95% certain that the maximum

loss is no more thane 100,000. The ES takes the mean of the interval frominf until V aR95% and

in this way also considers the very extreme values (Risk.net, 2018).

Based on this Moreno et al. (2012) recommends the ES as parameter for stochastic optimization.

In order to include the ES in the bidding strategy, an accepted threshold of losses is de�ned and

added as constraint to the maximization problem for each hour.
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Current situation

In this chapter, we present the current situation at DVEP regarding the questions raised. This

includes the answer to the research questions of B.1 about the performance of the wind power

forecasts and the in�uence of weather conditions on this. Next to that, we introduce data necessary

to come up with a model for subsection C.

3.1 Wind portfolio and selected wind parks

As this report is written, DVEP has a portfolio of 131 active wind parks in the Netherlands. These

wind turbines have an installed power of 315 MW in total. One can see the location of these wind

parks in Figure 3.1, where it becomes clear that the majority of parks are located in the western

part of the country.

Figure 3.1: Locations of the wind parks of DVEP's clients.
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Table 3.1: Selected wind parks.

Province Installed power (MW) Weatherstation

Wind park 1 Friesland 4.5 De Kooy

Wind park 2 Flevoland 4 Lelystad

Wind park 3 Flevoland 2 Lelystad

Wind park 4 Flevoland 6 Lelystad

Wind park 5 Friesland 2.13 De Kooy

Wind park 6 Zeeland 2 Vlissingen

Wind park 7 Zeeland 1.75 Vlissingen

Wind park 8 Zeeland 6 Vlissingen

Wind park 9 Zeeland 2.3 Vlissingen

Wind park 10 Zeeland 9.2 Vlissingen

Wind park 11 Zeeland 5 Vlissingen

Wind park 12 Flevoland 4 Lelystad

Wind park 13 Friesland 1 De Kooy

Wind park 14 Friesland 1 De Kooy

Wind park 15 Flevoland 4.2 Lelystad

Total: 55.1

From these wind parks, we have chosen 15 wind parks in the three provinces of Zeeland, Flevoland

and Friesland to execute the analysis. They are listed in Table 3.1 and were selected based on the

following conditions:

It was important that the parks had a contract between 01-07-2018 and 01-09-2019 to have a

complete training and test set. Next to that, the sizes of the wind parks should be as diverse as

possible to re�ect the whole portfolio as well as possible. Another important condition is that the

clients chosen produce electricity only from wind and not from solar or biomass. The total volume

installed of the selection is 55.1 MW.

3.1.1 Selected data

As stated, we chose data from 01-07-2018 till 31-08-2019. From which 01-07-2018 till 30-06-2019

are treated as training set and 01-07 till 31-08-2019 are used as test set. This had two reasons:

Firstly because there are no forecast data of Forecaster 2 before this date. This was particularly

important for Research questions A.2 and B.1.

Furthermore, on 13-06-2018 the intraday cross-border market XBID was introduced. This means

that orders at the intraday market can be matched with any other similar order submitted by

market participants in any other participating country. The participating countries from 2018 are

Austria, Belgium, Denmark, Estonia, Finland, France, Germany, Latvia, Lithuania, Norway, The

Netherlands, Portugal, Spain and Sweden (EPEX SPOT, 2018). The consequence of this cross-

border market is an increase in liquidity in the intraday market, which improves the e�ciency of

the electricity markets. According to the traders here at DVEP, this has resulted in a decrease of

variance in imbalance prices.
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3.2 Forecasts

DVEP has both wind power forecasts and weather forecasts at its disposal. For the wind power

forecast, two di�erent parties forecast the production of each particular wind park up to 3 days

ahead, from which the forecasts up to 38 hours are used for the day ahead forecasting. Due to

con�dentiality, these forecasters are named Forecaster 1 and Forecaster 2 in this report. While

Forecaster 1 has been used since the �rst years of DVEP, Forecaster 2 has been recently added in

June of 2018 to increase con�dence about the forecasts. The forecasts used for the following day

are received at 09:00 h and prepare the bidding for the day-ahead market. The output of both

forecasts is the wind power production for each wind park individually in MWh per day hour.

Both forecasts have a short to long term forecast horizon and thus use a physical forecast method.

The weather forecast, on the other hand, is used to tell more about the general weather conditions.

This includes wind speed and direction, as well as temperature, precipitation and, radiation. At

15 weather stations by the KNMI weather forecasts are made based on di�erent weather models.

As we have selected three areas with wind parks, we use three weather stations close to the wind

parks to retrieve the weather data.

ˆ Zeeland: Vlissingen.

ˆ Flevoland: Lelystad.

ˆ Friesland: De Kooy.

3.3 Historical data wind

In order to discuss the performance of the forecasts, we have to analyse the historical data, under

the expectation that future situations will be similar to the past. Figures 3.2 and 3.3 give an

impression of the distributions of both the production of the wind parks and the wind speed.

Figure 3.2 shows the distribution of the total production of the portfolio, which makes clear that

75% of all hours have a production of less than 21.9 MWh. The maximum production for one hour

was found to be 55.1 MWh, which is the installed power of the portfolio.

While the distribution of the production can be �tted to a negative exponential distribution, the

wind speed distribution can be �tted to a Weibull distribution, as can be seen in Figure 3.3. The

mean wind speed was found to be 5.4 m/s. The distributions are in line with �ndings from the

literature (Pinson, 2006). Here, we create one wind speed for each hour from 01-07-2018 till 01-

07-2019 by taking the mean of the measurements of the three weather stations. It is important

to consider that the measurements at the weather stations are taken at a height of 2m, while the

hub height of the wind turbines is between the 40 and 135m depending on the type. In order for

most wind turbines to produce electricity a minimum wind speed of 2.5 m/s is necessary, while the

maximum wind speed for the most wind turbines is 25 m/s.

A power curve with individual data for several di�erent wind turbine types in the portfolio can be

found in Appendix A, Figure A.1.

However, there were no measurements of wind speeds higher than 25m/s in our time horizon. This

does not mean that they did not occur, due to the di�erence in the height of the weather station

compared to the hub height. According to the weather station measurements, the maximum wind

speed was reached at the station in Vlissingen with 22 m/s, which could mean that at hub height
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Figure 3.2: Histogram of the production.

Figure 3.3: Histogram of the wind speeds.

25m/s was exceeded. This pitfall of measurements should be kept in mind. As you can see, this is

not displayed in Figure 3.3 since we chose here for a mean wind speed of the three stations.

The correlation of the wind speed can be found in table 3.2 and as expected the Pearson coe�-

cients indicate a correlation between the stations, with a higher correlation between De Kooy and

Lelystad. This is due to the geographical proximity (62km) of these two stations, while Vlissingen

is much further away (De Kooy: 183km; Lelystad: 175km). This was the reason, why we decided

that a mean wind speed is appropriate, the individual histogram per wind park can be found in

Appendix A, Figures A.2, A.3, A.4.

Figure 3.4 shows the distribution of occurrence of the wind directions. The wind direction is

measured by the weather stations in degree, where 0° and 360° correspond to North, while 90°

corresponds to East. The other directions are accordingly. To simplify, all wind direction within

the interval � 45° account to the corresponding wind direction, such that all wind directions from

315 ° till 45 ° correspond to North, for example.

As can be expected, the most frequent wind directions are West and South, which corresponds
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