
 

 

 

 

MASTER THESIS 

MYOELECTRIC CONTROL 

OF BIONIC HANDS VIA 

MUSCULOSKELETAL 

MODELLING, 

ADMITTANCE CONTROL 

AND FORCE FEEDBACK 
 

Mikel Mateo 
 

 

 

FACULTY OF ENGINEERING TECHNOLOGY 
DEPARTMENT OF BIOMECHANICAL ENGINEERING 

 
EXAMINATION COMMITTEE 

dr.ir. M. Sartori 
dr.ir. A.Q.L. Keemink 
G.V. Durandau 
dr.ir. U. Yavuz 

 

DOCUMENT NUMBER 

 BW - 709 

16/12/2019 





iii

Abstract

The loss of an upper limb can have a profound impact in the quality of life, since the in-
dividual’s ability to perform activities of daily live autonomously, the capability to work
and socialize are suddenly limited. Myoelectric prosthesis aim to restore the missing
functions by providing a man-machine interface based on electromyography which en-
ables the amputee to control the artificial limb. However, current myoelectric control
approaches do not provide truly bio-mimetic control that allows for both intuitive con-
trol and reliable grasp dynamics. This is mainly because current machine learning ap-
proaches provide a control interface that is non-intuitive and extraordinarily different
from human natural control. Furthermore, the lack of afferent feedback pathways forces
the amputee to rely mainly on visual feedback to control grasp action, where the imple-
mentation of state-of-the-art haptic feedback techniques does not show conclusive results
on the help of grasp force control. In this work, a subject-specific EMG-driven muscu-
loskeletal model coupled to an admittance controller is used to drive a bionic hand. The
admittance model virtually mimics the grasp dynamics of a real hand interacting with
the environment. This way, the prosthetic hand can readjust its control commands dur-
ing interaction by accounting for external forces. Theoretical stability boundaries of the
control system are analysed for stable interaction and experimental tests are carried out
comparing the proposed control framework to non-admittance based EMG-driven mus-
culoskeletal modelling during grasping tasks. Experimental outcomes show positive re-
sults when compared to non-admittance based control. This control framework sets the
bases to enable safer prosthesis-environment interaction without the need of constant
visual feedback.
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Chapter 1

Background

1.1 Introduction

Human hands are an essential tool to interact with the environment, explore, create, com-
municate and socialise. They conform a highly versatile device capable of performing a
large number of tasks using simple to fine and complex movements. They are an ex-
tremely complex biomechanical system formed by twenty-seven bones and actuated by
more than thirty muscles leading to more than 19 Degrees of Freedom (DOF). Further-
more, thousands of sensors continuously measure physical variables, such as force and
joint position, which are used as feedback to redefine our movements[1].

FIGURE 1.1: Upper limb amputation
levels. Modified from [2]

However, traumatic accidents, dysvascular dis-
eases (e.g. diabetes), cancer and congenital defi-
ciencies, can lead to the loss of one or both upper
limbs. This can have a life-changing impact in the
amputee since the individual’s ability to perform
activities of daily live (ADLs) autonomously, the
capability to work and socialize are suddenly lim-
ited [3].The levels of upper limb amputation can be
classified as shown in Fig. 1.1.

Most patients suffering from an amputation re-
quire the use of a prosthesis to restore arm function
and recover the ability to perform tasks of daily liv-
ing and increase quality of life. Preferably, pros-
thesis should replace the function of the lost limb
as close as possible, have a natural appearance, be
lightweight and affordable. However, there exist
an inevitable trade-off among such requirements as
they are often hard to combine [4]. Taking those re-
quirements as a base, this thesis is focused on im-
proving the functionality of a prosthetic hand.

1.2 Demographics and Prevalence

Information related to upper limb loss is limited. A study carried out by Ziegler-Grahametal
et al. estimated that a number of 541.000 (13.5 per 100.000) people suffer from different
upper limb amputation levels only in the United Sate. The main causes of amputation
were trauma (92%) and, in less extent, dysvascular disease (7%), and cancer (1%). The
number of amputees is expected to double by year 2050, mainly because of dysvascular
diseases, especially related to diabetes [5], [6]. Between the few studies carried out in
Europe, Østlie et al. found an estimated population prevalence in Norway of 11.6 upper
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limb amputations per 100.000. Among the upper limb amputees, 95% were unilateral
and amputations were caused by trauma (85%), cancer (7%), infection (6%), dysvascular
disease (1-2%), and drug overdose (0-1%) [7].

1.3 Upper limb prostheses

The first prostheses date back to ancient Egypt 3000 years ago, when they were both used
for cosmetic and functional purposes. As medicine techniques and technology develop-
ment advanced, doctors were able to prepare the limb stump for emerging prosthetic
devices [8]. Today, different types of passive and active upper limb prosthesis exist to
serve wide individual needs and preferences.

Passive upper limb prostheses

Passive prostheses are not equipped with any mechanical nor electrical part to provide
active grasping capabilities. Passive prosthesis can be subdivided into cosmetic (Fig.1.2a)
and functional (Fig.1.2b). Cosmetic prosthesis are mainly designed for aesthetic substitu-
tion of the missing limb, while functional ones are designed to assist on specific activities
by the use of a tool or hand. Passive functional prosthesis hands have an appearance
close to the human hand and provide basic functionalities such as pushing and pulling.
Passive functional tools have a mechanical appearance and are designed for activities
requiring a special grasp type [1], [9].

(A) Cosmetic prothesis (B) Prosthetic tool

FIGURE 1.2: Different examples of passive prosthesis

Body-powered prostheses

FIGURE 1.3: Body powered prosthesis with
integrated cables and harnesses for mechani-
cal control [10]

Body-powered prostheses are active pros-
thesis that consist of harnesses and cables
fastened to the sound limb and to a ter-
minal device, which can either be an ar-
tificial hand or a hook. Fig. 1.3 pro-
vides an example of their working mech-
anism. Apart from providing more func-
tionality than passive prostheses, they are
more durable and provide feedback to the
user through tension cables. However,
gross movements are needed to control this
kind of prosthesis, which is unintuitive and
requires high energy expenditure [1], [2],
[11].
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Externally powered prostheses

Externally powered prostheses are active prosthesis that exploit the power from an ex-
ternal source to drive electrical or hydraulic actuators to move the prosthesis. They gen-
erally offer greater control options and grasp force, at the expense of increased mainte-
nance and weight due to built in batteries and electrical components. Nowadays, most
commercially available advanced prostheses provide more than 1 DOF and allow for
different grips and hand gestures to sequentially select the joints to be controlled. Exam-
ples of commercially available prosthesis are Ottobock’s Michelangelo (Fig. 1.4a) , Touch
Bionics’ i-Limb (Fig. 1.4b) and Bebionic hand (Fig. 1.4c). However, with more than 2 DOF
the sequential control implies high mental effort and becomes non-intuitive, not natural,
slow, difficult to learn and prone to errors [2], [12]. Therefore, to develop an intuitive and
robust Man-Machine Interface (MMI) to control active prosthesis is a current challenge
researchers are facing.

(A) Michelangelo hand (B) i-Limb hand (C) Bebionic hand

FIGURE 1.4: Commercially available externally powered prosthesis

Man-Machine Interfaces

In prosthetics, there exist several types of MMIs that enable the control of the artificial
limbs. More specifically, they depend and are classified based on the type of input ex-
tracted from user’s intention. This can range from mechanical input (as explained in
section 1.3), buttons, to Brain-Machine Interface (BMI) based on Electroencephalogra-
phy (EEG) and Electrocorticography (ECoG) [13], [14]. However, the most widely used
interface in market and research is myoelectric control (MYO), which makes use of sur-
face electrodes (Surface Electromyography (sEMG)) placed in the skin of the residual
limb. This electrodes capture the muscle signals driven through the Peripheral or Cen-
tral Nervous System (PNS and CNS) and derived from a voluntary muscle contraction
which enables an amputee to control movements over multiple DOFs [1]. Moreover, re-
searchers have also studied the use of intramusculuar EMG which provides access to
deeper muscles and avoiding cross-talk and electrode shift. Although sEMG is preferred
for its non-invasive nature and ease of use in daily live, intramuscular EMG seems a
promising technique as wireless implantable recording devices are being developed [15],
[16].

After the amputation of an arm, the muscles of the amputated region are lost, but
the nerves are still functional up to the amputation site. The concept of Targeted Mus-
cle Reinervation (TMR) consists on reusing those residual nerves in healthy muscles to
trigger their contraction. Therefore, a muscle that is no longer functional after the ampu-
tation is first denervated, divided into several segments surgically and reinnervated with
the nerve related to the desired movement (Fig. 1.5). The newly innervated muscle serves
as a biological amplifier of the neural commands. This way, when the amputee thinks of
closing the hand, the corresponding muscle is activated by the nerve previously used to
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close the real hand, which triggers the artificial hand to close. This technique allows for
more intuitive control over multiple DOFs [13], [14], [17].

FIGURE 1.5: Targeted muscle reinnervation surgical procedure

1.4 Myoelectric Control

EMG Processing

EMG signal amplitude is usually below 10mV and its frequency content goes from 0 to
500 Hz, which makes it sensitive to noise and artefacts. For this reason, EMG is low
and high pass filtered to exclude frequency content outside its common range. Further
filtering is made depending on the application of interest and notch filters are applied to
remove power line artefacts.

Additionally, EMG signals need to be analysed in real-time. This is made by using
time segments called windows, where multiple samples are recorded and their ampli-
tude is averaged. The amplitude of the EMG signal is calculated, for each electrode, by

using the root-means-square value (RMS =
√

1
n ∑n

i=1 EMG2
i ) or the mean-absolute value

(MAV = 1
n ∑n

i=1
∣∣EMG2

i

∣∣) for a given n number of samples in each window [18]. There
are different windowing techniques, such as adjacent windowing and overlapping tech-
niques, where part of the previous window is used to compute a new average. The use
of windowing, windowing technique and length depends on the control framework or
algorithm used, as computing the average of such windows adds computation time [19].

Following this process, user’s intentions are deciphered and communicated to the
motor controller in order to actuate the appropriate DOF. A range of different methods
exist to translate information obtained from EMG signals to control commands. These are
usually classified either as sequential or simultaneous. Sequential control actuates only 1
DOF at a time, while simultaneous control allows to actuate more than 1 DOF. Although
sequential control is most used, research is focusing on simultaneous control of more
than one DOF. In the following lines, current MYO control methods are presented.

Control Strategies

On-off control

On-off control is the earliest MYO control method. This control method is suitable only
up to 2 DOFs. It actuates the hand at a constant velocity and switches the direction of
the DOF when an EMG amplitude threshold is passed. This means that the velocity of
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actuation is independent of the muscle contraction level. This control strategy can be
implemented using a pair of antagonist muscles or only one muscle, where two different
contraction levels actuate two different directions [16], [17].

Proportional control

The human neuromotor control system can vary joint torques, velocities and positions at
will and therefore, the ’on-off’ prosthetic control was non-intuitive for humans. Hence,
proportional control was developed. In such control scheme the velocity command given
to the motors is proportional to the muscle contraction level. Moreover, contraction could
not only be proportionally mapped to velocity, but also to other mechanical quantities
such as force or position. Therefore, force control can be used to proportionally vary the
grasp force, although this remains non-intuitive. Furthermore, position control can be
used to proportionally prescribe position commands to the prosthesis. However, given
the stochastic nature of the EMG signal, it would be difficult to reach specific position
and even more, the amputee should maintain a constant contraction level to stay in one
position which would cause fatigue. Hence, velocity control is preferred over force and
position control as it provides smoother control and is less fatiguing for the user, as it is
not needed to keep muscle contraction for the prosthesis to stay in a specific configura-
tion. However, proportional control can be useful for gross prosthetic movements but
not for finer control [16], [17], [20].

Fig. 1.6 provides an overview of the steps involved in each control method, where it
can be seen that other control schemes are used along with proportional control.

FIGURE 1.6: Scheme representing different MYO control methods. For on-off control a fixed
velocity is used. In proportional control a mechanical output (force, velocity, position) can be used
to drive the prosthesis. If multiple and cross-talk free control sites are available, direct control can
be used to drive the prosthesis in a proportional way assigning one function to each of the control
sites. In FSM two control sites can be used to select the desired DOF by co-contraction. In PR,
features are extracted and used as input for a classifier or a regression analysis, where the output
is the predicted, desired DOF.

Direct control

Proportional control can be refined by mapping individual EMG to individual motor
functions on the prosthesis. Such control is called direct control, as there is a one-to-one
relationship between EMG of one muscle and prosthetic command. However, the num-
ber of independent EMG signals available is limited and sensitive to cross-talk. Therefore
implementing this control scheme for more than one DOF can be troublesome [1], [16],
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[17]. However, this can be overcome by the use of intramuscular EMG, although individ-
ual control of each muscle is challenging for the amputees [21].

Finite state machine

Finite state machine (FSM) appears as an alternative to control prosthesis with more than
one DOF when the number of EMG signals is limited, as in pure proportional and di-
rect control. This method consist on switching the DOF to actuate by using different
methods. Co-contraction (CC) is regularly used to switch between DOFs. This switch-
ing method consists on co-contracting two antagonistic muscles and, when a predefined
amplitude threshold is passed, the DOF to actuate is changed (Fig. 1.7). Afterwards, the
selected DOF is controlled proportionally [17]. This type of control means a non-intuitive,
slow transfer of the user’s intentions to the prosthesis and requires long training periods
and high-mental effort [12]. However, proportional FSM remains as the default control
method in commercially available prosthesis and is often used as the golden standard for
comparison with new control methods [2].

FIGURE 1.7: Co-contraction based FSM

Pattern Recognition

In order to overcome the limitations previously cited, the research community came up
with techniques based on Pattern Recognition (PR). The core of PR consists on recogniz-
ing patterns in data that will be used to predict the output for new data instances. In
MYO control, PR algorithms can be trained to recognize the patterns of muscle activation
obtained from EMG signals to derive the motor intention (see Fig. 1.6). On this process,
data is windowed and multiple features from time, frequency and time-frequency do-
main are extracted and used as input for the learning algorithm. A higher number of
features can result in greater computational complexity and feature selection techniques
are often implemented as an additional step to remove irrelevant features.

In this point, features can be classified or used as input for regression methods. In
the first case, a classification algorithm is used, such as artifical neural networks (ANN)
or linear discriminant analysis (LDA) and a class label (or DOF label in MYO control)
is predicted [16]. However, classification can only predict one prosthetic function at a
time. To solve this problem, multiple-class algorithms have been developed, although
this increases the number of patterns to be trained which can be cumbersome [17], [22].
Furthermore, classification does not support proportional control of the prosthesis and
this needs to be computed in parallel, which adds more complexity to the control algo-
rithm.

New regression techniques are used to overcome the downsides of classification based
PR. Through this technique, a regression is performed for each DOF where input features
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are mapped to output continuous value by using a selected function. Therefore, there is
no need of computing proportional control in parallel. This allows for the possibility of
simultaneous control of more than 1 DOF.

As a last stage, with the aim of removing wrongly predicted instances, post-processing
techniques such as majority voting (MV) are used, where certain number of past predic-
tion samples are used to see which one was predicted the most.

1.5 Challenges in Current Myoelectric Prosthesis

The earliest PR-EMG based prostheses date back to 1950s and 1960s and since then many
PR based EMG controlled prosthesis studies, offline and online, have been carried out
by the showing acceptable level of classification accuracy (>90%) and functionality [18],
[23]. However, a study on the prosthesis use carried out in 1995 stated that only the
18% of amputees wears a MYO prosthesis [24], and more interestingly, that the 27% of
amputees fitted with an active body-powered or MYO prosthesis use their prosthesis
in a passive way. Moreover, a more recent study from 2007 reported that the overall
prosthesis rejection rate was found to be as much as 23%, despite the great technological
advancements achieved by the research community in the laboratory [11]. The main
cause of such rejection for advanced prosthesis is due to the fact that the control interface
they provide does not allow for natural control. Human movement implies simultaneous
coordination and proportional movement of multiple DOFs across several joints at the
same time while applying the right amount of force when handling objects or interacting
in any other way with the world.

In this sense, PR-algorithms attempt to solve the challenging problem of modelling
human biomechanics by encapsulating all neuromuscular variables (e.g. EMG, joint an-
gles and torques) in a non-linear function. This way, the dynamics of the NMS system
are reduced to a black box where the relationship of its variables is not explicitly mod-
elled, which does not allow direct understanding of the transformation mechanics be-
tween variables [25]. It is because of this reason that new control strategies for prosthetic
hands based on modelling the underlying biomechanics of human movement are being
explored. Modelling true biomechanics would allow for more intuitive control, without
the learning burden machine learning methods involve.

Furthermore, losing a limb implies the loss of the afferent pathways of sensory or-
gans, such as muscle spindles and Golgi tendon organs. These organs provide position,
velocity and force feedback of the controlled limb, which helps the individual to adjust
his/her commands to interact with wide kinds of environments, such as grasping ob-
jects of different mechanical properties. The loss of such feedback pathways forces the
amputee to rely on visual or auditory feedback to control the dynamics of the grasp. In
the recent years, researchers have tried to restore such feedback pathways by fitting the
amputee with a feedback unit, such as a vibrotactile cuff, to perceive e.g. touch force [26].
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FIGURE 1.8: Example of haptic feedback. A vibrotactile stimulation unit
informs the user about prosthesis states and forces [27].

Such type of feedback is also called haptic feedback. Nevertheless, the impact these
techniques have in grasp force accuracy is still unclear. On the other hand, other re-
searchers attempted to improve grasp force control by feeding back the forces exerted
in the prosthetic hand to the prosthetic controller to update control commands. How-
ever, the techniques used are based on commanding small force or position increments
or decrements to find a suitable grasping force, which neither provide an optimal nor
natural way to control interaction forces (refer to Chapter 2, section I-B for an extended
review on the mentioned techniques).

In conclusion, research is focused on creating new control strategies that resemble
the way humans produce movement and interact with the world. This master thesis
aims to provide a proof-of-concept control strategy that allows for intuitive control of the
prosthetic hand’s DOF’s and grasp force control.

1.6 Developments in Prosthetic Control

Model Based Control

Unlike in pattern recognition, building computational models of the NMS system allows
to extract parameters that cannot be measured experimentally. This is useful to gain in-
sight on how the internal variables of the NMS change on time, like muscle length and
forces. This way, subject-specific NMS can be created and used to plan rehabilitation
or design rehabilitation robotics, simulate neuromuscular disorders and analyse motor
control [25], [28]. In the scheme of upper limb prosthesis, EMG can provide an exper-
imental interface to extract neural information of an individual’s intended movement
and estimate the biomechanics of an amputated limb, such as forces and torques, which
are transformed and used to control the prosthetic hand. This control scheme is called
EMG-driven musculoskeletal modelling based control. Recently, Sartori et al. [29] demon-
strated the use of EMG-driven musculoskeletal modelling to control a prosthetic hand.
Such control scheme showed truly intuitive, human-like prosthetic control over multiple
DOFs simultaneously. Because of these reasons, this master thesis is based on the work
of Sartori et al.

More in depth, in EMG-driven musculoskeletal modelling, joint-kinematics are ex-
tracted by constructing a subject-specific model of the individual’s anthropometry, which
is used to estimate various parameters of the MTUs, such as length and moment arms
(Fig. 1.9 b)). MTU-dynamics (Fig. 1.9 c)) are estimated from the obtained MTU-kinematics
and the neural excitations extracted from EMG (Fig. 1.9 a)). The calibration of the model
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is performed for muscle parameter values that vary non-linearly across subjects [30]. Ul-
timately, the predicted joint torques (herewith also referred as moments) can be trans-
formed and used as input for the controlled device. A more detailed explanation of the
NMS model’s complete pipeline can be found in chapter 2, section II-B.

FIGURE 1.9: General NMS modelling pipeline. Modified from [25].

Admittance control: interacting with the environment

In section 1.5, the problem of fine grasp force control in current MYO prosthesis was
introduced. Along with this, the efforts of the research community to restore amputees’
ability for a better force control were introduced. Here, some researchers tried to control
the force or the motion of the hand to increase or decrease the interaction force between
the prosthetic and an object, for example. Instead of controlling either force or motion, an
idea could be to control both variables at once to see what effect causes one on the other:
any applied force to an object will cause some degree of deformation on the object and
the object will counteract this deformation with a reaction force in opposite direction.
Therefore, the key for a safe interaction is to model the relationship between the forces and
the motion caused by this forces, rather than each of the two variables alone. The dynamic
relation between force and motion is called mechanical admittance. To illustrate this concept
an example is provided in the following lines.

FIGURE 1.10: Illustration of the concept of admittance.

In Fig. 1.10, an arm holding a weight is illustrated. The forces (referred as torques in
the figure for context correctness) acting on the arm are: the one produce by the weight
and the one produce by the arm (which tries to counteract the weight). The balance
between the two forces accelerates and moves the limb, i.e. if the force applied by the
human is greater than the weight, the arm will lift and move the weight up. The amount
of motion the arm admits is ruled by the dynamics of the arm. Then, we can say that
by controlling the admittance of the arm we can control motion produced by the forces
acting on it. In the fields of robotics and biorobotics, such control paradigm is used to
control the desired behaviour of the robot (e.g. robotic arm or an exoskeleton) and is often
named as admittance control.
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In admittance control, a virtual model of the dynamics with which we wish the con-
trolled robotic device to move is designed. Therefore, such dynamics can also be called
desired dynamics. This master thesis makes use of the paradigm of admittance control to
model the grasp dynamics while accounting for external forces arisen from the interac-
tion with the environment (refer to A, section II-D).

1.7 Scope of Thesis: Towards bio-inspired grasp force control

This thesis focuses on exploiting the opportunities that EMG-driven musculoskeletal
modelling and admittance control provide to improve grasp force control in upper limb
MYO-prosthesis. More specifically, the control strategy proposed in this master thesis
focuses on improving the control framework proposed in the work done by Sartori et al.
[29].
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Abstract—Current myoelectric upper limb prostheses do not
provide truly bio-mimetic control that allows for both intuitive
control and reliable grasp dynamics. This is mainly because
current machine learning approaches provide a control interface
that is non-intuitive and extraordinarily different from human
natural control. Furthermore, the lack of afferent feedback
pathways forces the amputee to rely mainly on visual feedback
to control grasp action, where the implementation of state-of-
the-art haptic feedback techniques does not show conclusive
results on the help of grasp force control. In this work, a
subject-specific EMG-driven musculoskeletal model coupled to
an admittance controller is used to drive a bionic hand. The
admittance model virtually mimics the grasp dynamics of a
real hand interacting with the environment. This way, the
prosthetic hand (Michelangelo hand, Ottobock) can readjust its
control commands during interaction by accounting for external
forces. Theoretical stability boundaries of the control system
are analysed for stable interaction and experimental tests are
carried out comparing the proposed control framework to non-
admittance based EMG-driven musculoskeletal modelling during
grasping tasks. Experimental outcomes show positive results
when compared to non-admittance based control. This control
framework sets the bases to enable safer prosthesis-environment
interaction without the need of constant visual feedback.

Index Terms—admittance model, control system stability,
EMG-driven musculoskeletal modelling, myoelectric control, sys-
tem identification.

I. INTRODUCTION

THE loss of an upper limb can have a profound impact in
the quality of life, since the individual’s ability to perform

activities of daily live (ADLs) autonomously, the capability
to work and socialize are suddenly limited [1]. Myoelectric
prosthesis (MYO) aim to restore the missing functions by
providing a man-machine interface based on electromyography
(EMG) which enables the amputee to control the artificial
limb. Surface electrodes placed in an antagonistic muscle pair
in the residual limb capture the muscle signals driven through
the neuromotor system, after which they are processed and
used as input to control prosthetic joints. Nowadays, most
commercially available advanced prostheses provide control
of more than one degree of freedom (DOF) and allow for
different grips and hand gestures by the co-contraction of
two muscles to sequentially select the different joints to be
controlled. Examples of commercially available prosthesis are
Ottobocks Michelangelo, Touch Bionics i-Limb and Bebionic.
However, with more than 2 DOF the sequential control implies
high mental effort and becomes non-intuitive, not natural,

slow, difficult to learn and prone to errors [2], [3]. Moreover,
the lack of proprioceptive feedback forces the user to rely
primarily on visual information, which leads to excessive or
poor grasp forces [4]. Therefore, despite the great technolog-
ical advancements, studies stated that the overall prosthesis
rejection rate was found to be as much as 23% [5].

The principal problem of MYO-controlled prosthesis is that
it is extraordinarily different from human natural control,
which requires simultaneous coordination and proportional
movement of multiple DOFs across several joints at the same
time, while applying the right amount of force when handling
fragile objects or interacting with humans and animals [6].

The ultimate goal of upper limb prosthetics is to replicate
the human control strategy to provide truly bio-mimetic con-
trol that allows for safe grasp dynamics. However, several
challenges arise in this path given the state of current MYO-
prosthesis.

A. Challenges in Current Myoelectric Prosthesis

Approaches based on machine learning algorithms, like
pattern recognition (PR) and regression techniques, have been
employed for prosthetic control to resolve the complexity
of mimicking human-like control. As such, these techniques
do not capture the underlying biomechanics of the human
neuromusculoskeletal system (NMS) and they rather reduce
the relation between neuro-biomechanical variables to a black
box. Moreover, the same movement can be produced by
different muscle recruitment strategies due to a redundant
number of muscle tendon units (MTUs) controlling a limited
number of DOFs. PR-algorithms are sensitive to this fact due
to specific training conditions which fail to generalize to new,
untrained conditions [6]. Ultimately, they fail to create a bio-
mimetic prosthetic interface.

In addition, the loss of a limb carries the loss of the
afferent pathways of sensory organs, such as muscle spindles
and Golgi tendon organs. These organs provide the position,
velocity and force feedback needed close the control loop
and adjust neural commands. Currently, amputees depend on
mostly visual or auditory feedback from the prosthesis to
control the grasping dynamics while their attention is drawn
away from the task at hand [7]. Furthermore, the use of
prosthetic hands disables the internal (or feed-forward) models
of object grasping of the amputees and therefore excessive
grasp forces are common in prosthesis wearers [8], [9]. To
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account for this fact, haptic feedback techniques are being
developed to recover lost proprioception and exteroception
where the amputee is fitted with a feedback unit, such as a
vibrotactile cuff. However, although haptic feedback is able
to characterize, for example, grip force intensity, it cannot
transmit if applied forces are insufficient or excessive and
therefore is not able to guide amputees response[9]. In this
scenario, the results regarding the benefits of haptic feedback
for grasp force control in the literature are inconclusive and
contradictory [10].

In conclusion, the existing gap between the intent of the
user, control strategy and reliable interaction with the environ-
ment lies in the absence of a bio-inspired model that captures
their relationship. This is, there is currently no human-like
prosthetic control strategy which allows for an intuitive control
and which automatically readjusts its control commands when
excessive grasping forces are achieved through the derived
intent of the amputee. Therefore, this work is focused on
building a control strategy that a) allows for an intuitive
control by EMG-driven musculoskeletal (MS) modelling, and
b) captures the dynamic relation between the predicted forces
by such model, phantom limb dynamics and contact forces
arising from grasping real objects. As feedback pathways to
the user are still an inconclusive research topic, they are left
as a future development to complement and complete the
proposed human-like control strategy.

B. Towards bio-mimetic control

Unlike machine learning methods, EMG-driven muscu-
loskeletal (MS) modelling provides truly intuitive and robust
MYO control over multiple DOFs simultaneously by estimat-
ing phantom limb biomechanics out of the EMG signals. In
EMG-driven MS modelling, a subject-specific model of the
individuals anthropometry is used to estimate net torque over
multiple DOFs. Forces and torques produced by individual
MTUs are estimated out of their kinematics (length, velocity
and moment-arm) and from EMG extracted neural excitations.
The MS model is calibrated in a closed loop formulation
for anatomical and physiological internal parameters that vary
nonlinearly across individuals [11], [12]. In short, MS decodes
motor intentions and transforms them into joint torques by
taking into account subject’s limb kinematics and dynamics.

In the scheme of upper limb prosthesis, Sartori et al. [13]
developed a subject-specific, real-time simultaneous multi-
joint prosthetic control using an EMG-driven MS model. In
that work, the predicted joint torques where directly mapped
to joint velocity which was used as input for the control
of an upper limb prosthesis. Hence, the prosthetic device
was used as a physical integrator into device position, thus
eliminating the need of numerical integration of velocity into
position. However, the direct mapping from joint torque to
joint velocity does not take into account limb dynamics and
possible displacements caused by external forces acting on
the prosthetic hand. That is, the prosthesis still cannot react
to the environment by readjusting its commands when is
in contact with an object. Therefore, the dynamic relation
between predicted joint torque, external forces and output

motion needs to be modelled to achieve truly bio-mimetic
control that allows for robust interaction with real objects.

Several studies attempted to integrate external forces in
prosthetic control with approaches based on hybrid force-
position control with sliding-mode control [14] and object
stiffness estimation [15], parallel force-position control [16],
artificial neural network (ANN) models to estimate new com-
mands from net external forces [17] and normal to shear
force ratio based rules [18], where in many of them the
velocity/position/force input signal of the artificial hand is
increased until a predefined interaction force threshold is
reached. However, none of them established a dynamic relation
between input and output (velocity/force) but rather controlled
them separately. Moreover, the mentioned approaches highly
depend on the kind of prosthesis used (e.g. actuation mechan-
ics, sensors available etc.) which does not help to create a
generic solution for this problem.

In this sense, the limb dynamics that convert net torques
to motion can be regarded as a mechanical admittance. The
concept of admittance can be explained as the amount of
motion the limb ’admits’ for an input torque. Then, admittance
controls the relation between torque and motion. Admittance
control is the inverse of the impedance control paradigm
proposed in the works by Hogan [19] and Colgate et al.
[20] and which allows to control both motion and force at
once. This prevents from controlling each variable separately
by modelling their relation, unlike the techniques described
above. More explicitly, in admittance control, the relation
between force and motion is modelled through a virtual model
of the dynamics of the physical system. This virtual model can
be considered as the desired dynamics the controlled device
is aimed to follow. Admittance control-based approaches have
previously been used in bio-robotics for exoskeleton control,
rehabilitation purposes and movement support to enable the
controlled device to respond with desired dynamics [21], [22].

The work in this paper focuses on exploiting the opportu-
nities that EMG-driven MS modelling provides to integrate
external forces from the interaction with real environments
through an admittance model of the desired hand dynamics.
Such dynamics are the representation of the forward dynamics
of the biomechanics of the hand. This way, the prosthesis is
capable of reacting to grasp forces and automatically adjust-
ing velocity control commands for interaction. This scheme
provides a proof-of-concept that aims to set the bases to
create a generalized upper limb prosthesis control strategy
that reproduces the way humans generate movement and
interact with the world in a robust manner. We hypothesize
that the proposed control method will allow for fine grasp
force control by accounting for interaction forces without
the amputee needing to readjust control commands based
only in visual feedback. The control scheme is evaluated, in
terms of performance and robustness, in comparison to the
non-admittance-based EMG-driven MS model control scheme
proposed by Sartori et al. by performing three experimental
tasks with a prosthetic hand. Furthermore, the stability of
the system for different environment mechanical properties is
assessed.
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Fig. 1. Proposed control framework composed of the EMG-driven MS model, the admittance model coupled with a joint friction model and the prosthetic
hand itself. The EMG-driven MS-model predicts joint torques τpred based on EMG-derived neural activations generated by subject’s intended movement.
The admittance model represent the dynamics of the open/close of the hand while interacting with environment, which produces a reaction torque τext.
The friction model reproduces the biological friction conditions in which joints move and produces a friction torque τfr . This admittance model coupled to
the friction model transforms the net torque τ into desired angular velocity references ωd. The desired velocity is used as reference for the prosthetic hand
controller. The error e is the difference between measured velocity ωmeas and ωd. The hand controller attempts to drive the prosthetic device by applying a
control force Fctrl. The output kinematics are ωmeas and prosthesis angular position θ.

II. MATERIALS AND METHODS

The control framework presented in this paper is an ex-
tension of the work of Sartori et al. [13]. The focus of this
paper is to improve the grasping force dynamics by accounting
for external forces. This is done through an admittance model,
coupled with a joint friction model, which reproduces, to some
extent, the desired dynamics of a real hand interacting with
the external world. The proposed control strategy is depicted
in Fig. 1 and comprises of three major components including:
the EMG-driven MS model, the admittance model coupled
with a joint friction model and the prosthetic hand. The
framework allows for simultaneous control of 2 DOFs: hand
opening-closing (HOC) and wrist pronation-supination (WPS).
However, because this paper focuses on grasp dynamics, only
HOC was used for our experiments to test the implemented
admittance model (see section IV for further explanation).

The experimental procedures were performed by three
healthy subjects on two consecutive sessions. First, a generic
MS model was scaled and calibrated for each subject’s
anthropometry and force-generating capacity. In the second
session, the subject-specific model was used to perform the
experimental tasks.

In the following lines, we first describe how anthropometry
data were collected for establishing subject-specific MS model
(see section II-A). Secondly, we describe the components
of our proposed control strategy (sections II-B to II-D) and
explain the processes to find the theoretical stability bound-
aries of the prosthesis-environment interaction (section II-G).
Thirdly, the online prosthesis control experimental procedures
are described (see section II-H).

A. Data recording and processing

A generic dynamic upper limb model was scaled on Open-
Sim for each subject. For this, the anatomical position of the
shoulder joint, elbow, wrist, metacarpophalangeal (MCP) joint
of the middle finger and index finger length were taken for
each subject. Scaling of the MS model was therefore done

using manual scale factors for each participant instead of using
motion capture data for the ease of the subjects. Anatomical
measures were taken in natural position, with no elbow flexion,
such that the position of the arm matched the pose of the
generic OpenSim model. Although the generic MS model
provides all DOFs and MTUs in the human hand [23], only a
subset of these were employed.

All experimental procedures were performed using a pow-
ered multi-functional Michelangelo prosthetic hand (Ottobock
HealthCare GmbH, Duderstadt, DE) equipped with WPS and
HOC motors and passive flexion-extension (WFE). The hand
can produce lateral grasp and palmar grasp, where only palmar
grasp (HOC) was used for our experiments.

EMG was recorded using 8 EMG Ottocbock electrodes
connected to the central control unit of the prosthesis (Ax-
onMaster 13E500, Ottobock). EMG electrodes consisted of
an on-board 90-450 Hz bandpass filter and 50Hz notch filter
[24]. Electrodes were placed in eight upper limb muscle
groups including: biceps brachii, pronator teres, extensor carpi
radialis, extensor carpi ulnaris, extensor digitorum, flexor carpi
radialis, flexor carpi ulnaris and flexor digitorum [13]. The
subjects were asked to perform a set of movements for EMG
normalization including: wrist flexion, extension, pronation,
supination, ulnar deviation, radial deviation, hand open and
close and rest (no movement). EMG values for each channel
were normalized by the highest processed value during the
movement phases and removed base line by the mean value
during no movement.

The prosthetic hand is sensorized with embedded force
sensor positioned at the base of the thumb measuring grasping
force (percentage of maximal force) and a position sensor
measuring aperture size and wrist rotation angle. The max-
imum published grip force of the Michelangelo hand is 70
N in palmar grasp [25]. For finer reference, the embedded
force sensor was calibrated using an external load cell placed
normally to the embedded sensor giving a range up to 74 N,
which is in line with similar experiments done by the research
community [25]. The commands to the hand and the sensor
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Fig. 2. Schematic structure of EMG-driven MS model. Neural excitations
are obtained from raw EMG signals as linear envelopes and transferred into
muscle activations. MTU lengths (lmt) and moment arms (rmt) are obtained
from the input joint angles using multi-dimensional cubic B-splines. MTU
forces (Fmt) are obtained from muscle activation and lmt using a Hill-type
muscle model. Fmt is converted into MTU torque (τpred) by multiplication
with rmt.

data, including processed EMG signals, were transmitted via
Bluetooth connection between the AxonMaster unit and a PC
at a frequency of 100 Hz.

B. EMG-driven Musculoskeletal Modelling

Limb biomechanics were estimated using Calibrated EMG-
Informed NMS Modelling Toolbox (CEINMS) [12], hereafter
referred as EMG-driven musculoskeletal (MS) model. The
proposed EMG-driven MS model takes as input a) joint angles
from prosthetic device and b) raw EMG from amputee’s
residual limb and outputs joint torques of the phantom limb
and intact limb. The EMG-driven MS model is based on
four key components: activation dynamics, MTU kinematics,
MTU dynamics and joint dynamics. The activation dynamics
component allocates experimentally measured EMG linear
envelopes from 8 muscles to 14 MTUs in the model as
detailed in Table I. MTU-allocated activations were further
processed by a second order muscle twitch model and ad-
justed to account for the non-linear EMG-to-force relationship.
The MTU kinematics component first synthesises subject-
specific MTU paths into multidimensional cubic B-splines.
Such splines are then used to produce estimates of MTU length
(lmt) and three-dimensional moment arms (rmt) as a function
of prosthetic joint angles. The MTU dynamics component
computes individual MTU forces (Fmt) obtained from MTU-
specific activations and lmt using a Hill-type muscle model
[11], [13]. The joint dynamics predicts joint torques (τpred)
by the sum of the products of rmt and Fmt.

C. Model Calibration

The calibration process consisted on instructing the subjects
to mimic predefined motions of the prosthesis. For this exer-
cise, subjects were asked to move through the whole range
of motion of the specified DOF while the prosthesis moves at

Fig. 3. EMG-driven MS model calibration is performed by comparing
predicted torques (τpred) with experimental torques (τexp) obtained from
prosthetic commands.

constant speed. Motions included opening and closing of the
hand and wrist pronation-supination. The calibration algorithm
receives: a) EMG from subject, b) prosthesis DOF angles and
c) normalized velocity control commands of the prosthesis,
representing the torque associated to reach specific prothe-
sis DOF angles. The calibration of the model is performed
for muscle parameter values that vary non-linearly across
subjects, including: EMG to-activation non-linearity factor,
muscle optimal fiber length, tendon slack length, and muscle
maximal isometric force. The initial parameter values are
iteratively refined through a simulated annealing algorithm so
that the error between the model’s predicted torques (τpred)
and normalized prosthetic control commands (velocities repre-
senting prothesis torques (τexp)) is minimized [12], [13]. The
calibration algorithm receives information from pre-recorded
data.

D. Admittance Model

The predicted torques by the EMG-driven MS model are
converted into desired angular velocity references (ωd) via an
admittance model of the phantom hand (see Fig. 1). That is,
the predicted torque will virtually accelerate a model of the
inertial dynamics of the phantom hand causing virtual motion
references that will be forwarded to the prosthetic low-level
controller. Because external forces are also considered to be
acting on the virtual dynamics of the phantom hand, velocity
references will change if any external force is present. In short,
there is a dynamic relation between force and velocity and
there is no longer the need of controlling both separately.
Lastly, the admittance model operates in only 1 DOF, i.e.
opening and closing of the prosthetic hand.

More explicitly, the virtual model of the phantom hand
captures the dynamics of the opening and closing of the
missing hand by modelling the index finger as a pendulum
as shown in Fig. 4. For simplicity, the interphalangeal joints
are considered welded, the thumb is fixed and the pendulum
has only 1 DOF at the MCP. Note that this scheme mirrors the
actuation mechanics of the Michelangelo hand single-segment
fingers [25]. The pendulum consists of a point mass attached to
a massless rod, where motion occurs only in two dimensions,
i.e. the mass point does not trace an ellipse but an arc. Its
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Fig. 4. Body diagram of the virtual dynamics of the index finger modelled as
a 1 DOF pendulum. The massless rod, with length lrod, is attached to a point
with virtual mass (mv) and to the MCP joint where friction between synovial
surfaces generates a friction torque (τfr) opposing motion. The external force
Fext caused by the interaction with the environment opposes the predicted
torque (τpred) by the MS model.

motion is affected by: an inertial torque, the predicted joint
torque by the MS model for the hand open-close DOF (τpred),
friction forces (τfr) in the attachment point (i.e. the MCP
joint) and a external force (Fext) acting on the point mass
(i.e. the base of the index finger). Therefore, external forces are
considered to act always in the same point and are transformed
to torque by the length of the rod (i.e. length of the index finger
lrod). The gravitational component was not considered as this
is affected by the rotation of the wrist, i.e. because motion
only occurs in two dimensions, the gravity would only affect
the motion of the finger when its base is facing up or down.
This model was chosen for its simplicity and flexibility for
future developments (see section IV-H).

The external force is measured from the force sensor embed-
ded in the prosthesis in the base of the thumb and transformed
by the length of the index finger, i.e. τext = Fextlrod. For
accuracy reasons explained in section II-A, the embedded
sensor was calibrated with an external load cell giving a range
up to 74 N.

The friction force represents the friction present in a human
joint: static friction must be overcome by muscle force in
order to move; once moving, dynamic friction acts to oppose
motion. Without friction, any minimal muscle activation would
cause a joint torque and our limbs would constantly shake.
Because the MS model does not consider joint friction this
is specially an important factor: any registered EMG signal

would compute small predicted torques causing the prosthetic
hand to constantly move. Moreover, friction acts as a threshold
for the external force too, meaning that for the external force
to cause any effect on the motion of the pendulum it must
exceed friction force first. The friction model used to mimic
such behaviour is based on the Stribeck friction model, which
is a combination of Coulomb and viscous friction models and
where the Stribeck friction accounts for low velocity friction
effect happening in lubricated environments, such as human
synovial joints (e.g. MCP joint) [26], [27]. The parameters of
the friction model were experimentally fine tuned.

Because the friction model is energy passive (for a definition
of passivity refer to section II-G), we can consider the viscous
friction coefficient as the damping coefficient of the MCP
joint. Furthermore, we consider that the external forces do not
affect the dynamics of the prosthetic device as it was shown
to provide good disturbance rejection. Our admittance model
can be obtained by solving the ordinary differential equation
defining the motion of the pendulum. This is of the form of
(1) in time domain and (2) in Laplace domain, with friction
model (3), where: Yv represents the (virtual) admittance, Iv
is the virtual inertia (governed by virtual mass mv), bv is
virtual damping, Ω is the resulting angular velocity and T
input net torque, Fc the Coulomb friction, R is the contact
radius between the metacarpal and proximal phalanx on the
MCP joint, Fs is the Stribeck force, vs is the Stribeck velocity
and δvs controls the decay of the exponential. The dependence
of the variables on time (t) and s is omitted for readability:

Ivω̇ − bvω = τ = τpred − τext − τfr (1)

Yv =
Ω

T
=

1

Ivs+ bv
(2)

τfr = sgn(ωd)R(Fc + (Fs − Fc)e
(
|ωd|
vs

)δvs ) (3)

E. Prosthesis Low-Level controller

The output velocity reference of the admittance model is
used to drive the HOC of the Michelangelo hand, where the
velocity command for the fingers is mirrored for the actuation
of the thumb. Control commands are amplitude-normalized
for each subject. The prosthesis HOC angular kinematics
are directly modulated as a function of the input command
amplitude. The resulting HOC angle is fed into the EMG-
driven model to update the kinematic-dependent state in the
musculoskeletal model (Fig. 1). Lastly, the admittance model

TABLE I
MAPPING BETWEEN EXPERIMENTAL EMGS AND SIMULATED MTUS.

EMGs Biceps
brachii

Pronator
teres

Extensor carpi
radialis

Extensor carpi
ulnaris

Extensor
digitorum

Flexor carpi
radialis

Flexor carpi
ulnaris

Flexor
digitorum

MTUs BIClong,
BICshort PT, PQ ECRL, ECRB ECU EDCI, EIP FCR FCU FDSI,FDPI

FDPM

MTU names: biceps brachii long head (BIClong) and short head (BICshort), extensor carpi radialis longus (ECRL), extensor carpi
radialis brevis (ECRB), extensor carpi ulnaris (ECU), extensor digitorum communis indices (EDCI), extensor indicisproprius (EIP),
flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum sublimis indices (FDSI), flexor digitorum profundus indices
(FDPI), flexor digitorum profundus (FDPM), pronator quadratus (PQ), and pronator teres (PT).
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is constrained to work only in the available range of motion of
the prosthetic HOC. This prevents from computing commands
that would drive the prosthesis out of its range of motion.

F. System Communication Framework

The real-time modelling framework (i.e. EMG-driven model
and admittance model Fig.1) run on a PC (Intel Core i7-
8700 at 3.20 GHz, 32 GB RAM). The admittance model
and prosthetic hand control part were coded in MATLAB
2017b (The MathWorks, Inc., Natick, Massachusetts, United
States). The admittance model was updated at 100 Hz. Two
software plug-in modules were developed to enable direct
UDP connection between the real-time modelling framework
and Michelangelo hand. The first plug-in module allowed to
connect the EMG-driven MS model with the admittance model
and prosthetic control program. During prosthetic control, the
control program updated the MS model with prosthetic DOF
angles and EMG signal to receive newly computed torque
estimates. The second plug-in module enabled a direct UDP
connection to the prosthetic hand.

G. Theoretical stability assessment

Within the admittance control framework, when the pros-
thetic hand manipulates an object they both exert forces on
each other and exchange mechanical power. In such situation,
it can be said that they behave as a single coupled system.
Coupling an admittance controlled device with external envi-
ronment dynamics creates a negative force feedback loop (Fig.
5). Hence, the stability of the whole system will depend on the
overall prosthesis dynamics and environment dynamics [21].
To ensure safe and robust prosthesis-environment interaction,
the stability of the coupled dynamics needs to be assessed.

In our proposed framework, the overall prosthesis dynamics
are specified by the admittance controller Yv , prosthesis low-
level control Hc and physical dynamics of the device (i.e.
plant dynamics, Hp). The resulting dynamics are called the
apparent dynamics (Ya) of the controlled device, where Ya =
YvHcHp. The environment can be considered an impedance
(Ze) transforming displacement caused by the interaction
with the prosthesis into a reaction force measured by the
embedded force sensor in the prosthetic thumb (see Fig. 5).
In more complete admittance models, environment dynamics
also include the dynamics of the interface between the force
sensor and the interaction port (usually called post-sensor)
dynamics [21]. In this work, such dynamics are not considered
for simplicity.

Because there is practically no knowledge of Ze, one way of
ensuring stability in our system is to ensure it is energy passive
[21]. Our single-port system will be passive if the extracted
power over time does not exceed the initial energy input to
our system. For the shake of following conventional notation,
we consider our system to be translational where the power is
the product between force (f ) and velocity (v) as in 4.∫ t

−∞
f(τ)v(τ)dτ ≥ 0, ∀t ≥ 0 (4)

Fig. 5. Admittance and impedance causality of prosthesis-environment
interaction (modified from [21]). Ya represents the apparent dynamics of the
prosthetic device and Ze the unknown environment dynamics. Ze transforms
motion caused by interaction with the prosthesis into a reaction torque, τext.
Friction torque is removed for clarity.

Therefore, if we design the apparent dynamics Ya to be
passive, the system will be stable for any interaction with pas-
sive environment dynamics [28]. Springs, masses and dampers
are passive elements, where physical objects can regarded
as a combination of the formers. Therefore, theoretically,
for passive Ya dynamics, the prosthesis-environment interac-
tion should always be passive. Passivity of the admittance
controlled prosthetic hand can be assessed by observing the
behaviour of Ya. For this, in case the dynamics of the
controlled device are not known (i.e. Hc and Hp) they must
be identified by system identification techniques. Nevertheless,
passive behaviour of a controlled device cannot always be
achieved due to weak dynamic performance of the controlled
device. Then, the apparent dynamics can be stable but non-
passive [21]. In such case, we could assess what range of
environment dynamics Ze could complementarily stabilize Ya
for a stable prosthesis-environment interaction. Such range is
called environment z-width or ez-width.

Environment dynamics can be described in dynamical pa-
rameters by its inertia, damping and stiffness. Due to the
lack of knowledge of such parameters, we can model the
environment as a stiffness (ke) and a damping (be) such that
Ze = be + ke/s. The ez-width is calculated based on known
Yv parameters, or better, can help in identifying appropriate Iv
and bv for fine tuning the admittance model for the purpose at
hand. For our case, we consider Iv to be governed by a virtual
mass mv (i.e. inertia of a pendulum being Iv = mvl

2
rod).

Note that the values of mv and bv will be a trade-off between
stability boundaries and performance, where increasing values
of mv would feel as moving a heavy finger and increasing bv
would slow down the response of the prosthetic hand due to
its dissipative nature. The closed-loop transfer function of Fig.
5 is Ya/(1+YaZe), with loop-gain YaZe. The ez-width of Ya
can be calculated by determining the phase margin of the loop
gain, that is: if the phase margin is negative for given values
of ke and be for a chosen values of mv and bv , the coupled
system is unstable.

H. Experimental Tests

In this section, the experimental tests performed for the
identification of prosthetic hand dynamics and stability
assessment, and experimental tasks and outcome measures for
the validation of the proposed control strategy are explained.
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Fig. 6. Experimental set-up for force tracking and blind object tasks. The
spring is fixed between two plates and moved by pressing the black ball
meeting the thumb.

Identification of prosthesis dynamics

To assess the ez-width of our admittance controlled prosthetic
hand, we first conducted a system identification experiment
to identify the unknown dynamics of the prosthesis controller
and plant, Hc and Hp respectively. We conducted a short
experiment where the prosthetic hand was excited by an
input signal that commanded the prosthesis to a specific
position. The output position was recorded and compared
to the input. The model of the prosthesis dynamics to be
identified is defined as a black box containing dynamics of
Hc and Hp. A multisine was used as input signal because it is
periodic, contains power only at the desired frequencies and
allows for the detection of non-linear distortions to certain
degree. To prevent leakage, frequencies equal to an integer
multiple of the frequency resolution are included. This way
each harmonic fits exactly an integer number of times in the
multisine signal [29]. The multisine had a period of 120 s
(sampled at 100 Hz) and contained 80 frequencies ranging
from 0.05 Hz to 4.95 Hz. The variance of the signal was
optimized with respect to its amplitude by crest optimization
using MATLAB command iddinput. Three trials with
three different amplitudes were carried out: 20%, 50% and
100% of allowed HOC. These measurements yielded the
Frequency Response Function (FRF) for the three amplitudes.

Experimental tasks and outcome measures

Three intact-limb subjects (aged 24.3 ± 1.52) participated
in this study and completed three experimental tasks. One
subject had previous experience with MS-modelling and
MYO control, but not with admittance based control. None
of the rest had previous experience with MS-modelling or
admittance based control. For ease of reading, the EMG-
driven MS model based and admittance controlled prosthesis
with environment force feedback is named MS+Adm+Fb,
while the EMG-driven MS model with no admittance, i.e.
the scheme presented by Sartori et al. in [13], is named
MS+NoAdm. For the experimental tasks, only HOC was
used as the Michelangelo hand could not grasp an object and

Fig. 7. Set up for blind object experiment. A wall is placed between the
subject and the spring so no visual feedback is present during the experiment.
Furthermore, the subject is deprived from auditory feedback by wearing noise-
cancelling headphones.

pronate/supinate at the same time. This did not affect the
goals of the experiments but limited the tasks to 1 DOF. The
goals of the experimental tasks were fivefold:
• To evaluate to what extent MS+Adm+Fb control accounts

for external forces when compared to MS+NoAdm when
neither visual of auditory feedback are present.

• To assess if MS+Adm+Fb control scheme allows for
more accurate and precise grasp force control when
compared to MS+NoAdm.

• To assess the robustness of the control methods regarding
undesired commands or unexpected commands produced
by the EMG crosstalk between muscles.

• To determine which control strategy provided the most
intuitive control when grasping new objects during un-
trained conditions.

• To assess the computational performance of the frame-
work for both control strategies.

The experimental procedures were carried out on two ses-
sion on two consecutive days. In the first sessions, a muscu-
loskeletal model was scaled and calibrated to match subject’s
anthropometry and force-generating capacity. Furthermore, the
subject was trained to use both control methods and performed
trials for the first two experimental tasks. The subject was
also equipped with the Michelangelo and invited to grasp
different objects. A proper training for the specific functional
task was not given to the subject. The reason for this was to
test the intuitiveness of both control methods when presented
to new, untrained conditions and objects. During the second
session, the subject-specific model was used for the online
prosthesis control experimental tasks. Online control tests were
performed with no model re-calibration.

1) Blind object: For this task, the subjects were seated
in a chair that could be adjusted vertically in front of a
computer screen where the experimental tasks were shown.
The prosthetic hand was not worn by the subjects but fixed in
a position ready to grasp a fixed object as shown in Fig. 6. A
spring was fixed between the point where the index finger and
the thumb of the prosthesis meet (i.e. placement of embedded
force sensor), and both the prosthetic hand and the object were
blinded to the subjects by setting a wall between subjects and
prosthetic hand (see Fig. 7). Subjects wore noise-cancelling
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headphones to prevent auditory feedback when the object was
grasped, as this feedback may prevent them from squeezing the
object. The subjects were in control of the prosthesis HOC and
asked to close it with varying levels of the maximal voluntary
contraction (MVC). The measured MVC was plotted against
the reference MVC levels in the computer screen as the only
feedback to the subject. Subjects performed 3 trials with each
control strategy (i.e. MS+Adm+Fb and MS+NoAdm). One
trial consisted of 120 seconds partitioned in 24 MVC intervals
of 5 seconds each. Four MVC levels were used as reference:
0%, 5%, 10%, 30%. The reference MVC levels were presented
in a stair case form, where a 0% MVC was interleaved between
each non-zero MVC levels. This fact helped to track the
performance of the prosthesis when no command is sent but an
external force is present. The displacement due to interaction
forces was video-recorded for post-experiment analysis with
the help of the ruler placed in the experimental setup (Fig.
6). This experiment allows to test the performance on grasp
force control of the two control methods and to what extent
they can account for external forces when no visual and
auditory feedback of the prosthesis are given to the user. We
hypothesized that MS+NoAdm control would cause higher
interaction forces than during MS+Adm+Fb. Therefore, the
outcome measure of this experiment were the displacement on
the spring and the mean interaction force for each MVC level,
where higher interaction forces were considered as possible
damage or high deformation to the object or prosthesis.

2) Force tracking: For this task the set up was the same
as for the previous one. The subjects were asked to grab
the object by generating appropriate EMG commands to
follow a reference force line shown in the computer screen
as accurately as possible with varying interaction force levels.
Subjects performed 3 trials with each control strategy (i.e.
MS+Adm+Fb and MS+NoAdm). One trial consisted of 120
seconds partitioned in 12 intervals of 10 seconds each. Three
interaction force reference levels were chosen: 5, 10 and 20
Newtons, which corresponded to 10 %, 20 % and 40% of the
maximal force the subject could achieve, respectively. Force
levels were presented in a stair case form, where each level
was presented 4 times across the duration of the experiment
(see Fig. 12). During the experiment, the interaction force
between the object and the Michelangelo hand was measured
and plotted in the same screen. The experiment was performed
with MS+Adm+Fb and MS+NoAdm. The object used was
a spring with specific stiffness ke as discussed in section
III-A. During MS+NoAdm control, the velocity commanded
to the prosthetic hand is proportional to the input force, for
which subjects would need to carefully produce reference
velocities to achieve the reference interaction force. Because
MS+Adm+Fb control can account for the interaction forces,
we hypothesized that this control method would allow to
reach faster balance between the subjects’ force and the
interaction force for a finer grasp force control. Therefore, the
outcome measures for this experiment are the absolute mean
error between the reference interaction force and measured
interaction force, the variability of the measured interaction
force and the goodness of fit between the reference interaction
force and measured interaction force. The absolute error is

(a) (b)

Fig. 8. Setup for functional task. Subject wore the prosthetic hand and moved
cups from the box on the table to a higher positioned box.

taken as a measure of accuracy, while the variability of the
measured forces is expressed as the interquartile range (IQR)
and used to evaluate the consistency in the control of force
(i.e., precision). The goodness of fit is evaluated in terms of
R2 value and gives information on how good the subjects
could follow the reference force levels. The R2 value, for each
MS+Adm+Fb and MS+NoAdm, is computed as the combined
mean R2 value across all trials of each staircase period .

3) Functional task: For this task, the subjects were
equipped with the Michelangelo hand and asked to grasp
and move plastic cups from a box on a table to a higher
positioned box (Fig. 8). Plastic cups were chosen as they are
non-stiff objects and provide visual feedback when broken.
The task was performed with the two control strategies for
both untrained and trained conditions. Between conditions, the
subjects were given several trials until he was familiarized with
both control strategies and therefore trained to accomplish the
task. The subjects were asked to transport 6 cups from one
box to another 5 times non-stop, i.e. when all 6 cups were
transported to the higher box they were transported back to
the first box.

This experiment can show the usability of the MS+Adm+Fb
in a real situation while assessing the robustness of both con-
trol methods when the position of the arm is changed during
the task. The primary outcome measure of this experiment is
the number of broken or dropped cups during manipulation
and the secondary outcome is the number of transported cups
per minute (cpm). We hypothesized that MS+Adm+Fb would
allow for more intuitive control and faster manipulation of the
cups while a safe interaction force is achieved, breaking and
dropped less cups than with MS+NoAdm.

The computational performance was assessed in terms of
mean and variance of the computational speed for all frame-
work components across all trials.

The subjects performed the experiments in order of increas-
ing complexity: first the blind object test (no direct force
control), force tracking (fine force control) and finally the
functional task (force control during real situation).

III. RESULTS

In this section, we provide quantitative results for the
experiments conducted to identify prosthetic dynamics, ez-
width stability ranges and experimental tests.
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(a) (b) (c)

Fig. 9. Results for ez-width stability assessment for (a) theoretical stability range with realistic parameters; (b) experimentally stable parameters for experimental
tasks; (c) parameters used during experimental tasks.

Fig. 10. Identified prosthesis dynamics via least-squares. The transfer function
identified H can be found in (4), which corresponds to a second-order transfer
function with a delay of 15 ms.

A. Identification of prosthesis dynamics

The resultant FRFs obtained from the system identifica-
tion experiment showed a non-linear behaviour, as the FRF
changed with the amplitude of the excitation signal. For the
ease of the stability analysis at hand, the FRF with the highest
cut-off frequency was selected (1.86 Hz) so as to preserve
largest bandwidth of the prosthetic hand. Furthermore, the re-
sponse was considered linear, where the non-linear behaviour
of the prothesis dynamics is left for further research. The FRF
was parametrized by a least-squares routine thus obtaining the
transfer function (H , see (5)) for the prosthesis dynamics (Fig.
10). The analysis of the FRF showed a non-passive behaviour
due to absolute phase lag not being ≤ 90◦, which marks the
passivity constraint [30].

H =
3.43s+ 60.65

s2 + 4.828s+ 61.92
· e−0.15s (5)

Resulting apparent dynamics, Ya, where found by multiplying
the newly found transfer function H with Yv . The stability of
the system was assessed by coupling Ya to Ze for a range of
values of ke and be. First, for emulation of realistic values,

mv was set to 0.15 kg and bv = 0.5 Nms/rad. With the
resulting ez-width, the theoretical stiffness of the object used
for the experimental tasks could be selected to ensure stability
of the interaction. However, due to the short stability range
provided by such configuration during real experiments and
available springs, mv and bv values needed to be adjusted to
unrealistic finger mass value of mv = 4 kg while bv was
increased up to 7 Nms/rad. With this, the spring stiffness used
for our experiments was of 2400 N/m, well within the stable
range (Fig. 9(b)). Nevertheless, during experimental tasks, due
to subject preferences mv was decreased to 2 kg and bv to
5 Nms/rad, which resulted on a faster reaching compared to
previous values, although stability range was decreased (see
section IV for further explanation).

B. Experimental Tasks

The proposed MS model converted EMG signals into
torques produced by 14 MTUs that were used as input to
control the hand opening and closing, or HOC, of the pros-
thetic hand. This allowed to control the HOC of the device
with the same human natural hand open-close movement. The
calibration of the subject-specific EMG-driven MS-model was
performed on a different day prior to experimental session.
This provides evidence of the ability of the EMG-driven MS
model of maintaining subject-specific parameters across time,
which confirms the results obtained by Sartori et al. [13].
Furthermore, this section presents the results obtained during
the experimental task presented in section II-H. In the reminder
of this section, the intact-limb subjects are referred as SUBJ1,
SUBJ2 and SUBJ3.

Blind Object

During the blind object task, subjects followed reference
values of MVC. The resulting spring displacement and
mean interaction forces were measured. In Fig. 11(a)-(c)
the results for the displacement are displayed, where it can
already be seen a more linear relationship between MVC (i.e.
force production) and displacement for MS+Adm+Fb than
for MS+NoAdm, specially for SUBJ2 in Fig. 11(b). This
gives the hint that interaction forces increase with increasing
MVC, while this relationship is less notable for MS+NoAdm.
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Fig. 11. (a)-(c): mean (ball marker) and standard deviation (vertical lines) of the displacement caused in the spring at different MVC levels for each subject;
(d)-(f) mean and standard deviation of interaction forces.

This is confirmed by looking at Fig. 11(d)-(f), where an
increasing MVC level produces higher interaction force in
MS+Adm+Fb, while this is not the case during MS+NoAdm.
During MS+Adm+Fb control, intermittent oscillation were
spotted due to minimal torques generated by minimal EMG
activations although friction was present. This caused small
displacements in the spring as shown in 0% MVC level
in Fig. 11. Moreover, the interaction force variance of 0%
MVC level in Fig. 11(d)-(f) was mainly caused by subjects’
anticipation to the consecutive force level (5% MVC).

Force Tracking

During force tracking experiment, subjects followed a
reference force line. A representative result of the measured
force profiles for MS+Adm+Fb and MS+NoAdm, obtained
from SUBJ1, is shown in Fig. 12. Here is possible to see
that during MS+Adm+Fb the subject achieved a smoother
profile compared to MS+NoAdm. The absolute error between
reference force and measured force is shown in Table
II. For all three force reference levels the absolute error
of MS+Adm+Fb was smaller compared to MS+NoAdm,
meaning that MS+Adm+Fb was more accurate. However,
SUBJ2 was slightly less accurate during MS+Adm+Fb
compared to MS+NoAdm when tracking mid forces (10 N)

and high standard deviation at low forces (5 N). The results
for variability in terms of IQR are presented in Fig. 13.
MS+Adm+Fb was more precise during all force levels when
compared to MS+NoAdm for SUBJ1 and SUBJ3. However,
SUBJ2 was less precise during MS+Adm+Fb compared to
MS+NoAdm when tracking mid forces, where MS+NoAdm
had high accuracy for mid forces. Overall, subjects were
more accurate and precise with MS+Adm+Fb than with
MS+NoAdm. The amount of outliers in Fig. 13 is due to
interaction forces happening outside the reference force level
limits (see Fig. 12), i.e the outliers of reference level of 5
N are mainly due the overlap with the consecutive reference
force level of 20 N. Regarding the R2 values presented in
Fig. 14, during MS+Adm+Fb all subjects were able to track
the reference force better than during MS+NoAdm, which
validates the results obtained for accuracy and precision.

Functional Task

Regarding the functional task, the subjects were asked
to grasp and move 6 plastic cups from a box to a higher
position 5 times (total number of transported cups = 30).
The results are presented in Tables III and IV, and Fig.
15. Overall, during both untrained and trained conditions,
subjects crushed and dropped less cups with MS+Adm+Fb
than with MS+NoAdm. Furthermore, during trained condition
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(a) (b)

Fig. 12. A representative result from a subject performing force tracking experiment with (a) admittance based control (b) non-admittance based control

(a) (b) (c)

Fig. 13. Interquartile ranges for MS+Adm+Fb and MS+NoAdm for reference force levels 5 N, 10 N and 20 N. Dashed gray lines correspond to target
reference force levels.

Fig. 14. R2 values during admittance and non-admittance based control for
each subject.

the number of crushed and dropped cups was less than during
untrained conditions for both MS+Adm+Fb and MS+NoAdm.
Regarding the transported cups per minute (cpm) in Fig.
15, generally subjects were faster during trained condition

TABLE II
ABSOLUTE ERROR (ε) BETWEEN MEASURED FORCE AND REFERENCE

FORCE LEVELS OF 5, 10 AND 20 N.

5 N 10 N 20 N

SUBJ1 εA 1.63±2.19 1.02±1.01 2.25±2.91

εNoA 2.95±2.71 3.44±3.17 3.84±3.90

SUBJ2 εA 3.17±4.09 1.90±1.47 1.42±2

εNoA 3.62±2.87 1.18±1.41 3.36±2.97

SUBJ3 εA 0.98±1.86 1.25±1.15 2.85±2.28

εNoA 3.52±3.75 1.70±2.07 4.47±4.11

A = admittance based control, NoA = non-admittance based
control

than untrained. However, each subject exhibited a different
behaviour and approach to the task during trained condition
which affected their own cpm scores, as discuss in section
IV-E. Furthermore, all subjects reported MS+Adm+Fb to be
more intuitive during untrained conditions and stated they
were more confident using the prosthetic hand. Further results
are given as video recordings. Lastly, an additional video was
recorded while SUBJ1 handled one plastic cup with his/her
hand and another one with the prosthetic hand. SUBJ1 was
able to squeeze both cups at the same time without breaking
any of them, although the subject reported to make higher
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(a) (b)

Fig. 15. Crushed and dropped plastic cups during (a) untrained and (b) trained conditions. A = admittance based control, NoA = non-admittance based control

TABLE III
FUNCTIONAL TASK SCORES DURING ADMITTANCE BASED CONTROL.

Untrained Trained

C D T C D T

SUBJ1 3 2 5 3 1 4

SUBJ2 2 5 7 0 2 2

SUBJ3 4 3 7 1 0 1

Total 9 10 19 4 3 7

C = crushed cups, D = dropped cups, T = total faults.

forces to accomplish the same movement in the prosthetic
device.

Computational Performance

The framework generated prosthesis commands at average
speeds of 49 ± 38 ms, where 50% of the commands were
generated within 16 and 56 ms. These numbers are higher
than the ones reported by Sartori et al. [13], although the
framework used in that work did not make use of neither
UDP connection nor admittance control implemented in
MATLAB.

IV. DISCUSSION

A. Main Results

In this study, a subject-specific EMG-driven musculoskeletal
model coupled to an admittance model of the hand opening
and closing dynamics was used to control the grasping forces
of a prosthetic hand. EMG-driven MS-model predicted joint
torques were translated into prosthetic commands with no
need for explicit conversion into position commands. The

TABLE IV
FUNCTIONAL TASK SCORES DURING NON-ADMITTANCE CONTROL.

Untrained Trained

C D T C D T

SUBJ1 11 11 22 8 9 17

SUBJ2 7 14 21 10 11 22

SUBJ3 14 6 20 11 9 20

Total 32 31 63 39 28 57

C = crushed cups, D = dropped cups, T = total faults.

Fig. 16. Cups per minute transported during untrained (U) and trained (T)
conditions.
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proposed control strategy was evaluated in terms of sta-
bility and compared to non-admittance based EMG-driven
musculoskeletal modelling control in terms of performance,
robustness and intuitiveness. Therefore, this study provides
a-proof-of-concept control framework that is subject-specific
and that can account, to some extent, for external forces thus
readjusting control commands sent to the prosthesis.

Results showed the ability of natural control for hand open-
close movement in both control strategies tested. Moreover,
during admittance based control, the external forces arising
from interaction with the environment were taken into account
and the control strategy readjusted prosthetic commands to
enable finer grasp force control when compared to non-
admittance based control. This shows the possibility for further
refinement of the admittance and friction models employed in
this work for better future results.

B. Stability and system identification results

The results obtained for the stability range provide a theo-
retical result of the ez-width for different configurations of the
admittance parameters. In general, the ez-widths obtained are
not uniform which does not provide clear view of the stability
ranges. This means that if the ranges for ke and be are further
increased to what is shown in Fig. 9 similar encirclements
can be seen. Such shape of the ez-widths obtained is due
to the delay in the dynamics of the prosthesis, where higher
delay would make the system less stable, apart from making
it less intuitive for the subject. The unclear stability ranges
can also be explained by the non-linear behaviour of the
prosthesis. Since the analyses presented in this paper assume
the linearity of the identified prosthesis dynamics, the stability
results should be taken as an approximation of the stability
boundaries of the real non-linear dynamics. Moreover, post-
force sensor dynamics were not analysed in this work. The
knowledge of such dynamics could also help to gain insight
on the true stable regions of the system. Nevertheless, the ez-
widths obtained for the different parameters complied with
the stability rules. Higher damping and mass contributed to
increased stability ranges when compared in the same range
of ke and be. This is specially noticeable looking at Fig. 9(b)
and 9(c).

The imprecise theoretical stability regions lead to different
admittance configurations during experimental tasks. The re-
alistic case where a small mass of the finger is considered
resulted in very unstable behaviour during experimental tasks,
regardless of the stiffness of the objects grasped. This complies
with the known difficulties of admittance control in rendering
low inertias, i.e. for a small inertia, a minimal force would
cause a high sudden acceleration. [21]. The spring used in the
experiments was experimentally chosen for a specific, non-
realistic admittance model parameter configuration (mv = 4
kg, bv = 7 Nms/rad). However, during experimental tasks,
several parameters were tried by discussion with each subject
where each of them reported different preferences. SUBJ1 and
SUBJ3 reported a preference of mv = 2 kg, bv = 4 Nms/rad,
while SUBJ2 reported a preference for mv = 4 kg, bv = 10
Nms/rad. SUBJ1 and SUBJ3 preferred faster performance over

additional stability, while SUBJ2 opted for additional stability
over faster performance. Subject performance preferences in-
fluenced the results obtained during the experimental tasks, as
discussed later. This highlights the fact that the admittance
model needs to be adjusted to subject preferences and/or
physical abilities, such as force generation. Nevertheless, as
stated above, the stability boundaries provided are theoretical
and the real stability ranges may be different from the ones
reported. This means that if an object stiffness is theoretically
passive, this case could not be the same during real object
grasping, or the vice-versa. However, an analytical stability
assessment could yield finer results rather than the numerical
approach used in this work.

Additionally, the sampling rate of the whole system plays
an important role during experimental conditions. The control
framework was implemented in different platforms, i.e., the
EMG-driven MS-model, admittance controller and Michelan-
gelo hand control interface operated in parallel in different
platforms. Regarding the variance of the computational times
registered, the update rate of the admittance model is highly
variable on time. Reduced or varying update rates can directly
affect the performance and stability of the admittance model.
Therefore, if a more complex admittance model needs to be
implement in the future, the complexity of the overall system
communication framework should be simplified to work in one
platform.

C. Blind object task results

Regarding Fig. 11, it can be seen that the results ob-
tained by different subjects were comparable, disregarding
the force generating capabilities and admittance parameter
configuration of each individual. For MS+Adm+Fb control
it can be seen a proportional relationship between activation
and interaction force, and interaction force and displacement.
The difference between subjects’ curves for MS+Adm+Fb
can be explained by individual force generating capabilities
and admittance parameter configuration. Interestingly, SUBJ2
achieved a linear relationship between activation and spring
displacement. This could suggest that a proper admittance
tuning can lead to better muscle activation-interaction force
relationship. Although hardly noticeable in Fig. 11, there
was an intermittent oscillatory behaviour during MS+Adm+Fb
control when no activation was present (0% MVC). This
was due to a possible unstable interaction, where the balance
between predicted torque, friction and external torque did not
reach a steady state. However, due to the constant amplitude
of the oscillations it could be said that the interaction was
marginally stable. To counteract this effect, the Coulomb and
Stribeck force could be increased, although the subject would
have to overcome this higher force to move the prosthetic
hand. Moreover, the mass could be increased, although a
higher virtual mass would need of higher predicted torques
generated by the user to be accelerated. In this sense, SUBJ1
and SUBJ3 reported the preference of a lower virtual mass
value, while SUBJ2 opted for an increased virtual mass.

Furthermore, from Fig. 11 it can be interpreted that during
MS+Adm+Fb, when no activation was present, the prosthetic
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hand opened due to the interaction force with the spring,
while for MS+NoAdm this is not the case. The reason for
this is that the prosthesis itself is non-backdrivable. During
non-admittance control, this fact allows the user to relax
while the prosthetic hand holds the force reached. This may
seem as a benefit during object manipulation, as the user
is freed from maintaining the muscle contraction to hold
the prescribed force. However, when the force needs to be
increased, the user needs to activate the muscles from a resting
state up to the point where the control signal is higher than
the level corresponding of the current grasping force. This
is the reason why in Fig. 11(d)-(f) MS+NoAdm does not
show and increasing interaction force. In admittance based
control, this behaviour is avoided by the opposing force of
the environment accounted by the admittance model, where
the prosthetic hand opens automatically (according to the
dynamics of the admittance model and the object) when forces
are exerted on the force sensor embedded in the thumb.
Therefore, MS+Adm+Fb control frees the user from constant
visual and auditory monitoring of the grasp forces exerted on
the manipulated object. This can be beneficial for amputee,
where the absence of afferent feedback pathways invalidated
their internal model of the grasp forces for known objects.
Because of this fact, the benefit of admittance-based control
could be remarkable during adaptation phases to the prosthetic
device.

D. Force tracking tasks results

The force tracking task provided insight on the accuracy
and precision of the control strategies employed. By looking
at the force profiles in Fig. 12 it can be seen that MS+Adm+Fb
provided more accurate and precise results. This is further con-
firmed by the absolute error where the standard deviation of
mid forces is specially low. Moreover, looking at Fig. 13 it can
be seen that during MS+Adm+Fb the medians of all subjects
are almost exactly at reference force levels, which is not the
general case for MS+NoAdm. However, it is interesting to note
that SUBJ2 achieved better accuracy results for mid forces (10
N) during MS+NoAdm compared to MS+NoAdm and SUBJ3
achieved good results with MS+Adm+Fb also for mid forces.
The reason for this could be that, during MS+NoAdm, they
used Michelangelo hand’s non-backdrivable feature to slowly
increment the interaction force until 10 N were reached. An
example of such behaviour can be spotted in SUBJ1 too in Fig.
12(b) at 10 N in the forth period. However, regarding the whole
trial of MS+NoAdm, SUBJ1 opted for opening/closing the
hand on a trial-and-error fashion which lead to a bigger IQR at
10 N compared to the other subjects. Regarding this effect, the
higher force step from 10 N to 20 N and the sudden fall from
20 N to 5 N prevented subjects from increasing or decreasing
force in small steps and achieving such effect at low and high
forces. For high forces (20 N), the variance is maximal for
both control strategies, which is in line with the results of the
research community [31]. However, admittance-based control
registered a smaller variance than during non-admittance based
control, meaning MS+Adm+Fb was still more precise at high
interaction force reference values. The high variance in the

IQR (Fig. 13) of the high force was due to neighbouring force
reference values. From Fig. 12 it can be seen that the subject
anticipated to the next force reference level, which affected
the results in both control strategies. More interestingly, the
erratic behaviour during MS+NoAdm is in line with other
force tracking experiments results performed by the research
community [32]. As explained in the work of Dosen et al.
[32], when no kind of feedback is present, the user is not
aware of the control queues sent to the prosthetic hand, which
makes its control rather unpredictable. This way, a sudden
increase in the interaction force comes by surprise. In this
point, the user needs to open the hand to generate less grip
force which results on a sudden drop in the interaction force.
For finer force control, the user tends to slowly open the hand
to accomplish small force decrements which often lead to
excessing hand opening and losing contact with the object.
Such overall behaviour leads to a difficult control on force
increments and decrements. This behaviour lead to poorer R2

values during MS+NoAdm when compared to MS+Adm+Fb,
which shows that all subjects were better at following the
reference force line with MS+Adm+Fb. Overall, admittance-
based control outperformed non-admittance-based control in
terms of accuracy, precision and goodness of fit.

E. Functional results

During functional tasks, the validity of both control schemes
regarding ADLs was assessed. The limitations of MS+NoAdm
control explained above were more present during this exper-
imental tasks.

With respect to the results obtained for cup crushes, drops
and transported cups per minute (cpm), there are four general
conclusions: 1) subjects crushed and dropped more cups
during MS+NoAdm than MS+Adm+Fb, 2) subjects improved
their crush and drop results from untrained to trained condi-
tion, for both MS+Adm+Fb and MS+NoAdm, 3) in general,
subjects transported cups faster when trained, that is, cpm
results incremented for MS+Adm+Fb and MS+NoAdm and
4) subjects transported cups faster during MS+NoAdm, both
during untrained and trained conditions.

Regarding the first point more in detail, the subjects crushed
more cups with MS+NoAdm trying to reach a point for force
balance between prosthetic force and external force by opening
and closing their hand. The reason for this is that, during
MS+NoAdm, when the cup was already grasped, subjects
tended to relax the muscles hoping the prosthesis would keep
the force due to its non-backdrivability. This produced minimal
activations that the EMG-driven MS-model transformed into
minimal torques commanded to the prosthesis, which made
the hand vary its position rapidly thus losing contact with the
cup. The result was the same during force tracking task: due
to sudden prothesis position changes subjects did not manage
to increment and decrease the opening of the hand to reach
a safe balance. In MS+Adm+Fb, this effect is counteracted
during admittance control by virtual mass and damping and
specially friction model: minimal torques need to exceed stic-
tion forces (i.e. Coulomb friction forces) before they produce
any motion. From this, it can be said that the inclusion of a
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virtual friction model in the control framework was helpful
to control prosthetic motions produced by undesired torques
from minimal EMG. Overall, this suggests that MS+Adm+Fb
control is more robust than MS+NoAdm during functional
activities. Nevertheless, as commented above, the performance
of the MS+Adm+Fb can vary with increased object stiffness
which results in a less stable interaction.

Points two to four can be analysed together. To start with,
during MS+Adm+Fb, SUBJ2 and SUBJ3 improved their crush
and drop results from untrained to trained while achieving
higher cpm in trained condition. However, SUBJ1 achieved
the highest cpm scores, but did not improve its results as
significantly as SUBJ2 and SUBJ3 from untrained to trained.
Therefore, this suggests a trade-off between performance
speed, interaction accuracy (crushes and drops) and learning
patterns: interaction accuracy is limited by interaction speed,
and interaction speed improves through learning. Regard-
ing such trade-off, MS+Adm+Fb showed better results than
MS+NoAdm during untrained conditions and improved its
results in trained conditions (i.e. more than a half less crushes
and drops compared to untrained), which was not the case
for MS+NoAdm. In conclusion, this meant that MS+Adm+Fb
provided a more intuitive grasp force control and allowed for
quicker learning. However, due to the reduced sample size,
these results cannot be generalized and a more extensive study
should be done in the future.

It is also worth noting the difference in the configuration
of the admittance parameters across subjects. In theory, higher
virtual mass and damping would mean more stability, then less
crushes but lower cpm. Nevertheless, the cpm scores achieved
by SUBJ2 were comparable to the ones of SUBJ3, who opted
for admittance parameters that provided faster performance
over stability. Even more, during trained condition, SUBJ2 had
better cpm than SUBJ3 while having comparable total faults
(crushed+drops). This can suggest that a slower prosthetic
hand did not stop SUBJ2 from transporting cups faster than
SUBJ3. Besides providing a final conclusion, how different
admittance parameters affect overall performance must be
researched with different groups and configurations in future
work.

In conclusion, the results obtained during the functional
task are in line with our hypothesis: regarding the results of
untrained and trained conditions, subjects crushed and droped
less cups during MS+Adm+Fb than MS+NoAdm, which,
along with the overall opinion of the subjects, shows that
admittance-based control provided a more intuitive and safer
interface for grasp force control.

F. Computational performance results

The computational speed of the non-admittance-based con-
trol and the admittance-based control framework was the
same as the one reported in the results section, where the
added computational complexity of the admittance model does
not seem to have a big impact in the overall performance.
However, the whole system is very sensitive to the overall
running frequency. This means that if commands are received
from the Michelangelo hand at 100 Hz, there is a delay in

processing this information both from the MATLAB control
script and the joint torque computation on the MS model.
This could explain the high variance of the time taken to
generate prosthetic commands. The performance of the whole
framework could be increased if this was running in one lower
level control platform (e.g. C++).

G. Limitations

During experimental task, several issues were encountered.
The maximal force for closing movement of the index finger
predicted by the model was found to be lower than measured
values registered by the research community, which are in
the range of 50-60 N [33]–[35]. The maximal external force
the prosthetic hand can register is 74 N, therefore, for stable
interaction, the maximal external force can never be higher
than the maximal predicted torque during maximal muscle
activation. To solve this problem, the predicted torque was
artificially increased by a gain to match normal index finger
force values. Furthermore, the range of the external force was
decreased until a comfortable balance was reached, i.e. if a
maximal activation (100% of MVC) meant a predicted force
of 60 N, the maximal external force was lowered to 30 N to
comply with more achievable values of MVC levels employed
during experimental tasks. Note that this is equivalent to
artificially reducing the stiffness of the spring to almost half
of it, because for the same displacement, the registered force
is a percentage of the maximum force the spring can deliver.
Considering this fact, the spring used in the experiments would
be within the stable regions of Fig. 9(c).

Furthermore, the Michelangelo hand device available for
experimentation had two problematic behaviours that limited
the performance of the control strategy. First, the prosthetic
hand would return to a programmed ’natural position’ if the
open/close position of the hand was more than 50%. This
was programmatically solved although such behaviour kept
sporadically happening. Secondly, when the prosthetic hand
open/closed while pronating or supinating, for forces higher
than 11% of the maximal force the rotation of the hand was
blocked. This prevented from using simultaneous control of
both DOFs.

Lastly, for the calibration of the embedded force sensor on
the Michelangelo hand, a 1 DOF load cell was used. Due
to the specific location and orientation of the embedded force
sensor, it was challenging to position the load cell such that the
force was measured in only one component. If more accurate
calibration is intended, the use of a force/torque load cell is
recommended to calculate force components in more than 1
DOF.

H. Future work

Apart from the already mentioned recommendations, several
points should be considered regarding future work.

1) Improvement of admittance model: The admittance
model could be improved in many ways. The simple model
used in this paper works as a proof-of-concept. For future
work, it could be interesting to use the real equations of motion
of the index finger. Note that the Michelangelo hand does
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not allow for finger phalanx flexion, which is worth to take
into account when driving the real prosthesis. Furthermore,
human tendons of finger flexors and extensor cross several
joints thus reducing the mass and inertia of the finger. This
allows for fine and rapid movements. This way, the dynamics
of the fingers are mainly controlled by damping and stiffness
values [36]. Another point to take into account is the effect
of gravity. Depending on the dynamics of the prosthetic hand
and its weight, it could be interesting to compensate the torque
generated by the gravity on the prosthetic fingers for finer
movements.

Furthermore, the parameters of the admittance model should
be chosen regarding stability but also the preferences of the
subject. Regarding this fact, it could be interesting to find ways
of fine-tuning the admittance for each subject given specific
physiological variables and stability boundaries. Moreover,
this could lead to a variable admittance controller, where
admittance parameters are adjusted in time given the task at
hand and the intention of the user, the same way as humans
regulate limb dynamics for safe interaction [36]. For example,
the virtual damping could vary in time: with high damping,
large muscle activation and long time are required by the user,
but high accuracy movements are performed instead; with
low damping, smaller muscle activations and short time are
required by the user, although less accurate prosthetic motion
is achieved. This could help to find a better trade-off between
contact stability and faster performance during free movement
in comparison with fixed admittance parameter values.

2) Admittance for 2 DOFs: In this work admittance was
implemented only in 1 DOF, i.e. hand open/close. However,
the pronation and supination of the hand affect the way we
hold objects and the muscles involved in it. To account for how
external forces accelerate the pronation and supination of the
wrist, an adequate admittance model that takes into account
this forces should be implemented. For this specific example,
the dynamics of the Michelangelo for pronating and supinating
should be identified too. However, in robotic devices with
multiple DOFs, energetic coupling between non-linear DOFs
could result in instability effects which are not present in
single-DOF stability analyses [21].

3) Investigate prosthesis dynamics: To further complete the
identification of prosthesis dynamics, it would be interesting to
investigate the non-linear behaviour of the Michelangelo hand
by a more profound analysis. This way, finer stability regions
could be found. Moreover, post-sensor dynamics could also
help to elucidate stable performance of the prosthetic device.

4) Inclusion of afferent feedback: Regarding the way hu-
mans control their movements, the inclusion of afferent feed-
back could complete and complement the current admittance-
based control framework. The inclusion of afferent feedback
pathways from muscles spindles and Golgi tendon organs in
the proposed control strategy could be done in two ports: 1) in
the admittance model and/or 2) in the NMS model. In the first
case, the output virtual velocity and position could be used as
input to a feedback block containing the dynamics of muscle
spindles. In the second case, the MS model could be enhanced
to include the dynamics of muscle spindles and Golgi tendon
organs. In such scheme, either virtual or measured velocity

and position could be feed-backed to muscle spindle dynamics
while the output force of the MS could be feed-backed through
the dynamics of the Golgi tendon organs. This would place
most of the control in the side of the prosthetic controller.
Therefore, this scheme could be coupled to a haptic feedback
framework that informs the user of interaction parameters, i.e.
interaction force, limb position etc.

I. Considerations for framework generalization

The identified dynamics, stability assessment and admit-
tance model were found and tuned for the Michelangelo hand
by Ottobock. Nevertheless, the same process can be followed
for particular hand dynamics in the likes of [37], where
the specific dynamics of the prosthetic hand are explicitly
modelled and parameters are found by system identification
techniques. This way, this work provides a possible generalised
control framework, that can be extended to other prosthetic
models which could even include finger phalanx motion. In
this, the EMG-driven MS-modelling can predict torques based
on subject-specific parameters that can be used in conjunction
with an admittance model suitable for specific prosthetic hand
dynamics that accounts for external forces. Note that and
embedded or couple force sensor is needed for this framework,
or force estimation through motor current such as in [38].

V. CONCLUSION

In this work, a subject-specific EMG-driven musculoskeletal
model coupled to an admittance and friction model that
captures, to some extent, the natural grasp dynamics was used
to control a prosthetic hand. The proposed control strategy
accounted for external forces arising from the interaction with
the environment. This provided an intuitive control framework
that closer matches human natural control by giving the user
the ability to control the force exerted on the environment. The
framework was shown to be more accurate and precise than
non-admittance-based EMG-driven MS modelling controlled
prosthetic hand. It also shows the opportunities for exploiting
the benefits of both model-based control and admittance
control to work towards a better bio-mimetic control.
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Appendix A

EMG-driven musculoskeletal model
description, scaling and calibration

A.1 Model description

FIGURE A.1: OpenSim model
used in this work.

The generic OpenSim model used in this work was a
full body biomechanical model. For the use in this
work, the model was reduced to the right arm mus-
cles described in Table I in Chapter 2. The model was
restricted to only allow pronation-supination and in-
dex finger flexion-extension movements. The MTUs
(under ’Muscles’ in the ’Navigator’ view in Open-
Sim) implied in index finger flexion-extension where:
extensor digitorum communis indices (EDCI), exten-
sor indicisproprius (EIP), flexor digitorum sublimis in-
dices (FDSI), flexor digitorum profundus indices (FDPI)
and flexor digitorum profundus (FDPM). Therefore,
the joints used in the model where the wrist and the
metacarpophalangeal (MCP) joint of the index finger.
The rest of arm joints, i.e. elbow, shoulder and the MCP
joints of the rest of the fingers were welded. The re-
sulting torque predicted by the MTUs of finger flexion-
extension was used for prosthetic hand open and clos-
ing movements.

Two important processes to accomplish a subject-specific EMG-driven musculoskele-
tal model are: 1) model scaling and 2) model calibration. Although these two process are
briefly described in Chapter 2, a more profound explanation of both processes is given in
this appendix. Note that the explanations given are according to OpenSim 3.3, where the
name and placement of the tabs and tags can vary from version to version.

A.2 Model Scaling

Model scaling consists on scaling a generic OpenSim model to the anthopometric size
of the subjects. Because the model used in this work comprised of the right arm, only
subject’s right arm was measured to scale the generic model.

The anatomical position of the shoulder joint, elbow, wrist, MCP joint of the middle
finger and index finger length were considered to scale the model. For this, the first step
is to mark the measuring points in the generic model of OpenSim. This can be done by
going to the ’Navigator’ view, then ’Markers’, right click ’Add new marker’. The markers
are place in the anatomical landmarks described before. Because we will measure the
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anatomical distance from one landmark to another, it is important to put all the markers
in the same reference coordinates. In the model used in this work, all landmarks were set
to the reference coordinates of the body ’ground’. This can be set by clicking the marker
and going to ’name of marker-Properties’ and setting the ’body’ property to ’ground’. The
positions of the each marker should appear in the ’position’ tag in the properties of the
marker. The positions of each marker are written down for posterior computation of the
distances between markers. The distance between the markers is the length of each body
segment described above. Fig. A.2 shows the placement of the markers in the generic
model.

FIGURE A.2: Position of anatom-
ical landmarks marked with pink
markers. Note the marker in the

wrist.

Afterwards and by using the placement of the mark-
ers in the generic model as reference, the distances be-
tween the anatomical positions of the shoulder joint,
elbow, wrist, MCP joint of the middle finger and in-
dex finger length are taken for the subject. The generic
model will be scaled by computing the factor between
the segment lengths of the generic OpenSim model and
the segment lengths of the subject. This can be done
in the custom created Matlab function ’computeScaling-
Factors.m’. This function takes as input the position of
each marker and the length of the segments of the sub-
jects in array form. The values are input manually and
the output is the factor for each segment. Note that the
factor computed for the segment between the wrist and
the middle finger MCP landmarks (i.e. the metacarpal
bones) is applied to the metacarpal bones of the rest
of the fingers. This case is the same for the length of
the index finger: the rest of the fingers are scales with
the same factor. Therefore, the output of the function
give the factors to scale: the humerus, radius and ulna,
metacarpal bones and phalanxes.

Finally, the scaling of the model is performed by going to the tab ’Tool’, the ’Scale
Model’, ’Scale Factors’, select the body part(s) we want to scale, and press ’Use Manual
Scales’ to enter the scaling factor. Click ’Run’ and the new scaled model will appear in
the same window. The scaled model is saved with a different name from the original
containing subjects name or reference.

A.3 EMG calibration

First, EMG was calibrated for each subject by measuring the maximal EMG and baseline
signal across all 8 electrodes channels. Remember that the 8 electrodes have to be cor-
rectly placed according to the EMG positions shown in Table I, Chapter 2. This means
that each channels will always correspond to the same muscle. EMG calibration needs to
be done each time the prosthesis is used or the musculoskeletal model is calibrated.

For the calibration, the subject follows a sequence of postures where he/she has to
try to achieve maximal force, or Maximal Voluntary Contraction (MVC). The sequence
of movements is as follows: wrist flexion, wrist extension, wrist pronation, wrist supina-
tion, ulnar deviation, radial deviation, open, close and rest (no movement). The subject
is seated in a chair and he/she has to perform the movement against two clamp bars
mounted in the table. For the closing exercise the subject is given a non-breakable ob-
jects to grasp, such as hard foam. The subject is given visual feedback and instruction
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by plotting the activity of each EMG channel in a simple GUI (Graphical User Interface).
The GUI and the processing of the EMG is done in the function ’emgCEINMSCalibra-
tion.m’. Once the sequence of movements is finished, the function will take the maximal
value and baseline value registered through each channel. The maximal value for each
channel is computed across all movements while the baseline is computed only from the
’rest’ phase. The output values are stored in a 8x2 matrix in text form containing MVC
values and baselines for each of the 8 electrodes. At the end, the GUI asks for a file name
to save the text matrix, which could be named as ’subject name_date.txt’ (without the txt
extension).

To normalize the EMG, during any running program to control the Michelangelo
hand, the incoming EMG values must be: baseline subtracted and divided by the MVC
values before any other processing is made. For this, the txt containing the baseline and
maximum MVC levels of each channels needs to be read at the beginning of any control
program as shown in Listing A.1.

LISTING A.1: Code to open a txt calibration file for 8 channels

1 %% Open calibration file. Paste this wherever you need to open the

calibration file

2 if ~exist('filename','var')

3 filename = uigetfile('*.*');

4 end

5 formatSpec = ['%6.2f %6.2f\n%6.2f %6.2f\n%6.2f %6.2f\n%6.2f %6.2f\n%6.2f

%6.2f\n%6.2f %6.2f\n%6.2f %6.2f\n%6.2f %6.2f\n'];

6
7 fid = fopen(filename);

8 data = textscan(fid,formatSpec);

9 fclose(fid);

10 calibration = cell2mat(data);

11 calibration = reshape(calibration,[2,8]);%results in 3 (mvc, rest) x

NumberOfChannels (which is 8)

12 clear data;

A.4 Model calibration

Overview

The calibration of the EMG-driven musculoskeletal model implies following predefined
motions of the prosthetic hand. This is, the prosthesis is programmed to follow certain
path and the subject has to mimic this path.

More specifically, model calibration establishes the relationship between MVC level
(stracted from normalized EMG), torque production and prosthetic hand position. That
is, certain MVC level produces certain torque according to MTU properties at certain
muscle position. The position of the prosthetic hand is then an estimation of the position
of the phantom limb. The velocity input given to the prosthetic hand to perform the pre-
defined movements is taken as an approximation of the torque ’produced’. This torque
is the experimental torque τexp. For each DOF to be calibrated, a different calibration
experiment has to be done according to the motion of the DOF to calibrate: e.g. if hand
open-close needs to be calibrated, the prosthesis is commanded to open and close; if wrist
pronation-supination needs to be calibrated, the prosthesis is commanded to pronate and
supinate.
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FIGURE A.3: Process of data recording for model calibration

Calibration data recording process

First of all, Fig. A.3 provides a simple overview of the calibration data recording pro-
cess, the Matlab functions involved and the output files created by of each of them. The
explanations following these lines are made according to that scheme.

For the calibration of the open-close movement, the function ’modelCalibrationOpen-
Close40MVC.m’ is used, while ’modelCalibrationProSup40MVC.m’ is used for pronation-
supination calibration. In this program, the prosthetic hand is commanded to open and
close at a constant speed. This constant speed is an approximation of τexp. A GUI is pre-
sented to the subject were he/she is asked to match 40% of MVC level marked by a read
line in the GUI plot. The constant speed is set to 40% of the maximum velocity that can
be commanded to the prosthesis. Therefore, a 40% MVC level would correspond to 40%
of the maximum prosthesis open-close velocity, which gives an approximation of τexp.
Hence, a 40% MVC level corresponds to 40% of torque production. The ratio of 40% was
found to be a good balance between the effort the subject has to make to reach 40% of
MVC and the constant speed commanded to the prosthetic hand.

FIGURE A.4: Calibration GUI

During the task, the subject needs to mimic the movement of the prosthetic hand for
30 seconds. However, it is hard to maintain certain MVC level during the whole range of
the open-close movement. That is why the subject is asked to reach the open or the close
position as fast as possible and maintaining the contraction level at the extremes of the
motion range. That is, if the prosthesis is about to close, the subject suddenly fully closes
his/her hand and maintain the MVC level at fully closed hand. For this, the subject
is given a visual queue in the GUI: a green queue tells the user to fully open, while a
green queue tells the user to fully close. The timing on when to fire the queues was
experimentally chosen. This is because activation precedes torque production, that is
why the visual queue to fully open or close is given just before any of those movements
happen. This takes into account reaction time to visual queue and movement production.

Furthermore, because the position of the aperture of the hand is given in values from
0 to 100 % (100% means fully open), this range needs to be transformed into radians
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for a realistic measure of the aperture which makes sense with the aperture range in the
musculoskeletal model. That is, the aperture range in the musculoskeletal model and
the prosthetic hand needs to be coherent. For this, the incoming value of the aperture
of the hand is transformed to the aperture range of given in the musculoskeletal model,
which is between -1.221730476396 (fully open) and 1.221730476396 radians (fully closed).
The transformation is done as in A.1, where ’real aperture’ is the aperture values of the
prosthesis between 0 and 100%.

aperture rads = (−real aperture ∗ ((2 ∗ 1.221730476396)/100)) + 1.221730476396 (A.1)

In the same lines, if pronation-supination is desired, the incoming values of the Michelan-
gelo need to be changed to radians. For this, the pronation-supination of the Michelan-
gelo is limited to -90 to 90 degrees. The pronation-supination values registered by the
Michelangelo are given in the range to [-100%, 100%]. Then, the range that corresponds
to -90 to 90 degrees is [-56.25%, 56.25%]. Therefore, the formula to convert percentage to
radians is A.2.

rotation rads = ((real rotation− (−56.25))/(56.25− (−56.25)))
(1.57− (−1.57)) + (−1.57)

(A.2)

During the calibration, normalized EMG, position and τexp (approximation by input
constant speed) are recorded at 100 Hz. After the calibration experiment is completed, the
arrays are synchronized by interpolation; that is, an ideal time vector is used to interpo-
late the samples of each array. Then, the program plots the result of the synchronization:
the resulting EMG, τexp and position are plotted together. Here, the researcher needs to
assess if the calibration was good enough by judging if the EMG indeed preceded τexp (i.e.
the constant velocity commanded to the hand). Furthermore, the EMG needs to precede
the position where the prosthetic hand started to change from open to close or vice-versa.
An example is provided in Fig. A.5. The calibration lasts 30 seconds to have enough time
to judge which were the best intervals following the reasoning explained. The researcher
directly selects two periods from the plot by clicking the two points defining each period
(the Matlab function ’ginput’ is used for this). Then, the program automatically cuts and
saves the resulting EMG, position and τexp arrays in a .mat file named ’aperturedate’ un-
der an automatically created folder (in current Matlab path) named ’SubjectCalibration’.

FIGURE A.5: Example of calibration for hand open-close.
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Further details during calibration

During the calibration experiment, a 40% MVC level needs to be. However, not all mus-
cles implied in opening and closing will reach 40% MVC as the have different contribu-
tions. For this reason, only 2 EMG channels are plotted during the calibration. These
2 channels are selected to be representative enough of when the subject is opening and
closing. As this may vary between subjects, the function ’emgChecker.m’ can help on
deciding which channels may be appropriate. This function program just plots all chan-
nels and the same 40% MVC lines as during the calibration, but no data array is recorded
during this check. The subject is asked to try to reach the MVC level and the researcher
decides which channels are more representative of each action. At the end of the simu-
lation, a command line prompt asks to enter which two channels are chosen for opening
and closing, which are saved in a .mat file under the name ’channelsOpenClose.mat’.
This process will help to have a clearer vision in the moment to assess which intervals to
chose during the calibration process.

Subject-specific parameter adjustment procedure

The subject-specific EMG-driven musculoskeletal model is calibrated for each subject by
fine tuning parameters that vary non-linearly across subjects. These parameters include:
muscle twitch activation/deactivation time constants, EMG to-activation non-linearity
factor, muscle optimal fiber length, tendon slack length, and muscle maximal isometric
force [29]. Initial parameters values are adjusted as part of a least-squares optimization
procedure, so that the error between τexp and τpred (torque predicted by the musculoskele-
tal model) is minimized. For this procedure, there is a specific C++ calibration program:
’calibrate.exe’, which opens though the command line in Microsoft Power Shell. As ex-
plained in Chapter 2, section II-B, the calibration takes as input the EMG, τexp and po-
sition angles of the prosthesis that were obtained during the offline data recording ex-
plained in appendix section A.4. The calibration program takes its input in the form of
.sto or .mot file extension, similar to a formatted .txt file. To convert the .mat array of
EMG, τexp and aperture angles obtained during data recording session, the custom func-
tion ’stoGenerator.m’ is used. Here, the program asks the researcher to select the .mat file
he/she wants to convert. The researcher shall navigate to folder ’SubjectCalibration’ to
find the desired .mat folder. The output of the program are 3 .sto files: emgFilt.sto, id.sto
and ik.sto. The last two contain τexp and aperture angles, respectively. The 3 .sto files
are automatically saved in one folder with subject’s name and date and in the path from
which the calibration program will read the files.

The calibration comprises of 3 steps: spline calculation, pre-scaling and parameter
calibration. These 3 steps need different inputs for each subject. Each input file needs
to be placed correctly in 3 different xml files: subjectAnnealing.xml (see Fig. A.7), exe-
cutionRT.xml and executionIK.xml. These files will be mentioned in the following lines
and special attention must be taken to what things need to be changed for each subject. An
overview of the process is shown in Fig. A.6 and a complete explanation on how each
component is related to each other can be found in [31].
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FIGURE A.6: Model calibration process and files involved on each step.

Spline computation

During spline calculation, the moment arms rmt and the length lmt of each MTU are cal-
culated out of the aperture angles and the output are the coefficients of the spline. This
process needs of: 1) an uncalibrated, non-scaled generic OpenSim model (already con-
taining only the MTUs of interest); 2) the uncalibrated, subject-scaled OpenSim model.
This two models are loaded in the subjectAnnealing.xml file. Model number 1) needs
to be placed under the <SubjectXML> tag; model number 2) needs to be placed under
<OSimfile> tag. Then, under the <NameOfSubject> tag a name for the output spline co-
efficients must be given, in the likes of ’subject name + date’. Check that in the example
provided in Fig. A.7, the DOF that will be calibrated is the one under <dofToCalibrate>
tag. In this case, the DOF to calibrate is index finger flexion-extension (which is mapped
to prosthetic hand open-close), where the specific name of the DOF is ’2mcp_flexion’.
The naming and available DOFs are specified in the OpenSim file under the ’Coordi-
nates’ tab. Afterwards, the name given to the computed spline coefficients needs to be
loaded in the executionRT.xml file under the tag <NameOfSubject> (see Fig. A.8), and the
correct scaled model needs to be loaded in executionIK.xml under the tag <OsimFile>.
The model must be the same as the one in line 20 in subjectAnnealing.xml (Fig. A.7).
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FIGURE A.7: Example code of the subjectAnnealing.xml file

FIGURE A.8: Example code of the executionRT.xml file

Pre-scaling

During pre-scaling, the initial guesses for subject-specific parameter for the parameter
adjustment procedure are found. The pre-scaling takes as input the same two models as
in spline computation. The output is an xml file called ’subjectMTUCalibrated.xml’.
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Parameter adjustment

In this process, subject-specific parameters are found. The input for this are: subjectM-
TUCalibrated.xml, emgFilt.sto, id.sto and ik.sto, which are all contained in a file with the
name of the subject (e.g. in Fig. A.7 this would be ’subjectapertureNovember14’). Such
folder needs to manually be loaded under the tag <trialName>. The <Dof> under <dof-
CalibrationSequence> tags marks which DOF(s) will be calibrated. If more than one DOF
needs to be calibrated, this should be specified as in line 29 and another specific calibra-
tion file should be another in a subsequent <trial> tag. The output of this process is a file
named ’subjectCalibrated.xml’ which contains the scaled and calibrated subject-specific
musculoskeletal model. One may change the name of this file by substituting ’subject’ by
subject’s name of reference and save the file properly for future usage.

How to start the calibration

The calibration program (calibration.exe) is started on Microsoft PowerShell, as shown
in Fig. A.9. The result of the calibration, plotting the fitted polynomial to τexp, is shown
in a GUI (see Fig. A.10). The researcher may judge the result of the calibration visually
and that the calibration algorithm could actually converge to one result. The approximate
calibration for 1 DOF should be less than 1 hour.

FIGURE A.9: Example of how to start the calibration program. Note that
calibration.exe should be opened from the correct path. Furthermore, the
-s tag define the simulated annealing file, -e the execution file and -g open

the GUI. Type -h for further help.
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FIGURE A.10: An example of the result of calibration of the index finger
flexion-extension.

General notes

The rest of the parameters that were not mentioned in the previous lines shall not be
modified. An important note is that the <use> tag marks which of the 3 calibration pro-
cess will be performed. For example, if we had already computed the splines, the <use>
tag under <computeSpline> should be set to <false>. Another note is that the <cropTi-
meMaxTime> defines the length of the .sto files loaded in the <triaName> folder. This
number is given in the command line by the ’stoFileGenerator.m’ after .sto files are cre-
ated. Otherwise, it can be found in the time array of any of the .sto files. However, the
value of <cropTimeMax> should be at least 0.05 seconds less than the length of the .sto
files. This is because the program shifts the EMG to make sure it precedes τexp.
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Appendix B

System communication framework

The communication between the EMG-driven musculoskeletal model (referred as CEINMS
in the following lines for convenience), control program and prosthesis is explained in
this appendix. Furthermore, the program used to control the prosthetic hand, both via
admittance and non-admittance, is explained.

B.1 Framework overview

The framework, shown in Fig. B.1, consists of three parts: CEINMS model, Matlab pro-
cessing and high-level control program and the graphical user interface (GUI) of the
Michelangelo hand. The connection between the three parts is made possible via User
Datagram Protocol (UDP) connection. The communication pipeline works as follows:

1. The Michelangelo GUI sends EMG and prosthetic angle in percentage values to the
high-level control program implemented in Matlab.

2. Matlab sends EMG and prosthetic angles in radians to the CEINMS plugin.

3. The CEINMS plugin computes join torques based on EMG and prosthetic angles
and sends this torque to Maltab.

4. Matlab high-level control program computes commands and sends them to the
low-level controller of the Michelangelo hand via Michelangelo’s GUI.

In the next sections, each of the components will be explained. This work did not
develop the CEINMS plugin and therefore cannot provide the insights of the program;
however, it will be important to explain how the UDP connection between CEINMS and
MATLAB is made.

FIGURE B.1: Overview of the communication framework between the
main 3 components.
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B.2 Michelangelo hand interface

A scheme of the interface is shown in Fig. B.2. The main components are the electrodes,
the AxonMaster central control unit, the Michelangelo prosthetic hand and the PC to
which Ottobock’s bluetooth dongle is connected. The AxonMaster has implemented
lower-level controller by Ottobock, which is not accessible. Therefore, Matlab is used
as a higher-level controller by sending and receiving data packets by a UDP protocol
from and to the prosthesis. More specifically, the AxonMaster recieves processed EMG
signals from the electrodes and sensor values derived from sensors integrated within the
Michelangelo. The AxonMaster processes the data and sends them to the PC as data-
grams for each sample. The PC reads the datagrams within the Matlab environment and
processes them into actuation commands that are sent to prosthesis via the AxonMaster.

FIGURE B.2: Communication setup between the Michelangelo hand and
high-level control in Matlab.

Datagram packages

Bluetooth datagram packages is the way the AxonMaster shares information with the
PC. The AxonMaster samples the values of the sensors within the Michelangelo hand
(position, force, etc.) and root mean square (RMS) values obtained from the raw EMG
from the electrodes. For each sample, a datagram containing 35 bytes is send. Each of
the bytes carries different information. Two bytes are used for each RMS, which for 8
channels makes a total of 16 bytes. The bytes corresponding to the RMS values need to
be converted into uint16 datatype after sending and receiving the datagram. The rest of
the bytes carry sensor values and other control variables’ information, which need to be
converted into bytes in either int8 or uint8.

Sensor information

The Michelangelo hand has several embedded sensors, such as position sensors for each
servomotor and a force sensor in the base of the thumb that measures the closing force.
The information of such sensors comes in percentage values, i.e., a fully opened hand
will give an aperture angle of 100% and fully closed 0% aperture. The same holds for the
force sensor, which gives maximum closing force of 100%. Because the measured force is
not in physical units (Newtons), the embedded force sensor was calibrated with a load
cell to gain insight of the real force range in Newtons (see Appendix E).
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Michelangelo GUI

The Michelangelo GUI serves as a high-level control graphical interface itself and a medi-
ator that allows high-level control from other platforms, such as Matlab or Python based
control programs. This way, it receives bluetooth datagrams from the AxonMaster and
allows to retrieve the datagrams for further usage in the custom control program. In this
work, the datagrams are retrieved for processing in Matlab via UDP connection with the
Michelangelo GUI. The usage and how to install all Michelangelo hand related installa-
tion files etc. is provided in the bitbucket repository CTW-BW/NMSTool/MMInterface/source
code. Further usage of this GUI is explained in Appendix C.

FIGURE B.3: Interface of Michelangelo GUI

B.3 Processing in Matlab

To retrieve datagram packages from the Michelangelo GUI in Matlab a UDP object is
used. The datagrams are collected in an input buffer from which data can be read by
the use of fread Matlab command. The DatagramTerminateMode property is disabled to
continuously receive datagrams. The amount of datagrams received on each iteration
depends on the number of samples chosen to be read (i.e. a window of samples). This is
done to save processing time of the fread function. The reading frequency of fread is one
of the bottlenecks of the whole framework. Because of this, a java-based UDP connection
was implement with the thought that it would accelerate the UDP connection, although
this method did not give better results. Furthermore, the received bytes are converted
into the correct data type values as explained in section Datagram packages.
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The next step in the pipeline is to generate appropriate commands based on the EMG
and sensor information read from the datagrams. EMG is normalized and sensor in-
formation is converted into its respective units (percentage values of position are trans-
formed into radians such as in A.1, Appendix A, and force values into Newtons such as
in E.1, Appendix E).

To compute joint torques from EMG and prosthesis position angles (as explained in
Chapter 2 section II-B), these are forwarded to the musculoskeletal model (i.e. CEINMS)
via a UDP-based communication plug-in. Two different UDP connections are created:
one for sending normalized EMG and another one to send aperture angles. Normalized
EMG from 8 electrodes and aperture angles in radians are sent to CEINMS by the use of
the fwrite function in Matlab by assigning the correct UDP object. In both cases we need
to declare that we are sending ’double’ formatted information via the UDP connection.
Note that when sending position we need to do this in array format, where 3 position
values are specified: hand aperture, hand rotation and elbow flexion. We do not use
elbow flexion in this work so is set to a value of zero. Furthermore, if we just want to
control 1 DOF, as in this work, we should set the ’rotation’ value always to zero. A code
example to send information to CEINMS is provided in Listing B.1.

LISTING B.1: Code snippet to sent prosthetic angles and EMG values to
CEINMS plug-in

1 %Send position to CEINMS

2 aperture = (−app.posMickey*((2*1.221730476396)/100)) + 1.221730476396;

3 rotation =((rotation − (−56.25)) / (56.25 − (−56.25)))* (1.57 − (−1.57)) +

(−1.57);%up to +−90
4
5 %Check if I want to control 2 dofs: open−close + pro−sup
6 if strcmp(oneORtwoDof,'2 DOF')

7 fwrite(udp_position,[rotation aperture 0],'double');%[rotation aperture

elbow_flexion]

8 else %1 dof

9 fwrite(udp_position,[0 aperture 0],'double');%[rotation aperture

elbow_flexion]

10 end

11
12 %Send normalized EMG to CEINMS

13 fwrite(udp_EMG,[emgNorm(1) emgNorm(2) emgNorm(3) emgNorm(4) emgNorm(5)

emgNorm(6) emgNorm(7) emgNorm(8)],'double');

Furthermore, another code snippet to create the necessary UDP connections of EMG and
position is given in Listing B.2.

LISTING B.2: Code snippet to create UDP objects

1 %% Create udp objects

2 function createCEINMSconnection()

3 %−−−−−−−−−−−−EMG−−−−
4 if ~exist('udp_EMG','var')

5 local_IP = '0.0.0.0';

6 EMG_port = 1233;

7 udp_EMG = udp(local_IP,EMG_port, 'LocalPort', EMG_port); %Must be on to

receive data.

8 udp_EMG.InputBufferSize = 1000000;
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9 udp_EMG.DatagramTerminateMode = 'off'; %Can receive more than 35 bytes

data at the same time

10 udp_EMG.ByteOrder = 'LittleEndian';

11 fopen(udp_EMG);

12 end

13 %−−−−−−−−−−−−Position−−−−
14 if ~exist('udp_position','var')

15 local_IP = '0.0.0.0';

16 position_port = 1234;

17 udp_position = udp(local_IP,position_port, 'LocalPort', position_port); %

Must be on to receive data.

18 udp_position.InputBufferSize = 100000;

19 udp_position.DatagramTerminateMode = 'off'; %Can receive more than 35

bytes data at the same time

20 udp_position.ByteOrder = 'LittleEndian';

21 fopen(udp_position);

22 end

23 end

Note that the receiving port of each variable in the CEINMS plug-in is static and will
always use the same port.

After sending normalized EMG and position values, CEINMS computes joint torques
for the specified DOF. Torque is mapped into velocity via the admittance model or by
direct, proportional mapping to velocity (i.e. non-admittance-based control). Velocity
commands are sent for each DOF of the Michelangelo via its specific UDP and the fwrite
command.
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Appendix C

Prosthesis Control In Matlab

Due to restricted access to the low-level controller from Ottobock, Matlab was used to
provide higher-level control of the prosthesis. A custom GUI was built for the control of
the Michelangelo hand with the two control strategies presented in this work: admittance
and non-admittance-based EMG-driven musculoskeletal modelling control. Therefore,
all the processing, admittance model, connection to CEINMS and (velocity) command
generation is implemented on this GUI.

C.1 Matlab GUI for prosthesis control: overview

During the development of this work, two versions of the GUI were created: one for
testing and one for experiments. The testing version was made prior to the experimental
one, which allowed to track the performance of the admittance coupled to the CEINMS
model. Moreover, this version of the app allows to use the admittance model without the
CEINMS model. Hence, the prosthetic hand can be controlled with conventional 2 chan-
nels and using admittance. However, this version is not as optimized as the one used in
the experiments and special attention must be taken with velocity normalization. Fur-
thermore, due to the amount of plotted information, the update frequency of the system
is low. Therefore, the GUI that should be used for experiments is the experimental one
presented after these lines.

The GUI was developed in Matlab under the App Designer environment, which pro-
vides a simple interface to create GUIs. This application can be saved as a Matlab add-on
or a stand-alone desktop program. If any modification should be made, the app must
be opened in Matlab by right click ’open’. This will open the app in the App Designer
environment, which provides visual design and code view. The app can also be executed
by pressing the ’run’ button. The code mentioned in previous appendices may be found
in the code view as implemented functions. It is of special interest the function ’eom’
which has the equation of motion of the pendulum. If any parameter or admittance equa-
tion needs to be changed, it should be within this function. This prevents from altering
the rest of the control code.

C.2 Description and steps for prosthesis control

In the following lines, as description of the app is given. More interestingly, it provides
the steps the researcher shall follow to control the prosthesis through the CEINMS model.

Main page: running an experiment

The main page provides intuitive guidelines to control the prosthesis. The functionalities
implemented and the steps to start prosthesis control are described below.
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FIGURE C.1

1. Choose an EMG calibration file
The first thing is to load subject-specific EMG .txt calibration file. By clicking the search
button a window of the current Matlab path will appear, where the desired EMG .txt file
should previously be allocated. The name of the file will appear in the small window.

If any experiment is intended to be recorded, it is advised to create an specific exper-
imentation session for the subject by entering subject’s name or reference in the ’Subject
name’ edit field and pressing ’Create’. This will create a folder containing all experimen-
tal variables and data recordings. The file system and data storage system is explained in
section C.4 in this appendix.

2. Choose control type

The GUI gives the option to control the prosthesis with admittance-based or non-
admittance-based EMG-driven musculoskeletal model control. In the GUI, the latter is
called ’Proportional’, just because velocity commands will be ’just proportional’ to the
torque (perhaps a better naming would have been direct control).

Furthermore, in this moment the researcher shall chose between 1 DOF or 2 DOF
control. By default, 1 DOF is active, which allow to control prosthetic hand opening and
closing. 2 DOF allows this, plus prosthetic pronation-supination. Note that a proper
calibration of the subject-specific CEINMS model for the 2 DOFs should have been pre-
viously made (refer to Appendix A).

3. Choose experiment

In case the researcher needs to perform the ’blind object’ or ’force tracking’ experi-
ment, the option should be chosen accordingly. This will change the shape of the plot
according to the experiment. If modifications in the shape of the reference line needs to
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be changed, this should be done in the ’generatePattern’ function included in the code
view. The control of the prosthesis is limited to the duration of each experiment: 120
seconds.

The option ’Free ctrl.’ gives the option of just controlling the prosthesis with no time
limitations. Then, this options should be selected to conduct functional tasks.

4. How to run an experiment

To control the prosthetic hand, first, a UDP connection with the Michelangelo hand
GUI and a UDP connection with the CEINMS model plug-in must be established, as
explained in Appendix B. The ’Connect’ button will create the UDP connection to the
Michelangelo and CEINMS model. Afterwards, the ’Start Experiment’ button will allow
control of the prosthesis. Some explicit steps need to be followed for successful connec-
tion of both UDPs and prosthesis control:

a) Connect to Michelangelo hand
To control the Michelangelo hand, the bluetooth dongle must be connected to the PC.
Then, press ’Connect’ in the Michelangelo GUI. A calibration file for the Michelangelo hand
must be loaded by pressing ’Load *.xml file’ in the ’Calibration’ zone of such GUI. Select
’MikeyRot_Calibration.xml’. Then, click ’Start Communication’.

b) Click ’Connect’ in the Matlab GUI
Once connect is pressed, the button will be disabled. In this point, the CEINMS model
must be started. The order of the steps is important because Matlab must retrieve the
unknown IP address and the connection ports of the CEINMS plug-in before trying to
connect to it.

c) Start the CEINMS model
In the same way as the calibration, the CEINMS model must be started from the com-
mand line in PowerShell as shown in Fig. C.2. It is important to note that each subject
has his/her own ’subjectCalibration.xml’ and this must be placed in the right path (i.e.
.\cfg\Arm\). After few seconds, the GUI of the real-time CEINMS model will open. In
this point, the ’Connect’ button of the Matlab GUI should be green indicating successful
connection to both the Michelangelo hand and to the real-time CEINMS-model.

FIGURE C.2: Starting CEINMS model.

d) Click ’Start Experiment’ in Maltab GUI
Once UDP connections are ready, press ’Start Experiment’. In should say ’waiting to Start
Dump’.

FIGURE C.3: Change of state of the ’Start Experiment’ button

e) Click ’Start Dump’ in Michelangelo GUI
The ’Start Dump’ button is the most important to start control of the prosthesis. By press-
ing this button, the streaming of datagram packages from the AxonMaster will start. In
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this moment, in the Matlab GUI, the ’waiting to start dump’ should change to ’Stop ex-
periment’ coloured in red.

FIGURE C.4: Change of state of the ’Start Experiment’ button to ’Stop ex-
periment’

f) Stopping an experiment
To stop the experiment, click ’Stop experiment’ red button in the Matlab GUI. This will
end the stream of data and will close all UDP connections. If another experiment needs
to be conducted, steps from b) to e) should be repeated.

C.3 Friction parameters

In this window, the different variables of the friction model can be changed. The plot
is used as a reference to see how each variable affects the friction profile. Note that the
damping value is included in this window to see how it affects the friction profile. The
value of the parameters is adjusted with the slider and for Coulomb, Stribeck and damp-
ing value, specific values can be added in the edit field next to the sliders. Note that the
friction model will only run in ’admittance’ mode. Values can be changed during a running
experiment to see the change in performance.

FIGURE C.5: Friction parameters window.

C.4 Admittance parameters

Different admittance parameters can be modified offline or during a running experiment
to see how the performance changes. Here, we can change gain of the predicted torque
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(τpred) by the CEINMS model and the sensitivity of the force sensor, where a gain of 1 will
take the whole range of the sensor (74 N). Specific gains values can be added in the edit
fields.

Furthermore, the maximum velocity values used to normalize velocity commands
both from admittance and non-admittance can be added here. These values are the max-
imum velocities for opening and closing. Each subject will generate different torques
and therefore will achieve higher or lower velocities. Therefore, these values should be
adjusted prior to any experiment by performing a quick trial of subject’s torque-velocity
generating capabilities. This can be done by running a free control experiment where the
subject is asked to perform maximal activation for closing for few seconds and the same
for closing. This way we can see which are the peak velocities for each movement. It
is also in this moment where subject preferences of admittance parameter values can be
adjusted. Note that by changing those parameters the maximum velocities will change
and normalization should be done according to those last maximum velocity values. This
procedure is not implemented in the GUI for pronation-supination, which is left as future
work.

On the other side, if normalizing velocities is not sufficient for smoother control, the
overall velocity gain can be adjusted through its slider. Lastly, the virtual mass of the
pendulum (mv) and length of the rod (lrod) can be adjusted in this screen

FIGURE C.6: Admittance parameters screen containing adjustable param-
eters of the control

File system

In this section, how to save experiment data and how this is stored is explained. First,
on the Main screen of the app there is a ’Save experiement’ button. This will save the ex-
periment at any moment, even during a running experiment. However, this last practice
must be avoided as much as possible, as it takes time for Matlab to process the saving
and this could generate additional delays. Furthermore, the experiment is saved every
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time we stop it through the ’Stop experiment’ button. This ensures to never miss any
data.

Furthermore, when the app is opened for the first time it will create a folder named
’Admittance Experiments Data’ in its current path, and every time is opened it will create
a folder with the date, e.g. November26. After creating a subject session in the Main page
of the app, this creates a folder for the subject with three subfolders: ’Blind Object’, ’Force
Tracking’ and ’Functional Task’ (this folder will contain any data recording during free
control). Here, each time data is saved a new .mat file with data and time is created in
the appropriate subfolder. See Fig. C.7 for an example.

FIGURE C.7: File system of the control app.

Each .mat file contains all the relevant variables for analysis in form of structure files.
The structure ’admParams’ contains the value of all parameters that were used on each
admittance control-based experiment, and ’frictionVariables’ the friction values. The con-
trol strategy used in each experiment is detailed under ’controlType’. In ’plotVariables’
we will find all relevant data: external forces (with and without applying any gain), pre-
dicted torques, virtual velocity, EMG data, etc. See Fig. C.7 for an example.
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Appendix D

Admittance Model Equations

In this appendix, the details on the equations of the dynamics of the admittance model
used in this work are provided. As explained in Chapter 2, the admittance model cap-
tures the biomechanics of the hand during interaction with the environment. The dynam-
ics of the hand are simplified to model the dynamics of the index finger with an external
opposing force. As shown in Fig. D.3, the index finger can modelled as a 1 DOF hanging
pendulum. That is, we do not consider finger adduction and abduction for this model.

The motion of the pendulum is ruled by its forward dynamics, which are obtained
from its equation of motion (EOM). The forward dynamics convert force into motion,
while inverse dynamics extract force from motion. We are interested in how the balance
between external forces and predicted forces by the musculoskeletal model move the
pendulum. Therefore, we chose to model the pendulum on its forward dynamic equa-
tions.

The considerations to resolve the dynamics of the pendulum are the followings:

• The interphalangeal joints are considered welded, the thumb is fixed and the pen-
dulum has only 1 DOF at the MCP joint.

• The rod of the pendulum is massless and is attached to a mass point.

• The external force is always perpendicular to the mass point.

• There is friction at the MCP joint. The friction model is the Stribeck friction model
as described in Chapter 2.

• There is no gravitational force acting on the pendulum. The reasons for this are
explained in Chapter 2.

• Due to the rotational nature of the pendulum, the physical variables are rotational
too.

• θ defines the angular position and its time derivative, ω, angular velocity.

The torques accelerating the pendulum are:

• The predicted torque from the model τpred

• An inertial torque due to the point mass. Virtual inertia Iv is governed by the virtual
mass mv in the point mass (for a pendulum Iv = mvlrod).

• The friction torque at the MCP joint always opposes the motion of the pendulum.

• An external torque τext opposes motion, where τext = Fextlrod

D.1 Friction model details

The Stribeck friction model is shown in Fig. D.1. The total friction of the Stribeck model
is usually represented on its linear form as in D.1, where, Ff is the total friction force, Fc is
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the Coulomb friction, Fvis(v) is the viscous friction dependent on velocity (i.e. damping
effect) and Fs is the Stribeck force, vs is the Stribeck velocity and δvs controls the decay of
the exponential. The sign function will determine the direction of the velocity and there-
fore the sign of Ff r.

FIGURE D.1: Stribeck friction model

Ff r = sgn(v)(Fc + (Fs − Fc)e(
|v|
vs )

δvs
) + Fvis(v) (D.1)

However, due to the rotational nature of the pendulum, we deal with rotational units
(i.e. torques, angular velocities, etc.). Therefore, a frictional torque must be opposing
the angular motion instead of a linear friction force. If we consider the pendulum to
be attached to a hinge joint, the area of contact is at a fixed distance R from the axis
of rotation. Then there is no need to calculate the contact area and there is no need to
consider that the friction force varies across the contact area.

On the other side, it could be interesting to separate the viscous friction from the
rest of the friction model. A viscous element dependant on velocity dissipates energy.
If we revise the passivity concept explained in Chapter 2, it is based on the amount of
energy flowing in the system. If there is dissipative element which subtracts energy, it
is interesting to see its effect on the passivity and the stability of the whole controlled
system. We can see if we can isolate Fvis(v) from the rest of the friction model if this is
energy passive. If it is passive, with and without Fvis(v), then no energy is generated and
we are safe isolating Fvis(v).

It is possible to demonstrate that the Stribeck friction model in D.1 is passive by check-
ing if it generates any power for a range of normalized velocities. That is, if we consider
the Stribeck friction model to be a power-conjugated system, where velocity is the input
and the output is force, there should be no power generated at any moment of time con-
sidering all the parameters to be constant. Then, we can compute the power generated
by multiplying the total output friction force Ff r by a range of normalized velocities. As
seen in Fig. D.2a, no power is generated, but rather it is extracted from the system, due to
the negative power values. However, this could be because the dissipative nature of the
viscous friction. Nevertheless, by setting Fvis(v) to zero we obtain the same conclusion:
the friction model is passive also when no viscous friction is applied (Fig. D.2b).
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(A) (B)

FIGURE D.2: Power profile of friction model with a) viscous friction b) no
viscous friction

The viscous friction Fvis is given by Fvis = σvisv, where σvis is the viscous coefficient.
Then we can consider σvis as the damping coefficient of our pendulum. In the reminder
of the appendix we call the damping coefficient bv, which is the virtual damping of the
(virtual) dynamics of the pendulum. Again, as we are dealing with rotational units, we
consider rotational damping and angular velocity, such that τvis = bvω.

D.2 Equations of Motion

After the some clarifications of the friction model used on the pendulum, the equations
of motion can be computed. Note that we separate the damping force from the friction
forces as explained above.

FIGURE D.3: Virtual index finger dynamics modelled as a pendulum.

The equations of motion for the presented pendulum are the followings, where we
omit the dependence of the variables on time for clarity:

τext = Fextlrod (D.2)

τext = τpred + Iv
dθ̇

dt
− bv

dθ

dt
− τf r(θ̇) (D.3)

Ivω̇ + bvω = τpred − τext − τf r(ω) (D.4)
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The last equation (D.4) represents the virtual dynamics Yv of the pendulum in time
domain.

Rearranging (D.4) we get the following ODE representing the rate of change for the
angular velocity of the pendulum, or angular acceleration:

dω̇

dt
=

τpred − τext − bvω− τf r(ω)

I
(D.5)

dω̇

dt
=

τ − bvω

I
(D.6)

By integrating (D.6) forward in time, the desired angular velocity ωd of the prosthe-
sis can be obtained. This can be done using Euler’s method of numerical integration
by following the general formula yn+1 = yn + h f (tn, yn), where h is the step size and
f (tn, yn) a function dependent on initial conditions. We can use the classic definition for
velocity, based on Euler’s method, and where ωdi is the initial condition and function f is
substituted by (D.6) in (D.7) and (D.8) .

ωdi+1 = ωdi + (
dω̇di

dt
)dt (D.7)

ωdi+1 = ωdi + (
τ − bvωdi

I
)dt (D.8)

The Laplace transform of (D.6) is as follows:

L {τ(t)} = T(s) (D.9)
L {ω(t)} = sΩ(s) (D.10)

T(s) = sIvΩ(s) + bvΩ(s) (D.11)

Yv =
Ω(s)
T(s)

=
1

Ivs + bv
(D.12)

The last equation (D.12) represents the virtual dynamics Yv of the pendulum model
in the frequency domain.

In the Matlab GUI presented in Appendix C, (D.8) is used to compute the desired or
reference angular velocities (ωd) that are used as input for the controller of the prosthetic
hand. Check the ’eom’ function in the code view of the app.

Finally, the virtual position θd can be obtained in the same way as ωd where θdi is the
initial condition:

θdi+1 = θdi + ωdi dt (D.13)

Anti-windup mechanism

All actuators have physical limitations: the prosthetic hand cannot be more opened or
more closed than what it physically can. For this same reason, the velocity reference ωd
can never command higher velocities that what the prosthesis drive can handle. For both
reasons, the prosthesis would infinitely open or close, which is not possible. To prevent
this, the virtual position θd is constrained to be always between the range of motion of the
prosthetic hand (see B.2). When θd is greater or smaller than the upper and lower bounds
of the range of motion of the prosthetic hand, ωd is set to zero. Because θd is normalized,
upper angular position bound is 1 and lower bound is 0.
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Appendix E

Michelangelo hand’s force sensor
calibration

E.1 Overview

Michelangelo hand’s embedded force sensor gives raw sensor values ranging from 0 to
100 %. As published by Ottobock, their prosthetic hand can achieve 70 N in palmar
grasp, approximately. However, experiments carried out by the research community
stated that it can deliver up to 78 ± 4 N . As external force measurement is key part
of this work, reliable force readings are needed in physical units (Newtons), so that the
whole admittance-based control system proposed is coherent on its units.

Because of these reasons, an experiment was carried out to find out which was the
force range delivered by the specific Michelangelo hand model used for this work. The
force readings of the Michelangelo hand were compared to the values given by an ex-
ternal load cell at different grasp levels. For this, the load cell was placed between the
index finger and the thumb so that compressive forces were register in the point where
the load cell and the embedded force sensor meet. After recording measurements from
both the embedded force sensor and the load cell, a regression between the force values
measured by both sensors was performed to get the coefficients of the fitted polynomial.
This coefficients will map the force readings of the Michelangelo hand in percentage to
Newtons.

The force sensor is embedded in the thumb and can only register forces in one direc-
tion. That means that if the contact is not fully perpendicular, the force sensor will not be
that responsive. Therefore, a pin was attached to the load cell to ensure that forces were
laying only the force sensor.

E.2 Calibration experiment

Set up

The set up used for calibration is shown in Fig. E.1. The materials used are:

• Isolated Strain Gauge Input Module SG-3016.

• Futek S-Beam Load Cell, model LSB200 50 lb (calibrated)

• Data acquisition device (DAQ) NI-USB-6259 (National Instruments) sampling at
2048 Hz (default).

• Laptop with Matlab and NI-DAQmx Support package from Matlab’s Data Acqui-
sition Toolbox.

• Power supply: BASEtech BT-305.
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• Matlab programs: getDataLoadcellVSMickey.m, getLoadcellToMickeyCoeffs, volt-
sToNewtonsCoeffs.mat.

(A) (B)

FIGURE E.1: a) Materials and set-up for calibration and b) load cell place-
ment in Michelangelo hand

The load cell used in this experiments was calibrated with known weights before any
experiment with the embedded force sensor in the prosthetic hand was performed. The
result of load cell calibration were the polynomial coefficients mapping the voltage read
by the load cell to force in Newtons.

For the regression between Michelangelo force sensor values and load cell readings,
7 increasing force points were measured. The process and the Matlab programs used to
perform Michelangelo hand’s embedded force sensor calibration are the following.

Process

1. Put the load cell just between the thumb and index finger of the Michelangelo hand.
For the first reading, the load cell should be barely squeezed to get low force read-
ings.

2. Open Matlab and turn on the DAQ. Matlab should automatically recognise it. This
can be checked by going to the ’Analog Input Recorder’ app in Matlab.

3. Turn on power supply and put it at 15 V. Check the ’output’ button is on, otherwise
no current will flow through the circuit.

4. Read value of the load cell in Matlab with ’getDataLoadcellVSMickey.m’. The pro-
gram makes 3 recordings of 2 seconds each. It computes the mean of each recording
and, afterwards, the overall mean of the three means. The values are in volts.

5. Read the force value of the Michelangelo on the GUI, under the ’Grip force’ tag and
write it down. There is an overshoot, so it is recommended to wait few seconds for
the value to decrease to a steady state.

6. Decrease the aperture of the Michelangelo hand through the GUI, or any other con-
trol program available. The force value should increase.

7. Repeat points 4 to 6 several times (e.g. take 7 measured points).

8. Use ’getLoadcellToMickeyCoeffs.m’ to get the coefficients mapping force percent-
age values of the Michelangelo to Newtons. For this, put the force values from step
5 in the array michelangeloForcePercentage. The program will automatically load
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the force measurements from the load cell if the correct Matlab path is specified. It
will load ’voltsToNewtonsCoeffs.mat’ to convert load cell voltage values to New-
tons. Then it fits a polynomial for the force points obtained by the Michelangelo
and the load cell. The output is an array percentageMickeyToNewtonsCoeffs con-
taining the polynomial coefficients to map Michelangelo force percentage values to
Newtons.

Outcome

If the experiment was successful, the plot of the fitting done by ’getLoadcellToMickey-
Coeffs.m’ should be a straight line, meaning that higher Michelangelo force percentage
values linearly correspond to higher load cell force Newton values. For analytical results,
the goodness of fit can be checked (output of the fit Matlab function). Check that the R2

value is close to 1 and that the size of the root mean square error (RMSE) is coherent.

FIGURE E.2: Example of regression between Michelangelo force percent-
age values and load cell force Newton values.

Usage

The output coefficients can be used during online experiments to convert percentage
values to Newton values as in E.1.

force Michelangelo in Newtons = coe f f (1) ∗ force Michelangelo percentage + coe f f (2).
(E.1)
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Appendix F

Prosthesis Dynamics Identification
details

To check if the apparent dynamics Ya are actually passive or not, and to assess the ez-
width of the system, the dynamics of the prosthetic hand need to be identified. These
dynamics contain the dynamics of the controller Hc and the plant Hp, as in Fig.

FIGURE F.1: Scheme of the apparent dynamics containing prosthesis dy-
namics.

Neither Hc nor Hp are known. Therefore, we can model prosthesis dynamics as a
black box containing those two systems. Then, what we are identifying is the combi-
nation of Hc and Hp. We will call this combination Hmic, which stands for the overall
transfer function of the Michelangelo hand. Note that we are identifying a closed-loop
system, however, we can estimate the closed-loop dynamics by identifying the open-loop
dynamics.

A system identification process is based on perturbing the system with an input signal
(u(t)) and comparing it with the output signal (y(t)). If the system is linear time invariant
(LTI), the output should only change based on the frequency of the input signal. If the
output varies with other parameters, such as the amplitude of the input signal, it will be
a non-linear system.

F.1 Identification experiment

A system identification experiment was carried out with the Michelangelo hand to know
its dynamics. The input signal (u(t)) was a multisine containing position commands.
The multisine was generated with the provided function ’multisineGenerator.m’. Here,
several parameters can be adjusted such as period length, excitation frequency limits,
etc. By default, the excited frequencies are 80 frequencies ranging from 0 ot 5 Hz, with
6 periods of 20 seconds each. As explained in Chapter 2, 3 multisines with different
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amplitudes were used in 3 experiments. An amplitude of 10, 25 and 50 were used, which
correspond to 20%, 50% and 100% prosthesis aperture.

The system identification experiment can be conducted with the ’sysidExperiment.m’
program. For this, connect the prosthesis through the Michelangelo GUI. The program
will automatically create a UDP connection. Important: put the hand completely closed be-
fore starting each experiment. The output (y(t)) of the experiment is the position of the
Michelangelo hand.

F.2 Computing the frequency response function

A transfer function is defined by the ratio between the input and the output signal. If we
want to get the transfer function of dynamics of the Michelangelo hand in the frequency
domain, one way is to do it by transforming u(t) and output y(t) into the frequency
domain variables U(s) and Y(s) with the Fourier transform. Therefore, we can compute
the frequency response function of Hmic(s) by taking the relation between U(s) and Y(s).
Note that we consider no correlation between the input signal and any noise source in
the system.

In the frequency domain, this is done by computing the relation between the cross-
spectral density Syu( f ) and auto-spectral density Suu( f ), both frequency dependent. Spec-
tral density is the Fourier transform of the time-domain cross-correlation. From this it can
be inferred that we can get the response of a system by looking at the correlation between
the input and the output. Therefore, we get the frequency response function (FRF) of Hmic
as in F.1.

Hmic =
Syu( f )
Suu( f )

(F.1)

In this work, spectral densities where computed through Welch averaging method,
where frequency domain data was divided in segments, then the spectral density for
each segment is calculated and finally the average of all segments is computed.

It is also interesting to compute the coherence γ2
yu, which is similar to the correlation

coefficient on the time-domain, and has a value between 0 and 1. A value of 1 indicates
full correlation between input-output. Therefore, coherence indicates if two signals are
linearly related. Coherence is reduced by additional signals (noise) and non-linearities.
It is calculated as in F.2.

γ2
yu( f ) =

∣∣Syu( f )
∣∣2

Syy( f )Suu( f )
(F.2)

For the three amplitudes, the resulting FRFs are shown in Fig. F.2. The FRF and
coherence of Hmic based on raw u(t) and y(t) is computed in the provided ’frequency-
Analysis.m’ and ’estfrf.m’. Plots are made through ’plotFrfCoherence.m’.

From the output of the FRFs, we can see that the response changes at different multi-
sine amplitudes. In linear systems, the output should only be affected by the frequency
of the input signal, which is not the case. This means that the Michelangelo hand has
non-linear dynamics. However, for the ease of the stability analysis, we consider lin-
ear dynamics, where the non-linear behaviour is left for further research. For parameter
identification, the FRF of the amplitude 20% was used, so as to preserve the widest band-
width the Michelangelo hand can deliver.

Furthermore, from the figures below, it can be seen that the coherency is smooth and
very high in the whole bandwidth. This means that the signal-to-noise ratio is low and
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FIGURE F.2: Obtained FRFs for different amplitudes.

allows for a cleaner FRF response. The coherence reduces at high frequency where mea-
surement noise has greater impact. Therefore, we can conclude that our FRF estimation
was good enough and coherent.

F.3 Estimating the parameters of the FRF

To get the transfer function Hmic, the parameters of the curve of the identified FRF must
be identified. This can be done through a least-squares routine in Matlab. This can more
easily be done through the tfest Matlab function or through the system identification
app in Matlab. The result obtained for Hmic after parameter identification is the following:

Hmic =
3.43s + 60.65

s2 + 4.828s + 61.92
· e−0.15s (F.3)
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FIGURE F.3: Frequency response of identified Hmic and experimental FRF
of amplitude = 20%.

The source for the explanations on this appendix was [32].
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Appendix G

Stability Analysis

Coupling an admittance controlled device with external environment dynamics (Ze) cre-
ates a negative force feedback loop (Fig. G.1). The stability of the coupled system de-
pends of the dynamics of apparent dynamics Ya and Ze (see Fig. F.1). Because there is
no knowledge of Ze, one way of ensuring stability in our system is to ensure it is energy
passive, as explained in Chapter 2.

FIGURE G.1: Schematic of coupled dynamics of prosthesis and environ-
ment dynamics

However, passive behaviour of a controlled device cannot always be achieved due to
weak dynamic performance of the controlled device. Then, Ya can be stable but nonpas-
sive. Ya is composed of virtual dynamics Yv and Michelangelo prosthesis dynamics Hmic.
Yv is designed to be passive, but, is Hmic passive?
A system is passive if and only if it is positive real, that is, Hmic will be passive iff:

1. Hmic(s) has no poles in <(s) > 0

2. the phase of Hmic(s) lies between −90◦ and 90◦.

The phase plot of the identified dynamics of the Michelangelo, Hmic, shows an abso-
lute phase lag greater than 90◦, therefore, it is not passive (see Fig. F.3). Then, the apparent
dynamics Ya will not be passive either, as Ya is just the multiplication, in frequency do-
main, of Yv with Hmic. If Ya is not passive, how do we check if the coupled system can actually
be stable? To answer this question, we can assess what range of environment dynamics
Ze could complementarily stabilize Ya for a stable prosthesis-environment interaction by
following the Nyquist stability criterion for closed-loop systems.

The closed-loop transfer function of the coupled system in Fig. G.1 is Ya/(1 + YaZe).
From the Nyquist criterion we know that any interconnection of stable systems is always
(marginally) stable if the absolute phase of the loop-gain (L) is smaller than 180◦. In
our case, the loop-gain of the closed-loop transfer function is L = YaZe. Then, we can
assess if the closed-loop system is stable by looking at the phase of the loop-gain. More
specifically, an easy check for stability is to look at the phase margin: if it is positive,
|∠L| ≤ 180◦ and therefore, stable; if negative, we confirm that |∠L| � 180◦, and therefore
the closed-loop system is unstable.
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Because real objects consist of inertias, damping and stiffness and these are passive
elements, we can model Ze as Ze = ke + be/s, where ke and be will be a range of values
of environment stiffness and damping, respectively. The range of values of ke and be that
complementarily stabilise Ya is called ez-width.

The computation of the ez-width in this work is done in the program ’getEZwidth.m’.
This program loads the identified transfer function Hmic, computes the loop-gain and
assesses stability based on phase margin for a range of values of ke and be. Finally, it
builds the plots for the ez-width.

The sources for the explanations on this appendix are [33], [34].

G.1 A note for coherence

Note that the identified dynamics of the Michelangelo Hmic are identified for position
input-output. That means that in our scheme (Fig. F.1) we should integrate ωd into θd,
and use desired (angular) position as input for the prosthetic controller. For coherence
with identified Hmic, the output should be angular position θ. Therefore, we should dif-
ferentiate output θ into ω, which will be the input for Ze. However, this does not affect
the loop-gain of the closed-loop transfer function and the ez-width analysis and results
would be unaltered.

Furthermore, note that the input for Ze is linear velocity and that the range of values
for ke and be is given in linear units and not rotational (see Chapter 2). To transform
angular velocity ω into linear velocity v, one should multiply by the radius of the index
finger (lrod) such that v = ω lrod.


	Introduction
	Challenges in Current Myoelectric Prosthesis
	Towards bio-mimetic control

	Materials and Methods
	Data recording and processing
	EMG-driven Musculoskeletal Modelling
	Model Calibration
	Admittance Model
	Prosthesis Low-Level controller
	System Communication Framework
	Theoretical stability assessment
	Experimental Tests
	Blind object
	Force tracking
	Functional task


	Results
	Identification of prosthesis dynamics
	Experimental Tasks

	Discussion
	Main Results
	Stability and system identification results
	Blind object task results
	Force tracking tasks results
	Functional results
	Computational performance results
	Limitations
	Future work
	Improvement of admittance model
	Admittance for 2 DOFs
	Investigate prosthesis dynamics
	Inclusion of afferent feedback

	Considerations for framework generalization

	Conclusion



