
December 15, 2019

MASTER THESIS

A formalisation of EMF
by expressing Ecore as
GROOVE graphs

Remco de Man

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Formal Methods and Tools

Exam committee:
prof. dr. ir. A. Rensink
dr. ir. S.J.C. Joosten
dr. ir. M.J. van Sinderen

Documentnumber
—

Abstract

Within the field of software verification, software is verified to be correct using models. However, the
modelling landscape is very diverse, and multiple modelling techniques exist to model software. Model
transformations can help to bridge the gap between these techniques, but often do not have a formal
foundation, which is problematic for software verification. Within this work, the model transforma-
tions between models based on EMF’s Ecore and GROOVE grammars are formalised. A transformation
framework is introduced to create model transformations between Ecore models and GROOVE grammars
while maintaining a formal foundation. This framework allows for creating significant model transfor-
mations out of smaller transformations that are more easy to proof. An application is used to show how
model transformations can be built using this framework.

Page 2

Contents

1 Introduction 5
1.1 Formalisation of model transformations . 6
1.2 Correctness of model transformations . 6
1.3 Approach and composability . 7
1.4 Research question . 7
1.5 Validation . 8
1.6 Related work . 9

1.6.1 Formalisations of modelling languages . 9
1.6.2 Formalisations of model transformations . 9

1.7 Contribution . 10
1.8 Outline . 10

1.8.1 Mathematical notation . 10
1.8.2 References to validated proofs . 11

2 Background 12
2.1 Eclipse Modeling Framework . 12

2.1.1 Type models . 12
2.1.2 Instance models . 14

2.2 GROOVE . 14
2.2.1 Type graphs . 14
2.2.2 Instance graphs . 15

2.3 Theorem proving using Isabelle . 15
2.3.1 About Isabelle . 15
2.3.2 Basics . 16
2.3.3 Archive of Formal Proofs . 21

3 Formalisations 22
3.1 Global definitions . 22
3.2 Ecore formalisation . 22

3.2.1 Definitions . 22
3.2.2 Type models . 24
3.2.3 Instance models . 30

3.3 GROOVE formalisation . 38
3.3.1 Definitions . 38
3.3.2 Type graphs . 39
3.3.3 Instance graphs . 41

4 Transformation framework 46
4.1 Encodings . 46
4.2 Structure . 47
4.3 Type models and type graphs . 48

4.3.1 Combining type models . 49
4.3.2 Combining type graphs . 62
4.3.3 Combining transformation functions . 68

4.4 Instance models and instance graphs . 74
4.4.1 Combining instance models . 75
4.4.2 Combining instance graphs . 85
4.4.3 Combining transformation functions . 90

Page 3

5 Library of transformations 96
5.1 Definitions . 96
5.2 Type level transformations . 97

5.2.1 Regular classes . 97
5.2.2 Abstract classes . 100
5.2.3 Regular subclasses . 103
5.2.4 Enumeration types . 106
5.2.5 User-defined data types . 110
5.2.6 Data fields . 113
5.2.7 Enumeration fields . 115
5.2.8 Nullable class fields . 120
5.2.9 Contained class set fields . 123

5.3 Instance level transformations . 126
5.3.1 Plain objects . 127
5.3.2 Abstract classes . 129
5.3.3 Plain objects typed by a subclass . 131
5.3.4 Enumeration values . 134
5.3.5 User-defined data types . 138
5.3.6 Data field values . 140
5.3.7 Enumeration field values . 143
5.3.8 Nullable class field values . 149
5.3.9 Contained class set field values . 153

6 Application 157
6.1 The model . 157
6.2 Building the model . 157

6.2.1 Houses . 159
6.2.2 The Room class . 161
6.2.3 House names . 163
6.2.4 Rooms . 165
6.2.5 Room identifiers . 166
6.2.6 The room size enumeration type . 173
6.2.7 Room sizes . 175
6.2.8 Tenants . 184
6.2.9 Tenant names . 190
6.2.10 Tenant ages . 194
6.2.11 The tenant type enumeration type . 201
6.2.12 Tenant types . 208
6.2.13 Room & tenant relationship . 215
6.2.14 Tenant & subtenant relationship . 222
6.2.15 Living rooms . 230

7 Conclusion 241
7.1 Advantages & Limitations . 241
7.2 Evaluation . 243
7.3 Future work . 244

7.3.1 Improvements to the transformation framework . 245
7.3.2 Complete the library of transformations . 245
7.3.3 Add more encodings . 246
7.3.4 Implementation . 246

A Example Isabelle Theory 249
A.1 Linear order of natural numbers including unbounded . 249
A.2 Definition of multiplicity . 250

Page 4

Chapter 1

Introduction

Software engineering is becoming an increasingly challenging task nowadays. Developing software with
complex architectures and nontrivial implementations is a prevalent task for the modern software engi-
neer, having implications on how software is developed. At the same time, software that can be proven to
be error-free has become increasingly important. The reason for this is apparent. Sophisticated systems
automate more and more crucial tasks. Failure of these systems might have enormous consequences,
especially for safety-critical and healthcare systems. Therefore, multiple strategies have been developed
over the years to ensure that crucial parts of these systems are error-free.

An increasingly popular method for dealing with the development of complex systems is by using domain-
specific models. Model-Driven Engineering (MDE) is a field within software engineering that focuses on
using and creating domain models that describe complex software systems on a domain level. These
models can then be used for different tasks, depending on the type of model. These tasks include code
generation, but also different forms of verification of the software. By using these models, it becomes
easier to reason about the developed software, while also allowing for systematic code generation and
verification.

Although domain-specific models provide a strategy to deal with the development of complex systems,
they do not automatically ensure that the software is error-free. Software verification is an essential
strategy in ensuring that software systems are error-free. Modern methods of software verification use
automated tools that can use software models to verify the correctness of a system. These tools use
some model of the system to verify a set of requirements provided by the software engineer. By using
structural checks on the model, the tool can tell if these requirements are met.

A possible problem that might arise when using domain-specific models for software development is the
interoperability of different models. Within the area of MDE, a lot of different frameworks and tools
exist. Each of these frameworks and tools focuses on a specific set of functionality. As a result, models
created in one framework well suited for code generation, might not be useful in the context of software
verification. In an ideal world, the format of the produced models would be standardised across all
frameworks for smooth interoperability. In reality, different frameworks use different formats which are
optimised for their specific set of functions. These different formats make it difficult to share models
across different frameworks and applications.

Model transformation is a concept in the field of MDE that focuses on solving this problem. Model
transformation is an automated way of modifying and creating models by transforming existing models.
By using model transformations, it is possible to transform a model that is tailored towards code gen-
eration into a model that is suited for software verification, without the need to create a new model for
this purpose.

Model transformations have already led to various tools and services that can export and import models
in different tools and frameworks. These tools and services allow a software engineer to transform
a model suited for code generation into a model suited for verification, and therefore use one model
and its transformations to achieve both tasks. Sadly, these model transformations rarely have a formal
foundation. Having a formal foundation for the model transformations is useful in the context of software
verification since it allows for proving the correctness of the transformation itself. When a transformed
model is used to verify a software system, the results of the verification can only be considered correct
if the transformation is correct. Without proof of correctness of the transformation, it might be that
the verification results are incorrect because the original model might have a different meaning than the
transformed model.

This thesis will contribute to fields of MDE and Software Verification by specifying a formal foundation
for model transformations between EMF/Ecore (Section 2.1), a framework for software modelling in

Page 5

which various models can be created, and GROOVE (Section 2.2), a tool for software verification based
on graph grammars. Furthermore, a framework is presented in which these model transformations can
be proven correct, allowing the user to build correct model transformations iteratively.

1.1 Formalisation of model transformations
As explained earlier, model transformations are an automated way of modifying and creating models by
transforming existing models. Model transformations can be used in a variety of scenarios, from sim-
ple modifications within the same domain and language (an endogenous transformation) to conversions
between different domains and languages (an exogenous transformation). Furthermore, model transfor-
mations can be unidirectional, meaning that a model can only be transformed one way, or bidirectional,
meaning that the model can be transformed in both directions. Unidirectional transformations are par-
ticularly useful in situations where the output model is meant to be used as a final result, such as code
generation. Bidirectional transformations are necessary for situations where the models must be kept
consistent. In that case, a change to one model might necessitate a change to the other model, which
then can be automated using model transformations.

Since this thesis focuses on model transformations between EMF/Ecore and GROOVE, this thesis focuses
on bidirectional exogenous transformations. The transformations between EMF/Ecore and GROOVE
are exogenous by definition, since the languages of EMF/Ecore and GROOVE are different, as will be
shown later. The bidirectionality of the transformations is beneficial to ensure consistency, which is a
useful property to have in software verification.

In order to prove any property on these model transformations, the transformations need to be formalised.
The formalisation of a model transformation consists of mathematical definitions and functions that
describe the behaviour of the transformation, allowing to mathematically translate an input model to
an output model as described by the model transformation. These definitions and functions directly
depend on the formalisations of the input and output models themselves, as these are needed to describe
the input and output models of the transformations. Because of this dependency, the formalisations of
EMF/Ecore and GROOVE must be established as well.

The main disadvantage of the formalisation of model transformations is the direct relationship between
the transformation and its input and output language. As a consequence, the formalisation of a model
transformation directly depends on the formalisations of its input and output languages. Therefore, it
is not possible to give an abstract formalisation for model transformations between different languages.
Creating such a formalisation would mean making the formalisations of the input and output languages
more abstract. Making these more abstract might result in loss of information, which is undesirable, or
an increase in complexity. Within this thesis, this disadvantage was dealt with by only focusing on the
model transformations between EMF/Ecore and GROOVE.

1.2 Correctness of model transformations
As explained in Section 1.1, this thesis will define a formalisation for model transformations from EM-
F/Ecore to GROOVE and vice versa. However, a formalisation of the transformation itself does not prove
anything about its properties and correctness. In order for the formalisation of the model transformation
to be useful in the context of software verification, it is essential to prove its correctness. Therefore, it is
crucial to establish what it means for a model transformation to be correct.

As explained earlier, the model transformations between EMF/Ecore and GROOVE are exogenous and
bidirectional. This bidirectionality means that for every transformation from EMF/Ecore to GROOVE,
there exists a transformation back, from GROOVE to EMF/Ecore. Since GROOVE and EMF/Ecore are
very different, there are elements in EMF/Ecore that cannot be expressed in GROOVE and vice versa.
Because of the difference, it might not be possible to use one mapping in both directions. Therefore, it
might be the case that for a transformation from EMF/Ecore to GROOVE, a different transformation
function is used to convert the model back from GROOVE to EMF/Ecore. In this case, two unidirectional
transformations are used to achieve bidirectionality.

Throughout this thesis, the correctness of a model transformation is defined as the syntactical correctness.
The semantics are not further discussed as the semantics might differ from model to model, depending
on what the creator intended to model. The following properties must hold for the formalisation for it
to be correct. Please note that since GROOVE is based on graph grammars, one does not speak of a
GROOVE model, but rather a GROOVE graph:

• For each valid EMF/Ecore model that is transformed to GROOVE, the resulting GROOVE graph
must be syntactically valid.

Page 6

• For each valid GROOVE graph that is transformed to EMF/Ecore, the resulting EMF/Ecore model
must be syntactically valid.

• For each valid EMF/Ecore model that is transformed to GROOVE, there exists a known transfor-
mation from the resulting GROOVE graph back to the original EMF/Ecore model.

• For each valid GROOVE graph that is transformed to EMF/Ecore, there exists a known transfor-
mation from the resulting EMF/Ecore model back to the original GROOVE graph.

These properties assume that it is clear what it means for EMF/Ecore models and GROOVE graphs
to be syntactically valid. Therefore, the formalisations of EMF/Ecore and GROOVE will specify the
syntactical correctness of their models and graphs.

The properties discussed above are useful in the context of software verification since they show that
the transformed models and graphs are indeed a valid transformation of their original counterparts.
Therefore, this thesis will not only define the formalisation for the model transformations but also show
that the properties discussed above hold for these transformations.

1.3 Approach and composability
As explained in the previous sections, this thesis will provide a formalisation for the model transforma-
tions between Ecore and GROOVE and also prove the correctness of the transformations. Although this
a noble goal, it comes with many complexities.

First of all, Ecore and GROOVE both have a very different nature. Ecore is mostly based on a subset of
UML, as discussed in Section 2.1. On the other hand, GROOVE is based around graph grammars and
therefore mathematical graph theory. As a consequence, the set of features is very different. Ecore has
elements that are not directly expressable in GROOVE and vice versa. When providing the formalisation
for the transformations, the different features within both languages should be taken into account.

Furthermore, Ecore and GROOVE have a lot of different elements within their models and grammars.
When transforming these models and grammars, all these elements need to be transformed. Transforming
all these elements at once is a very complex problem, as these different elements can be used in infinitely
many combinations, each requiring a different transformation. Not only must the formalisation be
able to express all these different combinations, but each of these combinations must also be proven
correct.

In order to overcome the problems that are raised by these complexities, the divide and conquer-principle
will be applied. This thesis will provide a framework in which model transformations and their proofs
can be composed out of smaller transformations and their proofs. This composability allows for proving
only small parts of the problem, which then can be composed to express the countless combinations of
model transformations.

1.4 Research question
This thesis will focus on defining a formalisation for model transformations from Ecore to GROOVE and
vice versa, and also proving the correctness of these transformations. It will try to achieve this goal by
providing a way to compose more substantial model transformations out of smaller ones. In short, the
thesis will answer the following research question:

“What is a suitable formalisation for composable model transformations between Ecore and GROOVE
that gives rise to correct model transformations between Ecore and GROOVE?”

It is immediately clear that this research question consists of multiple facets. In order to make answering
the research question easier, the research question will be split into smaller questions based on the
different facets of the main question. The following subquestions will be answered:

1. “What is a suitable formalisation of Ecore models and what Ecore models are valid within this
formalisation?”

In order to transform between Ecore and GROOVE, a formalisation of Ecore is needed. As ex-
plained earlier, this formalisation needs to give rise to a definition of valid Ecore models, which are
needed to prove the correctness of the transformations later.

2. “What is a suitable formalisation of GROOVE grammars and what GROOVE grammars are valid
within this formalisation?”

Just like the previous question, a formalisation that captures GROOVE grammars is needed. Like
the previous question, this formalisation should also give rise to a definition of valid GROOVE
grammars for use in proving the correctness of the transformations.

Page 7

3. “What is a suitable formalisation for the model transformations between Ecore and GROOVE?”

A suitable formalisation for the model transformations between Ecore and GROOVE is needed
to describe the model transformations between Ecore and GROOVE formally. Such a formalisa-
tion must be able to express the infinite combinations of possible model transformations. This
formalisation forms the basis of the correctness of model transformations and their composability.
Therefore, this question is the foundation of the main result of this thesis.

4. “What model transformations are correct within the formalisation?”

This question will answer the question which model transformations within the formalisation are
correct model transformations between Ecore and GROOVE. These transformations are of interest,
as only these transformations can be used with confidence within formal applications.

5. “How can correct model transformations between Ecore and GROOVE be composed?”

A fundamental part of this thesis is to compose small model transformations into larger ones. This
composability allows for only proving the correctness of small model transformations and then
combining them without loss of correctness. This question answers how to compose correct model
transformations into a new model transformation while preserving correctness.

When these subquestions are answered, it is possible to formulate an answer to the main research ques-
tion. A suitable formalisation for model transformations between Ecore and GROOVE will follow from
subquestions 1, 2 and 3. Subquestions 1 and 2 provide the formalisations of Ecore and GROOVE
themselves, which will be used to formalise their model transformations. Subquestion 3 defines the
formalisation of the model transformations. The correctness of model transformations within this for-
malisation will follow from subquestions 1, 2 and 4. Subquestions 1 and 2 will provide the definitions
needed to prove correctness, while subquestion 4 will give a proof for the correct model transformations.
Finally, the composability of these model transformations follows from subquestion 5, which answers
how to combine correct model transformations while preserving correctness.

1.5 Validation
This section describes how the research questions of this thesis will be validated. The main research
question of this thesis will be validated by validating the subquestions. For each subquestion, the
validation process is different:

• “What is a suitable formalisation of Ecore models and what Ecore models are valid within this
formalisation?” and “What is a suitable formalisation of GROOVE grammars and what GROOVE
grammars are valid within this formalisation?”

The answer to these questions will be validated through existing theory about these modelling
languages. Existing theories describe the different elements in these languages and the constraints
between them. These give rise to domains for both languages, which can be used to formalise the
language. The correctness of the grammars and models in these languages follow from literature in
the same way, as the literature defines which grammars and models are valid within these languages.

• “What is a suitable formalisation for the model transformations between Ecore and GROOVE?”

A suitable formalisation must be able to express a reasonable set of model transformations. If the
formalisation is not able to express such a set, the formalisation is useless. Therefore, the thesis
will show examples of model transformations within this formalisation and give an intuition of
which transformations are possible. The existence of these examples validates the suitability of the
formalisation.

• “What model transformations are correct within the formalisation?”

The correctness of the model transformations follows from a correctness proof. This proof is
validated using a theorem prover, which ensures that the proof is sound and complete. Therefore,
the theorem prover validates the proof, while the proof validates the answer to the question.
Furthermore, examples of correct model transformations will be provided, which validates that
correct model transformations exist within the formalisation.

• “How can correct model transformations between Ecore and GROOVE be composed?”

This subquestions answers how correct model transformations can be composed such that the
result is also correct. Validating this question consists of two parts. In the first part, a correctness
proof is given, which shows that the composed model transformations are indeed a correct model
transformation itself. This correctness proof is validated using a theorem prover. In the second
part, an application of the composability of model transformations is shown, which validates that
composing model transformations is possible in practice.

Page 8

Since the answer to the main research question follows directly from the answers to the subquestions,
the answer to the main question is validated using the validation of the subquestions.

1.6 Related work
In this section, the work related to this thesis will be discussed. The related work is divided into multiple
sections that each describe a different facet related to this thesis.

1.6.1 Formalisations of modelling languages
This section discusses some related work in the field of formalisations of modelling languages. The work
presented here is relevant to this thesis as the formalisations of Ecore and GROOVE have an essential
role throughout this thesis.

In [14], Kleppe and Rensink present a straightforward formalisation of UML models using graph the-
ory and graph constraints. Since Ecore is many facets similar to UML, this formalisation provides a
reasonable basis for formalising Ecore as well. Such formalisation has an advantage that it is already
built upon graph theory, which allows for an easy formalisation of the transformation to other graph
languages. Although the work presented does include formalisations for most relevant elements of UML
models, it does not have enough expressive power to formalise concepts unique to Ecore. Within this
thesis, a formalisation of Ecore is used that is much closer to the Ecore implementation, with enough
expressive power to formalise all the relevant concepts.

Within UML, it is possible to describe a model and its constraints using the Object Constraint Language
(OCL) [18]. Most queries and invariants written in OCL can also be applied to Ecore models. Moreover,
EMF has its declarative language EMF-IncQuery [9], which can handle complex constraints that cannot
be expressed using OCL.

In [17], Semeráth et al. present a way to formalise EMF/Ecore by expressing a subset of OCL and
EMF-IncQuery in first-order logic. Within this work, each Ecore model is expressed as multiple sets of
named elements. These elements are constrained by OCL and EMF-IncQuery invariants, expressed in
first-order logic. The goal is to use automated reasoners to analyse the models automatically. Because
OCL and EMF-IncQuery are more expressive languages than first-order logic, approximations are used
where necessary.

The work presented by Semeráth et al. has a particular relation to this thesis since they try to formalise
Ecore to be able to perform formal verification on the Ecore models. In a way, this goal is similar to the
goal of this thesis, but the approach is different. Instead of formalising Ecore with the goal of verification,
formalising Ecore is in this thesis merely a tool for providing a formalisation of model transformations to
GROOVE. Verification is achieved through GROOVE, which is developed solely for this purpose.

1.6.2 Formalisations of model transformations
This section discusses related work in the field of formalisations of model transformations. Existing
work in this field that is relevant is mostly related to the concept of a Triple Graph Grammar (TGG).
Whereas a Graph Grammar can be used to describe the evolution of a single graph model, TGGs allow
for describing the relation between two graph models and also allow for transforming one kind of model
to the other [13]. The formal description of model transformations using TGGs is especially relevant to
this thesis, as this thesis will also formalise a specific set of model transformations.

In [10], Hermann, Ehrig, Golas, and Orejas approach the problem of formal analysis of model transfor-
mations using triple graph grammars. They explain how triple graph grammars can be used to describe
model transformations and which problems arise when performing this task. Properties related to the
syntactical correctness, functional behaviour and information preservation are discussed.

The work of Hermann, Ehrig, Golas, and Orejas discusses model transformations on a more abstract
level than this thesis, by providing mathematical properties and mathematical structures to approach
the problem. These structures and properties are not applied to specific modelling languages. In this
thesis uses a more practical approach where Ecore models are transformed to GROOVE graph grammars
and vice versa. This approach allows for a mathematical specification that is tailored for these modelling
languages and can, therefore, discuss specific properties of these languages in detail.

An application of TGGs on the model transformation of Ecore models is shown by [3]. In this work,
Biermann, Ermel, and Taentzer use TGGs to formalise the behaviour of model transformations between
EMF models. This formalisation is done by formalising EMF models as graph grammars first and then
using these graph grammars as part of the TGGs for formalising model transformations within EMF.

Page 9

Ermel, Hermann, Gall, and Binanzer later use this work in [6] to create an Eclipse plugin that can describe
model transformations between Ecore diagrams visually, including the possibility to edit them.

The work presented by Biermann, Ermel, and Taentzer uses a formalisation of EMF to describe model
transformations formally. This formalisation is similar to the work presented by this thesis but focuses
on endogenous transformations (transformations between EMF models) instead of exogenous transfor-
mations (transformations from Ecore to GROOVE, in case of this thesis).

In [4], Bruintjes has worked on mapping multiple languages to GROOVE and back using an intermediate
conceptual model. This intermediate conceptual model can express Ecore diagrams as well, and therefore
Bruintjes provides an implementation of model transformations between Ecore and GROOVE. Because
the approach of this work focuses on the implementation, the model transformations are not formalised
in this work. It is still worth mentioning because it is the only work that has a focus on transformations
between Ecore and GROOVE specifically. Moreover, the conceptual model used within this work does
not use graph grammars as a basis, which provides more freedom in expressing specific properties of
Ecore.

The work presented by Bruintjes uses a similar approach for formalising Ecore models itself. This
thesis will a formalisation inspired by this work, which is like the work of Bruintjes not based on graph
grammars. It differs from the work of Bruintjes by focusing on the formal foundation rather than the
implementation. Moreover, this thesis only focuses on the model transformations between Ecore and
GROOVE, rather than multiple languages and GROOVE.

1.7 Contribution
This section discusses the intended contribution of this thesis to the active field of research. This
thesis will propose a transformation framework for bidirectional transformations between EMF/Ecore
and GROOVE. This transformation framework makes it possible to compose transformations while
maintaining a formal proof of its syntactical correctness. As discussed in Section 1.6, most active research
uses Triple Graph Grammars to deal with the problem of the formalisation of model transformations.
This thesis will take a different approach by not modelling EMF/Ecore as a graph language, but rather
using a more specific formalisation. Therefore, the formalisation of the transformations will not be based
on Triple Graph Grammars, but it will borrow some similar concepts.

Within this work, there will be a focus on the transformations between EMF/Ecore and GROOVE.
No earlier work exists that focuses on the formalisation of the transformations between these languages
specifically. Because of the focus on these two languages, a practical approach can be used that results
in a framework that can be used to create transformations between these two languages directly. Within
existing work, either a more abstract method is used, or the formalised transformations are endogenous
(e.g., in the work of Biermann, Ermel, and Taentzer [3]).

The result of this work can be a valuable foundation for verifying Ecore software models within GROOVE.
Furthermore, it could be a valuable contribution to the field of formalised model transformations in
general, since it uses an approach different than using TGGs for achieving a formalisation of exogenous
transformations.

1.8 Outline
Within this thesis, a framework for formalising model transformations will be provided, including ex-
amples and applications. In Chapter 2, more information on EMF/Ecore and GROOVE is provided.
Furthermore, the theorem prover that is part of validating the proofs is introduced. In Chapter 3, the
formalisations of Ecore and GROOVE are introduced. In Chapter 4, a framework is introduced for
formally expressing composable model transformations. As a part of this chapter, the formalisation of
model transformations between Ecore and GROOVE is introduced. The chapter also introduces the def-
initions needed to compose these model transformations. Chapter 5 introduces a non-exhaustive library
of model transformations within this framework with corresponding proofs, which provides examples
of the model transformations, which can be expressed within this framework. Furthermore, Chapter 6
shows the composability of these model transformations by providing an example of composing smaller
model transformations in a practical example. Finally, Chapter 7 concludes the thesis by answering the
research questions and discussing possible future work.

1.8.1 Mathematical notation
Throughout this thesis, a lot of mathematical definitions and proofs are introduced. In order to accom-
modate for these definitions and proofs, prior knowledge of commonly used mathematical notations is
assumed. For completeness, the meaning of the different braces and parentheses is as follows:

Page 10

• Braces, “{}”, are used to denote mathematical sets;

• Angle brackets, “⟨⟩”, are used to denote mathematical sequences and named tuples;

• Parentheses, “()”, are used to denote unnamed tuples or grouping within expressions.

Besides commonly used notations, new notations are introduced as part of some definitions throughout
this thesis.

1.8.2 References to validated proofs
As explained Section 1.5, the formal proofs within this thesis will be validated using a theorem prover.
In order to easily find the validated proofs corresponding to definitions and theorems, all relevant def-
initions and theorems will include a reference to the validated proof. Such a reference can be recog-
nised by the symbol and includes the corresponding name of the definition or theorem. For exam-
ple, a reference to the theorem mult_zero_unbounded_valid from Appendix A would be written as
mult_zero_unbounded_valid in Ecore.Multiplicity. The proofs referenced by this thesis can be found
on https://github.com/RemcodM/thesis-ecore-groove-formalisation. For more information on
the theorem prover used for validating the proofs within this thesis, please refer to Section 2.3.

Page 11

https://github.com/RemcodM/thesis-ecore-groove-formalisation

Chapter 2

Background

This chapter discusses the background required to understand the different formalisations and the trans-
formations framework introduced within this thesis. Within this chapter, EMF/Ecore is explained in
more detail, as well as GROOVE. Furthermore, this chapter introduces the Isabelle proof assistant, a
theorem prover which will be used to validate the proofs throughout this thesis.

2.1 Eclipse Modeling Framework
The Eclipse Modeling Framework (EMF) [7] is a modelling framework and code generation facility for
building applications based on a structured model. It is quite popular in the field of Model-Driven
Engineering because of its open-source nature. EMF offers support for creating, editing and translating
models based on its metamodel Ecore [1]. Models based on the Ecore metamodel are very comparable
to UML class diagrams, but with properties specifically focused on software development. This focus
makes models based on Ecore very suitable for object-oriented code generation as the structure of the
model is already very similar to the class diagram of the corresponding application.

Because of the open-source nature of the Ecore metamodel and EMF, it has become increasingly popular
for expressing domain models, creating editors for domain logic and code generation from domain models.
However, EMF does not provide functionality for automated verification of its models out of the box.
Different tools should be used to accomplish this task.

This thesis will focus on two levels of models based on the Ecore metamodel. The first level of models
are models directly based on the Ecore metamodel, which will be called type models throughout this
thesis. The second level of models are models based on a type model, and thus indirectly on the Ecore
metamodel, and will be called instance models throughout this thesis. A simplified version of the Ecore
metamodel [5] with elements relevant to the formalisation is given in Figure 2.1.

A

B

X

Y

test : EInt

[0..1] xs

[1..4] ys

(a) Type model

someA :A someB :B

theFirst :X theSecond :Y

ysys
xs

test = 5

(b) Instance model

Figure 2.2: Examples of different models in Ecore

2.1.1 Type models
A type model represents the first level of models based on the Ecore metamodel that will be used within
this thesis. Since a type model is directly based on the Ecore metamodel, the metamodel of a type model
is the Ecore metamodel. Since models based on the Ecore metamodel can best be understood as UML
class diagrams, a type model can best be compared to a UML class diagram. Figure 2.2a shows the visual

Page 12

EModelElement

ENamedElement

name : EString

EClassifierETypedElement

ordered : EBoolean = false

unique : EBoolean = false

lowerBound : EInt

upperBound : EInt

many : EBoolean = false

required : EBoolean = false

EPackage EEnumLiteral

EClass

abstract :
EBoolean = false

EDataType

serializable :
EBoolean = false

EEnumEAttribute

EStructuralFeature

EReference

containment :
EBoolean = false
container :
EBoolean = false

[0..*] eLiterals

[0..*] eClassifiers[0..1] eType

[0..*] eSupertypes

[0..*] eReferences

[0..1] eOpposite

[0..1] eAttributes

[0..*] eStructuralFeatures

Figure 2.1: Simplified version of the Ecore metamodel

Page 13

notation of a type model in EMF’s own visual notation. Familiar concepts from class diagrams can be
found in this visualisation. First of all, the figure shows four class types, A, B, X and Y. An example
of inheritance of class types is shown, as class B extends class A, so class B is a subtype of class A. A
has two relations, named xs and ys. Relation xs is a relation to class X. Furthermore, the figure shows
that xs is a containment relation with a multiplicity of 0..1. There is a second relation ys, which has a
multiplicity of 1..4. Finally, class Y has an attribute named test, which represents an integer.

2.1.2 Instance models
An instance model is the second level of models based on the Ecore metamodel that will be used in this
thesis. An instance model is directly based on a type model. Therefore, the metamodel of an instance
model is its corresponding type model. As a consequence, the metametamodel of an instance model is
the Ecore metamodel. Figure 2.2b shows the visual notation of an instance model based on EMF’s own
notation, typed by the type model of Figure 2.2a. The figure shows one instance of every class type. The
instance of class A has values for both the relations xs and ys. The xs relation references the instance
of class X and the ys relation the instance of class Y. The instance of class B only has a value for the
relation ys, which references the instance of class Y. The instance of class Y has a value set for the test
attribute, which is equal to integer 5. Finally, all instances have a corresponding identifier, which is
someA for the instance of class A, someB for the instance of class B, theF irst for the instance of class
X and theSecond for the instance of class Y.

2.2 GROOVE
GROOVE [8] is an open source tool which uses graphs for modelling object-oriented software and for
performing verification on these graphs. GROOVE is based on graph theory and makes uses the concept
of graph grammars to relate the different kind of graphs. The graphs created within a graph grammar
can be further analysed using LTL and CTL properties to verify if specific properties hold on the
specified graphs. When the graphs represent the design-time, compile-time, or run-time structure of a
software system, the results of this analysis can be used to verify which properties hold for the software
system.

GROOVE defines multiple graph types, including (but not limited to) type graphs, instance graphs and
rule graphs. These different graph types are used to achieve the grammar structure. Type graphs
define the structure of instance graphs and rule graphs, while rule graphs describe a translation rule
of an instance graph to another instance graph while maintaining the structure enforced by the type
graph.

GROOVE is specially created for verification of software and uses proven techniques from logic and
graph theory to verify properties on the graphs created within the tool. Although GROOVE provides
excellent tools for performing verification on its graphs, there are no tools to achieve other goals, such
as code generation.

This thesis will focus solely on type graphs and instance graphs. Although rule graphs might be useful
in the context of model transformations and their formalisations, they are out of the scope of this
thesis.

A

B

X

Y

xs

ys

(a) Type graph

theFirst : X theSecond : Y

A B

xs ysys

(b) Instance graph

Figure 2.3: Examples of different graphs in GROOVE

2.2.1 Type graphs
As explained before, a type graph defines the structure of instance graphs and rule graphs. It is a
graph type which supports concepts as inheritance, abstractness of nodes and multiplicities of edges.
Figure 2.3a shows the visual notation of a type graph in GROOVE its own notation. It consists of 4
nodes types, A, B, X and Y, with 2 relations. The first relation is the xs relation between A and X and
the second relation is the ys relation between A and Y. Finally, we also see the concept of inheritance,
with a subtype relation between node type B and A.

Page 14

2.2.2 Instance graphs
An instance graph is a graph that describes actual instances of the types defined by a type graph. The
description of these instances consists of the instance itself, optional identifiers and the relation to other
instances. Figure 2.3b shows the visual notation of an instance graph in GROOVE its own notation.
This instance graph is based on the type graph of Figure 2.3a and shows one instance of every type.
The A-typed instance has a relation of type xs to the X-typed instance. Furthermore, it has a relation of
type ys to the Y-typed instance. Finally, the B-typed instance also has a relation of type ys to the same
Y-typed instance.

It should also be noted that the X-typed and Y-typed instances have identifiers. For the X-typed instance,
this identifier is theF irst, while for the Y-typed instance, the identifier is theSecond.

2.3 Theorem proving using Isabelle
As mentioned before in Section 1.5 all formal proofs within this paper are verified within a theorem prover,
sometimes also called a proof assistant. A theorem prover is a software solution to assist with the task of
proving mathematical theorems. It achieves this goal by using automated reasoning and mathematical
logic to provide the user with information on the correctness of the written proof. Furthermore, a theorem
prover might have tools to prove simple theorems automatically.

In this thesis, the Isabelle proof assistant is used to prove the relevant theorems. Isabelle was chosen as
theorem prover for several reasons:

• Isabelle stays close to mathematical definitions while still maintaining much automation in the
process, which is different from other theorem provers. A comparison of theorem provers has
shown that most other theorem provers which stay close to the mathematical definition do not
have much automation, and vice versa [21].

• Isabelle provides a plug-in to jEdit, a text editor, which deeply integrated Isabelle into the jEdit
editor. This integration allows for interactively creating theories and checking proofs without the
need to use the command-line application for this purpose.

• Isabelle has its own proof language Isar, which makes proofs more readable to the human reader,
without giving up on automation and functionality for delivering proofs.

• One of the supervisors of this thesis has experience with Isabelle, meaning that there is local
expertise available in case of problems.

The remaining part of this section will discuss different parts of Isabelle and its proof language Isar, to
provide some background on theorem proofing in Isabelle.

2.3.1 About Isabelle
Isabelle [12] is a generic theorem prover written in ML. It was originally developed at the University
of Cambridge and Technische Universität München, but now includes numerous contributions from
institutions and individuals worldwide. It has been designed to be able to support reasoning in several
object-logics, which include but are not limited to:

• first-order logic, constructive and classical versions (Isabelle/FOL)

• higher-order logic (Isabelle/HOL)

• Zermelo-Fraenkel set theory (Isabelle/ZF)

Isabelle is distributed for free under a mix of open-source licenses, but the main code-base is subject
to BSD-style regulations. More specifically, the binary distributions of Isabelle come with the 3-Clause
BSD License [19].

Isabelle has quite a large user base and a well-maintained community. Besides a mailing list for users,
there is also a wiki [11] and active support on StackOverflow, when questions are tagged under ‘isabelle’
[15].

The first release of Isabelle is published in 1986. Nowadays, it receives yearly releases with new updates.
At the time of writing, Isabelle 2019 is the newest release, which is also the release used to prove the
theorems in this thesis.

Page 15

2.3.2 Basics
This section will discuss some basics on Isabelle that are relevant for this thesis. The constructs mentioned
here will not be discussed in much detail, as that would be a thesis on its own. The documentation
provided with Isabelle does a decent job explaining all constructs in as much detail as possible.

Theories

Each document in Isabelle is a theory, which can define a set of definitions, theorems and proofs. A
theory can import other theories in order to reuse its definitions, theorems and proofs. An example of
a theory is given in Appendix A. This theory is the actual formalisation of Definition 3.1.1 in Isabelle
used for this thesis. It will be used as an example throughout the remaining parts of this section.

Datatypes

Within an Isabelle theory, it is possible to define inductive datatypes. Inductive datatypes are the most
used way to define new types in Isabelle. Famous data structures, such as lists, can be defined using
datatypes.

The example provided in Appendix A defines a new datatype for the set N∪∗. The definition is specified
within the theory as:

datatype M = Star | Nr nat

This example defines a datatype called M, which can have two values: Star and Nr. Star and Nr are
called datatype constructors and can get arguments of different types. For example, the Nr value gets
an additional type, nat, which is Isabelle’s type for representing natural numbers. On the other hand,
the Star constructor gets no additional arguments and is just a value for M on itself.

The formalisation achieved here should be straightforward. Star is used to denote ∗, the unbounded
value, while Nr nat is used to denote a bounded value for a multiplicity.

Record types

Another way of defining new types within Isabelle is by using record types. A record can be defined using
the record keyword. The concept of a record is borrowed from programming languages, but it provides
a way to define a named n-tuple. Effectively, a record type is a type consisting of multiple named fields
that can each have a different type. Each field of a record can be accessed using its name.

Within this thesis, records are actively used to introduce types for type models, type graphs, instance
models and instance graphs. These are all named-tuples which are easiest defined using records. Sadly,
the example provided in Appendix A does not define such a record, therefore, we provide the record of
an instance model (Definition 3.2.12) here:

record (′o, ′nt) instance-model =
Tm :: (′nt) type-model
Object :: ′o set
ObjectClass :: ′o ⇒ ′nt Id
ObjectId :: ′o ⇒ ′nt
FieldValue :: (′o × (′nt Id × ′nt)) ⇒ (′o, ′nt) ValueDef
DefaultValue :: ′nt Id ⇒ (′o, ′nt) ValueDef

The record of an instance model directly shows the structure. It has 6 named fields, the corresponding
type model and the 5 elements defined in Definition 3.2.12. Each of these fields has a corresponding
type, corresponding to the type described within the definition of an instance model. This way, we have
a direct formalisation of an instance graph in Isabelle.

Type synonyms

Isabelle can form new types out of existing types by using generic types. For example, lists in Isabelle
use this functionality. A list was created using a generic type that can be replaced with any concrete
type on usage. For example ‘nat list’ would represent a list of natural numbers, and ‘M list’ a list of
elements of datatype M.

To make it more convenient to use these types, it is possible to define these composed types as a type
synonym. An example of such a type synonym is given in Appendix A:

type-synonym multiplicity = M × M

Page 16

This type synonym defines the multiplicity type, effectively the formalisation of M from Definition 3.1.1.
It is a tuple of two elements of datatype M, thus a tuple N ∪ {∗} × N ∪ {∗}. Using this type synonym,
it is now possible to refer to the multiplicity type as ‘multiplicity’.

Definitions and functions

In an Isabelle theory, multiple definitions can be provided. The most basic definition can be created
using the definition keyword. Effectively, a definition is simply an abbreviation, i.e. a new name for
an existing construction.

An example of such a definition is the upper definition in Appendix A:

definition upper :: multiplicity ⇒ M where
upper m ≡ snd m

As can be seen, the upper definition receives one argument m of type ‘multiplicity’, a multiplicity-tuple.
It returns the upper bound of the multiplicity. In other words, it returns the second element of the tuple.
This behaviour matches what the definition tells us, as snd is the Isabelle function to return the second
element of a tuple.

Besides the definition keyword, it is possible to give recursive function definitions using the fun and
function keywords. An example of this is given as part of the linear order of M in Appendix A:

fun less-eq-M :: M ⇒ M ⇒ bool where
less-eq-M - ⋆ = True |
less-eq-M (a) (b) = (a ≤ b) |
less-eq-M - - = False

The function defined here, ‘less-eq-M’, defines the less than or equal to (≤) relation for M. Effectively,
the function describes that any value is always smaller or equal to ∗ and that two numbers (two instances
of Nr) are only less or equal when the first number is less or equal to the second number.

The same function could also have been defined using the function keyword, with the only difference
that for the function keyword, a proof for termination of the function must be provided manually.
Using the fun keyword, Isabelle will try to automatically proof termination of the function by using
the specification. This automation is very powerful and works in a variety of functions (in fact, for all
functions defined in this thesis, termination is proven automatically using fun).

Abbreviations and notation

As can be seen from the ‘less-eq-M’ function in Appendix A, the Nr and Star constructors for M are
not used directly. Instead, numbers and a star symbol (⋆) are used to respectively represent a value of
Nr and the Star constructor. The use of these symbols has been achieved using the notation keyword:

notation
Star ((⋆) 1000) and
Nr ((-) [1000] 1000)

The notation keyword allows us to introduce a new notation for many different constructs, in this case,
the Star and Nr constructors of M. Custom notations are very powerful, as Isabelle automatically
rewrites Star and Nr constructors back to this notation, so introducing this notation works in two
ways. It can help to make theorems and proofs more readable, as can also be seen from the example in
Appendix A.

Besides the introduction of an alternative notation for existing constructs, it is also possible to introduce
a new notation with the corresponding definition of what the notation means. Such a notation is achieved
using the abbreviation keyword. It has the same properties as the notation keyword, but then for a
newly defined definition. An example of this is given in Appendix A:

abbreviation multiplicity-notation :: M ⇒ M ⇒ multiplicity ((-/..-) [52 , 52] 51) where
l ..u ≡ (l ,u)

This example introduces a new notation for writing down a multiplicity tuple. It does so by writing
the newly introduced notation on the left-hand side and writing the corresponding definition on the
right-hand side. Although an abbreviation looks the same as a definition, they are different in the
sense that abbreviation only introduces a notation. To Isabelle, it is syntactic sugar, as internally,
the notation does not exist. It is only used when representing constructs to the user. This behaviour is
different from definition, as definitions exist internally and are used by the proof reasoners.

Page 17

It should be noted that there are shortcuts possible to introduce notations while defining a definition.
An example of this is the ‘within-multiplicity’ definition in Appendix A:

definition within-multiplicity :: nat ⇒ multiplicity ⇒ bool (infixl in 50) where
n in m ≡ lower m ≤ n ∧ n ≤ upper m

This function uses the infix-left (infixl) construction to define an infix notation for the definition. Just
like the abbreviation command, it is possible to use this definition on the left-hand side of the definition,
for readability.

Locales

When defining new types, there is no way to constrain the values for any of its elements. For example,
for the ‘multiplicity’ type, there is no way to prevent the second value of the tuple to be 0, since the
natural numbers include 0. In Isabelle, functions and types are always total, and there is no way to
exclude specific values of a type.

A way to work around this is by using locales. Locales are Isabelle’s approach for dealing with parametric
theories. With locales, it is possible to define a context in which specific assumptions hold. An example
of a locale is given in Appendix A:

locale multiplicity = fixes mult :: multiplicity
assumes lower-bound-valid [simp]: lower mult ̸= ⋆
assumes upper-bound-valid : upper mult ̸= 0
assumes properly-bounded [simp]: lower mult ≤ upper mult

This example introduces the multiplicity locale. Within this locale, we introduce a named-construct
‘mult’, which is a multiplicity. Then we make some assumptions which hold in the context of a multiplic-
ity. In this case, there are three assumptions. First of all, there are assumptions on the lower and upper
bound, excluding specific (but invalid) values. The final assumption captures that the lower bound is
always smaller or equal to the upper bound.

With this locale in place, it is possible to prove theorems and lemmas within the context of a multiplicity.
That means that when proving theorems and lemmas within the multiplicity context, all introduced
assumptions for ‘mult’ hold:

context multiplicity
begin

lemma upper-bound-valid-alt [simp]: upper mult ≥ 1
using less-M.elims not-less upper-bound-valid by fastforce

end

In above example, it is possible to prove that ‘upper mult ≥ 1 because the assumptions ensure that
‘upper mult ̸= 0’. Since natural numbers cannot be negative, we have that ‘upper mult ≥ 1. This
theorem can only be proven within the multiplicity context, as otherwise, the assumptions do not hold,
and ‘upper mult’ might be 0.

Within this thesis, locales are mostly used to denote valid constructs, such as a valid type graph, type
model, instance graph or instance model. These locales limit the respective record types for these
constructs by assuming the validity constraints presented in their respective sections.

Theorems and proofs

Theorems (also called lemmas) are statements that can be proven correct. For this thesis, all theorems
are either defined using the theorem or lemma keywords in Isabelle. A theorem can be defined to be
only valid under certain assumptions or can be defined to be true without any assumptions.

An example of a simple theorem can be found in Appendix A:

theorem mult-zero-unbounded-valid [simp]: n in 0..⋆
unfolding within-multiplicity-def
by simp

This theorem states that for a multiplicity 0..∗, any natural number is within bounds (any n is in 0..∗).
It can easily be proven using the definition of a natural number within a multiplicity.

A proof for a theorem is written directly after the statement. It can either be a short proof using apply-
scripts, or a proof within Isabelle’s proof language Isar. In the example above, it is a short proof using

Page 18

apply-scripts. In this case, the proof is done within one step: by simplification of the definition.

Once lemmas or theorems are proven, they can be used in the proof of other lemmas and statements.
Reusing them is done by referring to them manually, or by adding them to a set of lemmas and theorems
that Isabelle will try by default. Adding theorems to a set of default rules is done by adding a specific
keyword. For example, add [simp] to add the theorem to the set of simplification rules, or add [intro]
or [elim], to specify the theorem to be an introduction rule or elimination rule. Introduction and
elimination rules will not be further specified here; more information on these can be found in the
Isabelle documentation.

Isar

Isar stands for Intelligible semi-automated reasoning, and is an interpreted language environment for
structured formal proof documents. It allows to write down mostly humanly readable proofs in Isabelle
while still getting the advantage of semi-automated reasoning. Isar is built on the principle of writing
down multiple steps of the proof, doing less automation, in favour of readability. As a consequence,
writing Isar proofs is more work for the writer of the proof but eventually results in better humanly
readable proofs that also have value without the automated reasoning of a theorem prover.

This section will not discuss the full Isar environment in detail. The Isabelle/Isar Reference Manual
[20], included with each copy of Isabelle, already contains a very detailed explanation of all features that
Isar has to offer. Instead, we consider a small example of a proof written in Isar, picked directly from
Appendix A:

proof
fix x y z :: M
show (x < y) = (x ≤ y ∧ ¬ y ≤ x)
proof (induction x arbitrary : y)
case Star
then show ?case by simp-all

next
case (Nr x)
then show ?case by (cases y) auto

qed

show x ≤ x by (induction x) simp-all
then show x ≤ y =⇒ y ≤ x =⇒ x = y
proof (induction x arbitrary : y)
case Star
then show ?case by (cases y) simp-all

next
case (Nr x)
then show ?case by (cases y) simp-all

qed

show x ≤ y =⇒ y ≤ z =⇒ x ≤ z
proof (induction x arbitrary : y z)
case Star
then show ?case by (cases y) simp-all

next
case (Nr x)
then show ?case
proof (induction y arbitrary : z)
case Star
then show ?case by (cases z) simp-all

next
case (Nr x)
then show ?case by (cases z) simp-all

qed
qed

show x ≤ y ∨ y ≤ x
proof (induction x arbitrary : y)
case Star
then show ?case by simp

next
case (Nr x)
then show ?case by (cases y) auto

qed

Page 19

qed

In this example, we see the proof that proves that type M is an instantiation of a linear order. In order
to show that type M gives rise to a linear order, we have to proof multiple subgoals, which are:

• Correctness of <: (x < y) = (x ≤ y ∧ ¬y ≤ x)

• Reflexivity of ≤: (x ≤ x)

• Transitivity of ≤: x ≤ y ∧ y ≤ z =⇒ x ≤ z

• Correctness of the linear order: x ≤ y ∨ y ≤ x

Each of these subgoals is proven separately within the Isar proof. The proof of each subgoal is defined
by the show keyword. Important to see from the example above is that each subgoal is proven using a
nested subproof. Such subproofs can be written as apply-scripts, or using a nested Isar proof, as we see
in the example above.

Proof tactics

In order to deliver proofs, we make use of automated reasoning. Essential aspects of automated reasoning
are the different proof tactics in Isabelle. Proof tactics can be applied to a proof goal to either solve the
proof goal entirely or to somehow make the goal simpler to solve.

A vital proof tactic shown in the example above is ‘induction’. This tactic applies mathematical induc-
tion to the proof goal, splitting the goal into new subgoals that follow the structure of mathematical
induction.

The following proof tactics are extensively used within this thesis:

• ‘induction’ (also called ‘induct’): Applies mathematical induction to the proof goal. Splits the
subgoal into two or more subgoals that follow the structure of mathematical induction.

• ‘cases’: Applies a case distinction to the proof goal. It will split the proof goal into multiple subgoals,
one for each applicable case. This proof tactic works especially well for inductive definitions and
datatypes with a finite set of possible values.

• ‘intro’: Splits a proof goal and introduces new subgoals based on an introduction rule. An important
example of an introduction rule is conjI, which splits a proof goal of A ∧B into the two subgoals
A and B.

• ‘elim’: Splits a proof goal by eliminating operations and relations and providing smaller subgoals
instead of those. For example, the elimination rule disjE splits a proof goal of the form A∨B =⇒
C into two subgoals, A =⇒ C and B =⇒ C.

• ‘simp’ (and ‘simp_all’): Apply simplification to a proof goal in order to solve the problem com-
pletely. It uses simplification rules to rewrite the statement until it arrives at ‘True’, finishing the
proof.

• ‘fastforce’: Solves the proof goal by using a tactic similar to brute force. It tries all possible
outcomes but tries to be smart by excluding similar cases.

• ‘fast’: A classical solver which solves the proof goal by structurally checking cases based on a
depth-first search algorithm. Not frequently used within this thesis.

• ‘auto’: A combination of ‘simp’ and ‘fastforce’, which can also use introduction rules and elimination
rules when rewriting. In general, this proof tactic more powerful than ‘simp’ and ‘fastforce’.

• ‘blast’: Solves the proof goal by using a semantic tableau. Frequently used for solving logic prob-
lems.

• ‘metis’: Solves the proof goal by using resolution. Frequently used for more complex logic problems
that cannot be solved by ‘blast’.

Isabelle is not limited to the above-discussed proof tactics, but these tactics are the most important
ones for this thesis. Other tactics are not used either because they apply to a different kind of problem
(number arithmetic instead of logic, for example) or because they are not transparent in solving their
problem. For example, the ‘smt’ proof tactic solves a problem by using an external SMT solver. Although
these proof tactics can solve many problems, it is not transparent to the reader what steps the SMT
solver has taken to solve the problem, as opposed to the proof tactics described above. Therefore these
tactics have been excluded.

Page 20

2.3.3 Archive of Formal Proofs
Isabelle has an Archive of Formal Proofs (AFP), which is a collection of proof libraries, examples, and
larger scientific developments, mechanically checked in the theorem prover Isabelle. All theories within
this archive are organised in the way of a scientific journal such that they can be referred to by new
theories.

Graph Theory

The Isabelle AFP submission Graph Theory [16] is used as part of this thesis. This submission to the
Isabelle AFP is a formalization of directed graphs, supporting labelled multi-edges and infinite graphs.
Theorems proven for these graphs include, but are not limited to, walks, cyclicity, connectedness and
some properties of isomorphisms. All the theorems proven as part of this submission are discussed in
[2].

Within this thesis, the submission is used as part of the GROOVE formalisation within Isabelle. Within
the GROOVE formalisation, GROOVE type graphs and instance graphs are extensions of the directed
graph introduced by the Graph Theory submission. This allows Isabelle to apply theorems proven for
graphs within this submission to GROOVE graphs presented in the theories of this thesis.

Within this thesis, only a small selected set of theorems from the submission is used. This set mostly
includes theorems related to walks and cyclicity of graphs. These theorems are used to show the acyclicity
of the containment relation for instance graphs.

Page 21

Chapter 3

Formalisations

As explained in Section 1.1, the formalisation of the model transformations depends on the formali-
sation of the model languages. Therefore, the formalisations of Ecore and GROOVE need to be es-
tablished. In this chapter, the formalisations for Ecore and GROOVE used throughout this thesis are
introduced.

3.1 Global definitions
This section defines a multiplicity, which is a two tuple consisting of a lower and upper bound. In Ecore,
the notion of a multiplicity is used within a field signature (Definition 3.2.6) in order to specify a limit
on the allowed amount of values for a field. In GROOVE, multiplicities are used to bound the number
of incoming and outgoing edges for each node type via multiplicity pairs (Definition 3.3.4).

Definition 3.1.1 (Multiplicity)
A multiplicity is a two tuple consisting of a lower bound (which is any natural number) and an upper
bound (which is possibly unbounded).

M ⊆ (N× N+ ∪ ∗) ∩ ≤

The first value represents the lower bound, the second value of the tuple represents the upper bound. The
set of multiplicities M is formally defined as

M = {(l, u) | l ∈ N ∧ u ∈ (N+ ∪ ∗) ∧ l ≤ u}

It holds that ∗ is larger than each natural number, so ∀n ∈ N : n < ∗. Furthermore, the notation l..u is
used to denote (l, u) ∈ M.

Finally, any natural number n is said to be part of a multiplicity if it is within bounds, meaning:

∀m = l..u ∈ M, n ∈ N : n ∈ m ⇔ l ≤ n ≤ u

Also see multiplicity in Ecore.Multiplicity

3.2 Ecore formalisation
This section discusses a partial formalisation of Ecore based on the conceptual model discussed in [4].
The formalisation discusses both type models and instance models, as discussed in Section 2.1. This
formalisation has enough expressive power to capture all the elements of Ecore that are relevant for this
thesis.

3.2.1 Definitions
This section discusses some definitions specific to the Ecore formalisation. The definitions need to be in
place before the formalisation of type models and instance models are given.

In Ecore, all elements should be identifiable by a name. For this, we define a globally unique set of
names Name, which type and instance models share. We write down elements of Name in a sans-serif
font, such as aName.

Page 22

Definition 3.2.1 (Name)
Name is a globally fixed set of names (shared between instance models and type models). This set contains
at least the names boolean, integer, real and string, as well as true, false and nil.

A name is not enough to uniquely identify an element in Ecore. All elements in Ecore belong to a
namespace. Within a namespace, all names have to be unique, but names can be shared between
different namespaces. The combination of a namespace and a name is referred to as an identifier. An
identifier can be used to identify an element within a model uniquely.

Namespaces can be nested, which means that a namespace can contain other namespaces. Therefore
namespaces are recursively defined up to the root namespace, which we define as ⊥. This means all
namespaces are part of the root namespace, either directly or via one or more parent namespaces.

Definition 3.2.2 (Identifier/Namespace)
Identifiers and namespaces are defined as the smallest sets satisfying

Id = Namespace×Name

Namespace = Id ∪ {⊥}

where the set of identifiers is the smallest solution of the given set of equations and ⊥ denotes the root
namespace.

Also see Namespace in Ecore.Model_Namespace

For notation, we will separate namespace from the name using a dot, omitting the root namespace. For
example, ⟨⟨⊥, namespace⟩, name⟩ becomes .namespace.name.

To distinguish between the different types of data that may be present in an instance model, we define
a set of data types that can be used within the type model. The set of data types gives rise to a set of
data values, which a corresponding instance model may use.

Definition 3.2.3 (Data types)
The set of data types is defined by

DataType = {boolean, integer, real, string}

Also see DataType in Ecore.Type_Model

Definition 3.2.4 (Data type values)
For each of the various data types a single set defines the possible values. The following sets of values
are defined:

• B = {true, false}, the set of boolean values.

• C, the set of all printable characters.

• R, the set of all rational (real) numbers.

• S, defined as the set of all finite subsequences of elements in C, the set of all possible strings.

• Z, the set of all integer numbers.

Also see LiteralValue in Ecore.Instance_Model

Ecore also supports the notion of assigning a nil value, indicating there is no actual reference to any
element in an instance model.

Definition 3.2.5 (Nil value)
nil defines the unassigned value for nullable types in the type model.

Also see ClassValue in Ecore.Instance_Model

Definition 3.2.7 and Definition 3.2.15 specify in what context this value can be used.

Page 23

3.2.2 Type models
This section provides the formal definition of type models, which are models that are based on the Ecore
metamodel, of which a simplified version is given in Figure 2.1. A type model provides a set of definitions
and constraints that describe a set of instance models, which may or may not be valid according to the
type model. On the top level, it defines a set of classes, EClasses, of which instances (objects) may be
used within the instance model. The classes contain a set of fields, EStructuralFeatures, which are
identified by a name which is unique within the class. Each of these EStructuralFeatures is typed and
has a multiplicity. Class instances in the instance model may assign values to these fields (specific for
that instance) which must adhere to both the type and multiplicity of the field. The type model also
defines an inheritance relation between these classes, modelled by eSupertypes in the Ecore metamodel,
which allows classes to inherit from other classes, providing a specialisation of that class.

A type model also defines a set of enumerations, EEnums, and their values, EEnumLiterals. Each enu-
meration defines a unique type with a fixed set of values. Furthermore, a set of constants and their
types define a symbolic typed value, which relates to a specific value in an instance model. A set of
custom data types, EDataTypes, is also provided by the type model, which allows the representation of
user-defined data types.

Finally, a set of properties of the type model specifies the properties an instance model of this type model
has to satisfy in order to be valid. These properties specify constraints on the values and structure of
such an instance model.

The definition of a type model depends on the definition of various types. These types again depend on
the definition of the type model. The solution to this cyclic dependency is the smallest solution to the
set of equations given for the types and type model.

The suffix Tm is used when the definition of something depends on any type model Tm, for example,
ClassTm.

Definition 3.2.6 (Type model)
A single type model Tm is a 10-tuple, consisting of 8 sets and 2 functions, which is defined as:

Tm = ⟨Class,Enum,UserDataType, F ield,FieldSig, EnumV alue, Inh, Prop, Constant,ConstType⟩

with

• Class ⊆ Id is the set of classes (EClass objects) in Tm.

• Enum ⊆ Id is the set of enumerations (EEnum objects) in Tm.

• UserDataType ⊆ Id is the set of custom data types (EDataType objects) in Tm.

• Field ⊆ (Class×Name) is the set that maps a class to a set of field names (EStructuralFeature
objects) in Tm.

• FieldSig : Field ⇒ (TypeTm × M) is the function that maps fields to their type (as defined in
Definition 3.2.7) and multiplicity (as defined in Definition 3.1.1).

• EnumV alue ⊆ Enum×Name is the set of possible values (the EEnumLiterals) for the enumera-
tions in Tm.

• Inh ⊆ Class× Class is the inheritance relation between the classes in Tm.

• Prop ⊆ PropertyTm is the set of properties that apply to Tm (see definition Definition 3.2.10).

• Constant ⊆ Id is the set that contains all possible constants that may be used as a (symbolic)
default value.

• ConstType : Constant ⇒ TypeTm is the function that maps constants to their respective types.

where

• Class, DataType (Definition 3.2.3), Enum and UserDataType are pairwise disjoint.

• None of the elements in Class∪DataType∪Enum∪UserDataType may be in the namespace of
another element in that set.

• Inh is an asymmetric relation, of which the transitive closure is irreflexive.

Also see type_model in Ecore.Type_Model

An example type model is given in Figure 3.1. It shows 4 classes (House, Person, Renter and Room) and
a single enumeration (PaymentInterval). The Person class has 2 fields, age and name. The Renter class

Page 24

House

name : EString

Room

number : EInt

Person

name : EString

age : EInt

Renter

payment_interval :
PaymentInterval =
MONTH

PaymentInterval

MONTH

QUARTER

[1..*] rooms

[0..*] rents

[0..1] renter

(a) Type model in Ecore notation

ClassTm = {.House, .Person, .Renter, .Room}
EnumTm = {.PaymentInterval}

UserDataTypeTm = ∅
FieldTm = {(.House, name), (.House, rooms),

(.Person, age), (.Person, name),

(.Renter, payment_interval), (.Renter, rents),

(.Room, number), (.Room, renter)}

FieldSigTm =
{︂(︂(︁

.House, name
)︁
,
(︁
string, 1..1

)︁)︂
,
(︂(︁

.House, rooms
)︁
,
(︁
[setof, !.Room], 1..∗

)︁)︂
,(︂(︁

.Person, age
)︁
,
(︁
integer, 1..1

)︁)︂
,
(︂(︁

.Person, name
)︁
,
(︁
string, 1..1

)︁)︂
,(︂(︁

.Renter, payment_interval
)︁
,
(︁
.PaymentInterval, 1..1

)︁)︂
,(︂(︁

.Renter, rents
)︁
,
(︁
[setof, !.Room], 0..∗

)︁)︂
,(︂(︁

.Room, number
)︁
,
(︁
integer, 1..1

)︁)︂
,
(︂(︁

.Room, renter
)︁
,
(︁
!.Renter, 0..1

)︁)︂}︂
EnumV alueTm = {(.PaymentInterval,MONTH), (.PaymentInterval,QUARTER)}

InhTm = {(.Renter, .Person)}
PropTm = {[abstract, .Person],

[identity, {(.Person, age), (.Person, name)}], [containment, (.House, rooms)],

[opposite, (.Room, renter), (.Renter, rents)], [opposite, (.Renter, rents), (.Room, renter)],

[defaultValue, (.Renter, payment_interval), .Constant.PaymentInterval.Month]}
ConstantTm = {.Constant.PaymentInterval.Month}

ConstTypeTm = {(.Constant.PaymentInterval.Month, .PaymentInterval)}

(b) Formal definition of the type model

Figure 3.1: Example of a type model corresponding with Definition 3.2.6

Page 25

has a field payment_interval which makes use of the PaymentInterval enumeration. It also has a field rents
which defines a relation between Room and Renter. The House class has also 2 fields, a field name and a
field rooms which is a containment relation between House and Room. Moreover, we have the Room class
itself, which has 2 fields. One is called number and the other one is called renter, which is the opposite
relation between Room and Renter. Finally, we see that Renter inherits from Person.

The fields in a type model are always associated with a specific type, which defines the set of possible
values that may be assigned in an instance model. The possible types are defined by the set of data types,
classes, enumerations and user-defined data types. The set of types also consists of various aggregations
of these types, namely containers. Containers provide types for multiple values of the same type, but of
which the values may differ in number and order.

Definition 3.2.7 (Types)
Given any type model Tm, the set of types is defined as

TypeTm = DataType ∪ ClassTypeTm ∪ EnumTm ∪ UserDataTypeTm ∪ ContainerTm

The ClassTypeTm set defines both a set of nullable and proper classes. Nullable classes are classes for
which the nil (see Definition 3.2.5) value is valid, and proper classes are those classes for which the nil
value is not valid (hence both sets of classes are disjoint).

The ClassTypeTm set is defined as

ClassTypeTm = {nullable, proper} × ClassTm

A container is a type that may contain multiple values in an instance. Containers define the type of
values they contain, and the multiplicity of the container. They are defined by

ContainerTm = {bagof, setof, seqof, ordof} × TypeTm

For the interpretation of the values in {bagof, setof, seqof, ordof}, see Definition 3.2.13.

The set of types is recursively defined as the smallest solution of the equations for TypeTm and ContainerTm.

Tuples within TypeTm are written using square brackets, e.g. [bagof, int] or [nullable, C]. Furthermore,
given a C ∈ ClassTm, ?C is a short notation for the nullable variant of C, [nullable, C]. In the same
fashion, !C is the short notation for the proper variant of C, [proper, C].

Finally, we define the function uncontainer : ContainerTm ⇒ TypeTm which returns the type contained
by a container.

Also see Type in Ecore.Type_Model

In the example in Figure 3.1, the various fields make use of different types. The fields depicted as a
relation between two classes are actually of a type based on the ClassTm set. For example, the rooms
field of class House is typed by the Room class. In this case, we assume that each Room in a House is
unique. Thus the relationship is best typed by a setof container. For a setof container, the order does not
matter, and each value should be unique. We also see the example of the usage of an enumeration, the
payment_interval field on Renter uses the PaymentInterval enumeration. Finally, the Person class shows
two fields that are typed by some of the data types available, integer and string for the age and name
fields respectively.

Definition 3.2.8 (Field)
Given any type model Tm, the FieldTm relation defines a binary relation between classes and fields.
In order to retrieve the set of fields for a given class (and the fields inherited from superclasses), the
following function is defined:

fields : ClassTm ⇒ P(FieldTm)

such that
fieldsTm(c) = {f ∈ FieldTm | f = (c′, n) ∧ c ⊑Tm c′}

Given any type model Tm, the FieldSigTm function defines a mapping between fields and their signatures.
The following functions are defined to retrieve various components of a field signature:

• class : FieldTm ⇒ ClassTm

• type: FieldTm ⇒ TypeTm

• lower : FieldTm ⇒ N

Page 26

• upper : FieldTm ⇒ N+ ∪ ∗

These functions are defined as follows:

• classTm(f) = class iff f = (class, name)

• typeTm(f) = type iff FieldSigTm(f) = (type, (lower, upper))

• lowerTm(f) = lower iff FieldSigTm(f) = (type, (lower, upper))

• upperTm(f) = upper iff FieldSigTm(f) = (type, (lower, upper))

Fields can be separated into relation and attribute sets, where attributes reference (containers of) data
types, user data types and enumerations, and relations reference all other types. The sets are defined by

AttrTm = {f ∈ FieldTm | type(f) ∈ (DataType ∪ EnumTm ∪ UserDataTypeTm)∨
type(f) ∈ {setof, bagof, ordof, seqof} ×AttrTm}

RelTm =FieldTm \AttrTm

The set of attributes is recursively defined as the smallest solution of the given set of equations for
DataType, EnumTm, UserDataTypeTm and AttrTm

Also see fields in Ecore.Type_Model

Taking for example the field rents from the Renter class in the type model example in Figure 3.1, the
following properties can be identified: The type refers to Room, which is an element of the ClassTm set.
The lower and upper values are 0 and ∗ respectively (which means a Renter can rent an arbitrary number
of rooms). Furthermore, the rents field is an element of the RelTm set (it is a class container type) and
part of the fieldsTm(Renter) set, which is {payment_interval, rents}.

The various types have an underlying subtype relation, which generalises inheritance. A subtype defines
a specialisation of a supertype. Because of that, all values valid for the subtype are also valid for the
supertype (see Definition 3.2.15 for details).

Definition 3.2.9 (Subtype relation)
Given any type model Tm, ⊑Tm ⊆ TypeTm × TypeTm defines the subtype relation. It is a reflexive
partial order relation, for which the following rules can be defined (with t1, t2, t3 ∈ TypeTm and c1, c2 ∈
ClassTm):

Transitivity:

t1 ⊑Tm t2 t2 ⊑Tm t3

t1 ⊑Tm t3

Reflexivity:

t1 ⊑Tm t1

Generalization of inheritance:

(c1, c2) ∈ InhTm

?c1 ⊑Tm ?c2

(c1, c2) ∈ InhTm

!c1 ⊑Tm !c2

Nullable/Proper classes:

!c1 ⊑Tm ?c1

Also see subtype in Ecore.Type_Model

Thus, in the example, [nullable,Renter] ⊑Tm [nullable,Person] (since (Student,Person) ∈ InhTm). Fur-
thermore, it also holds that [proper,Renter] ⊑Tm [nullable,Renter], as a proper class is a subtype of a
nullable class.

A type model may specify a set of properties, Prop, which an instance model has to satisfy in order to
be valid. The following properties are defined:

Page 27

• The abstract property. This property, specified for a specific class in the type model, forbids the
instantiation of that class in any instance model. As such, it is satisfied when no object exists in
an instance model which is an instance of that class. Please note that this only holds for instances
of that exact class. Subtyping may be allowed (under the condition that those classes are not
abstract).

• The containment property. This property, specified for a relation, states that a single source object
contains all objects that are the target of this relation. Objects are contained by at most one other
object, and containment cycles are not allowed. When an object with contained objects is removed
from an instance model, all contained objects are removed as well. The constraint is satisfied when
an object is the target of no more than one containment relation, and there exists no cycle between
containment relations.

• The defaultValue property. This property specifies a default value for a field which has not been
assigned a value in an instance model. It specifies a constant for a field, which represents a
value in an instance model. It is always satisfied and influences the behaviour of possible model
transformations.

• The identity property. This property is specified for a class and a set of attributes. It is used to
specify that the values for the set of attributes uniquely identify an object on instance model level.
As such, it is satisfied when no two objects are both an instance of the class and have pairwise the
same value for all the attributes.

• The keyset property. This property is specified for a set of attributes of a class and a relation
towards that class. It ensures that each instance of that class within the given relation is uniquely
identified by the values of the set of attributes. It is satisfied that two objects must be the same
object if they are the target of the given relation, and they have pairwise-identical values for their
attributes.

• The opposite property. This property specifies that two relations are the opposite of each other,
which means that for each instance of the first relation, an instance of the second relation exists
with a switched target and source. The property is satisfied when for each pair of objects, for
each relation that exists between these objects, a reverse relation exists if both these relations are
opposite.

• The readonly property. This property, specified for a field in the type model, forbids the assign-
ment of a new value to that field in any instance model. This property only affects the possible
transformations of an instance model and is always satisfied for any specific instance model.

Definition 3.2.10 (Type model properties)
For a type model Tm a set of properties PropertyTm is defined which contains all the possible properties.
This set is defined as

PropertyTm = {[abstract, c] | c ∈ ClassTm} ∪
{[containment, r] | r ∈ RelTm} ∪
{[defaultValue, f, v] | f ⊆ FieldTm ∧ v ∈ ConstantTm} ∪
{[identity, c, A] | c ∈ ClassTm ∧A ⊆ AttrTm} ∪
{[keyset, r, A] | r ∈ RelTm ∧A ⊆ AttrTm} ∪
{[opposite, r, r′] | r, r′ ⊆ RelTm ∧ r ̸= r′} ∪
{[readonly, f] | f ∈ FieldTm}

where

• [defaultValue, f, v] is defined such that ConstTypeTm(v) ⊑Tm typeTm(f).

• [keyset, r, A] is defined such that typeTm(r) ∈ ({setof, ordof} × ClassTypeTm) with typeTm(r) =
[setof, c] ∨ typeTm(r) = [ordof, c]. Then also have that ∀(ac, an) ∈ A : !c ⊑Tm !ac.

• [opposite, r, r′] is defined such that when r = (c1, n1), r′ = (c2, n2), then it should hold that !c1 ⊑Tm

uncontainer(typeTm(r′)), !c2 ⊑Tm uncontainer(typeTm(r)), typeTm(r) ̸∈ {bagof, seqof}× TypeTm

and finally typeTm(r′) ̸∈ {bagof, seqof} × TypeTm (containers must have unique values).

Also see Property in Ecore.Type_Model

The example in Figure 3.1 also shows a few properties:

Page 28

TypeTm Multiplicity
{proper} × ClassTm 1..1
{nullable} × ClassTm 0..1
ContainerTm x..y (0 ≤ x ≤ y ∧ 1 ≤ y)
DataType 1..1
EnumTm 1..1
UserDataTypeTm 1..1

Table 3.1: The allowed multiplicities for each type

• The Person class is declared abstract (indicated by the grey looking class layout and italic name)

• The age and name fields of a Person are its identity (as indicated by the formal definition). Although
it is highly unlikely that these details would be unique in the real world, they must be in our instance
models.

• The rooms relation of House is a containment relation (shown by the filled diamond at the House
end of the containment relation).

• The rents and renter relations are opposites (as indicated by the formal definition).

• The payment_interval field has a default value MONTH (as indicated with the field definition in
the model).

With the given definitions, it is possible to define an inconsistent type model. Such a type model
is correct according to the given definitions but does not specify any valid instance model using the
definitions in Section 3.2.3. Therefore, a definition is given for a consistent type model. A consistent
type model enforces some constraints on multiplicities and properties within the type model to ensure the
satisfiability of the definitions in Section 3.2.3. Without these constraints, one or more of these definitions
can never be satisfied at all. Please note that these constraints merely support the satisfiability of these
definitions, it does not guarantee the existence of any meaningful instance model, as it might still be
possible to define a ‘consistent’ type model with conflicting multiplicities or properties.

Definition 3.2.11 (Type model consistency)
The multiplicities of the fields in FieldTm are consistent if it holds that:

typeTm(f) ∈ DataType ∪ EnumTm ∪ UserDataTypeTm ∪ (proper × ClassTm) =⇒ lowerTm(f) = 1

typeTm(f) ∈ (nullable× ClassTm) =⇒ lowerTm(f) = 0

and

typeTm(f) ̸∈ ContainerTm =⇒ upperTm(f) = 1

as indicated by Table 3.1.

The properties in PropTm are consistent if the following holds:

• [containment, r] ∈ PropTm ∧ [opposite, r, r′] ∈ PropTm =⇒ upperTm(r′) = 1 (opposite of contain-
ment relation must have upper bound of 1).

• [defaultValue, f, v] ∈ PropTm ∧ [defaultValue, f, v′] ∈ PropTm =⇒ v = v′ (unique for f).

• [identity, c1, A1] ∈ PropTm ∧ [identity, c2, A2] ∈ PropTm ∧ !c1 ⊑Tm !c2 =⇒ A1 ⊆ A2 (classes may
only have identities with attributes that are a subset of attributes part of the superclass’ identity).

• [keyset, r, A] ∈ PropTm ∧ [keyset, r, A′] ∈ PropTm =⇒ A = A′ (unique for r).

• [opposite, r, r′] ∈ PropTm ∧ [opposite, r, r′′] ∈ PropTm =⇒ r′ = r′′ (unique for r).

• [opposite, r, r′] ∈ PropTm ⇐⇒ [opposite, r′, r] ∈ PropTm (symmetry).

Then a type model Tm is consistent if and only if

• The multiplicities of all fields in FieldTm are consistent.

• All properties in PropTm are consistent.

Also see type_model in Ecore.Type_Model

Page 29

3.2.3 Instance models
An instance model represents an instance of a type model. In other words, the metamodel of an instance
model is its type model. Because of our definitions of type models, this means that the metametamodel
of an instance model is the Ecore metamodel.

An instance model consists of a set of objects, which have a corresponding class they instantiate and
an optional identifier. All objects are an instance of a specific class and are therefore typed by that
class and its superclasses. Furthermore, an instance model also specifies the values for each field of an
object. Its type determines the fields present for each object. Finally, the instance model specifies a set of
default values, which assigns a value to each of the named constants from the type model (ConstantTm),
allowing to assign default values to fields.

As with the type model and type definitions, there is a cyclic dependency between instance models and
values. In the same manner, the solution is set to be the smallest solution to the set of equations for the
instance model and values.

The suffix Im is used when the definition of something depends on any instance model Im, which itself
depends on the definition of any type model Tm.

Definition 3.2.12 (Instance model)
For a type model Tm,

Tm = ⟨Class,Enum,UserDataType, F ield,FieldSig, EnumV alue, Inh, Prop, Constant,ConstType⟩

a single instance model Im is defined as

Im = ⟨Object,ObjectClass,ObjectId,FieldValue,DefaultValue⟩

with

• Object is the set of objects (class instances) in Im.

• ObjectClass : Object ⇒ ClassTm is the function that maps each object in Im to a class.

• ObjectId : Object ⇒ Name is the injective partial function that maps each object in Im to an
identifier.

• FieldValue : (Object × FieldTm) ⇒ V alueIm is the partial function between each FieldTm of an
ObjectIm and a V alueIm (see Definition 3.2.13).

• DefaultValue : ConstantTm ⇒ V alueIm is the function that assigns a value to each constant in
the corresponding type model Tm.

where

• ∀(o, n), (o′, n′) ∈ ObjectId : n = n′ =⇒ o = o′.

• ∀o ∈ Object, f ∈ FieldTm : (o, f) ∈ dom FieldV alue ⇐⇒ ObjectClass(o) ⊑Tm class(f).

Also see instance_model in Ecore.Instance_Model

Please note that ObjectId is injective because each object must have a unique identifier. It is partial
because an object does not necessarily need an identifier: The internal object identifiers (the elements
of the set Object) are already unique. The ObjectId function is for adding an explicit identifier that is
not generated internally.

The FieldValue function maps a combination of an object and field to a value. Please note that the
function is partial because not every combination of object and field is valid. The domain of this
function is therefore made explicit by the constraints of the definition. Please note that this function is
not injective: Values can be shared across objects and do not have to be unique.

An important function is the DefaultValue function, which is defined on an instance model rather than
a type model. This definition has been chosen to accommodate for default values that reference another
object. In order to reference another object, the possible object references need to be known. These
object references are only known on the instance level, as the type level does not define any objects.

An example model is represented by Figure 3.2. It is based on the type model from the example in
Figure 3.1. It shows 2 instantiations of the Renter class: the John and Jane objects. Furthermore,
there are three instantiations of the Room class (1, 2 and 3) and one instantiation of the House class
(SmallHouse). The text after the colon in the header of each object represents the ObjectClassIm of
each object. Additionally, the text preceding the colon represents the ObjectIdIm. The Renter objects
have values assigned for all fields, including the fields of their superclasses. This also holds for the Room

Page 30

SmallHouse: House1: Room

2: Room

3: Room

John: Renter

Jane: Renter 6

12

3

4

5

name = "John Doe"
age = 24
paymen... = MONTH

name = "Jane Doe"
age = 23
paymen... = MONTH

rooms

rooms

rooms

renter

rents

renter

rents

renter

rents

number = 1

number = 2

number = 3

name = "Small House"

(a) Instance model based on Ecore notation

ObjectIm = {1, 2, 3, 4, 5, 6}
ObjectClassIm = {(1, .House), (2, .Room), (3, .Room), (4, .Room), (5, .Renter), (6, .Renter), }

ObjectIdIm = {(1, .SmallHouse), (2, .1), (3, .2), (4, .3), (5, .John), (6, .Jane)}

FieldValueIm =
{︂(︂(︁

1, (.House, name)
)︁
,
[︁
string, “Small House”

]︁)︂
,(︂(︁

1, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, 2], [obj, 3], [obj, 4]

⟩︁]︁)︂
,(︂(︁

2, (.Room, number)
)︁
,
[︁
int, 1

]︁)︂
,
(︂(︁

2, (.Room, renter)
)︁
,
[︁
obj, 5

]︁)︂
,(︂(︁

3, (.Room, number)
)︁
,
[︁
int, 2

]︁)︂
,
(︂(︁

3, (.Room, renter)
)︁
,
[︁
obj, 5

]︁)︂
,(︂(︁

4, (.Room, number)
)︁
,
[︁
int, 3

]︁)︂
,
(︂(︁

4, (.Room, renter)
)︁
,
[︁
obj, 6

]︁)︂
,(︂(︁

5, (.Person, name)
)︁
,
[︁
string, “John Doe”

]︁)︂
,(︂(︁

5, (.Person, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

5, (.Renter, payment_interval)
)︁
,
[︁
enum, (.PaymentInterval,MONTH)

]︁)︂
,(︂(︁

5, (.Renter, rents)
)︁
,
[︁
setof,

⟨︁
[obj, 2], [obj, 3]

⟩︁]︁)︂
,(︂(︁

6, (.Person, name)
)︁
,
[︁
string, “Jane Doe”

]︁)︂
,(︂(︁

6, (.Person, age)
)︁
,
[︁
int, 23

]︁)︂
,(︂(︁

6, (.Renter, payment_interval)
)︁
,
[︁
enum, (.PaymentInterval,MONTH)

]︁)︂
,(︂(︁

6, (.Renter, rents)
)︁
,
[︁
setof,

⟨︁
[obj, 4]

⟩︁]︁)︂}︂
DefaultValueIm =

{︂(︂
.Constant.PaymentInterval.Month,

[︁
enum, (.PaymentInterval,MONTH)

]︁)︂}︂
(b) Formal definition of the instance model

Figure 3.2: Example of an instance model corresponding with Definition 3.2.12

Page 31

and House objects. For attributes, the assignment to a field name represents the value of a field. For
relations, a named arrow between two objects represents the value of the field. The name of the arrow
represents the field name, and multiple arrows with the same name represent multiple values for the
same field.

Note that the objects from the example are represented by elements from N+. The conceptual model
does not give a concrete specification for elements in the ObjectIm set, but by convention objects (or in
graph terms, nodes) are represented by numbers.

For each instance model, a set of possible values is defined by the values for all data types, the possible
enumerations of the type model and the objects in the instance model. Each value has a symbol that
defines its type, allowing the values in an instance model to be typed by the types in the type model.
This symbol also allows values with identical content but a different type to be separated. For example,
any value in Z ∩ R (which can be of type integer or real). Container values aggregate multiple values,
which are typed by container types.

Definition 3.2.13 (Values)
Given any instance model Im, the set of values is V alueIm.

The set of values is then defined as

V alueIm = AtomV alueIm ∪ ContainerV alueIm

with

• AtomV alueIm = ClassV alueIm ∪ LiteralV alue ∪ ({enum} × EnumV alueTm) ∪ ({data× S})

• LiteralV alue = ({bool} × B) ∪ ({int} × Z) ∪ ({real} × R) ∪ ({string} × S)

• ClassV alueIm = {obj} × (ObjectIm ∪ nil)

• ContainerV alueIm = {setof, bagof, seqof, ordof} × V alue∗Im (where V alue∗Im allows containers to
recursively contain other containers.)

The set of values is recursively defined as the smallest solution of the given set of equations for V alueIm
and ContainerV alueIm. Furthermore, elements of the set V alueIm are written using square brackets,
e.g. [string, “Example”] or [setof, ⟨[int, 4], [int, 8]⟩].

Also see Value in Ecore.Instance_Model

For custom data types, the value is an element from the set S. In Ecore, custom data types can be made
serializable, which means a value from S can be stored for the custom data type. Thus, the value for a
custom data type can be stored in the model, but it cannot be further interpreted.

Containers attributed as setof or ordof are considered to have unique values, whereas containers attributed
as bagof or seqof are not. This means for example that a tuple with two or more identical values is not
a valid value for a container attributed as setof or ordof, see also Definition 3.2.15.

Additionally, the values of a container attributed as bagof or setof are considered unordered, and seqof
or ordof ordered. This affects the equivalency of containers, as defined in Definition 3.2.14.

In the example, the set of atomic values that are assigned consists of

{[string, “Small House”], [string, “John Doe”], [string, “Jane Doe”],
[int, 1], [int, 2], [int, 3], [int, 24], [int, 23],

[enum, (.PaymentInterval,MONTH)]

[obj, 5], [obj, 6]}

Note that only the Renter objects are in an atomic assigned value for the field (.Room, renter), as it is
the only field that references a single object. All other relations in the type model are container types,
and as such all the objects are contained in a container value as well. For example, the container value
for the rooms field of the House object is

[︁
setof,

⟨︁
[obj, 2], [obj, 3], [obj, 4]

⟩︁]︁
(in no particular order, as the

relation is of a set container type).

Each instance model also defines an equivalence relation for values. This relation allows the comparison
of aggregate values and explicitly defines equivalency for unordered container values.

Definition 3.2.14 (Value equivalency)
Two values are equivalent (≡Im ⊆ V alueIm × V alueIm) if both the type is identical and the actual value

Page 32

content is equivalent. It is defined as the smallest reflexive relation between values and the relations
defined by the rules given next.

For atomic values equivalence is defined as

v1 ∈ V alueIm v2 ∈ V alueIm v1 = v2

v1 ≡Im v2

Sequences and ordered sets are equivalent if the values in their tuples are pairwise equivalent.

Sequence container equivalency
c1 =

[︁
seqof, ⟨v1, . . . , vn⟩

]︁
c2 =

[︁
seqof, ⟨u1, . . . , un⟩

]︁
v1 ≡Im u1, . . . , vn ≡Im un

c1 ≡Im c2

Ordered set container equivalency
c1 =

[︁
ordof, ⟨v1, . . . , vn⟩

]︁
c2 =

[︁
ordof, ⟨u1, . . . , un⟩

]︁
v1 ≡Im u1, . . . , vn ≡Im un

c1 ≡Im c2

Sets and bags are equivalent if there exists a bijective function which maps elements from one set/bag to
the other, such that the mapped values are equivalent.

Set container equivalency
c1 =

[︁
setof, ⟨v1, . . . , vn⟩

]︁
c2 =

[︁
setof, ⟨u1, . . . , un⟩

]︁
∃f : {1, . . . , n} ↣→ {1, . . . , n} : vi ≡Im uf(i)

c1 ≡Im c2

Bag container equivalency
c1 =

[︁
bagof, ⟨v1, . . . , vn⟩

]︁
c2 =

[︁
bagof, ⟨u1, . . . , un⟩

]︁
∃f : {1, . . . , n} ↣→ {1, . . . , n} : vi ≡Im uf(i)

c1 ≡Im c2

Also see value_equiv in Ecore.Instance_Model

In the example, the value
[︁
setof,

⟨︁
[obj, 2], [obj, 3]

⟩︁]︁
would thus be equivalent to

[︁
setof,

⟨︁
[obj, 3], [obj, 2]

⟩︁]︁
,

as the ordering does not matter for ‘setof’ container types.

For each type in TypeTm, there exists a set of values from V alueIm which is considered valid. This is
defined by a relation V alidIm ⊆ (TypeTm × V alueIm) which defines a tuple for each valid value given a
type.

Definition 3.2.15 (Valid type values)
The V alidIm set contains tuples which indicate what values are valid for a given type, which is defined
by

V alidIm ⊆ (TypeTm × V alueIm)

An element [T, v] ∈ V alidIm may be written as

v :Im T

The contents of the V alidIm set is then defined as follows:

Data type values:

v ∈ B
[bool, v] :Im boolean

v ∈ Z
[int, v] :Im integer

v ∈ R
[real, v] :Im real

v ∈ S
[string, v] :Im string

Class values:

ObjectClassIm(o) = c !c ⊑Tm t t ∈ ClassTypeTm

[obj, o] :Im t

t ∈ {nullable} × ClassTm

[obj, nil] :Im t

Enumeration values:

(ename, eval) ∈ EnumV alueTm ename ∈ EnumTm

[enum, (ename, eval)] :Im ename

Page 33

A B[1..2] rel

(a) Example type model

:A

(b) Invalid instance model: cardi-
nality of rel too low

:A :B

:B

(c) Valid instance model: cardi-
nality of rel within bounds

:A

:B

:B

:B

(d) Invalid instance model: cardi-
nality of rel too high

Figure 3.3: Examples of valid and invalid multiplicities

User-defined data type values:

v ∈ S t ∈ UserDataTypeTm

[data, v] :Im t

Container values:

v1 :Im T, . . . , vn :Im T ⟨v1, . . . , vn⟩ distinct [setof, T] ∈ ContainerTm

[setof, ⟨v1, . . . , vn⟩] :Im [setof, T]

v1 :Im T, . . . , vn :Im T [bagof, T] ∈ ContainerTm

[bagof, ⟨v1, . . . , vn⟩] :Im [bagof, T]

v1 :Im T, . . . , vn :Im T ⟨v1, . . . , vn⟩ distinct [ordof, T] ∈ ContainerTm

[ordof, ⟨v1, . . . , vn⟩] :Im [ordof, T]

v1 :Im T, . . . , vn :Im T [seqof, T] ∈ ContainerTm

[seqof, ⟨v1, . . . , vn⟩] :Im [seqof, T]

Also see Valid in Ecore.Instance_Model

The validity of an instance model depends on the multiplicity of field values. The valid multiplicities
depend on the types and field signatures in the corresponding type model. As a consequence, a valid
multiplicity also requires the type of the value to be valid. The multiplicity is of most influence for
container values, as they can contain an arbitrary amount of values.

Definition 3.2.16 (Multiplicity validity)
A field value ((object, field), value) ∈ FieldV alueIm has a valid multiplicity if the following property
holds:

value :Im typeTm(field) ∧ value = [t, ⟨v1, . . . , vn⟩] ∈ ContainerV alueIm =⇒
lowerIm(field) ≤ n ≤ upperIm(field)

This may be written as validMulIm
(︁
((object, field), value)

)︁
.

Also see validMul in Ecore.Instance_Model

The examples shown in Figure 3.3 show different multiplicities in instance models. More specifically,
Figure 3.3a shows a type model that specifies a multiplicity of 1..2 for the rel relation. Figure 3.3b and
Figure 3.3d show two instance models that have an invalid multiplicity (too low and too high respectively),

Page 34

whereas Figure 3.3c shows an instance model with correct multiplicity (an alternative correct instance
model could have only a single instance of class B).

In order to simplify reasoning over assignments of values, the edgeCount and edge operators are de-
fined. These operators specify the number of relations (and the existence thereof) between any two
objects.

Definition 3.2.17 (Value edges)
Let a, b ∈ ObjectIm and r ∈ FieldTm where r ∈ fieldsTm(ObjectClassIm(a)). Furthermore, we define
containerCountIm(a, r, b) as

containerCountIm(a, r, b) =
⃓⃓{︁
i ∈ N |

(︁
(a, r),

[︁
t, ⟨v1, . . . , vn⟩

]︁)︁
∈ FieldValueIm ∧ vi = [obj, b]

}︁⃓⃓
Then edgeCountIm(a, r, b) is defined as

edgeCountIm(a, r, b) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

if typeTm(r) ̸∈ ContainerTm

∧
(︁
(a, r), [obj, b]

)︁
̸∈ FieldValueIm

1,
if typeTm(r) ̸∈ ContainerTm

∧
(︁
(a, r), [obj, b]

)︁
∈ FieldValueIm

containerCountIm(a, r, b), otherwise

Also see edgeCount in Ecore.Instance_Model

The edgeIm(a, r, b) predicate is defined as

edgeIm(a, r, b) = edgeCountIm(a, r, b) ≥ 1

Also see edge in Ecore.Instance_Model

As previously mentioned, the properties specified in a type model must be satisfied by the instance model
in order for it to be valid. For each property, there is a satisfaction formula defined, which must hold
for a given instance model for that instance model to be valid. The following definition specifies such a
formula for each possible property in a type model.

Definition 3.2.18 (Property satisfaction)
Given an instance model Im and a type model Tm, a property p ∈ PropTm can be satisfied, written as
Im |= p, if the satisfaction formula holds for p.

• The abstract property [abstract, c] is satisfied by some instance model Im if none of the objects in
Im is typed by class c.

Formally, the satisfaction formula for Im |= [abstract, c] is defined as:

∄o ∈ ObjectIm : ObjectClassIm(o) = c

• The containment property [containment, r] is satisfied for an instance model Im when any object
in Im that is the target for a containment relation is contained by no more than one object, and
there are no cycles in the instance model given the containment values.

Let CRTm = {r | r ∈ RelTm ∧ [containment, r] ∈ PropTm} be the set of all containment relations
in a type model Tm. The satisfaction formula for Im |= [containment, r] is then defined as:

∀o ∈ ObjectIm :
⃓⃓{︁(︁

(fo, ff), fv
)︁
|
(︁
(fo, ff), fv

)︁
∈ FieldValueIm ∧ [obj, o] = fv ∧ ff ∈ CRTm

}︁⃓⃓
≤ 1

∧
{︁
(fo, fv) |

(︁
(fo, ff), fv

)︁
∈ FieldValueIm ∧ ff ∈ CRTm

}︁
is acyclic

• The identity property [identity, c, A]. is satisfied for an instance model Im, when for each pair of
objects of class c, the values for at least one of the attributes in A is different.

Formally, the satisfaction formula for Im |= [identity, c, A] is defined as:

∀o, o′ ∈ ObjectIm : ObjectClassIm(o) = c ∧ObjectClassIm(o′) = c

∧ ∀a ∈ A : FieldValueIm((o, a)) ≡Im FieldValueIm((o′, a))

=⇒ o = o′

Page 35

SmallHouse: House1: Room

2: Room

3: Room

John: Renter

Jane: Person 6

12

3

4

5

name = "John Doe"
age = 24
paymen... = MONTH

name = "Jane Doe"
age = 23

rooms

rooms

rooms

renter

rents

renter

rents

number = 1

number = 2

number = 3

name = "Small House"

Figure 3.4: Model not satisfying the abstract property.

• The keyset property [keyset, r, A] is satisfied for an instance model Im when for each object con-
taining relation r, each pair of objects referenced by r has a different set of values for the attributes
in A. In other words, for each such pair, there is at least one value for the attributes in A that is
different for both objects.

The satisfaction formula for Im |= [keyset, r, A] is defined as:

∀o, o′, p ∈ ObjectIm : r ∈ fieldsTm(ObjectClassIm(p))

∧ edgeIm(p, r, o) ∧ edgeIm(p, r, o′)

∧ ∀a ∈ A : FieldValueIm((o, a)) ≡Im FieldValueIm((o′, a))

=⇒ o = o′

• The opposite property [opposite, r, r′] is satisfied for an instance model Im when for each object o
with a value for r, the referenced objects by r have a value for r′, which references object o. In
other words: each object referenced by r must also have a reference r′ that references the source
object that defined r.

Formally, the satisfaction formula for Im |= [opposite, r, r′] given an instance is defined as:

∀o, o′ ∈ ObjectIm : edgeCountIm(o, r, o′) = edgeCountIm(o′, r′, o)

Also see property_satisfaction in Ecore.Instance_Model

Figure 3.2 shows an example of an instance model that satisfies the [abstract,Person] property, as no
direct instantiations of the Person class exist. On the other hand, Figure 3.4 shows an instance model
that does not satisfy the property, as the Person class has been instantiated (by the object Jane).

Figure 3.5a shows a type model that defines two containment relations, in opposite direction. The
instance model given in Figure 3.5b does not satisfy the satisfaction formula for the containment property,
as there exists a cycle of containment relations. This is corrected in the instance model in Figure 3.5c,
where such a cycle does not exist (and each object is containment by at most one other object).

To illustrate the satisfaction of a identity property, assume the type model in Figure 3.1 specifies an
identity property for the name and age attributes of the Renter object. Formally, we define the following
property: [︁

identity, .Renter,
{︁
(.Person, name), (.Person, age)

}︁]︁
The example in Figure 3.6 shows an instance model that does not satisfy the property, as the Renter
objects share the same values for the name and age attributes, but are still identified as different objects.
In Figure 3.2 the values of the name and age attributes are not the same, and thus the property would
be satisfied.

An example of the keyset property is shown in Figure 3.7. In Figure 3.7a, we see the type model of
this example. We assume there exists a class A which can reference objects of class B through relation
rel. Furthermore, we assume that the key field on class B is used as key for the relation rel. In that
case, Figure 3.7b shows a violation of the keyset property, because the 2 objects of type B have the same
value for key. In Figure 3.7c, the property is satisfied as both objects of type B have a different value for
key.

In Figure 3.8, an example model is shown which does not satisfy the opposite property for the rents and
renter relations. Although the number of relations is equal, they do not have the same source and target
objects (in opposite direction). The example model in Figure 3.2 does in fact satisfy the property.

With the previous definitions, it is now possible to define when an instance model itself is valid, given
its type model.

Page 36

A B
[0..*] b

[0..*] a

(a) Example type model with two con-
tainment relations

:A :B:A

(b) Model not satisfying the con-
tainment property

:A :B

:A

(c) Model satisfying the contain-
ment property

Figure 3.5: Examples of the containment property.

SmallHouse: House1: Room

2: Room

3: Room

John1: Renter

John2: Renter 6

12

3

4

5

name = "John Doe"
age = 24
paymen... = MONTH

name = "John Doe"
age = 24
paymen... = MONTH

rooms

rooms

rooms

renter

rents

renter

rents

renter

rents

number = 1

number = 2

number = 3

name = "Small House"

Figure 3.6: Model not satisfying the identity property.

A B

key : EInt
[0..1] rel

key

(a) Example type model with relation rel that has
the keyset property defined on field key

:A 1: B

1: B
key = 1

key = 1

(b) Model not satisfying the
keyset property

:A 1: B

2: B
key = 2

key = 1

(c) Model satisfying the key-
set property

Figure 3.7: Examples of the keyset property.

SmallHouse: House1: Room

2: Room

3: Room

John: Renter

Jane: Renter 6

12

3

4

5

name = "John Doe"
age = 24
paymen... = MONTH

name = "Jane Doe"
age = 23
paymen... = MONTH

rooms

rooms

rooms

renter

rents

renter

rents

number = 1

number = 2

number = 3

name = "Small House"

Figure 3.8: Model not satisfying the opposite property.

Page 37

Definition 3.2.19 (Model validity)
An instance model Im is said to be valid with respect to type model Tm if and only if

• All values are correctly typed: ∀((obj, field), val) ∈ FieldValueIm : val :Im typeTm(field).

• All container multiplicities are valid: ∀fv ∈ FieldValueIm : validMulIm(fv).

• All properties are satisfied: ∀p ∈ PropTm : Im |= p

• All default values have the correct type: ∀c ∈ ConstantTm : DefaultValueIm(c) :Im ConstTypeTm(c).

• Tm is consistent, as defined in Definition 3.2.11.

The validity of Im with respect to Tm is written as Tm ⊢ Im.

Also see instance_model in Ecore.Instance_Model

3.3 GROOVE formalisation
This section discusses a (partial) formalisation of GROOVE. This formalisation is limited to type graphs
and instance graphs, as discussed in Section 2.2. These are the only GROOVE graph types that are
relevant to this thesis.

3.3.1 Definitions
This section discusses some definitions specific to the GROOVE formalisation. The definitions need to
be in place before the formalisations of the different GROOVE graphs are given.

GROOVE internally uses a set of labels Lab for each defined grammar. These labels are used by multiple
graph types of GROOVE, including (but not limited to) type graphs and instance graphs.

Definition 3.3.1 (Labels)
Lab is the set of labels used by GROOVE graphs. It can be subdivided into three sets:

• The set of type labels Labt ⊆ Lab

• The set of edge labels Labe ⊆ Lab

• The set of flag labels Labf ⊆ Lab

The intersection of each of the sets Labt, Labf and Labe has to be empty:

Labt ∩ Labf = ∅ ∧ Labt ∩ Labe = ∅ ∧ Labf ∩ Labe = ∅

Also see Lab in GROOVE.Type_Graph

The set Labt will be used to denote the types of nodes in the graph, while the Labe set will be used to
distinguish between different edges. The Labf set are labels for particular kind of edges which always
have an identical source and target node. These are used as flags on nodes to indicate that a specific
property holds for a node.

Although the intersection of each of the sets Labt, Labf and Labe has to be empty, the sets do not
necessarily form a partition of Lab, as one or more of the subsets can be empty. Furthermore, Lab itself
can be empty if the GROOVE grammar does not define any types, flags or edge labels.

Besides Lab that belongs to a grammar, GROOVE uses a set of reserved primitive type labels Labprim
that can never be part of the label set of a grammar.

Definition 3.3.2 (Primitive type labels)
GROOVE has a set of reserved primitive type labels Labprim:

Labprim = {bool, int, real, string}

It should hold that Lab ∩ Labprim = ∅ since the primitive type labels are reserved.

The primitive type labels allow the use of primitive types as attributes and values. The label bool
represents the type for boolean values B, int represents the type for integer values Z, real represents the
type for real numbers R and finally string represents the type for string values S.

Page 38

3.3.2 Type graphs
In GROOVE, type graphs are used to constrain the valid instance graphs within the grammar. From a
type graph follows a set of valid instance graphs that can be used for verification.

Definition 3.3.3 (Type graph)
A type graph is modeled as tuple TG:

TG = ⟨NT,ET,⊑, abs,mult, contains⟩ (3.1)

with

• NT ⊆ Labt ∪ Labprim is the set of nodes in the type graph. The nodes can consist of type labels
(see Definition 3.3.1) or primitive type labels (see Definition 3.3.2).

• ET ⊆ NT × (Labe ∪ Labf) × NT is the set of (directed) edges in the type graph, which is a
set of triples containing the source and target node, as well as the edge label or flag label (see
Definition 3.3.1) used to identify the edge.

• ⊑ ⊆ NT ×NT is the inheritance relation, the set of tuples of nodes between which an inheritance
relation exists.

• abs ⊆ NT is the (possibly empty) subset of nodes in the type graph which are considered abstract.
An instance graph cannot instantiate abstract nodes.

• mult : ET ⇒ M×M is the function which maps edges to their multiplicity pair. See Definition 3.3.4
for the definition.

• contains ⊆ ET is the set of edges which identify an containment relation.

Also see type_graph in GROOVE.Type_Graph

An example of a type graph is given in Figure 3.9. This example is similar to the type model example
discussed in Section 3.2.2. There is a node House which contains Rooms. A House also has an edge to a
primitive type label string under edge label name which represents the name of the house. Please note
that in the visual representation, syntactic sugar is used to represent this edge. Instead of an extra node
and edge, it is represented as part of the House node. This syntactic sugar can be used for edges to
primitive types and are in reality still treated as an edge to a separate node type. A Room has an edge
number, targeting the primitive type label int, which represents the number of the room within the house.
A Room can be rented by a Renter. The Renters have edges to the Rooms they rented under the edge
label rents, while a Room can access its Renter through the edge with edge label renter. A Renter extends
the abstract Person node type, which has 2 edges age and name, targeting the primitive type labels int
and string respectively. These edges represent the age and the name of the Person. Finally, a Renter has
an edge under the edge label payment_interval, which points to a PaymentInterval node type. This node
type is abstract and the edge should therefore point to one of its subtypes, PaymentInterval$MONTH or
PaymentInterval$QUARTER. This represents the interval in which the Renter pays the rent. Notable from
the definition is that the nodes set N can contain primitive type labels. As a consequence, primitive type
labels need to be added explicitly to a type graph in order to use primitive type values in an instance
graph.

Furthermore, each edge has a multiplicity pair tied to it, which is defined as the mult function in the type
graph definition. The multiplicity pair consists of an incoming multiplicity and an outgoing multiplicity.
The incoming multiplicity determines the allowed amount of nodes that share the same target node with
this edge type. On the other hand, the outgoing multiplicity determines the number of edges a single
source node may have to its target nodes.

Definition 3.3.4 (Multiplicity pair)
A multiplicity pair is defined as a tuple of two multiplicities, M×M, in which the first value denotes the
incoming multiplicity and the second value the outgoing multiplicity.

For any multiplicity pair, we define two functions:

in :M×M ⇒ M
out :M×M ⇒ M

The in function being the function which from a multiplicity pair returns the incoming multiplicity and
the out function being the function that returns the outgoing multiplicity, so:

∀m = (min,mout) ∈ multTG : in(m) = min ∧ out(m) = mout

Page 39

House
name: string

Room
number: int Renter

PaymentInterval

PaymentInterval$MONTH PaymentInterval$QUARTER

Person
age: int

name: string

rents

rooms

payment_interval

renter

(a) Type graph in GROOVEs visual notation. Multiplicities are omitted for clarity.

NTTG = {House,PaymentInterval,PaymentInterval$MONTH,

PaymentInterval$QUARTER,Person,Renter,Room, int, string}
ETTG = {(House, name, string), (House, rooms,Room),

(Person, age, int), (Person, name, string),

(Renter, payment_interval,PaymentInterval), (Renter, rents,Room),

(Room, number, int), (Room, renter,Renter)}
⊑TG = {(House,House), (PaymentInterval,PaymentInterval),

(PaymentInterval$MONTH,PaymentInterval),

(PaymentInterval$MONTH,PaymentInterval$MONTH),

(PaymentInterval$QUARTER,PaymentInterval),

(PaymentInterval$QUARTER,PaymentInterval$QUARTER),

(Person,Person), (Renter,Person), (Renter,Renter), (Room,Room), (int, int), (string, string)}
absTG = {PaymentInterval,Person}

multTG =
{︁(︁

(House, name, string), (0..∗, 1..1)
)︁
,
(︁
(House, rooms,Room), (1..1, 1..∗)

)︁
,(︁

(Person, age, int), (0..∗, 1..1)
)︁
,
(︁
(Person, name, string), (0..∗, 1..1)

)︁
,(︁

(Renter, payment_interval,PaymentInterval), (0..∗, 1..1)
)︁
,(︁

(Renter, rents,Room), (0..∗, 0..∗)
)︁
,(︁

(Room, number, int), (0..∗, 1..1)
)︁
,
(︁
(Room, renter,Renter), (0..∗, 0..1)

)︁}︁
containsTG = {(House, rooms,Room)}

(b) Formal definition of the type graph

Figure 3.9: Example of a type graph corresponding with Definition 3.3.3

Page 40

A

B

X

Yf

f

(a) Valid type graph without ambiguity

A

B

X

Yf

f

(b) Invalid type graph with an ambiguous edge type
labelled f

Figure 3.10: Example of ambiguity within edge types

Also see multiplicity_pair in GROOVE.Multiplicity_Pair

With all definitions in place, it is possible to define a valid type graph. The definition of a valid type
graph introduces some new constraint that should hold for a type graph to be valid.

Definition 3.3.5 (Type graph validity)
For a type graph to be valid, the following properties must hold:

1. There may not be any ambiguity in the use of edges: ∀(s1, l, t1) ∈ ETTG ∧ (s2, l, t2) ∈ ETTG :(︁
(s1, s2) ∈ ⊑TG ∨ (s2, s1) ∈ ⊑TG

)︁
∧
(︁
(t1, t2) ∈ ⊑TG ∨ (t2, t1) ∈ ⊑TG

)︁
=⇒ s1 = s2 ∧ t1 = t2.

2. Flags should have the same source and target node: ∀(s, l, t) ∈ ETTG : l ∈ Labf =⇒ s = t.

3. ⊑TG is a partial order (⊑TG is reflexive, transitive and anti-symmetric on N).

4. The incoming multiplicities of edges that identify a containment relation are valid: ∀e ∈ containsTG :
in(multTG(e)) = (0, 1) ∨ in(multTG(e)) = (1, 1).

Also see type_graph in GROOVE.Type_Graph

The last 3 properties presented here are mostly self-explanatory. The first property might be unclear
at first. This property prevents type graphs from having ambiguous edge types. Figure 3.10 shows an
example of such an ambiguity. In essence, when creating edges within an instance graph, there should
be an unique solution for typing the edge. In Figure 3.10a, this is always the case, even though both
edges are labelled f. If an edge labelled f references a node of type B, then the edge type should be
(Y, f,B). When an edge labelled f references a node of type A, the edge type should be (X, f,A). There
is no ambiguity possible.

Figure 3.10b shows an example of a type graph where ambiguity is possible. When a node of type Y
references a node of B using an edge labelled f, it is unclear which edge type was meant. Both (Y, f,B)
and (X, f,A) would be valid edge types here. This means there is ambiguity in how edges are typed.
The first property of Definition 3.3.5 excludes this case, since (Y, f,B) and (X, f,A) are both edge types,
while (Y,X) ∈ ⊑TG and (B,A) ∈ ⊑TG. Then according to the first property, Y should be equal to X
and B should be equal to A, which is not the case, so Figure 3.10b violates the first property, hence the
example is invalid.

3.3.3 Instance graphs
Before giving a formal definition of instance graphs, the set Node for a grammar needs to be defined.
Node is the set of possible nodes that can be part of an instance graph.

Definition 3.3.6 (Node)
We define a set Node containing all possible instance nodes. Node can be subdivided into two disjoint
and covering sets

• Nodet is the set of typed nodes for every label in Labt

• Nodev is the set of typed nodes for every label in Labprim

By definition, there exists a mapping for each element in Nodet to an element in Labt and a mapping
for each element in Nodev to Labprim. We call the mapping nodeType:

nodeType : (Nodet ⇒ Labt) ∪ (Nodev ⇒ Labprim)

Furthermore, the set Nodev can also be mapped to actual data values in GROOVE by the function value.

value : Nodev ↣→ B ∪ Z ∪ R ∪ S

Page 41

Also see Node in GROOVE.Instance_Graph

Besides the set of nodes, GROOVE also has a set Id, which is a set of identifiers that can be used to
assign each node a unique identifier.

Definition 3.3.7 (Identifiers)
Define a global set Id which consists of unique identifiers.

With these definitions, it is possible to define an instance graph in GROOVE.

Definition 3.3.8 (Instance graph)
An instance graph corresponding to a type graph TG is modeled as tuple IG:

IG = ⟨N,E, ident⟩ (3.2)

where

• N ⊆ Nodet ∪Nodev is the set of nodes in the instance graph.

• E ⊆ N × ETTG ×N is the set of edges in the instance graph. They consist of a source and target
node from N and are typed by an edge from the corresponding type graph.

• ident : Id ⇒ (N ∩ Nodet) is a partial injective function which maps selected identifiers from the
set Id to a node from N typed by a label in Labt.

Also see instance_graph in GROOVE.Instance_Graph

An example of an instance graph is given in Figure 3.11. This instance graph is typed by the type graph
in the example in Figure 3.9. As we can see, there is one node typed House, three nodes typed Room
and two nodes typed Renter. The node typed House is identified by identifier ‘TwoRem’ and is named
“Small House” and contains all the three room nodes. The first two nodes that are typed room Room
have identifiers ‘Longhorn’ and ‘Shorthorn’ and are rented by the first Renter identified as ‘Renter1’, as
is visible from the rents and renter edges. The last node typed Room has identifier ‘onghornLay’ and is
rented by the second Renter identified as ‘Renter2’. Please note how the instance graph only has one
instance of PaymentInterval$MONTH which is reused by both Renter nodes. Also, notice how there is no
instance of PaymentInterval$QUARTER since there is no Renter referencing it. Also notice how the Renter
typed objects now have an age and name edge, which are inherited from the Person node type.

As we have seen in the example, all nodes and edges in the instance graph are typed based on the types
defined in its type graph. We define two functions for mapping nodes and edges to their type in the
type graph. The nodes in the instance graph can be mapped to their type in the type graph using the
function typen, while edges in the instance graph can be mapped to their type in the type graph using
the function typee.

Definition 3.3.9 (Types)
The type of a node in the instance graph can be determined using typen

typen : NIG ⇒ Labt ∪ Labprim

for which holds that ∀n ∈ NIG : typen(n) = nodeType(n).

The type of an edge in the instance graph can be determined using typee

typee : EIG ⇒ ETTG

for which holds that ∀e = (src, etype, tgt) ∈ EIG : typee(e) = etype

Since instance graphs are typed by a corresponding type graph, the type graph imposes some constraints
on the instance graph to ensure that the instance graph is valid. If any of these constraints are violated,
the instance graph is considered invalid.

Definition 3.3.10 (Instance graph validity)
An instance graph is valid if the following constraints hold:

1. The nodes must be properly typed: ∀n ∈ NIG : typen(n) ∈ NTTG.

2. The source of each edge must be properly typed: ∀e ∈ EIG : typen
(︁
src(e)

)︁
⊑TG src

(︁
typee(e)

)︁
.

Page 42

Renter1 : Renter
age = 24

name = "J.A."

Renter2 : Renter
age = 23

name = "M.S."

PaymentInterval$MONTH

Longhorn : Room
number = 1

Shorthorn : Room
number = 2

onghornLay : Room
number = 3

TwoRem : House
name = "Small House"

rooms

rooms

renter

renter

renter

payment_interval rooms

rents

payment_interval

rents

rents

(a) Instance graph in GROOVEs visual notation

NIG = {house, payintervalmonth, renter1, renter2, room1, room2, room3,

1, 2, 3, 23, 24, “J.A.”, “M.S.”, “Small House”}
typen =

{︁
(house,House), (payintervalmonth,PaymentInterval$MONTH),

(renter1,Renter), (renter2,Renter), (room1,Room), (room2,Room), (room3,Room),

(1, int), (2, int), (3, int), (23, int), (24, int), (“J.A.”, string), (“M.S.”, string), (“Small House” , string)
}︁

EIG =
{︁(︁

house, (House, name, string), “Small House”
)︁
,
(︁
house, (House, rooms,Room), room1

)︁
,(︁

house, (House, rooms,Room), room2
)︁
,
(︁
house, (House, rooms,Room), room3

)︁
,(︁

renter1, (Person, age, int), 24
)︁
,
(︁
renter2, (Person, age, int), 23

)︁
,(︁

renter1, (Person, name, string), “J.A.”
)︁
,
(︁
renter2, (Person, name, string), “M.S.”

)︁
,(︁

renter1, (Renter, payment_interval,PaymentInterval), payintervalmonth
)︁
,(︁

renter2, (Renter, payment_interval,PaymentInterval), payintervalmonth
)︁
,(︁

renter1, (Renter, rents,Room), room1
)︁
,
(︁
renter1, (Renter, rents,Room), room2

)︁
,(︁

renter2, (Renter, rents,Room), room3
)︁
,
(︁
room1, (Room, number, int), 1

)︁
,(︁

room2, (Room, number, int), 2
)︁
,
(︁
room3, (Room, number, int), 3

)︁
,(︁

room1, (Room, renter,Renter), renter1
)︁
,
(︁
room2, (Room, renter,Renter), renter1

)︁
,(︁

room3, (Room, renter,Renter), renter2
)︁}︁

identIG = {(TwoRem, house), (Renter1, renter1), (Renter2, renter2),
(Longhorn, room1), (Shorthorn, room2), (onghornLay, room3)}

(b) Formal definition of the instance graph

Figure 3.11: Example of an instance graph corresponding with Definition 3.3.8

Page 43

3. The target of each edge must be properly typed: ∀e ∈ EIG : typen
(︁
tgt(e)

)︁
⊑TG tgt

(︁
typee(e)

)︁
.

4. Abstract types cannot have instances: ∀n ∈ NIG : typen(n) ̸∈ absTG.

5. The outgoing multiplicity of each edge type must be adhered to: ∀et ∈ ETTG : ∀n ∈ NIG :
typen(n) ⊑TG src(et) =⇒ |{e ∈ EIG | src(e) = n ∧ typee(e) = et}| ∈ out(multTG(et)).

6. The incoming multiplicity of each edge type must be adhered to: ∀et ∈ ETTG : ∀n ∈ NIG :
typen(n) ⊑TG tgt(et) =⇒ |{e ∈ EIG | tgt(e) = n ∧ typee(e) = et}| ∈ in(multTG(et)).

7. Nodes must be contained by at most one other node: ∀n ∈ NIG : |{e ∈ EIG | tgt(e) = n ∧ typee(e) ∈
containsTG}| ≤ 1.

8. There may be no cycle between the containment edges in EIG.

Also see instance_graph in GROOVE.Instance_Graph

The first property just ensures that all nodes in an instance graph are typed by the corresponding type
graph. Figure 3.12 shows an example of an invalid instance graph typed by the type graph of Figure 3.9.
The instance graph is invalid, since the type Kitchen is not defined within the type graph. Changing the
type of this node to Room would make the instance graph valid.

The second and third property ensure that the source and target nodes of edges are correctly typed.
Figure 3.13 shows an example of an invalid instance graph typed by the type graph of Figure 3.9. In this
example, the Room-typed node has a number edge connected to a boolean value. Since the target type
of the (Room, number, int) is an integer, the third property is violated. Therefore, the instance graph is
invalid. Changing the boolean node to any integer node would make the example valid.

The fourth property ensures that an instance graph cannot instantiate abstract node types. Figure 3.14
shows an example of an invalid instance graph typed by the type graph of Figure 3.9. In the example,
the only node in the graph is typed by the Person type. However, the Person type is abstract within the
type graph. Therefore, the fourth property is violated, and the instance graph is invalid. Changing the
type of the node to Renter would make the instance graph valid.

The fifth and sixth property ensure the correctness of multiplicities within an instance graph. The fifth
property ensures that the outgoing multiplicity is not violated. The sixth property ensures that the
incoming multiplicity is not violated. Figure 3.15 shows two instance graphs that are once more typed
by type graph Figure 3.9 but are both invalid. Figure 3.15a violates the fifth property, since the node
typed by type House needs to have at least one outgoing edge labelled rooms to a node of type Room.
Figure 3.15b violates the sixth property, since the node typed by type Room needs to have at least
one incoming edge labelled rooms from a node of type House. Merging these two instance graphs and
adding an edge labelled rooms from the House-typed node to the Room-typed node would result in a
valid instance graph.

The seventh property ensures that nodes can only be contained by one other node. Figure 3.16 shows an
example of an instance graph that is typed by type graph Figure 3.9, but for this example we assume that
Hotel is a defined type similar to House, with the same outgoing edge types and properties. In this case,
the incoming multiplicity property (the sixth property) will not be violated, as (House, rooms,Room) and
(Hotel, rooms,Room) are different edge types with their own incoming multiplicity. However, the example
is still invalid. (House, rooms,Room) and (Hotel, rooms,Room) are both containment edges, which means
that the Room-typed node now has 2 incoming containment edges. The seventh property prohibits this,
and therefore the example is invalid.

The eighth and final property ensures that there are no cycles in the containment edges of an instance
graph. Consider the instance graph shown in Figure 3.17b with is typed by type graph Figure 3.17a.
This instance graph is valid, as there is no cycle in the containment edges. However, the instance graph
shown in Figure 3.17c is invalid, because it has a cycle in the containment edges. This violates the eighth
property and is therefore invalid.

Page 44

Kitchen
number = 1

House
name = "Other house"

rooms

Figure 3.12: Invalid instance graph with improper node types

Room
number = true

House
name = "Other house"

rooms

Figure 3.13: Invalid instance graph with improper type for the target of edge number

Person
age = 25

name = "L.M."

Figure 3.14: Invalid instance graph with node of type Person

House
name = "Other house"

(a) Outgoing multiplicity violated

Room
number = 1

(b) Incoming multiplicity violated

Figure 3.15: Invalid instance graphs with their multiplicity constraints violated

Room
number = 1

House
name = "Other house"

Hotel
name = "Some fancy Hotel"

rooms rooms

Figure 3.16: Invalid instance graph with multiple containments for the Room-typed node

A

B

y x

(a) Type graph

A

B

A

y

x

(b) Correct use: No cycles

A By
x

(c) Incorrect use: Cycle present

Figure 3.17: Example of correct and incorrect use of containment edges

Page 45

Chapter 4

Transformation framework

The previous chapter introduced formalisations for GROOVE graphs and Ecore models. These formali-
sations allow us to reason about the GROOVE graphs and Ecore models in a formal way. In this chapter,
these formalisations will be the foundation of a framework that allows for the formalisation of model
transformations between Ecore and GROOVE.

Creating a formal transformation between Ecore models and GROOVE graphs is non-trivial, first and
foremost because Ecore has more instrumentation to express individual elements that GROOVE cannot
express directly. For example, Ecore models can directly express enumeration types and values, whereas
GROOVE cannot. The same holds for properties related to relations and attributes, as well as user-
defined data types and constants. This difference in instrumentation can be solved using encodings,
which the transformation framework should support.

Another complexity with a formal transformation between Ecore models and GROOVE graphs is the
infinite number of possible transformation functions. Because of the existence of infinitely many models
and graphs, there is also an infinite number of model transformations possible. Since it is impractical to
prove the correctness of each transformation function, a more systematic solution is needed. As discussed
in Section 1.3, the transformation framework will be structured such that individual transformation
functions can be composed while preserving the correctness. This composability allows the user to
combine simple transformations into more substantial transformations, without the need of proving
these transformations separately.

Section 4.1 explains how encodings are used to deal with the elements that GROOVE cannot express
directly. Section 4.2 explains the structure of the transformation framework, which is set up to allow the
composability of transformation functions. The remaining sections in this chapter further explain how
to apply this structure.

4.1 Encodings
As explained earlier, GROOVE graphs cannot express all elements of Ecore directly. A way to deal with
the limitations of GROOVE graphs is by using encodings for these Ecore elements. By encoding, we
mean expressing these Ecore model elements as one or more GROOVE graph elements, which preserve
all information. The set of GROOVE graph elements then represents a code for the corresponding Ecore
element.

For example, consider an enumeration type in Ecore, EnumExample, given in Figure 4.1. GROOVE has no
direct way to express enumerations. However, we can use different encodings to express the enumeration
type indirectly. One of such encodings would be to create an abstract node type for the enumeration type
and then create a separate node type for each of the values corresponding to the enumeration type. Each
of these node types then inherits from the abstract enumeration node type created earlier. An example

EnumExample

LITERAL_A

LITERAL_B

LITERAL_C

Figure 4.1: Example of an enumeration type in Ecore notation

Page 46

EnumExample

EnumExample$LITERAL_A EnumExample$LITERAL_B EnumExample$LITERAL_C

(a) GROOVE type graph

EnumExample$LITERAL_A EnumExample$LITERAL_BEnumExample$LITERAL_C

(b) GROOVE instance graph

Figure 4.2: Encoding of the EnumExample enumeration type as different nodes types

EnumExample
LITERAL_A
LITERAL_B
LITERAL_C

(a) GROOVE type graph

EnumExample
LITERAL_A

EnumExample
LITERAL_B

EnumExample
LITERAL_C

(b) GROOVE instance graph

Figure 4.3: Encoding of the EnumExample enumeration type as one type with multiple flags

of this specific encoding is given in Figure 4.2. Within an instance graph, each value of an enumeration
type is expressed by creating a single node. Each of these nodes is typed by the value node types created
earlier. When referencing a value, an edge to the corresponding node can be created.

Another possible encoding uses flags in GROOVE. In that case, a single node type is created for the
enumeration type. This node type gets multiple flags, one for each possible enumeration value. An
example of this is shown in Figure 4.3a. Within an instance graph, a node is created for each value of
the enumeration type. Each of these nodes is typed by the enumeration node type and has a single flag
corresponding to the value. An example of these instances is given in Figure 4.3b. This way, each node
expresses one value of the enumeration type. When referencing an enumeration value, an edge to the
corresponding node can be created.

As the previous examples have shown, creating encodings allows for expressing elements that are unique
to Ecore in GROOVE. Moreover, each of these elements might correspond to multiple encodings. The
examples for enumeration types presented earlier are non-exhaustive. There are more encodings for
enumeration types possible. In other words, there is no single encoding for each element. The choice
between different encodings depends on the user, as each encoding might have its advantages and disad-
vantages.

4.2 Structure
Creating a transformation function between Ecore models and GROOVE graphs is a difficult task be-
cause there are infinitely many possible transformations that vary in complexity. Complexity in these
transformation functions is created by the validity constraints of Ecore models and GROOVE graphs.
Another factor that adds complexity is the possibility to mix encodings. For example, a transformation
function might encode enumeration type A different from enumeration type B.

The transformation framework presented in this chapter deals with the complexity by providing a struc-
ture for building transformation functions out of smaller building blocks. The framework starts with a
trivial transformation (the transformation between an empty model and an empty graph). It then adds
elements to this transformation, such that we build the model and graph iteratively. When applying each
building block, the transformation function is extended while preserving its correctness. Furthermore,
the framework ensures that when applying each building block, the correctness of both the model and
graph is preserved.

Page 47

E

MA MB

MAB

N

GA GB

GAB

f

fA fB

fA ⊔ fB

Figure 4.4: General structure for building a transformation function

In order for the framework to guarantee these properties, the smaller building blocks are applied in a
general structure. A visualisation of this structure is given in Figure 4.4. The structure assumes that
we have a partially build model MA, which is valid and corresponds to a valid graph GA under a certain
bijective transformation function fA. In other words, fA transforms model MA to graph GA and the
inverse of fA transforms graph GA to model MA.

The next step is to add a building block. This building block is represented by valid model MB , which
corresponds to a valid graph GB under a specific bijective transformation function fB . Furthermore, we
assume that MA and MB are entirely distinct except for some set of elements E, which are the only
shared elements among the models MA and MB . In the same way, we assume that graphs GA and GB

are entirely distinct except for a set of nodes N , which are the only shared nodes between graphs GA

and GB . Finally, there also exists a specific bijective transformation function f , which transforms the
set of elements E to the set of nodes N and vice-versa.

Within the framework, we will present a way to merge models MA and MB into a model MAB , while
preserving validity. We also present a way to merge graphs GA and GB intro graph GAB , again while
preserving validity. Then we present a way to merge two transformation functions fA and fB in order to
create a transformation function fA ⊔ fB , which transforms the combined model MAB to the combined
graph GAB . By performing these operations, a larger transformation function is created which can
transform the larger model MAB to the larger graph GAB . Since MAB and GAB are valid and fA ⊔ fB
is a bijective transformation function between model MAB and graph GAB , it is possible to reuse them
as the next MA, GA and fA in the model and add another building block. This way, complex model
structures and transformation functions are created iteratively while each step in the process maintains
a formal proof.

In the following sections, the explained structure is applied to type models and type graphs, and then
also to instance models and instance graphs. These sections also discuss the necessary definitions and
proofs needed to apply the framework.

4.3 Type models and type graphs
In this section, the proposed framework structure is applied to type models and type graphs. First, the
general structure and its requirements are discussed. Then the required definitions and theorems are
given.

Figure 4.5 shows an alternation of the structure proposed in Section 4.2 applied to type models and
type graphs. As before, type model TmA represents the partially build model which corresponds to type
graph TGA under the transformation function fA. Type model TmB represents the next building block
to add to this model. It corresponds to type graph TGB under the bijective transformation function
fB .

Type models TmA and TmB are entirely distinct except for a set types T , which means T ⊆ TypeTmA
∧

T ⊆ TypeTmB
. In a similar way, type graphs TGA and TGB are entirely distinct except for a set of

node types N , so N ⊆ NTTGA
∧N ⊆ NTTGB

.

Type models TmA and TmB are combined into type model TmAB using Definition 4.3.1. In a similar way
type graphs TGA and TGB are combined into type graph TGAB using Definition 4.3.14. Lemma 4.3.12
and Lemma 4.3.23 respectively show that TmAB and TGAB are valid. Then Definition 4.3.26 and
Definition 4.3.31 can be used to merge the transformation functions fA and fB into fA ⊔ fB , where

Page 48

T

TmA TmB

TmAB

N

TGA TGB

TGAB

f

fA fB

fA ⊔ fB

Figure 4.5: Structure for transforming between type models and type graphs

Theorem 4.3.28 and Theorem 4.3.29 show that fA ⊔ fB is again a valid transformation function trans-
forming TmAB to TGAB . Similarly, Theorem 4.3.35 and Theorem 4.3.36 show that the inverse function
of fA ⊔ fB is again a valid transformation function transforming TGAB to TmAB .

4.3.1 Combining type models
The structure of Figure 4.5 shows that the type models TmA and TmB are combined into one type
model TmAB . This section provides the definition of this combination and its corresponding theorems.
Please note that the definitions presented here are as generic as possible, and do not actively take into
account that TmA and TmB are mostly distinct. This bit of information is added later as part of a
theorem and proof.

Definition 4.3.1 (Combination function on type models)
combine is a binary function on two type models which combines two type models into one type model.
It is defined as follows:

combine(TmA, TmB) = ⟨Class = ClassTmA
∪ ClassTmB

Enum = EnumTmA
∪ EnumTmB

UserDataType = UserDataTypeTmA
∪ UserDataTypeTmB

Field = FieldTmA
∪ FieldTmB

FieldSig = fieldsig_combine(TmA, TmB)

EnumV alue = EnumV alueTmA
∪ EnumV alueTmB

Inh = InhTmA
∪ InhTmB

Prop = prop_combine(TmA, TmB)

Constant = ConstantTmA
∪ ConstantTmB

ConstType = consttype_combine(TmA, TmB)⟩

In which fieldsig_combine is given as part of Definition 4.3.2, prop_combine as part of Definition 4.3.4
and consttype_combine as part of Definition 4.3.3.

Also see tmod_combine in Ecore.Type_Model_Combination

The combination of two type models is rather simple in its definition, at least for all the sets defined
as part of a type model. Intuitively, the definition makes sense. To combine two type models, we need
the types from both type models, so we merge the classes, enumerations types, enumeration values and
user-defined data types. The constants should also be preserved, so these are merged too. To preserve
all attributes and relations, we merge the set of fields and the inheritance relation as well.

Merging the different functions is done by using a new function. First, the combination of field signatures
will be discussed.

Definition 4.3.2 (Combination function for field signatures)
fieldsig_combine is a partial function on two type models which returns a new function FieldTmAB

⇒

Page 49

A B[3..6] x

(a) First type model TmA

A B[1..4] x

(b) Second type model TmA

A B[3..4] x

(c) Combined type model TmAB

Figure 4.6: Combination of field signatures when field is present in both type models

(TypeTmAB
×M). It is defined as follows:

fieldsig_combine(TmA, TmB , f) =⎧⎪⎨⎪⎩
s iff ∈ FieldTmA

∩ FieldTmB
∧ typeTmA

(f) = typeTmB
(f)

FieldSigTmA
(f) iff ∈ FieldTmA

\ FieldTmB

FieldSigTmB
(f) iff ∈ FieldTmB

\ FieldTmA

where

s =

(︃
typeTmA

(f),
(︂
max

(︁
lower(FieldSigTmA

(f)), lower(FieldSigTmB
(f))

)︁
..

min
(︁
upper(FieldSigTmA

(f)),upper(FieldSigTmB
(f))

)︁)︂)︃
Also see tmod_combine_fieldsig in Ecore.Type_Model_Combination

Although the above definition looks quite complex, the intuition behind it is straightforward. For a field
that only occurs in type model TmA, the field signature over from TmA is copied. For a field that only
occurs in TmB , the field signature from TmB is copied. In the case that a field occurs in both TmA

and TmB , it should be the case that the type of the fields is the same. If this is indeed the case, the
field type is copied, and a new multiplicity is created. This multiplicity takes the maximum of the lower
bounds of the field in TmA and TmB as new lower bound, and the minimum of the upper bounds of the
field in TmA and TmB as new upper bound.

An example of the combination of two field signatures in the case of a field being present in both TmA

and TmB is given in Figure 4.6. It is possible to combine the field x, since in both TmA and TmB field x
references class type B. The multiplicity for both field signatures is different and is combined as defined.
The maximum of the lower bounds is taken, which results in max(3, 1) = 3. Furthermore, the minimum
of the upper bounds is taken, which results in min(6, 4) = 4. Therefore the multiplicity of x in TmAB

will become 3..4.

Besides a function for field signatures, a type model also defines a function for constant types. The
combination of constant types is discussed in the next definition.

Definition 4.3.3 (Combination function for constant types)
consttype_combine is a partial function on two type models which returns a new function
ConstantTmAB

⇒ TypeTmAB
. It is defined as follows:

consttype_combine(TmA, TmB , c) =⎧⎪⎨⎪⎩
ConstTypeTmA

(c) if c ∈ ConstantTmA
∩ ConstantTmB

∧ ConstTypeTmA
(c) = ConstTypeTmB

(c)

ConstTypeTmA
(c) if c ∈ ConstantTmA

\ ConstantTmB

ConstTypeTmB
(c) if c ∈ ConstantTmB

\ ConstantTmA

Also see tmod_combine_const_type in Ecore.Type_Model_Combination

The definition of the combination of constant types is similar to the combination of field signatures. The
combination of constant types is less complicated because there is no notion of multiplicities involved.

Page 50

By definition, if a constant only occurs in TmA, the constant type of TmA is copied. For constants that
only occur in TmB , the constant type of TmB is copied. In case that a constant occurs in both TmA

and TmB , the constant is copied if the constant types for that constant are the same in both TmA and
TmB .

The last definition that remains to be given is the definition of combining the set of properties. The set
of properties cannot be united by merely taking the union of PropTmA

and PropTmB
since this might

invalidate the satisfaction of these properties on the level of an instance graph. Instead, the inductive
set prop_combine is defined to specify under which circumstances a property can be combined.

Definition 4.3.4 (Combination of model properties)
prop_combine(TmA, TmB) is defined as a subset of PropTmA

∪ PropTmB
. The contents of the set are

then defined as follows:

For abstract properties:

[abstract, c] ∈ PropTmA
c ̸∈ ClassTmB

[abstract, c] ∈ prop_combine(TmA, TmB)

[abstract, c] ∈ PropTmB
c ̸∈ ClassTmA

[abstract, c] ∈ prop_combine(TmA, TmB)

[abstract, c] ∈ PropTmA
[abstract, c] ∈ PropTmB

[abstract, c] ∈ prop_combine(TmA, TmB)

For containment properties:

[containment, r] ∈ PropTmA

[containment, r] ∈ prop_combine(TmA, TmB)

[containment, r] ∈ PropTmB

[containment, r] ∈ prop_combine(TmA, TmB)

For defaultValue properties:

[defaultValue, f, v] ∈ PropTmA
f ̸∈ FieldTmB

[defaultValue, f, v] ∈ prop_combine(TmA, TmB)

[defaultValue, f, v] ∈ PropTmB
f ̸∈ FieldTmA

[defaultValue, f, v] ∈ prop_combine(TmA, TmB)

[defaultValue, f, v] ∈ PropTmA
[defaultValue, f, v] ∈ PropTmB

[defaultValue, f, v] ∈ prop_combine(TmA, TmB)

For identity properties:

[identity, c, A] ∈ PropTmA
c ̸∈ ClassTmB

[identity, c, A] ∈ prop_combine(TmA, TmB)

[identity, c, A] ∈ PropTmB
c ̸∈ ClassTmA

[identity, c, A] ∈ prop_combine(TmA, TmB)

[identity, c, A] ∈ PropTmA
[identity, c, A] ∈ PropTmB

[identity, c, A] ∈ prop_combine(TmA, TmB)

For keyset properties:

[keyset, r, A] ∈ PropTmA
r ̸∈ FieldTmB

[keyset, r, A] ∈ prop_combine(TmA, TmB)

[keyset, r, A] ∈ PropTmB
r ̸∈ FieldTmA

[keyset, r, A] ∈ prop_combine(TmA, TmB)

[keyset, r, A] ∈ PropTmA
[keyset, r, A] ∈ PropTmB

[keyset, r, A] ∈ prop_combine(TmA, TmB)

For opposite properties:

[opposite, r1, r2] ∈ PropTmA
r1 ̸∈ FieldTmB

r2 ̸∈ FieldTmB

[opposite, r1, r2] ∈ prop_combine(TmA, TmB)

[opposite, r1, r2] ∈ PropTmB
r1 ̸∈ FieldTmA

r2 ̸∈ FieldTmA

[opposite, r1, r2] ∈ prop_combine(TmA, TmB)

[opposite, r1, r2] ∈ PropTmA
[opposite, r1, r2] ∈ PropTmB

[opposite, r1, r2] ∈ prop_combine(TmA, TmB)

Page 51

For readonly properties:

[readonly, f] ∈ PropTmA
f ̸∈ FieldTmB

[readonly, f] ∈ prop_combine(TmA, TmB)

[readonly, f] ∈ PropTmB
f ̸∈ FieldTmA

[readonly, f] ∈ prop_combine(TmA, TmB)

[readonly, f] ∈ PropTmA
[readonly, f] ∈ PropTmB

[readonly, f] ∈ prop_combine(TmA, TmB)

Also see tmod_combine_prop in Ecore.Type_Model_Combination

As can be seen from the definition of prop_combine(TmA, TmB), properties are only copied under
specific circumstances. For abstract properties, it holds that a class is only abstract in the combination
of TmA and TmB if the class is abstract in both TmA and TmB or if the class is abstract in one of
them, and the class does not occur in the other. Intuitively, this makes sense for correctness. If a class
is abstract in both type models, there will not be instances of that class in any of the combined instance
models type by those type models. The same holds if the class only occurs in one of the type models, as
an instance model cannot contain an instance of a class that is not present in its type model.

For the containment property, it holds that the containment property is always copied over. There are
no other conditions here. If there is a containment property in PropTmA

∪ PropTmB
it will also be in

the combination of TmA and TmB .

A default value property is copied over from one of the type models if the other type model does not have
the corresponding field defined. Furthermore, a default value may be in the combination of properties
of TmA and TmB if the field occurs in both, and both have the same constant set as the default value
for the field. Intuitively, this last requirement makes sense. If we set a default value for a field within a
type model, it should not change after combining the type model with another type model, as instance
models might depend on the default value set for that field.

Identity properties follow a similar pattern to default value properties. An identity is copied over from
one of the type models if the corresponding class is not defined in the other type model. Furthermore,
an identity can be preserved if it is set for the same class and attributes in both type models. Again,
intuitively, this is the desired solution. If a type model has a class of which a set of attributes can uniquely
define the instances, then this should also be the case after the combination with another type model.
Merging two sets of attributes might have preserved the identity property as well, but this would be a
questionable decision from a practical standpoint, as this means that the identity of instances changes,
which makes no sense in real-world scenarios.

The argumentation for identity properties also holds for keyset properties. Therefore these follow a
similar pattern, in which the keyset properties of a type model are only copied if the corresponding
field does not occur in the other type model, or if the keyset property for a field occurs with the same
attributes in both type models.

The opposite property is preserved if it occurs in a type model, but the other type model does not define
both of the corresponding fields. Alternatively, the property is preserved if it occurs in both type models
with the same fields. All different ways to combine an opposite property would result in an invalid type
model according to Definition 3.2.11, which is undesired.

The read-only properties follow a similar pattern to the abstract properties. If a field is read-only in
both type models, then it is read-only in the combination. Furthermore, if a field is read-only in one of
the type models and the field is not defined in the other type model, then the read-only property can be
copied too.

With all definitions in place, it is possible to provide a larger example. Suppose the model of a multi-
protocol chat application. It consists of Threads of Messages. Since the application is multi-protocol,
each Thread can use one of the supported Protocols. The formal definition of the model of such an
application could be as follows:

Page 52

Protocol

IRC

MTPROTO

BLUB-E

Thread

id : EString

proto : Protocol =
IRC

Message

text : EString
[0..*] messages

(a) The chat application model TmChat

Contact

name : EString

id :
ProtocolSpecificId

Thread

ProtocolSpecificId

java.lang.Object

[0..1] contact

(b) The contact extension model TmExtension

Contact

name : EString

Protocol

IRC

MTPROTO

BLUB-E

Thread

id : EString

proto : Protocol =
IRC

Message

text : EString

ProtocolSpecificId

java.lang.Object

[0..*] messages

[0..1] contact

(c) The extended chat application model TmChatExt

Figure 4.7: Example of the combination of type models

Page 53

TmChat = ⟨ Class = {.Message, .Thread}
Enum = {.Protocol}

UserDataType = {}
Field = {(.Message, text), (.Thread, id), (.Thread,messages), (.Thread, proto)}

FieldSig =
{︁(︁

(.Message, text), (string, 1..1)
)︁
,
(︁
(.Thread, id), (string, 1..1)

)︁
,(︁

(.Thread,messages), ([seqof, !.Message], 0..∗)
)︁
,(︁

(.Thread, proto), (.Protocol, 1..1)
)︁)︁}︁

EnumV alue = {(.Protocol, IRC), (.Protocol,MTPROTO), (.Protocol,BLUB−E)}
Inh = {}

Prop =
{︁(︁

identity, .Message, {(.Thread, id)}
)︁}︁

Constant = {}
ConstType = {}

⟩

An visual representation of TmChat is included as Figure 4.7a. Now, assume a model that represents
an extension to this application, adding support for Contacts. Each thread can belong to a Contact. A
Contact has a name and some identifier that is protocol specific. For that identifier, the user-defined
data type ProtocolSpecificId is introduced. This extension could formally be defined as:

TmExtension = ⟨ Class = {.Contact, .Thread}
Enum = {}

UserDataType = {.ProtocolSpecificId}
Field = {(.Contact, name), (.Contact, id), (.Thread, contact)}

FieldSig =
{︁(︁

(.Contact, name), (string, 1..1)
)︁
,(︁

(.Contact, id), (.ProtocolSpecificId, 1..1)
)︁
,(︁

(.Thread, contact), (?.Contact, 0..1)
)︁)︁}︁

EnumV alue = {}
Inh = {}

Prop =
{︁(︁

identity, .Contact, {(.Contact, id)}
)︁}︁

Constant = {}
ConstType = {}

⟩

The visual representation of the extension is included as Figure 4.7b. Now, using Definition 4.3.1, it is
possible to combine these models into one model. This will yield the following model:

Page 54

TmChatExt = ⟨ Class = {.Contact, .Message, .Thread}
Enum = {.Protocol}

UserDataType = {.ProtocolSpecificId}
Field = {(.Contact, name), (.Contact, id), (.Message, text),

(.Thread, contact), (.Thread, id), (.Thread,messages),

(.Thread, proto)}
FieldSig =

{︁(︁
(.Contact, name), (string, 1..1)

)︁
,(︁

(.Contact, id), (.ProtocolSpecificId, 1..1)
)︁
,(︁

(.Message, text), (string, 1..1)
)︁
,(︁

(.Thread, contact), (?.Contact, 0..1)
)︁)︁
,(︁

(.Thread, id), (string, 1..1)
)︁
,(︁

(.Thread,messages), ([seqof, !.Message], 0..∗)
)︁
,(︁

(.Thread, proto), (.Protocol, 1..1)
)︁)︁}︁

EnumV alue = {(.Protocol, IRC), (.Protocol,MTPROTO), (.Protocol,BLUB−E)}
Inh = {}

Prop =
{︁(︁

identity, .Contact, {(.Contact, id)}
)︁
,(︁

identity, .Message, {(.Thread, id)}
)︁}︁

Constant = {}
ConstType = {}

⟩

A visual representation of this combined model is included as Figure 4.7c. The example perfectly shows
why the combination of type models is useful: It allows for building larger models out of smaller building
blocks. This is the exact goal of this definition within the transformation framework.

Although the definitions of the combination of type models are given, no mathematical properties or
theorems are defined yet. Some mathematical properties hold for the combination of type models, that
will be presented in the following theorems.

Theorem 4.3.5 (Commutativity of the combination of type models)
Assume that TmA and TmB are type models, then the combine function is commutative:

combine(TmA, TmB) = combine(TmB , TmA)

Also see tmod_combine_commute in Ecore.Type_Model_Combination

Theorem 4.3.6 (Associativity of the combination of type models)
Assume that TmA, TmB and TmC are type models, then the combine function is associative:

combine(combine(TmA, TmB), TmC) = combine(TmA, combine(TmB , TmC))

Also see tmod_combine_assoc in Ecore.Type_Model_Combination

Theorem 4.3.7 (Idempotence of the combination of type models)
Assume that TmA is a type model and that it is consistent in the sense of Definition 3.2.11. Then the
following property holds:

combine(TmA, TmA) = TmA

Also see tmod_combine_idemp_alt in Ecore.Type_Model_Combination

These properties follow directly from Definition 4.3.1, but the corresponding proofs will not be included
here. It should be noted that these properties are indeed proven correct as part of this thesis, and the
corresponding proofs are validated within Isabelle.

Besides these properties, the combination of type models also has an identity element. The empty type
model represents this identity element, but it needs to be defined first:

Page 55

Definition 4.3.8 (Empty type model)
Let Tmϵ be the empty type model. Tmϵ is defined as:

Tmϵ = ⟨Class = {}
Enum = {}
UserDataType = {}
Field = {}
FieldSig = undefined

EnumV alue = {}
Inh = {}
Prop = {}
Constant = {}
ConstType = undefined⟩

Theorem 4.3.9 (Correctness of the empty type model)
The empty type model, Tmϵ, is consistent with respect to Definition 3.2.11.

Also see tmod_empty_correct in Ecore.Type_Model

The proof for the correctness of the empty type model is trivial. Still, a validated version of this proof
can be found within the Isabelle theories of this thesis.

As mentioned earlier, the empty type model acts as an identity element when combining two type models.
The following theorem specifies this behaviour.

Theorem 4.3.10 (Identity of the combination of type models)
Assume that TmA is a type model and that it is consistent in the sense of Definition 3.2.11. Then Tmϵ

acts as an identity element in the combination function:

combine(Tmϵ, TmA) = TmA

Also see tmod_combine_identity_alt in Ecore.Type_Model_Combination

Once more, the proof of this theorem follows directly from the definition. Therefore, the corresponding
proof will not be included here, but a validated version can be found within the Isabelle theories of this
thesis.

A final desired property for the combination of type models is a correctness property. Theorem 4.3.11
defines the theorem under which the combination of type models is a consistent type model. Please note
that this theorem is a generic theorem, which does not take into account that the type models are mostly
distinct.

Theorem 4.3.11 (Consistency of the combination of type models)
Assume that TmA and TmB are consistent type models in the sense of Definition 3.2.11. Furthermore,
assume the following properties:

• For all shared fields, the type is the same in both type models: ∀f ∈ FieldTmA
∩ FieldTmB

:
typeTmA

(f) = typeTmB
(f)

• For all shared fields, the combination of the multiplicities is a valid multiplicity: ∀f ∈ FieldTmA
∩

FieldTmB
: max

(︁
lower(FieldSigTmA

(f)), lower(FieldSigTmB
(f))

)︁
..min

(︁
upper(FieldSigTmA

(f)),

upper(FieldSigTmB
(f))

)︁
∈ M

• For all shared constants, the constant type is the same in both models: ∀f ∈ ConstantTmA
∩

ConstantTmB
: ConstTypeTmA

(f) = ConstTypeTmB
(f)

• Identifiers used for a class in TmA cannot be used for an enumeration type or user-defined data
type in TmB: ∀c ∈ ClassTmA

: c ̸∈ EnumTmB
∧ c ̸∈ UserDataTypeTmB

.

• Identifiers used for a class in TmB cannot be used for an enumeration type or user-defined data
type in TmA: ∀c ∈ ClassTmB

: c ̸∈ EnumTmA
∧ c ̸∈ UserDataTypeTmA

.

• Identifiers used for an enumeration type in TmA cannot be used for a class or user-defined data
type in TmB: ∀c ∈ EnumTmA

: c ̸∈ ClassTmB
∧ c ̸∈ UserDataTypeTmB

.

• Identifiers used for an enumeration type in TmB cannot be used for a class or user-defined data
type in TmA: ∀c ∈ EnumTmB

: c ̸∈ ClassTmA
∧ c ̸∈ UserDataTypeTmA

.

Page 56

• Identifiers from TmA may not be in the namespace of an identifier in TmB: ∀x ∈ ClassTmA
∪

EnumTmA
∪ UserDataTypeTmA

; y ∈ ClassTmB
∪ EnumTmB

∪ UserDataTypeTmB
:

x not in the namespace of y

• Identifiers from TmB may not be in the namespace of an identifier in TmA: ∀x ∈ ClassTmB
∪

EnumTmB
∪ UserDataTypeTmB

; y ∈ ClassTmA
∪ EnumTmA

∪ UserDataTypeTmA
:

x not in the namespace of y

• The transitive closure of the inheritance relation is irreflexive: (InhTmA
∪ InhTmB

)+ is irreflexive

• For any superclass with an identity, the identity of the subclasses must be a superset of the identity
of the superclass: ∀c1 c2 A1 A2 : [identity, c1, A1] ∈ prop_combine(TmA, TmB) ∧ [identity, c2, A2] ∈
prop_combine(TmA, TmB) ∧ c1 ̸= c2 ∧ !c1 ̸⊑TmA

!c2 ∧ !c1 ̸⊑TmB
!c2 ∧ !c1 ⊑combine(TmA,TmB)

!c2 =⇒ A ⊆ B

• For all shared fields, if TmA defines a default value, TmB should define the same default value, and
vice versa: ∀f ∈ FieldTmA

∩ FieldTmB
: [defaultValue, f, v] ∈ PropTmA

⇐⇒ [defaultValue, f, v] ∈
PropTmB

.

• For all shared classes, if TmA defines a identity, TmB should define the same identity, and vice
versa: ∀c ∈ ClassTmA

∩ ClassTmB
: [identity, c, A] ∈ PropTmA

⇐⇒ [identity, c, A] ∈ PropTmB
.

• For all shared fields, if TmA defines a keyset, TmB should define the same keyset, and vice versa:
∀r ∈ FieldTmA

∩ FieldTmB
: [keyset, r, A] ∈ PropTmA

⇐⇒ [keyset, r, A] ∈ PropTmB
.

• For all shared fields, if TmA defines an opposite property, TmB should define the same oppo-
site property, and vice versa: ∀r ∈ FieldTmA

∩ FieldTmB
: [opposite, r, r′] ∈ PropTmA

⇐⇒
[opposite, r, r′] ∈ PropTmB

Then combine(TmA, TmB) is a consistent type model in the sense of Definition 3.2.11

Also see tmod_combine_correct in Ecore.Type_Model_Combination

Proof. To proof that combine(TmA, TmB) is a consistent type model, it needs to be shown that
combine(TmA, TmB) gives rise to a valid structure for a type model and that Definition 3.2.11 holds.
For readability, define TmAB to be combine(TmA, TmB).

Structural properties

• All elements of ClassTmAB
are elements of Id.

Follows from ClassTmA
⊆ Id and ClassTmB

⊆ Id.

• All elements of EnumTmAB
are elements of Id.

Follows from EnumTmA
⊆ Id and EnumTmB

⊆ Id.

• All elements of UserDataTypeTmAB
are elements of Id.

Follows from UserDataTypeTmA
⊆ Id and UserDataTypeTmB

⊆ Id.

• All elements of FieldTmAB
are elements of (ClassTmAB

×Name).

Follows from FieldTmA
⊆ (ClassTmA

×Name) and FieldTmB
⊆ (ClassTmB

×Name). To complete
the proof, use ClassTmAB

= ClassTmA
∪ ClassTmB

.

• For each field f , FieldSigTmAB
(f) must be an element of (TypeTmAB

×M).

First, note that TypeTmAB
= TypeTmA

∪ TypeTmB

(see tmod_combine_type in Ecore.Type_Model_Combination).

If f ∈ FieldTmA
\ FieldTmB

, then FieldSigTmAB
(f) ∈ (TypeTmAB

×M).

Similarly, if f ∈ FieldTmB
\ FieldTmA

, then FieldSigTmAB
(f) ∈ (TypeTmAB

×M).

If f ∈ FieldTmA
∩FieldTmB

, then typeTmA
(f) = typeTmB

(f) by assumption. Also, the combined
multiplicity is correct by assumption. Therefore FieldSigTmAB

(f) ∈ (TypeTmAB
×M).

• All elements of EnumV alueTmAB
are elements of (EnumTmAB

×Name).

Follows from EnumV alueTmA
⊆ (EnumTmA

× Name) and EnumV alueTmB
⊆ (EnumTmB

×
Name). To complete the proof, use EnumTmAB

= EnumTmA
∪ EnumTmB

.

• All elements of InhTmAB
are elements of (ClassTmAB

× ClassTmAB
).

Follows from InhTmA
⊆ (ClassTmA

× ClassTmA
) and InhTmB

⊆ (ClassTmB
× ClassTmB

). Fur-
thermore, ClassTmAB

= ClassTmA
∪ ClassTmB

.

Page 57

• All elements of PropTmAB
are elements of PropertyTmAB

.

Make a case distinction for the different possible properties.

– For [abstract, c] ∈ PropTmAB
, use the fact that c ∈ ClassTmA

∪ ClassTmB
. Therefore,

[abstract, c] ∈ PropertyTmAB
.

– For [containment, r] ∈ PropTmAB
, use the fact that RelTmAB

= RelTmA
∪ RelTmB

(see
tmod_combine_rel in Ecore.Type_Model_Combination). Then have [containment, r] ∈

PropertyTmAB
.

– For [defaultValue, f, v] ∈ PropTmAB
, use the fact that f ∈ FieldTmA

∪ FieldTmB
and v ∈

ConstantTmA
∪ConstantTmB

. Using a case disinction on the combination of properties, it is
possible to show that ConstTypeTmAB

(v) ⊑TmAB
typeTmAB

(f). Therefore, [defaultValue, f, v] ∈
PropertyTmAB

.

– For [identity, c, A] ∈ PropTmAB
, use the fact that c ∈ ClassTmA

∪ ClassTmB
and A ⊆

fieldsTmA
∨ A ⊆ fieldsTmB

. Then have that A ⊆ fieldsTmAB
Therefore, [identity, c, A] ∈

PropertyTmAB
.

– For [keyset, r, A] ∈ PropTmAB
, use the fact that RelTmAB

= RelTmA
∪ RelTmB

(see
tmod_combine_rel in Ecore.Type_Model_Combination) to show r ∈ RelTmAB

. Also use the
fact that AttrTmAB

= AttrTmA
∪AttrTmB

to show A ⊆ AttrTmAB
(see tmod_combine_attr

in Ecore.Type_Model_Combination). Because types are preserved after combining, it is pos-
sible to show that ∀f ∈ A : uncontainer(typeTmAB

(r)) ⊑TmAB
classTmAB

(f). Furthermore,
typeTmAB

(r) ∈ ({setof, ordof} × ClassTypeTmAB
). Therefore, [keyset, r, A] ∈ PropertyTmAB

.

– For [opposite, r, r′] ∈ PropTmAB
, use the fact that RelTmAB

= RelTmA
∪ RelTmB

(see
tmod_combine_rel in Ecore.Type_Model_Combination) to show r ∈ RelTmAB

and r′ ∈
RelTmAB

. Because types are preserved after combining, it is possible to show that !c1 ⊑TmAB

uncontainer(typeTmAB
(r′)), !c2 ⊑TmAB

uncontainer(typeTmAB
(r)),

typeTmAB
(r) ̸∈ {bagof, seqof} × TypeTmAB

and finally typeTmAB
(r′) ̸∈ {bagof, seqof} ×

TypeTmAB
. Therefore, [opposite, r, r′] ∈ PropertyTmAB

.

– For [readonly, f] ∈ PropTmAB
, use the fact that f ∈ FieldTmA

∪ FieldTmB
. Therefore,

[readonly, f] ∈ PropertyTmAB
.

• All elements of ConstantTmAB
are elements of Id.

Follows from ConstantTmA
⊆ Id and ConstantTmB

⊆ Id.

• For each constant c, ConstTypeTmAB
(c) must be an element of TypeTmAB

.

First, note that TypeTmAB
= TypeTmA

∪ TypeTmB

(see tmod_combine_type in Ecore.Type_Model_Combination).

If c ∈ ConstantTmA
\ ConstantTmB

, then ConstTypeTmAB
(f) ∈ TypeTmAB

.

Similarly, if c ∈ ConstantTmB
\ ConstantTmA

, then ConstTypeTmAB
(c) ∈ TypeTmAB

.

If c ∈ ConstantTmA
∩ConstantTmB

, then ConstTypeTmA
(c) = ConstTypeTmB

(c) by assumption.
Therefore ConstTypeTmAB

(c) ∈ TypeTmAB
.

• ClassTmAB
, DataType, EnumTmAB

and UserDataTypeTmAB
are pairwise disjoint.

Notice that ClassTmA
, DataType, EnumTmA

, UserDataTypeTmA
are pairwise disjoint. Also,

ClassTmB
, DataType, EnumTmB

, UserDataTypeTmB
are pairwise disjoint.

Use that ClassTmAB
= ClassTmA

∪ ClassTmB
, EnumTmAB

= EnumTmA
∪ EnumTmB

and
UserDataTypeTmAB

= UserDataTypeTmA
∪ UserDataTypeTmB

. Use this to split the possible
cases.

Only the case where one element is from ClassTmA
∪ EnumTmA

∪ UserDataTypeTmA
and one

element is from ClassTmB
∪ EnumTmB

∪ UserDataTypeTmB
cannot be proven directly. For this

case, the proof follows from the assumptions.

• None of the elements in ClassTmAB
, DataType, EnumTmAB

and UserDataTypeTmAB
may be in

the namespace of another element in that set.

Use that ClassTmAB
= ClassTmA

∪ ClassTmB
, EnumTmAB

= EnumTmA
∪ EnumTmB

and
UserDataTypeTmAB

= UserDataTypeTmA
∪ UserDataTypeTmB

. Use this to split the possible
cases.

It is not possible to directly proof the cases where the identifier comes from ClassTmA
∪EnumTmA

∪
UserDataTypeTmA

and the namespace comes from ClassTmB
∪EnumTmB

∪UserDataTypeTmB
.

Page 58

Furthermore, it is also not possible for the cases where the identifier comes from ClassTmB
∪

EnumTmB
∪ UserDataTypeTmB

and the namespace comes from
ClassTmA

∪EnumTmA
∪UserDataTypeTmA

. For these cases, the proof follows from the assump-
tions.

• InhTmAB
is an asymmetric relation, of which the transitive closure is irreflexive.

The transitive closure of InhTmAB
is irreflexive by assumption. Then show that InhTmAB

is an
asymmetric relation using the assumption that the transitive closure of InhTmAB

is irreflexive.

Consistency properties

• For all typeTmAB
(f) ∈ DataType ∪ EnumTmAB

∪ UserDataTypeTmAB
∪ (proper × ClassTmAB

),
it holds that lowerTmAB

(f) = 1.

Use the fact that typeTmAB
(f) = typeTmA

(f) or typeTmAB
(f) = typeTmB

(f).

If typeTmAB
(f) = typeTmA

(f), then typeTmAB
(f) ∈ DataType∪EnumTmAB

∪UserDataTypeTmAB
∪

(proper × ClassTmAB
) only when typeTmA

(f) ∈ DataType ∪ EnumTmA
∪ UserDataTypeTmA

∪
(proper × ClassTmA

).

Then if typeTmA
(f) ∈ DataType ∪EnumTmA

∪ UserDataTypeTmA
∪ (proper× ClassTmA

), then
lowerTmA

(f) = 1. As a consequence, it must be that lowerTmAB
(f) = 1.

If typeTmAB
(f) = typeTmB

(f), then typeTmAB
(f) ∈ DataType∪EnumTmAB

∪UserDataTypeTmAB
∪

(proper × ClassTmAB
) only when typeTmB

(f) ∈ DataType ∪ EnumTmB
∪ UserDataTypeTmB

∪
(proper × ClassTmB

).

Then if typeTmB
(f) ∈ DataType ∪EnumTmB

∪ UserDataTypeTmB
∪ (proper×ClassTmB

), then
lowerTmB

(f) = 1. As a consequence, it must be that lowerTmAB
(f) = 1.

• For all typeTmAB
(f) ∈ (nullable× ClassTmAB

), it holds that lowerTmAB
(f) = 0.

Use the fact that typeTmAB
(f) = typeTmA

(f) or typeTmAB
(f) = typeTmB

(f).

If typeTmAB
(f) = typeTmA

(f), then typeTmAB
(f) ∈ (nullable×ClassTmAB

) only when typeTmA
(f) ∈

(nullable× ClassTmA
).

Then if typeTmA
(f) ∈ (nullable × ClassTmA

), then lowerTmA
(f) = 0. As a consequence, it must

be that lowerTmAB
(f) = 0.

If typeTmAB
(f) = typeTmB

(f), then typeTmAB
(f) ∈ (nullable×ClassTmAB

) only when typeTmB
(f) ∈

(nullable× ClassTmB
).

Then if typeTmB
(f) ∈ (nullable× ClassTmAB

), then lowerTmB
(f) = 0. As a consequence, it must

be that lowerTmAB
(f) = 0.

• For all typeTmAB
(f) ̸∈ ContainerTmAB

, it holds that upperTmAB
(f) = 1.

Use the fact that typeTmAB
(f) = typeTmA

(f) or typeTmAB
(f) = typeTmB

(f).

If typeTmAB
(f) = typeTmA

(f), then typeTmAB
(f) ̸∈ ContainerTmAB

only when typeTmA
(f) ̸∈

ContainerTmA
.

Then if typeTmA
(f) ̸∈ ContainerTmA

, then upperTmA
(f) = 1. As a consequence, must also be

upperTmAB
(f) = 1.

If typeTmAB
(f) = typeTmB

(f), then typeTmAB
(f) ̸∈ ContainerTmAB

only when typeTmB
(f) ̸∈

ContainerTmB
.

Then if typeTmB
(f) ̸∈ ContainerTmB

, then upperTmB
(f) = 1. As a consequence, must also be

upperTmAB
(f) = 1.

• [containment, r] ∈ PropTmAB
∧ [opposite, r, r′] ∈ PropTmAB

=⇒ upperTmAB
(r′) = 1.

Use the fact that [containment, r] ∈ PropTmAB
means that [containment, r] ∈ PropTmA

or [containment, r] ∈
PropTmB

Also use the fact that [opposite, r, r′] ∈ PropTmAB
means that [opposite, r, r′] ∈ PropTmA

\
PropTmB

, [opposite, r, r′] ∈ PropTmB
\ PropTmA

or opposite, r, r′] ∈ PropTmA
∩ PropTmB

.

Based on these two facts, make a case distinction of all 6 possible cases. The case where [opposite, r, r′] ∈
PropTmA

\PropTmB
and [containment, r] ∈ PropTmB

is invalid, since r cannot be part of FieldTmB

by definition of the combination of properties. Similarly, the case [opposite, r, r′] ∈ PropTmB
\

PropTmA
and [containment, r] ∈ PropTmA

is also invalid.

Page 59

For the other cases, at least upperTmA
(r′) = 1 or upperTmB

(r′) = 1. The upper bound of r in the
other type model may be larger than 1. By the definition of the combination of field signatures,
upperTmAB

(r′) = 1.

• [defaultValue, f, v] ∈ PropTmAB
∧ [defaultValue, f, v′] ∈ PropTmAB

=⇒ v = v′.

Use the fact that [defaultValue, f, v] ∈ PropTmAB
means that [defaultValue, f, v] ∈ PropTmA

\
PropTmB

, [defaultValue, f, v] ∈ PropTmB
\PropTmA

or [defaultValue, f, v] ∈ PropTmA
∩PropTmB

.

Also use the similar fact for [defaultValue, f, v′] ∈ PropTmAB
.

Now make a case distinction based on these facts. The case where [defaultValue, f, v] ∈ PropTmA
\

PropTmB
and [defaultValue, f, v′] ∈ PropTmB

\ PropTmA
is invalid, since f cannot be part of

FieldTmB
by definition of the combination of properties. Similarly, the case [defaultValue, f, v] ∈

PropTmB
\ PropTmA

and [defaultValue, f, v′] ∈ PropTmA
\ PropTmB

is also invalid.

In all other cases, use the fact that v = v′ in both TmA and TmB to show that v = v′ in TmAB .

• [identity, c1, A1] ∈ PropTmAB
∧ [identity, c2, A2] ∈ PropTmAB

∧ !c1 ⊑TmAB
!c2 =⇒ A1 ⊆ A2.

First establish that !c1 ⊑TmA
!c2, !c1 ⊑TmB

!c2 or !c1 ̸⊑TmA
!c2 ∧ !c1 ̸⊑TmB

!c2.

Then use the fact that [identity, c1, A1] ∈ PropTmAB
means that [identity, c1, A1] ∈ PropTmA

\
PropTmB

, [identity, c1, A1] ∈ PropTmB
\ PropTmA

or [identity, c1, A1] ∈ PropTmA
∩ PropTmB

.

Also use the similar fact for [identity, c2, A2] ∈ PropTmAB
.

Make a case distinction using the facts above. The case where !c1 ⊑TmA
!c2, [identity, c1, A1] ∈

PropTmA
\ PropTmB

and [identity, c2, A2] ∈ PropTmB
\ PropTmA

is invalid, since c2 must be
part of ClassTmA

to have !c1 ⊑TmA
!c2. Similarly, the case !c1 ⊑TmB

!c2, [identity, c1, A1] ∈
PropTmB

\ PropTmA
and [identity, c2, A2] ∈ PropTmA

\ PropTmB
is also invalid.

Furthermore, the case where !c1 ⊑TmA
!c2 and [identity, c1, A1] ∈ PropTmB

\ PropTmA
is invalid,

as well as !c1 ⊑TmB
!c2 and [identity, c1, A1] ∈ PropTmA

\ PropTmB

Then solve the proof for all cases where !c1 ⊑TmA
!c2 or !c1 ⊑TmB

!c2. In the cases where
!c1 ⊑TmB

!c2 or !c1 ̸⊑TmA
!c2 ∧ !c1 ̸⊑TmB

!c2, distinguish once more two cases: c1 = c2 and
c1 ̸= c2.

In case that c1 = c2, show that when !c1 ⊑TmA
!c2 or !c1 ⊑TmB

!c2, it cannot be the case that
!c1 ⊑TmAB

!c2 because of the reflexitivity of the subtype relation.

Finally, if c1 ̸= c2, the proof is given by assumption.

• [keyset, r, A] ∈ PropTmAB
∧ [keyset, r, A′] ∈ PropTmAB

=⇒ A = A′.

Use the fact that [keyset, r, A] ∈ PropTmAB
means that [keyset, r, A] ∈ PropTmA

\ PropTmB
,

[keyset, r, A] ∈ PropTmB
\ PropTmA

or [keyset, r, A] ∈ PropTmA
∩ PropTmB

.

Also use the similar fact for [keyset, r, A′] ∈ PropTmAB
.

Now make a case distinction based on these facts. The case where [keyset, r, A] ∈ PropTmA
\

PropTmB
and [keyset, r, A′] ∈ PropTmB

\PropTmA
is invalid, since r cannot be part of FieldTmB

by
definition of the combination of properties. Similarly, the case [keyset, r, A] ∈ PropTmB

\PropTmA

and [keyset, r, A′] ∈ PropTmA
\ PropTmB

is also invalid.

In all other cases, use the fact that A = A′ in both TmA and TmB to show that A = A′ in TmAB .

• [opposite, r, r′] ∈ PropTmAB
∧ [opposite, r, r′′] ∈ PropTmAB

=⇒ r′ = r′′.

Use the fact that [opposite, r, r′] ∈ PropTmAB
means that [opposite, r, r′] ∈ PropTmA

\ PropTmB
,

[opposite, r, r′] ∈ PropTmB
\ PropTmA

or [opposite, r, r′] ∈ PropTmA
∩ PropTmB

.

Also use the similar fact for [opposite, r, r′′] ∈ PropTmAB
.

Now make a case distinction based on these facts. The case where [opposite, r, r′] ∈ PropTmA
\

PropTmB
and [opposite, r, r′′] ∈ PropTmB

\PropTmA
is invalid, since r cannot be part of FieldTmB

by definition of the combination of properties. Similarly, the case [opposite, r, r′] ∈ PropTmB
\

PropTmA
and [opposite, r, r′′] ∈ PropTmA

\ PropTmB
is also invalid.

In all other cases, use the fact that r′ = r′′ in both TmA and TmB to show that r′ = r′′ in TmAB .

• [opposite, r, r′] ∈ PropTmAB
⇐⇒ [opposite, r′, r] ∈ PropTmAB

.

Use the fact that [opposite, r, r′] ∈ PropTmAB
means that [opposite, r, r′] ∈ PropTmA

\ PropTmB
,

[opposite, r, r′] ∈ PropTmB
\ PropTmA

or [opposite, r, r′] ∈ PropTmA
∩ PropTmB

.

Page 60

Show that if [opposite, r, r′] ∈ PropTmA
\ PropTmB

, then [opposite, r′, r] ∈ PropTmA
\ PropTmB

.
And therefore, [opposite, r′, r] ∈ PropTmAB

.

Also show that if [opposite, r, r′] ∈ PropTmB
\PropTmA

, then [opposite, r′, r] ∈ PropTmB
\PropTmA

.
And therefore, [opposite, r′, r] ∈ PropTmAB

.

Finally, show that if [opposite, r, r′] ∈ PropTmA
∩ PropTmB

, then [opposite, r′, r] ∈ PropTmA
∩

PropTmB
. And therefore, [opposite, r′, r] ∈ PropTmAB

.s

The proofs of all these individual properties complete the entire proof.

As explained before, Theorem 4.3.11 does not take into account that the type models are supposed to be
distinct except for a set of types. The following lemma is an alternation of the previous theorem, which
takes this into account.

Lemma 4.3.12 (Consistency of the combination (mostly) distinct of type models)
Assume that TmA and TmB are consistent type models in the sense of Definition 3.2.11. Also, ensure
that the type models are fully distinct except for a set of types T . Furthermore, assume the following
properties:

• Identifiers used for a class in TmA cannot be used for an enumeration type or user-defined data
type in TmB: ∀c ∈ ClassTmA

: c ̸∈ EnumTmB
∧ c ̸∈ UserDataTypeTmB

.

• Identifiers used for a class in TmB cannot be used for an enumeration type or user-defined data
type in TmA: ∀c ∈ ClassTmB

: c ̸∈ EnumTmA
∧ c ̸∈ UserDataTypeTmA

.

• Identifiers used for an enumeration type in TmA cannot be used for a class or user-defined data
type in TmB: ∀c ∈ EnumTmA

: c ̸∈ ClassTmB
∧ c ̸∈ UserDataTypeTmB

.

• Identifiers used for an enumeration type in TmB cannot be used for a class or user-defined data
type in TmA: ∀c ∈ EnumTmB

: c ̸∈ ClassTmA
∧ c ̸∈ UserDataTypeTmA

.

• Identifiers from TmA may not be in the namespace of an identifier in TmB: ∀x ∈ ClassTmA
∪

EnumTmA
∪ UserDataTypeTmA

; y ∈ ClassTmB
∪ EnumTmB

∪ UserDataTypeTmB
:

x not in the namespace of y

• Identifiers from TmB may not be in the namespace of an identifier in TmA: ∀x ∈ ClassTmB
∪

EnumTmB
∪ UserDataTypeTmB

; y ∈ ClassTmA
∪ EnumTmA

∪ UserDataTypeTmA
:

x not in the namespace of y

• The transitive closure of the inheritance relation is irreflexive: (InhTmA
∪ InhTmB

)+ is irreflexive

• For any superclass with an identity, the identity of the subclasses must be a superset of the identity
of the superclass: ∀c1 c2 A1 A2 : [identity, c1, A1] ∈ prop_combine(TmA, TmB) ∧ [identity, c2, A2] ∈
prop_combine(TmA, TmB) ∧ c1 ̸= c2 ∧ !c1 ̸⊑TmA

!c2 ∧ !c1 ̸⊑TmB
!c2 ∧ !c1 ⊑combine(TmA,TmB)

!c2 =⇒ A ⊆ B

• For all shared classes, if TmA defines a identity, TmB should define the same identity, and vice
versa: ∀c ∈ ClassTmA

∩ ClassTmB
: [identity, c, A] ∈ PropTmA

⇐⇒ [identity, c, A] ∈ PropTmB
.

Then combine(TmA, TmB) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_combine_merge_correct in Ecore.Type_Model_Combination

Proof. Use Theorem 4.3.11 to show that combine(TmA, TmB) is a consistent type model. Use the
assumptions given. Some assumptions of Theorem 4.3.11 become irrelevant because TmA and TmB are
mostly distinct.

Finally, the concept of compatibility between two type models is defined.

Definition 4.3.13 (Compatibility of type models)
Assume type models TmA and TmB. We say that TmA is compatible with TmB if combine(TmA, TmB)
is a consistent type model in the sense of Definition 3.2.11.

The notion of compatibility will be used later as a way to denote type models that can be combined with
other type models without loss of consistency.

Page 61

C

B

(a) First type graph TGA

B

A

(b) Second type graph TGA

B

A

C

(c) Combined type graph TGAB

Figure 4.8: Combination of the inheritance relation

4.3.2 Combining type graphs
The structure of Figure 4.5 shows that the type graphs TGA and TGB are combined into one type graph
TGAB . This section provides the definition of this combination and its corresponding theorems. Please
note that the definitions presented here, just like the previous section, are as generic as possible, and do
not actively take into account that TGA and TGB are mostly distinct. This bit of information is added
later as part of a theorem and proof.

Definition 4.3.14 (Combination function on type graphs)
combine is a binary function on two type graphs which combines two type graphs into one type graph. It
is defined as follows:

combine(TGA, TGB) = ⟨NT = NTTGA
∪NTTGB

ET = ETTGA
∪ ETTGB

⊑ = (⊑TGA
∪ ⊑TGB

)+

abs = (absTGA
\NTTGB

) ∪ (absTGB
\NTTGA

) ∪ (absTGA
∩ absTGB

)

mult = mult_combine(TGA, TGB)

contains = containsTGA
∪ containsTGB

⟩

In which mult_combine is given as part of Definition 4.3.15.

Also see tg_combine in GROOVE.Type_Graph_Combination

Intuitively, the presented definition makes sense. In order to combine two (type) graphs, the nodes and
edges of the graph need to be merged. The definition accurately describes this behaviour.

To preserve the correctness of the inheritance relation, the inheritance relation is merged and the transi-
tive closure it taken. This is to ensure that the inheritance relation is correct and contains all subtypes.
An example of this is given in Figure 4.8. The inheritance relation of the first type graph, TGA is
((B,B), (C,C), (C,B)). The inheritance relation of the second type graph, TGB is ((A,A), (B,B), (B,A)).
Taking the union of these relations is not enough to get the correct inheritance relation for the combi-
nation of TGA and TGB , as the inheritance relation is transitive. If the union is taken, the new relation
would become ((B,B), (C,C), (C,B), (A,A), (B,A)). This is not enough, as C is also a subtype of A in the
combination (see Figure 4.8c). Taking the transitive closure of the union solves this, which results in
((B,B), (C,C), (C,B), (A,A), (B,A), (C,A)).

Abstract node types are merged in a similar way to the abstract property in type models (Definition 4.3.4).
For node types that are only present in one of the type graphs, their abstract property is preserved. For
node types that are present in both type graphs, the abstract property is only preserved if the node type
is abstract in both graphs. Intuitively, this makes sense, as instances of a class can only appear if the
node type is not abstract. When the node type was not abstract in one of the type graphs, making it
abstract within the combination would make all instances of the class invalid.

Containment edges are just merged, meaning that if an edge is a containment edge in one of the graphs,
it is a containment edge in the combination. This behaviour makes sense from a practical standpoint.
When applying models, it is undesired that ownership over a node might get lost after combining two
graphs.

The multiplicity function is merged using a new function, which is discussed in the next definition.

Page 62

Definition 4.3.15 (Combination function for multiplicity pairs)
mult_combine(TGA, TGB) is a partial function on two type graphs which returns a new function
ETTGAB

⇒ (M×M). It is defined as follows:

mult_combine(TGA, TGB , e) =⎧⎪⎨⎪⎩
(max(lAin, l

B
in)..min(uA

in, u
B
in),max(lAout, l

B
out)..min(uA

out, u
B
out)) if e ∈ ETTGA

∩ ETTGB

multTGA
(e) if e ∈ ETTGA

\ ETTGB

multTGB
(e) if e ∈ ETTGB

\ ETTGA

where

lAin..u
A
in = in(multTGA

(e)) lAout..u
A
out = out(multTGA

(e))

lBin..u
B
in = in(multTGB

(e)) lBout..u
B
out = out(multTGB

(e))

Also see tg_combine_mult in GROOVE.Type_Graph_Combination

Although the presented function looks quite complicated, it is similar to the way multiplicities are handled
in type models (see Definition 4.3.2), the only difference being that there are now two multiplicities, an
incoming and outgoing multiplicity. In the case that an edge e is shared across TGA and TGB , the
incoming and outgoing multiplicities are merged. For each of these multiplicities, the maximum of the
corresponding lower bounds is taken, and the minimum of the corresponding upper bounds. For an edge
e that only occurs in once of the type graphs, the multiplicity pair is copied.

With all definitions in place, it is possible to provide a more significant example. Suppose the model of
a straightforward contacts list. It consists of Contacts of which the name, age and email address can be
stored. The formal definition of the model of such a contacts list could be as follows:

TGContact = ⟨ NT = {Contact, int, string}
ET = {(Contact, age, int), (Contact, email, string),

(Contact, firstName, string), (Contact, lastName, string)}
⊑ = {(Contact,Contact), (int, int), (string, string)}

abs = {}
mult =

{︁(︁
(Contact, age, int), (0..∗, 0..1)

)︁
,(︁

(Contact, email, string), (0..∗, 0..1)
)︁
,(︁

Contact, firstName, string), (0..∗, 0..1)
)︁
,(︁

Contact, lastName, string), (0..∗, 0..1)
)︁}︁

contains = {}
⟩

An visual representation of TGContact is included as Figure 4.9a. Now, assume a model that represents an
extension to this application, adding support for adding Addresses. Furthermore, it adds the possibility
to select favourite Contacts. This extension could formally be defined as:

TGExt = ⟨ NT = {Address,Contact, int, string}
ET = {(Contact, fav,Contact), (Contact, addresses,Address),

(Address, addressLine, string), (Address, country, string),

(Address, postalCode, string)}
⊑ = {(Address,Address), (Contact,Contact), (int, int), (string, string)}

abs = {}
mult =

{︁(︁
(Contact, fav,Contact), (0..1, 0..1)

)︁
,(︁

(Contact, addresses,Address), (1..1, 1..4)
)︁
,(︁

(Address, addressLine, string), (0..∗, 0..1)
)︁
,(︁

Address, country, string), (0..∗, 0..1)
)︁
,(︁

Address, postalCode, string), (0..∗, 0..1)
)︁}︁

contains = {(Contact, addresses,Address)}
⟩

Page 63

Contact
age: int

email: string
firstName: string
lastName: string

(a) Contacts model TGContact

Contact
fav

Address
addressLine: string

country: string
postalCode: string

addresses

(b) Address extension TGExt

Contact
fav

age: int
email: string

firstName: string
lastName: string

Address
addressLine: string

country: string
postalCode: string

addresses

(c) Combined model TGContactExt

Figure 4.9: Example of the combination of type graphs

The visual representation of the extension is included as Figure 4.9b. Please note that fav is modelled
as a flag in this model. In the visual notation, syntactic sugar is added to flags by writing them inside
the node, in an italic font. Now, using Definition 4.3.14, it is possible to combine these graphs into one
model. This will yield the following graph:

TGContactExt = ⟨ NT = {Address,Contact, int, string}
ET = {(Contact, age, int), (Contact, email, string),

(Contact, firstName, string), (Contact, lastName, string),

(Contact, fav,Contact), (Contact, addresses,Address),

(Address, addressLine, string), (Address, country, string),

(Address, postalCode, string)}
⊑ = {(Address,Address), (Contact,Contact), (int, int), (string, string)}

abs = {}
mult =

{︁(︁
(Contact, age, int), (0..∗, 0..1)

)︁
,(︁

(Contact, email, string), (0..∗, 0..1)
)︁
,(︁

Contact, firstName, string), (0..∗, 0..1)
)︁
,(︁

Contact, lastName, string), (0..∗, 0..1)
)︁
,(︁

(Contact, fav,Contact), (0..1, 0..1)
)︁
,(︁

(Contact, addresses,Address), (1..1, 1..4)
)︁
,(︁

(Address, addressLine, string), (0..∗, 0..1)
)︁
,(︁

Address, country, string), (0..∗, 0..1)
)︁
,(︁

Address, postalCode, string), (0..∗, 0..1)
)︁}︁

contains = {(Contact, addresses,Address)}
⟩

A visual representation of this combined graph is included as Figure 4.9c. The example perfectly shows
why the combination of type graphs is useful: It allows for building larger graphs out of smaller building
blocks. This behaviour is the exact goal of this definition within the transformation framework.

Although the definitions of the combination of type graphs are given, no mathematical properties or
theorems are defined yet. Some mathematical properties hold for the combination of type graphs, that
will be presented in the following theorems.

Theorem 4.3.16 (Commutativity of the combination of type graphs)
Assume that TGA and TGB are type graphs, then the combine function is commutative:

combine(TGA, TGB) = combine(TGB , TGA)

Also see tg_combine_commute in GROOVE.Type_Graph_Combination

Page 64

Theorem 4.3.17 (Associativity of the combination of type graphs)
Assume that TGA, TGB and TGC are type graphs, then the combine function is associative:

combine(combine(TGA, TGB), TGC) = combine(TGA, combine(TGB , TGC))

Also see tg_combine_assoc in GROOVE.Type_Graph_Combination

Theorem 4.3.18 (Idempotence of the combination of type graphs)
Assume that TGA is a type graph and that it is valid in the sense of Definition 3.3.5. Then the following
property holds:

combine(TGA, TGA) = TGA

Also see tg_combine_idemp_alt in GROOVE.Type_Graph_Combination

These properties follow directly from Definition 4.3.14, but the corresponding proofs will not be included
here. It should be noted that these properties are indeed proven correct as part of this thesis, and the
corresponding proofs are validated within Isabelle.

Besides these properties, the combination of type graphs also has an identity element. The empty type
graph represents this identity element, but it needs to be defined first:

Definition 4.3.19 (Empty type graph)
Let TGϵ be the empty type graph. TGϵ is defined as:

TGϵ = ⟨NT = {}
ET = {}
⊑ = {}
abs = {}
mult = undefined

contains = {}⟩

Theorem 4.3.20 (Correctness of the empty type graph)
The empty type graph, TGϵ, is valid with respect to Definition 3.3.5.

Also see tg_empty_correct in GROOVE.Type_Graph

The proof for the correctness of the empty type graph is trivial. Still, a validated version of this proof
can be found within the Isabelle theories of this thesis.

As mentioned earlier, the empty type graph acts as an identity element when combining two type graphs.
The following theorem specifies this behaviour.

Theorem 4.3.21 (Identity of the combination of type graphs)
Assume that TGA is a type graph and that it is valid in the sense of Definition 3.3.5. Then TGϵ acts as
an identity element in the combination function:

combine(TGϵ, TGA) = TGA

Also see tg_combine_identity_alt in GROOVE.Type_Graph_Combination

Once more, the proof of this theorem follows directly from the definition. Therefore, the corresponding
proof will not be included here, but a validated version can be found within the Isabelle theories of this
thesis.

Just like type models, the final desired property for the combination of type graphs is a correctness
property. Theorem 4.3.22 defines the theorem under which the combination of type graphs is a valid
type graph. Please note that this theorem is a generic theorem, which does not take into account that
the type graphs are mostly distinct.

Theorem 4.3.22 (Validity of the combination of type graphs)
Assume that TGA and TGB are valid type graphs in the sense of Definition 3.3.5. Furthermore, assume
the following properties:

Page 65

• For all edges in TGA that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the source of the edge: ∀(s1, l, t1) ∈ ETTGA

∧(s2, l, t2) ∈
ETTGA

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGA

∨ (s2, s1) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGA

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (t2, t1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁

=⇒ s1 = s2 ∧ t1 = t2.

• For all edges in TGA that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the target of the edge: ∀(s1, l, t1) ∈ ETTGA

∧(s2, l, t2) ∈
ETTGA

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ ∨ (s2, s1) ∈ (⊑TGA

∪ ⊑TGB
)+

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGA
∨ (t2, t1) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGA

)︁
=⇒ s1 = s2 ∧ t1 = t2.

• For all edges in TGB that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the source of the edge: ∀(s1, l, t1) ∈ ETTGB

∧(s2, l, t2) ∈
ETTGB

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGB

∨ (s2, s1) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGB

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (t2, t1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁

=⇒ s1 = s2 ∧ t1 = t2.

• For all edges in TGB that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the target of the edge: ∀(s1, l, t1) ∈ ETTGB

∧(s2, l, t2) ∈
ETTGB

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ ∨ (s2, s1) ∈ (⊑TGA

∪ ⊑TGB
)+

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGB
∨ (t2, t1) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGB

)︁
=⇒ s1 = s2 ∧ t1 = t2.

• Ensure that there is no possible confusion of edge types between an edge from TmA and an edge
from TmB: ∀(s1, l, t1) ∈ ETTGA

∧ (s2, l, t2) ∈ ETTGB
:(︁

(s1, s2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (s2, s1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (t2, t1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁

=⇒ s1 = s2 ∧ t1 = t2.

• For all shared edges, ensure the combination of multiplicity pairs is a valid multiplicity pair: ∀e ∈
ETTGA

∩ ETTGB
: mult_combine(TGA, TGB , e) ∈ (M×M).

• The transitive closure of the combine inheritance relation is antisymmetric: (⊑TGA
∪ ⊑TGB

)+ is
antisymmetric.

Then combine(TGA, TGB) is a valid type graph in the sense of Definition 3.3.5

Also see tg_combine_correct in GROOVE.Type_Graph_Combination

Proof. To proof that combine(TGA, TGB) is a valid type model, it needs to be shown that
combine(TGA, TGB) gives rise to a valid structure for a type graph and that Definition 3.3.5 holds. For
readability, define TGAB to be combine(TGA, TGB).

Structural properties

• All elements of NTTGAB
are elements of Labt ∪ Labprim.

Follows from NTTGA
⊆ Labt ∪ Labprim and NTTGB

⊆ Labt ∪ Labprim.

• All elements of ETTGAB
are elements of NTTGAB

× (Labe ∪ Labf)×NTTGAB
.

Follows from ETTGA
⊆ (NTTGA

× (Labe ∪ Labf) × NTTGA
) and ETTGB

⊆ (NTTGB
× (Labe ∪

Labf)×NTTGB
). To complete the proof, use NTTGAB

= NTTGA
∪NTTGB

.

• All elements of ⊑ are elements of NTTGAB
×NTTGAB

.

Follows from ⊑TGA
⊆ (NTTGA

× NTTGA
) and ⊑TGB

⊆ (NTTGB
× NTTGB

). To complete the
proof, use NTTGAB

= NTTGA
∪NTTGB

.

• All elements of absTGAB
are elements of NTTGAB

.

Follows from absTGA
⊆ NTTGA

and absTGB
⊆ NTTGB

. To complete the proof, use NTTGAB
=

NTTGA
∪NTTGB

.

• For each edge e, multTGAB
(e) must be an element of M×M.

It holds that e ∈ ETTGA
\ ETTGB

, e ∈ ETTGB
\ ETTGA

or e ∈ ETTGA
∩ ETTGB

.

Perform the proof by a case distinction based on this fact. In case of e ∈ ETTGA
∩ETTGB

, use the
assumption to complete the proof.

• All elements of containsTGAB
are elements of ETTGAB

.

Follows from containsTGA
⊆ ETTGA

and containsTGB
⊆ ETTGB

. To complete the proof, use
ETTGAB

= ETTGA
∪ ETTGB

.

Page 66

Properties for validity

• ∀(s1, l, t1) ∈ ETTGAB
∧ (s2, l, t2) ∈ ETTGAB

:
(︁
(s1, s2) ∈ ⊑TGAB

∨ (s2, s1) ∈ ⊑TGAB

)︁
∧(︁

(t1, t2) ∈ ⊑TGAB
∨ (t2, t1) ∈ ⊑TGAB

)︁
=⇒ s1 = s2 ∧ t1 = t2.

Establish that (s1, l, t1) ∈ ETTGA
or (s1, l, t1) ∈ ETTGB

. Also establish that (s2, l, t2) ∈ ETTGA
or

(s2, l, t2) ∈ ETTGB
.

Perform a case distinction on these facts. If (s1, l, t1) ∈ ETTGA
and (s2, l, t2) ∈ ETTGB

, then proof
by the corresponding assumption. The case (s1, l, t1) ∈ ETTGB

and (s2, l, t2) ∈ ETTGA
is proven

by the same assumption.

If (s1, l, t1) ∈ ETTGA
and (s2, l, t2) ∈ ETTGA

, then check if
(︁
(s1, s2) ∈ ⊑TGA

∨ (s2, s1) ∈ ⊑TGA

)︁
∧(︁

(t1, t2) ∈ ⊑TGA
∨ (t2, t1) ∈ ⊑TGA

)︁
. If this is the case, solve using the properties of TGA, when

this is not the case, prove the statement using the corresponding assumptions.

If (s1, l, t1) ∈ ETTGB
and (s2, l, t2) ∈ ETTGB

, then check if
(︁
(s1, s2) ∈ ⊑TGB

∨ (s2, s1) ∈ ⊑TGB

)︁
∧(︁

(t1, t2) ∈ ⊑TGB
∨ (t2, t1) ∈ ⊑TGB

)︁
. If this is the case, solve using the properties of TGB , when

this is not the case, prove the statement using the corresponding assumptions.

• ∀(s, l, t) ∈ ETTGAB
: l ∈ Labf =⇒ s = t.

Establish that (s, l, t) ∈ ETTGA
or (s, l, t) ∈ ETTGB

. Then if l ∈ Labf , show that s = t.

• ⊑TGAB
is a partial order.

First show that (⊑TGA
∪ ⊑TGB

)+ is reflexive. Since ⊑TGA
is reflexive and ⊑TGB

is reflexive,
(⊑TGA

∪ ⊑TGB
)+ is reflexive as well.

Then show that (⊑TGA
∪ ⊑TGB

)+ is transitive. This is easily proven using the definition of the
transitive closure.

Finally, have that (⊑TGA
∪ ⊑TGB

)+ is antisymmetric by assumption.

• ∀e ∈ containsTGAB
: in(multTGAB

(e)) = (0, 1) ∨ in(multTGAB
(e)) = (1, 1).

Use the fact that e ∈ containsTGA
or e ∈ containsTGB

. Then have that incoming multiplicity
is valid in TmA or TmB . Use the assumption that the combined multiplicities are valid and the
definition of mult_combine(TGA, TGB , e) to show that the statement holds.

The proofs of all these individual properties completes the proof.

As explained before, Theorem 4.3.22 does not take into account that the type graphs are supposed to be
distinct except for a set of node types. The following lemma is an alternation of the previous theorem,
which takes this into account.

Lemma 4.3.23 (Validity of the combination (mostly) distinct of type graphs)
Assume that TGA and TGB are valid type graphs in the sense of Definition 3.3.5. Also, assume that
TGA and TGB are fully distinct except for a shared set of node types N . Furthermore, assume the
following properties:

• For all edges in TGA that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the source of the edge: ∀(s1, l, t1) ∈ ETTGA

∧(s2, l, t2) ∈
ETTGA

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGA

∨ (s2, s1) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGA

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (t2, t1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁

=⇒ s1 = s2 ∧ t1 = t2.

• For all edges in TGA that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the target of the edge: ∀(s1, l, t1) ∈ ETTGA

∧(s2, l, t2) ∈
ETTGA

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ ∨ (s2, s1) ∈ (⊑TGA

∪ ⊑TGB
)+

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGA
∨ (t2, t1) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGA

)︁
=⇒ s1 = s2 ∧ t1 = t2.

• For all edges in TGB that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the source of the edge: ∀(s1, l, t1) ∈ ETTGB

∧(s2, l, t2) ∈
ETTGB

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGB

∨ (s2, s1) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGB

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (t2, t1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁

=⇒ s1 = s2 ∧ t1 = t2.

• For all edges in TGB that share the same label, ensure that there is no possible confusion of edge
types because of a new subtype introduced at the target of the edge: ∀(s1, l, t1) ∈ ETTGB

∧(s2, l, t2) ∈
ETTGB

:
(︁
(s1, s2) ∈ (⊑TGA

∪ ⊑TGB
)+ ∨ (s2, s1) ∈ (⊑TGA

∪ ⊑TGB
)+

)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ \ ⊑TGB
∨ (t2, t1) ∈ (⊑TGA

∪ ⊑TGB
)+ \ ⊑TGB

)︁
=⇒ s1 = s2 ∧ t1 = t2.

Page 67

• Ensure that there is no possible confusion of edge types between an edge from TmA and an edge
from TmB: ∀(s1, l, t1) ∈ ETTGA

∧ (s2, l, t2) ∈ ETTGB
:(︁

(s1, s2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (s2, s1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁
∧(︁

(t1, t2) ∈ (⊑TGA
∪ ⊑TGB

)+ ∨ (t2, t1) ∈ (⊑TGA
∪ ⊑TGB

)+
)︁

=⇒ s1 = s2 ∧ t1 = t2.

• The transitive closure of the combine inheritance relation is antisymmetric: (⊑TGA
∪ ⊑TGB

)+ is
antisymmetric.

Then combine(TGA, TGB) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_combine_merge_correct in GROOVE.Type_Graph_Combination

Proof. Use Theorem 4.3.22 to show that combine(TGA, TGB) is a valid type graph. Use the assumptions
given. The assumption for the correctness of the multiplicity pair for shared edges has become irrelevant
because there are no shared edges.

Finally, the concept of compatibility between two type graphs is defined.

Definition 4.3.24 (Compatibility of type graphs)
Assume type graphs TGA and TGB. We say that TGA is compatible with TGB if combine(TGA, TGB)
is a valid type graph in the sense of Definition 3.3.5.

The notion of compatibility will be used later as a way to denote type graphs that can be combined with
other type graphs without loss of validity.

4.3.3 Combining transformation functions
The previous sections discussed the combination of type models and type graphs. In this section, the
combination of transformation functions between type models and type graphs is discussed. This combi-
nation is the last key element shown in Figure 4.5. If it is possible to combine fA and fB into fA⊔fB , then
it is possible to build transformation functions between type models and type graphs iteratively.

Before it is possible to define a definition for the combination of two transformation functions, it is
essential to define what functions are considered to be transformation functions.

Definition 4.3.25 (Transformation function from a type model to a type graph)
Let f be a function from type models to type graphs, Tm be a type model and TG the corresponding type
graph. f is a transformation function iff:

• f projects Tm onto TG: f(Tm) = TG;

• After combination with another type model, f preserves the node types:
∀Tmx : NTf(Tm) ⊆ NTf(combine(Tm,Tmx));

• After combination with another type model, f preserves the edge types:
∀Tmx : ETf(Tm) ⊆ ETf(combine(Tm,Tmx));

• After combination with another type model, f preserves the inheritance relation:
∀Tmx : ⊑f(Tm) ⊆ ⊑f(combine(Tm,Tmx));

• After combination with another type model, f preserves the abstract node types:
∀Tmx : absf(Tm) ⊆ absf(combine(Tm,Tmx));

• For all edges in the projected type graph, f preserves the multiplicity if the type model is combined
with another type model:
∀Tmx : ∀e ∈ ETf(Tm) : multf(Tm)(e) = multf(combine(Tm,Tmx))(e);

• After combination with another type model, f preserves the containment edges:
∀Tmx : containsf(Tm) ⊆ containsf(combine(Tm,Tmx)).

Also see tg_combine_mapping_function in Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

As expected, a transformation must project some type model Tm to its corresponding type graph TG.
Furthermore, it has to preserve properties of the projection, even after Tm is combined with some other
type model. The rationale behind these properties is that after combining Tm with some other type
model, there must still be a way to transform the elements that originated from Tm. If that is possible,
it is possible to use the transformation function as the basis for the combined transformation function,
which can transform the combined type model to a combined type graph.

Page 68

The following definition will describe how two transformation functions from type models to type graphs
can be combined into a new transformation function, which projects the combination of two type models
onto the combination of the two corresponding type graphs.

Definition 4.3.26 (Combination of transformation functions from a type model to a type graph)
Let fA and fB be a transformation functions in the sense of Definition 4.3.25. fA projects a type model
TmA onto type graph TGA. fB projects a type model TmB onto type graph TGB. Then the combination
of fA and fB is defined as:

fA ⊔ fB(Tm) = ⟨ NT = {n | n ∈ NTfA(Tm) ∧ n ∈ NTTGA
} ∪ {n | n ∈ NTfB(Tm) ∧ n ∈ NTTGB

}
ET = {e | e ∈ ETfA(Tm) ∧ e ∈ ETTGA

} ∪ {e | e ∈ ETfB(Tm) ∧ e ∈ ETTGB
}

⊑ = ({i | i ∈ ⊑fA(Tm) ∧ i ∈ ⊑TGA
} ∪ {i | i ∈ ⊑fB(Tm) ∧ i ∈ ⊑TGB

})+

abs = ({n | n ∈ absfA(Tm) ∧ n ∈ absTGA
} \ {n | n ∈ NTfB(Tm) ∧ n ∈ NTTGB

}) ∪
({n | n ∈ absfB(Tm) ∧ n ∈ absTGB

} \ {n | n ∈ NTfA(Tm) ∧ n ∈ NTTGA
}) ∪

({n | n ∈ absfA(Tm) ∧ n ∈ absTGA
} ∩ {n | n ∈ absfB(Tm) ∧ n ∈ absTGB

})
mult = mult_mapping(fA, TGA, fB , TGB , Tm)

contains = {e | e ∈ containsfA(Tm) ∧ e ∈ containsTGA
} ∪

{e | e ∈ containsfB(Tm) ∧ e ∈ containsTGB
}

⟩

In which mult_mapping is given as part of Definition 4.3.27.

Also see tg_combine_mapping in Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

The definitions for the combination of transformation functions from a type model to a type graph looks
quite complex, but a careful reader will find that this definition is an alternation of Definition 4.3.14.
Intuitively, this is what is expected from this definition, as the combination of the transformation func-
tions should be able to transform the combination of two type models to the combination of the two
corresponding type graphs, as visually represented in Figure 4.5.

Unsurprisingly, the definition of the multiplicity function of fA⊔fB is very similar to Definition 4.3.15.

Definition 4.3.27 (Combination of the multiplicity function for two transformation functions)
mult_mapping(fA, TGA, fB , TGB , Tm) is a partial function on two transformation functions fA and fB,
their corresponding projections TGA and TGB and a type model Tm which returns a new function
ETf(Tm) ⇒ (M×M). It is defined as follows:

mult_mapping(fA, TGA, fB , TGB , Tm, e) =⎧⎪⎨⎪⎩
m if e ∈ {e | e ∈ ETfA(Tm) ∧ e ∈ ETTGA

} ∩ {e | e ∈ ETfB(Tm) ∧ e ∈ ETTGB
}

multfA(Tm)(e) if e ∈ {e | e ∈ ETfA(Tm) ∧ e ∈ ETTGA
} \ {e | e ∈ ETfB(Tm) ∧ e ∈ ETTGB

}
multfB(Tm)(e) if e ∈ {e | e ∈ ETfB(Tm) ∧ e ∈ ETTGB

} \ {e | e ∈ ETfA(Tm) ∧ e ∈ ETTGA
}

where
m = (max(lAin, l

B
in)..min(uA

in, u
B
in),max(lAout, l

B
out)..min(uA

out, u
B
out))

and

lAin..u
A
in = in(multfA(Tm)(e)) lAout..u

A
out = out(multfA(Tm)(e))

lBin..u
B
in = in(multfB(Tm)(e)) lBout..u

B
out = out(multfB(Tm)(e))

With these definitions in place, it is possible to provide the necessary theorems for the correctness of the
combined function fA ⊔ fB .

Theorem 4.3.28 (The projection of a combined transformation function from a type model to a type
graph)
Let fA and fB be a transformation functions in the sense of Definition 4.3.25. fA projects a type model
TmA onto type graph TGA. fB projects a type model TmB onto type graph TGB. Then the combination
of fA and fB, fA ⊔ fB projects combine(TmA, TmB) onto combine(TGA, TGB), so:

fA ⊔ fB(combine(TmA, TmB)) = combine(TGA, TGB)

Also see tg_combine_mapping_correct in Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

Page 69

Proof. The corresponding proof follows directly from Definition 4.3.26 as well as Definition 4.3.25. Since
the individual transformation functions fA and fB preserve the elements of their type graphs when the
type model is combined with another one, we can establish that the definition of fA ⊔ fB is equal to the
definition of combine(TGA, TGB). Therefore, fA ⊔ fB(combine(TmA, TmB)) = combine(TGA, TGB).

Although the presented theorem is a large step towards being able to build transformation functions
from type models to type graphs iteratively, there is still one key element missing. It should be formally
argued that fA ⊔ fB is once again an transformation function in the sense of Definition 4.3.25. If this is
formally argued, it becomes possible to easily combine fA⊔fB with yet another transformation function.
The following theorem states this property.

Theorem 4.3.29 (A combined transformation function from a type model to a type graph is a trans-
formation function)
Let fA and fB be a transformation functions in the sense of Definition 4.3.25. fA projects a type model
TmA onto type graph TGA. fB projects a type model TmB onto type graph TGB. Then the combination
of fA and fB, fA⊔fB is again a transformation function in the sense of Definition 4.3.25 which projects
combine(TmA, TmB) onto combine(TGA, TGB).

Also see tg_combine_mapping_function_correct in
Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

Proof. Use Definition 4.3.25. Since the individual transformation functions fA and fB preserve the
elements of their type graphs when the type model is combined with another one, we can establish that
the definition of fA⊔fB will also preserve these elements. This can be shown using the commutativity and
associativity of the combination of type models, see Theorem 4.3.5 and Theorem 4.3.6 respectively.

This last theorem completes the recursive behaviour of combining transformation functions and therefore
allows for building transformation functions from type models to type graphs iteratively.

The definitions and theorems that are presented so far only work in one direction: for transforming type
models into type graphs. As visually shown in Figure 4.5, it must also be possible to transform type
graphs back into type models. The definitions and theorems needed for this transformation are similar
and will be presented in the remaining part of this section.

Definition 4.3.30 (Transformation function from a type graph to a type model)
Let f be a function from type graphs to type models, TG be a type graph and Tm the corresponding type
model. f is a transformation function iff:

• f projects TG onto Tm: f(TG) = Tm;

• After combination with another type graph, f preserves the classes:
∀TGx : Classf(TG) ⊆ Classf(combine(TG,TGx));

• After combination with another type graph, f preserves the enumerations:
∀TGx : Enumf(TG) ⊆ Enumf(combine(TG,TGx));

• After combination with another type graph, f preserves the user-defined data types:
∀TGx : UserDataTypef(TG) ⊆ UserDataTypef(combine(TG,TGx));

• After combination with another type graph, f preserves the fields:
∀TGx : Fieldf(TG) ⊆ Fieldf(combine(TG,TGx));

• For all fields in the projected type model, f preserves the field signature if the type graph is combined
with another type graph:
∀TGx : ∀s ∈ Fieldf(Tm) : FieldSigf(TG)(s) = FieldSigf(combine(TG,TGx))(s);

• After combination with another type graph, f preserves the enumeration values:
∀TGx : EnumV aluef(TG) ⊆ EnumV aluef(combine(TG,TGx));

• After combination with another type graph, f preserves the inheritance relation:
∀TGx : Inhf(TG) ⊆ Inhf(combine(TG,TGx));

• After combination with another type graph, f preserves the model properties:
∀TGx : Propf(TG) ⊆ Propf(combine(TG,TGx));

• After combination with another type graph, f preserves the constants:
∀TGx : Constantf(TG) ⊆ Constantf(combine(TG,TGx));

Page 70

• For all constants in the projected type model, f preserves the constant types if the type graph is
combined with another type graph:
∀TGx : ∀c ∈ Constantf(Tm) : ConstTypef(TG)(c) = ConstTypef(combine(TG,TGx))(c).

Also see tmod_combine_mapping_function in
Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

Just like Definition 4.3.25, the definition of transformation functions from a type graph to a type model
preserves all elements if the type graph is combined with another type graph. This will once more be
the key to having the property of iterative building of transformation functions.

The following definition will describe how two transformation functions from type graphs to type models
can be combined into a new transformation function, which projects the combination of two type graphs
onto the combination of the two corresponding type models.

Definition 4.3.31 (Combination of transformation functions from a type graph to a type model)
Let fA and fB be a transformation functions in the sense of Definition 4.3.30. fA projects a type graph
TGA onto type model TmA. fB projects a type graph TGB onto type model TmB. Then the combination
of fA and fB is defined as:

fA ⊔ fB(TG) = ⟨ Class = {c | c ∈ ClassfA(TG) ∧ c ∈ ClassTmA
} ∪

{c | c ∈ ClassfB(TG) ∧ c ∈ ClassTmB
}

Enum = {e | e ∈ EnumfA(TG) ∧ e ∈ EnumTmA
} ∪

{e | e ∈ EnumfB(TG) ∧ e ∈ EnumTmB
}

UserDataType = {u | u ∈ UserDataTypefA(TG) ∧ u ∈ UserDataTypeTmA
} ∪

{u | u ∈ UserDataTypefB(TG) ∧ u ∈ UserDataTypeTmB
}

Field = {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA
} ∪

{d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB
}

FieldSig = fieldsig_mapping(fA, TmA, fB , TmB , TG)

EnumV alue = {v | v ∈ EnumV aluefA(TG) ∧ v ∈ EnumV alueTmA
} ∪

{v | v ∈ EnumV aluefB(TG) ∧ v ∈ EnumV alueTmB
}

Inh = {i | i ∈ InhfA(TG) ∧ i ∈ InhTmA
} ∪

{i | i ∈ InhfB(TG) ∧ i ∈ InhTmB
}

Prop = prop_mapping(fA, TmA, fB , TmB , TG)

Constant = {c | c ∈ ConstantfA(TG) ∧ c ∈ ConstantTmA
} ∪

{c | c ∈ ConstantfB(TG) ∧ c ∈ ConstantTmB
}

ConstType = consttype_mapping(fA, TmA, fB , TmB , TG)

⟩

In which fieldsig_mapping is given as part of Definition 4.3.32, prop_mapping as part of Definition 4.3.34,
and consttype_mapping as part of Definition 4.3.33.

Also see tmod_combine_mapping in Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

As expected, the definition for the combination of transformation functions from a type graph to a type
model is an alternation of Definition 4.3.1. This alternation will once more allow the combined transfor-
mation function to project the combination of the type graphs to the combination of the corresponding
type models.

The following two definitions will provide the remaining functions, which will closely follow their coun-
terparts from Section 4.3.1.

Definition 4.3.32 (Combination of the field signature function for two transformation functions)
fieldsig_mapping(fA, TmA, fB , TmB , TG) is a partial function on two transformation functions fA and
fB, their corresponding projections TmA and TmB and a type model TG which returns a new function

Page 71

FieldfA⊔fB(TG) ⇒ (TypefA⊔fB(TG) ×M). It is defined as follows:

fieldsig_combine(fA, TmA, fB , TmB , TG, d) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s if d ∈ {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA
} ∩

{d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB
}∧

typefA(TG)(d) = typefB(TG)(d)

FieldSigfA(TG)(d) if d ∈ {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA
} \

{d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB
}

FieldSigfB(TG)(d) if d ∈ {d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB
} \

{d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA
}

where

s =

(︃
typefA(TG)(d),

(︂
max

(︂
lower(FieldSigfA(TG)(d)), lower(FieldSigfB(TG)(d))

)︂
..

min
(︂
upper(FieldSigfA(TG)(d)),upper(FieldSigfB(TG)(d))

)︂)︂)︃
Also see tmod_combine_fieldsig_mapping in

Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

Definition 4.3.33 (Combination of the constant type function for two transformation functions)
consttype_mapping(fA, TmA, fB , TmB , TG) is a partial function on two transformation functions fA
and fB, their corresponding projections TmA and TmB and a type model TG which returns a new
function ConstantfA⊔fB(TG) ⇒ TypefA⊔fB(TG). It is defined as follows:

consttype_mapping(fA, TmA, fB , TmB , TG, c) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ConstTypefA(TG)(c) if c ∈ {c | c ∈ ConstantfA(TG) ∧ c ∈ ConstantTmA
} ∩

{c | c ∈ ConstantfB(TG) ∧ c ∈ ConstantTmB
} ∧

ConstTypefA(TG)(c) = ConstTypefB(TG)(c)

ConstTypefA(TG)(c) if c ∈ {c | c ∈ ConstantfA(TG) ∧ c ∈ ConstantTmA
} \

{c | c ∈ ConstantfB(TG) ∧ c ∈ ConstantTmB
}

ConstTypefB(TG)(c) if c ∈ {c | c ∈ ConstantfB(TG) ∧ c ∈ ConstantTmB
} \

{c | c ∈ ConstantfA(TG) ∧ c ∈ ConstantTmA
}

Also see tmod_combine_const_type_mapping in
Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

Now that the definitions for the field signature function and the constant type function are defined, the
only remaining definition is that of the combination of properties, which is given in the next defini-
tion.

Definition 4.3.34 (Combination of model properties when combining two transformation functions)
prop_mapping(fA, TmA, fB , TmB , TG) is a set depending on two transformation functions fA and fB,
their corresponding projections TmA and TmB and a type model TG. The set is defined as a subset of
PropTmA

∪ PropTmB
. The contents of the set are then defined as follows:

For abstract properties:

[abstract, c] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
} c ̸∈ {c | c ∈ ClassfB(TG) ∧ c ∈ ClassTmB

}
[abstract, c] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[abstract, c] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
} c ̸∈ {c | c ∈ ClassfA(TG) ∧ c ∈ ClassTmA

}
[abstract, c] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[abstract, c] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

[abstract, c] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

[abstract, c] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

Page 72

For containment properties:

[containment, r] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

[containment, r] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[containment, r] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

[containment, r] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

For defaultValue properties:

[defaultValue, f, v] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

f ̸∈ {d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB
}

[defaultValue, f, v] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[defaultValue, f, v] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

f ̸∈ {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA
}

[defaultValue, f, v] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[defaultValue, f, v] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

[defaultValue, f, v] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

[defaultValue, f, v] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

For identity properties:

[identity, c, A] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
} c ̸∈ {c | c ∈ ClassfB(TG) ∧ c ∈ ClassTmB

}
[identity, c, A] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[identity, c, A] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
} c ̸∈ {c | c ∈ ClassfA(TG) ∧ c ∈ ClassTmA

}
[identity, c, A] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[identity, c, A] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

[identity, c, A] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

[identity, c, A] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

For keyset properties:

[keyset, r, A] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
} r ̸∈ {d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB

}
[keyset, r, A] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[keyset, r, A] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
} r ̸∈ {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA

}
[keyset, r, A] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[keyset, r, A] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

[keyset, r, A] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

[keyset, r, A] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

For opposite properties:

[opposite, r1, r2] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

r1 ̸∈ {d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB
} r2 ̸∈ {d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB

}
[opposite, r1, r2] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[opposite, r1, r2] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

r1 ̸∈ {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA
} r2 ̸∈ {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA

}
[opposite, r1, r2] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[opposite, r1, r2] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

[opposite, r1, r2] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

[opposite, r1, r2] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

Page 73

For readonly properties:

[readonly, f] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
} f ̸∈ {d | d ∈ FieldfB(TG) ∧ d ∈ FieldTmB

}
[readonly, f] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[readonly, f] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
} f ̸∈ {d | d ∈ FieldfA(TG) ∧ d ∈ FieldTmA

}
[readonly, f] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

[readonly, f] ∈ {p | p ∈ PropfA(TG) ∧ p ∈ PropTmA
}

[readonly, f] ∈ {p | p ∈ PropfB(TG) ∧ p ∈ PropTmB
}

[readonly, f] ∈ prop_mapping(fA, TmA, fB , TmB , TG)

Also see tmod_combine_prop_mapping in Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

As expected, the definition for the properties within the combination is an alternation of Definition 4.3.4.

With these definitions in place, it is possible to provide the necessary theorems for the correctness of the
combined function fA ⊔ fB .

Theorem 4.3.35 (The projection of a combined transformation function from a type graph to a type
model)
Let fA and fB be a transformation functions in the sense of Definition 4.3.30. fA projects a type graph
TGA onto type model TmA. fB projects a type graph TGB onto type model TmB. Then the combination
of fA and fB, fA ⊔ fB projects combine(TGA, TGB) onto combine(TmA, TmB), so:

fA ⊔ fB(combine(TGA, TGB)) = combine(TmA, TmB)

Also see tmod_combine_mapping_correct in Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

Proof. The corresponding proof follows directly from Definition 4.3.31 as well as Definition 4.3.30. Since
the individual transformation functions fA and fB preserve the elements of their type models when the
type graph is combined with another one, we can establish that the definition of fA ⊔ fB is equal to the
definition of combine(TmA, TmB). Therefore, fA ⊔ fB(combine(TGA, TGB)) = combine(TmA, TmB).

Like the combined transformation function from type models to type graphs, the combined transfor-
mation function from type graphs to type models is also a transformation function, but in the sense of
Definition 4.3.30. This is stated in the following theorem.

Theorem 4.3.36 (A combined transformation function from a type graph to a type model is a trans-
formation function)
Let fA and fB be a transformation functions in the sense of Definition 4.3.30. fA projects a type graph
TGA onto type model TmA. fB projects a type graph TGB onto type model TmB. Then the combination
of fA and fB, fA⊔fB is again a transformation function in the sense of Definition 4.3.30 which projects
combine(TGA, TGB) onto combine(TmA, TmB).

Also see tmod_combine_mapping_function_correct in
Ecore-GROOVE-Mapping.Type_Model_Graph_Mapping

Proof. Use Definition 4.3.30. Since the individual transformation functions fA and fB preserve the
elements of their type models when the type graph is combined with another one, we can establish that
the definition of fA⊔fB will also preserve these elements. This can be shown using the commutativity and
associativity of the combination of type graphs, see Theorem 4.3.16 and Theorem 4.3.17 respectively.

4.4 Instance models and instance graphs
In the previous section, the structure of the framework was applied to type models and type graphs. In
this section, the structure will be applied to instance models and instance graphs. Since instance models
and instance graphs directly depend on type models and type graphs, some definitions will be borrowed
from the previous section.

First, the general structure of the framework applied to instance models and instance graphs is discussed.
Then the required definitions and theorems are given.

Page 74

O

ImA ImB

ImAB

N

IGA IGB

IGAB

f

fA fB

fA ⊔ fB

Figure 4.10: Structure for transforming between instance models and instance graphs

Figure 4.10 shows one more alternation of the structure proposed in Section 4.2. This version of the
structure is applied to instance models and instance graphs. As before, instance model ImA represents
the partially build model which corresponds to instance graph IGA under the transformation function
fA. Instance model ImB represents the next building block to add to this model. It corresponds to
instance graph IGB under the bijective transformation function fB .

Instance models ImA and ImB are entirely distinct except for a set objects O, which means O ⊆
ObjectImA

∧ O ⊆ ObjectImB
. In a similar way, instance graphs IGA and IGB are entirely distinct

except for a set of nodes N , so N ⊆ NIGA
∧N ⊆ NIGB

.

Instance models ImA and ImB are combined into instance model ImAB using Definition 4.4.1. In
a similar way instance graphs IGA and IGB are combined into instance graph IGAB using Defini-
tion 4.4.15. Lemma 4.4.13 and Lemma 4.4.24 respectively show that ImAB and IGAB are valid. Then
Definition 4.4.27 and Definition 4.4.32 can be used to merge the transformation functions fA and fB into
fA ⊔ fB , where Theorem 4.4.29 and Theorem 4.4.30 show that fA ⊔ fB is again a valid transformation
function transforming ImAB to IGAB . Similarly, Theorem 4.4.37 and Theorem 4.4.38 show that the
inverse function of fA ⊔ fB is again a valid transformation function transforming IGAB to ImAB .

4.4.1 Combining instance models
The structure of Figure 4.10 shows that the instance models ImA and ImB are combined into one
instance model ImAB . This section provides the definition of this combination and its corresponding
theorems. Please note that the definitions presented here are as generic as possible, and do not actively
take into account that ImA and ImB are mostly distinct. This bit of information is added later as part
of a theorem and proof.

Definition 4.4.1 (Combination function on type models)
combine is a binary function on two instance models which combines two instance models into one
instance model. Assume ImA is an instance model typed by type model TmA and ImB is an instance
model typed by type model TmB, then combine(ImA, ImB) is typed by combine(TmA, TmB) and is
defined as follows:

combine(ImA, ImB) = ⟨Object = ObjectImA
∪ObjectImB

ObjectClass = objectclass_combine(ImA, ImB)

ObjectId = objectid_combine(ImA, ImB)

FieldValue = fieldvalue_combine(ImA, ImB)

DefaultValue = defaultvalue_combine(ImA, ImB)⟩

In which objectclass_combine is given as part of Definition 4.4.2, objectid_combine as part of Defini-
tion 4.4.3, fieldvalue_combine as part of Definition 4.4.4 and defaultvalue_combine as part of Defini-
tion 4.4.5.

Also see imod_combine in Ecore.Instance_Model_Combination

The combination of two instance models knows a surprisingly simple definition. This is mostly caused
by the fact that an instance model only contains of a set of objects, which has some properties. The

Page 75

properties of each object are specified by the different functions, which will be introduced in the following
definitions.

First, the function for the combination of object classes is discussed.

Definition 4.4.2 (Combination function for object classes)
objectclass_combine is a partial function on two instance models which returns a new function
ObjectImAB

⇒ ClassTmAB
. It is defined as follows:

objectclass_combine(ImA, ImB , o) =⎧⎪⎨⎪⎩
ObjectClassImA

(o) if o ∈ ObjectImA
∩ObjectImB

∧ObjectClassImA
(o) = ObjectClassImB

(o)

ObjectClassImA
(o) if o ∈ ObjectImA

\ObjectImB

ObjectClassImB
(o) if o ∈ ObjectImB

\ObjectImA

Also see imod_combine_object_class in Ecore.Instance_Model_Combination

The combination of two instance models knows a surprisingly simple definition. Because an instance
model is essentially a set of objects with properties, no complex definition is needed. The properties
of each object are specified by the different functions, which will be introduced in the following defini-
tions.

First, the function of the combination of object classes is discussed.

Definition 4.4.3 (Combination function for object identifiers)
objectid_combine is a partial function on two instance models which returns a new function
ObjectImAB

⇒ Name. It is defined as follows:

objectid_combine(ImA, ImB , o) =⎧⎪⎨⎪⎩
ObjectIdImA

(o) if o ∈ ObjectImA
∩ObjectImB

∧ObjectIdImA
(o) = ObjectIdImB

(o)

ObjectIdImA
(o) if o ∈ ObjectImA

\ObjectImB

ObjectIdImB
(o) if o ∈ ObjectImB

\ObjectImA

Also see imod_combine_object_id in Ecore.Instance_Model_Combination

As mentioned before, the definition of the combination function of object identifiers is very similar to the
definition of the combination function of object classes. If an object only occurs in one of the instance
models, its identifier is copied over. If an object appears in both instance models, they must have the
same identifier already in order to have an identifier in the final model.

A careful reader might notice that the behaviour of the function is strange. Theoretically, it might
give rise to double identities, which is undesired. As will be shown later, the combination function and
theorems assume that the identities of the models are already distinct. This assumption is fair, as it is
possible to redefine two instance models to have distinct identities, without loss of significance.

The following definition describes the combination of field values.

Definition 4.4.4 (Combination function for field values)
fieldvalue_combine is a partial function on two instance models which returns a new function
(ObjectImAB

× FieldTmAB
) ⇒ V alueImAB

. It is defined as follows:

fieldvalue_combine(ImA, ImB , (o, f)) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FieldValueImA
((o, f)) if o ∈ ObjectImA

∩ObjectImB
∧

f ∈ fieldsTmA
(ObjectClassImA

(o)) ∧
f ∈ fieldsTmB

(ObjectClassImB
(o)) ∧

FieldValueImA
((o, f)) = FieldValueImB

((o, f))

FieldValueImA
((o, f)) if o ∈ ObjectImA

∧ f ∈ fieldsTmA
(ObjectClassImA

(o)) ∧
(o ̸∈ ObjectImB

∨ f ̸∈ fieldsTmB
(ObjectClassImB

(o)))

FieldValueImB
((o, f)) if o ∈ ObjectImB

∧ f ∈ fieldsTmB
(ObjectClassImB

(o)) ∧
(o ̸∈ ObjectImA

∨ f ̸∈ fieldsTmA
(ObjectClassImA

(o)))

Also see imod_combine_field_value in Ecore.Instance_Model_Combination

Page 76

The definition of the combination function of field values is a lot more complicated than the previous
ones. The function domain causes this complexity. Not every combination of an object and a field has
a value. An object only has values for those fields that are defined for its class or superclasses.

When a value is set on one of the instance models, but not the other, the value is copied. Furthermore,
if a combination of object and field is set for both instance models and the value is the same, it is also
copied. Please note that equality is used here, instead of equivalence. This property is to support some
mathematical properties later on. Since the transformation framework will not allow for shared fields
anyhow, this will not impose problems later.

The last function that needs to be defined is the combination function for default values. It is given in
the following definition.

Definition 4.4.5 (Combination function for default values)
defaultvalue_combine is a partial function on two instance models which returns a new function
ConstantTmAB

⇒ V alueImAB
. It is defined as follows:

defaultvalue_combine(ImA, ImB , c) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
DefaultValueImA

(c) if c ∈ ConstantTmA
∩ ConstantTmB

∧
DefaultValueImA

(c) = DefaultValueImB
(c)

DefaultValueImA
(c) if c ∈ ConstantTmA

\ ConstantTmB

DefaultValueImB
(c) if c ∈ ConstantTmB

\ ConstantTmA

Also see imod_combine_default_value in Ecore.Instance_Model_Combination

The definition of the combination function of default values is very similar to the combination function
of constant types of type models (see Definition 4.3.3). This function gives values to constants defined on
the type model level. When a constant only appears in the type model of one of the instance models, the
value can be copied from that instance model. This behaviour is logical since the other instance model
cannot have a value set for that constant. If a constant is set for both of the corresponding type models,
the value set on the instance models must be the same. If this is the case, the value can be copied over.
This behaviour is desired, as the value for a constant should not change after the combination of two
instance models.

Like the last definition, equality is used here to compare the values, instead of equivalence. Once more,
this has been done to support some mathematical properties later on. Since the transformation framework
will not allow for shared constants anyhow, this will not impose problems later.

With all definitions in place, it is possible to provide an example. Let us return to the multi-protocol
chat application example introduced in Figure 4.7 of Section 4.3.1. An instance model for TmChat

(Figure 4.7a) could have an instance of a Thread with some Messages. Formally, the instance model
could look as follows:

ImChat = ⟨ Object = {1, 2, 3}
ObjectClass = {(1, .Thread), (2, .Message), (3, .Message)}

ObjectId = {(1,Thread42), (2,Message4084), (3,Message4093)}

FieldValue =
{︂(︂(︁

1, (.Thread, id)
)︁
,
[︁
string, “BLUB-E_Thread_01”

]︁)︂
,(︂(︁

1, (.Thread, proto)
)︁
,
[︁
enum, (.Protocol,BLUB−E)

]︁)︂
,(︂(︁

1, (.Thread,messages)
)︁
,
[︁
seqof,

⟨︁
[obj, 2], [obj, 3]

⟩︁]︁)︂
,(︂(︁

2, (.Message, text)
)︁
,
[︁
string, “This is a test”

]︁)︂
,(︂(︁

3, (.Message, text)
)︁
,
[︁
string, “Did you receive it?”

]︁)︂}︂
DefaultValue = {}

⟩

A visual representation of this instance model is included in Figure 4.11a. Now, assume that there also
exists some instance model that is typed by the extension represented by TmExtension. This instance
model introduces a Contact instance for the Thread instance in ImChat. Formally, this instance model
could be defined as follows:

Page 77

ImExtension = ⟨ Object = {1, 4}
ObjectClass = {(1, .Thread), (4, .Contact)}

ObjectId = {(1,Thread42), (4,Broodkast)}

FieldValue =
{︂(︂(︁

1, (.Thread, contact)
)︁
,
[︁
obj, 4

]︁)︂
,(︂(︁

4, (.Contact, id)
)︁
,
[︁
data, “BLUB-E_PubKey_a8138”

]︁)︂
,(︂(︁

4, (.Contact, name)
)︁
,
[︁
string, “Lukas”

]︁)︂}︂
DefaultValue = {}

⟩

The visual representation of ImExtension is included in Figure 4.11b. With these instance models formally
defined, it is possible to combine them using Definition 4.4.1. This will yield the following model:

ImChatExt = ⟨ Object = {1, 2, 3, 4}
ObjectClass = {(1, .Thread), (2, .Message), (3, .Message), (4, .Contact)}

ObjectId = {(1,Thread42), (2,Message4084), (3,Message4093), (4,Broodkast)}

FieldValue =
{︂(︂(︁

1, (.Thread, id)
)︁
,
[︁
string, “BLUB-E_Thread_01”

]︁)︂
,(︂(︁

1, (.Thread, proto)
)︁
,
[︁
enum, (.Protocol,BLUB−E)

]︁)︂
,(︂(︁

1, (.Thread,messages)
)︁
,
[︁
seqof,

⟨︁
[obj, 2], [obj, 3]

⟩︁]︁)︂
,(︂(︁

1, (.Thread, contact)
)︁
,
[︁
obj, 4

]︁)︂
,(︂(︁

2, (.Message, text)
)︁
,
[︁
string, “This is a test”

]︁)︂
,(︂(︁

3, (.Message, text)
)︁
,
[︁
string, “Did you receive it?”

]︁)︂
,(︂(︁

4, (.Contact, id)
)︁
,
[︁
data, “BLUB-E_PubKey_a8138”

]︁)︂
,(︂(︁

4, (.Contact, name)
)︁
,
[︁
string, “Lukas”

]︁)︂}︂
DefaultValue = {}

⟩

A visual representation of this combined model is included as Figure 4.11c. Like the example for the
combination of type models, this example shows that the definition of the combination of instance models
is useful. It allows to build larger models out of smaller building blocks. Furthermore, the example shows
that the combination of the two instance models is typed by the combination of its corresponding type
models.

Although the definitions of the combination of instance models are given, no mathematical properties or
theorems are defined yet. Some mathematical properties hold for the combination of instance models,
that will be presented in the following theorems.

Theorem 4.4.6 (Commutativity of the combination of instance models)
Assume that ImA and ImB are instance models, then the combine function is commutative:

combine(ImA, ImB) = combine(ImB , ImA)

Also see imod_combine_commute in Ecore.Instance_Model_Combination

Theorem 4.4.7 (Associativity of the combination of instance models)
Assume that ImA, ImB and ImC are instance models, then the combine function is associative:

combine(combine(ImA, ImB), ImC) = combine(ImA, combine(ImB , ImC))

Also see imod_combine_assoc in Ecore.Instance_Model_Combination

Page 78

Thread42 :Thread

Message4084 :Message Message4093 :Message

text = "This is a test" text = "Did you receive it?"

proto = BLUB-E

id = "BLUB-E_Thread_01"

(a) The chat application instance model ImChat

Thread42 :Thread Broodkast :Contact

name = "Lukas"

id = "BLUB-E_PubKey_a8138"

(b) The contact extension instance model ImExtension

Thread42 :Thread

Message4084 :Message Message4093 :Message

Broodkast :Contact

text = "This is a test" text = "Did you receive it?"

proto = BLUB-E

id = "BLUB-E_Thread_01" name = "Lukas"

id = "BLUB-E_PubKey_a8138"

(c) The extended chat application instance model ImChatExt

Figure 4.11: Example of the combination of type models

Page 79

Theorem 4.4.8 (Idempotence of the combination of instance models)
Assume that ImA is an instance model and that it is valid in the sense of Definition 3.2.19. Then the
following property holds:

combine(ImA, ImA) = ImA

Also see imod_combine_idemp_alt in Ecore.Instance_Model_Combination

These properties follow directly from Definition 4.4.1, but the corresponding proofs will not be included
here. It should be noted that these properties are indeed proven correct as part of this thesis, and the
corresponding proofs are validated within Isabelle.

Besides these properties, the combination of instance models also has an identity element. The empty
instance model represents this identity element, but it needs to be defined first:

Definition 4.4.9 (Empty instance model)
Let Imϵ be the empty instance model. It is typed by the empty type model Tmϵ. Imϵ is defined as:

Imϵ = ⟨Object = {}
ObjectClass = undefined

ObjectId = undefined

FieldValue = undefined

DefaultValue = undefined⟩

Theorem 4.4.10 (Correctness of the empty type model)
The empty instance model, Imϵ, is valid with respect to Definition 3.2.19.

Also see imod_empty_correct in Ecore.Instance_Model

The proof for the correctness of the empty instance model is trivial. Still, a validated version of this
proof can be found within the Isabelle theories of this thesis.

As mentioned earlier, the empty instance model acts as an identity element when combining two instance
models. The following theorem specifies this behaviour.

Theorem 4.4.11 (Identity of the combination of instance models)
Assume that ImA is an instance model and that it is valid in the sense of Definition 3.2.19. Then Imϵ

acts as an identity element in the combination function:

combine(Imϵ, ImA) = ImA

Also see imod_combine_identity_alt in Ecore.Instance_Model_Combination

Once more, the proof of this theorem follows directly from the definition. Therefore, the corresponding
proof will not be included here, but a validated version can be found within the Isabelle theories of this
thesis.

A final desired property for the combination of instance models is a correctness property. Theorem 4.4.12
defines the theorem under which the combination of instance models is a valid instance model. Please
note that this theorem is a generic theorem, which does not take into account that the instance models
are mostly distinct.

Theorem 4.4.12 (Validity of the combination of instance models)
Assume that ImA and ImB are valid instance models in the sense of Definition 3.2.19. Assume that
ImA is typed by type model TmA. Furthermore, assume that ImB is typed by type model TmB. TmA

and TmB are consistent by definition. Also assume that TmAB = combine(TmA, TmB) is consistent in
the sense of Definition 3.2.11. Finally, assume the following properties:

• For all shared objects, the object class must be the same in both instance models: ∀o ∈ ObjectImA
∩

ObjectImB
: ObjectClassImA

(o) = ObjectClassImB
(o).

• For all shared objects, the object id must be the same in both instance models: ∀o ∈ ObjectImA
∩

ObjectImB
: ObjectIdImA

(o) = ObjectIdImB
(o).

• For all shared constants within the corresponding type graphs, the default value must be the same
in both instance models: ∀c ∈ ConstantTmA

∩ ConstantTmB
:

DefaultValueImA
(c) = DefaultValueImB

(c).

Page 80

• The identifiers must be unique across both instance models: ∀o1 ∈ ObjectImA
\ ObjectImB

∧ o2 ∈
ObjectImB

\ObjectImA
: ObjectIdImA

(o1) = ObjectIdImB
(o2) =⇒ o1 = o2.

• If a field value is set for a combination of an object and field in both instance models, that field
value must be the same in both instance models: ∀o ∈ ObjectImA

∩ObjectImB
∧

f ∈ fieldsTmA
(ObjectClassImA

(o)) ∩ fieldsTmB
(ObjectClassImB

(o)) :
FieldValueImA

((o, f)) = FieldValueImB
((o, f)).

• If an object needs a field value in the combination of ImA and ImB, but this field value is not set
in ImA, then it must be set in ImB: ∀o ∈ ObjectImA

∧ f ̸∈ fieldsTmA
(ObjectClassImA

(o)) : f ∈
fieldsTmAB

(ObjectClasscombine(ImA,ImB)(o)) =⇒
o ∈ ObjectImB

∧ f ∈ fieldsTmB
(ObjectClassImB

(o)).

• If an object needs a field value in the combination of ImA and ImB, but this field value is not set
in ImB, then it must be set in ImA: ∀o ∈ ObjectImB

∧ f ̸∈ fieldsTmB
(ObjectClassImB

(o)) : f ∈
fieldsTmAB

(ObjectClasscombine(ImA,ImB)(o)) =⇒
o ∈ ObjectImA

∧ f ∈ fieldsTmA
(ObjectClassImA

(o)).

• For field values copied from ImA that are in ContainerV alueImA
, the combined multiplicity must

be correct: ∀o ∈ ObjectImA
∧ f ∈ fieldsTmA

(ObjectClassImA
(o)) ∧

f ∈ FieldTmB
: FieldValueImA

((o, f)) ∈ ContainerV alueImA
=⇒

lowerTmAB
(FieldSigTmAB

(f)) ≤ |FieldValueImA
((o, f))| ∧

|FieldValueImA
((o, f))| ≤ upperTmAB

(FieldSigTmAB
(f)).

• For field values copied from ImB that are in ContainerV alueImB
, the combined multiplicity must

be correct: ∀o ∈ ObjectImB
∧ f ∈ fieldsTmB

(ObjectClassImB
(o)) ∧

f ∈ FieldTmA
: FieldValueImB

((o, f)) ∈ ContainerV alueImB
=⇒

lowerTmAB
(FieldSigTmAB

(f)) ≤ |FieldValueImB
((o, f))| ∧

|FieldValueImB
((o, f))| ≤ upperTmAB

(FieldSigTmAB
(f)).

• If there exists a containment property in TmAB, the satisfaction formula for containment properties
must be satisfied: ∀o ∈ ObjectImA

∪ObjectImB
:⃓⃓{︁(︁

(fo, ff), fv
)︁
|
(︁
(fo, ff), fv

)︁
∈ FieldValuecombine(ImA,ImB) ∧ [obj, o] = fv ∧ ff ∈ CRTmAB

}︁⃓⃓
≤ 1

• There may be no cycles in the containment edges of the combined instance model:
{︁
(fo, fv) |(︁

(fo, ff), fv
)︁
∈ FieldValuecombine(ImA,ImB) ∧ ff ∈ CRTmAB

}︁
is acyclic.

• The identity properties must remain satisfied when combining objects from different instance mod-
els: ∀[identity, c, A] ∈ PropTmA

∧ [identity, c, A] ∈ PropTmB
∧ o1 ∈ ObjectImA

\ ObjectImB
∧

o2 ∈ ObjectImB
\ ObjectImA

∧ ObjectClassImA
(o1) = c ∧ ObjectClassImB

(o2) = c ∧ a ∈ A :
FieldValueImA

((o1, a)) ≡combine(ImA,ImB) FieldValueImB
((o2, a)) =⇒ o1 = o2.

• The opposite properties must remain satisfied when combining objects from different instance mod-
els: ∀[opposite, r1, r2] ∈ PropTmA

∧ [opposite, r1, r2] ∈ PropTmB
∧

o1 ∈ ObjectImA
∧ (o1 ̸∈ ObjectImB

∨ r1 ̸∈ fieldsTmB
(ObjectClassImB

(o1))) ∧
o2 ∈ ObjectImB

∧ (o2 ̸∈ ObjectImA
∨ r2 ̸∈ fieldsTmA

(ObjectClassImA
(o2))) =⇒

edgeCountImA
(o1, r1, o2) = edgeCountImB

(o2, r2, o1).

Then combine(ImA, ImB) is a valid instance model in the sense of Definition 3.2.19

Also see imod_combine_correct in Ecore.Instance_Model_Combination

Proof. To proof that combine(ImA, ImB) is a valid instance model, it needs to be shown that
combine(ImA, ImB) gives rise to a valid structure for an instance model and that Definition 3.2.19 holds.
For readability, define ImAB to be combine(ImA, ImB).

Structural properties

• For each object o, ObjectClassImAB
(o) must be an element of ClassTmAB

.

If o ∈ ObjectImA
\ObjectImB

, then ObjectClassImAB
(o) ∈ ClassTmAB

.

Similarly, if o ∈ ObjectImB
\ObjectImA

, then ObjectClassImAB
(o) ∈ ClassTmAB

.

If o ∈ ObjectImA
∩ ObjectImB

, then ObjectClassImA
(o) = ObjectClassImB

(o) by assumption.
Therefore ObjectClassImAB

(o) ∈ ClassTmAB
.

• For each object o, ObjectIdImAB
(o) must be an element of Name.

If o ∈ ObjectImA
\ObjectImB

, then ObjectIdImAB
(o) ∈ Name.

Similarly, if o ∈ ObjectImB
\ObjectImA

, then ObjectIdImAB
(o) ∈ Name.

Page 81

If o ∈ ObjectImA
∩ObjectImB

, then ObjectIdImA
(o) = ObjectIdImB

(o) by assumption. Therefore
ObjectIdImAB

(o) ∈ Name.

• For each object o, and f ∈ fieldsTmAB
(ObjectClassImAB

(o)), FieldValueImAB
((o, f)) must be an

element of V alueImAB
.

First, note that V alueImA
∪ V alueImB

⊆ V alueImAB

(see imod_combine_value in Ecore.Instance_Model_Combination).

If o ∈ ObjectImA
\ObjectImB

, then f ∈ fieldsTmA
(ObjectClassImA

(o)) or
f ̸∈ fieldsTmA

(ObjectClassImA
(o)).

– If f ∈ fieldsTmA
(ObjectClassImA

(o)), then FieldValueImAB
((o, f)) = FieldValueImA

((o, f))
and, therefore, FieldValueImAB

((o, f)) ∈ V alueImAB
.

– If f ̸∈ fieldsTmA
(ObjectClassImA

(o)), then by assumption, f ∈ ObjectImB
. However, f ̸∈

ObjectImB
, so this case is invalid.

If o ∈ ObjectImB
\ObjectImA

, then f ∈ fieldsTmB
(ObjectClassImB

(o)) or
f ̸∈ fieldsTmB

(ObjectClassImB
(o)).

– If f ∈ fieldsTmB
(ObjectClassImB

(o)), then FieldValueImAB
((o, f)) = FieldValueImB

((o, f))
and, therefore, FieldValueImAB

((o, f)) ∈ V alueImAB
.

– If f ̸∈ fieldsTmB
(ObjectClassImB

(o)), then by assumption, f ∈ ObjectImA
. However, f ̸∈

ObjectImA
, so this case is invalid.

If o ∈ ObjectImA
∩ObjectImB

, then
f ∈ fieldsTmA

(ObjectClassImA
(o)) ∩ fieldsTmB

(ObjectClassImB
(o)) or

f ̸∈ fieldsTmA
(ObjectClassImA

(o)) or f ̸∈ fieldsTmB
(ObjectClassImB

(o)).

– If f ∈ fieldsTmA
(ObjectClassImA

(o)) ∩ fieldsTmB
(ObjectClassImB

(o)), then
FieldValueImAB

((o, f)) = FieldValueImA
((o, f)) and, therefore,

FieldValueImAB
((o, f)) ∈ V alueImAB

.

– If f ̸∈ fieldsTmA
(ObjectClassImA

(o)), then by assumption, f ∈ fieldsTmB
(ObjectClassImB

(o)).
Therefore, FieldValueImAB

((o, f)) = FieldValueImB
((o, f)) which means that

FieldValueImAB
((o, f)) ∈ V alueImAB

.

– If f ̸∈ fieldsTmB
(ObjectClassImB

(o)), then by assumption, f ∈ fieldsTmA
(ObjectClassImA

(o)).
Therefore, FieldValueImAB

((o, f)) = FieldValueImA
((o, f)) which means that

FieldValueImAB
((o, f)) ∈ V alueImAB

.

• For each constant c in ConstantTmAB
, DefaultValueImAB

(c) must be an element of V alueImAB
.

First, note that V alueImA
∪ V alueImB

⊆ V alueImAB

(see imod_combine_value in Ecore.Instance_Model_Combination).

If c ∈ ConstantTmA
\ ConstantTmB

, then DefaultValueImAB
(c) ∈ V alueImAB

.

Similarly, if c ∈ ConstantTmB
\ ConstantTmA

, then DefaultValueImAB
(c) ∈ V alueImAB

.

If c ∈ ConstantTmA
∩ ConstantTmB

, then DefaultValueImA
(c) = DefaultValueImB

(c) by assump-
tion. Therefore DefaultValueImAB

(c) ∈ V alueImAB
.

Validity properties

• ∀((o, f), v) ∈ FieldValueImAB
: v :Im typeTmAB

(f)

If o ∈ ObjectImA
\ObjectImB

, then f ∈ fieldsTmA
(ObjectClassImA

(o)) or
f ̸∈ fieldsTmA

(ObjectClassImA
(o)).

– If f ∈ fieldsTmA
(ObjectClassImA

(o)), then FieldValueImAB
((o, f)) = FieldValueImA

((o, f)).
In this case typeTmAB

(f) = typeTmA
(f) because types are preserved by TmAB . Therefore,

v :Im typeTmAB
(f).

– If f ̸∈ fieldsTmA
(ObjectClassImA

(o)), then by assumption, f ∈ ObjectImB
. However, f ̸∈

ObjectImB
, so this case is invalid.

If o ∈ ObjectImB
\ObjectImA

, then f ∈ fieldsTmB
(ObjectClassImB

(o)) or
f ̸∈ fieldsTmB

(ObjectClassImB
(o)).

– If f ∈ fieldsTmB
(ObjectClassImB

(o)), then FieldValueImAB
((o, f)) = FieldValueImB

((o, f)).
In this case typeTmAB

(f) = typeTmB
(f) because types are preserved by TmAB . Therefore,

v :Im typeTmAB
(f).

Page 82

– If f ̸∈ fieldsTmB
(ObjectClassImB

(o)), then by assumption, f ∈ ObjectImA
. However, f ̸∈

ObjectImA
, so this case is invalid.

If o ∈ ObjectImA
∩ObjectImB

, then
f ∈ fieldsTmA

(ObjectClassImA
(o)) ∩ fieldsTmB

(ObjectClassImB
(o)) or

f ̸∈ fieldsTmA
(ObjectClassImA

(o)) or f ̸∈ fieldsTmB
(ObjectClassImB

(o)).

– If f ∈ fieldsTmA
(ObjectClassImA

(o)) ∩ fieldsTmB
(ObjectClassImB

(o)), then
FieldValueImAB

((o, f)) = FieldValueImA
((o, f)). In this case typeTmAB

(f) = typeTmA
(f)

because types are preserved by TmAB . Therefore, v :Im typeTmAB
(f).

– If f ̸∈ fieldsTmA
(ObjectClassImA

(o)), then by assumption, f ∈ fieldsTmB
(ObjectClassImB

(o)).
Therefore, FieldValueImAB

((o, f)) = FieldValueImB
((o, f)). Furthermore, typeTmAB

(f) =
typeTmA

(f) because types are preserved by TmAB . Therefore, v :Im typeTmAB
(f).

– If f ̸∈ fieldsTmB
(ObjectClassImB

(o)), then by assumption, f ∈ fieldsTmA
(ObjectClassImA

(o)).
Therefore, FieldValueImAB

((o, f)) = FieldValueImA
((o, f)). Furthermore, typeTmAB

(f) =
typeTmA

(f) because types are preserved by TmAB . Therefore, v :Im typeTmAB
(f).

• ∀((o, f), v) ∈ FieldValueImAB
: validMulImAB

(v).

If o ∈ ObjectImA
\ObjectImB

, then f ∈ fieldsTmA
(ObjectClassImA

(o)) or
f ̸∈ fieldsTmA

(ObjectClassImA
(o)).

– If f ∈ fieldsTmA
(ObjectClassImA

(o)), then FieldValueImAB
((o, f)) = FieldValueImA

((o, f)).
Because ImA is valid, validMulImA

(v) holds. If the multiplicity is preserved because f ̸∈
FieldTmB

, then validMulImAB
(v). If the multiplicity is changed because f ∈ FieldTmB

, then
validMulImAB

(v) is proven by assumption.

– If f ̸∈ fieldsTmA
(ObjectClassImA

(o)), then by assumption, f ∈ ObjectImB
. However, f ̸∈

ObjectImB
, so this case is invalid.

If o ∈ ObjectImB
\ObjectImA

, then f ∈ fieldsTmB
(ObjectClassImB

(o)) or
f ̸∈ fieldsTmB

(ObjectClassImB
(o)).

– If f ∈ fieldsTmB
(ObjectClassImB

(o)), then FieldValueImAB
((o, f)) = FieldValueImB

((o, f)).
Because ImB is valid, validMulImB

(v) holds. If the multiplicity is preserved because f ̸∈
FieldTmA

, then validMulImAB
(v). If the multiplicity is changed because f ∈ FieldTmA

, then
validMulImAB

(v) is proven by assumption.

– If f ̸∈ fieldsTmB
(ObjectClassImB

(o)), then by assumption, f ∈ ObjectImA
. However, f ̸∈

ObjectImA
, so this case is invalid.

If o ∈ ObjectImA
∩ObjectImB

, then
f ∈ fieldsTmA

(ObjectClassImA
(o)) ∩ fieldsTmB

(ObjectClassImB
(o)) or

f ̸∈ fieldsTmA
(ObjectClassImA

(o)) or f ̸∈ fieldsTmB
(ObjectClassImB

(o)).

– If f ∈ fieldsTmA
(ObjectClassImA

(o)) ∩ fieldsTmB
(ObjectClassImB

(o)), then
FieldValueImAB

((o, f)) = FieldValueImA
((o, f)). In this case validMulImAB

(v) is proven by
assumption since the multiplicity of f has been combined into a new multiplicity.

– If f ̸∈ fieldsTmA
(ObjectClassImA

(o)), then by assumption, f ∈ fieldsTmB
(ObjectClassImB

(o)).
Therefore, FieldValueImAB

((o, f)) = FieldValueImB
((o, f)). Furthermore, because ImB is

valid, validMulImB
(v) holds. If the multiplicity is preserved because f ̸∈ FieldTmA

, then
validMulImAB

(v). If the multiplicity is changed because f ∈ FieldTmA
, then validMulImAB

(v)
is proven by assumption.

– If f ̸∈ fieldsTmB
(ObjectClassImB

(o)), then by assumption, f ∈ fieldsTmA
(ObjectClassImA

(o)).
Therefore, FieldValueImAB

((o, f)) = FieldValueImA
((o, f)). Furthermore, because ImA is

valid, validMulImA
(v) holds. If the multiplicity is preserved because f ̸∈ FieldTmB

, then
validMulImAB

(v). If the multiplicity is changed because f ∈ FieldTmB
, then validMulImAB

(v)
is proven by assumption.

• ∀p ∈ PropTmAB
: Im |= p

Make a case distinction for the different possible properties.

– For [abstract, c] ∈ PropTmAB
, use the fact that TmAB is consistent to establish that abstract

properties are only copied iff there are no instances of it in the combined instance graph (see
Definition 4.3.4 for details). Therefore, Im |= [abstract, c].

– For [containment, r] ∈ PropTmAB
, use the assumptions to prove that Im |= [containment, r].

Page 83

– For [defaultValue, f, v] ∈ PropTmAB
, there is no specific satisfaction formula, therefore Im |=

[defaultValue, f, v].

– For [identity, c, A] ∈ PropTmAB
, if the property was copied over from only one of the type

models, then Im |= [identity, c, A]. This is the case because c could not have been part of the
other type model and therefore not occur in its instance models.

If [identity, c, A] ∈ PropTmAB
was present in both type models, then the identity satisfaction

formula will be correct for each pair of instances from ImA and each pair of instances from
ImB . To ensure that it is correct for mixed instance pairs, use the assumption specified. Then
establish that Im |= [identity, c, A].

– For [keyset, r, A] ∈ PropTmAB
, it is clear that each value of r in the combined instance graph

is either the copied field value from ImA or the copied field value from ImB . Since values
are preserved, there can be no new objects added to an existing relation. Therefore, Im |=
[keyset, r, A].

– For [opposite, r, r′] ∈ PropTmAB
, if the property was copied over from only one of the type

models, then Im |= [opposite, r, r′]. This is the case because r and r′ could not have been part
of the other type model and therefore not occur in its instance models.

If [opposite, r, r′] ∈ PropTmAB
was present in both type models, then the opposite satisfaction

formula will be correct for each pair of instances from ImA and each pair of instances from
ImB . To ensure that it is correct for mixed instance pairs, use the assumption specified. Then
establish that Im |= [opposite, r, r′].

– For [readonly, f] ∈ PropTmAB
, there is no specific satisfaction formula, therefore Im |=

[readonly, f].

• ∀c ∈ ConstantTmAB
: DefaultValueImAB

(c) :ImAB
ConstTypeTmAB

(c).

If c ∈ ConstantTmA
\ ConstantTmB

, then DefaultValueImAB
(c) = DefaultValueImA

(c). Further-
more, ConstTypeTmAB

(c) = ConstTypeTmA
(c). Therefore,

DefaultValueImAB
(c) :ImAB

ConstTypeTmAB
(c).

Similarly, if c ∈ ConstantTmB
\ ConstantTmA

, then DefaultValueImAB
(c) = DefaultValueImB

(c).
Furthermore, ConstTypeTmAB

(c) = ConstTypeTmB
(c). Therefore,

DefaultValueImAB
(c) :ImAB

ConstTypeTmAB
(c).

If c ∈ ConstantTmA
∩ ConstantTmB

, then DefaultValueImA
(c) = DefaultValueImB

(c) by assump-
tion. Furthermore, ConstTypeTmA

(c) = ConstTypeTmB
(c), since TmAB is consistent. Therefore,

DefaultValueImAB
(c) :ImAB

ConstTypeTmAB
(c).

• TmAB is consistent, as defined in Definition 3.2.11.

This is specified to be true by assumption.

The proofs of all these individual properties complete the entire proof.

As explained before, Theorem 4.4.12 does not take into account that the instance models are supposed to
be distinct except for a set of objects. Furthermore, it does not take into account that the corresponding
type models are supposed to be distinct except for a set of types. The following lemma is an alternation
of the previous theorem, which takes these properties into account.

Lemma 4.4.13 (Consistency of the combination (mostly) distinct of instance models)
Assume that ImA and ImB are valid instance models in the sense of Definition 3.2.19. Assume that
ImA is typed by type model TmA. Furthermore, assume that ImB is typed by type model TmB. TmA

and TmB are consistent by definition. Also assume that TmAB = combine(TmA, TmB) is consistent in
the sense of Definition 3.2.11. Moreover, assume that TmA and TmB are entirely distinct except for
a set of types T . Also assume that ImA and ImB are entirely distinct except for a set of objects O.
Finally, assume the following properties:

• For all shared objects, the object class must be the same in both instance models: ∀o ∈ ObjectImA
∩

ObjectImB
: ObjectClassImA

(o) = ObjectClassImB
(o).

• For all shared objects, the object id must be the same in both instance models: ∀o ∈ ObjectImA
∩

ObjectImB
: ObjectIdImA

(o) = ObjectIdImB
(o).

• For all shared constants within the corresponding type graphs, the default value must be the same
in both instance models: ∀c ∈ ConstantTmA

∩ ConstantTmB
:

DefaultValueImA
(c) = DefaultValueImB

(c).

Page 84

• The identifiers must be unique across both instance models: ∀o1 ∈ ObjectImA
\ ObjectImB

∧ o2 ∈
ObjectImB

\ObjectImA
: ObjectIdImA

(o1) = ObjectIdImB
(o2) =⇒ o1 = o2.

• If an object needs a field value in the combination of ImA and ImB, but this field value is not set
in ImA, then it must be set in ImB: ∀o ∈ ObjectImA

∧ f ̸∈ fieldsTmA
(ObjectClassImA

(o)) : f ∈
fieldsTmAB

(ObjectClasscombine(ImA,ImB)(o)) =⇒
o ∈ ObjectImB

∧ f ∈ fieldsTmB
(ObjectClassImB

(o)).

• If an object needs a field value in the combination of ImA and ImB, but this field value is not set
in ImB, then it must be set in ImA: ∀o ∈ ObjectImB

∧ f ̸∈ fieldsTmB
(ObjectClassImB

(o)) : f ∈
fieldsTmAB

(ObjectClasscombine(ImA,ImB)(o)) =⇒
o ∈ ObjectImA

∧ f ∈ fieldsTmA
(ObjectClassImA

(o)).

• If there exists a containment property in TmAB, the satisfaction formula for containment properties
must be satisfied: ∀o ∈ ObjectImA

∪ObjectImB
:⃓⃓{︁(︁

(fo, ff), fv
)︁
|
(︁
(fo, ff), fv

)︁
∈ FieldValuecombine(ImA,ImB) ∧ [obj, o] = fv ∧ ff ∈ CRTmAB

}︁⃓⃓
≤ 1

• There may be no cycles in the containment edges of the combined instance model:
{︁
(fo, fv) |(︁

(fo, ff), fv
)︁
∈ FieldValuecombine(ImA,ImB) ∧ ff ∈ CRTmAB

}︁
is acyclic.

Then combine(ImA, ImB) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_combine_merge_correct in Ecore.Instance_Model_Combination

Proof. Use Theorem 4.4.12 to show that combine(ImA, ImB) is a consistent type model. Use the as-
sumptions given. Some assumptions of Theorem 4.4.12 become irrelevant because ImA and ImB are
mostly distinct.

Finally, the concept of compatibility between two instance models is defined.

Definition 4.4.14 (Compatibility of instance models)
Assume instance models ImA and ImB. We say that ImA is compatible with ImB if combine(ImA, ImB)
is a valid instance model in the sense of Definition 3.2.19.

The notion of compatibility will be used later as a way to denote instance models that can be combined
with other instance models without loss of validity.

4.4.2 Combining instance graphs
The structure of Figure 4.10 shows that the instance graphs IGA and IGB are combined into one instance
graph IGAB . This section provides the definition of this combination and its corresponding theorems.
Please note that the definitions presented here, just like the previous section, are as generic as possible,
and do not actively take into account that IGA and IGB are mostly distinct. This bit of information is
added later as part of a theorem and proof.

Definition 4.4.15 (Combination function on instance graphs)
combine is a binary function on two instance graphs which combines two instance graphs into one instance
graph. Assume IGA is an instance graph typed by type graph TGA and IGB is an instance graph typed
by type graph TGB, then combine(IGA, IGB) is typed by combine(TGA, TGB) and is defined as follows:

combine(IGA, IGB) = ⟨N = NIGA
∪NIGB

E = EIGA
∪ EIGB

ident = ident_combine(IGA, IGB)⟩

In which ident_combine is given as part of Definition 4.4.16.

Also see ig_combine in GROOVE.Instance_Graph_Combination

The definition of the combination of instance graphs is the easiest combination function to understand.
Essentially, it does nothing more than combining the nodes and edges of the graph. The only thing that
is done extra is the combination of the identification function, of which the definition is presented within
the next definition.

Definition 4.4.16 (Combination function for identities of instance graphs)
ident_combine(IGA, IGB) is a partial function on two type graphs which returns a new function

Page 85

Example : Contact
email = "networks@example.com"
firstName = "Netwerkprofessort"

(a) Contacts model IGContact

Example : Contact
fav

Address
addressLine = "November Str. 15"

country = "NL"

addresses

(b) Address extension IGExt

Contact
fav

email = "networks@example.com"
firstName = "Netwerkprofessort"

Address
addressLine = "November Str. 15"

country = "NL"

addresses

(c) Combined model IGContactExt

Figure 4.12: Example of the combination of instance graphs

Id ⇒ (NIGAB
∩Nodet). It is defined as follows:

ident_combine(IGA, IGB , i) =⎧⎪⎨⎪⎩
identIGA

(i) if i ∈ dom identIGA
∩ dom identIGB

∧ identIGA
(i) = identIGB

(i)

identIGA
(i) if i ∈ dom identIGA

\ dom identIGB

identIGB
(i) if i ∈ dom identIGB

\ dom identIGA

Also see ig_combine_ident in GROOVE.Instance_Graph_Combination

The combination function for identifiers of the instance graphs is not very difficult either. If an identifier
is only valid in one of the instance graphs, the identifier value is copied from that graph. Furthermore,
if an identifier is valid in both instance graphs, it should be the case that the identifiers project on the
same node. If this is the case, then the identifier is set for the combination.

Like the combination function of object identifiers of instance models (Definition 4.4.3), the behaviour of
this function might seem strange. Theoretically, it might give rise to nodes with two identities, which is
undesired. As will be shown later, the combination function and theorems assume that the identities of
the graphs are already distinct. This assumption is fair, as it is possible to redefine two instance graphs
to have distinct identities, without loss of significance.

With all definitions in place, it is possible to provide an example. Let us return to the contacts list
example introduced in Figure 4.9 of Section 4.3.2. Suppose a simple instance of TGContact, which has
one instance with a name and e-mail address. This could be formally defined as follows:

IGContact = ⟨ N = {Contact1, “Netwerkprofessort” , “networks@example.com”}
typen = {(Contact1,Contact), (“networks@example.com”, string),

(“Netwerkprofessort” , string)}
E =

{︁(︁
Contact1, (Contact, email, string), “networks@example.com”

)︁
,(︁

Contact1, (Contact, firstName, string), “Netwerkprofessort”
)︁}︁

ident = {(Example, Contact1)}
⟩

A visual representation of this model is included in Figure 4.12a. Now suppose that we want to extent this
contact with an address. An instance of TmExt represents this address, and is defined as follows:

IGExt = ⟨ N = {Contact1, Address1, “November Str. 15”, “NL”}
typen = {(Contact1,Contact), (Address1,Address),

(“November Str. 15”, string), (“NL”, string)}
E =

{︁(︁
Contact1, (Contact, fav,Contact), Contact1

)︁
,(︁

Contact1, (Contact, addresses,Address), Address1
)︁
,(︁

Address1, (Address, addressLine, string), “November Str. 15”
)︁
,(︁

Address1, (Address, country, string), “NL”
)︁}︁

ident = {(Example, Contact1)}
⟩

Page 86

The visual representation of IGExt is included in Figure 4.12b. With these instance models formally
defined, it is possible to combine them using Definition 4.4.15. This will yield the following model:

IGChatExt = ⟨ N = {Contact1, Address1, “November Str. 15”, “NL”}
typen = {(Contact1,Contact), (Address1,Address),

(“networks@example.com”, string), (“Netwerkprofessort”, string),
(“November Str. 15”, string), (“NL” , string)}

E =
{︁(︁

Contact1, (Contact, email, string), “networks@example.com”
)︁
,(︁

Contact1, (Contact, firstName, string), “Netwerkprofessort”
)︁
,(︁

Contact1, (Contact, fav,Contact), Contact1
)︁
,(︁

Contact1, (Contact, addresses,Address), Address1
)︁
,(︁

Address1, (Address, addressLine, string), “November Str. 15”
)︁
,(︁

Address1, (Address, country, string), “NL”
)︁}︁

ident = {(Example, Contact1)}
⟩

A visual representation of this combined model is included as Figure 4.12c. Like the example for the
combination of type graphs, this example shows that the definition of the combination of instance graphs
is useful. It allows to build larger graphs out of smaller building blocks. Furthermore, the example shows
that the combination of the two instance graphs is typed by the combination of its corresponding type
graphs.

Although the definitions of the combination of instance graphs are given, no mathematical properties or
theorems are defined yet. Some mathematical properties hold for the combination of instance graphs,
that will be presented in the following theorems.

Theorem 4.4.17 (Commutativity of the combination of instance graphs)
Assume that IGA and IGB are instance graphs, then the combine function is commutative:

combine(IGA, IGB) = combine(IGB , IGA)

Also see ig_combine_commute in GROOVE.Instance_Graph_Combination

Theorem 4.4.18 (Associativity of the combination of instance graphs)
Assume that IGA, IGB and IGC are instance graphs, then the combine function is associative:

combine(combine(IGA, IGB), IGC) = combine(IGA, combine(IGB , IGC))

Also see ig_combine_assoc in GROOVE.Instance_Graph_Combination

Theorem 4.4.19 (Idempotence of the combination of instance graphs)
Assume that IGA is an instance graph and that it is valid in the sense of Definition 3.3.10. Then the
following property holds:

combine(IGA, IGA) = IGA

Also see ig_combine_idemp_alt in GROOVE.Instance_Graph_Combination

These properties follow directly from Definition 4.4.15, but the corresponding proofs will not be included
here. It should be noted that these properties are indeed proven correct as part of this thesis, and the
corresponding proofs are validated within Isabelle.

Besides these properties, the combination of instance graphs also has an identity element. The empty
instance graph represents this identity element, but it needs to be defined first:

Definition 4.4.20 (Empty instance graph)
Let IGϵ be the empty instance graph. It is typed by the empty type graph TGϵ. IGϵ is defined as:

IGϵ = ⟨N = {}
E = {}
ident = undefined⟩

Page 87

Theorem 4.4.21 (Correctness of the empty type model)
The empty instance graph, IGϵ, is valid with respect to Definition 3.3.10.

Also see ig_empty_correct in GROOVE.Instance_Graph

The proof for the correctness of the empty instance graph is trivial. Still, a validated version of this
proof can be found within the Isabelle theories of this thesis.

As mentioned earlier, the empty instance graph acts as an identity element when combining two instance
graphs. The following theorem specifies this behaviour.

Theorem 4.4.22 (Identity of the combination of instance models)
Assume that IGA is an instance graph and that it is valid in the sense of Definition 3.3.10. Then IGϵ

acts as an identity element in the combination function:

combine(IGϵ, IGA) = IGA

Also see ig_combine_identity_alt in GROOVE.Instance_Graph_Combination

Once more, the proof of this theorem follows directly from the definition. Therefore, the corresponding
proof will not be included here, but a validated version can be found within the Isabelle theories of this
thesis.

A final desired property for the combination of instance models is a correctness property. Theorem 4.4.12
defines the theorem under which the combination of instance models is a valid instance model. Please
note that this theorem is a generic theorem, which does not take into account that the instance models
are mostly distinct.

Theorem 4.4.23 (Validity of the combination of instance graphs)
Assume that IGA and IGB are valid instance graphs in the sense of Definition 3.3.10. Assume that
IGA is typed by type model TGA. Furthermore, assume that IGB is typed by type model TGB. TGA

and TGB are valid by definition. Also assume that TGAB = combine(TGA, TGB) is valid in the sense
of Definition 3.3.5. Finally, assume the following properties:

• For all shared identities, the nodes belonging to the identities must be equal in both instance graphs:
∀i ∈ dom identIGA

∩ dom identIGB
: identIGA

(i) = identIGB
(i).

• The outgoing multiplicity for edges must be valid: ∀et ∈ ETTGA
∪ ETTGB

∧ n ∈ NIGA
∪ NIGB

:
(typen(n), src(et)) ∈ ⊑TGAB

=⇒
|{e | e ∈ EIGA

∪ EIGB
∧ src(e) = n ∧ typee(e) = et}| ∈ out(multTGAB

(et)).

• The incoming multiplicity for edges must be valid: ∀et ∈ ETTGA
∪ ETTGB

∧ n ∈ NIGA
∪ NIGB

:
(typen(n), tgt(et)) ∈ ⊑TGAB

=⇒
|{e | e ∈ EIGA

∪ EIGB
∧ tgt(e) = n ∧ typee(e) = et}| ∈ in(multTGAB

(et)).

• Each node may only be contained by one other node: ∀n ∈ NIGA
∪NIGB

: |{e | e ∈ EIGA
∪EIGB

∧
tgt(e) = n ∧ typee(e) ∈ containsTGAB

}| ≤ 1.

• There may be no cycle in the containment edges of the combined instance graph: {(src(e), tgt(e)) |
e ∈ EIGA

∪ EIGB
∧ typee(e) ∈ containsTGAB

} is acyclic.

Then combine(IGA, IGB) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_combine_correct in GROOVE.Instance_Graph_Combination

Proof. To proof that combine(IGA, IGB) is a valid instance graph, it needs to be shown that
combine(IGA, IGB) gives rise to a valid structure for an instance graph and that Definition 3.3.10 holds.
For readability, define IGAB to be combine(IGA, IGB).

Structural properties

• All elements of NIGAB
are elements of Nodet ∪Nodev.

Follows from NIGA
⊆ Nodet ∪Nodev and NIGB

⊆ Nodet ∪Nodev.

• All elements of EIGAB
are elements of NIGAB

× ETTGAB
×NIGAB

.

Follows from EIGA
⊆ (NIGA

×ETTGA
×NIGA

) and EIGB
⊆ (NIGB

×ETTGB
×NIGB

). To complete
the proof, use that ETTGAB

= ETTGA
∪ ETTGB

and NIGAB
= NIGA

∪NIGB
.

Page 88

• For each identity i ∈ dom identIGAB
, identIGAB

(i) is an element of NIGAB
∩Nodet.

First note that identIGAB
(i) = identIGA

(i) or identIGAB
(i) = identIGB

(i).

If identIGAB
(i) = identIGA

(i), then have identIGA
(i) ∈ NIGA

∩Nodet. Then use NIGAB
= NIGA

∪
NIGB

to have identIGAB
(i) ∈ NIGAB

∩Nodet.

Similarly, if identIGAB
(i) = identIGB

(i), then have identIGB
(i) ∈ NIGB

∩ Nodet. Then use
NIGAB

= NIGA
∪NIGB

to have identIGAB
(i) ∈ NIGAB

∩Nodet.

Validity properties

• ∀n ∈ NIGAB
: typen(n) ∈ NTTGAB

.

Have that typen(n) ∈ NTTGA
or typen(n) ∈ NTTGB

. Then have that typen(n) ∈ NTTGAB
because

NIGAB
= NIGA

∪NIGB
.

• ∀e ∈ EIGAB
: typen

(︁
src(e)

)︁
⊑TGAB

src
(︁
typee(e)

)︁
.

Since types of nodes and edges are preserved while merging, ⊑TGA
⊆ ⊑TGAB

and ⊑TGB
⊆ ⊑TGAB

,
it follows that typen

(︁
src(e)

)︁
⊑TGAB

src
(︁
typee(e)

)︁
.

• ∀e ∈ EIGAB
: typen

(︁
tgt(e)

)︁
⊑TGAB

tgt
(︁
typee(e)

)︁
.

Since types of nodes and edges are preserved while merging, ⊑TGA
⊆ ⊑TGAB

and ⊑TGB
⊆ ⊑TGAB

,
it follows that typen

(︁
tgt(e)

)︁
⊑TGAB

tgt
(︁
typee(e)

)︁
.

• ∀n ∈ NIGAB
: typen(n) ̸∈ absTGAB

.

Use that NIGAB
= NIGA

∪NIGB
. Then make a case distinction.

If n ∈ NIGA
, then typen(n) ̸∈ absTGA

. Furthermore, typen(n) ̸∈ absTGB
\NTTGA

. Then we have
that typen(n) ̸∈ absTGAB

.

Similarly, if n ∈ NIGB
, then typen(n) ̸∈ absTGB

. Furthermore, typen(n) ̸∈ absTGA
\NTTGB

. Then
we have that typen(n) ̸∈ absTGAB

.

• ∀et ∈ ETTGAB
: ∀n ∈ NIGAB

: typen(n) ⊑TGAB
src(et) =⇒ |{e ∈ EIGAB

| src(e) = n ∧ typee(e) =
et}| ∈ out(multTGAB

(et)).

This can be solved directly by expanding some definitions and using the assumption for outgoing
multiplicities.

• ∀et ∈ ETTGAB
: ∀n ∈ NIGAB

: typen(n) ⊑TGAB
tgt(et) =⇒ |{e ∈ EIGAB

| tgt(e) = n ∧ typee(e) =
et}| ∈ in(multTGAB

(et)).

This can be solved directly by expanding some definitions and using the assumption for incoming
multiplicities.

• ∀n ∈ NIGAB
: |{e ∈ EIGAB

| tgt(e) = n ∧ typee(e) ∈ containsTGAB
}| ≤ 1.

This can be solved directly by expanding some definitions and using the assumption for the con-
tainment of nodes.

• There may be no cycle between the containment edges in EIGAB
.

This is solved by assumption.

The proofs of all these individual properties complete the entire proof.

As explained before, Theorem 4.4.23 does not take into account that the instance graphs are supposed to
be distinct except for a set of nodes. Furthermore, it does not take into account that the corresponding
type graphs are supposed to be distinct except for a set of node types. The following lemma is an
alternation of the previous theorem, which takes these properties into account.

Lemma 4.4.24 (Consistency of the combination (mostly) distinct of instance graphs)
Assume that IGA and IGB are valid instance graphs in the sense of Definition 3.3.10. Assume that
IGA is typed by type model TGA. Furthermore, assume that IGB is typed by type model TGB. TGA

and TGB are consistent by definition. Also assume that TGAB = combine(TGA, TGB) is consistent in
the sense of Definition 3.3.5. Moreover, assume that TGA and TGB are entirely distinct except for a
set of node types NT . Also assume that IGA and IGB are entirely distinct except for a set of nodes N .
Finally, assume the following properties:

• For all shared identities, the nodes belonging to the identities must be equal in both instance graphs:
∀i ∈ dom identIGA

∩ dom identIGB
: identIGA

(i) = identIGB
(i).

Page 89

• The outgoing multiplicity for edges in IGA must be valid: ∀et ∈ ETTGA
∧ n ∈ NIGA

∪ NIGB
:

(typen(n), src(et)) ∈ ⊑TGAB
=⇒

|{e | e ∈ EIGA
∧ src(e) = n ∧ typee(e) = et}| ∈ out(multTGA

(et)).

• The incoming multiplicity for edges in IGA must be valid: ∀et ∈ ETTGA
∧ n ∈ NIGA

∪ NIGB
:

(typen(n), tgt(et)) ∈ ⊑TGAB
=⇒

|{e | e ∈ EIGA
∧ tgt(e) = n ∧ typee(e) = et}| ∈ in(multTGA

(et)).

• The outgoing multiplicity for edges in IGB must be valid: ∀et ∈ ETTGB
∧ n ∈ NIGA

∪ NIGB
:

(typen(n), src(et)) ∈ ⊑TGAB
=⇒

|{e | e ∈ EIGB
∧ src(e) = n ∧ typee(e) = et}| ∈ out(multTGB

(et)).

• The incoming multiplicity for edges in IGB must be valid: ∀et ∈ ETTGB
∧ n ∈ NIGA

∪ NIGB
:

(typen(n), tgt(et)) ∈ ⊑TGAB
=⇒

|{e | e ∈ EIGB
∧ tgt(e) = n ∧ typee(e) = et}| ∈ in(multTGB

(et)).

• Each node that is present in both instance graphs may only be contained by one other node: ∀n ∈
NIGA

∩NIGB
: |{e | e ∈ EIGA

∪ EIGB
∧ tgt(e) = n ∧ typee(e) ∈ containsTGAB

}| ≤ 1.

• There may be no cycle in the containment edges of the combined instance graph: {(src(e), tgt(e)) |
e ∈ EIGA

∪ EIGB
∧ typee(e) ∈ containsTGAB

} is acyclic.

Then combine(IGA, IGB) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_combine_merge_correct in GROOVE.Instance_Graph_Combination

Proof. Use Theorem 4.4.23 to show that combine(IGA, IGB) is a consistent type model. Use the as-
sumptions given. Some assumptions of Theorem 4.4.12 are solved using multiple assumptions because
part of the assumption became irrelevant.

Finally, the concept of compatibility between two instance graphs is defined.

Definition 4.4.25 (Compatibility of instance graphs)
Assume instance graphs IGA and IGB. We say that IGA is compatible with IGB if combine(IGA, IGB)
is a valid instance graph in the sense of Definition 3.3.10.

The notion of compatibility will be used later as a way to denote instance graphs that can be combined
with other instance graphs without loss of validity.

4.4.3 Combining transformation functions
The previous sections discussed the combination of instance models and instance graphs. In this section,
the combination of transformation functions between instance models and instance graphs is discussed.
This combination is the last key element shown in Figure 4.10. If it is possible to combine fA and fB
into fA ⊔ fB , then it is possible to build transformation functions between instance models and instance
graphs iteratively.

Before it is possible to define a definition for the combination of two transformation functions, it is
essential to define what functions are considered to be transformation functions.

Definition 4.4.26 (Transformation function from an instance model to an instance graph)
Let f be a function from instance models to instance graphs, Im be an instance model and IG the
corresponding instance graph. f is a transformation function iff:

• f projects Im onto IG: f(Im) = IG;

• After combination with another instance model, f preserves the type graph;

• After combination with another instance model, f preserves the nodes:
∀Imx : Nf(Im) ⊆ Nf(combine(Im,Imx));

• After combination with another instance model, f preserves the edges:
∀Imx : Ef(Im) ⊆ Ef(combine(Im,Imx));

• For all identities in the projected instance graph, f preserves the value of the identity if the instance
model is combined with another instance model:
∀Imx : ∀i ∈ dom identf(Tm) : identf(Im)(i) = identf(combine(Im,Imx))(i).

Also see ig_combine_mapping_function in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Page 90

As expected, a transformation must project some instance model Im to its corresponding instance graph
IG. Furthermore, it has to preserve properties of the projection, even after Im is combined with some
other instance model. The rationale behind these properties is that after combining Im with some other
instance model, there must still be a way to transform the elements that originated from Im. If that is
possible, it is possible to use the transformation function as the basis for the combined transformation
function, which can transform the combined instance model to a combined instance graph.

The following definition will describe how two transformation functions from instance models to instance
graphs can be combined into a new transformation function, which projects the combination of two
instance models onto the combination of the two corresponding instance graphs.

Definition 4.4.27 (Combination of transformation functions from an instance model to an instance
graph)
Let fA and fB be a transformation functions in the sense of Definition 4.4.26. fA projects an instance
model ImA onto instance graph IGA. fB projects an instance model ImB onto instance graph IGB.
Then the combination of fA and fB is defined as:

fA ⊔ fB(Im) = ⟨ N = {n | n ∈ NfA(Im) ∧ n ∈ NIGA
} ∪ {n | n ∈ NfB(Im) ∧ n ∈ NIGB

}
E = {e | e ∈ EfA(Im) ∧ e ∈ EIGA

} ∪ {e | e ∈ EfB(Im) ∧ e ∈ EIGB
}

ident = ident_mapping(fA, IGA, fB , IGB , Im)⟩

In which ident_mapping is given as part of Definition 4.4.28

Also see ig_combine_mapping in Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Like the combination of transformations functions from a type model to a type graph, the combination
of transformations functions from an instance model to an instance graph follows the combination of
instance graphs closely. The definition is an alternation of Definition 4.4.15. As shown for type models
and type graphs, this is the desired behaviour, as the combination of the transformation functions should
be able to transform the combination of two instance models to the combination of the two corresponding
instance graphs.

Unsurprisingly, the definition of the identity function of fA⊔fB is very similar to Definition 4.4.16.

Definition 4.4.28 (Combination of the identity function for two transformation functions)
ident_mapping(fA, IGA, fB , IGB , Im) is a partial function on two transformation functions fA and fB,
their corresponding projections IGA and IGB and an instance model Im which returns a new function
Id ⇒ (NfA⊔fB(Im) ∩Nodet). It is defined as follows:

ident_combine(fA, IGA, fB , IGB , Im, i) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

identfA(Im)(i) if i ∈ {i | i ∈ dom identfA(Im) ∧ i ∈ dom identIGA
} ∩

{i | i ∈ dom identfA(Im) ∧ i ∈ dom identIGA
} ∧ identfA(Im)(i) = identIGB

(i)

identfA(Im)(i) if i ∈ {i | i ∈ dom identfA(Im) ∧ i ∈ dom identIGA
} \

{i | i ∈ dom identfA(Im) ∧ i ∈ dom identIGA
}

identfB(Im)(i) if i ∈ {i | i ∈ dom identfA(Im) ∧ i ∈ dom identIGA
} \

{i | i ∈ dom identfA(Im) ∧ i ∈ dom identIGA
}

With these definitions in place, it is possible to provide the necessary theorems for the correctness of the
combined function fA ⊔ fB .

Theorem 4.4.29 (The projection of a combined transformation function from an instance model to an
instance graph)
Let fA and fB be a transformation functions in the sense of Definition 4.4.26. fA projects an instance
model ImA onto instance graph IGA. fB projects an instance model ImB onto instance graph IGB.
Then the combination of fA and fB, fA⊔fB projects combine(ImA, ImB) onto combine(IGA, IGB), so:

fA ⊔ fB(combine(ImA, ImB)) = combine(IGA, IGB)

Also see ig_combine_mapping_correct in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Proof. The corresponding proof follows directly from Definition 4.4.27 as well as Definition 4.4.26. Since
the individual transformation functions fA and fB preserve the elements of their instance graphs when the

Page 91

instance model is combined with another one, we can establish that the definition of fA⊔fB is equal to the
definition of combine(IGA, IGB). Therefore, fA ⊔ fB(combine(ImA, ImB)) = combine(IGA, IGB).

Although the presented theorem is a large step towards being able to build transformation functions
from instance models to instance graphs iteratively, there is still one key element missing. It should be
formally argued that fA ⊔ fB is once again an transformation function in the sense of Definition 4.4.26.
If this is formally argued, it becomes possible to easily combine fA ⊔ fB with yet another transformation
function. The following theorem states this property.

Theorem 4.4.30 (A combined transformation function from an instance model to an instance graph is
a transformation function)
Let fA and fB be a transformation functions in the sense of Definition 4.4.26. fA projects an instance
model ImA onto instance graph IGA. fB projects an instance model ImB onto instance graph IGB. Then
the combination of fA and fB, fA⊔fB is again a transformation function in the sense of Definition 4.4.26
which projects combine(ImA, ImB) onto combine(IGA, IGB).

Also see ig_combine_mapping_function_correct in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Proof. Use Definition 4.4.26. Since the individual transformation functions fA and fB preserve the ele-
ments of their instance graphs when the instance model is combined with another one, we can establish
that the definition of fA ⊔ fB will also preserve these elements. This can be shown using the commu-
tativity and associativity of the combination of instance models, see Theorem 4.4.6 and Theorem 4.4.7
respectively.

This last theorem completes the recursive behaviour of combining transformation functions and therefore
allows for building transformation functions from instance models to instance graphs iteratively.

The definitions and theorems that are presented so far only work in one direction: for transforming
instance models into instance graphs. As visually shown in Figure 4.10, it must also be possible to
transform instance graphs back into instance models. The definitions and theorems needed for this
transformation are similar and will be presented in the remaining part of this section.

Definition 4.4.31 (Transformation function from an instance graph to an instance model)
Let f be a function from instance graphs to instance models, IG be an instance graph and Im the
corresponding instance model. f is a transformation function iff:

• f projects IG onto Im: f(IG) = Im;

• After combination with another instance graph, f preserves the type model;

• After combination with another instance graph, f preserves the objects:
∀IGx : Objectf(IG) ⊆ Objectf(combine(IG,IGx));

• For all objects in the projected instance model, f preserves the object class if the instance graph is
combined with another instance graph:
∀IGx : ∀o ∈ Objectf(IG) : ObjectClassf(IG)(o) = ObjectClassf(combine(IG,IGx))(o);

• For all objects in the projected instance model, f preserves the object identifier if the instance graph
is combined with another instance graph:
∀IGx : ∀o ∈ Objectf(IG) : ObjectIdf(IG)(o) = ObjectIdf(combine(IG,IGx))(o);

• For all objects in the projected instance model and all fields in the type model corresponding to the
projected instance model, f preserves the field value if the instance graph is combined with another
instance graph:
∀IGx : ∀o ∈ Objectf(IG) : ∀d ∈ FieldTmf(IG)

:
FieldValuef(IG)((o, d)) = FieldValuef(combine(IG,IGx))((o, d));

• For all constants in the type model corresponding to the projected instance model, f preserves the
default value if the instance graph is combined with another instance graph:
∀IGx : ∀c ∈ ConstantTmf(IG)

: DefaultValuef(IG)(c) = DefaultValuef(combine(IG,IGx))(c);

Also see imod_combine_mapping_function in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Just like Definition 4.4.26, the definition of transformation functions from an instance graph to an instance
model preserves all elements if the instance graph is combined with another instance graph. This will
once more be the key to having the property of iterative building of transformation functions.

Page 92

The following definition will describe how two transformation functions from instance graphs to instance
models can be combined into a new transformation function, which projects the combination of two
instance graphs onto the combination of the two corresponding instance models.

Definition 4.4.32 (Combination of transformation functions from an instance graph to an instance
model)
Let fA and fB be a transformation functions in the sense of Definition 4.4.31. fA projects an instance
graph IGA onto instance model ImA. fB projects an instance graph IGB onto instance model ImB.
Then the combination of fA and fB is defined as:

fA ⊔ fB(IG) = ⟨ Object = {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} ∪

{o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
}

ObjectClass = objectclass_mapping(fA, ImA, fB , ImB , IG)

ObjectId = objectid_mapping(fA, ImA, fB , ImB , IG)

FieldValue = fieldvalue_mapping(fA, ImA, fB , ImB , IG)

ConstType = consttype_mapping(fA, ImA, fB , ImB , IG)

⟩

In which objectclass_mapping is given as part of Definition 4.4.33, objectid_mapping as part of Def-
inition 4.4.34, fieldvalue_mapping as part of Definition 4.4.36 and defaultvalue_mapping as part of
Definition 4.4.35.

Also see imod_combine_mapping in Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

As expected, the definition for the combination of transformation functions from an instance graph to an
instance model is an alternation of Definition 4.4.1. This alternation will once more allow the combined
transformation function to project the combination of the instance graphs to the combination of the
corresponding instance models.

The following four definitions will provide the remaining functions, which will closely follow their coun-
terparts from Section 4.4.1.

Definition 4.4.33 (Combination of the object class function for two transformation functions)
objectclass_mapping(fA, ImA, fB , ImB , IG) is a partial function on two transformation functions fA
and fB, their corresponding projections ImA and ImB and an instance model IG which returns a new
function ObjectfA⊔fB(IG) ⇒ ClassTmfA⊔fB(IG)

. It is defined as follows:

objectclass_mapping(fA, ImA, fB , ImB , IG, o) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ObjectClassfA(IG)(o) if o ∈ {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} ∩

{o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
} ∧

ObjectClassfA(IG)(o) = ObjectClassfB(IG)(o)

ObjectClassfA(IG)(o) if o ∈ {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} \

{o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
}

ObjectClassfB(IG)(o) if o ∈ {o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
} \

{o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
}

Also see imod_combine_object_class_mapping in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Definition 4.4.34 (Combination of the object identifier function for two transformation functions)
objectid_mapping(fA, ImA, fB , ImB , IG) is a partial function on two transformation functions fA and
fB, their corresponding projections ImA and ImB and an instance model IG which returns a new

Page 93

function ObjectfA⊔fB(IG) ⇒ Name. It is defined as follows:

objectid_mapping(fA, ImA, fB , ImB , IG, o) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ObjectIdfA(IG)(o) if o ∈ {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} ∩

{o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
} ∧

ObjectIdfA(IG)(o) = ObjectIdfB(IG)(o)

ObjectIdfA(IG)(o) if o ∈ {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} \

{o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
}

ObjectIdfB(IG)(o) if o ∈ {o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
} \

{o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
}

Also see imod_combine_object_id_mapping in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Definition 4.4.35 (Combination of the default value function for two transformation functions)
defaultvalue_mapping(fA, ImA, fB , ImB , IG) is a partial function on two transformation functions fA
and fB, their corresponding projections ImA and ImB and an instance model IG which returns a new
function ConstantTmfA⊔fB(IG)

⇒ V aluefA⊔fB(IG). It is defined as follows:

defaultvalue_mapping(fA, ImA, fB , ImB , IG, c) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DefaultValuefA(IG)(c) if c ∈ {c | c ∈ ConstantTmfA(IG)
∧ c ∈ ConstantTmA

} ∩
{c | c ∈ ConstantTmfB(IG)

∧ c ∈ ConstantTmB
} ∧

DefaultValuefA(IG)(c) = DefaultValuefB(IG)(c)

DefaultValuefA(IG)(c) if c ∈ {c | c ∈ ConstantTmfA(IG)
∧ c ∈ ConstantTmA

} \
{c | c ∈ ConstantTmfB(IG)

∧ c ∈ ConstantTmB
}

DefaultValuefB(IG)(c) if c ∈ {c | c ∈ ConstantTmfB(IG)
∧ c ∈ ConstantTmB

} \
{c | c ∈ ConstantTmfA(IG)

∧ c ∈ ConstantTmA
}

Also see imod_combine_default_value_mapping in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Definition 4.4.36 (Combination of the field value function for two transformation functions)
fieldvalue_mapping(fA, ImA, fB , ImB , IG) is a partial function on two transformation functions fA and
fB, their corresponding projections ImA and ImB and an instance model IG which returns a new
function (ObjectfA⊔fB(IG) × FieldTmfA⊔fB(IG)

) ⇒ V aluefA⊔fB(IG). It is defined as follows:

fieldvalue_mapping(fA, ImA, fB , ImB , IG, (o, d)) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FieldValuefA(IG)((o, d)) if o ∈ {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} ∩

{o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
} ∧

d ∈ {d | d ∈ fieldsTmfA(IG)
(ObjectClassfA(IG)(o)) ∧

d ∈ fieldsTmA
(ObjectClassfA(IG)(o))} ∧

d ∈ {d | d ∈ fieldsTmfB(IG)
(ObjectClassfB(IG)(o)) ∧

d ∈ fieldsTmB
(ObjectClassfB(IG)(o))} ∧

FieldValuefA(IG)((o, d)) = FieldValuefB(IG)((o, d))

FieldValuefA(IG)((o, d)) if o ∈ {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} ∧

d ∈ {d | d ∈ fieldsTmfA(IG)
(ObjectClassfA(IG)(o)) ∧

d ∈ fieldsTmA
(ObjectClassfA(IG)(o))} ∧

(o ̸∈ {o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
} ∨

d ̸∈ {d | d ∈ fieldsTmfB(IG)
(ObjectClassfB(IG)(o)) ∧

d ∈ fieldsTmB
(ObjectClassfB(IG)(o))}

FieldValuefB(IG)((o, d)) if o ∈ {o | o ∈ ObjectfB(IG) ∧ o ∈ ObjectImB
} ∧

d ∈ {d | d ∈ fieldsTmfB(IG)
(ObjectClassfB(IG)(o)) ∧

d ∈ fieldsTmB
(ObjectClassfB(IG)(o))} ∧

(o ̸∈ {o | o ∈ ObjectfA(IG) ∧ o ∈ ObjectImA
} ∨

d ̸∈ {d | d ∈ fieldsTmfA(IG)
(ObjectClassfA(IG)(o)) ∧

d ∈ fieldsTmA
(ObjectClassfA(IG)(o))}

Page 94

Also see imod_combine_field_value_mapping in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

The definitions of most of these combination functions are straightforward. Only the fieldvalue_mapping
seems significantly more complicated. However, a careful ready will still be able to see that the definition
is an alternation of Definition 4.4.4. The definition seems more complicated because of the combination
of objects and fields in the domain of the function.

With these definitions in place, it is possible to provide the necessary theorems for the correctness of the
combined function fA ⊔ fB .

Theorem 4.4.37 (The projection of a combined transformation function from an instance graph to an
instance model)
Let fA and fB be a transformation functions in the sense of Definition 4.4.31. fA projects an instance
graph IGA onto instance model ImA. fB projects an instance model IGB onto instance graph ImB.
Then the combination of fA and fB, fA⊔fB projects combine(IGA, IGB) onto combine(ImA, ImB), so:

fA ⊔ fB(combine(IGA, IGB)) = combine(ImA, ImB)

Also see imod_combine_mapping_correct in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Proof. The corresponding proof follows directly from Definition 4.4.32 as well as Definition 4.4.31. Since
the individual transformation functions fA and fB preserve the elements of their instance models when
the instance graph is combined with another one, we can establish that the definition of fA⊔fB is equal to
the definition of combine(ImA, ImB). Therefore, fA ⊔ fB(combine(IGA, IGB)) = combine(ImA, ImB).

Like the combined transformation function from instance models to instance graphs, the combined trans-
formation function from instance graphs to instance models is also a transformation function, but in the
sense of Definition 4.4.31. This is stated in the following theorem.

Theorem 4.4.38 (A combined transformation function from an instance graph to an instance model is
a transformation function)
Let fA and fB be a transformation functions in the sense of Definition 4.4.31. fA projects an instance
graph IGA onto instance model ImA. fB projects an instance graph IGB onto instance model ImB. Then
the combination of fA and fB, fA⊔fB is again a transformation function in the sense of Definition 4.4.31
which projects combine(IGA, IGB) onto combine(ImA, ImB).

Also see imod_combine_mapping_function_correct in
Ecore-GROOVE-Mapping.Instance_Model_Graph_Mapping

Proof. Use Definition 4.4.31. Since the individual transformation functions fA and fB preserve the ele-
ments of their instance models when the instance graph is combined with another one, we can establish
that the definition of fA ⊔ fB will also preserve these elements. This can be shown using the commuta-
tivity and associativity of the combination of instance graphs, see Theorem 4.4.17 and Theorem 4.4.18
respectively.

Page 95

Chapter 5

Library of transformations

The previous chapter introduced a framework to reason about composable model transformations for-
mally. This framework does allow one to create models from scratch by iteratively adding different
elements. Although the previous chapter did introduce the needed definitions and theorems to explain
this framework, it did not discuss how to apply the framework in practice. In order to apply the
framework, the framework needs two essential ingredients. First of all, the framework needs a set of
proven model transformations that can be used to build models iteratively. Finally, these proven model
transformations must be applied within the framework to create some larger model.

In this chapter, a set of small model transformations between GROOVE and Ecore is introduced. These
model transformations can be used within the framework as ‘building blocks’, which are used to create
larger models. The goal of this chapter is to show possible model transformations that can be applied
with the framework from the previous chapter, in order to validate the framework using an application
of these transformations. Therefore, the set of model transformations presented in this chapter will be
non-exhaustive. It will only include transformations that are necessary for the application, as well as
some transformations that show the potential of the framework.

This chapter is split into two parts. Within the first part, a set of model transformations between type
models and type graphs is introduced. This set is used within the second part, where a set of model
transformations between instance models and instance graphs is introduced. However, before any of
these sets is discussed, some definitions used throughout this chapter are introduced.

5.1 Definitions
This section introduces some general definitions that are used within the model transformations of this
chapter. They are introduced before the actual transformations for readability and to prevent repeating
the same definitions as part of the transformations themselves.

Throughout this chapter, many sequences are used. Sequences, sometimes also called lists, are enumer-
ated collections of objects in which repetitions are allowed. Each element in a sequence is a member
of that sequence. Moreover, each element has a corresponding index that represents the position of the
element within the sequence. For sequences, some definitions are defined to make it easier to reason
about them.

Definition 5.1.1 (Prefix operator for sequences)
Assume s = ⟨m1,m2, ...,mn⟩ to be a sequence. Then define # as the prefix operator on sequences, which
adds an elements e to the beginning of the sequence s.

e# s = e#⟨m1,m2, ...,mn⟩ = ⟨e,m1,m2, ...,mn⟩

Please note that for every element belonging to index i, after adding e, the element belonging to index i
will belong to index i+ 1:

si = mi

(e# s)1 = e

(e# s)(i+1) = mi

Page 96

Definition 5.1.2 (Append operator for sequences)
Assume s = ⟨m1,m2, ...,mi⟩ and t = ⟨n1, n2, ..., nj⟩ to be sequences. Then define s@t as an operator on
two sequences, which appends sequence t to sequence s.

s@ t = ⟨m1,m2, ...,mi, n1, n2, ..., nj⟩

The following holds for the indexes of s@ t:

(s@ t)1≤i≤|s| = mi

(s@ t)|s|+1≤i≤|s|+|t| = ni

Using the definitions on sequences, it becomes possible to define the transformation of identifiers and
namespaces (see Definition 3.2.2). As explained earlier, Ecore uses the concepts of identifiers and names-
paces to distinguish classes, enumeration types and user-defined data types. In GROOVE, these concepts
do not exist, though it must be possible to express identifiers and namespaces in GROOVE. Therefore,
a definition will be provided that allows for transforming identifiers and namespaces into sequences, and
back. This definition will be used throughout this chapter to transform namespaces and identifiers.

Definition 5.1.3 (Transformation of namespaces to sequences)
Assume n to be a valid namespace, in the sense of Definition 3.2.2. Then the recursive function
ns_to_list(n) transforms a namespace into a sequence:

ns_to_list(n) =

{︄
ns_to_list(ns)@ ⟨name⟩ if n = ⟨ns, name⟩
⟨⟩ if n = ⊥

Also see ns_to_list in Ecore-GROOVE-Mapping.Namespace_List

According to this definition .some.namespace.name is transformed into ⟨some, namespace, name⟩. Further-
more, the top namespace is transformed into the empty sequence, ⟨⟩, as directly defined as part of the
definition.

Besides a definition to transform namespaces into sequences, there is also a transformation from sequences
back to namespaces.

Definition 5.1.4 (Transformation of sequences to namespaces)
Assume s to be a sequence of names. Then list_to_ns(s) is defined as the inverse function of ns_to_list,
so it transforms sequences into their corresponding namespace.

Also see list_to_ns in Ecore-GROOVE-Mapping.Namespace_List

By definition, list_to_ns will convert the sequence ⟨some, namespace, name⟩) back into its correspond-
ing namespace, ⟨some, namespace, name⟩. Furthermore, the empty sequence ⟨⟩ is converted to the top
namespace ⊥.

5.2 Type level transformations
This section represents the first part of the library of transformations, as explained in the introduction
of this chapter. Throughout this section, small transformations between type models and type graphs
will be defined. In order for these transformations useful in the context of the transformation framework
of Chapter 4, some properties must hold for each of them. For each transformation, the corresponding
type model must be consistent in the sense of Definition 3.2.11 and the corresponding type graph must
be valid in the sense of Definition 3.3.5. Furthermore, to be able to apply the transformation, the
type model must be compatible with its counterpart in the transformation framework. In the same
way, the type graph corresponding to the transformation must be compatible with its counterpart in
the transformation framework. Moreover, it will be shown that the transformation function f that
transforms the corresponding type model into a type graph is a valid transformation function in the
sense of Definition 4.3.25. Finally, it will also be shown that the reverse transformation is a valid
transformation function in the sense of Definition 4.3.30.

5.2.1 Regular classes
The first transformation that will be defined is a transformation of regular classes. A class without any
additional properties is considered a regular class. The Ecore model for defining a regular class is given
in the following definition:

Page 97

Example

(a) TmClass with name = .Example

Example

(b) TGClass with name = .Example

Figure 5.1: Visualisation of the transformation of regular classes

Definition 5.2.1 (Type model TmClass)
Let TmClass be the type model containing a regular class with identifier name. TmClass is defined as:

Class = {name}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Also see tmod_class in Ecore-GROOVE-Mapping-Library.ClassType

Theorem 5.2.2 (Correctness of TmClass)
TmClass (Definition 5.2.1) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_class_correct in Ecore-GROOVE-Mapping-Library.ClassType

A visual representation of TmClass with identifier .Example can be seen in Figure 5.1a. The correctness
proof of TmClass is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TmClass should be compatible with the
type model it is combined with.

Theorem 5.2.3 (Correctness of combine(Tm, TmClass))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmClass (in the sense of Definition 4.3.13) if:

• The identifier of the class in TmClass is not yet an identifier for a class, enumeration type or
user-defined data type in Tm;

• The identifier of the class in TmClass is not in the namespace of any class, enumeration type or
user-defined data type in Tm;

• None of the identifiers in any class, enumeration type or user-defined data type in Tm is in the
namespace of the class in TmClass.

Also see tmod_class_combine_correct in Ecore-GROOVE-Mapping-Library.ClassType

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmClass) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for a regular class within Ecore are now complete.

Encoding as node type

A possible encoding for regular classes in Ecore is using a node type in GROOVE. This node type will
get a transformed identifier as name. The encoding corresponding to TmClass can then be represented
as TGClass, defined in the following definition:

Page 98

Definition 5.2.4 (Type graph TGClass)
Let TGClass be the type graph containing a single node type which encodes a regular class name. TGClass

is defined as:

NT = {ns_to_list(name)}
ET = {}
⊑ = {(ns_to_list(name),ns_to_list(name))}

abs = {}
mult = {}

contains = {}

Also see tg_class_as_node_type in Ecore-GROOVE-Mapping-Library.ClassType

Theorem 5.2.5 (Correctness of TGClass)
TGClass (Definition 5.2.4) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_class_as_node_type_correct in Ecore-GROOVE-Mapping-Library.ClassType

A visual representation of TGClass with identifier .Example can be seen in Figure 5.1b. The correctness
proof of TGClass is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TGClass should be compatible with the
type graph it is combined with.

Theorem 5.2.6 (Correctness of combine(TG, TGClass))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGClass (in the sense of Definition 4.3.24) if:

• The node type of the encoded class in TGClass is not a node type in TG.

Also see tg_class_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.ClassType

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGClass) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmClass to TGClass:

Definition 5.2.7 (Transformation function fClass)
The transformation function fClass(Tm) is defined as:

NT = {ns_to_list(c) | c ∈ ClassTm}
ET = {}
⊑ = {(ns_to_list(c1),ns_to_list(c2)) | c1 ∈ ClassTm ∧ c2 ∈ ClassTm}

abs = {}
mult = {}

contains = {}

Also see tmod_class_to_tg_class_as_node_type in Ecore-GROOVE-Mapping-Library.ClassType

Theorem 5.2.8 (Correctness of fClass)
fClass(Tm) (Definition 5.2.7) is a valid transformation function in the sense of Definition 4.3.25 trans-
forming TmClass into TGClass.

Also see tmod_class_to_tg_class_as_node_type_func in
Ecore-GROOVE-Mapping-Library.ClassType

The proof of the correctness of fClass will not be included here. Instead, it can be found in the validated
Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGClass into
TmClass is defined:

Page 99

Definition 5.2.9 (Transformation function f ′
Class)

The transformation function f ′
Class(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Also see tg_class_as_node_type_to_tmod_class in Ecore-GROOVE-Mapping-Library.ClassType

Theorem 5.2.10 (Correctness of f ′
Class)

f ′
Class(TG) (Definition 5.2.9) is a valid transformation function in the sense of Definition 4.3.30 trans-

forming TGClass into TmClass.

Also see tg_class_as_node_type_to_tmod_class_func in
Ecore-GROOVE-Mapping-Library.ClassType

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.2.2 Abstract classes

Example

(a) TmAbsClass with name = .Example

Example

(b) TGAbsClass with name = .Example

Figure 5.2: Visualisation of the transformation of abstract classes

This section defines a transformation that is very close to the previous transformation. In this section,
an abstract class without any additional properties is defined. The Ecore model for defining an abstract
class is given in the following definition:

Definition 5.2.11 (Type model TmAbsClass)
Let TmAbsClass be the type model containing an abstract class with identifier name. TmAbsClass is
defined as:

Class = {name}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {[abstract, name]}

Constant = {}
ConstType = {}

Also see tmod_abstract_class in Ecore-GROOVE-Mapping-Library.AbstractClassType

Page 100

Theorem 5.2.12 (Correctness of TmAbsClass)
TmAbsClass (Definition 5.2.11) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_abstract_class_correct in Ecore-GROOVE-Mapping-Library.AbstractClassType

A visual representation of TmAbsClass with identifier .Example can be seen in Figure 5.2a. The correctness
proof of TmAbsClass is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TmAbsClass should be compatible with
the type model it is combined with.

Theorem 5.2.13 (Correctness of combine(Tm, TmAbsClass))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmAbsClass (in the sense of Definition 4.3.13) if:

• The identifier of the class in TmAbsClass is not yet an identifier for a class, enumeration type or
user-defined data type in Tm;

• The identifier of the class in TmAbsClass is not in the namespace of any class, enumeration type
or user-defined data type in Tm;

• None of the identifiers in any class, enumeration type or user-defined data type in Tm is in the
namespace of the class in TmAbsClass.

Also see tmod_abstract_class_combine_correct in
Ecore-GROOVE-Mapping-Library.AbstractClassType

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmAbsClass) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for a regular class within Ecore are now complete.

Encoding as node type

A possible encoding for abstract classes in Ecore is using a node type in GROOVE. This node type will
get a transformed identifier as name. The encoding corresponding to TmAbsClass can then be represented
as TGAbsClass, defined in the following definition:

Definition 5.2.14 (Type graph TGAbsClass)
Let TGAbsClass be the type graph containing a single node type which encodes an abstract class name.
TGAbsClass is defined as:

NT = {ns_to_list(name)}
ET = {}
⊑ = {(ns_to_list(name),ns_to_list(name))}

abs = {ns_to_list(name)}
mult = {}

contains = {}

Also see tg_abstract_class_as_node_type in
Ecore-GROOVE-Mapping-Library.AbstractClassType

Theorem 5.2.15 (Correctness of TGClass)
TGAbsClass (Definition 5.2.14) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_abstract_class_as_node_type_correct in
Ecore-GROOVE-Mapping-Library.AbstractClassType

A visual representation of TGAbsClass with identifier .Example can be seen in Figure 5.2b. The correctness
proof of TGAbsClass is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TGAbsClass should be compatible with
the type graph it is combined with.

Page 101

Theorem 5.2.16 (Correctness of combine(TG, TGAbsClass))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGAbsClass (in the sense of Definition 4.3.24) if:

• The node type of the encoded class in TGAbsClass is not a node type in TG.

Also see tg_abstract_class_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.AbstractClassType

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGAbsClass) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmAbsClass to TGAbsClass:

Definition 5.2.17 (Transformation function fAbsClass)
The transformation function fAbsClass(Tm) is defined as:

NT = {ns_to_list(c) | c ∈ ClassTm}
ET = {}
⊑ = {(ns_to_list(c1),ns_to_list(c2)) | c1 ∈ ClassTm ∧ c2 ∈ ClassTm}

abs = {ns_to_list(c) | c ∈ ClassTm}
mult = {}

contains = {}

Also see tmod_abstract_class_to_tg_abstract_class_as_node_type in
Ecore-GROOVE-Mapping-Library.AbstractClassType

Theorem 5.2.18 (Correctness of fAbsClass)
fAbsClass(Tm) (Definition 5.2.17) is a valid transformation function in the sense of Definition 4.3.25
transforming TmAbsClass into TGAbsClass.

Also see tmod_abstract_class_to_tg_abstract_class_as_node_type_func in
Ecore-GROOVE-Mapping-Library.AbstractClassType

The proof of the correctness of fAbsClass will not be included here. Instead, it can be found in the
validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGAbsClass into
TmAbsClass is defined:

Definition 5.2.19 (Transformation function f ′
AbsClass)

The transformation function f ′
AbsClass(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {[abstract,ns_to_list(c)] | c ∈ ClassTm}

Constant = {}
ConstType = {}

Also see tg_abstract_class_as_node_type_to_tmod_abstract_class in
Ecore-GROOVE-Mapping-Library.AbstractClassType

Theorem 5.2.20 (Correctness of f ′
AbsClass)

f ′
AbsClass(TG) (Definition 5.2.19) is a valid transformation function in the sense of Definition 4.3.30

transforming TGAbsClass into TmAbsClass.

Page 102

Also see tg_abstract_class_as_node_type_to_tmod_abstract_class_func in
Ecore-GROOVE-Mapping-Library.AbstractClassType

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.2.3 Regular subclasses

ExistingType

NewType

(a) TmSubclass with name = .NewType and
supertype = .ExistingType

NewType

ExistingType

(b) TGSubclass with name = .NewType and
supertype = .ExistingType

Figure 5.3: Visualisation of the transformation of regular subclasses

This section will define the transformation of a regular subclass. Within this transformation, a newly
introduced subclass is transformed, which extends an existing supertype. The Ecore type model that
introduces such a subclass is defined as follows:

Definition 5.2.21 (Type model TmSubclass)
Let TmSubclass be the type model containing a regular class with identifier name. The regular class name
extends another regular class with identifier supertype. Furthermore, name ̸= supertype. TmSubclass is
defined as:

Class = {name, supertype}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {(name, supertype)}
Prop = {}

Constant = {}
ConstType = {}

Also see tmod_subclass in Ecore-GROOVE-Mapping-Library.SubclassType

Theorem 5.2.22 (Correctness of TmSubclass)
TmSubclass (Definition 5.2.21) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_subclass_correct in Ecore-GROOVE-Mapping-Library.SubclassType

A visual representation of TmSubclass with the new subclass identified as .NewType and the existing
supertype identified as .ExistingType can be seen in Figure 5.3a. The correctness proof of TmSubclass

is trivial, and therefore not included here. The proof can be found as part of the Isabelle validated
proofs.

In order to make composing transformation functions possible, TmSubclass should be compatible with
the type model it is combined with.

Theorem 5.2.23 (Correctness of combine(Tm, TmSubclass))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmSubclass (in the sense of Definition 4.3.13) if:

Page 103

• The only shared type is the supertype, so ClassTm ∩ ClassTmSubclass
= {supertype};

• The class name is not in the namespace of class supertype, and vice versa;

• name is not used as an identifier for an enumeration type or user-defined data type in Tm;

• The identifier of the class name in TmClass is not in the namespace of any class, enumeration
type or user-defined data type in Tm;

• None of the identifiers in any class, enumeration type or user-defined data type in Tm is in the
namespace of the class name in TmClass.

Also see tmod_subclass_combine_correct in Ecore-GROOVE-Mapping-Library.SubclassType

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. For proving that the
transitive closure of the inheritance relation is irreflexive, use the fact that name only appears in the
domain of the relation. Now we have shown that combine(Tm, TmClass) is consistent in the sense of
Definition 3.2.11.

The definitions and theorems for a regular subclass within Ecore are now complete.

Encoding as node type

A possible encoding for regular subclasses in Ecore is using node types in GROOVE. The supertype and
newly introduced subtype will both be node types with their corresponding identifiers transformed. The
encoding corresponding to TmSubclass can then be represented as TGSubclass, defined in the following
definition:

Definition 5.2.24 (Type graph TGSubclass)
Let TGSubclass be a type graph containing a two node types. The first node type encodes the regular
class supertype. The second node type encodes a regular class name which extends the encoded class
supertype. Furthermore name ̸= supertype. TGSubclass is defined as:

NT = {ns_to_list(name),ns_to_list(supertype)}
ET = {}
⊑ = {(ns_to_list(name),ns_to_list(name)),

(ns_to_list(supertype),ns_to_list(supertype)),
(ns_to_list(name),ns_to_list(supertype))}

abs = {}
mult = {}

contains = {}

Also see tg_subclass_as_node_type in Ecore-GROOVE-Mapping-Library.SubclassType

Theorem 5.2.25 (Correctness of TGSubclass)
TGSubclass (Definition 5.2.24) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_subclass_as_node_type_correct in Ecore-GROOVE-Mapping-Library.SubclassType

A visual representation of TGSubclass with the new subclass identified as .NewType and the existing
supertype identified as .ExistingType both encoded as node type, is shown in Figure 5.3b. The correctness
proof of TGSubclass is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TGSubclass should be compatible with
the type graph it is combined with.

Theorem 5.2.26 (Correctness of combine(TG, TGSubclass))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGSubclass (in the sense of Definition 4.3.24) if:

• The only shared node type in TG and TGSubclass is the node type of the encoded supertype.

Also see tg_subclass_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.SubclassType

Page 104

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. For proving the antisymmetry
of the inheritance relation, use the fact that the node type which encodes class name only appears in
the domain of the relation. Now we have shown that combine(TG, TGSubclass) is valid in the sense of
Definition 3.3.5.

The next definitions define the transformation function from TmSublass to TGSublass:

Definition 5.2.27 (Transformation function fSubclass)
The transformation function fSubclass(Tm) is defined as:

NT = {ns_to_list(c) | c ∈ ClassTm}
ET = {}
⊑ = {(ns_to_list(c1),ns_to_list(c2)) | c1 ∈ ClassTm ∧ c2 ∈ ClassTm ∧ c1 = c2} ∪

{(ns_to_list(i),ns_to_list(j)) | (i, j) ∈ InhTm}
abs = {}

mult = {}
contains = {}

Also see tmod_subclass_to_tg_subclass_as_node_type in
Ecore-GROOVE-Mapping-Library.SubclassType

Theorem 5.2.28 (Correctness of fSubclass)
fSubclass(Tm) (Definition 5.2.27) is a valid transformation function in the sense of Definition 4.3.25
transforming TmSubclass into TGSubclass.

Also see tmod_subclass_to_tg_subclass_as_node_type_func in
Ecore-GROOVE-Mapping-Library.SubclassType

The proof of the correctness of fSubclass will not be included here. Instead, it can be found in the
validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGSubclass into
TmSubclass is defined:

Definition 5.2.29 (Transformation function f ′
Subclass)

The transformation function f ′
Subclass(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {(list_to_ns(i), list_to_ns(j)) | (i, j) ∈ ⊑TG ∧ i ̸= j}
Prop = {}

Constant = {}
ConstType = {}

Also see tg_subclass_as_node_type_to_tmod_subclass in
Ecore-GROOVE-Mapping-Library.SubclassType

Theorem 5.2.30 (Correctness of f ′
Subclass)

f ′
Subclass(TG) (Definition 5.2.29) is a valid transformation function in the sense of Definition 4.3.30

transforming TGSubclass into TmSubclass.

Also see tg_subclass_as_node_type_to_tmod_subclass_func in
Ecore-GROOVE-Mapping-Library.SubclassType

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

Page 105

5.2.4 Enumeration types

Example

OPTION_A

OPTION_B

OPTION_C

(a) TmEnum with
name = .Example and
values = {OPTION_A,
OPTION_B,OPTION_C}

Example

Example$OPTION_A Example$OPTION_B Example$OPTION_C

(b) TGEnumNodes with name = .Example and
values = {OPTION_A,OPTION_B,OPTION_C}

Example
OPTION_A
OPTION_B
OPTION_C

(c) TGEnumFlags with
name = .Example and
values = {OPTION_A,
OPTION_B,OPTION_C}

Figure 5.4: Visualisations of the transformations of enumeration types

This section will define the transformation of an enumeration type. Within this transformation, a new
enumeration type is introduced, including its possible values. The Ecore type model that introduces
such a subclass is defined as follows:

Definition 5.2.31 (Type model TmEnum)
Let TmEnum be the type model containing a enumeration type with identifier name. The values of this
enumeration type are defined as part of sequence values. TmEnum is defined as:

Class = {}
Enum = {name}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {(name, v) | v ∈ values}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Also see tmod_enum in Ecore-GROOVE-Mapping-Library.EnumType

Theorem 5.2.32 (Correctness of TmEnum)
TmSubclass (Definition 5.2.31) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_enum_correct in Ecore-GROOVE-Mapping-Library.EnumType

A visual representation of TmEnum with .Example as identifier for the new enumeration type and
OPTION_A, OPTION_B and OPTION_C as its values can be seen in Figure 5.4a. The correctness
proof of TmEnum is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TmEnum should be compatible with the
type model it is combined with.

Theorem 5.2.33 (Correctness of combine(Tm, TmEnum))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmEnum (in the sense of Definition 4.3.13) if:

Page 106

• The identifier of the enumeration type in TmEnum is not yet an identifier for a class, enumeration
type or user-defined data type in Tm;

• The identifier of the enumeration type in TmEnum is not in the namespace of any class, enumer-
ation type or user-defined data type in Tm;

• None of the identifiers in any class, enumeration type or user-defined data type in Tm is in the
namespace of the enumeration type in TmEnum.

Also see tmod_enum_combine_correct in Ecore-GROOVE-Mapping-Library.EnumType

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmEnum) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for a regular subclass within Ecore are now complete.

Encoding as node type

A possible encoding for enumeration types in Ecore is using node types in GROOVE. In this case, the
enumeration type itself is transformed into an abstract node type. Each value of the enumeration type
is converted to its own node type, extending the abstract node type. The encoding corresponding to
TmEnum can then be represented as TGEnumNodes, defined in the following definition:

Definition 5.2.34 (Type graph TGEnumNodes)
Let TGEnumNodes be a type graph containing multiple node types. The first node type encodes the enu-
meration type name. The other node types encode the values of enumeration type name. TGEnumNodes

is defined as:

NT = {ns_to_list(name)} ∪ {ns_to_list(name)@ ⟨v⟩ | v ∈ values}
ET = {}
⊑ = {(ns_to_list(name),ns_to_list(name))} ∪

{(ns_to_list(name)@ ⟨v⟩,ns_to_list(name)@ ⟨v⟩) | v ∈ values} ∪
{(ns_to_list(name)@ ⟨v⟩,ns_to_list(name)) | v ∈ values}

abs = {ns_to_list(name)}
mult = {}

contains = {}

Also see tg_enum_as_node_types in Ecore-GROOVE-Mapping-Library.EnumType

Theorem 5.2.35 (Correctness of TGEnumNodes)
TGEnumNodes (Definition 5.2.34) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_enum_as_node_types_correct in Ecore-GROOVE-Mapping-Library.EnumType

A visual representation of TGEnumNodes with .Example as identifier for the encoded enumeration type
and OPTION_A, OPTION_B and OPTION_C as its values can be seen in Figure 5.4b. Please note that
in this visualisation, the sequences are concatenated using the dollar sign $. The correctness proof of
TGEnumNodes is trivial, and therefore not included here. The proof can be found as part of the Isabelle
validated proofs.

In order to make composing transformation functions possible, TGEnumNodes should be compatible with
the type graph it is combined with.

Theorem 5.2.36 (Correctness of combine(TG, TGEnumNodes))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGEnumNodes (in the sense of Definition 4.3.24) if:

• There are no shared node types between TGEnumNodes and TG.

Also see tg_enum_as_node_types_combine_correct in
Ecore-GROOVE-Mapping-Library.EnumType

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGEnumNodes) is valid in the sense of Definition 3.3.5.

Page 107

The next definitions define the transformation function from TmEnum to TGEnumNodes:

Definition 5.2.37 (Transformation function fEnumNodes)
The transformation function fEnumNodes(Tm) is defined as:

NT = {ns_to_list(e) | e ∈ EnumTm} ∪ {ns_to_list(e)@ ⟨v⟩ | (e, v) ∈ EnumV alueTm}
ET = {}
⊑ = {(ns_to_list(e1),ns_to_list(e2)) | e1 ∈ EnumTm ∧ e2 ∈ EnumTm} ∪

{(ns_to_list(i)@ ⟨j⟩,ns_to_list(i)@ ⟨j⟩) | (i, j) ∈ EnumV alueTm} ∪
{(ns_to_list(i)@ ⟨j⟩,ns_to_list(e)) | (i, j) ∈ EnumV alueTm ∧ e ∈ EnumTm}

abs = {}
mult = {}

contains = {}

Also see tmod_enum_to_tg_enum_as_node_types in Ecore-GROOVE-Mapping-Library.EnumType

Theorem 5.2.38 (Correctness of fEnumNodes)
fEnumNodes(Tm) (Definition 5.2.37) is a valid transformation function in the sense of Definition 4.3.25
transforming TmEnum into TGEnumNodes.

Also see tmod_enum_to_tg_enum_as_node_types_func in
Ecore-GROOVE-Mapping-Library.EnumType

The proof of the correctness of fEnumNodes will not be included here. Instead, it can be found in the
validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGEnumNodes into
TmEnum is defined:

Definition 5.2.39 (Transformation function f ′
EnumNodes)

The transformation function f ′
EnumNodes(TG, name) is defined as:

Class = {}
Enum = {list_to_ns(n) | n ∈ NTTG ∧ n = id_to_name(name)}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {(list_to_ns(e), v) | e@ ⟨v⟩ ∈ NTTG ∧ e@ ⟨v⟩ ≠ id_to_name(name)}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Also see tg_enum_as_node_types_to_tmod_enum in Ecore-GROOVE-Mapping-Library.EnumType

Theorem 5.2.40 (Correctness of f ′
EnumNodes)

f ′
EnumNodes(TG, name) (Definition 5.2.39) is a valid transformation function in the sense of Defini-

tion 4.3.30 transforming TGEnumNodes into TmEnum.

Also see tg_enum_as_node_types_to_tmod_enum_func in
Ecore-GROOVE-Mapping-Library.EnumType

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

Encoding as flags

Another possible encoding for enumeration types in Ecore is using flags in GROOVE. In this case, the
enumeration type itself is transformed into a regular node type. Each value of the enumeration type is
converted to a flag on this node type. The encoding corresponding to TmEnum can then be represented
as TGEnumFlags, defined in the following definition:

Page 108

Definition 5.2.41 (Type graph TGEnumFlags)
Let TGEnumFlags be a type graph containing a single node type which encodes the enumeration type
name. The flags on the node type of name encode the different values. TGEnumFlags is defined as:

NT = {ns_to_list(name)}
ET = {(ns_to_list(name), ⟨v⟩,ns_to_list(name)) | v ∈ values}
⊑ = {(ns_to_list(name),ns_to_list(name))}

abs = {}

mult(e) =
{︂
(0..1, 0..1) if e ∈ ETTGEnumFlags

contains = {}

Also see tg_enum_as_flags in Ecore-GROOVE-Mapping-Library.EnumType

Theorem 5.2.42 (Correctness of TGEnumFlags)
TGEnumFlags (Definition 5.2.41) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_enum_as_flags_correct in Ecore-GROOVE-Mapping-Library.EnumType

A visual representation of TGEnumFlags with .Example as identifier for the encoded enumeration type
and OPTION_A, OPTION_B and OPTION_C as its values can be seen in Figure 5.4c. The correctness
proof of TGEnumFlags is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TGEnumFlags should be compatible with
the type graph it is combined with.

Theorem 5.2.43 (Correctness of combine(TG, TGEnumFlags))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGEnumFlags (in the sense of Definition 4.3.24) if:

• There are no shared node types between TGEnumFlags and TG.

Also see tg_enum_as_flags_combine_correct in Ecore-GROOVE-Mapping-Library.EnumType

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGEnumFlags) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmEnum to TGEnumFlags:

Definition 5.2.44 (Transformation function fEnumFlags)
The transformation function fEnumFlags(Tm) is defined as:

NT = {ns_to_list(e) | e ∈ EnumTm}
ET = {(ns_to_list(e), v,ns_to_list(e)) | (e, v) ∈ EnumV alueTm}
⊑ = {(ns_to_list(e1),ns_to_list(e2)) | e1 ∈ EnumTm ∧ e2 ∈ EnumTm}

abs = {}

mult(e) =
{︂
(0..1, 0..1) if e ∈ {(ns_to_list(n), v,ns_to_list(n)) | (n, v) ∈ EnumV alueTm}

contains = {}

Also see tmod_enum_to_tg_enum_as_flags in Ecore-GROOVE-Mapping-Library.EnumType

Theorem 5.2.45 (Correctness of fEnumFlags)
fEnumFlags(Tm) (Definition 5.2.44) is a valid transformation function in the sense of Definition 4.3.25
transforming TmEnum into TGEnumFlags.

Also see tmod_enum_to_tg_enum_as_flags_func in Ecore-GROOVE-Mapping-Library.EnumType

The proof of the correctness of fEnumFlags will not be included here. Instead, it can be found in the
validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGEnumFlags into
TmEnum is defined:

Page 109

Example

(a) TmUserType with name = .Example

Example
value: string

(b) TGUserType with name = .Example
and data_edge = value

Figure 5.5: Visualisation of the transformation of user-defined data types

Definition 5.2.46 (Transformation function f ′
EnumFlags)

The transformation function f ′
EnumFlags(TG) is defined as:

Class = {}
Enum = {list_to_ns(n) | n ∈ NTTG}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {(list_to_ns(e), v) | (e, v, e) ∈ ETTG}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Also see tg_enum_as_flags_to_tmod_enum in Ecore-GROOVE-Mapping-Library.EnumType

Theorem 5.2.47 (Correctness of f ′
EnumNodes)

f ′
EnumFlags(TG) (Definition 5.2.46) is a valid transformation function in the sense of Definition 4.3.30

transforming TGEnumFlags into TmEnum.

Also see tg_enum_as_flags_to_tmod_enum_func in Ecore-GROOVE-Mapping-Library.EnumType

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.2.5 User-defined data types
Within this section, the transformation of an user-defined data type will be defined. A user-defined data
type in Ecore is a custom data type, of which a serialisation can be stored in the form of a string. The
Ecore type model for introducing a user-defined data type is simple:

Definition 5.2.48 (Type model TmUserType)
Let TmUserType be the type model containing a user-defined data type with identifier name. TmUserType

is defined as:

Class = {}
Enum = {}

UserDataType = {name}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Also see tmod_userdatatype in Ecore-GROOVE-Mapping-Library.UserDataTypeType

Theorem 5.2.49 (Correctness of TmUserType)
TmUserType (Definition 5.2.48) is a consistent type model in the sense of Definition 3.2.11.

Page 110

Also see tmod_userdatatype_correct in Ecore-GROOVE-Mapping-Library.UserDataTypeType

A visual representation of TmUserType with identifier .Example can be seen in Figure 5.5a. The correctness
proof of TmUserType is trivial, and therefore not included here. The proof can be found as part of the
Isabelle validated proofs.

In order to make composing transformation functions possible, TmUserType should be compatible with
the type model it is combined with.

Theorem 5.2.50 (Correctness of combine(Tm, TmUserType))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmUserType (in the sense of Definition 4.3.13) if:

• The identifier of the user-defined data type in TmUserType is not yet an identifier for a class,
enumeration type or user-defined data type in Tm;

• The identifier of the user-defined data type in TmUserType is not in the namespace of any class,
enumeration type or user-defined data type in Tm;

• None of the identifiers in any class, enumeration type or user-defined data type in Tm is in the
namespace of the class in TmUserType.

Also see tmod_userdatatype_combine_correct in
Ecore-GROOVE-Mapping-Library.UserDataTypeType

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmUserType) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for a regular class within Ecore are now complete.

Encoding as node type

A possible encoding for user-defined data types in Ecore is using a node type in GROOVE. This node
type will get a transformed identifier as name. In order to be able to store the serialised value, an edge
type is created to a string node that represents the serialised value. The encoding corresponding to
TmUserType can then be represented as TGUserType, defined in the following definition:

Definition 5.2.51 (Type graph TGUserType)
Let TGUserType be the type graph containing a single node type which encodes a user-defined data type
name. Furthermore, this node type has an edge type named data_edge to a string primitive to store its
serialised value. TGUserType is defined as:

NT = {ns_to_list(name)}
ET = {(ns_to_list(name), ⟨data_edge⟩, string)}
⊑ = {(ns_to_list(name),ns_to_list(name)), (string, string)}

abs = {}

mult(e) =
{︂
(0..∗, 1..1) if e ∈ ETTGUserType

contains = {}

Also see tg_userdatatype_as_node_type in Ecore-GROOVE-Mapping-Library.UserDataTypeType

Theorem 5.2.52 (Correctness of TGUserType)
TGUserType (Definition 5.2.51) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_userdatatype_as_node_type_correct in
Ecore-GROOVE-Mapping-Library.UserDataTypeType

A visual representation of TGUserType with identifier .Example can be seen in Figure 5.5b. In this
example, value was chosen as edge name. The correctness proof of TGUserType is trivial, and therefore
not included here. The proof can be found as part of the Isabelle validated proofs.

In order to make composing transformation functions possible, TGUserType should be compatible with
the type graph it is combined with.

Page 111

Theorem 5.2.53 (Correctness of combine(TG, TGUserType))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGUserType (in the sense of Definition 4.3.24) if:

• The node type of the encoded class in TGUserType is not a node type in TG.

Also see tg_userdatatype_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.UserDataTypeType

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGUserType) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmUserType to TGUserType:

Definition 5.2.54 (Transformation function fUserType)
The transformation function fUserType(Tm) is defined as:

NT = {ns_to_list(u) | u ∈ UserDataTypeTm} ∪ {string}
ET = {(ns_to_list(u), ⟨data_edge⟩, string) | u ∈ UserDataTypeTm}
⊑ = {(ns_to_list(u1),ns_to_list(u2)) | u1 ∈ UserDataTypeTm ∧ u2 ∈ UserDataTypeTm} ∪

{(string, string)}
abs = {}

mult(e) =
{︂
(0..∗, 1..1) if e ∈ {(ns_to_list(u), ⟨data_edge⟩, string) | u ∈ UserDataTypeTm}

contains = {}

Also see tmod_userdatatype_to_tg_userdatatype_as_node_type in
Ecore-GROOVE-Mapping-Library.UserDataTypeType

Theorem 5.2.55 (Correctness of fUserType)
fUserType(Tm) (Definition 5.2.54) is a valid transformation function in the sense of Definition 4.3.25
transforming TmUserType into TGUserType.

Also see tmod_userdatatype_to_tg_userdatatype_as_node_type_func in
Ecore-GROOVE-Mapping-Library.UserDataTypeType

The proof of the correctness of fUserType will not be included here. Instead, it can be found in the
validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGUserType into
TmUserType is defined:

Definition 5.2.56 (Transformation function f ′
UserType)

The transformation function f ′
UserType(TG) is defined as:

Class = {}
Enum = {}

UserDataType = {list_to_ns(n) | n ∈ NTTG ∩ Labt}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Also see tg_userdatatype_as_node_type_to_tmod_userdatatype in
Ecore-GROOVE-Mapping-Library.UserDataTypeType

Theorem 5.2.57 (Correctness of f ′
UserType)

f ′
UserType(TG) (Definition 5.2.56) is a valid transformation function in the sense of Definition 4.3.30

transforming TGUserType into TmUserType.

Page 112

Example

field : EString

(a) TmDataField for a string with name = field

Example
field: string

(b) TGDataField for a string with name = field

Figure 5.6: Visualisation of the transformation of a field typed by a data type

Also see tg_userdatatype_as_node_type_to_tmod_userdatatype_func in
Ecore-GROOVE-Mapping-Library.UserDataTypeType

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.2.6 Data fields
All transformations discussed so far have focused on introducing different kind of types. In the following
transformations, these types will be enriched with fields. In this transformation specifically, a field typed
by a data type will be introduced.

Definition 5.2.58 (Type model TmDataField)
Let TmDataField be the type model containing a regular class with identifier classtype. Then TmDataField

defines a field named name with type fieldtype, in which fieldtype is either boolean, integer, real or
string. TmDataField is defined as:

Class = {classtype}
Enum = {}

UserDataType = {}
Field = {(classtype, name)}

FieldSig =
{︂
(f, (fieldtype, 1..1)) if f ∈ FieldTmDataField

EnumV alue = {}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}

Also see tmod_data_field in Ecore-GROOVE-Mapping-Library.DataField

Theorem 5.2.59 (Correctness of TmDataField)
TmDataField (Definition 5.2.58) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_data_field_correct in Ecore-GROOVE-Mapping-Library.DataField

A visual representation of TmDataField with field name field on class .Example can be seen in Figure 5.6a.
In this example, the string type is chosen for the fieldtype, but any data type would have worked. The
correctness proof of TmDataField is more involved, it is not included here for conciseness. It can be found
within the validated Isabelle proofs.

In order to make composing transformation functions possible, TmDataField should be compatible with
the type model it is combined with.

Theorem 5.2.60 (Correctness of combine(Tm, TmDataField))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmDataField (in the sense of Definition 4.3.13) if:

• The class type on which the field is defined, classtype, is already an existing class in Tm;

• The field named name is not already a field on classtype in Tm.

Page 113

Also see tmod_data_field_combine_correct in Ecore-GROOVE-Mapping-Library.DataField

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmDataField) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for defining a data field within Ecore are now complete.

Encoding as edge type

The most obvious encoding for an field in GROOVE would be using an edge type. The field is trans-
formed into an edge type between an existing node type and the corresponding field type. The encoding
corresponding to TmDataField can then be represented as TGDataField, defined in the following defini-
tion:

Definition 5.2.61 (Type graph TGDataField)
Let TGDataField be the type graph containing a node type which encodes the class type classtype. Fur-
thermore, define an edge type from classtype named name. This edge type targets a node of fieldtype.
TGDataField is defined as:

NT = {ns_to_list(classtype), fieldtype}
ET = {(ns_to_list(classtype), ⟨name⟩, fieldtype)}
⊑ = {(ns_to_list(classtype),ns_to_list(classtype)), (fieldtype, fieldtype)}

abs = {}

mult(e) =
{︂
(0..∗, 1..1) if e ∈ {(ns_to_list(classtype), ⟨name⟩, fieldtype)}

contains = {}

Also see tg_data_field_as_edge_type in Ecore-GROOVE-Mapping-Library.DataField

Theorem 5.2.62 (Correctness of TGDataField)
TGDataField (Definition 5.2.61) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_data_field_as_edge_type_correct in Ecore-GROOVE-Mapping-Library.DataField

A visual representation of TGDataField with edge name field on node type Example can be seen in
Figure 5.6b. Like the previous example, a string has been chosen to be consequent, but any primitive
type could have been used. The correctness proof of TGDataField is more involved, it is not included
here for conciseness. It can be found within the validated Isabelle proofs.

In order to make composing transformation functions possible, TGDataField should be compatible with
the type graph it is combined with.

Theorem 5.2.63 (Correctness of combine(TG, TGDataField))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGDataField (in the sense of Definition 4.3.24) if:

• The node type of the encoded class type in TGDataField is already an node type in TG;

• The node type of the encoded class type in TGDataField does not already have an edge type with the
same name as the field in TG.

Also see tg_data_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.DataField

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGDataField) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmDataField to TGDataField:

Page 114

Definition 5.2.64 (Transformation function fDataField)
The transformation function fDataField(Tm) is defined as:

NT = {ns_to_list(c) | c ∈ ClassTm} ∪ {fieldtype}
ET = {(ns_to_list(c), ⟨f⟩, fieldtype) | (c, n) ∈ FieldTm}
⊑ = {(ns_to_list(c),ns_to_list(c)) | c ∈ ClassTm} ∪ {(fieldtype, fieldtype)}

abs = {}

mult =
{︂
(0..∗, 1..1) if e ∈ {(ns_to_list(c), ⟨f⟩, fieldtype) | (c, n) ∈ FieldTm}

contains = {}

Also see tmod_data_field_to_tg_data_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.DataField

Theorem 5.2.65 (Correctness of fDataField)
fDataField(Tm) (Definition 5.2.64) is a valid transformation function in the sense of Definition 4.3.25
transforming TmDataField into TGDataField.

Also see tmod_data_field_to_tg_data_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.DataField

The proof of the correctness of fDataField will not be included here. Instead, it can be found in the
validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGDataField into
TmDataField is defined:

Definition 5.2.66 (Transformation function f ′
DataField)

The transformation function f ′
DataField(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG ∩ Labt}
Enum = {}

UserDataType = {}
Field = {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

FieldSig =
{︂
(f, (fieldtype, 1..1)) if f ∈ {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

EnumV alue = {}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}

Also see tg_data_field_as_edge_type_to_tmod_data_field in
Ecore-GROOVE-Mapping-Library.DataField

Theorem 5.2.67 (Correctness of f ′
DataField)

f ′
DataField(TG) (Definition 5.2.66) is a valid transformation function in the sense of Definition 4.3.30

transforming TGDataField into TmDataField.

Also see tg_data_field_as_edge_type_to_tmod_data_field_func in
Ecore-GROOVE-Mapping-Library.DataField

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.2.7 Enumeration fields
In this section, the transformation for a field typed by an enumeration type will be discussed. Since an
enumeration type can be encoded in multiple ways, multiple encodings will be introduced for fields as
well. First, the Ecore type model will be introduced.

Page 115

Example

field :
ExistingEnum

ExistingEnum

OPTION_A

OPTION_B

OPTION_C

(a) TmEnumField for .ExistingEnum
with name = field

Example

ExistingEnum
OPTION_A
OPTION_B
OPTION_C

field

(b) TGEnumFieldF lags for ExistingEnum
with name = field

Example ExistingEnum

ExistingEnum$OPTION_A ExistingEnum$OPTION_B ExistingEnum$OPTION_C

field

(c) TGEnumFieldNodes for ExistingEnum with name = field

Figure 5.7: Visualisation of the transformation of a field typed by an enumeration type

Definition 5.2.68 (Type model TmEnumField)
Let TmEnumField be the type model containing a regular class with identifier classtype. Furthermore, it
defines an enumeration type with identifier enumid, and corresponding values as set enumvalues. Then
TmEnumField defines a field named name with type enumid on class classtype. TmEnumField is defined
as:

Class = {classtype}
Enum = {enumid}

UserDataType = {}
Field = {(classtype, name)}

FieldSig =
{︂
(f, (enumid, 1..1)) if f ∈ FieldTmEnumField

EnumV alue = {(enumid, v) | v ∈ enumvalues}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}

Also see tmod_enum_field in Ecore-GROOVE-Mapping-Library.EnumField

Theorem 5.2.69 (Correctness of TmEnumField)
TmEnumField (Definition 5.2.68) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_enum_field_correct in Ecore-GROOVE-Mapping-Library.EnumField

A visual representation of TmEnumField with field name field on class .Example can be seen in Figure 5.7a.
In this example, the field is typed by the .ExistingEnum enumeration type. The correctness proof of
TmEnumField is more involved, it is not included here for conciseness. It can be found within the
validated Isabelle proofs.

In order to make composing transformation functions possible, TmEnumField should be compatible with
the type model it is combined with.

Theorem 5.2.70 (Correctness of combine(Tm, TmEnumField))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmEnumField (in the sense of Definition 4.3.13) if:

• The class type on which the field is defined, classtype, is already an existing class in Tm;

• The enumeration type by which the field is typed, enumid, is already an existing enumeration type
in Tm;

• All the values for the enumeration type enumid are already enumeration values for enumid in Tm;

• The field named name is not already a field on classtype in Tm.

Page 116

Also see tmod_enum_field_combine_correct in Ecore-GROOVE-Mapping-Library.EnumField

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmEnumField) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for defining a field typed by an enumeration type within Ecore are now
complete.

Encoding as edge type to an node type encoded enumeration type

As mentioned earlier, Section 5.2.4 defines multiple ways to encode an enumeration type. Each of
these encodings needs a specialised field encoding. In principle, the encoding of the fields itself is the
same, but since every transformation model needs to be valid on its own, the encodings need to be
distinguished.

The first encoding for an enumeration type uses node types to encode the different values. The encoding
corresponding to TmEnumField, in the case that the field references an enumeration type encoded as
node types, can then be represented as TGEnumFieldNodes, defined in the following definition:

Definition 5.2.71 (Type graph TGEnumFieldNodes)
Let TGEnumFieldNodes be the type graph containing a node type which encodes the class type classtype.
Furthermore, TGEnumFieldNodes contains an encoded version of enumeration type enumid with values
from set enumvalues. This enumeration type is encoded using node types, as defined in TGEnumNodes

(Definition 5.2.34). Finally, TGEnumFieldNodes defines an edge type from the encoded classtype named
name to the encoded enumeration type enumid. TGEnumFieldNodes is defined as:

NT = {ns_to_list(classtype),ns_to_list(enumid)} ∪
{ns_to_list(enumid)@ ⟨v⟩ | v ∈ enumvalues}

ET = {(ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid))}
⊑ = {(ns_to_list(classtype),ns_to_list(classtype)),

(ns_to_list(enumid),ns_to_list(enumid))} ∪
{(ns_to_list(enumid)@ ⟨v⟩,ns_to_list(enumid)@ ⟨v⟩) | v ∈ enumvalues} ∪
{(ns_to_list(enumid)@ ⟨v⟩,ns_to_list(enumid)) | v ∈ enumvalues}

abs = {ns_to_list(enumid)}

mult(e) =
{︂
(0..∗, 1..1) if e ∈ {(ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid))}

contains = {}

Also see tg_enum_as_node_types_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.EnumField

Theorem 5.2.72 (Correctness of TGEnumFieldNodes)
TGEnumFieldNodes (Definition 5.2.71) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_enum_as_node_types_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.EnumField

A visual representation of TGEnumFieldNodes with edge name field on node type Example can be seen
in Figure 5.7c. The field references the encoded enumeration type ExistingEnum via the abstract type,
such that its nodes can reference any of the concrete values. The correctness proof of TGEnumFieldNodes

is more involved, it is not included here for conciseness. It can be found within the validated Isabelle
proofs.

In order to make composing transformation functions possible, TGEnumFieldNodes should be compatible
with the type graph it is combined with.

Theorem 5.2.73 (Correctness of combine(TG, TGEnumFieldNodes))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGEnumFieldNodes (in the sense of Definition 4.3.24) if:

• The node type of the encoded class type in TGEnumFieldNodes is already an node type in TG;

• All node types corresponding to the encoding of the enumeration type in TGEnumFieldNodes are
already node types in TG;

Page 117

• The node type of the encoded class type in TGEnumFieldNodes does not already have an edge type
with the same name as the field in TG.

Also see tg_enum_as_node_types_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.EnumField

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGEnumFieldNodes) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmEnumField to TGEnumFieldNodes:

Definition 5.2.74 (Transformation function fEnumFieldNodes)
The transformation function fEnumFieldNodes(Tm) is defined as:

NT = {ns_to_list(t) | t ∈ ClassTm ∪ EnumTm} ∪
{ns_to_list(e)@ ⟨v⟩ | (e, v) ∈ EnumV alueTm}

ET = {(ns_to_list(c), ⟨f⟩,ns_to_list(e)) | (c, f) ∈ FieldTm ∧ e ∈ EnumTm}
⊑ = {(ns_to_list(x),ns_to_list(x)) | x ∈ ClassTm ∪ EnumTm} ∪

{(ns_to_list(e)@ ⟨v⟩,ns_to_list(e)@ ⟨v⟩) | (e, v) ∈ EnumV alueTm} ∪
{(ns_to_list(e)@ ⟨v⟩,ns_to_list(e)) | (e, v) ∈ EnumV alueTm}

abs = {ns_to_list(t) | t ∈ EnumTm}

mult(e) =
{︂
(0..∗, 1..1) if e ∈ {(ns_to_list(c), ⟨f⟩,ns_to_list(e)) | (c, f) ∈ FieldTm ∧ e ∈ EnumTm}

contains = {}

Also see tmod_enum_field_to_tg_enum_as_node_types_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.EnumField

Theorem 5.2.75 (Correctness of fEnumFieldNodes)
fEnumFieldNodes(Tm) (Definition 5.2.74) is a valid transformation function in the sense of Defini-
tion 4.3.25 transforming TmEnumField into TGEnumFieldNodes.

Also see tmod_enum_field_to_tg_enum_as_node_types_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.EnumField

The proof of the correctness of fEnumFieldNodes will not be included here. Instead, it can be found in
the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGEnumFieldNodes

into TmEnumField is defined:

Definition 5.2.76 (Transformation function f ′
EnumFieldNodes)

The transformation function f ′
EnumFieldNodes(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG ∧ n = ns_to_list(classtype)}
Enum = {list_to_ns(n) | n ∈ NTTG ∧ n = ns_to_list(enumid)}

UserDataType = {}
Field = {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

FieldSig =
{︂
(f, (fieldtype, 1..1)) if f ∈ {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

EnumV alue = {(enumid, v) | v ∈ enumvalues}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}

Also see tg_enum_as_node_types_field_as_edge_type_to_tmod_enum_field in
Ecore-GROOVE-Mapping-Library.EnumField

Theorem 5.2.77 (Correctness of f ′
EnumFieldNodes)

f ′
EnumFieldNodes(TG) (Definition 5.2.76) is a valid transformation function in the sense of Defini-

tion 4.3.30 transforming TGEnumFieldNodes into TmEnumField.

Page 118

Also see tg_enum_as_node_types_field_as_edge_type_to_tmod_enum_field_func in
Ecore-GROOVE-Mapping-Library.EnumField

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

Encoding as edge type to an flag encoded enumeration type

The second encoding for an enumeration type uses flags to encode the different values. The encoding
corresponding to TmEnumField, in the case that the field references an enumeration type encoded as
flags, can then be represented as TGEnumFieldF lags, defined in the following definition:

Definition 5.2.78 (Type graph TGEnumFieldF lags)
Let TGEnumFieldF lags be the type graph containing a node type which encodes the class type classtype.
Furthermore, TGEnumFieldF lags contains an encoded version of enumeration type enumid with values
from set enumvalues. This enumeration type is encoded using flags, as defined in TGEnumFlags (Defi-
nition 5.2.41). Finally, TGEnumFieldF lags defines an edge type from the encoded classtype named name
to the encoded enumeration type enumid. TGEnumFieldF lags is defined as:

NT = {ns_to_list(classtype),ns_to_list(enumid)}
ET = {(ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid))}
⊑ = {(ns_to_list(classtype),ns_to_list(classtype)),

(ns_to_list(enumid),ns_to_list(enumid))}
abs = {}

mult(e) =
{︂
(0..∗, 1..1) if e ∈ {(ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid))}

contains = {}

Also see tg_enum_as_flags_field_as_edge_type in Ecore-GROOVE-Mapping-Library.EnumField

Theorem 5.2.79 (Correctness of TGEnumFieldF lags)
TGEnumFieldF lags (Definition 5.2.78) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_enum_as_flags_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.EnumField

A visual representation of TGEnumFieldF lags with edge name field on node type Example can be seen in
Figure 5.7b. The field references the encoded enumeration type ExistingEnum via the corresponding node
type. The correctness proof of TGEnumFieldF lags is more involved, it is not included here for conciseness.
It can be found within the validated Isabelle proofs.

In order to make composing transformation functions possible, TGEnumFieldF lags should be compatible
with the type graph it is combined with.

Theorem 5.2.80 (Correctness of combine(TG, TGEnumFieldF lags))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGEnumFieldF lags (in the sense of Definition 4.3.24) if:

• The node type of the encoded class type in TGEnumFieldF lags is already an node type in TG;

• All node types corresponding to the encoding of the enumeration type in TGEnumFieldF lags are
already node types in TG;

• The node type of the encoded class type in TGEnumFieldF lags does not already have an edge type
with the same name as the field in TG.

Also see tg_enum_as_flags_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.EnumField

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGEnumFieldF lags) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmEnumField to TGEnumFieldF lags:

Page 119

Definition 5.2.81 (Transformation function fEnumFieldF lags)
The transformation function fEnumFieldF lags(Tm) is defined as:

NT = {ns_to_list(t) | t ∈ ClassTm ∪ EnumTm}
ET = {(ns_to_list(c), ⟨f⟩,ns_to_list(e)) | (c, f) ∈ FieldTm ∧ e ∈ EnumTm}
⊑ = {(ns_to_list(x),ns_to_list(x)) | x ∈ ClassTm ∪ EnumTm}

abs = {}

mult(e) =
{︂
(0..∗, 1..1) if e ∈ {(ns_to_list(c), ⟨f⟩,ns_to_list(e)) | (c, f) ∈ FieldTm ∧ e ∈ EnumTm}

contains = {}

Also see tmod_enum_field_to_tg_enum_as_flags_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.EnumField

Theorem 5.2.82 (Correctness of fEnumFieldF lags)
fEnumFieldF lags(Tm) (Definition 5.2.81) is a valid transformation function in the sense of Defini-
tion 4.3.25 transforming TmEnumField into TGEnumFieldF lags.

Also see tmod_enum_field_to_tg_enum_as_flags_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.EnumField

The proof of the correctness of fEnumFieldF lags will not be included here. Instead, it can be found in
the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGEnumFieldF lags

into TmEnumField is defined:

Definition 5.2.83 (Transformation function f ′
EnumFieldF lags)

The transformation function f ′
EnumFieldF lags(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG ∧ n = ns_to_list(classtype)}
Enum = {list_to_ns(n) | n ∈ NTTG ∧ n = ns_to_list(enumid)}

UserDataType = {}
Field = {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

FieldSig =
{︂
(f, (fieldtype, 1..1)) if f ∈ {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

EnumV alue = {(enumid, v) | v ∈ enumvalues}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}

Also see tg_enum_as_flags_field_as_edge_type_to_tmod_enum_field in
Ecore-GROOVE-Mapping-Library.EnumField

Theorem 5.2.84 (Correctness of f ′
EnumFieldF lags)

f ′
EnumFieldF lags(TG) (Definition 5.2.83) is a valid transformation function in the sense of Definition 4.3.30

transforming TGEnumFieldF lags into TmEnumField.

Also see tg_enum_as_flags_field_as_edge_type_to_tmod_enum_field_func in
Ecore-GROOVE-Mapping-Library.EnumField

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.2.8 Nullable class fields
The previous sections have shown transformations of fields to attribute types. It has not shown any rela-
tions between objects yet. This transformation defines the transformation of a nullable class field.

Definition 5.2.85 (Type model TmNullableClassField)
Let TmNullableClassField be the type model containing a regular class with identifier classtype. Then

Page 120

Example TargetExample
[0..1] field

(a) TmNullableClassField to a class type .TargetExample with name = field

Example TargetExamplefield

(b) TGNullableClassField to a class type TargetExample with name = field

Figure 5.8: Visualisation of the transformation of a field typed by an optional class type

TmNullableClassField defines a field named name with type fieldtype, in which fieldtype is the identifier
of another class type in TmNullableClassField. TmNullableClassField is defined as:

Class = {classtype, fieldtype}
Enum = {}

UserDataType = {}
Field = {(classtype, name)}

FieldSig =
{︂
(f, (?fieldtype, 0..1)) if f ∈ FieldTmNullableClassField

EnumV alue = {}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}

Also see tmod_nullable_class_field in Ecore-GROOVE-Mapping-Library.NullableClassField

Theorem 5.2.86 (Correctness of TmNullableClassField)
TmNullableClassField (Definition 5.2.85) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_nullable_class_field_correct in
Ecore-GROOVE-Mapping-Library.NullableClassField

A visual representation of TmNullableClassField with field name field on class .Example can be seen in
Figure 5.8a. In this example, field references a class of .TargetExample. Please note that the lower bound
of the multiplicity is 0 as the class is considered nullable. That means that setting a value for field
on class .Example is optional. The correctness proof of TmNullableClassField is more involved, it is not
included here for conciseness. It can be found within the validated Isabelle proofs.

In order to make composing transformation functions possible, TmNullableClassField should be compatible
with the type model it is combined with.

Theorem 5.2.87 (Correctness of combine(Tm, TmNullableClassField))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmNullableClassField (in the sense of Definition 4.3.13) if:

• The class type on which the field is defined, classtype, is already an existing class in Tm;

• The class type which the field targets, fieldtype, is already an existing class in Tm;

• The field named name is not already a field on classtype in Tm.

Also see tmod_nullable_class_field_combine_correct in
Ecore-GROOVE-Mapping-Library.NullableClassField

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmNullableClassField) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for defining a data field within Ecore are now complete.

Page 121

Encoding as edge type

Like any field definition so far, an edge type will be used within GROOVE to encode the field. The field
is transformed into an edge type from the encoded class type to the encoded target type. The encoding
corresponding to TmNullableClassField can then be represented as TGNullableClassField, defined in the
following definition:

Definition 5.2.88 (Type graph TGNullableClassField)
Let TGNullableClassField be the type graph containing a node type which encodes the class type classtype.
Furthermore, define an edge type from classtype named name. This edge type targets a node of fieldtype.
TGNullableClassField is defined as:

NT = {ns_to_list(classtype),ns_to_list(fieldtype)}
ET = {(ns_to_list(classtype), ⟨name⟩,ns_to_list(fieldtype))}
⊑ = {(ns_to_list(classtype),ns_to_list(classtype)),

(ns_to_list(fieldtype),ns_to_list(fieldtype))}
abs = {}

mult(e) =
{︂
(0..∗, 0..1) if e ∈ {(ns_to_list(classtype), ⟨name⟩,ns_to_list(fieldtype))}

contains = {}

Also see tg_nullable_class_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.NullableClassField

Theorem 5.2.89 (Correctness of TGNullableClassField)
TGNullableClassField (Definition 5.2.88) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_nullable_class_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.NullableClassField

A visual representation of TGNullableClassField with edge name field on node type Example can be seen
in Figure 5.8b. Like the previous example, field references the .TargetExample class, but in this case the
encoded node type of TargetExample. The correctness proof of TGNullableClassField is more involved, it
is not included here for conciseness. It can be found within the validated Isabelle proofs.

In order to make composing transformation functions possible, TGNullableClassField should be compatible
with the type graph it is combined with.

Theorem 5.2.90 (Correctness of combine(TG, TGNullableClassField))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGNullableClassField (in the sense of Definition 4.3.24) if:

• The node types of the encoded class types in TGNullableClassField are already node types in TG;

• The node type of the encoded class type in TGNullableClassField does not already have an edge type
with the same name as the field in TG.

Also see tg_nullable_class_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.NullableClassField

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGNullableClassField) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmNullableClassField to TGNullableClassField:

Definition 5.2.91 (Transformation function fNullableClassField)

Page 122

The transformation function fNullableClassField(Tm) is defined as:

NT = {ns_to_list(c) | c ∈ ClassTm}
ET = {(ns_to_list(c), ⟨f⟩,ns_to_list(fieldtype)) | (c, n) ∈ FieldTm}
⊑ = {(ns_to_list(c),ns_to_list(c)) | c ∈ ClassTm}

abs = {}

mult =
{︂
(0..∗, 0..1) if e ∈ {(ns_to_list(c), ⟨f⟩,ns_to_list(fieldtype)) | (c, n) ∈ FieldTm}

contains = {}

Also see tmod_nullable_class_field_to_tg_nullable_class_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.NullableClassField

Theorem 5.2.92 (Correctness of fNullableClassField)
fNullableClassField(Tm) (Definition 5.2.91) is a valid transformation function in the sense of Defini-
tion 4.3.25 transforming TmNullableClassField into TGNullableClassField.

Also see tmod_nullable_class_field_to_tg_nullable_class_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.NullableClassField

The proof of the correctness of fNullableClassField will not be included here. Instead, it can be found in
the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGNullableClassField

into TmNullableClassField is defined:

Definition 5.2.93 (Transformation function f ′
NullableClassField)

The transformation function f ′
NullableClassField(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG}
Enum = {}

UserDataType = {}
Field = {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

FieldSig =
{︂
(f, (?fieldtype, 0..1)) if f ∈ {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

EnumV alue = {}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}

Also see tg_nullable_class_field_as_edge_type_to_tmod_nullable_class_field in
Ecore-GROOVE-Mapping-Library.NullableClassField

Theorem 5.2.94 (Correctness of f ′
NullableClassField)

f ′
NullableClassField(TG) (Definition 5.2.93) is a valid transformation function in the sense of Defini-

tion 4.3.30 transforming TGNullableClassField into TmNullableClassField.

Also see tg_nullable_class_field_as_edge_type_to_tmod_nullable_class_field_func in
Ecore-GROOVE-Mapping-Library.NullableClassField

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.2.9 Contained class set fields
In this section, the transformation of a containment field typed by a set of a proper class type is shown.
This transformation defines a field which has a value a set of objects of a specified class type, that is not
nullable. Furthermore, the objects referenced by the field are contained by the source class. First, the
Ecore type model is defined.

Page 123

Example TargetExample
[0..7] field

(a) TmContainedClassSetField to a class type .TargetExample with name = field

Example TargetExamplefield

(b) TGContainedClassSetField to a class type TargetExample with name = field

Figure 5.9: Visualisation of the transformation of a containment field typed by a set of a proper class
type

Definition 5.2.95 (Type model TmContainedClassSetF ield)
Let TmContainedClassSetF ield be the type model containing a regular class with identifier classtype. Then
TmContainedClassSetF ield defines a field named name with type containedtype, in which containedtype
is the identifier of another class type in TmContainedClassSetF ield. Furthermore, define mul to be a valid
multiplicity for the field name. TmContainedClassSetF ield is defined as:

Class = {classtype, containedtype}
Enum = {}

UserDataType = {}
Field = {(classtype, name)}

FieldSig =
{︂
(f, ((setof, !containedtype),mul)) if f ∈ FieldTmContainedClassSetField

EnumV alue = {}
Inh = {}

Prop = {(containment, (classtype, name))}
Constant = {}

ConstType = {}

Also see tmod_contained_class_set_field in
Ecore-GROOVE-Mapping-Library.ContainedClassSetField

Theorem 5.2.96 (Correctness of TmContainedClassSetF ield)
TmContainedClassSetF ield (Definition 5.2.95) is a consistent type model in the sense of Definition 3.2.11.

Also see tmod_contained_class_set_field_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetField

A visual representation of TmContainedClassSetF ield with field name field on class .Example can be seen in
Figure 5.9a. In this example, field references a class of .TargetExample. Please note that the multiplicity
0..7 has been chosen here as an example, any valid multiplicity could have been used. Also notice that the
field is in fact a containment relation. The correctness proof of TmContainedClassSetF ield is more involved,
it is not included here for conciseness. It can be found within the validated Isabelle proofs.

In order to make composing transformation functions possible, TmContainedClassSetF ield should be com-
patible with the type model it is combined with.

Theorem 5.2.97 (Correctness of combine(Tm, TmContainedClassSetF ield))
Assume a type model Tm that is consistent in the sense of Definition 3.2.11. Then Tm is compatible
with TmContainedClassSetF ield (in the sense of Definition 4.3.13) if:

• The class type on which the field is defined, classtype, is already an existing class in Tm;

• The class type which the field targets, containedtype, is already an existing class in Tm;

• The field named name is not already a field on classtype in Tm;

• The multiplicity mul is valid.

Also see tmod_contained_class_set_field_combine_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetField

Page 124

Proof. Use Lemma 4.3.12. It is possible to show that all assumptions hold. Now we have shown that
combine(Tm, TmContainedClassSetF ield) is consistent in the sense of Definition 3.2.11.

The definitions and theorems for defining a data field within Ecore are now complete.

Encoding as edge type

Like the previous encodings of fields, an edge type in GROOVE will be used as encoding for the field.
The field is transformed into an edge type from the encoded class type to the encoded target type.
Furthermore, the edge type will be a containment edge, to support the fact that the target nodes are
contained by the source nodes. The encoding corresponding to TmContainedClassSetF ield can then be
represented as TGContainedClassSetF ield, defined in the following definition:

Definition 5.2.98 (Type graph TGContainedClassSetF ield)
Let TGContainedClassSetF ield be the type graph containing a node type which encodes the class type
classtype. Furthermore, define an edge type from classtype named name. This edge type targets a
node of containedtype. Finally, define multiplicity mul to be TGContainedClassSetF ield is defined as:

NT = {ns_to_list(classtype),ns_to_list(containedtype)}
ET = {(ns_to_list(classtype), ⟨name⟩,ns_to_list(containedtype))}
⊑ = {(ns_to_list(classtype),ns_to_list(classtype)),

(ns_to_list(containedtype),ns_to_list(containedtype))}
abs = {}

mult(e) =
{︂
(0..1,mul) if e ∈ {(ns_to_list(classtype), ⟨name⟩,ns_to_list(containedtype))}

contains = {(ns_to_list(classtype), ⟨name⟩,ns_to_list(containedtype))}

Also see tg_contained_class_set_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.ContainedClassSetField

Theorem 5.2.99 (Correctness of TGContainedClassSetF ield)
TGContainedClassSetF ield (Definition 5.2.98) is a valid type graph in the sense of Definition 3.3.5.

Also see tg_contained_class_set_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetField

A visual representation of TGContainedClassSetF ield with edge name field on node type Example can be
seen in Figure 5.9b. Like the previous example, field references the .TargetExample class, but in this case
the encoded node type of TargetExample. Furthermore, it is visable that the introduced edge type for the
field is indeed a containment edge. The correctness proof of TGContainedClassSetF ield is more involved,
it is not included here for conciseness. It can be found within the validated Isabelle proofs.

In order to make composing transformation functions possible, TGContainedClassSetF ield should be com-
patible with the type graph it is combined with.

Theorem 5.2.100 (Correctness of combine(TG, TGContainedClassSetF ield))
Assume a type graph TG that is valid in the sense of Definition 3.3.5. Then TG is compatible with
TGContainedClassSetF ield (in the sense of Definition 4.3.24) if:

• The node types of the encoded class types in TGContainedClassSetF ield are already node types in TG.

• The node type of the encoded class type in TGContainedClassSetF ield does not already have an edge
type with the same name as the field in TG;

• The multiplicity mul is valid.

Also see tg_contained_class_set_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetField

Proof. Use Lemma 4.3.23. It is possible to show that all assumptions hold. Now we have shown that
combine(TG, TGContainedClassSetF ield) is valid in the sense of Definition 3.3.5.

The next definitions define the transformation function from TmContainedClassSetF ield to TGContainedClassSetF ield:

Page 125

Definition 5.2.101 (Transformation function fContainedClassSetF ield)
The transformation function fContainedClassSetF ield(Tm) is defined as:

NT = {ns_to_list(c) | c ∈ ClassTm}
ET = {(ns_to_list(c), ⟨f⟩,ns_to_list(containedtype)) | (c, n) ∈ FieldTm}
⊑ = {(ns_to_list(c),ns_to_list(c)) | c ∈ ClassTm}

abs = {}

mult =
{︂
(0..1,mul) if e ∈ {(ns_to_list(c), ⟨f⟩,ns_to_list(containedtype)) | (c, n) ∈ FieldTm}

contains = {(ns_to_list(c), ⟨f⟩,ns_to_list(containedtype)) | (c, n) ∈ FieldTm}

Also see tmod_contained_class_set_field_to_tg_contained_class_set_field_as_edge_type
in Ecore-GROOVE-Mapping-Library.ContainedClassSetField

Theorem 5.2.102 (Correctness of fContainedClassSetF ield)
fContainedClassSetF ield(Tm) (Definition 5.2.101) is a valid transformation function in the sense of Defi-
nition 4.3.25 transforming TmContainedClassSetF ield into TGContainedClassSetF ield.

Also see
tmod_contained_class_set_field_to_tg_contained_class_set_field_as_edge_type_func in

Ecore-GROOVE-Mapping-Library.ContainedClassSetField

The proof of the correctness of fContainedClassSetF ield will not be included here. Instead, it can be found
in the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms TGContainedClassSetF ield

into TmContainedClassSetF ield is defined:

Definition 5.2.103 (Transformation function f ′
ContainedClassSetF ield)

The transformation function f ′
ContainedClassSetF ield(TG) is defined as:

Class = {list_to_ns(n) | n ∈ NTTG}
Enum = {}

UserDataType = {}
Field = {(list_to_ns(src(e)), l) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}

FieldSig =

{︄
(f, ((setof, !containedtype),mul)) if f ∈ {(list_to_ns(src(e)), l) | e ∈ ETTG ∧

⟨l⟩ = lab(e)}

EnumV alue = {}
Inh = {}

Prop = {(containment, (list_to_ns(src(e)), l)) | e ∈ ETTG ∧ ⟨l⟩ = lab(e)}
Constant = {}

ConstType = {}

Also see tg_contained_class_set_field_as_edge_type_to_tmod_contained_class_set_field
in Ecore-GROOVE-Mapping-Library.ContainedClassSetField

Theorem 5.2.104 (Correctness of f ′
ContainedClassSetF ield)

f ′
ContainedClassSetF ield(TG) (Definition 5.2.103) is a valid transformation function in the sense of Defi-

nition 4.3.30 transforming TGContainedClassSetF ield into TmContainedClassSetF ield.

Also see
tg_contained_class_set_field_as_edge_type_to_tmod_contained_class_set_field_func in

Ecore-GROOVE-Mapping-Library.ContainedClassSetField

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3 Instance level transformations
The previous section has presented a set of model transformations between type models and type graphs.
In this section, these transformations are used to define model transformations between instance model

Page 126

and instance graphs. Therefore, this section provides the second set of model transformations introduced
within the introduction of this chapter.

Throughout this section, small transformations between instance models and instance graphs will be
defined. In order for these transformations useful in the context of the transformation framework of
Chapter 4, some properties must hold for each of them. For each transformation, the corresponding
instance model and instance graph must be valid in the sense of Definition 3.2.19 and Definition 3.3.10
respectively. Furthermore, the instance model corresponding to the transformation must be compatible
with its counterpart in the transformation framework. In the same way, the corresponding instance graph
must be compatible with its counterpart in the transformation framework. Moreover, it will be shown
that the transformation function f that transforms the corresponding instance model into an instance
graph is a valid transformation function in the sense of Definition 4.4.26. Finally, it will also be shown
that the reverse transformation is a valid transformation function in the sense of Definition 4.4.31.

5.3.1 Plain objects
The first transformation that will be defined is a transformation of plain objects of a regular class
type. The corresponding type level transformation can be found in Section 5.2.1. This transformation
introduces an arbitrary amount of instances of the class introduced on the type level. First, the definition
of the corresponding instance model is given.

Definition 5.3.1 (Instance model ImClass)
Let ImClass be the instance model containing a set of objects objects which are all typed by class name.
Furthermore, an injective function fid is defined which maps every object in the set to its corresponding
identifier. ImClass is typed by TmClass (Definition 5.2.1) and is defined as:

Object = objects

ObjectClass =
{︂
(ob, name) if ob ∈ objects

ObjectId =
{︂
(ob, fid(ob)) if ob ∈ objects

FieldValue = {}
DefaultValue = {}

Also see imod_class in Ecore-GROOVE-Mapping-Library.ClassInstance

Theorem 5.3.2 (Correctness of ImClass)
ImClass (Definition 5.3.1) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_class_correct in Ecore-GROOVE-Mapping-Library.ClassInstance

A visual representation of ImClass with objects = {ob} and fid(ob) = x can be seen in Figure 5.10a.
Although this visualisation only shows one object, it is possible to have an arbitrary amount of objects
in ImClass, as long as they are all typed by the corresponding class introduced on the type level. In
the visualisation, the identifier .Example is used for the class, in correspondence with Figure 5.1a The
correctness proof of ImClass is trivial, and therefore not included here. The proof can be found as part
of the Isabelle validated proofs.

In order to make composing transformation functions possible, ImClass should be compatible with the
instance model it is combined with.

Theorem 5.3.3 (Correctness of combine(Im, ImClass))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImClass (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.3 are met, to ensure the combination of the corresponding type
models is valid;

x :Example

(a) ImClass with one object identified as x

x : Example

(b) IGClass with one node identified as x

Figure 5.10: Visualisation of the transformation of plain objects typed by regular classes

Page 127

• All the objects in ImClass have an (internal and explicit) identity that is not yet used in Im.

Also see imod_class_combine_correct in Ecore-GROOVE-Mapping-Library.ClassInstance

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImClass) is consistent in the sense of Definition 3.2.19.

Please note that this combination is quite trivial, as the newly introduced objects cannot have fields.
This is because they are all typed by the new class type introduced in TmClass. Since this new class
type is new by assumption, the existing model cannot have fields defined for the class type.

The definitions and theorems for introducing plain objects of regular classes within Ecore are now com-
plete.

Encoding as nodes

A possible encoding for plain objects in Ecore is using nodes in GROOVE. Each node is typed by the node
type that was introduced in TGClass, and copies the identifiers set of the objects to the corresponding
nodes. The encoding corresponding to ImClass can then be represented as IGClass, defined in the
following definition:

Definition 5.3.4 (Instance graph IGClass)
Let IGClass be the instance graph with as nodes the converted objects of ImClass (Definition 5.3.1).
Furthermore, reuse the injective function fid that maps every object to its identifier. Finally, use the
node type introduced in TGClass (Definition 5.2.4). IGClass is defined typed by TGClass and is defined
as:

N = objects

E = {}

ident =
{︂
(fid(ob), ob) if ob ∈ objects

with

typen =
{︂
(ob,ns_to_list(name)) if ob ∈ objects

Also see ig_class_as_node_type in Ecore-GROOVE-Mapping-Library.ClassInstance

Theorem 5.3.5 (Correctness of IGClass)
IGClass (Definition 5.3.4) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_class_as_node_type_correct in Ecore-GROOVE-Mapping-Library.ClassInstance

A visual representation of IGClass with objects = {ob} and fid(ob) = x can be seen in Figure 5.10b.
Like the previous example for the Ecore instance model, only one node is shown here, but multiple nodes
can be introduced at once if there are more objects in the objects set. As shown in the definition, the
node type identified by Example is used to type all the nodes, in correspondence with Figure 5.1b. The
correctness proof of IGClass is trivial, and therefore not included here. The proof can be found as part
of the Isabelle validated proofs.

In order to make composing transformation functions possible, IGClass should be compatible with the
instance graph it is combined with.

Theorem 5.3.6 (Correctness of combine(IG, IGClass))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGClass (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.6 are met, to ensure the combination of the corresponding type
graphs is valid;

• All the nodes in IGClass have an (internal and explicit) identity that is not yet used in IG.

Also see ig_class_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.ClassInstance

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGClass) is valid in the sense of Definition 3.3.10.

Page 128

The next definitions define the transformation function from ImClass to IGClass:

Definition 5.3.7 (Transformation function fClass)
The transformation function fClass(Im) is defined as:

N = ObjectIm

E = {}

ident =
{︂
(fid(ob), ob) if ob ∈ ObjectIm

with

typen =
{︂
(ob,ns_to_list(name)) if ob ∈ ObjectIm

Also see imod_class_to_ig_class_as_node_type in
Ecore-GROOVE-Mapping-Library.ClassInstance

Theorem 5.3.8 (Correctness of fClass)
fClass(Im) (Definition 5.3.7) is a valid transformation function in the sense of Definition 4.4.26 trans-
forming ImClass into IGClass.

Also see imod_class_to_ig_class_as_node_type_func in
Ecore-GROOVE-Mapping-Library.ClassInstance

The proof of the correctness of fClass will not be included here. Instead, it can be found in the validated
Isabelle theories. The proof is quite trivial, as extending Im can only add extra objects, but not remove
the existing ones.

Finally, to complete the transformation, the transformation function that transforms IGClass into
ImClass is defined:

Definition 5.3.9 (Transformation function f ′
Class)

The transformation function f ′
Class(IG) is defined as:

Object = NIG

ObjectClass =
{︂
(ob, name) if ob ∈ NIG

ObjectId =
{︂
(ob, fid(ob)) if ob ∈ NIG

FieldValue = {}
DefaultValue = {}

Also see ig_class_as_node_type_to_imod_class in
Ecore-GROOVE-Mapping-Library.ClassInstance

Theorem 5.3.10 (Correctness of f ′
Class)

f ′
Class(IG) (Definition 5.3.9) is a valid transformation function in the sense of Definition 4.4.31 trans-

forming IGClass into ImClass.

Also see ig_class_as_node_type_to_imod_class_func in
Ecore-GROOVE-Mapping-Library.ClassInstance

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.2 Abstract classes
In this section, the instance level transformation corresponding to the type level transformation of ab-
stract classes is discussed. The type level transformation of abstract class types can be found in Sec-
tion 5.2.2.

Informally speaking, it is quite weird to think about the transformation of abstract classes on the instance
level, as abstract classes cannot have instances. The transformation here is included for completeness,
to allow for adding abstract types while working with transformations on the type level. In practice, the

Page 129

instance level will consist of the empty instance model and empty instance graph, showing that after
adding an abstract class on the type level, instances of the type model will still be valid.

First, the corresponding instance model is introduced.

Definition 5.3.11 (Instance model ImAbsClass)
Let ImAbsClass be the empty instance model Imϵ (Definition 4.4.9), except that it is typed by the type
model TmAbsClass (Definition 5.2.11).

Also see imod_abstract_class in Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Theorem 5.3.12 (Correctness of ImAbsClass)
ImAbsClass (Definition 5.3.11) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_abstract_class_correct in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Since ImAbsClass does not define any objects, there is no need for a visual representation. However, in
order to make composing transformation functions possible, ImAbsClass should still be compatible with
the instance model it is combined with.

Theorem 5.3.13 (Correctness of combine(Im, ImAbsClass))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImAbsClass (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.13 are met, to ensure the combination of the corresponding type
models is valid.

Also see imod_abstract_class_combine_correct in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImAbsClass) is consistent in the sense of Definition 3.2.19.

The definitions and theorems for the Ecore instance model corresponding to TmAbsClass are now com-
plete.

The node type encoding

As has been shown earlier, an possible encoding for abstract class types is by introducing an abstract
node type. This has been done in TGAbsClass. Like the Ecore instance model, the GROOVE instance
graph is also empty, because abstract node types cannot be instantiated. This gives rise to IGAbsClass,
which is defined as follows:

Definition 5.3.14 (Instance graph IGAbsClass)
Let IGAbsClass be the empty instance graph IGϵ (Definition 4.4.20), except that it is typed by the type
graph TGAbsClass (Definition 5.2.14).

Also see ig_abstract_class_as_node_type in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Theorem 5.3.15 (Correctness of IGAbsClass)
IGAbsClass (Definition 5.3.14) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_abstract_class_as_node_type_correct in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

In order to make composing transformation functions possible, IGAbsClass should be compatible with
the instance graph it is combined with.

Theorem 5.3.16 (Correctness of combine(IG, IGAbsClass))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGAbsClass (in the sense of Definition 4.4.25) if:

Page 130

x :NewType

(a) ImSubclass with one object identified as x

x : NewType

(b) IGSubclass with one node identified as x

Figure 5.11: Visualisation of the transformation of objects typed by a subclass

• All requirements of Theorem 5.2.16 are met, to ensure the combination of the corresponding type
graphs is valid.

Also see ig_abstract_class_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGAbsClass) is valid in the sense of Definition 3.3.10.

The next definitions define the transformation function from ImAbsClass to IGAbsClass:

Definition 5.3.17 (Transformation function fAbsClass)
The transformation function fAbsClass(Im) is defined as the function that always outputs the empty
instance graph IGϵ (Definition 4.4.20), except that it is typed by TGAbsClass.

Also see imod_abstract_class_to_ig_abstract_class_as_node_type in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Theorem 5.3.18 (Correctness of fAbsClass)
fAbsClass(Im) (Definition 5.3.17) is a valid transformation function in the sense of Definition 4.4.26
transforming ImAbsClass into IGAbsClass.

Also see imod_abstract_class_to_ig_abstract_class_as_node_type_func in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

The proof of the correctness of fAbsClass will not be included here. Instead, it can be found in the
validated Isabelle theories. Obviously, the proof is trivial, as the function does not do any conversion. It
does just output the empty instance model.

Finally, to complete the transformation, the transformation function that transforms IGAbsClass into
ImAbsClass is defined:

Definition 5.3.19 (Transformation function f ′
AbsClass)

The transformation function f ′
AbsClass(IG) is defined as the function that always outputs the empty

instance model Imϵ (Definition 4.4.9), except that it is typed by TmAbsClass.

Also see ig_abstract_class_as_node_type_to_imod_abstract_class in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Theorem 5.3.20 (Correctness of f ′
AbsClass)

f ′
AbsClass(IG) (Definition 5.3.19) is a valid transformation function in the sense of Definition 4.4.31

transforming IGAbsClass into ImAbsClass.

Also see ig_abstract_class_as_node_type_to_imod_abstract_class_func in
Ecore-GROOVE-Mapping-Library.AbstractClassInstance

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.3 Plain objects typed by a subclass
In this section, the transformation of plain objects typed by a regular subclass is discussed. The corre-
sponding type level transformation can be found in Section 5.2.3. This transformation is very similar to
the the transformation of plain objects discussed in Section 5.3.1. Like that transformation, it is possible
to introduce an arbitrary amount of instances of the subclass introduced on the type level. First, the
definition of the corresponding instance model is given.

Page 131

Definition 5.3.21 (Instance model ImSubclass)
Let ImSubclass be the instance model containing a set of objects objects which are all typed by subclass
name, which extends class supertype. Furthermore, an injective function fid is defined which maps every
object in the set to its corresponding identifier. ImSubclass is typed by TmSubclass (Definition 5.2.21)
and is defined as:

Object = objects

ObjectClass =
{︂
(ob, name) if ob ∈ objects

ObjectId =
{︂
(ob, fid(ob)) if ob ∈ objects

FieldValue = {}
DefaultValue = {}

Also see imod_subclass in Ecore-GROOVE-Mapping-Library.SubclassInstance

Theorem 5.3.22 (Correctness of ImSubclass)
ImSubclass (Definition 5.3.21) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_subclass_correct in Ecore-GROOVE-Mapping-Library.SubclassInstance

A visual representation of ImSubclass with objects = {ob} and fid(ob) = x can be seen in Figure 5.11a.
Although this visualisation only shows one object, it is possible to have an arbitrary amount of objects
in ImSubclass, as long as they are all typed by the corresponding class introduced on the type level. In
the visualisation, the identifier .NewType is used for the class, in correspondence with Figure 5.3a The
correctness proof of ImSubclass is trivial, and therefore not included here. The proof can be found as
part of the Isabelle validated proofs.

In order to make composing transformation functions possible, ImSubclass should be compatible with
the instance model it is combined with.

Theorem 5.3.23 (Correctness of combine(Im, ImSubclass))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImSubclass (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.23 are met, to ensure the combination of the corresponding type
models is valid;

• All the objects in ImSubclass have an (internal and explicit) identity that is not yet used in Im;

• Im is not typed by a type model that defines any fields for the supertype class.

Also see imod_subclass_combine_correct in
Ecore-GROOVE-Mapping-Library.SubclassInstance

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImSubclass) is consistent in the sense of Definition 3.2.19.

Please note that in this case, it has been made explicit that the new objects introduced do not have any
fields defined. This is by ensuring the supertype does not define any fields. The new subclass does not
have fields itself, as it cannot have existed in the combined type model.

The definitions and theorems for introducing plain objects of regular subclasses within Ecore are now
complete.

Encoding as nodes

As was the case with plain objects of regular classes, a possible encoding for plain objects of subclasses in
Ecore is using nodes in GROOVE. Each node is typed by the node type that was introduced in TGSubclass,
and copies the identifiers set of the objects to the corresponding nodes. The encoding corresponding to
ImSubclass can then be represented as IGSubclass, defined in the following definition:

Definition 5.3.24 (Instance graph IGSubclass)
Let IGSubclass be the instance graph with as nodes the converted objects of ImSubclass (Definition 5.3.21).
Furthermore, reuse the injective function fid that maps every object to its identifier. Finally, use the

Page 132

node type name introduced in TGSubclass, that extends the supertype node type. (Definition 5.2.4).
IGSubclass is defined typed by TGSubclass and is defined as:

N = objects

E = {}

ident =
{︂
(fid(ob), ob) if ob ∈ objects

with

typen =
{︂
(ob,ns_to_list(name)) if ob ∈ objects

Also see ig_subclass_as_node_type in Ecore-GROOVE-Mapping-Library.SubclassInstance

Theorem 5.3.25 (Correctness of IGSubclass)
IGSubclass (Definition 5.3.24) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_subclass_as_node_type_correct in
Ecore-GROOVE-Mapping-Library.SubclassInstance

A visual representation of IGSubclass with objects = {ob} and fid(ob) = x can be seen in Figure 5.11b.
Like the previous example for the Ecore instance model, only one node is shown here, but multiple nodes
can be introduced at once if there are more objects in the objects set. As shown in the definition, the
node type identified by NewType is used to type all the nodes, in correspondence with Figure 5.3b. The
correctness proof of IGSubclass is trivial, and therefore not included here. The proof can be found as
part of the Isabelle validated proofs.

In order to make composing transformation functions possible, IGSubclass should be compatible with the
instance graph it is combined with.

Theorem 5.3.26 (Correctness of combine(IG, IGSubclass))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGSubclass (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.26 are met, to ensure the combination of the corresponding type
graphs is valid;

• All the nodes in IGSubclass have an (internal and explicit) identity that is not yet used in IG;

• There are no edge types from or to the supertype node type, this includes edges from and to types
that supertype inherits from.

Also see ig_subclass_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.SubclassInstance

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGSubclass) is valid in the sense of Definition 3.3.10.

Like the correctness for the Ecore instance model, validity is guaranteed here by assuming there exist no
edge types from and to the supertype node type.

The next definitions define the transformation function from ImSubclass to IGSubclass:

Definition 5.3.27 (Transformation function fSubclass)
The transformation function fSubclass(Im) is defined as:

N = ObjectIm

E = {}

ident =
{︂
(fid(ob), ob) if ob ∈ ObjectIm

with

typen =
{︂
(ob,ns_to_list(name)) if ob ∈ ObjectIm

Also see imod_subclass_to_ig_subclass_as_node_type in
Ecore-GROOVE-Mapping-Library.SubclassInstance

Page 133

ExampleOptionA : Example$OPTION_A

ExampleOptionB : Example$OPTION_B

ExampleOptionC : Example$OPTION_C

(a) IGEnumNodes corresponding to TGEnumNodes

ExampleOptionA : Example
OPTION_A

ExampleOptionB : Example
OPTION_B

ExampleOptionC : Example
OPTION_C

(b) IGEnumFlags corresponding to TGEnumFlags

Figure 5.12: Visualisation of the transformation of enumeration values corresponding to an enumeration
type

Theorem 5.3.28 (Correctness of fSubclass)
fSubclass(Im) (Definition 5.3.27) is a valid transformation function in the sense of Definition 4.4.26
transforming ImSubclass into IGSubclass.

Also see imod_subclass_to_ig_subclass_as_node_type_func in
Ecore-GROOVE-Mapping-Library.SubclassInstance

The proof of the correctness of fSubclass will not be included here. Instead, it can be found in the
validated Isabelle theories. The proof is quite trivial, as extending Im can only add extra objects, but
not remove the existing ones.

Finally, to complete the transformation, the transformation function that transforms IGSubclass into
ImSubclass is defined:

Definition 5.3.29 (Transformation function f ′
Subclass)

The transformation function f ′
Subclass(IG) is defined as:

Object = NIG

ObjectClass =
{︂
(ob, name) if ob ∈ NIG

ObjectId =
{︂
(ob, fid(ob)) if ob ∈ NIG

FieldValue = {}
DefaultValue = {}

Also see ig_subclass_as_node_type_to_imod_subclass in
Ecore-GROOVE-Mapping-Library.SubclassInstance

Theorem 5.3.30 (Correctness of f ′
Subclass)

f ′
Subclass(IG) (Definition 5.3.29) is a valid transformation function in the sense of Definition 4.4.31

transforming IGSubclass into ImSubclass.

Also see ig_subclass_as_node_type_to_imod_subclass_func in
Ecore-GROOVE-Mapping-Library.SubclassInstance

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.4 Enumeration values
This section defines the transformation of enumeration values belonging to an enumeration type on the
type level. The corresponding type level transformation can be found in Section 5.2.4. This transforma-
tion introduces new nodes in an instance graph that correspond to the values of an enumeration type.
Within an instance model, nothing new needs to be introduced, and there the empty instance model is
used once more.

First, the instance model corresponding to TmEnum is defined.

Definition 5.3.31 (Instance model ImEnum)
Let ImEnum be the empty instance model Imϵ (Definition 4.4.9), except that it is typed by the type model
TmEnum (Definition 5.2.31).

Page 134

Also see imod_enum in Ecore-GROOVE-Mapping-Library.EnumInstance

Theorem 5.3.32 (Correctness of ImEnum)
ImEnum (Definition 5.3.31) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_enum_correct in Ecore-GROOVE-Mapping-Library.EnumInstance

Since the instance model corresponding to the transformation of enumeration values does not define any
objects, there is no visual representation needed. Moreover, the correctness proof of ImEnum is trivial,
and therefore not included here. The proof can be found as part of the Isabelle validated proofs.

In order to make composing transformation functions possible, ImEnum should be compatible with the
instance model it is combined with.

Theorem 5.3.33 (Correctness of combine(Im, ImEnum))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImEnum (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.33 are met, to ensure the combination of the corresponding type
models is valid.

Also see imod_enum_combine_correct in Ecore-GROOVE-Mapping-Library.EnumInstance

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImEnum) is consistent in the sense of Definition 3.2.19.

Please note that this combination is trivial, as the instance model is empty. However, on the instance
graph level, more complex definitions are used.

The definitions and theorems for introducing plain objects of regular classes within Ecore are now com-
plete.

Encoding of node type values as nodes

Section Section 5.2.4 has shown two possible encodings of an enumeration type in GROOVE. Both
encodings require a different definition on the instance level. In the case that an enumeration type is
encoded as node types, the enumeration values will be nodes typed by these node types, one node for
each value of the enumeration type. This gives rise to an instance graph IGEnumNodes, defined in the
following definition:

Definition 5.3.34 (Instance graph IGEnumNodes)
Let IGEnumNodes be the instance graph corresponding TGEnumNodes (Definition 5.2.34). IGEnumNodes

defines a node for each possible value of the enumeration type encoded by TGEnumNodes. Each of these
nodes is typed by its corresponding node type. Furthermore, the function fob and fib are defined. fob
converts each value of the enumeration type to its internal node identity. fid maps each value of the
enumeration type to an explicit identity. IGEnumNodes is defined typed by TGEnumNodes and is defined
as:

N = {fob(v) | v ∈ values}
E = {}

ident =
{︂
(fid(v), fob(v)) if v ∈ values

with

typen =
{︂
(v,ns_to_list(name)@ ⟨v⟩) if v ∈ values

Also see ig_enum_as_node_types in Ecore-GROOVE-Mapping-Library.EnumInstance

Theorem 5.3.35 (Correctness of IGEnumNodes)
IGEnumNodes (Definition 5.3.34) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_enum_as_node_types_correct in Ecore-GROOVE-Mapping-Library.EnumInstance

Page 135

A visual representation of IGEnumNodes with .Example as identifier for the encoded enumeration type
and OPTION_A, OPTION_B and OPTION_C as its values can be seen in Figure 5.12a. In this repre-
sentation, it can also be seen that each values has its corresponding identifier, with fid(OPTION_A) =
ExampleOptionA, fid(OPTION_B) = ExampleOptionB and fid(OPTION_C) = ExampleOptionC.
Furthermore, the instances shown here correspond to the visual representation shown in Figure 5.4b.
The correctness proof of IGEnumNodes is trivial, and therefore not included here. The proof can be found
as part of the Isabelle validated proofs.

In order to make composing transformation functions possible, IGEnumNodes should be compatible with
the instance graph it is combined with.

Theorem 5.3.36 (Correctness of combine(IG, IGEnumNodes))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGEnumNodes (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.36 are met, to ensure the combination of the corresponding type
graphs is valid;

• All the nodes in IGEnumNodes have an (internal and explicit) identity that is not yet used in IG.

Also see ig_enum_as_node_types_combine_correct in
Ecore-GROOVE-Mapping-Library.EnumInstance

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGEnumNodes) is valid in the sense of Definition 3.3.10.

The next definitions define the transformation function from ImEnum to IGEnumNodes:

Definition 5.3.37 (Transformation function fEnumNodes)
The transformation function fEnumNodes(Im) is defined as:

N = {fob(v) | v ∈ values}
E = {}

ident =
{︂
(fid(v), fob(v)) if v ∈ values

with

typen =
{︂
(v,ns_to_list(name)@ ⟨v⟩) if v ∈ values

Also see imod_enum_to_ig_enum_as_node_types in
Ecore-GROOVE-Mapping-Library.EnumInstance

Theorem 5.3.38 (Correctness of fEnumNodes)
fEnumNodes(Im) (Definition 5.3.37) is a valid transformation function in the sense of Definition 4.4.26
transforming ImEnum into IGEnumNodes.

Also see imod_enum_to_ig_enum_as_node_types_func in
Ecore-GROOVE-Mapping-Library.EnumInstance

The proof of the correctness of fEnumNodes will not be included here. Instead, it can be found in the
validated Isabelle theories. It should be noted that the proof is trivial, as the function has to introduce
all nodes a new nodes. There is nothing to convert from ImEnum.

Finally, to complete the transformation, the transformation function that transforms IGEnumNodes into
ImEnum is defined:

Definition 5.3.39 (Transformation function f ′
EnumNodes)

The transformation function f ′
EnumNodes(IG) is defined as the function that always outputs the empty

instance model Imϵ (Definition 4.4.9), except that it is typed by TmEnum.

Also see ig_enum_as_node_types_to_imod_enum in
Ecore-GROOVE-Mapping-Library.EnumInstance

Theorem 5.3.40 (Correctness of f ′
EnumNodes)

f ′
EnumNodes(IG) (Definition 5.3.39) is a valid transformation function in the sense of Definition 4.4.31

transforming IGEnumNodes into ImEnum.

Page 136

Also see ig_enum_as_node_types_to_imod_enum_func in
Ecore-GROOVE-Mapping-Library.EnumInstance

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

Encoding of flag values as nodes

The previous subsection discussed how to encode the enumeration values when the enumeration type
is encoded as different node types. In this subsection, the transformation of the enumeration values is
discussed in the case that the enumeration type is encoded using flags in GROOVE.

In the case that an enumeration type is encoded using flags for the values, a node is introduced for each
value, all typed by the enumeration node type. Each of the nodes has a single flag, corresponding to the
value the node represents. This gives rise to an instance graph IGEnumFlags, defined in the following
definition:

Definition 5.3.41 (Instance graph IGEnumFlags)
Let IGEnumFlags be the instance graph corresponding TGEnumFlags (Definition 5.2.41). IGEnumFlags

defines a node for each possible value of the enumeration type encoded by TGEnumFlags. Each of these
nodes is typed by the corresponding node type and has one of the flags set, the flag corresponding to the
value the node represents. Furthermore, the function fob and fib are defined. fob converts each value
of the enumeration type to its internal node identity. fid maps each value of the enumeration type to an
explicit identity. IGEnumFlags is defined typed by TGEnumFlags and is defined as:

N = {fob(v) | v ∈ values}

E =
{︂(︂

fob(v), (ns_to_list(name), ⟨v⟩,ns_to_list(name)), fob(v)
)︂
| v ∈ values

}︂
ident =

{︂
(fid(v), fob(v)) if v ∈ values

with

typen =
{︂
(v,ns_to_list(name)) if v ∈ values

Also see ig_enum_as_flags in Ecore-GROOVE-Mapping-Library.EnumInstance

Theorem 5.3.42 (Correctness of IGEnumFlags)
IGEnumFlags (Definition 5.3.41) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_enum_as_flags_correct in Ecore-GROOVE-Mapping-Library.EnumInstance

A visual representation of IGEnumFlags with .Example as identifier for the encoded enumeration type
and OPTION_A, OPTION_B and OPTION_C as its values can be seen in Figure 5.12b. In this repre-
sentation, it can also be seen that each values has its corresponding identifier, with fid(OPTION_A) =
ExampleOptionA, fid(OPTION_B) = ExampleOptionB and fid(OPTION_C) = ExampleOptionC.
Furthermore, the instances shown here correspond to the visual representation shown in Figure 5.4c.
The correctness proof of IGEnumFlags is trivial, and therefore not included here. The proof can be found
as part of the Isabelle validated proofs.

In order to make composing transformation functions possible, IGEnumFlags should be compatible with
the instance graph it is combined with.

Theorem 5.3.43 (Correctness of combine(IG, IGEnumFlags))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGEnumFlags (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.43 are met, to ensure the combination of the corresponding type
graphs is valid;

• All the nodes in IGEnumFlags have an (internal and explicit) identity that is not yet used in IG.

Also see ig_enum_as_flags_combine_correct in Ecore-GROOVE-Mapping-Library.EnumInstance

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGEnumFlags) is valid in the sense of Definition 3.3.10.

Page 137

The next definitions define the transformation function from ImEnum to IGEnumFlags:

Definition 5.3.44 (Transformation function fEnumFlags)
The transformation function fEnumFlags(Im) is defined as:

N = {fob(v) | v ∈ values}

E =
{︂(︂

fob(v), (ns_to_list(name), ⟨v⟩,ns_to_list(name)), fob(v)
)︂
| v ∈ values

}︂
ident =

{︂
(fid(v), fob(v)) if v ∈ values

with

typen =
{︂
(v,ns_to_list(name)) if v ∈ values

Also see imod_enum_to_ig_enum_as_flags in Ecore-GROOVE-Mapping-Library.EnumInstance

Theorem 5.3.45 (Correctness of fEnumFlags)
fEnumFlags(Im) (Definition 5.3.44) is a valid transformation function in the sense of Definition 4.4.26
transforming ImEnum into IGEnumFlags.

Also see imod_enum_to_ig_enum_as_flags_func in
Ecore-GROOVE-Mapping-Library.EnumInstance

The proof of the correctness of fEnumFlags will not be included here. Instead, it can be found in the
validated Isabelle theories. It should be noted that the proof is trivial, as the function has to introduce
all nodes a new nodes. There is nothing to convert from ImEnum.

Finally, to complete the transformation, the transformation function that transforms IGEnumFlags into
ImEnum is defined:

Definition 5.3.46 (Transformation function f ′
EnumFlags)

The transformation function f ′
EnumFlags(IG) is defined as the function that always outputs the empty

instance model Imϵ (Definition 4.4.9), except that it is typed by TmEnum.

Also see ig_enum_as_flags_to_imod_enum in Ecore-GROOVE-Mapping-Library.EnumInstance

Theorem 5.3.47 (Correctness of f ′
EnumFlags)

f ′
EnumFlags(IG) (Definition 5.3.46) is a valid transformation function in the sense of Definition 4.4.31

transforming IGEnumFlags into ImEnum.

Also see ig_enum_as_flags_to_imod_enum_func in
Ecore-GROOVE-Mapping-Library.EnumInstance

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.5 User-defined data types
In this section, the instance level transformation corresponding to the type level transformation of user-
defined data types is discussed. The type level transformation of user-defined data types can be found
in Section 5.2.5.

This definition does not actually introduce values for user-defined data types. This is done upon instan-
tiating the type via a field. Therefore, an empty instance model and empty instance graph will be used
for completeness.

First, the corresponding instance model is introduced.

Definition 5.3.48 (Instance model ImUserType)
Let ImUserType be the empty instance model Imϵ (Definition 4.4.9), except that it is typed by the type
model TmUserType (Definition 5.2.48).

Also see imod_userdatatype in Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Page 138

Theorem 5.3.49 (Correctness of ImUserType)
ImUserType (Definition 5.3.48) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_userdatatype_correct in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Since ImUserType does not define any objects, there is no need for a visual representation. However, in
order to make composing transformation functions possible, ImUserType should still be compatible with
the instance model it is combined with.

Theorem 5.3.50 (Correctness of combine(Im, ImUserType))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImUserType (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.50 are met, to ensure the combination of the corresponding type
models is valid.

Also see imod_userdatatype_combine_correct in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImUserType) is consistent in the sense of Definition 3.2.19.

The definitions and theorems for the Ecore instance model corresponding to TmUserType are now com-
plete.

The node type encoding

As has been shown earlier, an possible encoding for user-defined data types is by introducing a node
type. This has been done in TGUserType. Like the Ecore instance model, the GROOVE instance graph
is also empty, because the values for the type are not instantiated now. This gives rise to IGUserType,
which is defined as follows:

Definition 5.3.51 (Instance graph IGUserType)
Let IGUserType be the empty instance graph IGϵ (Definition 4.4.20), except that it is typed by the type
graph TGUserType (Definition 5.2.51).

Also see ig_userdatatype_as_node_type in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Theorem 5.3.52 (Correctness of IGUserType)
IGUserType (Definition 5.3.51) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_userdatatype_as_node_type_correct in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

In order to make composing transformation functions possible, IGUserType should be compatible with
the instance graph it is combined with.

Theorem 5.3.53 (Correctness of combine(IG, IGUserType))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGUserType (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.53 are met, to ensure the combination of the corresponding type
graphs is valid.

Also see ig_userdatatype_as_node_type_combine_correct in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGUserType) is valid in the sense of Definition 3.3.10.

The next definitions define the transformation function from ImUserType to IGUserType:

Page 139

someId :Example

field = "some value"

(a) ImDataField with one object and string value
“some value”

someId : Example
field = "some value"

(b) IGDataField with one node and string value
“some value”

Figure 5.13: Visualisation of the transformation of field values from fields typed by data types

Definition 5.3.54 (Transformation function fUserType)
The transformation function fUserType(Im) is defined as the function that always outputs the empty
instance graph IGϵ (Definition 4.4.20), except that it is typed by TGUserType.

Also see imod_userdatatype_to_ig_userdatatype_as_node_type in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Theorem 5.3.55 (Correctness of fUserType)
fUserType(Im) (Definition 5.3.54) is a valid transformation function in the sense of Definition 4.4.26
transforming ImUserType into IGUserType.

Also see imod_userdatatype_to_ig_userdatatype_as_node_type_func in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

The proof of the correctness of fUserType will not be included here. Instead, it can be found in the
validated Isabelle theories. Obviously, the proof is trivial, as the function does not do any conversion. It
does just output the empty instance model.

Finally, to complete the transformation, the transformation function that transforms IGUserType into
ImUserType is defined:

Definition 5.3.56 (Transformation function f ′
UserType)

The transformation function f ′
UserType(IG) is defined as the function that always outputs the empty

instance model Imϵ (Definition 4.4.9), except that it is typed by TmUserType.

Also see ig_userdatatype_as_node_type_to_imod_userdatatype in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Theorem 5.3.57 (Correctness of f ′
UserType)

f ′
UserType(IG) (Definition 5.3.56) is a valid transformation function in the sense of Definition 4.4.31

transforming IGUserType into ImUserType.

Also see ig_userdatatype_as_node_type_to_imod_userdatatype_func in
Ecore-GROOVE-Mapping-Library.UserDataTypeInstance

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.6 Data field values
The previous sections have shown the instance level transformations of the introduction of all kinds of
types and their instances. From this section onward, these types and their instances will be enriched by
introducing fields. In this section, the instance level transformation belonging to the transformation of
a data field is discussed. The type level transformation for data fields can be found in Section 5.2.6. On
the instance level, values for the data fields are introduced.

Definition 5.3.58 (Instance model ImDataField)
Let ImDataField be an instance model typed by TmDataField (Definition 5.2.58). Define a set objects,
which represent the objects that will get a value for the field introduced by TmDataField. Furthermore,
define a function obids which maps each of these objects to their corresponding identifier and a function
values, which maps each of these objects to its value for the field introduced by TmDataField. ImDataField

Page 140

is defined as:

Object = objects

ObjectClass =
{︂
(ob, classtype) if ob ∈ objects

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ objects

FieldValue =
{︂
((ob, (classtype, name)), values(ob)) if ob ∈ objects

DefaultValue = {}

Also see imod_data_field in Ecore-GROOVE-Mapping-Library.DataFieldValue

Theorem 5.3.59 (Correctness of ImDataField)
ImDataField (Definition 5.3.58) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_data_field_correct in Ecore-GROOVE-Mapping-Library.DataFieldValue

A visual representation of ImDataField with objects = {ob} and obids(ob) = someId can be seen in
Figure 5.13a. In this visualisation, the field value for ob is defined as values(ob) = “some value”. Although
this visualisation only shows one object, it is required to define a value for all objects that contain the
field. Failing to do so would result in an invalid instance model after it is combined with another model,
as the next definition will show. The correctness proof of ImDataField only is already quite involved, but
not be included here for conciseness. It can be found as part of the validated Isabelle proofs.

In order to make composing transformation functions possible, ImDataField should be compatible with
the instance model it is combined with.

Theorem 5.3.60 (Correctness of combine(Im, ImDataField))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImDataField (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.60 are met, to ensure the combination of the corresponding type
models is valid;

• The class type on which the field is defined by TmDataField may not be extended by another class
type in the type model corresponding to Im;

• All of the objects in the set objects must already be objects in Im;

• All objects typed by the class type on which the field is defined must occur in the set objects and
thus have a value in ImDataField;

• For all of the objects in the set objects, the identifier set by obids must be the same identifier as
set by Im for that object;

• For all objects in set objects, the value set by the values function must be valid.

Also see imod_data_field_combine_correct in
Ecore-GROOVE-Mapping-Library.DataFieldValue

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImDataField) is consistent in the sense of Definition 3.2.19.

As explained earlier, ImDataField needs to introduce values for all objects that are typed by the class
type on which the field is defined. This is enforced by the requirements of Theorem 5.3.60. The proof is
not included here for conciseness, but can be found as part of the validated proofs in Isabelle.

The definitions and theorems for introducing values for fields of data types within Ecore are now com-
plete.

Encoding as edges and nodes

In the type level transformation of data fields, data fields were encoded in GROOVE as edge types to
an primitive type. On the instance level, this edge type will be used and edges will be created to give a
value to each node type that has the field defined. The encoding corresponding to ImDataField can then
be represented as IGDataField, defined in the following definition:

Page 141

Definition 5.3.61 (Instance graph IGDataField)
Let IGDataField be the instance graph typed by type graph TGDataField (Definition 5.2.61). Reuse the
set objects from ImDataField. Moreover, reuse the functions obids and values from ImDataField. The
objects in the set objects are converted to nodes in ImDataField. For each of these objects, an edge of
the encoded field is created. This edge targets a node that corresponds to the value set by values for the
corresponding object. Finally, the identity of the objects is defined using obids. IGDataField is defined
as:

N = objects ∪ {values(ob) | ob ∈ objects}
E =

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩, fieldtype), values(ob)

)︁
| ob ∈ objects

}︁
ident =

{︂
(obids(ob), ob) if ob ∈ objects

with

typen =
{︂
(ob,ns_to_list(classtype)) if ob ∈ objects

Also see ig_data_field_as_edge_type in Ecore-GROOVE-Mapping-Library.DataFieldValue

Theorem 5.3.62 (Correctness of IGDataField)
IGDataField (Definition 5.3.61) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_data_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.DataFieldValue

A visual representation of IGDataField with objects = {ob} and obids(ob) = someId can be seen in
Figure 5.13b. Like the previous visualisation, the field value for ob is defined as values(ob) = “some value”.
Although this visualisation only shows one node, it is required to define a value for all nodes typed by
the node type corresponding to the field. Failing to do so would result in an invalid instance graph after
it is combined with another graph, as the next definition will show. The correctness proof of IGDataField

only is already quite involved, but not be included here for conciseness. It can be found as part of the
validated Isabelle proofs.

In order to make composing transformation functions possible, IGDataField should be compatible with
the instance graph it is combined with.

Theorem 5.3.63 (Correctness of combine(IG, IGDataField))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGDataField (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.63 are met, to ensure the combination of the corresponding type
graphs is valid;

• The node type on which the corresponding field is defined is not extended by other node types within
the type graph corresponding to IG;

• All nodes in IG that are typed by the node type on which the field is defined are also nodes in
IGDataField;

• For all nodes shared between IG and IGDataField, each node must have the same identifier in both
IG and IGDataField;

• For all nodes for which the field is set, the values function must define a valid value;

• If an primitive type has incoming or outgoing edge types in the type graph corresponding to IG,
then the lower multiplicity of these edge types must be 0.

Also see ig_data_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.DataFieldValue

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGDataField) is valid in the sense of Definition 3.3.10.

Like the definition for the combination of instance models, the combination of instance graphs also
requires the user to set a value for all nodes that are typed by the node type that corresponds to the
field type. This is to keep the graph valid.

The next definitions define the transformation function from ImDataField to IGDataField:

Page 142

Definition 5.3.64 (Transformation function fDataField)
The transformation function fDataField(Im) is defined as:

N = ObjectIm ∪ {values(ob) | ob ∈ ObjectIm}
E =

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩, fieldtype), values(ob)

)︁
| ob ∈ ObjectIm

}︁
ident =

{︂
(obids(ob), ob) if ob ∈ ObjectIm

with

typen =
{︂
(ob,ns_to_list(name)) if ob ∈ ObjectIm

Also see imod_data_field_to_ig_data_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.DataFieldValue

Theorem 5.3.65 (Correctness of fDataField)
fDataField(Im) (Definition 5.3.64) is a valid transformation function in the sense of Definition 4.4.26
transforming ImDataField into IGDataField.

Also see imod_data_field_to_ig_data_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.DataFieldValue

The proof of the correctness of fDataField will not be included here. Instead, it can be found in the
validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms IGDataField into
ImDataField is defined:

Definition 5.3.66 (Transformation function f ′
DataField)

The transformation function f ′
DataField(IG) is defined as:

Object = {src(e) | e ∈ EIG}

ObjectClass =
{︂
(ob, classtype) if ob ∈ {src(e) | e ∈ EIG}

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ {src(e) | e ∈ EIG}

FieldValue =
{︂
((ob, (classtype, name)), values(ob)) if ob ∈ {src(e) | e ∈ EIG}

DefaultValue = {}

Also see ig_data_field_as_edge_type_to_imod_data_field in
Ecore-GROOVE-Mapping-Library.DataFieldValue

Theorem 5.3.67 (Correctness of f ′
DataField)

f ′
DataField(IG) (Definition 5.3.66) is a valid transformation function in the sense of Definition 4.4.31

transforming IGDataField into ImDataField.

Also see ig_data_field_as_edge_type_to_imod_data_field_func in
Ecore-GROOVE-Mapping-Library.DataFieldValue

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.7 Enumeration field values
In this section, the instance level transformation belonging to the transformation of an enumeration field
is discussed. The type level transformation for enumeration fields can be found in Section 5.2.7. On the
instance level, values for the enumeration fields are introduced.

Definition 5.3.68 (Instance model ImEnumField)
Let ImEnumField be an instance model typed by TmEnumField (Definition 5.2.68). Define a set objects,
which represent the objects that will get a value for the field introduced by TmEnumField. Furthermore,
define a function obids which maps each of these objects to their corresponding identifier and a func-
tion values, which maps each of these objects to its value for the field introduced by TmEnumField.

Page 143

someId :Example

field = OPTION_B

(a) ImEnumField with one object and its field referencing enumeration option OPTION_B

someId : Example
ExistingEnumOptionA : ExistingEnum$OPTION_A

ExistingEnumOptionB : ExistingEnum$OPTION_B

ExistingEnumOptionC : ExistingEnum$OPTION_C

field

(b) IGEnumFieldNodes with one node and and its edge referencing enumeration option OPTION_B

someId : Example
ExistingEnumOptionA : ExistingEnum

OPTION_A

ExistingEnumOptionB : ExistingEnum
OPTION_B

ExistingEnumOptionC : ExistingEnum
OPTION_C

field

(c) IGEnumFieldF lags with one node and its edge referencing enumeration option OPTION_B

Figure 5.14: Visualisation of the transformation of field values from fields typed by enumeration types

ImEnumField is defined as:

Object = objects

ObjectClass =
{︂
(ob, classtype) if ob ∈ objects

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ objects

FieldValue =
{︂(︂

(ob, (classtype, name)),
[︁
enum, (enumid, values(ob))

]︁)︂
if ob ∈ objects

DefaultValue = {}

Also see imod_enum_field in Ecore-GROOVE-Mapping-Library.EnumFieldValue

Theorem 5.3.69 (Correctness of ImEnumField)
ImEnumField (Definition 5.3.68) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_enum_field_correct in Ecore-GROOVE-Mapping-Library.EnumFieldValue

A visual representation of ImEnumField with objects = {ob} and obids(ob) = someId can be seen in
Figure 5.14a. In this visualisation, the field value for ob is defined as values(ob) = OPTION_B.
Although this visualisation only shows one object, it is required to define a value for all objects that
contain the field. Failing to do so would result in an invalid instance model after it is combined with
another model, as the next definition will show. The correctness proof of ImEnumField only is quite
involved, but not be included here for conciseness. It can be found as part of the validated Isabelle
proofs.

In order to make composing transformation functions possible, ImEnumField should be compatible with
the instance model it is combined with.

Theorem 5.3.70 (Correctness of combine(Im, ImEnumField))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImEnumField (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.70 are met, to ensure the combination of the corresponding type
models is valid;

• The class type on which the field is defined by TmEnumField may not be extended by another class
type in the type model corresponding to Im;

• All of the objects in the set objects must already be objects in Im;

• All objects typed by the class type on which the field is defined must occur in the set objects and
thus have a value in ImEnumField;

Page 144

• For all of the objects in the set objects, the identifier set by obids must be the same identifier as
set by Im for that object;

• For all objects in set objects, the value set by the values function must be valid.

Also see imod_enum_field_combine_correct in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImEnumField) is consistent in the sense of Definition 3.2.19.

As explained earlier, ImEnumField needs to introduce values for all objects that are typed by the class
type on which the field is defined. This is enforced by the requirements of Theorem 5.3.70. The proof is
not included here for conciseness, but can be found as part of the validated proofs in Isabelle.

The definitions and theorems for introducing values for fields of data types within Ecore are now com-
plete.

Encoding as edges and nodes with a node type encoded enumeration type

As discussed in Section 5.2.7, there are two different encodings for a field typed by an enumeration
type. These correspond to the two different encodings of the enumeration type itself. On the instance
level, these encodings also need to be distinguished. The first encoding of the values assumes that
the enumeration is encoded using node types. The encoding corresponding to ImEnumField is then
represented as IGEnumFieldNodes, defined in the following definition:

Definition 5.3.71 (Instance graph IGEnumFieldNodes)
Let IGEnumFieldNodes be the instance graph typed by type graph TGEnumFieldNodes (Definition 5.2.71).
Reuse the set objects from ImEnumField. Moreover, reuse the functions obids and values from ImEnumField.
Furthermore, define enumob to be the function that maps an enumeration value to an internal node iden-
tity. Similarly, define enumids as the function that maps an enumeration value to its explicit node id.

Within IGEnumFieldNodes, the objects in the set objects are converted to nodes in ImEnumField. For
each of these objects, an edge of the encoded field is created. This edge targets a node that corresponds to
the value set by values for the corresponding object. Furthermore, the identity of the objects is defined
using obids. Finally, ensure that the instances of the enumeration values exist and encode them in the
same way as IGEnumNodes (Definition 5.3.34). IGEnumFieldNodes is defined as:

N = objects ∪ {enumob(v) | v ∈ enumvalues}
E =

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid)), enumob(values(ob))

)︁
| ob ∈ objects

}︁
ident =

{︄
(obids(ob), ob) if ob ∈ objects

(enumids(v), enumob(v)) if v ∈ enumvalues

with

typen =

{︄
(ob,ns_to_list(classtype)) if ob ∈ objects

(enumob(v),ns_to_list(enumid)@ ⟨v⟩) if v ∈ enumvalues

Also see ig_enum_as_node_types_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Theorem 5.3.72 (Correctness of IGEnumFieldNodes)
IGEnumFieldNodes (Definition 5.3.71) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_enum_as_node_types_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

A visual representation of IGEnumFieldNodes with objects = {ob} and obids(ob) = someId can be
seen in Figure 5.14b. Like the previous visualisation, the field value for ob is defined as values(ob) =
OPTION_B. Although this visualisation only shows one node, it is required to define a value for all
nodes that are typed by the node type corresponding to the field. Failing to do so would result in an
invalid instance graph after it is combined with another graph, as the next definition will show. The
correctness proof of IGEnumFieldNodes only is quite involved, but not be included here for conciseness.
It can be found as part of the validated Isabelle proofs.

In order to make composing transformation functions possible, IGEnumFieldNodes should be compatible
with the instance graph it is combined with.

Page 145

Theorem 5.3.73 (Correctness of combine(IG, IGEnumFieldNodes))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGEnumFieldNodes (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.73 are met, to ensure the combination of the corresponding type
graphs is valid;

• The node type on which the corresponding field is defined is not extended by other node types within
the type graph corresponding to IG;

• All nodes in IG that are typed by the node type on which the field is defined are also nodes in
IGEnumFieldNodes;

• All nodes in IGEnumFieldNodes that encode the values of the corresponding enumeration type are
also nodes in IG;

• For all nodes shared between IG and IGEnumFieldNodes, each node must have the same identifier
in both IG and IGEnumFieldNodes;

• For all nodes for which the field is set, the values function must define a valid value.

Also see ig_enum_as_node_types_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGEnumFieldNodes) is valid in the sense of Definition 3.3.10.

Like the definition for the combination of instance models, the combination of instance graphs also
requires the user to set a value for all nodes that are typed by the node type that corresponds to the
field type. This is to keep the graph valid.

The next definitions define the transformation function from ImEnumField to IGEnumFieldNodes:

Definition 5.3.74 (Transformation function fEnumFieldNodes)
The transformation function fEnumFieldNodes(Im) is defined as:

N = ObjectIm ∪ {enumob(ob) | v ∈ enumvalues}
E =

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid)), enumob(values(ob))

)︁
|

ob ∈ ObjectIm
}︁

ident =

{︄
(obids(ob), ob) if ob ∈ ObjectIm

(enumids(v), enumob(v)) if v ∈ enumvalues

with

typen =

{︄
(ob,ns_to_list(classtype)) if ob ∈ ObjectIm

(enumob(v),ns_to_list(enumid)@ ⟨v⟩) if v ∈ enumvalues

Also see imod_enum_field_to_ig_enum_as_node_types_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Theorem 5.3.75 (Correctness of fEnumFieldNodes)
fEnumFieldNodes(Im) (Definition 5.3.74) is a valid transformation function in the sense of Definition 4.4.26
transforming ImEnumField into IGEnumFieldNodes.

Also see imod_enum_field_to_ig_enum_as_node_types_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

The proof of the correctness of fEnumFieldNodes will not be included here. Instead, it can be found in
the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms IGEnumFieldNodes

into ImEnumField is defined:

Page 146

Definition 5.3.76 (Transformation function f ′
EnumFieldNodes)

The transformation function f ′
EnumFieldNodes(IG) is defined as:

Object = {src(e) | e ∈ EIG}

ObjectClass =
{︂
(ob, name) if ob ∈ {src(e) | e ∈ EIG}

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ {src(e) | e ∈ EIG}

FieldValue =
{︂(︂

(ob, (classtype, name)),
(︁
enum, (enumid, values(ob))

)︁)︂
if ob ∈ {src(e) | e ∈ EIG}

DefaultValue = {}

Also see ig_enum_as_node_types_field_as_edge_type_to_imod_enum_field in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Theorem 5.3.77 (Correctness of f ′
EnumFieldNodes)

f ′
EnumFieldNodes(IG) (Definition 5.3.76) is a valid transformation function in the sense of Definition 4.4.31

transforming IGEnumFieldNodes into ImEnumField.

Also see ig_enum_as_node_types_field_as_edge_type_to_imod_enum_field_func in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

Encoding as edges and nodes with a flag encoded enumeration type

The second possible encoding of the values assumes that the enumeration is encoded using flags. The
encoding corresponding to ImEnumField is then represented as IGEnumFieldF lags, defined in the following
definition:

Definition 5.3.78 (Instance graph IGEnumFieldF lags)
Let IGEnumFieldF lags be the instance graph typed by type graph TGEnumFieldF lags (Definition 5.2.78).
Reuse the set objects from ImEnumField. Moreover, reuse the functions obids and values from ImEnumField.
Furthermore, define enumob to be the function that maps an enumeration value to an internal node iden-
tity. Similarly, define enumids as the function that maps an enumeration value to its explicit node id.

Within IGEnumFieldF lags, the objects in the set objects are converted to nodes in ImEnumField. For each
of these objects, an edge of the encoded field is created. This edge targets a node that corresponds to the
value set by values for the corresponding object. Furthermore, the identity of the objects is defined using
obids. Finally, ensure that the instances of the enumeration values exist and encode them in the same
way as IGEnumFlags (Definition 5.3.41). IGEnumFieldF lags is defined as:

N = objects ∪ {enumob(v) | v ∈ enumvalues}
E =

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid)), enumob(values(ob))

)︁
| ob ∈ objects

}︁
ident =

{︄
(obids(ob), ob) if ob ∈ objects

(enumids(v), enumob(v)) if v ∈ enumvalues

with

typen =

{︄
(ob,ns_to_list(classtype)) if ob ∈ objects

(enumob(v),ns_to_list(enumid)) if v ∈ enumvalues

Also see ig_enum_as_flags_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Theorem 5.3.79 (Correctness of IGEnumFieldF lags)
IGEnumFieldF lags (Definition 5.3.78) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_enum_as_flags_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

A visual representation of IGEnumFieldF lags with objects = {ob} and obids(ob) = someId can be seen
in Figure 5.14c. It does not differ much from the previous encoding, except that the values of the

Page 147

enumeration type are shown as flags on the nodes instead of using seperate types. The formal definition
is therefore very similar, except for the definition of typen. Although this visualisation only shows one
node, it is required to define a value for all nodes that are typed by the node type corresponding to the
field. Failing to do so would, once more, result in an invalid instance graph after it is combined with
another graph. The correctness proof of IGEnumFieldF lags only is quite involved, but not be included
here for conciseness. It can be found as part of the validated Isabelle proofs.

In order to make composing transformation functions possible, IGEnumFieldF lags should be compatible
with the instance graph it is combined with.

Theorem 5.3.80 (Correctness of combine(IG, IGEnumFieldF lags))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGEnumFieldF lags (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.80 are met, to ensure the combination of the corresponding type
graphs is valid;

• The node type on which the corresponding field is defined is not extended by other node types within
the type graph corresponding to IG;

• All nodes in IG that are typed by the node type on which the field is defined are also nodes in
IGEnumFieldF lags;

• All nodes in IGEnumFieldF lags that encode the values of the corresponding enumeration type are
also nodes in IG;

• For all nodes shared between IG and IGEnumFieldF lags, each node must have the same identifier
in both IG and IGEnumFieldF lags;

• For all nodes for which the field is set, the values function must define a valid value.

Also see ig_enum_as_flags_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGEnumFieldF lags) is valid in the sense of Definition 3.3.10.

The next definitions define the transformation function from ImEnumField to IGEnumFieldF lags:

Definition 5.3.81 (Transformation function fEnumFieldF lags)
The transformation function fEnumFieldF lags(Im) is defined as:

N = ObjectIm ∪ {enumob(ob) | v ∈ enumvalues}
E =

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(enumid)), enumob(values(ob))

)︁
|

ob ∈ ObjectIm
}︁

ident =

{︄
(obids(ob), ob) if ob ∈ ObjectIm

(enumids(v), enumob(v)) if v ∈ enumvalues

with

typen =

{︄
(ob,ns_to_list(classtype)) if ob ∈ ObjectIm

(enumob(v),ns_to_list(enumid)) if v ∈ enumvalues

Also see imod_enum_field_to_ig_enum_as_flags_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Theorem 5.3.82 (Correctness of fEnumFieldF lags)
fEnumFieldF lags(Im) (Definition 5.3.81) is a valid transformation function in the sense of Definition 4.4.26
transforming ImEnumField into IGEnumFieldF lags.

Also see imod_enum_field_to_ig_enum_as_flags_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

The proof of the correctness of fEnumFieldF lags will not be included here. Instead, it can be found in
the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms IGEnumFieldF lags

into ImEnumField is defined:

Page 148

a :Example x :TargetExample

y :TargetExample

z :TargetExampleb :Example

field

(a) ImNullableClassField with examples of different nodes with different values for field

a : Example

b : Example

x : TargetExample

y : TargetExample

z : TargetExample

field

(b) IGNullableClassField with examples of different nodes with different values for field

Figure 5.15: Visualisation of the transformation of field values from fields typed by nullable class types

Definition 5.3.83 (Transformation function f ′
EnumFieldF lags)

The transformation function f ′
EnumFieldF lags(IG) is defined as:

Object = {src(e) | e ∈ EIG}

ObjectClass =
{︂
(ob, classtype) if ob ∈ {src(e) | e ∈ EIG}

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ {src(e) | e ∈ EIG}

FieldValue =
{︂(︂

(ob, (classtype, name)),
[︁
enum, (enumid, values(ob))

]︁)︂
if ob ∈ {src(e) | e ∈ EIG}

DefaultValue = {}

Also see ig_enum_as_flags_field_as_edge_type_to_imod_enum_field in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Theorem 5.3.84 (Correctness of f ′
EnumFieldF lags)

f ′
EnumFieldF lags(IG) (Definition 5.3.83) is a valid transformation function in the sense of Definition 4.4.31

transforming IGEnumFieldF lags into ImEnumField.

Also see ig_enum_as_flags_field_as_edge_type_to_imod_enum_field_func in
Ecore-GROOVE-Mapping-Library.EnumFieldValue

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.8 Nullable class field values
This section introduces the instance level transformation belonging to the transformation of a nullable
class field. The type level transformation for nullable class fields can be found in Section 5.2.8. On the
instance level, values for these fields are introduced.

Definition 5.3.85 (Instance model ImNullableClassField)
Let ImNullableClassField be an instance model typed by TmNullableClassField (Definition 5.2.85). Define
disjoint sets valobjects and nilobjects. The objects in valobjects will get a proper class value for the
field introduced by TmNullableClassField, while the objects in nilobjects get a nil value for the same field.
Furthermore, define a function obids which maps each of these objects to their corresponding identifier
and a function values, which maps the objects in valobjects to its value for the field introduced by

Page 149

TmNullableClassField. ImNullableClassField is defined as:

Object = nilobjects ∪ valobjects ∪ {values(ob) | ob ∈ valobjects}

ObjectClass =

{︄
(ob, classtype) if ob ∈ nilobjects ∪ valobjects

(ob, fieldtype) if ob ∈ {values(ob) | ob ∈ valobjects}

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ objects

FieldValue =

{︄
((ob, (classtype, name)), nil) if ob ∈ nilobjects

((ob, (classtype, name)), [obj, values(ob)]) if ob ∈ valobjects

DefaultValue = {}

Also see imod_nullable_class_field in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

Theorem 5.3.86 (Correctness of ImNullableClassField)
ImNullableClassField (Definition 5.3.85) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_nullable_class_field_correct in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

A visual representation of ImNullableClassField with valobjects = {oba} and nilobjects = {obb} can
be seen in Figure 5.15a. In this visualisation, the field value for oba is defined as values(oba) = obx.
Furthermore, the value for obb is nil, because it occurs within the set nilobjects. Like the previous
transformations for field values, the value needs to be set for all objects that are typed by the class type
corresponding to the field. Failing to do so would result in an invalid instance model after it is combined
with another model, as the next definition will show. The correctness proof of ImNullableClassField only is
already quite involved, but not be included here for conciseness. It can be found as part of the validated
Isabelle proofs.

In order to make composing transformation functions possible, ImNullableClassField should be compatible
with the instance model it is combined with.

Theorem 5.3.87 (Correctness of combine(Im, ImNullableClassField))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImNullableClassField (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.87 are met, to ensure the combination of the corresponding type
models is valid;

• The class type on which the field is defined by TmNullableClassField may not be extended by another
class type in the type model corresponding to Im;

• All of the objects in the sets nilobjects and valobjects must already be objects in Im;

• All of the objects referenced by the objects in the set valobjects must already be objects in Im;

• All objects typed by the class type on which the field is defined must occur in the set nilobjects ∪
valobjects and thus have a value in ImNullableClassField;

• For all of the objects in the set objects, the identifier set by obids must be the same identifier as
set by Im for that object;

• The sets valobjects and nilobjects must be disjoint, each object only gets a proper class value or a
nil value, not both;

• For all objects in set valobjects, the value set by the values function must be valid.

Also see imod_nullable_class_field_combine_correct in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImNullableClassField) is consistent in the sense of Definition 3.2.19.

As explained earlier, ImNullableClassField needs to introduce values for all objects that are typed by the
class type on which the field is defined. This is enforced by the requirements of Theorem 5.3.87. The proof
is not included here for conciseness, but can be found as part of the validated proofs in Isabelle.

Page 150

The definitions and theorems for introducing values for fields of data types within Ecore are now com-
plete.

Encoding as edges and nodes

In the type level transformation of nullable class fields, nullable class fields were encoded in GROOVE
as edge types to a corresponding encoded node type. On the instance level, this edge type will be used
and edges will be created to give a value to each node type that has the field defined. The encoding
corresponding to ImNullableClassField can then be represented as IGNullableClassField, defined in the
following definition:

Definition 5.3.88 (Instance graph IGNullableClassField)
Let IGNullableClassField be the instance graph typed by type graph TGNullableClassField (Definition 5.2.88).
Reuse the sets nilobjects and valobjects from ImNullableClassField. Moreover, reuse the functions obids
and values from ImNullableClassField.

The objects in the sets nilobjects and valobjects are converted to nodes in ImNullableClassField. For
each of these objects, an edge of the encoded field is created. This edge targets a node that corresponds
to the value set by values for the corresponding object in valobjects. The outgoing multiplicity of the
edge type created by TGNullableClassField is 0..1, such that the objects in nilobjects do not need to have
this edge, representing the absence of a value. Finally, the identity of the objects is defined using obids.
IGNullableClassField is defined as:

N = nilobjects ∪ valobjects ∪ {values(ob) | ob ∈ valobjects}
E =

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(fieldtype)), values(ob)

)︁
| ob ∈ valobjects

}︁
ident =

{︂
(obids(ob), ob) if ob ∈ objects

with

typen =

{︄
(ob,ns_to_list(classtype)) if ob ∈ nilobjects ∪ valobjects

(ob,ns_to_list(fieldtype)) if ob ∈ {values(ob) | ob ∈ valobjects}

Also see ig_nullable_class_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

Theorem 5.3.89 (Correctness of IGNullableClassField)
IGNullableClassField (Definition 5.3.88) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_nullable_class_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

A visual representation of IGNullableClassField with valobjects = {oba} and nilobjects = {obb} can be
seen in Figure 5.15b. Like the previous visualisation, the field value for oba is defined as values(oba) = obx.
Since obb was in the set nilobjects, no edge has been created for this node. Like the previous field
encodings, one needs to set the values for the field for all objects of the encoded class type at once.
Failing to do so would result in an invalid instance graph after it is combined with another graph, as the
next definition will show. The correctness proof of IGNullableClassField only is already quite involved,
but not be included here for conciseness. It can be found as part of the validated Isabelle proofs.

In order to make composing transformation functions possible, IGNullableClassField should be compatible
with the instance graph it is combined with.

Theorem 5.3.90 (Correctness of combine(IG, IGNullableClassField))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGNullableClassField (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.90 are met, to ensure the combination of the corresponding type
graphs is valid;

• The node type on which the corresponding field is defined is not extended by other node types within
the type graph corresponding to IG;

• All nodes in IG are also nodes in IGNullableClassField;

• For all nodes shared between IG and IGNullableClassField, each node must have the same identifier
in both IG and IGNullableClassField;

Page 151

• The sets valobjects and nilobjects must be disjoint, each node gets either one edge to another node,
or no edge at all;

• For all nodes for which the field is set, the values function must define a valid value.

Also see ig_nullable_class_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGNullableClassField) is valid in the sense of Definition 3.3.10.

The next definitions define the transformation function from ImNullableClassField to IGNullableClassField:

Definition 5.3.91 (Transformation function fNullableClassField)
The transformation function fNullableClassField(Im) is defined as:

N = ObjectIm

E =
{︁(︁

ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(fieldtype)), values(ob)
)︁
|

ob ∈ ObjectIm ∧ ob ∈ valobjects
}︁

ident =
{︂
(obids(ob), ob) if ob ∈ ObjectIm

with

typen =

{︄
(ob,ns_to_list(name)) if ob ∈ ObjectIm ∧ ob ∈ nilobjects ∪ valobjects

(ob,ns_to_list(name)) if ob ∈ ObjectIm ∧ ob ∈ {values(ob) | ob ∈ valobjects}

Also see imod_nullable_class_field_to_ig_nullable_class_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

Theorem 5.3.92 (Correctness of fNullableClassField)
fNullableClassField(Im) (Definition 5.3.91) is a valid transformation function in the sense of Defini-
tion 4.4.26 transforming ImNullableClassField into IGNullableClassField.

Also see imod_nullable_class_field_to_ig_nullable_class_field_as_edge_type_func in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

The proof of the correctness of fNullableClassField will not be included here. Instead, it can be found in
the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms IGNullableClassField

into ImNullableClassField is defined:

Definition 5.3.93 (Transformation function f ′
NullableClassField)

The transformation function f ′
NullableClassField(IG) is defined as:

Object = NIG

ObjectClass =

{︄
(ob, classtype) if ob ∈ NIG ∧ ob ∈ nilobjects ∪ valobjects

(ob, fieldtype) if ob ∈ NIG ∧ ob ∈ {values(ob) | ob ∈ valobjects}

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ NIG

FieldValue =

{︄
((ob, (classtype, name)), nil) if ob ∈ NIG ∧ ob ∈ nilobjects

((ob, (classtype, name)), [obj, values(ob)]) if ob ∈ NIG ∧ ob ∈ valobjects

DefaultValue = {}

Also see ig_nullable_class_field_as_edge_type_to_imod_nullable_class_field in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

Theorem 5.3.94 (Correctness of f ′
NullableClassField)

f ′
NullableClassField(IG) (Definition 5.3.93) is a valid transformation function in the sense of Defini-

tion 4.4.31 transforming IGNullableClassField into ImNullableClassField.

Also see ig_nullable_class_field_as_edge_type_to_imod_nullable_class_field_func in
Ecore-GROOVE-Mapping-Library.NullableClassFieldValue

Page 152

a :Example

b :Example

c :Example

x :TargetExample

y :TargetExample

z :TargetExample

field

field

field

(a) ImContainedClassSetField with examples of different nodes with different values for field

a : Example

b : Example

x : TargetExample

y : TargetExample

z : TargetExample
c : Example

field

field
field

(b) IGContainedClassSetField with examples of different nodes with different values for field

Figure 5.16: Visualisation of the transformation of field values from containment fields typed by a set of
a proper class type

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

5.3.9 Contained class set field values
This section introduces the instance level transformation belonging to the transformation of a contain-
ment field of a set of a proper class type. The type level transformation belonging to these fields can be
found in Section 5.2.9. On the instance level, values for these fields are introduced.

Definition 5.3.95 (Instance model ImContainedClassSetF ield)
Let ImContainedClassSetF ield be an instance model typed by TmContainedClassSetF ield (Definition 5.2.95).
Define a set objects, which represent the objects that will get a value for the field introduced by TmDataField.
Furthermore, define a function obids which maps each of these objects to their corresponding identifier and
a function values, which maps each of these objects to its value for the field introduced by TmDataField.
Please note that values returns a set of objects, as the field allows for this. ImDataField is defined as:

Object = objects ∪
(︃ ⋃︂

ob∈objects

values(ob)

)︃

ObjectClass =

{︄
(ob, classtype) if ob ∈ objects

(ob, containedtype) if ob ∈
⋃︁

ob∈objects values(ob)

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ objects

FieldValue =
{︂(︂

(ob, (classtype, name)),
[︁
setof, ⟨[obj, ob] | ob ∈ values(ob)⟩

]︁)︂
if ob ∈ objects

DefaultValue = {}

Also see imod_contained_class_set_field in
Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

Theorem 5.3.96 (Correctness of ImContainedClassSetF ield)
ImContainedClassSetF ield (Definition 5.3.95) is a valid instance model in the sense of Definition 3.2.19.

Also see imod_contained_class_set_field_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

A visual representation of ImContainedClassSetF ield with objects = {oba, obb, obc} can be seen in Fig-
ure 5.16a. This example is typed by TmContainedClassSetF ield in Figure 5.9a. In this visualisation, the field
value for oba is defined as values(oba) = {obx}. Furthermore, the value for obb is values(oba) = {oby, obz}.

Page 153

Finally, the value for obc is values(obc) = {}, which is allowed because the lower bound of the multiplicity
is set 0 by the example. Like the previous transformations for field values, the value needs to be set for
all objects that are typed by the class type corresponding to the field. Failing to do so would result in
an invalid instance model after it is combined with another model, as the next definition will show. The
correctness proof of ImContainedClassSetF ield only is already quite involved, but not be included here for
conciseness. It can be found as part of the validated Isabelle proofs.

In order to make composing transformation functions possible, ImContainedClassSetF ield should be com-
patible with the instance model it is combined with.

Theorem 5.3.97 (Correctness of combine(Im, ImContainedClassSetF ield))
Assume an instance model Im that is valid in the sense of Definition 3.2.19. Then Im is compatible
with ImContainedClassSetF ield (in the sense of Definition 4.4.14) if:

• All requirements of Theorem 5.2.97 are met, to ensure the combination of the corresponding type
models is valid;

• The class type on which the field is defined by TmContainedClassSetF ield may not be extended by
another class type in the type model corresponding to Im;

• The contained type and the class type cannot be the same, e.g. classtype ̸= containedtype.

• All of the objects in the set objects must already be objects in Im;

• All of the referenced objects cannot be objects in Im, they are newly introduced by ImContainedClassSetF ield;

• All objects typed by the class type on which the field is defined must occur in the set objects and
thus have a value in ImContainedClassSetF ield;

• For all of the objects in the set objects, the identifier set by obids must be the same identifier as
set by Im for that object;

• The object ids for the newly introduced objects must be unique with respect to each other and all
other objects within Im;

• For all objects in set valobjects, the value set by the values function must be valid and the amount
of elements in each value must be within the multiplicity mul.

Also see imod_contained_class_set_field_combine_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

Proof. Use Lemma 4.4.13. It is possible to show that all assumptions hold. Now we have shown that
combine(Im, ImContainedClassSetF ield) is consistent in the sense of Definition 3.2.19.

Please note that all objects referenced by any objects via this field are newly created. They may not
exist on the existing model. This is enforced to ensure that the containment relations of objects remain
acyclic, which is needed to keep the instance model valid. The proof is not included here for conciseness,
but can be found as part of the validated proofs in Isabelle.

The definitions and theorems for introducing values for fields of data types within Ecore are now com-
plete.

Encoding as edges and nodes

In the type level transformation of contained class set fields, a single containment edge type was intro-
duced to encode the values for the containment field. On the instance level, the values for each object
will be encoded using this edge type. The encoding corresponding to ImContainedClassSetF ield can then
be represented as IGContainedClassSetF ield, defined in the following definition:

Definition 5.3.98 (Instance graph IGContainedClassSetF ield)
Let IGContainedClassSetF ield be the instance graph typed by type graph TGContainedClassSetF ield (Defini-
tion 5.2.98). Reuse the set objects from ImContainedClassSetF ield. Moreover, reuse the functions obids
and values from ImContainedClassSetF ield.

The objects in the set objects are converted to nodes in ImContainedClassSetF ield. For each of these
objects, a edge is created for each referenced object within the value of that field. Each of these edges
targets an node that encodes an object that was referenced by the value. Finally, the identity of the objects

Page 154

is defined using obids. IGContainedClassSetF ield is defined as:

N = objects ∪
(︃ ⋃︂

ob∈objects

values(ob)

)︃
E =

⋃︂
ob∈objects

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(containedtype)), v

)︁
| v ∈ values(ob)

}︁
ident =

{︂
(obids(ob), ob) if ob ∈ objects ∪

(︂⋃︁
ob∈objects values(ob)

)︂
with

typen =

{︄
(ob,ns_to_list(classtype)) if ob ∈ objects

(v,ns_to_list(containedtype)) if v ∈
⋃︁

ob∈objects values(ob)

Also see ig_contained_class_set_field_as_edge_type in
Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

Theorem 5.3.99 (Correctness of IGContainedClassSetF ield)
IGContainedClassSetF ield (Definition 5.3.98) is a valid instance graph in the sense of Definition 3.3.10.

Also see ig_contained_class_set_field_as_edge_type_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

A visual representation of IGContainedClassSetF ield with objects = {oba, obb, obc} can be seen in Fig-
ure 5.16b. This example is typed by TGContainedClassSetF ield in Figure 5.9b. In this visualisation, the field
value for oba is defined as values(oba) = {obx}. Furthermore, the value for obb is values(oba) = {oby, obz}.
Finally, the value for obc is values(obc) = {}. Like the previous field encodings, one needs to set the
values for the field for all objects of the encoded class type at once. Failing to do so would result in an
invalid instance graph after it is combined with another graph, as the next definition will show. The
correctness proof of IGContainedClassSetF ield only is already quite involved, but not be included here for
conciseness. It can be found as part of the validated Isabelle proofs.

In order to make composing transformation functions possible, IGContainedClassSetF ield should be com-
patible with the instance graph it is combined with.

Theorem 5.3.100 (Correctness of combine(IG, IGContainedClassSetF ield))
Assume an instance graph IG that is valid in the sense of Definition 3.3.10. Then IG is compatible with
IGContainedClassSetF ield (in the sense of Definition 4.4.25) if:

• All requirements of Theorem 5.2.100 are met, to ensure the combination of the corresponding type
graphs is valid;

• The node type on which the corresponding field is defined is not extended by other node types within
the type graph corresponding to IG;

• The contained type and the class type cannot be the same, e.g. classtype ̸= containedtype.

• All nodes in objects are also nodes in IGContainedClassSetF ield;

• All nodes referenced by the nodes in objects are not already nodes in IGContainedClassSetF ield, e.g.
the nodes referenced by values are newly introduced;

• All nodes typed by the node type on which the field is defined must occur in the set objects and thus
have a value in IGContainedClassSetF ield;

• The object ids for the newly introduced objects must be unique with respect to each other and all
other objects within IG;

• For all nodes shared between IG and IGContainedClassSetF ield, each node must have the same iden-
tifier in both IG and IGContainedClassSetF ield;

• For all nodes in set objects, the value set by the values function must be valid and the amount of
elements in each value must be within the multiplicity mul.

Also see ig_contained_class_set_field_as_edge_type_combine_correct in
Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

Proof. Use Lemma 4.4.24. It is possible to show that all assumptions hold. Now we have shown that
combine(IG, IGContainedClassSetF ield) is valid in the sense of Definition 3.3.10.

Page 155

The next definitions define the transformation function from ImContainedClassSetF ield to
IGContainedClassSetF ield:

Definition 5.3.101 (Transformation function fContainedClassSetF ield)
The transformation function fContainedClassSetF ield(Im) is defined as:

N = ObjectIm

E =
⋃︂

ob∈ObjectIm∧ob∈objects

{︁(︁
ob, (ns_to_list(classtype), ⟨name⟩,ns_to_list(containedtype)), v

)︁
|

v ∈ values(ob)
}︁

ident =
{︂
(obids(ob), ob) if ob ∈ ObjectIm

with

typen =

{︄
(ob,ns_to_list(classtype)) if ob ∈ ObjectIm ∧ ob ∈ objects

(v,ns_to_list(containedtype)) if v ∈
⋃︁

ob∈ObjectIm∧ob∈objects values(ob)

Also see imod_contained_class_set_field_to_ig_contained_class_set_field_as_edge_type
in Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

Theorem 5.3.102 (Correctness of fContainedClassSetF ield)
fContainedClassSetF ield(Im) (Definition 5.3.101) is a valid transformation function in the sense of Defi-
nition 4.4.26 transforming ImContainedClassSetF ield into IGContainedClassSetF ield.

Also see
imod_contained_class_set_field_to_ig_contained_class_set_field_as_edge_type_func in

Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

The proof of the correctness of fContainedClassSetF ield will not be included here. Instead, it can be found
in the validated Isabelle theories.

Finally, to complete the transformation, the transformation function that transforms
IGContainedClassSetF ield into ImContainedClassSetF ield is defined:

Definition 5.3.103 (Transformation function f ′
ContainedClassSetF ield)

The transformation function f ′
ContainedClassSetF ield(IG) is defined as:

Object = NIG

ObjectClass =

{︄
(ob, classtype) if ob ∈ NIG ∧ ob ∈ objects

(ob, containedtype) if ob ∈ NIG ∧ ob ∈
⋃︁

ob∈objects values(ob)

ObjectId =
{︂
(ob, obids(ob)) if ob ∈ NIG

FieldValue =

{︄(︂
(ob, (classtype, name)),

[︁
setof, ⟨[obj, ob] | ob ∈ values(ob)⟩

]︁)︂
if ob ∈ NIG ∧

ob ∈ objects

DefaultValue = {}

Also see ig_contained_class_set_field_as_edge_type_to_imod_contained_class_set_field
in Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

Theorem 5.3.104 (Correctness of f ′
ContainedClassSetF ield)

f ′
ContainedClassSetF ield(IG) (Definition 5.3.103) is a valid transformation function in the sense of Defi-

nition 4.4.31 transforming IGContainedClassSetF ield into ImContainedClassSetF ield.

Also see
ig_contained_class_set_field_as_edge_type_to_imod_contained_class_set_field_func in

Ecore-GROOVE-Mapping-Library.ContainedClassSetFieldValue

Once more, the correctness proof is not included here but can be found in the validated Isabelle proofs
of this thesis.

Page 156

Chapter 6

Application

This chapter will provide the necessary steps to apply the work presented in this thesis. So far, the
thesis has introduced formalisations of Ecore and GROOVE, discussed in Section 3.2 and Section 3.3
respectively. Furthermore, an transformation framework for reasoning about composable model transfor-
mations has been introduced as part of Chapter 4. Finally, the previous chapter introduced some small
transformations that represent the ‘building blocks’ to use within the framework. In this chapter, the
transformation framework is applied by building an example model from scratch, showing the necessary
steps to apply the framework. Building the model will be done using the ‘building blocks’ of the library of
transformations. Furthermore, each of the steps is described formally using the formalisations presented
earlier.

Contrary to the previous chapters, no distinction will be made between the type level and instance level.
This distinction is unneeded because the different levels are ultimately tied to each other. When building
an instance model or instance graph iteratively, a corresponding type model or type graph is build as
well. Therefore, within this chapter, an instance model will be built. For each step in building the
instance model, the corresponding step on the level of a type model will be discussed as well. Therefore,
the steps for building both models are presented in a mixed fashion.

6.1 The model
Throughout this chapter, the steps for building the same model are shown. The model that will be
built is a model that represents student housing. A visualisation of the final Ecore model is included in
Figure 6.1. Within the model, student houses are represented through the .House type. A house can have
0 till 9 rooms, which are represented by the .Room type. Each room can have one tenant, represented by
the .Tenant. Possibly, the tenant can have another subtenant, which is modelled through the subtenant
relation.

Since many student houses have a name, this is reflected as such in the model. The .House type has a string
attribute name which represents the name of the house. Furthermore, some houses do have a common
living room, while others do not. This is modelled through the boolean attribute living_room.

Each room within the house is identified by some identifier. Some houses number their rooms, and others
use letters for the same purpose. The identifier of a room is reflected by the string attribute room_id.
Furthermore, a room can either be small, medium or large. The size is used to determine the price of
the room. This size of the room is represented using an enumeration type .RoomSize. Each room sets
one size using the room_size attribute, which is typed by the .RoomSize enumeration type.

For tenants, the model stores the name and the age through the string attribute name and int attribute
age respectively. Furthermore, a tenant can be a regular tenant or a subtenant, which is represented
using an another enumeration type .TenantType. Each tenant is either a regular tenant of a subtenant,
which is modelled using the type attribute, which is typed by the .TenantType enumeration type.

In the next section, this model will be built in 15 steps. Furthermore, a corresponding GROOVE encoding
will be built at the same time. At the end of the next section, the model of Figure 6.1 is obtained, as
well as the corresponding GROOVE encoding.

6.2 Building the model
Within this section, the 15 steps are provided to build the model represented by Figure 6.1. For each of
these 15 steps, the corresponding Ecore model and GROOVE graphs are shown.

Page 157

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"
living_room = false

name = "B.H. Paleis"
living_room = true

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

age = 24age = 23

type = REGULAR type = REGULAR

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

age = 18 age = 24

type = REGULAR type = REGULAR

name = "M. Silon"

age = 19

type = SUBTENANT

roomsrooms

tenanttenant

roomsrooms
rooms

tenanttenant

subtenant

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance model

House

name : EString

living_room :
EBoolean

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

age : EInt

type :
TenantType

TenantType

REGULAR

SUBTENANT

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

[0..1] tenant

[0..1] subtenant

(b) Type model

Figure 6.1: The final model of student housing

Page 158

Before the model is built, it is necessary to initialize the initial models. The initial models are empty
and are used as a starting point. Each step will then add more elements to the model until the final
model is obtained. Therefore, define the following models:

Initial models
Tm0 = Tmϵ (Definition 4.3.8)
Im0 = Imϵ (Definition 4.4.9)
TG0 = TGϵ (Definition 4.3.19)
IG0 = IGϵ (Definition 4.4.20)
f0(Im0) = IGϵ (Definition 4.4.20)
f ′
0(IG0) = Imϵ (Definition 4.4.9)

Essentially, every model is defined to be the empty model, and every graph is defined to be the empty
graph. Furthermore, f0 is the mapping function which projects Im0 (and Tm0) onto IG0 (and TG0).
f ′
0 is the inverse function which maps IG0 (and TG0) onto Im0 (and Tm0).

6.2.1 Houses
The first step of building the model is to add a type. Without any types, nothing interesting can be
produced. The first type will be the class type for houses. Section 5.2.1 is used to introduce the class
type, while on the instance level, Section 5.3.1 is used to introduce the house objects.

The name of the new house type is .House. Furthermore, 2 house objects are introduced, objects =
{TR,BHP}. Furthermore, we assume that the object identifiers are equal to the internal node id, so
fid(TR) = TR and fid(BHP) = BHP . The following model is obtained:

Models after step 1
Tm1 = combine(Tm0, TmClass) =

Class = {.House}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Im1 = combine(Tm0, ImClass) =
Object = {TR,BHP}

ObjectClass(ob) = {(TR, .House), (BHP, .House)}
ObjectId = {(TR, TR), (BHP,BHP)}

FieldValue = {}
DefaultValue = {}

TG1 = combine(TG0, TGClass) =
NT = {⟨House⟩}
ET = {}
⊑ =

{︁(︁
⟨House⟩, ⟨House⟩

)︁}︁
abs = {}

mult = {}
contains = {}

IG1 = combine(TG0, IGClass) =
N = {TR,BHP}
E = {}

ident = {(TR, TR), (BHP,BHP)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩)}

f1(Im1) = f0(Im0) ⊔ fClass(ImClass) (Definition 4.4.27)
f ′
1(IG1) = f ′

0(IG0) ⊔ f ′
Class(IGClass) (Definition 4.4.32)

Page 159

TR :House

BHP :House

(a) Instance Model Im1

House

(b) Type Model Tm1

Figure 6.2: The Ecore model after step 1

BHP : House

TR : House

(a) Instance Graph IG1

House

(b) Type Graph TG1

Figure 6.3: The GROOVE graphs after step 1

Page 160

A visual representation of Tm1 and Im1 can be found in Figure 6.2. Similarly, a visual representation
of TG1 and IG1 can be found in Figure 6.3. Please note that because of the definitions of f1(Im1) and
f ′
1(IG1), we have that f1(Im1) = IG1 and f ′

1(IG1) = Im1. Furthermore, f1(Im1) and f ′
1(IG1) are valid

mapping functions themselves, such that they can be combined with another mapping function in the
next step.

The models itself are not very special as of yet, but that is expected. Each step is only a small building
block, and introducing a type is not very special.

6.2.2 The Room class
The second step is very similar to the previous step, as yet another type will be introduced. This time
around, the class type for rooms is introduced. Section 5.2.1 is used to introduce the class type, while
on the instance level, Section 5.3.1 is used to introduce the house objects.

The name of the new room type is .Room. However, this time, no objects of the room type will be
introduced just yet, therefore, objects = {}. Moreover, there is no need to define fid. The following
model is obtained:

Models after step 2
Tm2 = combine(Tm1, TmClass) =

Class = {.House, .Room}
Enum = {}

UserDataType = {}
Field = {}

FieldSig = {}
EnumV alue = {}

Inh = {}
Prop = {}

Constant = {}
ConstType = {}

Im2 = combine(Tm1, ImClass) =
Object = {TR,BHP}

ObjectClass(ob) = {(TR, .House), (BHP, .House)}
ObjectId = {(TR, TR), (BHP,BHP)}

FieldValue = {}
DefaultValue = {}

TG2 = combine(TG1, TGClass) =
NT = {⟨House⟩, ⟨Room⟩}
ET = {}
⊑ =

{︁(︁
⟨House⟩, ⟨House⟩

)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁}︁
abs = {}

mult = {}
contains = {}

IG2 = combine(TG1, IGClass) =
N = {TR,BHP}
E = {}

ident = {(TR, TR), (BHP,BHP)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩)}

f2(Im2) = f1(Im1) ⊔ fClass(ImClass) (Definition 4.4.27)
f ′
2(IG2) = f ′

1(IG1) ⊔ f ′
Class(IGClass) (Definition 4.4.32)

A visual representation of Tm2 and Im2 can be found in Figure 6.4. Similarly, a visual representation
of TG2 and IG2 can be found in Figure 6.5. Please note that because of the definitions of f2(Im2) and
f ′
2(IG2), we have that f2(Im2) = IG2 and f ′

2(IG2) = Im2. Furthermore, f2(Im2) and f ′
2(IG2) are valid

mapping functions themselves, such that they can be combined with another mapping function in the
next step.

The visual representation of the models is still not stunning, mainly because the instance model and
instance graph have not changed during this step. These are unchanged because the room objects will

Page 161

TR :House

BHP :House

(a) Instance Model Im2

House

Room

(b) Type Model Tm2

Figure 6.4: The Ecore model after step 2

BHP : House

TR : House

(a) Instance Graph IG2

House

Room

(b) Type Graph TG2

Figure 6.5: The GROOVE graphs after step 2

Page 162

all be contained by houses, and therefore need to be introduced later to keep the model and graphs
valid.

6.2.3 House names
In the third step, something interesting finally happens. This step introduces the names for houses, or in
model terms, the name attribute on the .House class is introduced, including its values. Section 5.2.6 is
used to introduce the field, while on the instance level, Section 5.3.6 is used to introduce the values.

The classtype of the new field is .House, as the field will be defined for houses. The name of the new
field is name and the fieldtype is string. The set of objects of which the value is set is is equal to all
house objects, so objects = {TR,BHP}. The function for obids returns the existing identifier of each of
these objects. The values function is defined as follows:

values = {(TR, “TwoRem”), (BHP, “B.H. Paleis”)}

The following model is obtained:

Models after step 3
Tm3 = combine(Tm2, TmDataField) =

Class = {.House, .Room}
Enum = {}

UserDataType = {}
Field = {(.House, name)}

FieldSig =
{︁(︁

(.House, name), (string, 1..1)
)︁}︁

EnumV alue = {}
Inh = {}

Prop = {}
Constant = {}

ConstType = {}
Im3 = combine(Tm2, ImDataField) =

Object = {TR,BHP}
ObjectClass(ob) = {(TR, .House), (BHP, .House)}

ObjectId = {(TR, TR), (BHP,BHP)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂}︂
DefaultValue = {}

TG3 = combine(TG2, TGDataField) =
NT = {⟨House⟩, ⟨Room⟩, string}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁}︁
⊑ =

{︁(︁
⟨House⟩, ⟨House⟩

)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
string, string

)︁}︁
abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂}︂
contains = {}

IG3 = combine(TG2, IGDataField) =
N = {TR,BHP, “TwoRem”, “B.H. Paleis”}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂}︂
ident = {(TR, TR), (BHP,BHP)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (“TwoRem” , string), (“B.H. Paleis” , string)}

f3(Im3) = f2(Im2) ⊔ fDataField(ImDataField) (Definition 4.4.27)
f ′
3(IG3) = f ′

2(IG2) ⊔ f ′
DataField(IGDataField) (Definition 4.4.32)

A visual representation of Tm3 and Im3 can be found in Figure 6.6. Similarly, a visual representation
of TG3 and IG3 can be found in Figure 6.7. Please note that because of the definitions of f3(Im3) and

Page 163

TR :House

BHP :House

name = "TwoRem"

name = "B.H. Paleis"

(a) Instance Model Im3

House

name : EString

Room

(b) Type Model Tm3

Figure 6.6: The Ecore model after step 3

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

(a) Instance Graph IG3

House
name: string

Room

(b) Type Graph TG3

Figure 6.7: The GROOVE graphs after step 3

Page 164

f ′
3(IG3), we have that f3(Im3) = IG3 and f ′

3(IG3) = Im3. Furthermore, f3(Im3) and f ′
3(IG3) are valid

mapping functions themselves, such that they can be combined with another mapping function in the
next step.

Although visually the models are still not very advanced, formally they already from quite a definition.
This definition will only get more substantial as more fields and objects are added in the next steps.

6.2.4 Rooms
In the fourth step, the room objects will be introduced as part of the introduction of the rooms con-
tainment relation. This step introduces the rooms relation on the .House class, including its values.
Section 5.2.9 is used to introduce the field, while on the instance level, Section 5.3.9 is used to introduce
the values.

The classtype of the new field is .House, as the field will be defined for houses. The name of the new
field is rooms and the containedtype is .Room. The set of objects of which the value is set is equal to all
house objects, so objects = {TR,BHP}. The function for obids returns the existing identifier of each
of these objects. The multiplicity is set to 0..9 for the new field, and the values function is defined as
follows:

values =
{︁(︁

TR, {TRRoom1, TRRoom2}
)︁
,
(︁
BHP, {BHPRoomA,BHPRoomB,BHPRoomC}

)︁}︁
Please note that the referenced objects are all new. For these new objects obids returns as identifier the
internal node label, just as was done for the houses. The following model is obtained:

Models after step 4
Tm4 = combine(Tm3, TmContainedClassSetF ield) =

Class = {.House, .Room}
Enum = {}

UserDataType = {}
Field = {(.House, name), (.House, rooms)}

FieldSig =
{︁(︁

(.House, name), (string, 1..1)
)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁}︁

EnumV alue = {}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Im4 = combine(Tm3, ImContainedClassSetF ield) =
Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂}︂

DefaultValue = {}

Page 165

Models after step 4
TG4 = combine(TG3, TGContainedClassSetF ield) =

NT = {⟨House⟩, ⟨Room⟩, string}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁
⊑ =

{︁(︁
⟨House⟩, ⟨House⟩

)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
string, string

)︁}︁
abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁
IG4 = combine(TG3, IGContainedClassSetF ield) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

“TwoRem”, “B.H. Paleis”}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(“TwoRem” , string), (“B.H. Paleis” , string)}

f4(Im4) = f3(Im3) ⊔ fContainedClassSetF ield(ImContainedClassSetF ield)
(Definition 4.4.27)

f ′
4(IG4) = f ′

3(IG3) ⊔ f ′
ContainedClassSetF ield(IGContainedClassSetF ield)

(Definition 4.4.32)

A visual representation of Tm4 and Im4 can be found in Figure 6.8. Similarly, a visual representation
of TG4 and IG4 can be found in Figure 6.9. Please note that because of the definitions of f4(Im4) and
f ′
4(IG4), we have that f4(Im4) = IG4 and f ′

4(IG4) = Im4. Furthermore, f4(Im4) and f ′
4(IG4) are valid

mapping functions themselves, such that they can be combined with another mapping function in the
next step.

The introduction of the room objects makes that the model represents something. A house has rooms
that it contains, and each house has a different set of rooms. Still, there is room to enlarge the model
more, such that more details are included.

6.2.5 Room identifiers
In the fifth step, the room identifiers are introduced by introducing another string field. This step
introduces gives each room a size, or in model terms, the room_size attribute on the .Room class is
introduced, including its values. Section 5.2.7 is used to introduce the field on the type level, while on
the instance level, Section 5.3.7 is used to introduce the values.

The classtype of the new field is .Room, as the field will be defined for rooms. The name of the new
field is room_id and the fieldtype is .string. The set of objects of which the value is set is equal to
all room objects, so objects = {TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC}. The
function for obids returns the existing identifier of each of these objects. The values function is defined

Page 166

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

name = "TwoRem"

name = "B.H. Paleis"

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

(a) Instance Model Im4

House

name : EString

Room

[0..9] rooms

(b) Type Model Tm4

Figure 6.8: The Ecore model after step 4

Page 167

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

TRRoom1 : Room TRRoom2 : Room

BHPRoomA : Room BHPRoomB : Room BHPRoomC : Room

rooms
rooms rooms

rooms rooms

(a) Instance Graph IG4

House
name: string

Room

rooms

(b) Type Graph TG4

Figure 6.9: The GROOVE graphs after step 4

Page 168

as follows:

values = {(TRRoom1, “1”), (TRRoom2, “2”), (BHPRoomA, “A”),
(BHPRoomB, “B”), (BHPRoomC, “C”)}

The following model is obtained:

Models after step 5
Tm5 = combine(Tm4, TmDataField) =

Class = {.House, .Room}
Enum = {}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id)}

FieldSig =
{︁(︁

(.House, name), (string, 1..1)
)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁}︁

EnumV alue = {}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Im5 = combine(Tm4, ImDataField) =
Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂}︂
DefaultValue = {}

Page 169

Models after step 5
TG5 = combine(TG4, TGDataField) =

NT = {⟨House⟩, ⟨Room⟩, string}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
string, string

)︁}︁
abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁
IG5 = combine(TG4, IGDataField) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

“TwoRem”, “B.H. Paleis”, “1”, “2”, “A”, “B”, “C”}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(“TwoRem” , string), (“B.H. Paleis” , string), (“1”, string), (“2”, string), (“A”, string),
(“B”, string), (“C”, string)}

f5(Im5) = f4(Im4) ⊔ fDataField(ImDataField) (Definition 4.4.27)
f ′
5(IG5) = f ′

4(IG4) ⊔ f ′
DataField(IGDataField) (Definition 4.4.32)

A visual representation of Tm5 and Im5 can be found in Figure 6.10. Similarly, a visual representation
of TG5 and IG5 can be found in Figure 6.11. Please note that because of the definitions of f5(Im5)
and f ′

5(IG5), we have that f5(Im5) = IG5 and f ′
5(IG5) = Im5. Furthermore, f5(Im5) and f ′

5(IG5) are
valid mapping functions themselves, such that they can be combined with another mapping function in
the next step.

The visualisation unveils no surprising details. A string field was already added earlier to the house
objects and introducing such a field on the room only shows that it is indeed possible to introduce fields
on contained objects.

Page 170

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_id = "A"

(a) Instance Model Im5

House

name : EString

Room

room_id : EString

[0..9] rooms

(b) Type Model Tm5

Figure 6.10: The Ecore model after step 5

Page 171

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

rooms
rooms rooms

rooms rooms

(a) Instance Graph IG5

House
name: string

Room
room_id: string

rooms

(b) Type Graph TG5

Figure 6.11: The GROOVE graphs after step 5

Page 172

6.2.6 The room size enumeration type
In the sixth step, a new type will be introduced. This time around, it will not be a class type, but an
enumeration type. It is the .RoomSize enumeration type used to specify the room sizes. Section 5.2.4
is used to introduce the enumeration type on the type level, while on the instance level, Section 5.3.4 is
used to introduce the values of the enumeration.

The name of the new enumeration type is .RoomSize, and it has values = {SMALL,MEDIUM, LARGE}.
Please note that there are multiple encodings possible to encode an enumeration type in GROOVE. The
encoding using flags is chosen for this enumeration type. The function fob which maps the enumeration
values to internal node ids is defined as follows:

fob = {(SMALL, SmallSize), (MEDIUM,MediumSize), (LARGE, LargeSize)}

The function fid which maps the enumeration values to explicit node identifiers is equal to the definition
of fob, so fid = fob. The following model is obtained:

Models after step 6
Tm6 = combine(Tm5, TmEnum) =

Class = {.House, .Room}
Enum = {.RoomSize}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id)}

FieldSig =
{︁(︁

(.House, name), (string, 1..1)
)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 173

Models after step 6
Im6 = combine(Tm5, ImEnum) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂}︂
DefaultValue = {}

TG6 = combine(TG5, TGEnumFlags) =
NT = {⟨House⟩, ⟨Room⟩, ⟨RoomSize⟩, string}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁}︁
⊑ =

{︁(︁
⟨House⟩, ⟨House⟩

)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨RoomSize⟩, ⟨RoomSize⟩

)︁
,(︁

string, string
)︁}︁

abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 174

Models after step 6
IG6 = combine(TG5, IGEnumFlags) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

SmallSize,MediumSize, LargeSize, “TwoRem”, “B.H. Paleis”, “1”, “2”, “A”, “B”,
“C”}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (SmallSize, SmallSize),

(MediumSize,MediumSize), (LargeSize, LargeSize)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(SmallSize, ⟨RoomSize⟩), (MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩),
(“TwoRem” , string), (“B.H. Paleis” , string), (“1”, string), (“2”, string), (“A”, string),
(“B”, string), (“C”, string)}

f6(Im6) = f5(Im5) ⊔ fEnumFlags(ImEnum) (Definition 4.4.27)
f ′
6(IG6) = f ′

5(IG5) ⊔ f ′
EnumFlags(IGEnumFlags) (Definition 4.4.32)

A visual representation of Tm6 and Im6 can be found in Figure 6.12. Similarly, a visual representation
of TG6 and IG6 can be found in Figure 6.13. Please note that because of the definitions of f6(Im6)
and f ′

6(IG6), we have that f6(Im6) = IG6 and f ′
6(IG6) = Im6. Furthermore, f6(Im6) and f ′

6(IG6) are
valid mapping functions themselves, such that they can be combined with another mapping function in
the next step.

The introduction of the enumeration type shows the encoding of an enumeration type as GROOVE flags
in practice. It should be noted that although the instance model has not changed, the instance graph
obtained instances of the enumeration values. These instances will be referenced by an enumeration field
in the next step.

6.2.7 Room sizes
In the seventh step, a field referencing the new enumeration type is introduced. Section 5.2.7 is used to
introduce the enumeration field on the type level, while on the instance level, Section 5.3.7 is used to
introduce the values.

Page 175

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_id = "A"

(a) Instance Model Im6

House

name : EString

Room

room_id : EString

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

(b) Type Model Tm6

Figure 6.12: The Ecore model after step 6

Page 176

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

rooms
rooms rooms

rooms rooms

(a) Instance Graph IG6

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

rooms

(b) Type Graph TG6

Figure 6.13: The GROOVE graphs after step 6

Page 177

The classtype of the new field is .Room, as the field will be defined for rooms. The name of the new
field is room_size and the enumid is .RoomSize. Furthermore, the set of enumvalues is equal to the
set of values for the .RoomSize enumeration type, so enumvalues = {SMALL,MEDIUM, LARGE}. Then,
enumids returns for each enumeration value the corresponding node identifier used in the GROOVE
graph, while enumob lists the corresponding internal node id.

The set of objects of which the value is set is equal to all room objects, so objects = {TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC}.
The values function is defined as follows:

values = {(TRRoom1, LARGE), (TRRoom2,MEDIUM), (BHPRoomA, SMALL),

(BHPRoomB, SMALL), (BHPRoomC,SMALL)}

The following model is obtained:

Models after step 7
Tm7 = combine(Tm6, TmEnumField) =

Class = {.House, .Room}
Enum = {.RoomSize}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 178

Models after step 7
Im7 = combine(Tm6, ImEnumField) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂}︂
DefaultValue = {}

Page 179

Models after step 7
TG7 = combine(TG6, TGEnumFieldF lags) =

NT = {⟨House⟩, ⟨Room⟩, ⟨RoomSize⟩, string}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨RoomSize⟩, ⟨RoomSize⟩

)︁
,(︁

string, string
)︁}︁

abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 180

Models after step 7
IG7 = combine(TG6, IGEnumFieldF lags) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

SmallSize,MediumSize, LargeSize, “TwoRem”, “B.H. Paleis”, “1”, “2”, “A”, “B”,
“C”}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (SmallSize, SmallSize),

(MediumSize,MediumSize), (LargeSize, LargeSize)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(SmallSize, ⟨RoomSize⟩), (MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩),
(“TwoRem” , string), (“B.H. Paleis” , string), (“1”, string), (“2”, string), (“A”, string),
(“B”, string), (“C”, string)}

f7(Im7) = f6(Im6) ⊔ fEnumFieldF lags(ImEnumField) (Definition 4.4.27)
f ′
7(IG7) = f ′

6(IG6) ⊔ f ′
EnumFieldF lags(IGEnumFieldF lags) (Definition 4.4.32)

A visual representation of Tm7 and Im7 can be found in Figure 6.14. Similarly, a visual representation
of TG7 and IG7 can be found in Figure 6.15. Please note that because of the definitions of f7(Im7)
and f ′

7(IG7), we have that f7(Im7) = IG7 and f ′
7(IG7) = Im7. Furthermore, f7(Im7) and f ′

7(IG7) are
valid mapping functions themselves, such that they can be combined with another mapping function in
the next step.

On the instance model level, no surprising elements are introduced. An enumeration field acts like most

Page 181

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

room_size = "SMALL" room_size = "SMALL"

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im7

House

name : EString

Room

room_id : EString

room_size :
RoomSize

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

(b) Type Model Tm7

Figure 6.14: The Ecore model after step 7

Page 182

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

room_size room_size room_size

rooms
rooms rooms

rooms rooms
room_size room_size

(a) Instance Graph IG7

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

rooms
room_size

(b) Type Graph TG7

Figure 6.15: The GROOVE graphs after step 7

Page 183

other attributes within Ecore. However, the visualisation shows how enumeration values are referenced
by their instance nodes in the instance graph. The encoding of the field makes use of the presented
encoding to emulate enumeration types within GROOVE.

6.2.8 Tenants
The eighth step introduces another class type. This time, the .Tenant type is introduced to enrich the
model and graphs even further. Section 5.2.1 is used to introduce the class type, while on the instance
level, Section 5.3.1 is used to introduce the house objects.

The name of the new tenant type is .Tenant. Furthermore, 5 tenant objects are introduced, objects =
{Tenant1, T enant2, T enant3, T enant4, T enant5}. Furthermore, we assume that the object identifiers
are equal to the internal node id, so fid(Tenant1) = Tenant1 and fid(Tenant2) = Tenant2, etc. The
following model is obtained:

Models after step 8
Tm8 = combine(Tm7, TmClass) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 184

Models after step 8
Im8 = combine(Tm7, ImClass) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂}︂
DefaultValue = {}

Page 185

Models after step 8
TG8 = combine(TG7, TGClass) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, string}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
string, string

)︁}︁
abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 186

Models after step 8
IG8 = combine(TG7, IGClass) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize, “TwoRem”, “B.H. Paleis” , “1”, “2”, “A”, “B”, “C”}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩), (“TwoRem” , string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string)}

f8(Im8) = f7(Im7) ⊔ fClass(ImClass) (Definition 4.4.27)
f ′
8(IG8) = f ′

7(IG7) ⊔ f ′
Class(IGClass) (Definition 4.4.32)

A visual representation of Tm8 and Im8 can be found in Figure 6.16. Similarly, a visual representation
of TG8 and IG8 can be found in Figure 6.17. Please note that because of the definitions of f8(Im8)

Page 187

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

room_size = "SMALL" room_size = "SMALL"

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im8

House

name : EString

Room

room_id : EString

room_size :
RoomSize

Tenant

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

(b) Type Model Tm8

Figure 6.16: The Ecore model after step 8

Page 188

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant Tenant2 : Tenant

Tenant3 : Tenant Tenant4 : Tenant

Tenant5 : Tenant

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

room_size

rooms

room_size

rooms
room_size

rooms

rooms

rooms

room_size

room_size

(a) Instance Graph IG8

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant

rooms
room_size

(b) Type Graph TG8

Figure 6.17: The GROOVE graphs after step 8

Page 189

and f ′
8(IG8), we have that f8(Im8) = IG8 and f ′

8(IG8) = Im8. Furthermore, f8(Im8) and f ′
8(IG8) are

valid mapping functions themselves, such that they can be combined with another mapping function in
the next step.

The introduction of the tenant class shows that models can be extended if there is already much infor-
mation in the model. Introducing types can be done at any moment, so there is no need to introduce
all types at the beginning. In that sense, the transformation framework presented by this thesis is not
deterministic; there are multiple ways to encode the same model.

6.2.9 Tenant names
In the ninth step, the tenants are named. Formally, the name attribute on the .Tenant class is introduced,
including its values. As before, Section 5.2.6 is used to introduce the field, while on the instance level,
Section 5.3.6 is used to introduce the values.

The classtype of the new field is .Tenant, as the field will be defined for tenants. The name of the new
field is name and the fieldtype is string. The set of objects of which the value is set is is equal to all
tenant objects, so objects = {Tenant1, T enant2, T enant3, T enant4, T enant5}. The function for obids
returns the existing identifier of each of these objects. The values function is defined as follows:

values = values = {(Tenant1, “B.R. Mankjon”), (Tenant2, “P.J.R. Nam”), (Tenant3, “L. Horn”),
(Tenant4, “A.C.C. Turg”), (Tenant5, “M. Silon”)}

The following model is obtained:

Models after step 9
Tm9 = combine(Tm8, TmDataField) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size), (.Tenant, name)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁
,(︁

(.Tenant, name), (string, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 190

Models after step 9
Im9 = combine(Tm8, ImDataField) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

Tenant1, (.Tenant, name)
)︁
,
[︁
string, “B.R. Mankjon”

]︁)︂
,(︂(︁

Tenant2, (.Tenant, name)
)︁
,
[︁
string, “P.J.R. Nam”

]︁)︂
,(︂(︁

Tenant3, (.Tenant, name)
)︁
,
[︁
string, “L. Horn”

]︁)︂
,(︂(︁

Tenant4, (.Tenant, name)
)︁
,
[︁
string, “A.C.C. Turg”

]︁)︂
,(︂(︁

Tenant5, (.Tenant, name)
)︁
,
[︁
string, “M. Silon”

]︁)︂}︂
DefaultValue = {}

Page 191

Models after step 9
TG9 = combine(TG8, TGDataField) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, string}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁}︁
⊑ =

{︁(︁
⟨House⟩, ⟨House⟩

)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
string, string

)︁}︁
abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 192

Models after step 9
IG9 = combine(TG8, IGDataField) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize, “TwoRem” , “B.H. Paleis”, “1”, “2”, “A”, “B”, “C”, “B.R. Mankjon” ,
“P.J.R. Nam”, “L. Horn” , “A.C.C. Turg” , “M. Silon”}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “B.R. Mankjon”

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “P.J.R. Nam”

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “L. Horn”

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “A.C.C. Turg”

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “M. Silon”

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂

Page 193

Models after step 9
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩), (“TwoRem” , string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string), (“B.R. Mankjon” , string), (“P.J.R. Nam”, string),
(“A.C.C. Turg” , string), (“L. Horn” , string), (“M. Silon” , string)}

f9(Im9) = f8(Im8) ⊔ fDataField(ImDataField) (Definition 4.4.27)
f ′
9(IG9) = f ′

8(IG8) ⊔ f ′
DataField(IGDataField) (Definition 4.4.32)

A visual representation of Tm9 and Im9 can be found in Figure 6.18. Similarly, a visual representation
of TG9 and IG9 can be found in Figure 6.19. Please note that because of the definitions of f9(Im9)
and f ′

9(IG9), we have that f9(Im9) = IG9 and f ′
9(IG9) = Im9. Furthermore, f9(Im9) and f ′

9(IG9) are
valid mapping functions themselves, such that they can be combined with another mapping function in
the next step.

Just like the other types, it is possible to introduce fields for the tenant objects. This way, even types
that are introduced later on can be enriched with new information. The visualisation shows the different
names set for the tenants in both the Ecore model and GROOVE graphs.

6.2.10 Tenant ages
In the tenth step, yet another data field is introduced. In this step, the .Tenant class is enriched with
an age field and its values. As before, Section 5.2.6 is used to introduce the field, while on the instance
level, Section 5.3.6 is used to introduce the values.

The classtype of the new field is .Tenant, as the field will be defined for tenants. The name of the new
field is age and the fieldtype is int. The set of objects of which the value is set is is equal to all tenant
objects, so objects = {Tenant1, T enant2, T enant3, T enant4, T enant5}. The function for obids returns
the existing identifier of each of these objects. The values function is defined as follows:

values = values = {(Tenant1, 23), (Tenant2, 24), (Tenant3, 18),
(Tenant4, 24), (Tenant5, 19)}

The following model is obtained:

Page 194

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

name = "M. Silon"

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im9

House

name : EString

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

(b) Type Model Tm9

Figure 6.18: The Ecore model after step 9

Page 195

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant
name = "B.R. Mankjon"

Tenant2 : Tenant
name = "P.J.R. Nam"

Tenant3 : Tenant
name = "L. Horn"

Tenant4 : Tenant
name = "A.C.C. Turg"

Tenant5 : Tenant
name = "M. Silon"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

room_size

rooms

rooms

room_size room_size

rooms

rooms

room_size

room_size

rooms

(a) Instance Graph IG9

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant
name: string

rooms
room_size

(b) Type Graph TG9

Figure 6.19: The GROOVE graphs after step 9

Page 196

Models after step 10
Tm10 = combine(Tm9, TmDataField) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size), (.Tenant, name), (.Tenant, age)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁
,(︁

(.Tenant, name), (string, 1..1)
)︁
,(︁

(.Tenant, age), (int, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 197

Models after step 10
Im10 = combine(Tm9, ImDataField) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

Tenant1, (.Tenant, name)
)︁
,
[︁
string, “B.R. Mankjon”

]︁)︂
,(︂(︁

Tenant2, (.Tenant, name)
)︁
,
[︁
string, “P.J.R. Nam”

]︁)︂
,(︂(︁

Tenant3, (.Tenant, name)
)︁
,
[︁
string, “L. Horn”

]︁)︂
,(︂(︁

Tenant4, (.Tenant, name)
)︁
,
[︁
string, “A.C.C. Turg”

]︁)︂
,(︂(︁

Tenant5, (.Tenant, name)
)︁
,
[︁
string, “M. Silon”

]︁)︂
,(︂(︁

Tenant1, (.Tenant, age)
)︁
,
[︁
int, 23

]︁)︂
,(︂(︁

Tenant2, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant3, (.Tenant, age)
)︁
,
[︁
int, 18

]︁)︂
,(︂(︁

Tenant4, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant5, (.Tenant, age)
)︁
,
[︁
int, 19

]︁)︂}︂
DefaultValue = {}

Page 198

Models after step 10
TG10 = combine(TG9, TGDataField) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, string, int}
ET =

{︁(︁
⟨House⟩, ⟨name⟩, string

)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
,(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
string, string

)︁
,
(︁
int, int

)︁}︁
abs = {}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 199

Models after step 10
IG10 = combine(TG9, IGDataField) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize, “TwoRem”, “B.H. Paleis”, “1”, “2”, “A”, “B”, “C”, “B.R. Mankjon” ,
“P.J.R. Nam”, “L. Horn” , “A.C.C. Turg”, “M. Silon” , 23, 24, 18, 19}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “B.R. Mankjon”

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “P.J.R. Nam”

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “L. Horn”

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “A.C.C. Turg”

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “M. Silon”

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 23

)︂
,
(︂
Tenant2,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 18

)︂
,
(︂
Tenant4,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 19

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂

Page 200

Models after step 10
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩), (“TwoRem”, string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string), (“B.R. Mankjon” , string), (“P.J.R. Nam”, string),
(“A.C.C. Turg” , string), (“L. Horn” , string), (“M. Silon” , string), (23, int),
(24, int), (18, int), (19, int)}

f10(Im10) = f9(Im9) ⊔ fDataField(ImDataField) (Definition 4.4.27)
f ′
10(IG10) = f ′

9(IG9) ⊔ f ′
DataField(IGDataField) (Definition 4.4.32)

A visual representation of Tm10 and Im10 can be found in Figure 6.20. Similarly, a visual representation
of TG10 and IG10 can be found in Figure 6.21. Please note that because of the definitions of f10(Im10)
and f ′

10(IG10), we have that f10(Im10) = IG10 and f ′
10(IG10) = Im10. Furthermore, f10(Im10) and

f ′
10(IG10) are valid mapping functions themselves, such that they can be combined with another mapping

function in the next step.

The introduction of age for the tenant shows that the data field transformation can also be applied
with another type than string. The visualisation shows the different ages for the different tenants visu-
ally.

6.2.11 The tenant type enumeration type
In the eleventh step, another enumeration type is introduced. This time, the .TenantType enumeration
type used to specify a type for a tenant is introduced. Section 5.2.4 is used to introduce the enumeration
type on the type level, while on the instance level, Section 5.3.4 is used to introduce the values of the
enumeration.

The name of the new enumeration type is .TenantType, and it has values = {REGULAR,SUBTENANT}.
Please note that there are multiple encodings possible to encode an enumeration type in GROOVE.
This time, the encoding using nodes is chosen. The function fob which maps the enumeration values to
internal node ids is defined as follows:

fob = {(REGULAR,RegularType), (SUBTENANT, SubtenantType)}

The function fid which maps the enumeration values to explicit node identifiers is equal to the definition
of fob, so fid = fob. The following model is obtained:

Page 201

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

age = 24age = 23

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

age = 18 age = 24

name = "M. Silon"

age = 19

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im10

House

name : EString

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

age : EInt

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

(b) Type Model Tm10

Figure 6.20: The Ecore model after step 10

Page 202

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant
age = 23

name = "B.R. Mankjon"

Tenant2 : Tenant
age = 24

name = "P.J.R. Nam"

Tenant3 : Tenant
age = 18

name = "L. Horn"

Tenant4 : Tenant
age = 24

name = "A.C.C. Turg"

Tenant5 : Tenant
age = 19

name = "M. Silon"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

rooms rooms

rooms

room_size room_size

rooms

rooms
room_sizeroom_size

room_size

(a) Instance Graph IG10

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant
age: int

name: string

rooms
room_size

(b) Type Graph TG10

Figure 6.21: The GROOVE graphs after step 10

Page 203

Models after step 11
Tm11 = combine(Tm10, TmEnum) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize, .TenantType}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size), (.Tenant, name), (.Tenant, age)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁
,(︁

(.Tenant, name), (string, 1..1)
)︁
,(︁

(.Tenant, age), (int, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)

(.TenantType,REGULAR), (.TenantType,SUBTENANT)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 204

Models after step 11
Im11 = combine(Tm10, ImEnum) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

Tenant1, (.Tenant, name)
)︁
,
[︁
string, “B.R. Mankjon”

]︁)︂
,(︂(︁

Tenant2, (.Tenant, name)
)︁
,
[︁
string, “P.J.R. Nam”

]︁)︂
,(︂(︁

Tenant3, (.Tenant, name)
)︁
,
[︁
string, “L. Horn”

]︁)︂
,(︂(︁

Tenant4, (.Tenant, name)
)︁
,
[︁
string, “A.C.C. Turg”

]︁)︂
,(︂(︁

Tenant5, (.Tenant, name)
)︁
,
[︁
string, “M. Silon”

]︁)︂
,(︂(︁

Tenant1, (.Tenant, age)
)︁
,
[︁
int, 23

]︁)︂
,(︂(︁

Tenant2, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant3, (.Tenant, age)
)︁
,
[︁
int, 18

]︁)︂
,(︂(︁

Tenant4, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant5, (.Tenant, age)
)︁
,
[︁
int, 19

]︁)︂}︂
DefaultValue = {}

Page 205

Models after step 11
TG11 = combine(TG10, TGEnumNodes) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, ⟨TenantType⟩,
⟨TenantType,REGULAR⟩, ⟨TenantType,SUBTENANT⟩, string, int}

ET =
{︁(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
,(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨TenantType⟩, ⟨TenantType⟩

)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType,REGULAR⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType,SUBTENANT⟩
)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType⟩
)︁
,
(︁
string, string

)︁
,
(︁
int, int

)︁}︁
abs = {⟨TenantType⟩}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 206

Models after step 11
IG11 = combine(TG10, IGEnumNodes) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize,RegularType, SubtenantType, “TwoRem”, “B.H. Paleis” , “1”, “2”, “A”,
“B”, “C”, “B.R. Mankjon” , “P.J.R. Nam”, “L. Horn” , “A.C.C. Turg” , “M. Silon” , 23,
24, 18, 19}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “B.R. Mankjon”

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “P.J.R. Nam”

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “L. Horn”

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “A.C.C. Turg”

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “M. Silon”

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 23

)︂
,
(︂
Tenant2,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 18

)︂
,
(︂
Tenant4,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 19

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂

Page 207

Models after step 11
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize), (RegularType,RegularType),

(SubtenantType, SubtenantType)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩),
(RegularType, ⟨TenantType,REGULAR⟩),
(SubtenantType, ⟨TenantType,SUBTENANT⟩), (“TwoRem” , string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string), (“B.R. Mankjon” , string), (“P.J.R. Nam”, string),
(“A.C.C. Turg” , string), (“L. Horn” , string), (“M. Silon” , string), (23, int),
(24, int), (18, int), (19, int)}

f11(Im11) = f10(Im10) ⊔ fEnumNodes(ImEnum) (Definition 4.4.27)
f ′
11(IG11) = f ′

10(IG10) ⊔ f ′
EnumNodes(IGEnumNodes) (Definition 4.4.32)

A visual representation of Tm11 and Im11 can be found in Figure 6.22. Similarly, a visual representation
of TG11 and IG11 can be found in Figure 6.23. Please note that because of the definitions of f11(Im11)
and f ′

11(IG11), we have that f11(Im11) = IG11 and f ′
11(IG11) = Im11. Furthermore, f11(Im11) and

f ′
11(IG11) are valid mapping functions themselves, such that they can be combined with another mapping

function in the next step.

The introduction of the tenant type enumeration type shows how different encodings can be combined
within the transformation framework. The previous enumeration for room sizes was encoded using flags,
while this enumeration is encoded using nodes types. Both of these encodings are present in the same
model with the same transformation function.

6.2.12 Tenant types
In the twelfth step, a field referencing the new enumeration type is introduced. Section 5.2.7 is used to
introduce the enumeration field on the type level, while on the instance level, Section 5.3.7 is used to
introduce the values.

The classtype of the new field is .Tenant, as the field will be defined for tenants. The name of the new
field is type and the enumid is .TenantType. Furthermore, the set of enumvalues is equal to the set
of values for the .TenantType enumeration type, so enumvalues = {REGULAR,SUBTENANT}. Then,
enumids returns for each enumeration value the corresponding node identifier used in the GROOVE
graph, while enumob lists the corresponding internal node id.

The set of objects of which the value is set is equal to all tenant objects, so objects = {Tenant1, T enant2,
T enant3, T enant4, T enant5}. The values function is defined as follows:

values = values = {(Tenant1,REGULAR), (Tenant2,REGULAR), (Tenant3,REGULAR),
(Tenant4,REGULAR), (Tenant5,SUBTENANT)}

The following model is obtained:

Page 208

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

age = 24age = 23

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

age = 18 age = 24

name = "M. Silon"

age = 19

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im11

House

name : EString

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

age : EInt

TenantType

REGULAR

SUBTENANT

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

(b) Type Model Tm11

Figure 6.22: The Ecore model after step 11

Page 209

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

RegularType : TenantType$REGULAR

SubtenantType : TenantType$SUBTENANT

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant
age = 23

name = "B.R. Mankjon"

Tenant2 : Tenant
age = 24

name = "P.J.R. Nam"

Tenant3 : Tenant
age = 18

name = "L. Horn"

Tenant4 : Tenant
age = 24

name = "A.C.C. Turg"

Tenant5 : Tenant
age = 19

name = "M. Silon"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

room_size

rooms

room_size room_size

rooms

rooms

room_size

rooms

room_size
rooms

(a) Instance Graph IG11

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant
age: int

name: string

TenantType

TenantType$REGULAR TenantType$SUBTENANT

rooms
room_size

(b) Type Graph TG11

Figure 6.23: The GROOVE graphs after step 11

Page 210

Models after step 12
Tm12 = combine(Tm11, TmEnumField) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize, .TenantType}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size), (.Tenant, name), (.Tenant, age), (.Tenant, type)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁
,(︁

(.Tenant, name), (string, 1..1)
)︁
,(︁

(.Tenant, age), (int, 1..1)
)︁
,(︁

(.Tenant, type), (.TenantType, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)

(.TenantType,REGULAR), (.TenantType,SUBTENANT)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Im12 = combine(Tm11, ImEnumField) =
Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

Page 211

Models after step 12

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

Tenant1, (.Tenant, name)
)︁
,
[︁
string, “B.R. Mankjon”

]︁)︂
,(︂(︁

Tenant2, (.Tenant, name)
)︁
,
[︁
string, “P.J.R. Nam”

]︁)︂
,(︂(︁

Tenant3, (.Tenant, name)
)︁
,
[︁
string, “L. Horn”

]︁)︂
,(︂(︁

Tenant4, (.Tenant, name)
)︁
,
[︁
string, “A.C.C. Turg”

]︁)︂
,(︂(︁

Tenant5, (.Tenant, name)
)︁
,
[︁
string, “M. Silon”

]︁)︂
,(︂(︁

Tenant1, (.Tenant, age)
)︁
,
[︁
int, 23

]︁)︂
,(︂(︁

Tenant2, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant3, (.Tenant, age)
)︁
,
[︁
int, 18

]︁)︂
,(︂(︁

Tenant4, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant5, (.Tenant, age)
)︁
,
[︁
int, 19

]︁)︂
,(︂(︁

Tenant1, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant2, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant3, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant4, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant5, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,SUBTENANT)

]︁)︂}︂
DefaultValue = {}

Page 212

Models after step 12
TG12 = combine(TG11, TGEnumFieldNodes) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, ⟨TenantType⟩,
⟨TenantType,REGULAR⟩, ⟨TenantType,SUBTENANT⟩, string, int}

ET =
{︁(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
,(︁

⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨TenantType⟩, ⟨TenantType⟩

)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType,REGULAR⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType,SUBTENANT⟩
)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType⟩
)︁
,
(︁
string, string

)︁
,
(︁
int, int

)︁}︁
abs = {⟨TenantType⟩}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 213

Models after step 12
IG12 = combine(TG11, IGEnumFieldNodes) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize,RegularType, SubtenantType, “TwoRem”, “B.H. Paleis” , “1”, “2”, “A”,
“B”, “C”, “B.R. Mankjon” , “P.J.R. Nam”, “L. Horn” , “A.C.C. Turg” , “M. Silon” , 23,
24, 18, 19}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “B.R. Mankjon”

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “P.J.R. Nam”

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “L. Horn”

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “A.C.C. Turg”

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “M. Silon”

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 23

)︂
,
(︂
Tenant2,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 18

)︂
,
(︂
Tenant4,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 19

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, SubtenantType

)︂
,

Page 214

Models after step 12(︂
SmallSize,

(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize), (RegularType,RegularType),

(SubtenantType, SubtenantType)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩),
(RegularType, ⟨TenantType,REGULAR⟩),
(SubtenantType, ⟨TenantType,SUBTENANT⟩), (“TwoRem” , string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string), (“B.R. Mankjon” , string), (“P.J.R. Nam”, string),
(“A.C.C. Turg” , string), (“L. Horn” , string), (“M. Silon” , string), (23, int),
(24, int), (18, int), (19, int)}

f12(Im12) = f11(Im11) ⊔ fEnumFieldNodes(ImEnumField) (Definition 4.4.27)
f ′
12(IG12) = f ′

11(IG11) ⊔ f ′
EnumFieldNodes(IGEnumFieldNodes) (Definition 4.4.32)

A visual representation of Tm12 and Im12 can be found in Figure 6.24. Similarly, a visual representation
of TG12 and IG12 can be found in Figure 6.25. Please note that because of the definitions of f12(Im12)
and f ′

12(IG12), we have that f12(Im12) = IG12 and f ′
12(IG12) = Im12. Furthermore, f12(Im12) and

f ′
12(IG12) are valid mapping functions themselves, such that they can be combined with another mapping

function in the next step.

The previous step showed how two different encodings of an enumeration type were combined within the
same model. This step concludes the combination of these encodings by showing that it is possible to
reference values from the tenant type enumeration type, even though it is encoded in a different encoding
than the room sizes enumeration type.

6.2.13 Room & tenant relationship
In the thirteenth step, a relationship between two objects is introduced. This is the first step in which
a relation is introduced between existing objects. For this relation, a object of .Room may reference a
single .Tenant object. Section 5.2.8 is used to introduce the field on the type level, while on the instance
level, Section 5.3.8 is used to introduce the values.

The classtype of the new field is .Room, as the field will be defined for rooms. The name of the new
field is tenant and the fieldtype is .Tenant. The set of objects that will receive a value is defined as
valobjects = {TRRoom1, TRRoom2, BHPRoomA,BHPRoomC}, while the set of objects that will not
receive a value is defined as nilobjects = {BHPRoomB}. The union of these sets is equal to all the
room objects, as expected. The function for obids returns the existing identifier of each of these objects.
The values function is defined as follows:

values = {(TRRoom1, T enant1), (TRRoom2, T enant2), (BHPRoomA, Tenant3),

(BHPRoomC, Tenant4)}

For the objects referenced by the objects in valobjects, the function obids returns their existing identifier.
The following model is obtained:

Page 215

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

age = 24age = 23

type = REGULAR type = REGULAR

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

age = 18 age = 24

type = REGULAR type = REGULAR

name = "M. Silon"

age = 19

type = SUBTENANT

roomsrooms

roomsrooms
rooms

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im12

House

name : EString

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

age : EInt

type :
TenantType

TenantType

REGULAR

SUBTENANT

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

(b) Type Model Tm12

Figure 6.24: The Ecore model after step 12

Page 216

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

RegularType : TenantType$REGULAR

SubtenantType : TenantType$SUBTENANT

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant
age = 23

name = "B.R. Mankjon"

Tenant2 : Tenant
age = 24

name = "P.J.R. Nam"

Tenant3 : Tenant
age = 18

name = "L. Horn"

Tenant4 : Tenant
age = 24

name = "A.C.C. Turg"

Tenant5 : Tenant
age = 19

name = "M. Silon"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

room_size

type

rooms

type

room_size

type

rooms

room_size

room_size

type

room_size

rooms rooms

rooms

type

(a) Instance Graph IG12

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant
age: int

name: string

TenantType

TenantType$REGULAR TenantType$SUBTENANT

rooms
room_size

type

(b) Type Graph TG12

Figure 6.25: The GROOVE graphs after step 12

Page 217

Models after step 13
Tm13 = combine(Tm12, TmNullableClassField) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize, .TenantType}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size), (.Room, tenant), (.Tenant, name), (.Tenant, age),

(.Tenant, type)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁
,(︁

(.Room, tenant), (?.Tenant, 0..1)
)︁
,(︁

(.Tenant, name), (string, 1..1)
)︁
,(︁

(.Tenant, age), (int, 1..1)
)︁
,(︁

(.Tenant, type), (.TenantType, 1..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)

(.TenantType,REGULAR), (.TenantType,SUBTENANT)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Im13 = combine(Tm12, ImNullableClassField) =
Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,

Page 218

Models after step 13 (︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_id)
)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

TRRoom1, (.Room, tenant),
[︁
obj, T enant1

]︁)︂
,(︂(︁

TRRoom2, (.Room, tenant),
[︁
obj, T enant2

]︁)︂
,(︂(︁

BHPRoomA, (.Room, tenant),
[︁
obj, T enant3

]︁)︂
,(︂(︁

BHPRoomB, (.Room, tenant),
[︁
nil
]︁)︂

,(︂(︁
BHPRoomC, (.Room, tenant),

[︁
obj, T enant4

]︁)︂
,(︂(︁

Tenant1, (.Tenant, name)
)︁
,
[︁
string, “B.R. Mankjon”

]︁)︂
,(︂(︁

Tenant2, (.Tenant, name)
)︁
,
[︁
string, “P.J.R. Nam”

]︁)︂
,(︂(︁

Tenant3, (.Tenant, name)
)︁
,
[︁
string, “L. Horn”

]︁)︂
,(︂(︁

Tenant4, (.Tenant, name)
)︁
,
[︁
string, “A.C.C. Turg”

]︁)︂
,(︂(︁

Tenant5, (.Tenant, name)
)︁
,
[︁
string, “M. Silon”

]︁)︂
,(︂(︁

Tenant1, (.Tenant, age)
)︁
,
[︁
int, 23

]︁)︂
,(︂(︁

Tenant2, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant3, (.Tenant, age)
)︁
,
[︁
int, 18

]︁)︂
,(︂(︁

Tenant4, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant5, (.Tenant, age)
)︁
,
[︁
int, 19

]︁)︂
,(︂(︁

Tenant1, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant2, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant3, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant4, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant5, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,SUBTENANT)

]︁)︂}︂
DefaultValue = {}

Page 219

Models after step 13
TG13 = combine(TG12, TGNullableClassField) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, ⟨TenantType⟩,
⟨TenantType,REGULAR⟩, ⟨TenantType,SUBTENANT⟩, string, int}

ET =
{︁(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩
)︁
,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
,(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
,(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨TenantType⟩, ⟨TenantType⟩

)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType,REGULAR⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType,SUBTENANT⟩
)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType⟩
)︁
,
(︁
string, string

)︁
,
(︁
int, int

)︁}︁
abs = {⟨TenantType⟩}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 220

Models after step 13
IG13 = combine(TG12, IGNullableClassField) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize,RegularType, SubtenantType, “TwoRem”, “B.H. Paleis” , “1”, “2”, “A”,
“B”, “C”, “B.R. Mankjon” , “P.J.R. Nam”, “L. Horn” , “A.C.C. Turg” , “M. Silon” , 23,
24, 18, 19}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant1

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant2

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant3

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant4

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “B.R. Mankjon”

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “P.J.R. Nam”

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “L. Horn”

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “A.C.C. Turg”

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “M. Silon”

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 23

)︂
,
(︂
Tenant2,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 18

)︂
,
(︂
Tenant4,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 19

)︂
,

Page 221

Models after step 13(︂
Tenant1,

(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, SubtenantType

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize), (RegularType,RegularType),

(SubtenantType, SubtenantType)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩),
(RegularType, ⟨TenantType,REGULAR⟩),
(SubtenantType, ⟨TenantType,SUBTENANT⟩), (“TwoRem”, string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string), (“B.R. Mankjon” , string), (“P.J.R. Nam”, string),
(“A.C.C. Turg” , string), (“L. Horn” , string), (“M. Silon” , string), (23, int),
(24, int), (18, int), (19, int)}

f13(Im13) = f12(Im12) ⊔ fNullableClassField(ImNullableClassField) (Definition 4.4.27)
f ′
13(IG13) = f ′

12(IG12) ⊔ f ′
NullableClassField(IGNullableClassField) (Definition 4.4.32)

A visual representation of Tm13 and Im13 can be found in Figure 6.26. Similarly, a visual representation
of TG13 and IG13 can be found in Figure 6.27. Please note that because of the definitions of f13(Im13)
and f ′

13(IG13), we have that f13(Im13) = IG13 and f ′
13(IG13) = Im13. Furthermore, f13(Im13) and

f ′
13(IG13) are valid mapping functions themselves, such that they can be combined with another mapping

function in the next step.

The visualisation shows the references between the rooms and the tenants. This transformation shows
how existing objects can be referenced by a new field, while also showing that values can be null. For
example, BHPRoomB has no tenant, which can be seen by the absence of a tenant relation in the
visualisation.

6.2.14 Tenant & subtenant relationship
In the fourteenth step, another relationship between two objects is introduced. For this relation, a object
of .Tenant may reference a single .Tenant object. Section 5.2.8 is used to introduce the field on the type
level, while on the instance level, Section 5.3.8 is used to introduce the values.

The classtype of the new field is .Tenant, as the field will be defined for tenants. The name of the new
field is subtenant and the fieldtype is equal to the classtype, .Tenant. The set of objects that will receive
a value is defined as valobjects = {Tenant4}, while the set of objects that will not receive a value is
defined as nilobjects = {Tenant1, T enant2, T enant3, T enant5}. The union of these sets is equal to all
the tenant objects, as expected. The function for obids returns the existing identifier of each of these

Page 222

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

age = 24age = 23

type = REGULAR type = REGULAR

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

age = 18 age = 24

type = REGULAR type = REGULAR

name = "M. Silon"

age = 19

type = SUBTENANT

roomsrooms

tenanttenant

roomsrooms
rooms

tenanttenant

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im13

House

name : EString

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

age : EInt

type :
TenantType

TenantType

REGULAR

SUBTENANT

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

[0..1] tenant

(b) Type Model Tm13

Figure 6.26: The Ecore model after step 13

Page 223

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

RegularType : TenantType$REGULAR

SubtenantType : TenantType$SUBTENANT

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant
age = 23

name = "B.R. Mankjon"

Tenant2 : Tenant
age = 24

name = "P.J.R. Nam"

Tenant3 : Tenant
age = 18

name = "L. Horn"

Tenant4 : Tenant
age = 24

name = "A.C.C. Turg"

Tenant5 : Tenant
age = 19

name = "M. Silon"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

rooms

tenant

rooms

room_size

type

room_size

type

tenant

rooms

tenant

rooms

typetype

room_size

rooms

room_size

type

tenant

room_size

(a) Instance Graph IG13

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant
age: int

name: string

TenantType

TenantType$REGULAR TenantType$SUBTENANT

rooms
room_size

type

tenant

(b) Type Graph TG13

Figure 6.27: The GROOVE graphs after step 13

Page 224

objects. The values function is defined as follows:

values = {(Tenant4, T enant5)

For the objects referenced by the objects in valobjects, the function obids returns their existing identifier.
The following model is obtained:

Models after step 14
Tm14 = combine(Tm13, TmNullableClassField) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize, .TenantType}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, room_size), (.Room, tenant), (.Tenant, name), (.Tenant, age),

(.Tenant, type), (.Tenant, subtenant)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁
,(︁

(.Room, tenant), (?.Tenant, 0..1)
)︁
,(︁

(.Tenant, name), (string, 1..1)
)︁
,(︁

(.Tenant, age), (int, 1..1)
)︁
,(︁

(.Tenant, type), (.TenantType, 1..1)
)︁
,(︁

(.Tenant, subtenant), (?.Tenant, 0..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)

(.TenantType,REGULAR), (.TenantType,SUBTENANT)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 225

Models after step 14
Im14 = combine(Tm13, ImNullableClassField) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TRRoom1, (.Room, room_id)

)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,

Page 226

Models after step 14 (︂(︁
BHPRoomA, (.Room, room_id)

)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

TRRoom1, (.Room, tenant),
[︁
obj, T enant1

]︁)︂
,(︂(︁

TRRoom2, (.Room, tenant),
[︁
obj, T enant2

]︁)︂
,(︂(︁

BHPRoomA, (.Room, tenant),
[︁
obj, T enant3

]︁)︂
,(︂(︁

BHPRoomB, (.Room, tenant),
[︁
nil
]︁)︂

,(︂(︁
BHPRoomC, (.Room, tenant),

[︁
obj, T enant4

]︁)︂
,(︂(︁

Tenant1, (.Tenant, name)
)︁
,
[︁
string, “B.R. Mankjon”

]︁)︂
,(︂(︁

Tenant2, (.Tenant, name)
)︁
,
[︁
string, “P.J.R. Nam”

]︁)︂
,(︂(︁

Tenant3, (.Tenant, name)
)︁
,
[︁
string, “L. Horn”

]︁)︂
,(︂(︁

Tenant4, (.Tenant, name)
)︁
,
[︁
string, “A.C.C. Turg”

]︁)︂
,(︂(︁

Tenant5, (.Tenant, name)
)︁
,
[︁
string, “M. Silon”

]︁)︂
,(︂(︁

Tenant1, (.Tenant, age)
)︁
,
[︁
int, 23

]︁)︂
,(︂(︁

Tenant2, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant3, (.Tenant, age)
)︁
,
[︁
int, 18

]︁)︂
,(︂(︁

Tenant4, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant5, (.Tenant, age)
)︁
,
[︁
int, 19

]︁)︂
,(︂(︁

Tenant1, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant2, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant3, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant4, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant5, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,SUBTENANT)

]︁)︂
,(︂(︁

Tenant1, (.Tenant, subtenant)
)︁
,
[︁
nil
]︁)︂

,(︂(︁
Tenant2, (.Tenant, subtenant)

)︁
,
[︁
nil
]︁)︂

,(︂(︁
Tenant3, (.Tenant, subtenant)

)︁
,
[︁
nil
]︁)︂

,(︂(︁
Tenant4, (.Tenant, subtenant)

)︁
,
[︁
obj, T enant3

]︁)︂
,(︂(︁

Tenant5, (.Tenant, subtenant)
)︁
,
[︁
nil
]︁)︂}︂

DefaultValue = {}

Page 227

Models after step 14
TG14 = combine(TG13, TGNullableClassField) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, ⟨TenantType⟩,
⟨TenantType,REGULAR⟩, ⟨TenantType,SUBTENANT⟩, string, int}

ET =
{︁(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,(︁

⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩
)︁
,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
,(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
,(︁

⟨Tenant⟩, ⟨subtenant⟩, ⟨Tenant⟩
)︁
,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
,(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨TenantType⟩, ⟨TenantType⟩

)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType,REGULAR⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType,SUBTENANT⟩
)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType⟩
)︁
,
(︁
string, string

)︁
,
(︁
int, int

)︁}︁
abs = {⟨TenantType⟩}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨subtenant⟩, ⟨Tenant⟩
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 228

Models after step 14
IG14 = combine(TG13, IGNullableClassField) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize,RegularType, SubtenantType, “TwoRem”, “B.H. Paleis” , “1”, “2”, “A”,
“B”, “C”, “B.R. Mankjon” , “P.J.R. Nam”, “L. Horn” , “A.C.C. Turg” , “M. Silon” , 23,
24, 18, 19}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant1

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant2

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant3

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant4

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “B.R. Mankjon”

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “P.J.R. Nam”

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “L. Horn”

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “A.C.C. Turg”

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “M. Silon”

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 23

)︂
,
(︂
Tenant2,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 18

)︂
,
(︂
Tenant4,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 19

)︂
,

Page 229

Models after step 14(︂
Tenant1,

(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, SubtenantType

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨subtenant⟩, ⟨Tenant⟩

)︁
, T enant5

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize), (RegularType,RegularType),

(SubtenantType, SubtenantType)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩),
(RegularType, ⟨TenantType,REGULAR⟩),
(SubtenantType, ⟨TenantType,SUBTENANT⟩), (“TwoRem”, string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string), (“B.R. Mankjon” , string), (“P.J.R. Nam”, string),
(“A.C.C. Turg” , string), (“L. Horn” , string), (“M. Silon” , string), (23, int),
(24, int), (18, int), (19, int)}

f14(Im14) = f13(Im13) ⊔ fNullableClassField(ImNullableClassField) (Definition 4.4.27)
f ′
14(IG14) = f ′

13(IG13) ⊔ f ′
NullableClassField(IGNullableClassField) (Definition 4.4.32)

A visual representation of Tm14 and Im14 can be found in Figure 6.28. Similarly, a visual representation
of TG14 and IG14 can be found in Figure 6.29. Please note that because of the definitions of f14(Im14)
and f ′

14(IG14), we have that f14(Im14) = IG14 and f ′
14(IG14) = Im14. Furthermore, f14(Im14) and

f ′
14(IG14) are valid mapping functions themselves, such that they can be combined with another mapping

function in the next step.

The visualisation shows once more a new field for referencing existing objects. The most important
aspect of this field is that it can reference objects from the same type as its source type. This property
is useful for making self relations, but also for creating relations between objects of the same type, as
can be seen in the visualisation of Tenant4, which has Tenant5 as a subtenant.

6.2.15 Living rooms
In the final step, a last data field is introduced. In this step, the .House class is enriched with an
living_room field and its values. As before, Section 5.2.6 is used to introduce the field, while on the
instance level, Section 5.3.6 is used to introduce the values.

The classtype of the new field is .House, as the field will be defined for houses. The name of the new
field is living_room and the fieldtype is bool. The set of objects of which the value is set is is equal to
all house objects, so objects = {TR,BHP}. The function for obids returns the existing identifier of each

Page 230

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"

name = "B.H. Paleis"

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

age = 24age = 23

type = REGULAR type = REGULAR

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

age = 18 age = 24

type = REGULAR type = REGULAR

name = "M. Silon"

age = 19

type = SUBTENANT

roomsrooms

tenanttenant

roomsrooms
rooms

tenanttenant

subtenant

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im14

House

name : EString

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

age : EInt

type :
TenantType

TenantType

REGULAR

SUBTENANT

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

[0..1] tenant

[0..1] subtenant

(b) Type Model Tm14

Figure 6.28: The Ecore model after step 14

Page 231

BHP : House
name = "B.H. Paleis"

TR : House
name = "TwoRem"

RegularType : TenantType$REGULAR

SubtenantType : TenantType$SUBTENANT

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant
age = 23

name = "B.R. Mankjon"

Tenant2 : Tenant
age = 24

name = "P.J.R. Nam"

Tenant3 : Tenant
age = 18

name = "L. Horn"

Tenant4 : Tenant
age = 24

name = "A.C.C. Turg"

Tenant5 : Tenant
age = 19

name = "M. Silon"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

room_size

type

subtenant

rooms

room_size

rooms

tenant

rooms

type

room_size

type

tenant

tenant

rooms

tenant

room_sizeroom_size

type

type

rooms

(a) Instance Graph IG14

House
name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant
age: int

name: string

TenantType

TenantType$REGULAR TenantType$SUBTENANT

rooms
room_size

type

tenant

subtenant

(b) Type Graph TG14

Figure 6.29: The GROOVE graphs after step 14

Page 232

of these objects. The values function is defined as follows:

values = {(TR, false), (BHP, true)}

The following model is obtained:

Models after step 15
Tm15 = combine(Tm14, TmDataField) =

Class = {.House, .Room, .Tenant}
Enum = {.RoomSize, .TenantType}

UserDataType = {}
Field = {(.House, name), (.House, rooms), (.Room, room_id),

(.Room, living_room), (.Room, room_size), (.Room, tenant),

(.Tenant, name), (.Tenant, age), (.Tenant, type),

(.Tenant, subtenant)}
FieldSig =

{︁(︁
(.House, name), (string, 1..1)

)︁
,(︁

(.House, rooms), ([setof, !.Room], 0..9)
)︁
,(︁

(.Room, room_id), (string, 1..1)
)︁
,(︁

(.Room, room_size), (.RoomSize, 1..1)
)︁
,(︁

(.Room, living_room), (bool, 1..1)
)︁
,(︁

(.Room, tenant), (?.Tenant, 0..1)
)︁
,(︁

(.Tenant, name), (string, 1..1)
)︁
,(︁

(.Tenant, age), (int, 1..1)
)︁
,(︁

(.Tenant, type), (.TenantType, 1..1)
)︁
,(︁

(.Tenant, subtenant), (?.Tenant, 0..1)
)︁}︁

EnumV alue = {(.RoomSize,SMALL), (.RoomSize,MEDIUM), (.RoomSize, LARGE)

(.TenantType,REGULAR), (.TenantType,SUBTENANT)}
Inh = {}

Prop =
{︁(︁

containment, (.House, rooms)
)︁}︁

Constant = {}
ConstType = {}

Page 233

Models after step 15
Im15 = combine(Tm14, ImDataField) =

Object = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,

BHPRoomC, Tenant1, T enant2, T enant3, T enant4, T enant5}
ObjectClass(ob) = {(TR, .House), (BHP, .House), (TRRoom1, .Room),

(TRRoom2, .Room), (BHPRoomA, .Room), (BHPRoomB, .Room),

(BHPRoomC, .Room, (Tenant1, .Tenant), (Tenant2, .Tenant),

(Tenant3, .Tenant), (Tenant4, .Tenant), (Tenant5, .Tenant)}
ObjectId = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1),

(TRRoom2, TRRoom2), (BHPRoomA,BHPRoomA),

(BHPRoomB,BHPRoomB), (BHPRoomC,BHPRoomC),

(Tenant1, T enant1), (Tenant2, T enant2), (Tenant3, T enant3),

(Tenant4, T enant4), (Tenant5, T enant5)}

FieldValue =
{︂(︂(︁

TR, (.House, name)
)︁
,
[︁
string, “TwoRem”

]︁)︂
,(︂(︁

BHP, (.House, name)
)︁
,
[︁
string, “B.H. Paleis”

]︁)︂
,(︂(︁

TR, (.House, rooms)
)︁
,
[︁
setof,

⟨︁
[obj, TRRoom1],

[obj, TRRoom2]
⟩︁]︁)︂

,(︂(︁
BHP, (.House, rooms)

)︁[︁
setof,

⟨︁
[obj, BHPRoomA],

[obj, BHPRoomB], (obj, BHPRoomC)
⟩︁]︁)︂

,(︂(︁
TR, (.House, living_room))

)︁
,
[︁
boolean, false

]︁)︂
,(︂(︁

BHP, (.House, living_room))
)︁
,
[︁
boolean, true

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_id)
)︁
,
[︁
string, “1”

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_id)
)︁
,
[︁
string, “2”

]︁)︂
,

Page 234

Models after step 15 (︂(︁
BHPRoomA, (.Room, room_id)

)︁
,
[︁
string, “A”

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_id)
)︁
,
[︁
string, “B”

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_id)
)︁
,
[︁
string, “C”

]︁)︂
,(︂(︁

TRRoom1, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize, LARGE)

]︁)︂
,(︂(︁

TRRoom2, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,MEDIUM)

]︁)︂
,(︂(︁

BHPRoomA, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomB, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

BHPRoomC, (.Room, room_size)
)︁
,
[︁
enum, (.RoomSize,SMALL)

]︁)︂
,(︂(︁

TRRoom1, (.Room, tenant),
[︁
obj, T enant1

]︁)︂
,(︂(︁

TRRoom2, (.Room, tenant),
[︁
obj, T enant2

]︁)︂
,(︂(︁

BHPRoomA, (.Room, tenant),
[︁
obj, T enant3

]︁)︂
,(︂(︁

BHPRoomB, (.Room, tenant),
[︁
nil
]︁)︂

,(︂(︁
BHPRoomC, (.Room, tenant),

[︁
obj, T enant4

]︁)︂
,(︂(︁

Tenant1, (.Tenant, name)
)︁
,
[︁
string, “B.R. Mankjon”

]︁)︂
,(︂(︁

Tenant2, (.Tenant, name)
)︁
,
[︁
string, “P.J.R. Nam”

]︁)︂
,(︂(︁

Tenant3, (.Tenant, name)
)︁
,
[︁
string, “L. Horn”

]︁)︂
,(︂(︁

Tenant4, (.Tenant, name)
)︁
,
[︁
string, “A.C.C. Turg”

]︁)︂
,(︂(︁

Tenant5, (.Tenant, name)
)︁
,
[︁
string, “M. Silon”

]︁)︂
,(︂(︁

Tenant1, (.Tenant, age)
)︁
,
[︁
int, 23

]︁)︂
,(︂(︁

Tenant2, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant3, (.Tenant, age)
)︁
,
[︁
int, 18

]︁)︂
,(︂(︁

Tenant4, (.Tenant, age)
)︁
,
[︁
int, 24

]︁)︂
,(︂(︁

Tenant5, (.Tenant, age)
)︁
,
[︁
int, 19

]︁)︂
,(︂(︁

Tenant1, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant2, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant3, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant4, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,REGULAR)

]︁)︂
,(︂(︁

Tenant5, (.Tenant, type)
)︁
,
[︁
enum, (.TenantType,SUBTENANT)

]︁)︂
,(︂(︁

Tenant1, (.Tenant, subtenant)
)︁
,
[︁
nil
]︁)︂

,(︂(︁
Tenant2, (.Tenant, subtenant)

)︁
,
[︁
nil
]︁)︂

,(︂(︁
Tenant3, (.Tenant, subtenant)

)︁
,
[︁
nil
]︁)︂

,(︂(︁
Tenant4, (.Tenant, subtenant)

)︁
,
[︁
obj, T enant3

]︁)︂
,(︂(︁

Tenant5, (.Tenant, subtenant)
)︁
,
[︁
nil
]︁)︂}︂

DefaultValue = {}

Page 235

Models after step 15
TG15 = combine(TG14, TGDataField) =

NT = {⟨House⟩, ⟨Room⟩, ⟨Tenant⟩, ⟨RoomSize⟩, ⟨TenantType⟩,
⟨TenantType,REGULAR⟩, ⟨TenantType,SUBTENANT⟩, string, int, bool}

ET =
{︁(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
,(︁

⟨House⟩, ⟨living_room⟩, bool
)︁
,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
,(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
,(︁

⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩
)︁
,
(︁
⟨Tenant⟩, ⟨subtenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁}︁

⊑ =
{︁(︁

⟨House⟩, ⟨House⟩
)︁
,
(︁
⟨Room⟩, ⟨Room⟩

)︁
,
(︁
⟨Tenant⟩, ⟨Tenant⟩

)︁
,(︁

⟨RoomSize⟩, ⟨RoomSize⟩
)︁
,
(︁
⟨TenantType⟩, ⟨TenantType⟩

)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType,REGULAR⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType,SUBTENANT⟩
)︁
,(︁

⟨TenantType,REGULAR⟩, ⟨TenantType⟩
)︁
,(︁

⟨TenantType,SUBTENANT⟩, ⟨TenantType⟩
)︁
,
(︁
string, string

)︁
,
(︁
int, int

)︁
,(︁

bool, bool
)︁}︁

abs = {⟨TenantType⟩}

mult =
{︂(︂(︁

⟨House⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨House⟩, ⟨rooms⟩, ⟨Room⟩
)︁
,
(︁
0..1, 0..9

)︁)︂
,(︂(︁

⟨House⟩, ⟨living_room⟩, bool
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_id⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨name⟩, string
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨age⟩, int
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩
)︁
,
(︁
0..∗, 1..1

)︁)︂
,(︂(︁

⟨Tenant⟩, ⟨subtenant⟩, ⟨Tenant⟩
)︁
,
(︁
0..∗, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂
,(︂(︁

⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩
)︁
,
(︁
0..1, 0..1

)︁)︂}︂
contains =

{︁(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁}︁

Page 236

Models after step 15
IG15 = combine(TG14, IGDataField) =

N = {TR,BHP, TRRoom1, TRRoom2, BHPRoomA,BHPRoomB,BHPRoomC,

Tenant1, T enant2, T enant3, T enant4, T enant5, SmallSize,MediumSize,

LargeSize,RegularType, SubtenantType, “TwoRem”, “B.H. Paleis” , “1”, “2”, “A”,
“B”, “C”, “B.R. Mankjon” , “P.J.R. Nam”, “L. Horn” , “A.C.C. Turg” , “M. Silon” , 23,
24, 18, 19, false, true}

E =
{︂(︂

TR,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “TwoRem”

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨name⟩, string

)︁
, “B.H. Paleis”

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨living_room⟩, bool

)︁
, false

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨living_room⟩, bool

)︁
, true

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom1

)︂
,(︂

TR,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, TRRoom2

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomA

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomB

)︂
,(︂

BHP,
(︁
⟨House⟩, ⟨rooms⟩, ⟨Room⟩

)︁
, BHPRoomC

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “1”

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “2”

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “A”

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “B”

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_id⟩, string

)︁
, “C”

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant1

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant2

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant3

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨tenant⟩, ⟨Tenant⟩

)︁
, T enant4

)︂
,(︂

TRRoom1,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂
,(︂

TRRoom2,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

BHPRoomA,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomB,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

BHPRoomC,
(︁
⟨Room⟩, ⟨room_size⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “B.R. Mankjon”

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “P.J.R. Nam”

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “L. Horn”

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “A.C.C. Turg”

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨name⟩, string

)︁
, “M. Silon”

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 23

)︂
,
(︂
Tenant2,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 18

)︂
,
(︂
Tenant4,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 24

)︂
,

Page 237

Models after step 15(︂
Tenant5,

(︁
⟨Tenant⟩, ⟨age⟩, int

)︁
, 19

)︂
,(︂

Tenant1,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant2,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant3,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, RegularType

)︂
,(︂

Tenant5,
(︁
⟨Tenant⟩, ⟨type⟩, ⟨TenantType⟩

)︁
, SubtenantType

)︂
,(︂

Tenant4,
(︁
⟨Tenant⟩, ⟨subtenant⟩, ⟨Tenant⟩

)︁
, T enant5

)︂
,(︂

SmallSize,
(︁
⟨RoomSize⟩, ⟨SMALL⟩, ⟨RoomSize⟩

)︁
, SmallSize

)︂
,(︂

MediumSize,
(︁
⟨RoomSize⟩, ⟨MEDIUM⟩, ⟨RoomSize⟩

)︁
,MediumSize

)︂
,(︂

LargeSize,
(︁
⟨RoomSize⟩, ⟨LARGE⟩, ⟨RoomSize⟩

)︁
, LargeSize

)︂}︂
ident = {(TR, TR), (BHP,BHP), (TRRoom1, TRRoom1), (TRRoom2, TRRoom2),

(BHPRoomA,BHPRoomA), (BHPRoomB,BHPRoomB),

(BHPRoomC,BHPRoomC), (Tenant1, T enant1), (Tenant2, T enant2),

(Tenant3, T enant3), (Tenant4, T enant4), (Tenant5, T enant5),

(SmallSize, SmallSize), (MediumSize,MediumSize),

(LargeSize, LargeSize), (RegularType,RegularType),

(SubtenantType, SubtenantType)}
typen = {(TR, ⟨House⟩), (BHP, ⟨House⟩), (TRRoom1, ⟨Room⟩), (TRRoom2, ⟨Room⟩),

(BHPRoomA, ⟨Room⟩), (BHPRoomB, ⟨Room⟩), (BHPRoomC, ⟨Room⟩),
(Tenant1, ⟨Tenant⟩), (Tenant2, ⟨Tenant⟩), (Tenant3, ⟨Tenant⟩),
(Tenant4, ⟨Tenant⟩), (Tenant5, ⟨Tenant⟩), (SmallSize, ⟨RoomSize⟩),
(MediumSize, ⟨RoomSize⟩), (LargeSize, ⟨RoomSize⟩),
(RegularType, ⟨TenantType,REGULAR⟩),
(SubtenantType, ⟨TenantType,SUBTENANT⟩), (“TwoRem”, string),
(“B.H. Paleis”, string), (“1”, string), (“2”, string), (“A”, string), (“B”, string),
(“C”, string), (“B.R. Mankjon” , string), (“P.J.R. Nam”, string),
(“A.C.C. Turg” , string), (“L. Horn” , string), (“M. Silon” , string), (23, int),
(24, int), (18, int), (19, int), (false, bool), (true, bool)}

f15(Im15) = f14(Im14) ⊔ fDataField(ImDataField) (Definition 4.4.27)
f ′
15(IG15) = f ′

14(IG14) ⊔ f ′
DataField(IGDataField) (Definition 4.4.32)

A visual representation of Tm15 and Im15 can be found in Figure 6.30. Similarly, a visual representation
of TG15 and IG15 can be found in Figure 6.31. Please note that because of the definitions of f15(Im15)
and f ′

15(IG15), we have that f15(Im15) = IG15 and f ′
15(IG15) = Im15. Furthermore, f15(Im15) and

f ′
15(IG15) are valid mapping functions themselves, such that they can be combined with another mapping

function in the next step.

The final step is just for completeness and shows the addition of a data field for the last time. This time,
it is shown that fields can still be added to already existing types with (containment) relations, by adding
a boolean attribute to the rooms. The final model and graphs can be seen in the visualisations.

Page 238

TR :House

BHP :House

TRRoom2 :RoomTRRoom1 :Room

BHPRoomA :Room BHPRoomB :Room BHPRoomC :Room

Tenant1 :Tenant Tenant2 :Tenant

Tenant3 :Tenant Tenant4 :Tenant

Tenant5 :Tenant

name = "TwoRem"
living_room = false

name = "B.H. Paleis"
living_room = true

room_id = "B" room_id = "C"

room_id = "2"room_id = "1"

room_size = "LARGE" room_size = "MEDIUM"

name = "P.J.R. Nam"name = "B.R. Mankjon"

age = 24age = 23

type = REGULAR type = REGULAR

room_size = "SMALL" room_size = "SMALL"

name = "A.C.C. Turg"name = "L. Horn"

age = 18 age = 24

type = REGULAR type = REGULAR

name = "M. Silon"

age = 19

type = SUBTENANT

roomsrooms

tenanttenant

roomsrooms
rooms

tenanttenant

subtenant

BHPRoomA :Room

room_size = "SMALL"

room_id = "A"

(a) Instance Model Im15

House

name : EString

living_room :
EBoolean

Room

room_id : EString

room_size :
RoomSize

Tenant

name : EString

age : EInt

type :
TenantType

TenantType

REGULAR

SUBTENANT

RoomSize

SMALL

MEDIUM

LARGE[0..9] rooms

[0..1] tenant

[0..1] subtenant

(b) Type Model Tm15

Figure 6.30: The Ecore model after the final step

Page 239

BHP : House
living_room = true

name = "B.H. Paleis"

TR : House
living_room = false
name = "TwoRem"

RegularType : TenantType$REGULAR

SubtenantType : TenantType$SUBTENANT

SmallSize : RoomSize
SMALL

MediumSize : RoomSize
MEDIUM

LargeSize : RoomSize
LARGE

TRRoom1 : Room
room_id = "1"

TRRoom2 : Room
room_id = "2"

Tenant1 : Tenant
age = 23

name = "B.R. Mankjon"

Tenant2 : Tenant
age = 24

name = "P.J.R. Nam"

Tenant3 : Tenant
age = 18

name = "L. Horn"

Tenant4 : Tenant
age = 24

name = "A.C.C. Turg"

Tenant5 : Tenant
age = 19

name = "M. Silon"

BHPRoomA : Room
room_id = "A"

BHPRoomB : Room
room_id = "B"

BHPRoomC : Room
room_id = "C"

room_size

room_size

subtenant

rooms

type

rooms

type

rooms

tenant

room_size tenant

tenant

room_size

type

tenant

rooms

type

rooms

type

room_size

(a) Instance Graph IG15

House
living_room: bool

name: string

Room
room_id: string

RoomSize
LARGE

MEDIUM
SMALL

Tenant
age: int

name: string

TenantType

TenantType$REGULAR TenantType$SUBTENANT

rooms room_size
type

tenant

subtenant

(b) Type Graph TG15

Figure 6.31: The GROOVE graphs after the final step

Page 240

Chapter 7

Conclusion

In Chapter 1 of this thesis, the need for verification in complex software projects was discussed. Modern
approaches to software verification use models to verify a piece of software. However, not all models
are suited for this task. Moreover, creating multiple models in different modelling languages for the
same software is time-consuming and expensive. The use of model transformations to automatically
transform models between different modelling languages was presented as a solution. However, in order
for model transformations to be of use in the context of software verification, a formal foundation for the
model transformations is required. This thesis has shown a formal foundation for model transformations
between EMF/Ecore and GROOVE, which can be of use in the field of software verification.

As discussed in Section 2.1, EMF/Ecore is a popular modelling language for modelling software. However,
its models are not well-suited for verification. As discussed in Section 2.2, GROOVE is created especially
for software verification but uses a different modelling language than EMF/Ecore. Therefore, model
transformations should be used to convert between the two models automatically. A formalisation of the
modelling languages themselves was provided in Chapter 3. These formalisations are the foundation of
the formalisation of the model transformations presented as part of the transformation framework.

The transformation framework presented in Chapter 4 provides the main result of this thesis. The
transformation framework includes a formalisation of transformation functions between Ecore models
and GROOVE graphs, which allows the user to reason about these transformation functions formally.
Furthermore, the transformation framework has presented a structured way to compose these transforma-
tion functions iteratively while maintaining the correctness. The composability of these transformation
functions is essential, as it allows the user of the framework to build significant model transformations
without loss of correctness. The correctness property is relevant in the field of software verification, as it
allows for verification of Ecore models within GROOVE, without the loss of confidence that the results
might be incorrect due to transformation errors.

In order to further validate the transformation framework, Chapter 5 has presented a small library of
transformations that can be used within the transformation framework. The transformations from the
library presented in this chapter are all small transformations with a few elements, that can be added to
a larger model using the framework. In this way, the transformations can be used to compose significant
transformations. The library of transformations allows a user to build specific models without the need
to define transformation functions for each created model.

Finally, Chapter 6 has shown an application of the transformation framework and the library of transfor-
mations in a practical example. Throughout the chapter, a single model is built from scratch, showing
each of the steps taken to build the model using the transformation framework. Each step combines a
transformation from the library of transformations with the existing transformation function, making
the transformation function larger and allowing more complex models to be transformed.

In this final chapter, the work presented by the thesis will be concluded. First, the advantages and
limitations of the work will be discussed. Then the work will be evaluated and the research questions
introduced in Section 1.4 will be answered. Finally, some proposals for future work are discussed.

7.1 Advantages & Limitations
Although the approach taken by this thesis has some distinct advantages over other possible methods
for proving the correctness of model transformations, there are also some limitations of the work that
need to be discussed. These advantages and limitations are further discussed in this section before the
work is evaluated.

Page 241

As explained earlier, the transformation framework presented in Chapter 4 is considered the main result
of this thesis. This framework is compelling, in that it allows to compose model transformations, which
allows for creating possibly infinitely large model transformations between Ecore and GROOVE. In order
to have composable model transformations, the concept of combining models and graphs is used. Within
this work, it has been chosen to maintain the correctness of the transformation at each step. This
correctness means that only valid or consistent models and graphs are used within each step. The use
of correct models and graphs is favourable because it makes proving the correctness of the combination
much more straightforward. The correctness properties of the individual models and graphs can be used
to prove the correctness of the combinations.

Maintaining correctness in each step of the composition is a definite advantage to maintaining the proof
of correctness. However, it also presents limitations for the transformation steps. Because of the required
correctness properties, each transformation step has to be valid itself. For some transformations, this
means quite significant transformation steps. For example, when introducing a new field on the type
level, it is required to introduce the value for this field for all related objects on the instance level
within one step. The introduction of all values at once is the only way that correctness is maintained.
However, these are already quite large proofs, and they become increasingly complicated when adding
inheritance. If a field is added to a supertype, a value for the field must be introduced for all instances
of the supertype and its subtypes. Introducing values in this way means that an even more significant
transformation step is needed to achieve such a composition. In practice, it is possible to use more
substantial transformations, but it means that the complexity of proving each transformation step is
increased.

The consequences of this limitation are directly visible from the library of transformations, Chapter 5.
The transformations that introduce new fields are already quite complex, especially in their proofs.
Furthermore, these transformations cannot be used on extended types because of the limitation above.
Separate transformations need to be proven to allow the addition of fields to an extended type.

Because of the limitations of the transformation framework and the limited amount of time available
for this thesis, the library of transformations is quite small and incomplete. Only a selected set of
transformations is presented here, which does not even cover all concepts of Ecore. On the side of Ecore,
the following concepts still need to be covered:

• The introduction of fields on types that are extended by other types, as discussed above.

• The introduction of fields typed by different container types still needs to be covered. Only one
transformation shows the use of a setof-type in conjunction with a containment property (Sec-
tion 5.2.9 and Section 5.3.9), but the other containers also need to be covered. Also, container
types containing attributes still need to be covered.

• The concept of multiple inheritance, which is supported by Ecore and GROOVE, but not used
in any transformation. Only one transformation with ‘single’ inheritance is shown as part of
Section 5.2.3 and Section 5.3.3.

• Most of the different model properties (Definition 3.2.10), defaultValue, identity, keyset, opposite
and readonly to be precise, are not yet covered by any of the transformations. The model properties
that are covered, abstract and containment are not yet covered in their full potential.

• The introduction of constants and their corresponding values is not covered yet. Since they are
only used in conjunction with defaultValue properties, it makes sense to cover them at the same
time.

Covering all concepts of Ecore with one or more encodings in GROOVE would mean that all concepts
of GROOVE are also covered. However, this way of achieving coverage means the addition of a lot more
transformations, which could be its own research. Therefore, this is considered future work as described
in Section 7.3.

A different limitation of this thesis, in general, is the focus on syntactical correctness only. No effort has
been made to prove the correctness of the semantics of a model under transformation. This correctness
property has been excluded on purpose, as EMF/Ecore is a quite general modelling framework in which
a lot of different software models can be expressed. Therefore, it is difficult to prove something about
the semantics on an abstract level. A consequence of this decision is that curious encodings are possible,
which are still syntactically correct. For example, one might create an encoding that multiplies all
integer values within a model with a certain number x, when transformed into a GROOVE graph. Then,
a different transformations function can be used to convert back to a model, dividing all integer values
with the same number x. Although this is syntactically correct, it could have enormous implications for
the use within software verification, as the values of the model have changed. If this is not taken into
account beforehand, the results of the software verification could still be questionable.

Page 242

Although the work presented by this thesis has some limitations, the work is still considered a useful
contribution. It is believed (although not proven) that it is possible to work around the limitations of
the transformation framework, possibly with more substantial transformations. Moreover, the semantics
of a transformation could be addressed in future research and does not invalidate the work presented
here. Therefore, the work presented in this thesis should be used as a foundation, rather than a piece of
work that is ready to use.

7.2 Evaluation
This section will evaluate the research carried out in this thesis and answer the main research question
presented in Section 1.4. In order to answer the main research question, the subquestions need to be
evaluated and answered. The answers to the subquestions are the following:

1. “What is a suitable formalisation of Ecore models and what Ecore models are valid within this
formalisation?”

For this thesis, a suitable formalisation of Ecore was presented in Section 3.2. The formalisation is
considered suitable since it can express almost all concepts of Ecore. Therefore, it is also able to
express all the models used throughout this thesis, which are type models and instance models.

The set of valid models within this formalisation depend on the model level. For type models, the
set of consistent models is constrained by Definition 3.2.11. For instance models, the set of valid
models is constrained by Definition 3.2.19. These definitions answer the question which models are
valid within the formalisation, and the examples shown throughout this thesis show the existence
of these models.

The answer to this question is validated using the existing theory available on Ecore. Also, each
part of the formalisation can be traced back to elements within the Ecore metamodel. Together,
the answer to the first question is considered validated.

2. “What is a suitable formalisation of GROOVE grammars and what GROOVE grammars are valid
within this formalisation?”

Just like the previous question, a suitable formalisation was presented within this thesis. The
suitable formalisation for GROOVE graphs can be found in Section 3.3. The formalisation is
considered suitable since it can express the relevant GROOVE graphs used throughout this thesis,
which are type models and instance models.

The set of valid grammars within the formalisation depend on the set of graphs defined for a
GROOVE grammar. In order to answer the main research question, it is only relevant to know
when type graphs and instance graphs are valid. For type graphs, the set of consistent graphs
is constrained by Definition 3.3.5. For instance graphs, the set of valid graphs is constrained
by Definition 3.3.10. These definitions answer the question of which graphs are valid within the
formalisation, and the examples shown throughout this thesis show the existence of these graphs.
Since the main research question only needs to show the validity of the presented graph types, the
answer to the question is sufficient.

Once more, the answer to this question is validated using the existing theory available. Existing
theory on GROOVE and graph theory has been used to validate the formalisation, and therefore
the answer to this question is considered validated.

3. “What is a suitable formalisation for the model transformations between Ecore and GROOVE?”

A formalisation for model transformations between Ecore and GROOVE was given as part of the
presented transformation framework in Chapter 4. Definition 4.3.25, Definition 4.3.30, Defini-
tion 4.4.26 and Definition 4.4.31 are the relevant definitions that specify the properties of (com-
posable) transformation functions between different models and graphs.

The formalisation is considered suitable since it gives rise to a significant set of possible transfor-
mations, which allow for building large complex models. The existence and correctness of this set
are validated using the library of transformations in Chapter 5, which defines and proves a small
set of possible transformations within this formalisation. These transformations show the existence
of model transformations between Ecore and GROOVE that fit within the presented formalisation.
Furthermore, the transformations can map between the formalisations of Ecore and GROOVE by
using these formalisations as input and output, giving confidence in the fact that multiple trans-
formation functions can cover all elements of Ecore and GROOVE. Therefore, the formalisation of
the model transformations themselves can be considered suitable.

4. “What model transformations are correct within the formalisation?”

Page 243

Definition 4.3.25, Definition 4.3.30, Definition 4.4.26 and Definition 4.4.31 constrain the transfor-
mation functions that are considered syntactically valid within the formalisation. Furthermore,
the library of transformations in Chapter 5 has shown some examples of transformations that
are proven to be valid with respect to these definitions, and each of these transformations is also
reversible. Therefore, multiple transformations have been presented which are each syntactically
correct within the formalisation. Furthermore, the formalisation allows us the combine these trans-
formation functions (as presented in Chapter 4), while maintaining the correctness of the functions.
This has also been proven as part of this thesis.

The answer to this question is validated by validating all the correctness proofs. For this thesis, all
the proofs are validated using the Isabelle theorem prover, as presented by Section 2.3. Therefore,
it is validated that the proofs are correct, meaning that by following the definitions, it is clear which
model transformations are syntactically valid within the formalisation. Therefore, the question is
considered answered.

5. “How can correct model transformations between Ecore and GROOVE be composed?”

As explained earlier in Section 1.5, answering this question consists of two parts. First Chapter 4
has shown on a formal level how model transformations are combined. This formalisation has
been done for transformations at both levels. Secondly, it has been shown how to compose these
transformations in practice, which can be found in Chapter 6.

Chapter 4 describes the composability of model transformations by explaining the necessary def-
initions to combine models, graphs and transformation functions. Using Theorem 4.3.29, Theo-
rem 4.3.36, Theorem 4.3.36 and Theorem 4.4.38 it is possible to show that these definitions indeed
give rise to a new transformation function, which is then proven to be syntactically correct.

Chapter 6 shows how to apply these definitions by composing a large transformation function out
of the small transformation functions presented in the library of transformations (see Chapter 5).
This example shows how the definitions from Chapter 4 can be applied in practice, answering the
practical part of the question.

As explained before, all proofs within this thesis have been validated using the Isabelle theorem
prover, as presented by Section 2.3. That means that the proofs presented to prove the composition
of transformation functions are correct. The correctness of these proofs validates that the method of
composing transformation functions is syntactically correct. Furthermore, the example of Chapter 6
shows that it is possible to apply these definitions in practice, which validates that there is actual
use for the composability definitions. Together this shows that all parts of the answer are validated,
so the question is considered validated.

With the answers to the subquestions given, it is possible to answer the main research question:

“What is a suitable formalisation for composable model transformations between Ecore and GROOVE
that gives rise to correct model transformations between Ecore and GROOVE?”

In order to give a formalisation for the model transformations, formalisations for Ecore and GROOVE
were needed. Subquestions 1 and 2 have shown suitable transformations for both languages. The
formalisation for composable model transformations is given as part of Chapter 4. Subquestions 3
explains that the formalisation is suitable, whereas subquestion 5 shows that the formalisation indeed
allows for composable model transformations. The correctness of these transformations is proven, which
is explained in subquestions 4 and 5. Finally, Chapter 5 and Chapter 6 have shown that there indeed exist
such model transformations in practice. The existence of these model transformations is also explained in
subquestions 3 and 5. Altogether, these answer the main research question, as the thesis has shown that
there exists a suitable formalisation for composable model transformations between Ecore and GROOVE.
It has also shown that this formalisation gives rise to syntactically correct model transformations between
Ecore and GROOVE.

7.3 Future work
Although this thesis has provided a complete framework for composing transformation functions between
Ecore and GROOVE, much work remains to be done to make this solution viable in practice. In future
work, limitations of this work could be addressed, and additional work can be performed in order to
make implementations of the work possible. Possible improvements and future work are discussed in this
section.

Page 244

7.3.1 Improvements to the transformation framework
This thesis has provided a transformation framework for composable model transformations between
Ecore and GROOVE. As discussed in Section 7.1, the choices made within this transformation framework
have advantages and limitations. An important limitation is the requirement to maintain correctness at
each step of composing a transformation function. As a consequence, the small transformations presented
in the library of transformations can become quite substantial, and are more difficult to prove.

One could investigate the possibility of making the requirement of correctness less strict. This could be
done by allowing some partial compositions, that need to be applied in a specific order, to achieve once
more a correct transformation. These partial compositions would make the individual transformation
steps smaller, and thus easier to prove. However, it will probably introduce some new requirements to
maintain the general correctness of the transformation, which should be researched further.

7.3.2 Complete the library of transformations
This thesis has provided a non-exhaustive library of transformations that can be applied within the
transformation framework. As explained in Section 7.1, several concepts of Ecore are not yet covered.
Future research might focus on defining a complete library of transformations, that can compose every
possible transformation function. Such research would consist of adding transformations for missing
concepts and possibly a proof that all valid models and graphs can indeed be built.

In order to achieve completeness of the library, at least the following transformations should be pro-
vided:

• For all transformations that introduce fields, there should be counterparts that can introduce these
fields on types that are extended by other types. In order to create these transformations, the
set of shared objects should contain not only all instances of the supertype but also all instances
of all subtypes. Furthermore, for all these objects, a value needs to be introduced for the newly
introduced field. Please note that this should be done for both the introduction of fields on abstract
classes and the introduction of fields on regular classes. When done carefully, the proof created
for the instance level could be reused for both of these transformations. Furthermore, the proofs
created for regular classes might be able to replace the existing transformations for introducing
fields.

• New transformations need to be introduced that cover all the possible container types. This
means that transformations should be created that introduce a field typed by a bagof, setof, seqof
or ordof container type, containing any other possible type. Because of the limitations of the
transformation framework, it will not be possible to prove this for all contained types at once, so
multiple transformations will be needed here.

• A transformation should be created that allows for introducing multiple inheritance. Multiple
inheritance can be introduced by either creating a transformation that introduces a new type that
extends from a set of existing types, or by creating a transformation that introduces a set of new
types from which one existing subtype does inherit. The new types should be created in one
transformation, to be able to proof that the inheritance relation remains valid.

• For all transformations introducing some field, an additional transformation would need to be
created that introduces a defaultValue property on the corresponding field. This transformation
would also need to introduce a new constant and its value.

• A transformation should be created that introduces a new class type with an identity property.
Because of the limitations of the transformation framework, all the attributes that are part of the
identity property need to be introduced as well. Furthermore, all the instances of the new class
type need to be created within the same transformation, and all values for all the attributes should
be defined. Such a transformation would be substantial, and would undoubtedly benefit from the
possibility to do partial compositions, as proposed by Section 7.3.1.

• Multiple transformations should be created which introduce a new field with an keyset property.
Because of the limitations of the transformation framework, all the attributes that are part of the
keyset property need to be introduced as well. Furthermore, a value for the field and all related
attributes needs to be introduced at the instance level, within one transformation step. Once more,
such a transformation would be substantial, and would undoubtedly benefit from the possibility to
do partial compositions, as proposed by Section 7.3.1.

• Multiple transformations should be created which introduce a new field with an opposite property.
Introducing the opposite property can be done between existing types and instances, it only has to
be made sure that transformations exist for all possible types for a field with an opposite property.
Extra care should be given to introducing a new field that has a opposite property and a containment

Page 245

property on one of the fields. In this case, it is needed to introduce the instances contained by the
containment relation as well.

• For all the transformations introducing some field, an additional transformation would need to be
created that introduces a readonly property on the corresponding field. Since a read-only property
is only used for the semantics of the model and not anywhere in the syntax, this should be quite
trivial.

• Transformations need to be created for some combinations of properties, especially containment and
identity, to ensure that models combining these properties can be created within the transformation
framework.

Although it is believed that introducing all these transformations would eventually result in a complete
library of transformations, no proof for this claim exists. Therefore, this should be taken into account
when performing this work.

7.3.3 Add more encodings
This thesis has shown that elements in Ecore can have multiple encodings in GROOVE. An example of
this is given in Section 5.2.4 and Section 5.3.4. Future work might focus on defining more encodings for
different elements of Ecore. Having the choice between multiple encodings for the same element when
transforming an Ecore model to GROOVE might be beneficial for the verification of specific properties.
Different encodings might have their advantages and disadvantages within the field of verification, and
therefore a choice between encodings might make more use cases possible.

Each of these encodings should be proven correct within the transformation framework. Moreover, as
shown in Section 5.2.7 and Section 5.3.7, it might be the case that introducing new encodings might
also need specific transformations for related elements that use the encoding. Therefore, providing more
encodings could be a quite substantial amount of work.

Besides introducing more encodings, such research would also include research on the possible encodings
for an element. Furthermore, the practical use of each of these encodings could be investigated.

7.3.4 Implementation
The framework presented in this thesis only represents a mathematical foundation. In order to apply this
framework in practice, it needs to be implemented as part of EMF, GROOVE or as a standalone tool.
Such implementation would allow a user to automatically transform Ecore models into GROOVE graphs
and vice versa while having the framework as a formal foundation to show the syntactical correctness of
the transformations.

The implementation of this framework is not a trivial task in itself. Such an implementation would
need to figure out how to decompose models and graphs into their separate components in order to
build a transformation. This decomposition might give rise to more fundamental research, as the current
framework does not describe the decomposition of models and graphs. Furthermore, an approach to the
decomposition of models and graphs might be an ambiguous process, meaning that a model or graph
can be decomposed in more than one way. Research on how to handle this ambiguity also needs to be
carried out when applicable. Furthermore, an implementation would need to deal with multiple possible
encodings when composing the transformation function, as it is possible to transform a model using
multiple correct graph encodings.

Page 246

References

Scientific publications
[2] J. Bang-Jensen and G. Z. Gutin. Digraphs theory, algorithms and applications. Springer, 2010.

isbn: 978-1-84800-998-1. doi: 10.1007/978-1-84800-998-1.
[3] E. Biermann, C. Ermel, and G. Taentzer. “Formal foundation of consistent EMF model transforma-

tions by algebraic graph transformation”. In: Software & Systems Modeling 11.2 (2011), pp. 227–
250. doi: 10.1007/s10270-011-0199-7.

[4] H. Bruintjes. Bridging GROOVE to the world using a conceptual language model. Nov. 2012. url:
http://purl.utwente.nl/essays/62759.

[6] C. Ermel, F. Hermann, J. Gall, and D. Binanzer. “Visual Modeling and Analysis of EMF Model
Transformations Based on Triple Graph Grammars”. In: Electronic Communications of the EASST
54 (Oct. 2012). doi: 10.14279/tuj.eceasst.54.771.

[10] F. Hermann, H. Ehrig, U. Golas, and F. Orejas. “Formal analysis of model transformations based
on triple graph grammars”. In: Mathematical Structures in Computer Science 24.4 (2014). doi:
10.1017/S0960129512000370.

[13] E. Kindler and R. Wagner. Triple Graph Grammars: Concepts, Extensions, Implementations, and
Application Scenarios. Tech. rep. tr-ri-07-284. Software Engineering Group, Department of Com-
puter Science, University of Paderborn, June 2007. url: https://www.hni.uni-paderborn.de/
pub/7067.

[14] A. Kleppe and A. Rensink. “On a Graph-Based Semantics for UML Class and Object Diagrams”.
In: Graph Transformation and Visual Modelling Techniques. Ed. by C. Ermel, J. De Lara, and R.
Heckel. Electronic Communications of the EASST 69160R. Proceedings of the Seventh International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2008). EASST,
2008. doi: 10.14279/tuj.eceasst.10.153.

[16] L. Noschinski. “Graph Theory”. In: Archive of Formal Proofs (Apr. 2013). http://isa-afp.org/
entries/Graph_Theory.html, Formal proof development. issn: 2150-914x.

[17] O. Semeráth, Á. Barta, Á. Horváth, Z. Szatmári, and D. Varró. “Formal validation of domain-
specific languages with derived features and well-formedness constraints”. In: Software & Systems
Modeling 16.2 (May 2017), pp. 357–392. issn: 1619-1374. doi: 10.1007/s10270-015-0485-x.

[21] F. Wiedijk. “Comparing Mathematical Provers”. In: Mathematical Knowledge Management. Ed. by
A. Asperti, B. Buchberger, and J. H. Davenport. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 188–202. isbn: 978-3-540-36469-6. doi: 10.1007/3-540-36469-2_15.

Documentation & Specification
[5] Package org.eclipse.emf.ecore. Jan. 2015. url: http://download.eclipse.org/modeling/emf/

emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html (visited on 12/02/2019).
[18] Specification of the Object Constraint Language version 2.4. Feb. 2014. url: http://www.omg.

org/spec/OCL/2.4 (visited on 12/03/2019).
[20] M. Wenzel, C. Ballarin, S. Berghofer, J. Blanchette, T. Bourke, L. Bulwahn, A. Chaieb, L. Dixon,

F. Haftmann, B. Huffman, L. Hupel, G. Klein, A. Krauss, O. Kunčar, A. Lochbihler, T. Nipkow, L.
Noschinski, D. v. Oheimb, L. Paulson, S. Skalberg, C. Sternagel, and D. Traytel. The Isabelle/Isar
Reference Manual. Aug. 2018.

Other references
[1] V. Bacvanski and P. Graff. “Mastering Eclipse Modeling Framework”. In: EclipseCon. The

Eclipse Foundation, Feb. 2005. url: https://www.eclipsecon.org/2005/presentations/
EclipseCon2005_Tutorial28.pdf (visited on 12/02/2019).

Page 247

https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1007/s10270-011-0199-7
http://purl.utwente.nl/essays/62759
https://doi.org/10.14279/tuj.eceasst.54.771
https://doi.org/10.1017/S0960129512000370
https://www.hni.uni-paderborn.de/pub/7067
https://www.hni.uni-paderborn.de/pub/7067
https://doi.org/10.14279/tuj.eceasst.10.153
http://isa-afp.org/entries/Graph_Theory.html
http://isa-afp.org/entries/Graph_Theory.html
https://doi.org/10.1007/s10270-015-0485-x
https://doi.org/10.1007/3-540-36469-2_15
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
https://www.eclipsecon.org/2005/presentations/EclipseCon2005_Tutorial28.pdf
https://www.eclipsecon.org/2005/presentations/EclipseCon2005_Tutorial28.pdf

[7] R. Gronback. Eclipse Modeling Framework. url: https://www.eclipse.org/modeling/emf/
(visited on 12/02/2019).

[8] GROOVE. url: https://groove.ewi.utwente.nl/ (visited on 12/02/2019).

[9] C. Guindon. EMF-IncQuery. Mar. 2016. url: https://projects.eclipse.org/projects/
modeling.incquery (visited on 12/03/2019).

[11] Isabelle Community Wiki. url: https://isabelle.in.tum.de/community/Main_Page (visited
on 12/02/2019).

[12] Isabelle2019. June 2019. url: https://isabelle.in.tum.de/ (visited on 12/02/2019).

[15] Newest ’isabelle’ Questions on Stack Overflow. url: https://stackoverflow.com/questions/
tagged/isabelle (visited on 12/02/2019).

[19] The 3-Clause BSD License. Open Source Initiative, July 22, 1999. url: https://opensource.
org/licenses/BSD-3-Clause (visited on 12/02/2019).

Page 248

https://www.eclipse.org/modeling/emf/
https://groove.ewi.utwente.nl/
https://projects.eclipse.org/projects/modeling.incquery
https://projects.eclipse.org/projects/modeling.incquery
https://isabelle.in.tum.de/community/Main_Page
https://isabelle.in.tum.de/
https://stackoverflow.com/questions/tagged/isabelle
https://stackoverflow.com/questions/tagged/isabelle
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause

Appendix A

Example Isabelle Theory

This appendix contains an export of the Multiplicity theory used to formalise Definition 3.1.1 within
Isabelle. It is used in Section 2.3 to explain the concepts of Isabelle theories.

theory Multiplicity
imports Main

begin

A.1 Linear order of natural numbers including unbounded
datatype M = Star | Nr nat

notation
Star ((⋆) 1000) and
Nr ((-) [1000] 1000)

instantiation M :: linorder
begin

fun less-eq-M :: M ⇒ M ⇒ bool where
less-eq-M - ⋆ = True |
less-eq-M (a) (b) = (a ≤ b) |
less-eq-M - - = False

fun less-M :: M ⇒ M ⇒ bool where
less-M (-) ⋆ = True |
less-M (a) (b) = (a < b) |
less-M - - = False

instance proof
fix x y z :: M
show (x < y) = (x ≤ y ∧ ¬ y ≤ x)
proof (induction x arbitrary : y)
case Star
then show ?case by simp-all

next
case (Nr x)
then show ?case by (cases y) auto

qed

show x ≤ x by (induction x) simp-all
then show x ≤ y =⇒ y ≤ x =⇒ x = y
proof (induction x arbitrary : y)
case Star
then show ?case by (cases y) simp-all

next
case (Nr x)
then show ?case by (cases y) simp-all

qed

show x ≤ y =⇒ y ≤ z =⇒ x ≤ z
proof (induction x arbitrary : y z)
case Star

Page 249

then show ?case by (cases y) simp-all
next
case (Nr x)
then show ?case
proof (induction y arbitrary : z)
case Star
then show ?case by (cases z) simp-all

next
case (Nr x)
then show ?case by (cases z) simp-all

qed
qed

show x ≤ y ∨ y ≤ x
proof (induction x arbitrary : y)
case Star
then show ?case by simp

next
case (Nr x)
then show ?case by (cases y) auto

qed
qed

end

A.2 Definition of multiplicity
type-synonym multiplicity = M × M

definition lower :: multiplicity ⇒ M where
lower m ≡ fst m

declare lower-def [simp add]

definition upper :: multiplicity ⇒ M where
upper m ≡ snd m

declare upper-def [simp add]

locale multiplicity = fixes mult :: multiplicity
assumes lower-bound-valid [simp]: lower mult ̸= ⋆
assumes upper-bound-valid : upper mult ̸= 0
assumes properly-bounded [simp]: lower mult ≤ upper mult

context multiplicity
begin

lemma upper-bound-valid-alt [simp]: upper mult ≥ 1
using less-M.elims not-less upper-bound-valid by fastforce

end

abbreviation multiplicity-notation :: M ⇒ M ⇒ multiplicity ((-/..-) [52 , 52] 51) where
l ..u ≡ (l ,u)

definition within-multiplicity :: nat ⇒ multiplicity ⇒ bool (infixl in 50) where
n in m ≡ lower m ≤ n ∧ n ≤ upper m

theorem mult-zero-unbounded-valid [simp]: n in 0..⋆
unfolding within-multiplicity-def
by simp

theorem mult-single-value-bound [simp]: n in m..m =⇒ n = m
unfolding within-multiplicity-def
by auto

end

Page 250

	Introduction
	Formalisation of model transformations
	Correctness of model transformations
	Approach and composability
	Research question
	Validation
	Related work
	Formalisations of modelling languages
	Formalisations of model transformations

	Contribution
	Outline
	Mathematical notation
	References to validated proofs

	Background
	Eclipse Modeling Framework
	Type models
	Instance models

	GROOVE
	Type graphs
	Instance graphs

	Theorem proving using Isabelle
	About Isabelle
	Basics
	Archive of Formal Proofs

	Formalisations
	Global definitions
	Ecore formalisation
	Definitions
	Type models
	Instance models

	GROOVE formalisation
	Definitions
	Type graphs
	Instance graphs

	Transformation framework
	Encodings
	Structure
	Type models and type graphs
	Combining type models
	Combining type graphs
	Combining transformation functions

	Instance models and instance graphs
	Combining instance models
	Combining instance graphs
	Combining transformation functions

	Library of transformations
	Definitions
	Type level transformations
	Regular classes
	Abstract classes
	Regular subclasses
	Enumeration types
	User-defined data types
	Data fields
	Enumeration fields
	Nullable class fields
	Contained class set fields

	Instance level transformations
	Plain objects
	Abstract classes
	Plain objects typed by a subclass
	Enumeration values
	User-defined data types
	Data field values
	Enumeration field values
	Nullable class field values
	Contained class set field values

	Application
	The model
	Building the model
	Houses
	The Room class
	House names
	Rooms
	Room identifiers
	The room size enumeration type
	Room sizes
	Tenants
	Tenant names
	Tenant ages
	The tenant type enumeration type
	Tenant types
	Room & tenant relationship
	Tenant & subtenant relationship
	Living rooms

	Conclusion
	Advantages & Limitations
	Evaluation
	Future work
	Improvements to the transformation framework
	Complete the library of transformations
	Add more encodings
	Implementation

	Example Isabelle Theory
	Linear order of natural numbers including unbounded
	Definition of multiplicity

