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Summary 

This research considers the planning process of resource capacity in highly automated distribution 

centres. Vanderlande provides a planning application that planners can use to allocate the 

workstations and operators in distribution centres. Currently, this is a manual process that uses 

iteration between a change in the plan and feedback from a scheduling algorithm that simulates 

production. This process is time-consuming and often leads to suboptimal workstation allocations. We 

focus on reducing the time required for planning as well as reducing the number of weighed human 

operator time required to fulfil weekly demand for the distribution centre. The following research 

question is developed: 

“How can effective capacity plans for distribution centres be made in reasonable time in the tactical 

planning phase?” 

We find two approaches to make capacity plans: an iterative and an integrated strategy.  

The iterative strategy covers a two-phase heuristic approach that iterates between a planning 

alteration and the scheduling function to control feasibility. The iterative strategy starts with an initial 

phase based on an adaptive search heuristic that removes shifts from a full capacity allocation 

iteratively based on the slack lead time of orders. Finally, these allocations are improved by a 

simulated annealing metaheuristic.  

The integrated strategy uses an integer linear programming approach, covering both the planning and 

scheduling aspects of the problem. Due to the sheer size of the problem, the input parameters must 

be adapted slightly in order to be able to find feasible solutions. We find that while we adapt the input 

parameters, validity is maintained for all test instances. 

For the focus distribution centre of this research, that of Albert Heijn in Zaandam, both the iterative 

and integrated strategy show significant improvements in cost compared to a manually created 

capacity plan. The integrated and iterative strategy show a mean reduction in operator cost of -16.9% 

and -14.9% respectively compared to a manually created plan. The reduction in operator hours 

including indirect personnel is -11.9% and -10.9% respectively. 

Next to increased utilisation and lowered operator cost, the time required for planning is reduced 

significantly. These low-cost allocations are obtained within minutes. The reduction in time for 

planning and cost for fulfilling demand provide a solid basis for the adaptation of an automatic planner 

for the distribution centre in practice.  The automatic planner could act as a basis for the planner in 

creating allocations. 

We find that generally, the iterative strategy is more versatile and fit to practical problems. The 

integrated strategy requires several adaptations that happen to fit to our problem, for instance in the 

configuration of shifts and breaks. In practice, there may be many more shifts as well as variation in 

the length of breaks. These are hard to model in the integrated strategy. Finally, we find that the 

iterative strategy is more suitable for Vanderlande as it generally provides more reliable results and is 

more adaptable to differing input parameters and other distribution centres. 
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Term Description Page 

introduced 

(internal) Order 

lead time 

The estimated time from the start of outbound production until 

order departure time, determined by the scheduling function 

15 

Scheduling function Priority rule used to assess capacity plan performance 29 

Production area A customer store order may demand load carriers from up to 

three different production areas 

20 

Production process To fulfil demand for a production area, several processes in that 

area must be passed 

20 

Workstation At each production process, a finite number of workstations can 

be activated to fulfil demand. Some of these workstations require 

(multiple) operators. 

25 

Capacity plan The capacity plan indicates the availability of workstations over 

time in the planning week. The capacity plan enables the 

distribution centre to obtain an estimation of the number of 

operators required to fulfil demand 

27 

Operator shift Some workstations require human operators. Human operators 

work for the duration of an operator shift. 
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1. Introduction 

This thesis describes a master research conducted at Vanderlande, a material handling and logistics 

automation company based in Veghel, the Netherlands. Vanderlande focuses on three main domains: 

airports, warehousing and parcel. The focus of this research is on warehousing and more specifically 

distribution centres. The warehousing systems extend across a wide range of processes. For example, 

automated storage and retrieval system (AS/RS) and automated order-picking systems. Through a high 

level of automation in these distribution centres, Vanderlande customers can fulfil many picking 

orders with few human resources. While there are fully automated workstations at processes, 

numerous processes require human resources for operation.  

Currently, Vanderlande equips customer distribution centres with a planning application that allows 

the customer distribution centres to plan the capacity by allocating workstations in ten-minute 

timeslots over a weekly horizon. With these capacity plans, they seek to fulfil all of their customer 

store orders with as few human operators as possible. However, the current planning process is time-

consuming and tends to result in satisfactory rather than optimal capacity plans. This results in the 

inefficient use of human resources. Therefore, the goal of this research is to improve this planning 

process through automation. 

This chapter introduces Vanderlande, the focus system of this research as well as the research 

problem and questions. Section 1.1 introduces the focus system of this research. Section 1.2 

introduces the core problem. Section 1.3 considers the research design.  

1.1. System description 

Vanderlande systems arrange logistic process automation for distribution centres of retailers. These 

distribution centres produce load carriers that are ready for filling shelves in retailer stores from 

inbound pallets containing cases. Within these distribution centres, there is a high level of automation. 

One of these automation systems for retailers is referred to as Automated Case Picking (ACP). 

Vanderlande’s ACP systems provide the tools to outperform traditional order fulfilment methods. The 

ACP systems integrate bulk storage of pallets, depalletizing and tray loading, tray storage and roll cage 

building. ACP provides several novel solutions, including integrated automatic depalletizing, storage, 

palletising, internal transport and optimal pallet stacking solutions. 

The system regards interaction between three main acting parties: 

1. (Planning) Users – Planners or supervisors create capacity plans by allocating workstations as 

available to fulfil demand from customer stores and process inbound suppliers; 

2. Suppliers – Inbound shipments arrive from suppliers. These shipments must be transformed 

by processes into units that are demanded by customer stores; 

3. Customer stores – Customer stores demand load carriers from the distribution centre that 

must be ready by a truck’s departure time. The distribution centre supplies these load carriers 

by processing inbound supply using the available workstations allocated by the planning 

application users.  
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Figure 1 – Vanderlande scope in mechanised DC 

Figure 1 distinguishes two main features in the Vanderlande scope in the distribution center: Planning 

and control. Planning refers to the processes that involve allocating capacity and more specifically 

workstations. Control refers to the processes involved in the execution of production on the day of 

production itself. This research focuses on the planning component. Section 1.1.1 introduces the 

elements of the system in more detail. Section 1.1.2 elaborates on the planning module in the 

distribution centre. 

1.1.1. Planning and control  

Planning and control in the mechanised distribution centres is required to fulfil outbound load carrier 

demand from stores before outbound trucks are expected to depart. In other words, all load carriers 

for store orders must be filled before the truck shipping them will depart. Figure 1 shows the 

Vanderlande scope in the mechanised DC. We distinguish three main components:  

1. Interpretation – Inbound supply shipments as well as outbound demand must be interpreted 

so that they can be planned for. Customer stores may consist of hundreds of products spread 

over numerous load carriers. However, planning is not done for these products individually as 

it would complicate the process. Therefore, the demand for these products is interpreted and 
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translated to demand for load carriers from a select number of areas. Chapter 2 covers these 

areas in more detail.  

2. Planning – Now that supply and demand have been interpreted to a format that can be 

handled for planning capacity, the planning application users can allocate workstations over 

different processes. By allocating these workstations, capacity is added to their respective 

timeslots in which they are assigned. The planning users create plans using shift parameters 

that indicate human resource availability as well as system parameters that contain 

information on the resources in the distribution centre. These plans can be evaluated using a 

scheduling function after which plans may be amended based on the feedback of the 

scheduling function. 

3. Execution – Planners allocate workstation capacity over time with limited detail. For example, 

the planners state which workstations should be available at what moment, but they do not 

dedicate workstations to specific workstations. Also, planners plan on the level of aggregate 

processing units such as load carriers.  The execution phase considers the control phase in the 

distribution centre with a higher level of specificity. The execution phase dedicates 

constituent cases to specific workstations on the day of production outside the planning 

scope. 

Essentially, the interpretation phase generalises the demand so that it can be planned for. Then, the 

execution phase specifies demand again on the day of production to arrange the actual processing. 

The Vanderlande module responsible for planning is referred to as the Tactical and Operational 

planning module (TOP). The interpretation supply and demand are used in the TOP module for 

planning the resources used for producing orders. The output resource allocations from TOP are used 

for in- and outbound execution. The next section covers this module in more detail.   

1.1.2. Planning module 

The goal of the planning module is to plan the capacity that is required to cope with the customer 

store demand on the system at minimum cost. The capacity is determined by the amount of resources 

planned to be available over time. These resources include system resources (such as automated 

palletiser modules) and human resources (operators required for the use of several system resources). 

The demand for capacity includes both inbound (supply) and outbound (store) demand. Inbound 

demand consists of forecasted and actual shipping notifications for inbound goods into the 

warehouse. The outbound demand consists of the forecasted and actual customer store orders that 

the must fulfil. 

Planning in the TOP module consists of two phases: the tactical and the operational planning phase.  

• The tactical planning phase considers the scope of several weeks into the future. During this 

phase, a production planner determines the amount of system capacity required during a 

particular period to meet forecasted demand for that period. The production planner 

determines this amount by iteratively updating the resource allocation and simulating the 

resource plan for the tactical phase through a what-if loop by using a demand scheduling 

algorithm. The tactical plan serves as input for the operational planning process. The tactical 

plan specifies the level of system capacity over time for the production processes (e.g. 

depalletizing or picking) in the distribution centre. 
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• The operational planning phase considers a shorter outlook: up to a number of days in the 

future. During this phase, a production supervisor monitors the live performance through 

KPIs. They monitor whether the system capacity as planned in the tactical plan continues to 

meet operational demand, as generated by actual and forecasted demand. The production 

supervisor attempts to balance planned capacity against operational demand. The supervisor 

either makes minor adjustments to the planned capacity (insofar possible with human 

resource capacity availability on short notice) or the operational demand. The former is done 

by updating and simulating the resource plan for the operational phase i.e. the operational 

plan, through a “what-if” loop. The latter is done by altering the store order pool, e.g., 

cancelling store orders or parts of store orders. 

The operational planning process also determines the start times for each store order (order plan). 

The start times define when a store order is released for execution in each production area (e.g. non-

conveyables picking, or automated case picking). The start times, which result from the demand 

scheduling function, depend on the available capacity as specified in the operational plan, on the 

demand generated by actual and forecasted store orders and the production progress. 

The start times and performance indications (such as order lead times) that result from the resource 

allocation in the demand scheduling function (introduced in Chapter 2) are not definitive. They serve 

as a simulation, or an attempt to model real-life situations to study how the system works (Law & 

Kelton, 2000). Definitive resource assignment of orders to workstations and order execution happens 

in the execution phase on the day of production. 

1.2. Problem description 

Section 1.1 describes that the planning module is used for planning the resources in the distribution 

centre. A capacity plan indicates for timeslots of 10 minutes how many workstations are available for 

processing at which processes in order to fulfil demand timely. Deciding how many workstations to 

allocate when is a complex decision as the decision space is vast, and subject to numerous constraints. 

There are tens of workstations over several processes that could be required during each timeslot. 

While we describe the planning process done by production planners in more detail in Chapter 2, we 

show that the planning problem for each production week is complex as planners have to take into 

account numerous aspects simultaneously. For example, the complexity stems from: 

• Precedence relations between processes: creates lack of transparency in improvement 

potential, as it may be unclear which processes are causing infeasible allocations. 

• Meeting store order lead time constraints: Each store order introduces different constraints 

on the lead time (time spent from the start of outbound production until departure). 

Identifying which orders cause infeasibility is cumbersome. Moreover, indications of timeslots 

exhibiting improvement potential through capacity reduction becomes ambiguous. 

• Identifying per process for which timeslots capacity should be added or removed: lead times 

tend to cause demand to shift forward in time, so improving in a timeslot with great lead time 

may have no effect as the lead times stem from a lack of allocated capacity in later timeslots. 

• Operator (shifts) and machine availability: some workstations require a minimum ratio of 

human resources to be available in relation to the total number of system resources planned. 

Furthermore, human resources must be allocated in the length of shifts. 
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To plan resources, planners or supervisors use an iterative process. In this process, they use what-if 

analysis with a demand scheduling function that simulates a production schedule on a just-in-time 

basis, and calculates KPIs based on this schedule to simulate performance on the day of production. 

The performance indicators from this simulation are used for future optimization of resource plans. If 

performance indicators are not considered satisfactory, the production planner or supervisor 

continues to repeat a loop modifying resource allocation and then scheduling demand until they are 

satisfied. Once satisfied, they consider activating a modified resource plan, transitioning to the 

operational phase.  

Figure 2 shows an overview of the planning process flow for the distribution centre resource 

availability. To plan capacity, input parameters are used. These parameters include internal and 

external parameters. Internal (distribution centre) parameters include amongst others workstation 

productivity rates and the availability of human resources. These parameters can be set by the 

distribution centre itself. External actors such as customer stores provide external parameters in the 

form of store orders. These orders contain information on the departure times and request number 

of items per production area.  

 

Figure 2 – Planning process flow 

The goal of the planning process is to create a plan that indicates workstation available over a week 

that minimizes the use of resources while fulfilling all customer store orders. Figure 2 highlights 

human (planner) actions in yellow. The current (manual) planning process broadly includes the 

following steps: 

1. The capacity over time is altered by the human planner. For instance, (multiple) 

workstations at a process may be removed or added for a time interval. This impacts the 

capacity availability to process store order demand. 

2. To check the effect of a change in the capacity plan, the automatic scheduling algorithm is 

used. It uses a priority rule that schedules demand recursively from the store order 

departure times. 

3. After scheduling, KPI values for the given capacity plan are generated based on the 

scheduling algorithm. Moreover, feasibility can be assessed. 

Output 
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4. The human planner assesses the performance of capacity plans given KPIs generated by the 

scheduling algorithm. 

5. If the capacity plan is feasible (that is: all store orders handled within time constraints), then 

the human planner decides to either implement the current plan (if it is deemed 

satisfactory) or continue iterating in the loop when the performance is considered 

insufficient. This eventually creates a feasible capacity plan. 

This what-if process is problematic for two main reasons: it is time consuming and unlikely to result in 

(near) optimal solutions in reasonable amount of iterations. We describe these problems briefly. The 

reason for the planning process being time consuming is that each modification in the allocation of 

workstations implies a change in performance. To check this performance, production for store orders 

must be simulated. Next to this, performance of a capacity plan is highly constrained, as we describe 

in Chapter 2. Furthermore, the optimal level of an allocation is currently hard to determine as analysis 

of plans is required and limited insight in improvement can be gained in the planning application. The 

result of these factors, combined with the fact that planning process is not trivial, is that a planner 

accepts a satisfactory performance level whereas they seek optimal rather than satisfactory 

performance. 

1.3. Research Design 

This section covers the research design. We describe the scope of the research as well as the problem 

and corresponding questions we answer to tackle the problem. Finally, we indicate which deliverables 

result from this research. 

1.3.1. Scope 

This thesis considers the planning module in the planning and control of Vanderlande’s scope in 

distribution centres. This means that we only consider planning actions. Control actions such as 

cancelling or modifying of orders and order acceptance are not part of the scope of this research. We 

consider the tactical planning phase, as this is the phase wherein we can still have impact on the 

number of human resources to be allocated. 

The planning module is used in several distribution centres, however the scope of this research 

considers the Albert Heijn DC. All examples given and experiments performed are done for the Albert 

Heijn DC. Therefore, the parameters such as resources and production flow are specific to this 

customer. 

1.3.2. Research problem 

In Section 1.2 we gave a description of the current problem. We found that the current tactical 

planning process is lacking as it is time-consuming and unlikely to be optimal. To solve this problem 

we consider the main research question: 

How can effective capacity plans for the distribution centre be made in 

reasonable time in the tactical planning phase? 
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To answer the main question, we must first of all get insights in the way plans are created, and which 

(tacit) constraints and performance indicators are used to create and validate plans. Therefore, 

Chapter 2 serves to answer research question (1). 

1. How are capacity plans currently made for the distribution centre, and how is their performance 

assessed? 

1.1 What does the process flow in the DC look like? 

1.2 What part of the distribution centre is subject to tactical capacity planning? 

1.3 What do the inputs and outputs for the planning look like (what information is 

used)? 

1.4 What does the planning process currently look like? 

1.5 Which performance indicators and constraints are used and how is performance 

assessed? 

1.6 How is performance assessed? 

We seek to gain insight in the process flow, the processes to plan for and the inputs and outputs.  The 

main research questions yields some ambiguity in the adjectives optimal and reasonable. We require 

definitions and trade-offs between performance indicators to be able to optimize for some variables.  

To gain insight in capacity plan evaluation methodology, we consider questions (1.5) and (1.6). First of 

all, we want to determine how performance is calculated. As we described in Section 1.1.1, production 

is scheduled as a simulation of the production day, to evaluate the capacity plan. We seek to obtain 

information on how this scheduling is done. Furthermore, to determine the acceptable level of KPIs 

referred to in Chapter 2, we require information on which KPIs are used. Next to that, we want to find 

out which (tacit) constraints are used to determine acceptable KPIs so that we can model them in our 

approach. At last, the level of ‘acceptable’ performance in this context is ambiguous, so we seek to 

find a more concrete definition. 

As we obtain insights in the performance of capacity plans, we require knowledge on how to create 

performant capacity plans automatically. As insights in process and performance are obtained through 

the previous research questions, we seek related problems in literature and answer question (2) in 

Chapter 3. We review capacity planning and scheduling positioning frameworks and problems (2.1) 

and approaches (2.2) to determine a frame of reference for our problem. 

2 What is known in literature on capacity planning and scheduling in distribution centres? 

2.1 How are capacity planning and scheduling problems categorized in literature? 

2.2 What approaches are known to solve capacity planning and scheduling problems? 

As we gain insights in the current planning and scheduling methods (1) and shape a frame of reference 

in theory (2), we consider question 3 in Chapter 4. First of all, we determine how we can model our 

problem as an optimization problem, with clear objectives, variables, parameters and constraints. 

Then, we consider approaches to solving capacity planning and scheduling problems found in 

literature that can be adapted to our problem. 

3 What strategies can we formulate to tackle our problem? 

3.1 How can we model our problem as an optimization problem? 

We seek to design solution strategies to apply to our problem, to answer question (4). Then, we seek 

methods available that could be applied to our problem to create and optimize our problem and 
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compare them in their performance over time. Chapters 5 and 6 cover alternative solution methods 

we design to tackle our problem. 

4 How can we design solution methods suited to the strategies applicable to our problem? 

4.1 How can we design solution methods fitting solution approaches? 

As we find multiple ways to tackle our problem, we consider the performance of each on a set of real 

problem instances (5.1) and consider the trade-offs in performance and feasibility on problem 

instances of these strategies (5.2). 

5 How do the alternative strategies perform? 

5.1 How is performance over time of the methods considered? 

5.2 What are the trade-offs in performance and feasibility of the methods 

considered? 

1.4. Research deliverables 

The research deliverables we provide in this thesis: 

• A capacity planning method that is both efficient and optimal 

o Comparison of performance of different planning methods 

o Insights in the performance and accuracy trade-offs of proposed methods 

o Insights in the time-performance trade-off of proposed methods 

o Comparison between limitations/assumptions made 

o Recommendations regarding the implementation of capacity planning methods 

 

  



9 

 

2. Context analysis 

This chapter considers the following research questions: 

1.1. How are capacity plans currently made for the distribution centre? 

1.2. How is performance currently measured, and what is considered optimal 

performance? 

Section 2.1 describes the system under consideration, or the part of the logistics process in the 

distribution centre, and the process flow through this system in Section 2.2. After that we describe 

the parameters and variables used to create capacity plans in Section 2.3. 

To gain insight in how performance is measured (question 1.2), we first describe how plans are created 

in Section 2.3 and 2.4, and which (tacit) knowledge is used to evaluate them. We seek to determine 

the performance indicators used and the constraints that bound solutions optimality.  Section 2.6 

describes the assessment of plans is done as to finding the level of satisfactory or optimal 

performance. 

2.1. System definition 

Figure 3 shows the schematic production flow through the distribution centre at Albert Heijn 

Zaandam. Every week, there hundreds of orders for load carriers units from customer stores. These 

orders can distinguish combinations of units in three types. To produce these units, different 

processes are required. Figure 3 shows the three areas with the respective processes used to produce 

these demand units. The production areas are: 

• ACP: Automated Case Picking units – The final units in this area are load-carriers with items 

that can be picked automatically (without manual labour). However, there are some 

workstations in these processes that require human resources. 

• NC: Non-Conveyable units – The final units in this areas are load-carriers with items that 

cannot be picked using automated processes.  

• RRP: Retail Ready Packaging units – This area constitutes Retailed Ready Packaging units that 

arrive from inbound trucks. 

Inbound supply refers to the processes between inbound truck delivery and the buffers where units 

are stored until a demand request arrives. Outbound production refers to the processing of inbound 

units (cases on pallets or load carriers) to outbound load carriers that are ready to be shipped to 

customer stores. 

Capacity planning in the distribution centres focuses on planning for outbound demand. The rationale 

for this is that (forecasts of) outbound store order demand are known well in advance, contrary to 

inbound deliveries for which supply is less well-known. Therefore we can only effectively plan for 

outbound demand in the tactical phase. Section 2.2 describes the outbound processes in more detail 

with an example of process flow through the ACP area. 
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Figure 3 – Schematic production flow through the distribution centre 

2.2. Process flow 

In order to provide insight in how capacity plans are currently made for the distribution centre, we 

answer question 1.1: What does the process flow in the DC look like? in this section. 

This research considers outbound production in the distribution centre as the transformation from 

inbound units (cases, load carriers, or RRP displays used in the RRP area) in the buffer at the end of 

the inbound area to the combination of filled load carriers that are ready for outbound shipment to 

customer stores. Any process in the outbound area transforms these processing units somehow.  

This section describes production flow through the processes from inbound decoupling point to 

outbound loading for the ACP production area (Figure 3) specifically. Figure 4 shows the inbound pallet 

receiving process cut-off point. This is the point from which outbound production and planning starts. 

Truck drivers manually transport full pallets in the pallet receiving area to a conveyor belt. From here 

they are transport to the High bay storage buffer, an ASRS system for pallets, shown in Figure 5. The 

high bay storage buffer serves as the decoupling point between the inbound and outbound processes 

in the ACP area as shown in Figure 3. 

Outbound production is planned for customer store orders. As demand is expected, workstations will 

be made available to start processing. The retrieval of items from the high bay storage buffer marks 

the start of these outbound processes (Figure 5). This moment also marks the start of the internal 

lead-time for an order. The full pallets must eventually be transformed to load carriers used for filling 

shelves in stores. The first step to obtain these load carriers is to depalletize full pallets from the high 

bay storage into cases ready for handling. 
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Full pallets are conveyed to the depalletizing system resources. There are two types of workstations 

classes available to fulfil the depalletizing task. Figure 6 shows an automatic depalletizing system 

resource. This workstation does not require any human resource for operation. Figure 7 shows a semi-

automatic depalletizing workstation where humans are guided in the depalletizing process by a system 

resource. 

  

After depalletizing, cases are transported to the tray store buffer, an AS/RS system for trays, from 

which they can be moved the Normal (ACP) picking process, where they are stacked onto load carriers 

that are ready for stores. Again, two types of workstation classes are available to fulfil the picking 

orders. Figure 8 shows an automatic picking workstation not requiring any human operators. Figure 9 

shows a semi-automatic picking workstation where a human is aided by a machine in the picking 

effort. 

Figure 6 – Automatic depalletising Figure 7 – Semi automatic depalletising 

Figure 4 – Inbound pallet receiving Figure 5 – High bay storage buffer 
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While we describe process flow through the ACP area, each order may constitute demand for several 

production areas, these areas refer to the RRP, NC (Non-conveyable), or ACP (Automated case picking) 

areas in Figure 3. For each of these areas, demand must be in the marshalling area in time so that the 

truck can depart at its predefined deadline departure time. The departure time marks the end of the 

internal order lead time. 

Figure 3 shows an exception to the cut-off point between inbound and outbound processes, where 

there is no buffer between process Special (NC) Picking and process XDock (Crossdock) Receiving.  In 

this chain of processes, load carriers (LCs) picked in the Non-conveyable (NC) process are transferred 

to the Xdock area where, they are consolidated and transported to the marshalling buffer. Therefore 

plans have to be made for Special (NC) picking in conjunction with XDock Receiving. The significance 

of this is that planners expect LCs from XDock to always arrive 8 hours prior to the departure of its 

respective truck, so that the working window for that part of the order is different than the outbound 

process. 

2.3. Planning parameters and variables 

Planning distribution centre capacity requires demand and supply information. Demand information 

for each week is found in the transport plan. The transport plan is generated from a combination of 

definitive and forecasted demand of store orders for separate production areas. We discuss the 

parameters for the transport plan in Section 2.3.1. 

 

Figure 10 – Planning capacity using demand (customer stores) and supply (DC parameters) 

On the distribution centre input, there are system and shift parameters. The system parameters 

(Section 2.3.2) cover the availability and production levels of process workstations as well as process 

precedence relations. Shift parameters (Section 2.3.3) are used to plan human resources over 

Transport plan (2.3.1) 

System parameters 

(2.3.2) 

Shift parameters (2.3.3) Capacity planning 

Customer store input Distribution centre configuration 

Store order n 

Store order n-1 

Store order 1 

Store order … 

Figure 8 – Automatic picking Figure 9 – Semi-automatic picking 
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workstations. The shift parameters describe time windows in which human resources can be 

allocated. 

2.3.1. Transport plan parameters 

On any production day, (hundreds of) store orders are to be fulfilled by the distribution centre. The 

plan containing a week’s outbound store orders is referred to as the transport plan. This transport 

plan is input for the planning application as an XML file. Each store order has numerous attributes. We 

describe these orders by their attributes and function. 

Attribute              Explanation 

TruckDepartureDay • Day at which store order is due 

TruckDepartureTime • Time at which truck departs on DepartureDay 

Production order • Production order, may consider several areas 

       ProductionAreaId • Identifier of production area 

       Quantity of units • Number of units required from production area 

LoadingOffset • Time required for loading 

Cut-off offset • Store order demand cutoff: demand is final only after 

(TruckDepartureTime – CutOffOffset), so outbound 

production cannot start before this offset. 

Table 1- Store order atttributes, 

Table 1 shows attributes of a single store order. The departure day and time together determine the 

moment in time at which outbound production order must depart to the store. This moment in time 

is marked as a deadline, it cannot be exceeded. All units for a store order must be in the Marshalling 

buffer (see Figure 3) at TruckDepartureTime – LoadingOffset on their respective day of departure. 

Production for a store order is further constrained by the cut-off offset attribute. Stores may alter 

their orders until TruckDepartureTime – CutOffOffset. This implies that demand is not definitive until 

that time. Therefore, we consider the available working window for an order in the distribution centre 

as the interval from TruckDepartureTime-CutOffOffset to TruckDepartureTime-LoadingOffset. At the 

same time, the internal lead time may not exceed the cutoff offset. 

 

Figure 11 – Sample transport plan time window 
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Figure 11 shows a one hour time window of a transport plan. Here, there are several production area 

orders, where each order contains load carrier demand for three distinct production areas that must 

be ready at the time of departure specified in the interval. This means that at the times specified, all 

demand load carrier demand for each area in that order must be finished. This time is offset by the 

loading offset. Furthermore, scheduled production for these orders cannot start before the cut-off 

offset as stores can alter their orders until that time. 

2.3.2. System parameters 

Each production area is composed of production processes. Orders for these areas must follow the 

areas constituent process in a fixed order. Table 2 shows the attributes of a production process. By 

linking the ProductionAreaId from the store orders in the transport plan in Table 1, we retrieve the  

corresponding processes required in an area from Table 2. Each process with ProductionAreaRef equal 

to the ProductionAreaId in the store order attributes must be passed for a store order with demand 

for that area. The relations between processes are given by the incoming and outgoing buffers. 

Attribute              Explanation 

Name • Name of process 

ProductionAreaRef • Reference area 

InBuffer(s) • Incoming buffer for process 

OutBuffer(s) • Outgoing buffer for process 

Offset before • Time before process (used in scheduling) 

Offset  after • Time after process (used in scheduling) 

Table 2 – Process attributes 

In order to fulfil the demand specified in a store order’s QuantityOfUnitsToProduce, there must be 

sufficient capacity at processes in their working window. There are numerous system workstations 

available at each process. The main differentiating factor for workstations in a process is their handling 

type. Table 3 shows these workstation classes. E.g. in the process Depalletising there is a maximum of 

10 workstations with WorkstationType = Depalletising, of which 6 have HandlingType = Automatic and 

4 have HandlingType = SemiAutomatic, acting as two different workstation classes for one area. 

Among these classes, workstations can be considered uniform as their productivity and cost are 

considered equal. The HandlingType  attribute determines if one or more operators are required to 

fulfil production. Automatic system workstations do not require any operators apart from supervisors, 

whereas both semi-automatic  and manual system workstations do require operators. 

Attribute              Explanation 

Name • Name of workstation class 

Process ref • Reference process 

WorkstationType • Type of workstation 

HandlingType • How cases are handled: automatic or manual/semiautomatic 

Capacity • Production capacity per hour of corresponding workstations. 

NumberOfOperators • Number of operators required at workstation in the 

workstation class 

Table 3 – WorkstationClass attributes 

Table 3 introduces handling types for workstations. There is only a limited number of workstations at 

each process that have handling type Automatic, additional workstations require handling type being 

either Manual or SemiAutomatic. Workstations with handling type ≠ Automatic require human 



15 

 

resources for operation. These human resources can be allocated for timeslots of 10 minutes, but 

their employment is constrained in the duration of their shift working window. For instance, an 

operator may be available in the shift from 07:00-15:00 on Monday. In that case, cost is incurred for 

all 48 ten-minute timeslots in that time window. 

2.3.3. Shift parameters 

Many system resources require human resources. These human resources can only be employed in 

the length of shifts. The properties of these shifts are defined in the shift parameters file. The shifts 

are defined in windows of starting and ending times. For the distribution centre in our scope, we 

consider three adjacent full-time shifts and a shorter part-time evening shift. Human resources incur 

cost for the entire duration of the shift. They cannot be employed for shorter time intervals than any 

of these windows. 

Shift Start time (h:mm) End time (h:mm) Total time (h:mm) 

Day shift 7:00 15:00 8:00 

Evening shift 15:00 23:00 8:00 

Night shift 23:00 7:00 8:00 

Flex evening shift 15:00 19:00 4:00 

Table 4 – Shift settings 

For the distribution centre under consideration, the shifts available are categorised following Table 4. 

There are three 8-hour shifts spanning full days. Next to that, there is an overlapping flex evening shift. 

Each of these shifts has a predefined number of breaks. During these breaks, they cannot work at any 

workstation. 

2.4. Current planning method 

This section provides insight in the current planning process to answer question 1.4: “What does 

the planning process currently look like?”.  

From the information found in store orders, planners have to create workstation allocations so that 

sufficient capacity is available to meet demand requirements at minimum use of resources. Planners 

can define the availability of a workstation in timeslots of 10 minutes. If they define a workstation as 

available in a timeslot, this workstation is considered by the control application in the operational 

phase so that units (cases, pallets or load carriers) may flow to that workstation for processing. Figure 

12 shows an example of an allocation of workstations at the NC picking process. 

 

Figure 12 – Illustration of a sample allocation of workstations at a process. 

In practice, planners start planning for a weeks forecasted demand with a default allocation of system 

resources. This default allocation of resources already allocates many workstations requiring human 
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resources throughout the week. The planner decides to either modify allocations using the feedback 

found from the demand scheduler (we describe the scheduler in more detail in Section 2.6), or deem 

the current allocation satisfactory. They decide to add or remove (multiple) workstations (and possibly 

human resources) for a range of timeslots and schedule again. They continue this iterative process 

until they find no more errors and performance is considered satisfactory. 

 

Figure 13 – Workstations translated to capacity 

Figure 13 shows how the availability of workstations is translated to capacity. Note that in this case, 

demand has been scheduled for all available capacity, the workstations are fully utilised as all 

workstations are in use during all timeslots in the figure. Figure 14 shows a capacity allocation over 

the duration of a full week. Here, we note that capacity varies significantly and that not all capacity is 

used all the time. 

 

Figure 14 – Capacity allocation over week 

2.4.1. Planning window overlap 

Planners create transport plans in the tactical phase that considers store orders for a single week from 

Monday to Sunday. The planning process does not take into account either capacity or demand from 

preceding or succeeding weeks. This decision leads to problems as the distribution centre does 

normally expect demand in adjacent weeks whereas this is not planned for. To resolve this problem, 

the scheduling algorithm uses the capacity and demand of the current week to simulate the capacity 

and demand of the adjacent weeks. 

 

Figure 15 – Extending the planning window using current week 

The extension of the planning window aims to solve two problems that arise if demand from adjacent 

weeks is not considered: 
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1. Undercapacity at the end of the planning week following no expected demand in the 

succeeding week – when the demand from a succeeding week is not taken into account, then 

capacity at the end of the planning week will typically be allocated to a very low level. For 

instance, there may be an order that must depart at 01:00 on the Monday succeeding the 

current planning week. The majority of processing for this order must be done on the planning 

weeks Sunday. However, this is not taken into account if the planning week is not extended. 

To resolve this, the demand and capacity of the planning week’s Monday is appended to the 

end of the current planning window. As weeks demand does typically not vary greatly, an 

estimate of true demand is obtained rather than creating undercapacity. 

2. Overdemand at the beginning of the planning week not being accounted for leading to 

practically infeasible allocations – Overdemand may exist at the beginning of the planning 

week  

Figure 15 shows how overlap in planning weeks is ‘simulated’ as an extension of the current week. 

Demand from the succeeding Monday (from week 𝑛) is appended to Sunday (in week 𝑛, the week 

considered for planning) to simulate demand from week 𝑛 + 1. If this would not be done, then the 

capacity at the end of the Sunday in week 𝑛 would be too low as no demand is expected in the 

succeeding week. 

Next to that, Sunday’s capacity is added to precede the current planning week. The capacity on Sunday 

in week 𝑛 − 1 is equal to the capacity on Sunday in week 𝑛. This is done so that the added lead times 

can be calculated more reliably. Section 2.5 covers this aspect in more detail. 

2.4.2. Dealing with infeasible plans 

If we allocate all system resource and specify processes for each human resource during their 

availability, there should be a schedule that satisfies all constraints (Table 5 introduces these specific 

constraints), otherwise there is no feasible solution for that particular plan. Hans (2001) describes 4 

options available to a production planner if the available capacity in a plan is insufficient.  

1. Shift jobs in time. Or to split jobs over two or more periods 

2. To increase the lead time of some customer orders (by decreasing their start time, or by 

increasing their due date), and then to reschedule; 

3. To expand operator capacity in some weeks by hiring staff 

4. To subcontract jobs or entire orders 

Outside the scope of our research, other options for creating feasible plans are available. If no feasible 

solution can be created by assigning maximum available capacity in each timeslot in a planning 

window, production planners may decide to alter the input transport plan. For instance, they can 

communicate with stores asking them to change their cut-off times and thus spreading demand to 

mitigate infeasible schedules. They can then provide the altered transport plan to the TOP planning 

module to be used as input for capacity planning. 

In the scope of our research, we only consider (3) as an option for an automated capacity planner. The 

other three options are available outside the scope of this research (1.3.1) as they require 

communication with other outside actor, such as retail stores or inbound suppliers that is hard to do 

automatically.  
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2.5. Scheduling store orders 

The demand scheduling function automatically schedules forecasted and/or actual store orders within 

resource availability allocations introduced in the tactical or operational plan. The main purpose of 

the demand scheduler is to first validate whether a proposed tactical or operational plan provides 

sufficient capacity to meet demand for the warehouse, and second aid in optimising the production 

plan. Section 2.6 describes these performance indicators and constraints. 

During the Tactical and the Operational capacity planning phases, the demand scheduling function 

can be used to evaluate a resource plan on user request. This effectively enables the planner to 

perform a so called "what-if" analysis to evaluate alternative planning scenarios. 

The following main objective applies to the demand scheduling function: a store order needs to be 

scheduled as late as possible, i.e. following a just in time (JIT) method. This objective is introduced for 

a number of reasons: 

• To minimize the order lead time; 

• To minimize the amount of shortages due to late inbound deliveries; 

• To minimize the occupation level in the outbound marshalling buffer; 

• To maximize the time for the transport planning to reassign load carriers over shipments 

without impact on the logistics flow within the warehouse. 

Orders are scheduled based on the capacity plan created by the planners workstation allocations. The 

scheduling of these orders is a simulation of production as the true production parameters of store 

orders are not regarded as known in the planning phase, but are only regarded in the control phase 

(see Figure 1) which controls product-by-product flow and production times. These true production 

parameters may include the exact production composition for orders areas (e.g. volume and weight 

of cases). In Section 1.2 we explained how the planning module creates a simulated environment of 

the DC. On the day of production, the production may have slightly shifted or orders may be composed 

differently: the adaptations to the scheduling of orders is then done in the control phase. In other 

words, the output from the planning module, the scope of this thesis, is a resource allocation per 

discrete timeslot 

The scheduling, or simulation of order processing in the DC, is done using a scheduling algorithm in 

the planning module. After the outbound transport plan (result of forecasted orders and store orders) 

and the available capacity plan (described in Section 2.4) have been determined, the algorithm 

schedules store orders from the transport plan on the workstations available. 

We briefly describe how the scheduling algorithm works on a just-in-time basis using illustrative 

examples. The algorithm starts by identifying timeslots with insufficient production capacity 

(overdemand) from the earliest available timeslot onwards. When a timeslot with overdemand is 

found, the algorithm attempts to reassign the production demand to the first earlier timeslot with 

available production capacity. The scheduler is considered finished only when there is no overdemand 

left in any timeslot at any process. 

1. Allocate all store order demand to the timeslots in which they are due at the final process in 

each area corresponding to the order. 
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2. Recursively shift excess demand from the last demand timeslots due so that no excess demand 

exists.  

Scheduling example – toy problem 

 

 

Figure 16 – Scheduling example, initial demand and constant capacity = 10 

We consider a toy scheduling problem for a sample process. Figure 16 shows initial demand for a 

planning window of 8 timeslots in length. The figure illustrates the final demand for orders at this 

process that have a deadline in each timeslot of the timeslots, separated by color. The vertical axis 

shows the number of units due at the process we consider at each timeslot. There is a red line 

representing the production capacity during each timeslot. This example considers uniform 

production capacity of 10 units per timeslots. In reality, the production capacity frequently differs. 

The distribution centre cannot process more than 10 cases per timeslot, otherwise more workstations 

must be allocated to add capacity. We note that there is excess demand. Demand that is due in 

timeslots 𝑡 ∈ {6,7,8} cannot be processed immediately. Therefore, they must be processed in another 

timeslot. The orders cannot be shifted later in time as they have a departure deadline. They are shifted 

recursively following the scheduling algorithm. 

 

Figure 17 – First shift in schedule 

Figure 17 shows the first shift in the schedule in an attempt to mitigate overdemand. Demand in 

timeslot 8 is shifted forward. Overdemand remains in timeslots 6 and 7. 
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Figure 18 – Second shift in demand, mitigating overdemand in timeslot 7 

Figure 18 shows how overdemand in timeslot 7 is mitigated. The scheduling algorithm shifts the 

demand from the order set due in timeslot 7 forward. 

 

Figure 19 – Final scheduling attempt 

For this allocation, the scheduling algorithm continues to seek and remove peaks from timeslot 6 

following the priority rule. Figure 19 shows the final schedule once all demand has shifted and no 

overcapacity remains. 

Note that each recursive shift adds lead time of one timeslots for the orders. Figure 19 shows that for 

instance demand with a deadline t=6 is now processed even in timeslot 4. Remember that this 

scheduling function is an example of a single process, where scheduling is done recursively from the 

deadline time following a JIT rule. Note that there may be processes before this process. If we take 

the analogy of the ACP area, the process in the picture may be ACP Picking. The preceding 

Depalletizing process that must be finished before ACP Picking can start. 

Therefore, the demand at t=6 can only be added as demand at Depalletizing at t=4 or earlier. This way, 

an offset of at least (t=6) – (t=4) = 2 time slots is added. Next to the offsets added by under capacity 

in timeslots, there are fixed offsets between processes. 

2.5.1. Precedence in scheduling production flow 

The scheduling algorithm example describes how demand is scheduled for an allocation over a single 

process. In reality, demand for a single area considers one or more processes that must be processed 
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sequentially. Figure 20 shows the precedence relations in the process flow in the production and 

scheduling of orders. Each store order consists of demand for several areas, that may consist of several 

processes. The store orders are ranked by their departure time, which serves as indication of the order 

of processing. 

 

Figure 20 – Precedence relations in production 

In this case, store order 1 constitutes demand for 3 areas, whereas order 2 contains no demand for 

the second area. There are strict precedence relations between the processes in these areas, indicated 

by orange dashed arrows. These arrows indicate that if and only if all predecessors to a process have 

finished processing, their common successor may start production.  

Production at the ACP process for store order 2 cannot start before both depalletizing for order 2 and 

ACP for order 1 have finished processing. The time between starting at successors is further offset by 

the attribute’s offsets preceding- and succeeding the processes. 

2.5.2. Offsets in scheduling 

The scheduling algorithm example in Figure 19 shows that that offsets in time are added for some 

orders that had overdemand in their respective timeslots as demand shifts back in time. These offsets 

contribute to the total lead time for an order. Each constituent process of an area contributes to the 

total lead time of a production area order in an order. The maximum of these production area order 

leadtimes is considered the lead time for an order. Next to these offsets that arise as a function of the 

capacity allocation, there are fixed offsets. These can be offsets before and after both processes and 

areas as well as time required for loading, as seen in Figure 21.  

Any order on any resource must be finished fully before work on a succeeding order with later 

departure times can start. Furthermore, the processing sequence for any area is fixed in the departure 

time of the orders. Therefore, we can quickly schedule recurrently from the last timeslot in the 

planning window if we consider fixed capacity. The scheduling process is deterministic. That is to say 
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that it always creates the same schedule for one capacity plan. The scheduling problem is therefore 

not an optimization problem and can be considered trivial. 

From this description of the scheduling algorithm, we find several interesting properties that may be 

of use in a categorization in the literature review. The first is that we do not allocate orders to 

workstations. We schedule the capacity required (by customer orders) for an order in a timeslot over 

the total capacity available (determined by planners) at a process in that area and timeslot iteratively. 

 

 

Figure 21 – Fixed offsets between processes and areas in the DC 

The fraction of customer orders processed during a timeslot for a order is variable up to the finest 

level of granularity (1 case). This implies that the processing time is also variable, as order processing 

time is spread over preceding timeslots if their deadline timeslot does not suffice. The time required 

for processing cases corresponding to a customer order depends as a linear function on the amount 

of capacity allocated to it. Moreover, we observe hard precedence relations. Work for an order must 

always be completed entirely before processing on order with greater departure time can start. If two 

orders have a departure time in the same timeslot, we can group them as Chapter 4 will describe. 

Finally, we observe that pre-emption is possible. If an order is due in a timeslot and its preceding 

timeslot has no free capacity, production can be shifted to an earlier timeslot. 

The offsets added to an order through scheduling contribute to the order lead time. Two factors 

determine order lead time: fixed and variable offsets. The variable offsets are introduced by the 

scheduling algorithm. Figure 21 illustrates the fixed offsets. Therefore, there is a minimum time 

required to process every order. For each order, the lead time is constrained. It cannot increase 

beyond a certain value set by the store. Section 2.6 treats this constraint in more detail. 

2.6. Capacity plan performance evaluation 

Section 2.5 mentions that the function of order scheduling is to get insights in performance. In this 

case performance refers to hard- and soft constraints as well as KPIs. Table 5 shows performance 

constraints and indicators. Plans are considered infeasible when hard constraints (i.e. errors) persist. 

Hard constraints indicate that a capacity plan must be altered. Soft constraints are considered as 
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warnings, they give an indication of improvement potential in a plan, these warnings indicate that a 

capacity plan could likely be improved. Section 2.6.1 introduces these constraints in more detail. 

Section 2.6.2 describes the performance indicators. 

2.6.1. Planning constraints 

We describe each of these constraints. Figure 3 shows buffers between processes. These buffers are 

limited in size. The marshalling buffer can only store a limited number of load carriers similar to how 

the tray store can only handle a limited number of trays. When buffers are full, production at 

preceding processes must be stalled, adding lead time and idling workstations. The scheduling 

algorithm described in Section 2.5 does not take these buffers into account, as it continues scheduling 

recursively. A hard constraint (1) is that the number of units in a buffer cannot exceed its maximum, 

so that the scheduling algorithm mirrors expected production parameters.  

Some cases cannot be processed by fully automatic workstations. However, the exact information on 

which cases are unsuitable for automated depalletizing is not known in the planning phase (only 

available in the control phase). Hard constraint (2) adds that the ratio of workstation capacity with 

handling type Automatic to SemiAutomatic in the depalletizing process cannot exceed 4. The reason 

for this is that on average, the fraction of cases requiring handling by SemiAutomatic workstations 

weighed with the production capacity of those workstations is expected to exceed 0.25. The 

expectation is that true performance becomes lacklustre if this ratio is not met: as production for cases 

that cannot be handled automatically would stall, creating queues and increasing lead times. 

 

Hard constraints (errors) Soft constraints (warnings) KPIs 

1. Maximum buffer capacity 

cannot be exceeded 

2. Handling type capacity ratio 

in depalletizing must be at least 

4 

3. Cutoff offsets cannot be 

exceeded (per order) 

4. Fixed maximum leadtime 

cannot be exceeded (for all 

orders) 

5. Overdemand at process 

1. Efficiency too low 1. Buffer utilisation 

2. Order Leadtime 

3. Production throughput 

4. Utilisation 

5. Productivity 

(cases/operator hour) 

Table 5 – Capacity plan performance constraints and indicators  

The third hard constraint (3) indicates that cut-off offsets cannot be exceeded, meaning that the 

maximum lead time for an order cannot be greater than CutOffOffset. In other words, all production 

for an order must occur in the window [TruckDepartureTime – CutOffOffset, TruckDepartureTime]. If 

this window is not adhered to, then stores cannot alter their demand anymore as production has 

already started. Figure 22 shows an illustration of the realized lead times that are created by shifting 

demand in the scheduling function. 
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Figure 22 – Illustration of lead times per order plotted with the departure time of orders on the horizontal axis 

Hard constraint (4) states that maximum lead time of an order cannot exceed a fixed time that is equal 

for all orders. This is an addition to the cut-off constraint. The CutOffOffset for any order may exceeded 

the maximum lead time over all orders. To satisfy this constraint we should constrain the allowed to 

work window of an order further, to: [TruckDepartureTime – min(CutOffOffset, MaximumLeadTime), 

TruckDepartureTime]. 

The final hard constraint (5) mitigates overdemand at a process. The term overdemand was 

introduced in Section 2.5.1. If demand cannot be shifted to the present due to undercapacity at 

workstations, then some demand cannot be fulfilled thus creating overdemand. This should not be 

possible as we have an objective of fulfilling all store order demand. 

There is a soft constraint. This soft constraint serves as a warning rather than error (hard constraints). 

It aids aid planners in creating performant capacity plans. This soft constraint is that planners receive 

an indication when efficiency at a process is too low in a plan. 

2.6.2. Performance indicators 

Once hard constraints are satisfied and soft constraints are mitigated, performance can be optimised. 

The planning module shows the manual planner KPIs of a capacity plan in Table 5. In Section 1.2 we 

mention that the goal of planning for the distribution centre is to fulfil store orders with minimum 

cost. We describe these indicators and provide arguments for why we decide to optimise for 

productivity only, as optimising for productivity adds to the planning goal by itself while constraints 

are adhered to. 

• Buffer utilisation: dominated by hard constraint: buffer capacity cannot be exceeded. A lower 

buffer utilisation is generally preferred, however it does not contribute directly to a lowered 

objective of obtaining maximum throughput for minimum cost. The buffer utilisation merely 

constrains production when buffers are full (or not full enough) 

• Order leadtime: dominated by hard constraint cutoff times cannot be exceeded, maximum 

leadtime cannot be exceeded. Order lead times do not directly contribute to the objective, 

they offer an indication of production slack. If order lead times are low, we can expect to be 

able to reduce capacity for some timeslots.  

• Production throughput: Dominated by cutoff times cannot be exceeded, implying that all store 

orders must be fulfilled and all orders are processed. 

• Utilisation: indicates the capacity of workstations used as percentage of the maximum 

available of workstations, if utilisation > 1 a transport plan would be infeasible, requiring 

changes to the allocation. However, as there are limits to the number of workstations 
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allocated the changes must stem from decisions outside the scope of the planning module 

(e.g. arranging different departure times with stores) 

2.7. Cost function 

Given that a solution is feasible, (satisfying all constraints) its performance is evaluated using a cost 

function. The cost function measures the weighed cost of employing system- and human resources 

during shifts. There is cost differentiation over timeslots for human resources. Additional hourly 

compensation is incurred following the percentage multipliers in Figure 23. All timeslots in these hours 

incur an additional percentage cost equal to the amounts listed. We observe that there is a preference 

to work during the day. 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Monday 55 55 55 55 55 55 55 0 0 0 0 0 0 0 0 0 0 0 37 37 37 37 37 39 

Tuesday 39 39 39 39 39 39 39 0 0 0 0 0 0 0 0 0 0 0 37 37 37 37 37 39 

Wednesday 39 39 39 39 39 39 39 0 0 0 0 0 0 0 0 0 0 0 37 37 37 37 37 39 

Thursday 39 39 39 39 39 39 39 0 0 0 0 0 0 0 0 0 0 0 37 37 37 37 37 39 

Friday 39 39 39 39 39 39 39 0 0 0 0 0 0 0 0 0 0 0 55 55 55 55 55 60 

Saturday 60 60 60 60 60 60 60 35 35 35 35 35 35 35 35 35 35 35 70 70 70 70 70 75 

Sunday 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 55 55 55 55 

Figure 23 – Hourly cost matrix during week 

Capacity plans yield an indication of the required human resources employment on system resources 

over the length of a shift. The capacity plans do not indicate which exact human resource is required 

on a specific system resource. In fact, there is a preference among warehouse employees to work at 

workstations in different processes during their shift. Therefore, we do not have to allocate system 

resources requiring human resources for intervals of human resource shift length. However, from an 

optimization perspective it is implied that the sum of human resources over timeslots at all 

workstations during a shift is equal to the number of human resources working during that shift. Shift 

utilization may therefore be regarded as an implicit performance measure. A plan can be regarded 

increasingly inefficient as function of decreasing shift utilization as human resources idling increases 

and productivity decreases. Normally, maximizing the single performance indicator productivity 

implies a maximum utilization of resources. 

Another implicit constraint considers the workstation allocations early on Sunday. There is a strong 

preference for not working from 00:00 to 07:00 on Sunday. We must take this into account when 

modelling the problem: allocations in that timeframe should only be considered if plans are otherwise 

infeasible. 

2.8. Conclusion 

This chapter provides insight in the method of capacity planning for the distribution centres. The 

current manual planning process involves an iterative process. For each process in the distribution 

centre, the availability of resources is indicated for 10-minute timeslots per week.  Planners allocate 
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resource to cope with store order demand. The allocation of these resources must be feasible. That 

means that the capacity plans should not violate constraints. 

The evaluation of the capacity plans is done using a scheduling function that is based on a Just-In-Time 

priority rule. The store order demand can be scheduled using the function. Then, the planning 

application provides feedback to the planner. It indicates if and which constraints are violated. Next 

to that, performance measures are included to the planner. Using these indicators, the planner 

decides whether the current capacity plan is satisfactory. 

The current planning process follows a ‘what-if’ loop iteratively. In practice, planners find themselves 

creating many iterations until a satisfactory capacity plan is obtained. A satisfactory plan does not 

violate any constraints and performs well in the pre-defined performance indicators. 
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3. Theoretical framework 

This chapter considers research question 2: What is known in literature on capacity planning and 

scheduling in distribution centres? To answer this question, we first consider question 2.1: How are 

capacity planning and scheduling problems categorized in literature?  We consider the hierarchical 

planning framework in section 3.1, and find strategies available to tackle problems in the 

tactical/operational phase. Section 3.2 reviews planning and scheduling problem formulations in 

literature.  

Then, we consider research question 2.2: What approaches are known to solve capacity planning and 

scheduling problems? Section 3.3 discusses solution approaches to the problem. We describe exact 

methods in Section 3.4 and approximate methods in Section 3.5. 

3.1. Hierarchical planning framework 

In this section we review the hierarchical planning framework for hierarchical planning in (semi-) 

project-driven organizations of De Boer (1998). Figure 24 shows this hierarchical planning framework. 

It distinguishes four levels of (horizontal) planning activities in order to break down multi-project 

planning into more manageable parts: strategic resource planning; rough-cut capacity planning; 

resource-constrained project scheduling and detailed scheduling. Strategic resource planning 

considers long-term decisions regarding space, staffing levels, layouts and the number of resources.  

 

Figure 24 – Hierarchical planning framework in (semi-) project-driven organisations (De Boer, 1998) 

Rough-cut capacity planning in the tactical phase considers a medium-term horizon, where the 

question is how sufficient resources can be allocated to cope with demand (projects) as effectively as 

possible (Hans, 2001). In the tactical level, the problem to be solved is the allocation of resources such 

as machines and workforce. In this phase, the regular capacity is considered fixed due to e.g. 

workstation or machine availability, but medium term decisions can be made on hiring additional 

personnel (Leus, 2003). The tactical planning phase window is most often regarded in the order of 

weeks to months. In order to generate input for the RCCP, some rough-cut process planning has to 

take place. Based on customer specifications, this rough-cut process planning process should result in 

a network of work packages with rough estimates of resource requirements. 
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Capacity planning and scheduling problems are often distinguished in being time-driven or resource 

driven (Möhring, 1984). This refers to the objective and constraints of the optimisation problem. If a 

problem is resource driven, its objective is to minimize tardiness or makespan, constrained by fixed 

capacity levels. In a time-driven problem, the optimisation objective is to minimize additional resource 

usage, while being constrained by due dates of components. There are hybrids of the two, where the 

objective function minimizes a tradeoff between makespan and resource usage. 

The resource-constrained project scheduling (RCPS) phase determines when activities are performed 

as capacity levels are more or less given by the rough cut capacity plan. A more detailed activity 

network can be drawn where work packages of the RCCP level are broken down into smaller activities 

with constant duration and resource rates. However, RCPS does not indicate which persons or 

machines of a group are assigned to each activity. 

Detailed scheduling specifies which machines or persons should work at what moments in time. In 

Chapter 4 we argue that our problem considers the tactical planning as well as the tactical/operational 

phase. Therefore, we require interaction between planning and scheduling phases. 

 

Figure 25 – Solution strategies for integrated production planning and scheduling (Maravelias & Sung, 2009) 

Figure 25 shows a classification of solution strategies for the integrated planning- scheduling problem 

in three categories (Maravelias & Sung, 2009). If the flow of information is only top-down from the 

planning model to detailed scheduling without intermediate planning, then hierarchical strategies can 

be considered. If there is a feedback loop from the scheduling models back to the master or tactical 

planning problem, then the methods can be considered iterative. If the problem considers a full 

formulation with detailed scheduling information for each planning period, then its solution should 

provide all the necessary information. These strategies are referred to as full-space or integrated 

methods. 

In Chapter 4 we argue that we can approach our problem using the either the iterative sequential (b) 

or the full-space integrated (c) strategy as iterative or concurrent communication is required between 

planning and scheduling functions. In the coming sections we review solution methods based on both 

these strategies. Section 3.2 covers planning and scheduling problems than span the tactical and 

operational phase. Section 3.3 introduces the approaches that can be used to tackle these problems. 
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Section 3.4 covers exact methods in more detail. Section 3.5 covers approximate methods in more 

detail. 

3.2. Planning and scheduling problems spanning the tactical and operational 

phase 

This section examines capacity planning and scheduling approaches to combinatorial optimisation 

problems found in literature. 

3.2.1. Capacity planning problems 

Hans (2001) state that resource loading concerns loading a given set of orders and determining the 

resource capacity levels that are needed to process these orders and their constituting jobs. Resource 

loading considers a set of jobs that must be scheduled within a given time horizon that is organized 

into consecutive time periods, where each period is associated with a fixed number of available 

workers. The objective is to find a feasible schedule that minimizes the number of additional workers 

needed to execute all the jobs. The resource loading problem (RLP) solely allows for the modelling of 

linear precedence relations. The RLP with generalized precedence constraints is known as the Rough-

Cut Capacity Planning (RCCP) problem (Hans, 2001).  

In Chapter 2 we find that the main objective of our planning problem is to minimize the cost of using 

non-regular capacity. A planning problem exhibiting similar objectives is the time-driven variant of the 

RCCP-problem in the tactical phase (De Boer, 1998).  

Hans (2001) formulates a mixed time-driven and resource-driven RCCP problem for a job shop in which 

aggregate orders containing jobs with precedence constraints are loaded onto resources. For this, 

they consider fixed machine capacity and operators capacity. Operators are distinguished between 

regular and non-regular capacities. They consider no overlap between connected activities.  

Gademann & Schutten (2001) study the time-driven RCCP problem in a multi-project environment 

with precedence relations. In their description, the problem contains work packages to be planned on 

resources from several projects. They have to be planned so that due- and release dates are met. They 

also include a minimum working fraction for any work package in a timeslot.  De Boer (1998) extends 

the time-driven RCCP model with suggestions for cost differentiation and capacity constraints. 

3.2.2. Project scheduling problems 

Kis (2005) study a resource constrained project scheduling problem in which the resource usage of 

each activity may vary over time proportionally to its varying intensity where overlap of preceding 

activities is allowed. These generalized precedence constraints allow for modelling minimum and 

maximum time-lags between activities (Neumann, Schwindt, & Zimmermann, 2002). However, the 

number of resources in Kis (2005) is considered fixed. Kis (2005) consider the time-driven resource 

constrained project scheduling problem (RCPSP) with nonregular hiring and variable intensities, with 

feeding precedence relations, here there can be overlap between activities connected by precedence 

relations. 
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3.3. Solution approaches 

In Chapter 4 we describe that the integrated problem can be viewed as a combinatorial optimisation 

problem “Combinatorial optimisation is the mathematical study of finding an optimal arrangement, 

grouping, ordering or selection of discrete objects usually finite in numbers.” (Lawler, 1976). 

A combinatorial optimisation problem is referred to as easy if we can develop an algorithm that solves 

every problem instance in a polynomial-time complexity bounded by the size of a problem instance 

to optimality (Osman & Kelly, 1996). Such an algorithm is referred to as being efficient. A problem is 

called hard if efficient algorithms for solving it do not exist. 

Figure 26 shows two main method categories: exact methods and approximate methods specifically 

for the vehicle routing problem. Many of these methods can be applied to other combinatorial 

problems. Exact methods obtain optimal solutions and guarantee their optimality (Talbi, 2009). 

Approximate methods find good solutions on large-size problem instances (Talbi, 2009). 

 

Figure 26 – Adaptation of categorisation of optimization methods (Talbi, 2009) 

Chapter 4 describes how our problems is similar to the time-driven RCCP problem. The time-driven 

RCCP problem is an NP-hard problem (Kis, 2005). An optimal algorithm for a problem in this class 

would require a number of computational steps that grows exponentially with the problem size. 

Hence, solving the RCCP problem to optimality may be difficult for large problem instances (Hans, 

2001). 

As we find that NP-hard problems cannot be solved to optimality in polynomial time if P ≠ NP, then 

we may have to consider heuristic methods are they are more likely to find feasible solutions within 

limited time. Therefore, we review exact and heuristic approaches to similar problems in the following 

sections. Section 3.4 covers exact methods. Section 3.5 covers approximate methods. 
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3.4. Exact methods 

Exact methods are often applied to small-size instances. The set of exact techniques covers a broad 

set of methods. 

Figure 26 shows a categorisation of optimization problems. For exact combinatorial optimization 

problems, we distinguish Branch & X (Branch & Bound, Branch & Cut, Branch & Price), constraint 

programming, dynamic programming and algorithms based on artificial intelligence such as A* 

(Masmoudi, 2011). However, the latter is specifically fit for the vehicle routing problem. 

The time-driven RCCP problem is formulated by De Boer (1998) as a mixed integer linear program 

(MILP). That is to say that is a generalization of a linear program, where some variables are integer.  

Formulating and solving ILP problems is called integer linear programming. There are numerous 

combinatorial optimization algorithms for finding feasible or optimal solutions to these programs. 

These methods use well-known algorithms such as branch and bound or branch and cut. Numerous 

solvers are available for ILP problem formulations that are based on these algorithms. These solvers 

are often based on similar solution methods based on enumerative approaches or cutting plane 

methods (Hans, 2001). We expect that completely enumerative approaches are unlikely to yield 

promising results as the solution space is too large to enumerate due to the combinatorial nature of 

the problem. Therefore, we focus on implicit enumerative approaches. The most commonly used 

enumerative approach is called branch-and-bound where branching refers to enumerating parts of 

the solution and bounding refers to fathoming or pruning possible solutions through a comparison 

with known lower- or upper bounds. 

Branch-and-cut methods combine cutting plane algorithms with branch and bound results. Cutting 

plane methods improve the relaxation of the problem to more closely approximate the integer 

programming problem, and branch-and-bound algorithms proceed by a sophisticated divide and 

conquer approach to solve problems (Mitchell, 2002). Many solvers are available that are most often 

based on branch-cut methods (Mittelman, 2019). 

Hans (2001) proposes an exact branch-and-price algorithm to solve the RCCP problem modelled as a 

MILP. Branch-and-price combines branch-and-bound and column generation methods. In branch-and-

price, the ILP problem is relaxed after which column generation is done at every branch-and-bound 

node, solving the LP relaxation. 

3.5. Approximate methods 

Given that the problem is NP-hard and problem instances are large-sized, we are unlikely to find 

optimal solutions within polynomial time, or even reasonable solutions within reasonable time. When 

optimizing such complex problems, there is a trade-off between computation time and the quality of 

solutions obtained. For the above reasons, we may have to resort to heuristic methods, or 

combinations of heuristic- and exact methods for finding solutions to our problem, that do not 

guarantee optimal solutions given sufficient runtime.  

Figure 26 distinguishes two classes of heuristic algorithms. The first, specific heuristics, are used to 

solve specific problems or instances (Masmoudi, 2011). The second class of metaheuristics considers 

generic heuristics that can be applied to a vast number of problems (Osman & Kelly, 1996).  
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3.5.1. Constructive heuristics 

Constructive heuristics build candidate solutions to optimization or decision problems iteratively, 

starting from empty solutions. They normally use heuristic functions that estimate for each solution 

component the benefit of including it into a partial candidate solution (Thomas & Ruiz, 2018).  Several 

of these problem-specific constructive heuristics are proposed in literature. We evaluate them in 

relation to the adaptations to our problem.  

The Incremental Capacity Planning Algorithm (ICPA) is a constructive heuristic fitting the RCCP 

problem proposed by De Boer (1998). ICPA incrementally adds additional (nonregular) capacity to 

timeslots until a solution is feasible. The ICPA heuristic is less suitable for extensions such as maximum 

capacity constraints and cost differentiation (De Boer, 1998). Our problem features capacity 

constraints: increasing non-regular capacity is not always possible as the number of system resources 

(i.e. workstations) is limited. Next to that we have cost differentiation for non-regular capacity. 

Capacity from workstations not requiring human resources is less costly than workstations that do 

require human resources. 

Greedy heuristics pick the best element from a set of potential solution elements at each iteration. 

Kolisch & Drexl (1996) propose an adaptive search heuristic for hard scheduling problems, using a 

hybrid of priority rules and random search techniques. Greedy randomized adaptive search procedure 

(GRASP) is a constructive metaheuristic. It attempts to overcome the drawback of greedy approaches 

by introducing randomness in the solution construction process (Sevaux, Sörensen, & Pillay, 2018). 

GRASP creates a restricted candidate list of best elements and randomly picks one element from that 

list, rather than iterating on the best candidate. This way, iterations end in different solutions.  

3.5.2. Metaheuristics 

Meta-heuristics are general-purpose algorithms that can be applied to solve almost any optimisation 

problem (Caceres-Cruz & Arias, 2015). Meta-heuristics are a class of approximate methods designed 

to attack hard combinatorial optimization problems where classical heuristics have failed to be 

effective and efficient (Osman & Kelly, 1996).  

Local search methods improve incumbent solutions. Local search methods start from feasible 

solutions and iteratively improve them until a local optimum is found. After finding a solution, the 

neighbourhood of a solution is the set of all feasible solutions in the vicinity of the solution that follows 

some distance measure. After each iteration the neighbourhood of a candidate is explored and the 

current solution is replaced with a better solution from their neighbourhood, if one exists.  

Metaheuristics are solution methods that “orchestrate an interaction between local improvement 

procedures and higher levels strategies to create process capable of escaping from local optima and 

performing robust search of a solution space.” (Glover & Kochenberger, 2003). We describe some 

well-known metaheuristics, their applicability and expected performance to our problem. The 

metaheuristics we discuss: tabu search (TS) and simulated annealing (SA).  

The key to success for a local search algorithm consists of the suitable choice of a neighbourhood 

structure, efficient neighbourhood search techniques, and the starting solution (Festa & Resende, 

1995). Due to the large solution space of our problem (both in the number of timeslots and available 
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workstations), we have to make effective decisions in the neighbour structures, search techniques and 

starting solutions considered for local search methods. 

We can change capacity levels by searching the neighbourhood structure of the incumbent solution, 

and change some variables that neighbour the incumbent solution variables. If we seek optimal 

solutions, we must define a neighbourhood structure so that all possible allocations can be reached. 

Simulated annealing 

Simulated annealing (SA) is a metaheuristic that combines local search and probabilistic methods 

introduced by Kirkpatrick et al. (1983). Simulated annealing mimics the cooling process of metals, 

which follows a progressive reduction in the atomic movements that reduce the density until a low-

energy state is reached. 

In each iteration of SA, neighbours of incumbent solutions are generated randomly, a probabilistic 

move is made to the neighbouring solution depending on its objective function and the incumbent 

solution value. If the neighbour solution is better than the incumbent solution, it is always accepted. 

If it is worse, it is accepted with a certain probability that is updated over iterations in the search. The 

acceptance of worse solution value neighbours allows for escaping of local optima. The cooling 

scheme determines the rate of cooling, and influences the acceptance rates through the annealing 

procedure. The cooling scheme determines the rate of cooling. Quick cooling may cause irregular 

solutions whereas slow cooling may cause stalling in local optima. 

Masmoudi (2011) considers a simulated annealing adaptation for the RCCP problem under uncertainty 

where project plans and project schedules are modified successively. 

Tabu search 

Tabu search (TS) is another well-known metaheuristic able to avoid local optima first mentioned by 

Glover (2003). Contrasting SA, TS’ method for escaping local optima is deterministic. TS uses memory, 

or a tabu list to avoid trapping in local optima. The tabu list contains information on the most recently 

visited neighbours to avoid them in (short-term) future iterations. TS explores a solution space by 

moving to the best solution space in the candidate list. To avoid traversing recent solutions, moves or 

solutions performed recently are added to the tabu list. When this solution or move is included in the 

tabu list, it cannot be chosen as the next solution. 

3.5.3. Hybrid approaches 

Until now, we distinguished between exact and approximate approaches to our problem. However, 

hybrid approaches could be considered. Matheuristics consider the combination of mathematical 

programming with heuristics (Fischetti & Fischetti, 2016).  

De Boer (1998) proposes an LP-based algorithm to solver the time-driven RCCP problem. The 

precedence relations in the problem introduce integer variables, causing a hard problem. However, 

relaxing the precedence relations leads to an LP-formulation. Therefore, De Boer (1998) proposes an 

idea that uses LP iteratively, repairing broken precedence relations if necessary. They propose multiple 

ratios that can be used to narrow the time windows of work packages iteratively. 

Gademann and Schutten (2001) propose an LP-based heuristics. Their improvement heuristic starts 

from a feasible solution and tries to improve the solution iteratively by changing the start- and 
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completion times of the work packages in the solution to mitigate nonregular resource usage. They 

also propose repairing heuristic similar to De Boer (1998). However, they differ in the strategy of 

repairing violated precedence constraints. 

3.6. Conclusion 

This chapter provides a theoretical framework for our problem. We find that the capacity planning 

problem integrated with the scheduling function can be regarded as a combinatorial problem that is 

in many regards similar to the time driven rough-cut capacity planning problem. 

Alternatively, this chapter finds that the problem can be regarded as an iterative problem where there 

is feedback from the scheduling function the master problem of capacity planning. As the scheduling 

function can be considered trivial, we find that we can apply heuristics to obtain solutions that are 

evaluated using the scheduling function and a cost parameter. 
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4. Problem approach 

Chapter 3 introduces two solution strategies for planning and scheduling problems in general: a 

strategy based on fully integrating the planning- and scheduling problems and a strategy based on 

iterating between planning and scheduling. We consider research question 3: What strategies can we 

formulate to tackle our problem? in this chapter. 

Section 4.1 describes the characteristics of our problem so that we can compare it to methods 

described in literature. Section 4.2 positions our problem in an adaptation of the hierarchical planning 

framework from De Boer (1998). Section 4.2 finds two means of approaching our problem: either 

through integration or iteration. Finally, Section 4.3 and 4.4 considers solution space and time for our 

problem as important factors that may determine capacity plan quality.  

4.1. Problem characteristics 

We describe the properties of our problem and its components so that we can compare it to existing 

formulations of problems in literature and finally formulate our problem as an optimization problem. 

In Chapter 2 we found that we can optimize for a single performance indicator given that hard 

constraints are met. The allocation of resources over timeslots creates a finite solution space. For each 

timeslot in the planning window, a finite number of decisions can be made on the number of 

workstations employed at processes for each workstation class. Therefore, our problem can be 

considered a combinatorial, rather than a continuous optimisation problem. 

In Chapter 2 we provide a rationale for our research to consider deterministic demand and supply. We 

do not consider stochasticity or uncertainty in processing times and capacity levels nor in offsets and 

resource availability, neither do we consider uncertainty in the arrival/departure of trucks or demand. 

In other words: the transport plan with store orders or forecasts of these orders is the best estimate 

of true production we have and therefore use it to plan capacity with predetermined human- and 

system resource availability. 

Our problem has properties similar to time-driven problems as we consider the departure times of 

trucks as hard constraints that must be adhered to, where we have deadlines rather than due dates. 

We cannot employ unlimited capacity as we are constrained by the availability of both human 

resources and system resources. Some system resources require human resources for operation, both 

of these resources are available up to a finite number: the number of persons available in a shift and 

the number of (semi-)manual workstations at a process. Furthermore, there is a link between the 

human resources hired over both adjacent timeslots and processes, as their cost is incurred in shifts. 

As we described in the process of planning in Section 2, cost is incurred for an interval of timeslots 

rather than distinct timeslots for human resources. Next to that, these resources may be employed 

over system resources at different processes during their employment shift. 

Demand for any production area in a store order constitutes (many) production units (cases/LCs). 

There is no fixed production time for these orders. We can state that the processing time for an order 

is variable as it is dependent on the number of workstations handling the order. The processing rate 

in one timeslot depends on the available capacity. 
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Furthermore, pre-emption within processes of store orders is allowed. I.e. the execution of any 

component process may be spread over different not necessarily adjacent timeslots. We can stall 

production for any order and continue producing in a later timeslot, without violating any constraint. 

Chapter 2 describes the process flow through the distribution centre. If a store order constitutes 

demand for a production area, the flow sequence of production through that area is deterministic. 

There are clear precedence relations between processes in these areas. For instance, (automated) 

case picking cannot start before depalletizing has finished. 

4.2. Positioning & strategy 

This section discusses how our problem can be positioned in the hierarchical planning framework of 

De Boer (1998), and how solution strategies can be defined for that position. Chapter 3 reviews the 

hierarchical planning framework. We argue that we can position our problem in the tactical and 

tactical/operational phase. 

Planning in the distribution centre is done for store orders for small timeslots of 10 minutes, normally 

seen in operational planning. However, we argue that our main problem of allocating capacity fits a 

tactical decision similar to the time-driven RCCP problem. We seek to allocate sufficient resources to 

cope with store orders within working windows (lead time and deadline constrained). There is 

maximum fixed capacity in the number of workstations available per area, meaning that non-regular 

capacity cannot be hired infinitely. Moreover, we deal with work packages rather than activities as 

exact order components (such as a detailed description of the items on a load carrier) are not available 

in the scope of the planning module as described in Chapter 2 (only available in the execution phase 

in the distribution centre).  

Figure 27 shows the hierarchical planning framework adapted to the planning problem at the 

distribution centre. Initially, the planner plans resource using system and shift parameters. Then, the 

plan is iterated on using the scheduling algorithm. This scheduling algorithm uses the transport plan, 

the priority rule and the system parameters (offsets and routing between processes) to create 

feedback for the planning phase. 

Currently scheduling is performed iteratively after planning in a what-if loop, serving as feedback to 

the planner. This is done by the demand scheduling algorithm described in Chapter 2, which functions 

as a performance validation method for the capacity plan. The demand scheduler considers the 

tactical/operational level of scheduling, sequencing and assigning jobs as it does not yet definitively 

indicate which persons or machines are assigned to which activity. Once the capacity plan is 

satisfactory, the next step is detailed scheduling or execution on the day of production where orders 

are allocated to workstations rather than a group of workstations. However this is not part of the 

planning process and scope. 
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Figure 27 – Hierarchical planning framework (Adapted from De Boer (1998)) 

In the current situation, production planners plan and schedule demand iteratively to find feasible 

solutions. In order to find a feasible solution to our problem, we require feedback or integration 

between planning and scheduling, so we must either integrate or iterate between tactical planning 

and demand scheduling to find feasible solutions.  

Chapter 3 discusses solution strategies for production planning and scheduling. We argue that we 

cannot consider the first hierarchical strategy, as we require feedback from the demand scheduling to 

planning to determine feasibility and performance of the schedule as Figure 27 shows.  

The second, iterative approach is applicable and similar to the current (manual) process of planning. 

The third integrated strategy considers the full formulation of planning models and detailed 

scheduling. This approach integrates planning and scheduling approaches, which could be applicable 

to our problem as demand scheduling feedback is available in the planning phase. However, then we 

would have to consider the system and shift parameters, the transport plan as well as the routing and 

priority rules as a combinatorial problem, where we must adhere to the scheduling rules while 

minimizing capacity. 

We conclude that we can approach the required link between planning and scheduling in two ways: 

either by iteration or integration. Either we can create capacity plans and evaluate performance by 

scheduling demand iteratively, or we could attempt to integrate these planning and scheduling phases 

by creating larger processing units, or work packages, and model these so that they reflect the 

performance indicators and constraints in the demand scheduler so that we can continue meeting the 

performance constraints described in Table 5.  

4.3. Solution space and time considerations 

This section describes the practical balance between time available for planning and the solution space 

of the planning problem.  

Optimally, the best capacity plan can be obtained by enumerating all possible workstation allocations 

and picking the one that is feasible at the lowest cost. That would mean that for each workstation over 

every ten-minute timeslot, we could consider if using a workstation is optimal or not. To illustrate the 

magnitude such an enumerative approach, let us consider a total of 1008 timeslots over a planning 
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weeks horizon. With the binary availability of around 50 workstations (a workstation is either planner 

or not), the solution space will be too large to consider fully. 

Note that in order to determine the optimal combination of workstation allocations, a means of 

validation is required. An allocation can only be optimal if it is feasible. The rules of the scheduling 

algorithm must be adhered to in order to assess feasibility. We observe that on average, the 

scheduling algorithm can be performed explicitly approximately 10 times per second on a regular 

laptop. 

Typically, the input parameters for a planning week change frequently as a result of changes in the 

demand by customer order stores. A change in the input parameters suggests a change in the optimal 

capacity plan. Therefore, over the time period until the planning week, the capacity plan may require 

numerous alterations. For this reason, it is impractical to allow a means of planning to run in the order 

of hours. Preferable would be to allow a planning method to run in the order of minutes. Given the 

allowed runtime in the order of minutes and the observation that the scheduling algorithm can be 

performed approximately 20 times per second, a typical planning procedure given the input 

parameters can consider only several thousands of iterations, vastly smaller than the total 

enumeration of workstation allocations. This implies that in advance of assessing feasibility of 

allocations, informed decisions should be made on where the capacity plan can be improved. 

4.4. Aggregating demand 

By using the properties of the demand scheduling algorithm, orders can be aggregated, thus 

decreasing the number of orders to plan for as well as the planning complexity. Recall that the 

scheduling algorithm schedules in discrete intervals of ten minutes. This feature causes there to be no 

practical discrepancy between orders with common 10-minute departure time intervals. The reason 

for this is that scheduling is indicated in intervals of 10 minutes. 

 

Figure 28 – Aggregating order demand 

Figure 28 shows an aggregation example with two orders. The orders are both due in the same 10-

minute time window. The scheduling algorithm can only indicate finished production in 10-minute 

intervals, e.g. finishing at 15:20 or 15:30. Next to the departure time, the differentiating attributes of 

these orders are the number of production units requested per area. Recall that the production time 

per unit as well as the production flow is uniform. This allows for the aggregation of orders. For this 

example, if the number of units requested per area by the consolidated order (1+2) is finished by 

15:30, then demand for its constituent orders is fulfilled as well. We use this means of aggregating 

demand for both the integrated and iterative strategy.  
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5. Solution design: Iterative strategy 

This chapter approaches the problem of planning and scheduling for the distribution centre through 

the iterative strategy. We propose using an iterative strategy that creates initial solutions with 

modified adaptive search procedure and improves them with a simulated annealing improvement 

metaheuristic. Section 5.1 considers the initial phase and Section 5.2 considers the improvement 

phase. This chapter motivates the decision for these optimisation methods and their implementation. 

The iterative strategy alternates between a planning phase where workstation allocations are changed 

and a scheduling phase where customer store order demand is scheduled over these allocations. 

Performance and feasibility of the plan can be assessed given the feedback obtained from the 

scheduling algorithm. Chapter 2 finds that the scheduling aspect of the iterative strategy is trivial as it 

considers an algorithm that always amounts to the same outcome given a certain input. This aspect 

of the scheduling problem advocates the use of an iterative strategy to our problem as the effect on 

feasibility of a change in a capacity plan can be evaluated through the feedback from the scheduling 

algorithm.  

Recall that the iterative strategy is based on rapid iteration between planning and scheduling phases. 

This means that each time the capacity plan is changed, the change must be evaluated using the 

scheduling function to assess feasibility and performance. While the goal of planning is to minimize 

the cost of operators, running time must be considered. Chapter 4 discusses that the input parameters 

to capacity planning can change frequently. These directly impact the best capacity plans that can be 

created. This results in the requirement that the planning algorithm should not be too time intensive 

as it may be performed many times. Therefore, we focus on creating capacity plans in the order of 

minutes. 

Chapter 4 describes the vast solution space if we were to consider all combinations of workstation 

allocations. If a planning algorithm were to consider an enumerative approach where all combinations 

of workstation allocations over timeslots are considered, then the scheduling algorithm would have 

to be performed in a magnitude far greater than time allows. The scarcity of time and the limited 

number of iterations that can be performed prohibit using an enumerative approach. 

 

Figure 29 – Iterative strategy conceptual  illustration 

As the number of planning iterations will be limited to the order of thousands given a time limit in the 

order of minutes, decisions must be made on the neighbouring solutions to be considered during each 

iteration. Therefore, to minimize the time used for obtaining efficient capacity plans, the iterative 

strategy is split into two phases. Figure 29 illustrates these phases. The initial phase considers a limited 

a single neighbourhood operator only allowing operator shifts to be remove from a process so that 
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capacity plans with reasonable cost can be obtained quickly. The improvement phase considers more 

neighbourhood operators, allowing the exploration of a larger fraction of the solution space. 

5.1. Initial phase 

This section considers the initial phase of the iterative strategy. The initial phase considers iterative 

removal of shifts from an initial capacity plan that considers all workstations allocated over the entire 

planning week. This section provides a rationale for the decision to start with a maximum capacity 

allocation. Section 5.1.1 describes the prioritization of shifts to remove. The procedure of shift removal 

in the initial phase is based on the adaptive search heuristic as Section 5.2 describes. 

 

Figure 30 – Possible starting allocations for any plan. 

First, we consider the starting allocation of the initial phase. From any plan, we can incrementally add 

or remove workstation allocations after which we apply the scheduling algorithm to determine the 

performance of the altered capacity plan. There are various allocations we can start from. Figure 30 

illustrates the three main options and approaches. Table 6 discusses these initial capacity plans. 

Initial 

capacity plan 

(1) 

Allocate no capacity at all 

processes over all timeslots 

(2) 

Allocate maximum capacity at 

all processes over all timeslots 

(3) 

Start with default allocation 

Initial 

feasibility 

Never feasible initially as there is 

no capacity to process orders at 

all 

Always feasible initially Depends on order set instance 

Required 

actions 

Add capacity Remove capacity Adding or removing capacity 

depending on order set instance 

Feedback 

from 

scheduling 

algorithm 

Indication of overdemand and 

indication of which orders 

exhibit excessive lead times. 

Capacity must be added to 

mitigate these excessive lead 

times 

Lead time of store orders: If the 

lead time obtained by 

scheduling is less than the 

allowed lead time, we can more 

likely remove capacity  

Combination of (1) and (2) 

Table 6 – Discussion of initial capacity plans 

As the capacity plan changes, it must be evaluated by the scheduling algorithm to determine 

feasibility. The scheduling algorithm yields feedback stating which orders have lead times greater than 
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allowed (exceeding cut-off offsets) or cannot be processed due to under capacity at workstations. The 

feedback from the scheduling algorithm can thus be used to further improve the capacity plan. 

We consider the three methods displayed in Table 6. If the first method of allocating no initial capacity 

is chosen, then the plan is never feasibility initially. Therefore, capacity must be added until it becomes 

feasibility. To add capacity, feedback from the scheduling algorithm can be used as the scheduling 

algorithm yields indications of infeasibility. For instance, if an order is scheduled recursively too often, 

the lead time may increase beyond a level that is permitted. If an order that departs at timeslot 200 

shows a lead time of 150 timeslots given a capacity plan, whereas only 60 timeslots are allowed, then 

the lead time must be reduced to 60 timeslots or lower. To do this, capacity must be added in the 

range of timeslots 50 to 150. However, we do not know where exactly this capacity must be added 

nor at which process. We conclude that recovering from infeasibility is an intensive task that may 

require many iterations between planning and scheduling. 

On the other hand, consider the second option of allocating maximum capacity initially. Capacity can 

be removed to improve the solution while maintaining feasibility. The scheduling feedback provides 

feedback that can aid in choosing where to remove capacity. If for instance an order realizes a lead 

time of 10 whereas a lead time of 70 is allowed, then we can more safely attempt to remove capacity 

than when the discrepancy between realized and permitted order lead time is lower as demand can 

be shifted further in the former case. Using this method, we mitigate infeasibility while rapidly 

iterating towards low cost solutions. 

The last option of using a default allocation may require addition or removal operators depending on 

infeasibility. We decide that this option is unfavourable as it may require the same time intensive 

process as for the first initial allocation option. Therefore, we decide to use the maximum capacity 

allocation initially, where we prioritize on greater discrepancies between permitted and realized 

internal store order lead times. 

5.1.1. Priority rule: determining regret 

We introduced how the discrepancy between permitted and realized order lead times may be 

indicative of capacity removals that retain feasibility while lowering cost. This section describes how 

the initial phase prioritizes removing capacity at timeslots wherein orders that are to departure at that 

timeslot show greater lead time slack.  

The initial phase plans for areas separately as human resources are not yet assigned over multiple 

processes during their shift to mitigate complexity. Initially, we assign all workstations at their 

maximum capacity: any schedule should be feasible at this point. If schedules are not feasible using 

maximum capacity, changes in customer order demand must be made that are available outside the 

scope of this thesis (Chapter 2). 

In this initial procedure, human resources are dedicated to processes using multiples of the three 

available full-time shifts spanning an adjacent 24-hour time window, not yet considering other 

overlapping or part-time shifts. We use a priority rule to decide on promising shifts that could be 

removed from the allocation. Shifts with high priority are shifts with high minimum shift slack. Each 

timeslot wherein one or more orders are to depart has a deviation from store-quoted maximum lead 

time. We refer to this deviation as timeslot slack. This section introduces slack, how it is determined 

and why it is used for prioritization. 
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Figure 31 shows how slack per timeslot is computed given a capacity plan. Highlighted in red is the 

minimum permitted lead time of orders with their departure in a time window corresponding to the 

timeslot as found in the input parameters. The minimum of these permitted lead times is taken so 

that the lead time for all of the orders that depart in a timeslot is feasible. The scheduled lead time 

that is obtained by the scheduling algorithm must always be below this amount, otherwise infeasible 

plans are obtained (reconsider Appendix E for an example). The area lead time obtained through 

scheduling is highlighted in blue. The difference between the permitted and scheduled lead time is 

highlighted in green and referred to as lead time slack for orders that depart in a timeslot. 

 

Figure 31 – Slack per timeslot illustrated 

In the initial phase we consider capacity removal decisions. When capacity is removed during a 

timeslot, the scheduled lead time of order processing spanning this timeslot will either be stable or 

increase due to offsets created by scheduling. As the permitted lead time is fixed in the input 

parameters, the slack will either remain stable or decrease as a result of the removal decision. 

Accordingly, a greater slack will most likely decrease the chance of a capacity removal decision to be 

infeasible as demand of orders can be scheduled forward further. If the slack is 0 in a timeslot, a 

removal decision is far more likely to violate the permitted lead time than if the slack is a greater 

number. 

Following the above arguments, it might be wise to prioritise on removing workstation allocations in 

timeslot where timeslot slack is high as we are more likely to retain feasible solutions while lowering 

cost, thus requiring less time for obtaining low-cost capacity plans.  

As noted in Chapter 4, the likely number of total iterations that can be performed is in the order of 

thousands. If the capacity removal decisions would be considered for single timeslots, then a great 

number of iterations would have to be performed. Therefore, the removal of allocations in the full 

length of operator shifts must be considered. As we consider removing entire human resource shift 

working windows (the length of their employment) we must remove capacity for the entirety of their 

shift. 
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For this reason, the priority is adapted from timeslot slack to the minimum slack over the length of an 

operator shift. In the case of Figure 31, the minimum slack for the first shift is 0, while it is 4 for the 

second shift. In this case, it is probably wiser to attempt removing an allocation over the timeslots 

spanning the second shift. 

If minimum shift slack is zero for any timeslot in a shift, we cannot expect to remove substantial 

amounts of capacity. Removing capacity likely induces increased lead time beyond feasible levels 

when slack approaches zero. We prioritize on the highest minimum slack in a shift time window as we 

expect the lowest probability of violating lead time constraints. 

Adaptive search is a combination of priority rules and random search techniques which relies on an 

adaptation of the solution space. Kolisch & Drexl (1996) show that it is effective for the NP-hard 

resource-constrained project scheduling problem compared to other heuristics. The adaptive search 

procedure described by Kolisch & Drexl (1996) is a constructive heuristic differing from ours that is a 

local search procedure. However, we can apply the regret-based random sampling method based on 

the slack lead times of orders. Section 5.1.1 demonstrates how determining regret works. We could 

iteratively remove human resources allocated in their shift and their corresponding workstation if the 

resulting capacity plans remain feasible. Section 5.1.2 describes this procedure. 

Shift Departure 

Timeslot 

Scheduled 

lead time 

Permitted lead time Timeslot slack 

𝑧𝑡 

Shift slack 𝒛𝒔 

1 

1 8 11 3 

0 
2 6 9 3 

3 10 10 0 

4 9 10 1 

2 

5 1 10 9 

4 
6 4 12 8 

7 2 8 6 

8 4 8 4 

Table 7 – Regret calculation for a sample plan 

The minimum area slack in a shift determines the area regret factor 𝑟𝑠 for shift 𝑠. Regret factor 𝑟𝑠 =

𝑧𝑠 − min
𝑥

𝑧𝑥 where 𝑧𝑠 is the minimum slack of all orders with departure times in the timeslots 

corresponding to the operator shift. Table 7 shows a slack calculation for a sample plan. In this case, 

the shift regret for shift 1 is 0, the shift regret for shift 2 is 4. Therefore, we aim to prioritise on 

removing capacity for timeslots in shift 2. 

As high maximum area lead times indicate low improvement potential, we use a priority rule that is 

based on the shift regret factor 𝑟𝑠. 𝑃𝑠 denotes the probability of iterating on shift 𝑠. The shift probability 

𝑃𝑠 is determined by: 

𝑃𝑠 =
(𝑟𝑠 + 1)𝛼

𝐶
, 𝐶 = ∑(𝑟𝑠 + 1)𝛼

𝑠

 

Where 𝐶 is the normalizing constant and 𝛼 the bias factor. The bias factor regulates the degree of 

stochasticity in constructed solutions. When 𝛼 =  0, sampling is uniform. When α = ∞, sampling is 

deterministic; in that case the shift with the highest regret factor will always be iterated on. 
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5.1.2. Adaptive search removal procedure 

We remove operator shifts and their workstations iteratively based 

on their priority as long as resulting allocations are feasible. The initial 

phase does not yet consider employment of human resources over 

system resources at different processes during their shift. For this 

reason, the heuristic can be performed for processing areas 

separately. Figure 32 shows a flowchart of the initial phase. We 

describe the procedure for a single area. 

The heuristic chooses shifts iteratively based on the priority rule. The 

heuristic evaluates removing 2 shifts at the same process that 

precede the current shift in time. The preceding shifts are considered 

because lead time for an order may stem from offsets in timeslots 

prior to the shift during which the order departs. Only two preceding 

shifts are considered as they constitute 16 hours prior to the 

departure time of the order departure, where in practice the 

maximum lead time is 12 hours. This way, all shifts that cause lead 

time can always be considered. For instance, if maximum workstation 

capacity is allocated in a shift window, its succeeding shift may exhibit 

low lead times even if there are zero workstations planned in that 

shift time window. In that case, it is best to remove workstation 

allocations from the preceding shift, rather than the shift that was 

sampled initially. 

After picking a shift based on the calculated probability, we add two of its preceding shifts to be 

evaluated as well because of the lead time phenomenon described in the previous paragraph. We 

attempt to remove capacity in any shift window in the allocation evaluation list separately. For any of 

these time windows, lead time increases due to the removal of allocations may stem from any process 

in the area. Therefore, we consider removing workstation allocations separately in all processes in the 

area. 

We expect that we can remove multiple workstations in a class per process early in the constructive 

phase as the distribution centre typically has a sufficient number of spare workstations. Therefore we 

consider a rule for the quantity of workstations and their respective operators to be removed for a 

selected shift in each iteration. Furthermore, we expect greater computational effort in fully 

scheduling an allocation than in finding indications of infeasible allocations, advocating the multiple 

workstation removal decision. The removal rule is expected to significantly reduce the number of 

required iterations in the early phase of the constructive heuristic. To determine the number of 

workstations 𝑑𝑘𝑠 to be removed, a function based on parameters 𝑤𝑘𝑠 (the number of workstations 

currently allocated for a process 𝑘 in during timeslots in shift 𝑠) and 𝑖 (the number of iterations for 

which no feasible removal was made) is used. 

The number of removed workstations 𝑑𝑘𝑠 at a process k in a shift s can only be in the interval 

[𝑤𝑘𝑠 , 𝑀𝑘𝑠] where 𝑀𝑘𝑠 is the maximum number of workstations at a process 𝑘 in shift 𝑠. Therefore, a 

maximum of 𝑀𝑘𝑠 − 𝑤𝑘𝑠 workstations can be removed during a shift. The value for parameter 𝑖 

increases as feasible allocations are not found and resets to 0 when a feasible removal is made. With 

 

Figure 32 – Initial phase procedure 
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an increase in 𝑖, the likelihood of a feasible high number of workstations removal decreases. To 

conclude, the probability of successful sampling from removing a greater number of workstation 

allocations decreases with the probability of finding a feasible solution. 

𝑑𝑘𝑠 ∈ 𝑈 [1,
𝑀𝑘𝑠 − 𝑤𝑘𝑠

𝑖
] ∩ ℤ 

The constructive heuristic continues until a stopping criterion is satisfied. This stopping criterion 𝑖𝑠𝑡𝑜𝑝 

is based on the same parameter 𝑖 used for the removal multiple rule. The heuristic is considered 

finished when it fails to obtain any feasible solution improvement for 𝑖𝑠𝑡𝑜𝑝 iterations. 𝑖𝑠𝑡𝑜𝑝 is chosen 

so that probability of finding an improved solution in future same area iterations is considered 

sufficiently small. The procedure is finished when the implied probability of removing a shift allocation 

is considered sufficiently small. We set the rule so that the adaptive search procedure stops iterating 

for an area after not finding improvements for 100 iterations. This number is chosen as for higher 

values of 𝑖𝑠𝑡𝑜𝑝 the gain in solution cost is limited while the running time increases significantly 

(Appendix B). Furthermore, the value for the bias factor 𝛼 used in determining priorities is set to 1 as 

it provides the best balance between solution time and cost. 

Parameter Description Value 

𝛼 Bias factor priority rule (see Appendix B) 1 

𝑖𝑠𝑡𝑜𝑝 Stopping criterion, stop initial phase after 𝑖𝑠𝑡𝑜𝑝 iterations without feasible 

workstation removal 

100 

Table 8 – Parameters for constructive adaptive search procedure 

An exception in the removal of system resources requiring human resources is introduced for shifts in 

process Depalletising. Chapter 2 introduces a constraint on the ratio of semiautomatic to automatic 

workstations in this process. Therefore, we must remove several automatic workstations equivalent 

to the ratio amount if an attempted removal in Depalletising is expected to violate the constraint. 

5.2. Improvement phase 

This section regards the improvement phase that uses a simulated annealing metaheuristic to improve 

the solution obtained in the initial phase. 

However, considering only the removal neighbourhood operator in the initial phase has an effect on 

the solution space: the solution space is not fully connected, thus not all possible workstation 

allocation combinations can be evaluated. For example, the initial phase only considers removing 

allocations workstations over the entire length of a shift. Other changes that could be considered are 

moving a human resource over workstations or having them occupying workstations at different 

processes during their shift. These changes could ultimately lead to less operators being required to 

fulfil demand following more optimal utilization of workstations. 

Plans generated by constructive heuristics such as adaptive search are not guaranteed to be locally 

optimal, it is almost always beneficial to apply a local search to attempt to improve each constructed 

solution (Festa & Resende, 1995).  Therefore, we expect that solution quality can still be improved 

significantly after the initial phase mainly by considering other operators that allows us to connect to 

larger portions of the solution space.  
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The solutions obtained from the greedy constructive heuristic can be improved using metaheuristics. 

Simulated annealing is a metaheuristic capable of escaping local optima such as those obtained by the 

initial phase. Simulated annealing explores neighbouring solutions and initially accepts many worse 

neighbouring solutions, eventually cooling down and decreasing the probability of accepting 

neighbouring solutions, causing the solution values to converge. Simulated annealing has been applied 

to many combinatorial optimisation problems (Blum & Roli, 2003).  

Tabu search creates a candidate list of neighbours to the current solution, then picking the best 

solution from this list. To determine the best neighbour, all of the possible candidates must be 

evaluated by the scheduling function, as only feasible neighbours can be considered. This would mean 

that at each iteration, many scheduling function iterations would have to be made. Chapter 4 

described that the solution space is vast and that the number of available iterations is limited. At the 

same time we note that, especially early on, many quick wins can be made as some operators were 

previously neglected. Therefore, we decide to use simulated annealing rather than tabu search to 

improve the initial phase as the tabu search procedure would likely take far more time to improve. 

Section 5.2.1 describes how we design the simulated annealing algorithm for our problem. Section 

5.2.2 describes how the algorithm is implemented. 

5.2.1. Simulated annealing design 

Simulated annealing optimizes the cost function by exploring the neighbourhood of the current point 

in the solution space. The choice of neighbourhood operators is often critical in the success of the 

simulated annealing heuristic (Aarts & Korst, 2005). Several operators are available for constructing 

neighbouring solutions. We consider the allocation of human resources to workstations as subjects to 

the neighbouring operators. Several operations are possible: 

1. Move operator shift allocation at a workstation to another shift time window 

2. Exchange operator allocated to workstation with overlapping shift (e.g. part-time shifts) 

3. Remove entire operator shift and workstation allocation 

4. Add entire operator shift and workstation allocation 

The choice of the above neighbourhood operators makes the solution space connected as all 

enumerations of capacity can be achieved from incumbent solutions by using a multiple of these 

operators. However, we decide to neglect the fourth operator, or adding an entire operator shift. 

The shift adding operator has been tested in practice, however we found that the algorithm had 

trouble converging to better solutions when it was included. Despite neglecting the addition of entire 

operator shifts, move and swap operators promote the exploration of the majority of the solution 

space. 

We decide that the neighbour operators can only be performed if they result in feasible solutions. We 

neglect the infeasible solution space and penalty parameters for the same reasons introduced in 

Section 5.1: recovering from infeasible solutions is expected to take many iterations whereas exploring 

the infeasible domain is unlikely to provide far greater solutions as most of the solution space can be 

explored by considering the above operators 1-4 only in the feasible solution space. 
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5.2.2. Simulated annealing algorithm 

Neighbouring allocation 𝑠′  feasibility is evaluated using the scheduling algorithm. If neighbouring 

solutions are feasible (adhering to constraints introduced in Chapter 2, then a cost 𝑓(𝑠′) for the 

allocation as introduced in Chapter 4 is incurred. The acceptance probability 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 of a neighbouring 

solution is determined by the cost of incumbent solution 𝑠, the cost of neighbouring solution 𝑠′  and 

current temperature 𝑇. Solutions are evaluated by the cost function 𝑓(𝑠) based on the hourly cost 

matrix described in Chapter 4. If cost 𝑓(𝑠′) for a neighbour 𝑠′  is better (lower) than cost 𝑓(𝑠) for 

incumbent solution 𝑠 then 𝑠′  is always accepted. If the neighbouring solution value is worse (higher), 

then it is accepted with a probability dependent on the current temperature and difference in cost 

with the incumbent solution. 

𝑝𝑎𝑐𝑐𝑒𝑝𝑡(𝑇, 𝑠, 𝑠′) = {
1, if 𝑓(𝑠′) ≤ 𝑓(𝑠)

𝑒−
𝑓(𝑠′ )−𝑓(𝑠)

𝑇 , otherwise
 

The choice of parameters influences solution progression and runtime. Table 9 lists the parameters 

used in simulated annealing. The pseudocode in Figure 33 shows how these parameters influence 

performance. Current temperature 𝑐 regulates the probability of accepting worse solutions in the 

current markov chain. High temperatures imply greater probabilities of accepting worse solutions. 

Often, the initial temperature 𝑐0 is chosen so that the acceptance ratio 𝜒(𝑐) =
number of accepted solutions

number of proposed solutions
 

is close to 1 initially (Aarts & Korst, 2005). When 𝜒(𝑐) ≈ 1, simulated annealing acts as a global 

optimisation method as any neighbouring solution can be accepted to become the incumbent 

solution. As temperature decreases, simulated annealing converges to a local search method. The 

probability of accepting worsening solutions decreases incrementally, thus decreasing the probability 

of escaping local optima as annealing progresses.  

Appendix B finds that 𝑋(𝑐) ≈ 1 for 𝑐0 > 10000, therefore we use 10000 as the initial temperature. 

Also, 𝑋(𝑐) ≈ 0 when 𝑐 < 1, so 1 is set as the stopping temperature. Appendix B explains that we can 

evaluate around 300 chains given the runtime constraints (set to 10 minutes to compare strategies).  

As we stop the algorithm after 10 minutes for a fair comparison with the integrated strategy, the 

temperature cooling parameter 𝛼 is set to 0,97 so that we expect to finish in around 10 minutes. 

Parameter  Value 

𝑘 Initial markov chain length; finite length of markov chain Starting at k=5, 

incrementing by one 

after every 10 chains 

𝑐0 Starting temperature; initial value of control parameter 10000 

𝑐𝑠𝑡𝑜𝑝 Stopping temperature; final value of control parameter 1 

𝛼 Temperature cooling parameter 0,97 

Table 9 – Simulated annealing cooling schedule parameters 

A dynamic cooling schedule may be used to regulate the search for acceptable solutions and runtime. 

Initially, many neighbouring solutions may provide improvements as the constructive heuristic 

proposed in Section 3.5.1 does not take into account hourly cost differences nor a second shift set. As 

annealing continues, the acceptance ratio 𝜒(𝑐) continues to decrease. As we expect many 

neighbouring solutions to be improving solutions, we consider starting with a low value for 𝑘, 

iteratively increasing 𝑘 with a decreasing probability 𝑝𝑎𝑐𝑐𝑒𝑝𝑡 of improving the incumbent solution. 
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Appendix B tests two scenarios: one where the markov chain length is constant at k = 20, and an 

incremental strategy where the markov chain length start at a low number and gradually increases. 

We test several configurations (Appendix B), and find that a start at k = 5 and increases every 10 

iterations performs best for our test instances. This incremental markov chain length parameter 

outperforms the constant option (Appendix B). We use the incremental markov chain length 

parameter. 

 

Figure 33 – Simulated annealing pseudocode 

Some neighbourhood operators may become decreasingly able to find feasible solutions. For instance, 

a shift removal decision will less likely result in feasible solutions as the heuristic progresses. However, 

the scheduling algorithm is performed nonetheless at computational cost. Therefore, we want to 

decrease the frequency of picking operators that result in infeasible allocations as the simulated 

annealing algorithm progresses. 

 

Figure 34 – Probability of choosing a neighbourhood operator decreases as infeasible solutions are found 

In order to lower the number of iterations, we propose a neighbourhood operator decision rule based 

on a probability factor that is determined by the rate of success of that neighbourhood operator. At 

Algorithm Simulated Annealing 

input: Problem instance 𝐼 

𝑠 ← Initial solution from constructive heuristic 

𝑐 ← 𝑐0; 

𝑘 ← 5; 

while 𝑐 < 𝑐𝑠𝑡𝑜𝑝 do 

 for 𝑖 in 𝑘 do 

𝑠′ ← Neighbour(𝑠, 𝑃𝑛)  pick neighbour of incumbent with probability 𝑃𝑛 

 if 𝑓(𝑠′) ≤ 𝑓(𝑠) then 

  𝑠 ← 𝑠′; 

if 𝑓(𝑠) < 𝑓(𝑠𝑏𝑒𝑠𝑡) then 

   𝑠𝑏𝑒𝑠𝑡 ← 𝑠; 

 else 

  𝑠 ← 𝑠′ with probability 𝑃(𝑐, 𝑠, 𝑠′) = 𝑒− 
𝑓(𝑠′ )−𝑓(𝑠)

𝑐    

end if 

end for 

𝑐 ← 𝛼𝑐;  

𝑘 ← 𝑘 + 1 every 10 iterations  

end if 

end while 

output: Optimized solution 𝑠𝑏𝑒𝑠𝑡 for 𝐼 
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the start of each markov chain the probability of picking an operator is equal for all four 

neighbourhood operators. If an infeasible allocation is created by the operator, we decrease the 

probability of choosing that operator in the current markov chain. 

To regulate the choices of neighbourhood operators, we propose a scheduling rule that updates the 

frequency of picking a certain operator in Figure 34. With the proposed decision rule, we expect to 

lower the number of required iterations. We cannot expect (especially in the later stages) that the 

probability of a successful change by a neighbourhood operator is equal over all operators. For 

instance, we expect that few shift removal decisions can be made. Considering the shift removal 

operator as often as other neighbourhood operators would require many costly iterations that are 

unlikely to optimize the solution. 

5.3. Conclusion 

This chapter explains how an iterative strategy can be performed using a two-stage heuristic 

approach. We find that turning infeasible solutions to feasible solutions is complex, therefore we 

want to keep the created plans feasible at any time. Initially, we can start from a solution that 

assigns operators of all workstations during the entire planning horizon. Then, we iteratively remove 

entire operator shifts and their corresponding workstations intelligently based on a feedback metric 

from the scheduling algorithm (the slack lead time). The probability of removing a shift is then based 

on the regret-based sample of this slack metric for entire shifts. 

We find that the initial heuristic yields decent solutions. However, it neglects several aspects of the 

planning problem. For instance, the initial phase does not consider hourly cost rate differences, part-

time shifts and employing operators over multiple processes during their shift. To explore a larger 

portion of the combinations that can be made, we propose using a simulated annealing heuristic.  

The simulated annealing heuristic uses more operators that allow exploring a greater portion of the 

solution space. However, due to the relatively time-consuming scheduling algorithm, intelligent 

decisions must be made as the number of iterations over time is relatively scarce. We find that, 

despite not being able to explore the entire solution space due to neglect a shift-adding operator, 

we are able to find significant improvements from the initial phase. 
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6. Solution design: Integrated strategy 

This chapter regards the integrated strategy approach to the problem in the distribution centre. 

Through integration, we seek to find the right combination of scheduling and planning variables that 

minimizes the cost of operators. This way, the problem can be viewed as a combinatorial optimisation 

problem. 

Combinatorial optimisation involves a set of a discrete set of feasible solutions over which the goal is 

to find the best solution. But how can we model our problem so that we can find feasible solutions 

using combinations of planning and scheduling? We resort to literature where we find that our 

integrated problem is in many regards similar to the time-driven RCCP problem, but that there are 

several key differences that hinder the solution methods proposed in literature. We describe this 

analogy and its difference in Section 6.1. 

The number of combinations for the variables yields a vast solution space for the NP-hard problem 

that is hard to optimise for through conventional methods based on branch-and-cut. Therefore, we 

aggregate or simplify several aspects of the integrated problem to reduce the problem size, while 

attempting to maintain feasibility. Section 6.2 describes these changes. Finally, section 6.3 describes 

how the reduced problem can be modelled as an ILP by introducing scheduling and planning buckets. 

6.1. Comparison to time-driven RCCP 

This section covers combinatorial optimisation problems related to planning and scheduling. We 

discuss the properties of these problems and how they align to the integrated problem for the 

distribution centre. Our problem requires generic precedence relations, as we described in Chapter 2. 

We require the ability of hiring additional (nonregular) capacity in the tactical phase. The properties 

of the formulation of the time-driven RCCP problem in Gademann & Schutten (2001) are similar to the 

general properties of our problem, albeit with some adaptations that we describe in the forthcoming 

section. 

De Boer (1998) provides a comparison between activities (as found in RCPSP problems) and work 

packages (as found in RCCP problems).  Table 10 shows the characteristics of the smallest processing 

units found in scheduling problems in comparison to the formulation of aggregated work packages in 

the RCCP formulation. 

Characteristic Activity (scheduling) Work package(planning) Our problem 

Modes Multiple Not predetermined Single mode 

Duration Fixed for each mode Minimum duration with 

variable duration 

Variable duration 

Pre-emption Not allowed Pre-empt resume Pre-empt resume 

Resource rate Constant May vary during 

execution 

May vary during 

execution 

Capacity 

requirements 

per resource 

Fixed number of units for 

each mode (e.g. 3 men) 

Total of res. time units 

(e.g. 120 man hrs.) 

Total of. units (e.g. 

120 cases) 

Table 10 – Work-packages and activities compared, from De Boer (1998), extended with our problem characteristics 
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If we consider work packages as the demand for production areas of store orders in our problem, the 

characteristics of our problems work packages are similar to those found in RCCP formulations, rather 

than those found in the RCPSP (Table 10) as our comparison shows. We describe each characteristic. 

We have no minimum or fixed duration for processing any store order. If more capacity (workstations) 

can be allocated to an order in a timeslot by using more workstations an order can be processed in 

any variable duration. Processing rate is a continuous function of available resource capacity in any 

timeslot. 

In Chapter 2 we also found that pre-emption should be possible, as order processing can be stalled in 

a queue prior to workstations, or in their respective buffers. The resource rate can vary during 

execution with the capacity allocated in a single timeslot. If more workstations are opened, more 

capacity is available and the processing rate can increase. 

We find that our problem is in many regards similar to the time-driven RCCP problem. However 

significant differences exist. We highlight the differences in this section.  

The time-driven formulation of De Boer (1998) assumes no limit on the amount of non-regular 

available capacity. In our problem, we have limited capacity available as there is a limited number of 

system resources available for each workstation class, and an upper limit on the number of human 

resource per available shift time window. This means that our problem can be infeasible due to not 

enough capacity being available in a certain time window, which indicates that we cannot plan for 

those store orders or must adapt input to the planning, for which the options available (outside the 

scope of this thesis) are described in Chapter 2. 

The time-driven RCCP considers the hiring of additional capacity as a continuous variable where for 

example 10 extra hours can be hired for a week of production. In our problem, extra capacity is hired 

in integer multiples, where the resulting added capacity is considered continuous. For instance, 

employing one extra workstation in a workstation class in a (range of) timeslots incurs extra capacity 

as a linear function of that added unit depending on the workstation production rate for that time 

window. We have additional constraints for intermediate production levels. Buffer utilization cannot 

(virtually) be greater than 1 as the demand scheduler cannot handle this (Chapter 2) 

In our problem there is no regular-  or free capacity. Although automated workstations are considered 

far cheaper than non- fully automated resources, they still incur some cost due to for instance 

degradation. In other words: automated resources are considered nonregular as there is a significant 

preference for not using them over using them. 

In none of the time-driven RCCP formulations found in literature, we find indications of employment 

of human resources over multiple adjacent time units. In our problem, cost for workstations is 

incurred for the duration of shifts if those workstations require human resources. If workstations use 

human resources, then cost is incurred for the entire shift duration. Next to that, we have cost 

differentiation during the week: some timeslots may be favoured for employing semi-automated or 

manual workstations as they may be less expensive during daytime. These differences are highlighted 

in Chapter 2. 

To the best of our knowledge, no RCCP formulation in literature considers adding nonregular 

resources (employment of human resources) that are eligible for multiple resources during their shift. 

We mentioned that cost for employing workstations in classes with manual or semi-automatic 
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resources is incurred for the duration of shifts. During these shifts, human resources may switch 

between system resources supporting human operation in multiple processes. E.g. during one shift 

they may be active at both a semi-automatic depalletizing station and a semi-automatic ACP station. 

Generally, RCCP problems consider time periods of weeks to years with time buckets in that smallest 

order, and a number of time slots usually in the order of tens (De Boer, 1998), (Hans, 2001). If we 

consider timeslot sizes used in the scheduling algorithm (10 minutes), we require 6*24*7 = 1008 

timeslots in a week. Next to that, if we state that production area orders in store orders are the 

smallest unit of processing, we typically require thousands of orders in a single week. 

This section finds that we can model the problem similar to the RCCP problem, but that there are some 

significant differences that must be accounted for. Section 6.2 introduces how some of the input 

parameters of our problem must be altered if we wish to use an approach similar to that of the time-

driven RCCP. 

6.2. Processing input parameters for ILP formulation 

This section describes how the store orders and system parameters can be translated through pre-

processing steps in order to reduce the problem size and number of computational steps required for 

solving the ILP. 

Typically, formulations such as for the time-driven RCCP problem entail a planning horizon with at 

maximum several dozen of planning timeslots. However, in our problem there are 1008 ten-minute 

timeslots every week. Combining with 47 total workstations that can be allocated, the solution space 

is large. For this reason it is very likely that a branch-and-cut approach through integer programming 

is unlikely to find obtain efficient capacity plans. Therefore, we take several steps to aggregate and 

process the original parameters so that we can find solutions through integer programming. 

With these processing steps we deviate slightly from the real scheduling function feedback. We do 

not fully mirror the scheduling function when modelling the ILP through these pre-processing steps. 

For instance, we decide to aggregate time from 10 minutes to scheduling buckets consisting of 

multiple timeslots. This has effects on the scheduling function as for instance offsets may be defined 

in multiples of 10 minutes smaller than 1 hour in total. While we provide upper bounds, these 

decisions may not translate well into the true scheduling performance. In other words, we may create 

allocations that seem to not violate constraints in the ILP model but do provide errors or warnings in 

Vanderlande’s TOP planning application. We test the effect of incorporating these processing steps 

on validity in Chapter 7. 

We consider the following steps in this section: (Appendix A provides a more detailed version of why 

these steps are likely retain validity) 

• Aggregating demand over time for uniform demand areas – We schedule demand in the order 

of scheduling buckets that consists of multiple timeslots rather than individual 10 minute 

timeslots. This is possible because orders must be processed in their order of departure. 

• Creating an upper bound on the number of changeovers operators can make during their shift 

– If we allow an operator to change processes every 10 minutes, then the solution space is far 

greater than if the number of changeovers would be limited. Therefore, we introduce planning 

buckets that allow a limit number of changeovers per operator shift 
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• Constraining order working windows using cut-off times – If the maximum permitted lead 

time for an order is 10 hours, then we should only consider allocating demand from 10 hours 

prior to the departure time of an order until its departure as timeslots outside that interval 

would create an infeasibile capacity plan. 

• Altering workstation productivity to account for breaks – In reality, operators can take breaks 

in the order of timeslots. However, as we create planning buckets we can no longer model 

these specifically. Therefore, adjustments in productivity can be made to account for these 

changes. 

 

Figure 35 – Demonstration of time buckets and allocation buckets 

Normally, the planning horizon is divided into 10 minute long timeslots, creating 1008 timeslots for a 

week. However, given the large multiple of combinations that can be made given such a long horizon, 

we decide to increase the size, scheduling in time buckets of 𝛼 ten minute timeslots, in the case of 

Figure 35 this is 6 timeslots. Moreover, allowing human operators to change over workstations would 

create large number of combinations that is hard to explore. Therefore, we use allocation buckets that 

partition full-time shifts of 8 hours into 𝛽 allocation buckets. In the case of Figure 35, an operator with 

a shift ranging from for instance 00:00 to 08:00 can be assigned two different processes during their 

shift.  

6.3. Modeling the problem as an ILP 

This section models the adapted problem as described in Section 6.2 as an ILP problem. 

We are given a set of 𝑛 work packages 𝐽1, 𝐽2, … , 𝐽𝑛 that must be planned on 𝐾 processes. The work 

packages may belong to different demand areas. The work packages consider the workload for a single 

process after aggregation. We have a time horizon divided in 𝑇 scheduling buckets that include 𝛼 10-

minute timeslots. A work package 𝐽𝑗 requires 𝑄𝑗𝑘  production units at process 𝑅𝑘. The number of 

workstations that do not require operators available at a process 𝑅𝑘  (𝑘 = 1,2, … , 𝐾) in a time bucket 

is equal to 𝑟𝑘units. The number of workstations that do require operators at a process 𝑅𝑘  in a time 

bucket is equal to 𝑛𝑘 units. These workstations that at a process can process a maximum of 𝑇𝑆𝑅𝑘  and 

𝑇𝑆𝑁𝑘  units per time bucket respectively at a process 𝑘. 
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𝑥𝑗𝑘𝑡  denotes the fraction of work package 𝐽𝑗 performed at process 𝑅𝑘  in time bucket 𝑡. Therefore, 

𝑥𝑗𝑘𝑡 ⋅ 𝑄𝑗𝑘  units are processed for work package 𝐽𝑗 in time bucket 𝑡 on resource 𝑅𝑘. Section 6.2 

introduces a working window for a work package. This working window is obtained using the 

departure times and minimum cut-off times of the orders that constitute the work package. 

Processing for work package 𝐽𝑗 must be done in the time window [𝑅𝑗, 𝐷𝑗]. 

Chapter 2 introduces precedence relations between work packages. For each of the three final 

demand areas, there is a specific path of processes that all work follows. For instance, all work at 

Depalletising must be completed before work at Palletising can start. Therefore, there may be 

precedence relations between work package 𝐽𝑖 and 𝐽𝑗 denoted by 𝐽𝑖 → 𝐽𝑗.  

The scheduling algorithm introduced in Chapter 2 prescribes two types of precedence relations. Jobs 

are scheduled recursively based on their departure time. A job with an earlier deadline must always 

be processed fully before a job with a later deadline can start. Furthermore, we noted that the process 

flow within areas must be strictly adhered to as described in the previous paragraph. Following the 

rules of the scheduling algorithm, work for work package 𝐽𝑖 must be performed completely before we 

can start performing work for work package 𝐽𝑗. 

We find that a solution [𝑥11, 𝑥12, … , 𝑥1𝑇 , 𝑥21 , 𝑥22, … , 𝑥2𝑇 , … , 𝑥𝑛1, 𝑥𝑛2, … , 𝑥𝑛𝑇] is feasible if all work 

packages are performed completely within their respective time windows if precedence relations are 

followed. These solutions may require the employment of workstations 𝑛𝑘 that require human 

operators. In fact, some processes do not have any regular workstations available. 

There are limits on the number of workstations that do and do not require human operators, as the 

number of workstations available per process is finite. We denote the maximum number of 

workstations that do not require human operators as 𝑀𝑎𝑥𝑅𝑘𝑡 workstations that require human 

operators as 𝑀𝑎𝑥𝑁𝑘𝑡 . In practice, workstations that do not require human resources are expected to 

incur far less cost than workstations that do as they do not require human resources. We state that 

all workstations incur a base cost of 0.0001 per time bucket. This way, the objective function will 

minimize the number of workstations, however giving far greater priority to minimizing human 

operators as the next paragraph explains.  

The cost for human resources is not incurred in regular time bucket intervals as they are not employed 

per time bucket. Instead, they are employed for the length of their shift. As the cost for workstation 

requiring operators stems mainly from the use of humans, we introduce a cost parameter 𝐶𝑠. Cost is 

incurred for S shifts 𝑆1, 𝑆2, … , 𝑆𝑠. These shifts correspond to the shift time windows introduced in 

Chapter 2. One workstation incurs a theoretical base cost of 1 per timeslot, increasing for more 

expensive time slots. We denote the number of human operators required for a workstation at 

process 𝑅𝑘  as 𝐻𝑘. In each shift 𝑆𝑠 with starting time bucket 𝐵𝑠  and ending time bucket 𝐸𝑠, a total 

number of 𝑢𝑠 human operators are employed. The window [𝐵𝑠 , 𝐸𝑠] refers to the shift time window 

during which the human operators are allowed to perform work. Shift cost 𝐶𝑠 differs per shift as 

incurred from the hourly cost matrix.  

Human operators 𝑢𝑠 are available for an entire shift. During their shift, they may change over 

processes. For instance, they may work at Depalletising in time bucket 𝐵𝑠 whereas they work at NC 

Picking in time bucket 𝐵𝑠 + 1. Section 6.2 introduces parameter 𝛽, through which the number of 
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changeovers is regulated. Therefore, rather than employing resources per time bucket, we change to 

planning buckets that constitute multiple time buckets.  

Set and indices 

𝑡 = Scheduling buckets, 𝑖 = 1,2,3, … ,
1008

𝛼
 

𝑗 = Jobs (= store orders for a process with a deadline in (aggregated) time 

window[𝑡, 𝑡 + 𝛼) 𝑗 = 1,2,3, … , 𝐽 

𝑘 ∈ 𝐾 = Production processes {Depalletising, ACP, NC Picking, Xdock Staging, RRP Pick} 

𝑠 ∈ 𝑆 = Shifts, used for indicating when operators can operate workstations. 

𝑧 ∈ 𝑍 = Planning buckets = Assignment length of operators, 8 hour shifts are 

partitioned in buckets of 
8

𝛽
 hours or 8

𝛼

𝛽 
 timeslots 

 

Work package parameters: 

𝐾𝑗  = Process corresponding to production for work package 𝑗 

𝑄𝑗  = Demand of work package 𝑗 in unit equivalents (case or LC) 

𝑅𝑗  = Earliest possible scheduling bucket during which work for work package 𝑗 can 

be performed 

𝐷𝑗 = Latest possible scheduling bucket during which work for work package 𝑗 can 

be performed 

𝑃𝑗  = Work packages preceding work package 𝑗  

𝑂𝑗 = Offsets corresponding to work package 𝑗 

  

Process parameters: 

𝑇𝑆𝑅𝑘  = Maximum production of a single workstation not requiring human resources 

for process 𝑘 in a single scheduling bucket 𝑡 in unit equivalent 

𝑇𝑆𝑁𝑘  = Maximum production of a single resource workstation requiring additional 

human resources for process 𝑘 in a single scheduling bucket 𝑡 in unit equivalent 

𝑀𝑎𝑥𝑅𝑘𝑡  = Maximum number of workstations not requiring operators at process 𝑘 in 

scheduling bucket 𝑡 

𝑀𝑎𝑥𝑁𝑘𝑡  = Maximum number of workstations requiring operators at process 𝑘 in 

scheduling bucket 𝑡 

𝐻𝑘 = Number of workers required to perform work at workstation that requires 

operators  at process 𝑘 

𝜌 = Minimum ratio in demand between semi-automatic and automatic 

depalletising 

 

Shift parameters 

𝐴𝑡 = Number of workers available to perform work in time bucket t 

𝐿𝐵𝑠  = Starting time bucket of shift 𝑠 

𝑈𝐵𝑠  = Ending time bucket of shift 𝑠 

𝐶𝑠 = Cost of shift 𝑠, i.e. mean cost accounting for daily/ hourly cost variation 

𝐼𝑠 
= {

1 if cost to be incurred for shift s (in target planning week)

0 if no cost to be incurred for shift s (outside target planning week)
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𝐿𝑀 = Lower bound scheduling bucket for work window with strong preference to 

mitigate 

𝑈𝑀 = Upper bound scheduling bucket for work window with strong preference to 

mitigate 

𝑉𝑧  = Planning bucket in target week corresponding to 𝑧 in the preceding week 

(empty for buckets in target planning week), so planning buckets in preceding 

week have 𝑉𝑧 ≠ ∅   

𝑊𝑧  = Planning bucket in target week corresponding to 𝑧 in the succeeding week 

(empty for buckets in target planning week), so planning buckets in succeeding 

week have 𝑊𝑧 ≠ ∅   

𝐸𝑠  
= {

1 if shift S in target planning week
0 if shift S not in target planning week

 

𝐹 = Fixed cost parameter 

 

Variables 

𝑥𝑗𝑡  = Amount of work for work package 𝑗 done in scheduling bucket 𝑡 (fraction of 

total work) 

𝑟𝑘𝑧  = Number of workstations that do not required operators planned at process 𝑘 

in scheduling bucket 𝑡 

𝑛𝑘𝑧 = Number of workstations that require operators planned at process 𝑘 in 

scheduling bucket 𝑡 

𝑢𝑠 = Number of human resources planned in shift 𝑠 

𝑓𝑡  
= {

1 if any capacity used in scheduling bucket t
0 if no capacity used in scheduling bucket t

 

𝑦𝑗𝑡 = Binary variable for precedence relations (indicating earliest possible start for 

work package 𝑗) 

 

 

Objective function 

 

𝑀𝑖𝑛 𝑐 =  ∑ ∑ 0.001𝑟𝑘𝑧 + ∑ 𝐶𝑠𝑢𝑠

𝑠∈𝑆 𝑖𝑓 𝐸𝑠=1𝑧∈𝑍𝑘∈𝐾

+ ∑ 𝐹𝑓𝑧

𝑧∈𝑍 𝑖𝑓 𝐿𝑧∈𝑋

 

The multiobjective function considers three main objectives. The first is to minimize the cost of 

workstations. Note that the coefficient is small, the priority is given towards minimizing the use of 

operators. The second is to minimize the use of human resources that are in the planning week. The 

third is to mitigate time buckets during which there is a preference to not perform any  work in the 

distribution center at all. 

 

Constraints 

∑ 𝑥𝑗𝑡

𝐷𝑗

𝑡=𝑅𝑗

≥ 1 ∀𝑗 ∈ 𝐽 (1) 

𝑟𝑘𝑧 ≤  𝑀𝑎𝑥𝑅𝑘 ∀𝑘 ∈ 𝐾, ∀z ∈ 𝑍 (2) 

𝑛𝑘𝑧  ≤  𝑀𝑎𝑥𝑁𝑘  ∀𝑘 ∈ 𝐾, ∀z ∈ 𝑍 (3) 
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∑ 𝑄𝑗𝑥𝑗𝑡

𝑗∈𝐽

≤ 𝑇𝑆𝑁𝑘𝑟𝑘𝑧 + 𝑇𝑆𝑅𝑘𝑛𝑘𝑧 ∀𝑘 ∈ 𝐾, ∀z ∈ Z, ∀𝑡 𝑖𝑓 𝑡 ∈ [𝐿𝑧 , 𝑈𝑧] (4) 

𝑇𝑆𝑅𝑘𝑟𝑘𝑧 ≤ ρ𝑛𝑘𝑧𝑇𝑆𝑅𝑘  𝑘 = 𝐷𝑒𝑝𝑎𝑙, ∀𝑡 ∈ 𝑇 (5) 

∑ 𝑥𝑖𝜏 ≥ 𝑦𝑗𝑡

𝑡−𝑂𝑖

𝜏=𝑅𝑖

 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ [𝑅𝑗, 𝐷𝑗], ∀𝑖 ∈ 𝑃𝑗 (6) 

∑ 𝑥𝑗𝜏 ≤ 𝑦𝑗𝑡

𝑡

𝜏=𝑅𝑗

 ∀𝑗 ∈ 𝐽, ∀𝑡 (7) 

us ≥  ∑ 𝑛𝑘𝑧𝐻𝑘

𝑘∈𝐾

 ∀s ∈ S, ∀z ∈ 𝑍 𝑖𝑓 𝐿𝑧 ∈ [𝐵𝑠 , 𝐸𝑠] (8) 

∑ 𝑀𝑎𝑥𝑁𝑘𝑧

𝑘∈𝐾

𝐻𝑘 ≤ 𝐴𝑧    ∀z ∈ 𝑍 (9) 

𝑟𝑘𝑧 ≥ 𝑟𝑘𝑊𝑧
 ∀𝑘 ∈ 𝐾, ∀z ∈ Z 𝑖𝑓 𝑊𝑧 ≠ ∅   (11) 

𝑛𝑘𝑧 ≥ 𝑛𝑘𝑊𝑧
 ∀𝑘 ∈ 𝐾, ∀z ∈ 𝑍 𝑖𝑓 𝑊𝑧 ≠ ∅ (12) 

𝑟𝑘𝑧 ≤ 𝑟𝑘𝑉𝑧
 ∀𝑘 ∈ 𝐾, ∀z ∈ Z  𝑖𝑓 𝑉𝑧 ≠ ∅ (13) 

𝑛𝑘𝑧 ≤ 𝑛𝑘𝑉𝑧
 ∀𝑘 ∈ 𝐾, ∀z ∈ 𝑍  𝑖𝑓 𝑉𝑧 ≠ ∅ (14) 

𝑀𝑓𝑡  ≥  ∑(𝑟𝑘𝑡 + 𝑢𝑘𝑡)

𝑘∈𝐾

 ∀𝑡 ∈ [𝐿, 𝑈] (15) 

𝑥𝑗𝑡 ∈ [0,1] 

𝑦𝑗𝑡 , 𝑓𝑡 ∈ {0,1} 

𝑟𝑘𝑡 , 𝑛𝑘𝑡 , 𝑢𝑠  ∈ ℤ 

𝑀 = Large integer 

  

 

Constraint (1) ensures that all work for work package 𝑗 is performed within its available working 

window [𝑅𝑗 , 𝐷𝑗]. Constraints (2) and (3) guarantee that no more regular and nonregular workstations 

can be employed in any timeslot than the maximum number of system resources available for them 

respectively. Constraint (4) weighs demand for work packages with the planned amount of work 

performed for those work packages so that the sum of those products is smaller than the amount of 

capacity available for processing it in that timeslot. The required minimum ratio in capacity between 

system resource that do and do not require human operators at the depalletising process is 

formulated in constraint (5). 

Constraints (6-7) define the precedence relations in production flow between work packages that are 

introduced in Chapter 2. Following these constraints, any work on work package 𝐽𝑗 cannot start before 

all its predecessors 𝐽 ⊂ 𝑃𝑗 have fully finished processing (5). Furthermore, work package 𝐽𝑗 cannot 

start before work package 𝐽𝑗−1 at the same process has fully finished processing (7). 

Constraint (8) ensures that the number of human resources planned in shifts is greater than the 

number of planned workstations that require human resources (weighed with their respective 

number of operators). Constraint (9) guarantees that no more nonregular workstations, weighed with 

the number of human resources required for their operation, are used at all processes than the total 

number of human resources available in a shift time window. 

Shifts may overlap. For instance, when we have a part-time evening and full-time evening shift. 

Therefore the sum of humans allocated in these overlapping shift timeslots must be greater than the 
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number of workstations in a process using human resources weighed with those workstation’s 

respective number of required operators. 

Constraints (11-14) mirror the extension of the planning window as described in Chapter 2. The 

amount of capacity planned in the appended preceding window must be smaller than the capacity 

planned in the days corresponding to the current planning week. The amount of capacity planned in 

the appended succeeding window must be smaller than or equal to those days in the current week. 

Because we minimize in the objective function, the capacity in the appended windows will be equal 

to the capacity in the week we plan for, similar to the process described in Chapter 2. In the objective 

function, we incur cost for shifts with their starting timeslot in range [𝑃, 𝑃 + 𝑊] so that the appended 

timeslots are excluded in cost evaluation. 

 

Figure 36 – Illustration of the extension of the planning window 

Constraint (15) introduces the timeslot mitigation constraint for a dedicated time interval. We incur 

fixed cost in the objective function if any capacity is allocated in the window ∀𝑡 ∈ [𝐿, 𝑈]. Variable 𝑓𝑡  

indicates whether any work is performed in timeslots 𝑡 ∈ [𝐿, 𝑈]. Parameter 𝐹 in the objective function 

controls the cost of additional employment of timeslots in window [𝐿, 𝑈]. 

Relaxing precedence constraints 

Following the flow relations introduced in Chapter 2, we argue that precedence constraining variables 

𝑦𝑗𝑡 must be binary. The reason for this is that work at processes is not allowed to start before their 

predecessors have finished processing the preceding work package entirely. When we enlarge the 

planning resolution, (virtual) offsets between processes increase as a function of the resolution 

increase.  

We can relax the constraints to 𝑦𝑗𝑡 ∈ [0,1], creating a slight adaptation of the binary precedence flow. 

The continuous representation of 𝑦𝑗𝑡 incurs that work performed at successors must be greater than 

work performed at predecessors in any timeslot. Contrary to the binary constraint, the succeeding 

process no longer has to prolong starting until its predecessor has fully finished processing a work 

package, the constraints only indicate that the fraction of work performed for an order must be 

greater than for its successor.  

We expect the relaxation decision to reduce runtime as it reduces the complexity of the program, at 

a minimum deterioration of feasibility as the majority of the scheduling functions flow relations are 

adhered to by relaxing. We test the effect of this relaxation decision on performance and feasibility in 

Appendix B. The relaxation constraints are shown to retain validity while providing better solutions in 

less time (Appendix B).  

The values for 𝛼 = 6 (scheduling bucket) and 𝛽 = 2 (planning bucket) are found through 

experimentation. Appendix B shows that this combination of the parameters yields the lowest cost 

capacity plans.  
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We model the problem using PuLP (Mitchel, O'Sullivan, & Dunning, 2011). PuLP is a linear 

programming toolkit for Python. Several solvers are available for ILP models. We distinguish 

commercial- and open-source solvers. We attempt to solve problem instances using CPLEX 12.9.0 and 

CBC 2.9.6. CBC (Coin-or branch-and-cut) is an open-source mixed-integer program solver that uses 

branch-and-cut methods (Forrest, 2019). CBC is among the most performant non-commercial solvers 

available today (Mittelman, 2019). 

6.4. Conclusion 

This chapter approaches the problem using the integrated strategy. With this strategy, we attempt to 

optimize the capacity plan and schedule orders over workstations at the same time. We model the 

problem as an integer linear program. 

Given the size of the original combinatorial problem with 10-minute timeslots, we modify the input 

parameters so that we can solve for performant capacity plans. To do this, we introduce scheduling 

and planning buckets while relaxing some of the precedence constraints. 
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7. Performance 

In this chapter we consider research question 5: How do the alternative strategies perform? Chapter 

4 proposes two solution strategies to approach any problem instance. The problem instances 

constitute weekly store orders for the mechanised warehouse. This chapter compares the solution 

strategies for a set of problem instances. 

To test performance, we define test instances in Section 7.2. We test the effect of input variables on 

solution cost. Section 7.3 covers these tests. 

The problem instances we consider are real-life store order sets for the mechanised DC. We evaluate 

capacity plans using the weighed timeslot cost function described in Chapter 4. We only consider 

capacity plans that fulfil the constraints described in Chapter 2, validated in the TOP module using the 

procedure in Section 7.1. 

7.1. Validation 

We introduce two strategies to planning capacity. While they model the constraints to planning using 

(a simulation of) the priority rule in the scheduling function, the resulting capacity plans must be 

validated. The integrated strategy does not fully mirror the scheduling function in the distribution 

centre planning application. Therefore, we must validate if the scheduling function behaviour we 

model is valid. 

Figure 37 shows the validation process. To validate, we load the explicit variables and parameters for 

planning (transport plan, shift parameters and system parameters) from the planning module. Then, 

we plan capacity automatically outside the planning module environment using either the integrated 

or the iterative strategy. We export the system resource levels (workstation allocations per timeslot) 

to the planning module and validate using the real scheduling function. 

 

Figure 37 – Validation mechanism of the resource plan 

If the scheduling function in the planning module reports warnings or errors normally used as 

feedback for manual planning, we know that our planning model is invalid in practice, as we modelled 

the problems to not violate constraints. All resulting capacity plans from the iterative as well as the 

integrated planning strategy were loaded into the planning module and found to report no errors, so 

all created plans are feasible. However, we cannot fully guarantee that created capacity plans are valid 

for any instance provided to the planning module. 

 

Transport plan 

System parameters 

Shift parameters 

Plan capacity Load resource allocation 

to planning module (TOP) 
Validate feasibility using 

TOP scheduling feedback 
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7.2. Test instances 

In order to test the performance of solution strategies, we consider multiple transport plan test 

instances. Figure 38 shows the minimum, mean, and maximum daily demand for 5 weekly transport 

plan test instances. These transport plans differ in their demand patterns. For instance, some 

transport plans show peak customer store demand in the weekend while others show little variance 

throughout the week. These factors may impact the performance of the solution strategies. 

 

Figure 38 – Box plot of daily demand for 5 weekly transport plan test instances (inclusive median) 

We create additional fictional test instances by multiplying demand for these test instances with 

factors 0.80, 1.20 as to test for a greater range of instances. Note that only test instances T1 and T2 

include demand for the RRP area. Also, the permitted lead times are equal for all orders except for T2, 

which includes variance in the order lead time. 

7.3. Experimentation 

Capacity plans for the integrated and iterative strategy are obtained using input parameters other 

than the transport plan, model files and shift configuration. The input parameters reduce the 

complexity of the planning problem. We test various ranges of these values to determine their effect 

on the output cost function. 

We define the scheduling bucket for the integrated strategy as the finest level of time we plan in. 

Normally, this is one timeslot (10 minutes). However, we can plan production and allocations in a 

coarser granularity therefore decreasing computational complexity. For the tests, we use a scheduling 

bucket of 𝛼 = 6 and a planning bucket of 𝛽 = 2 as found to be optimal for our test instance (Appendix 

B). 

Chapter 3 refers to differences in typical time convergence of exact versus approximate methods. To 

test this discrepancy, we consider the best solution cost value obtained after a time limit (maximum 

runtime). We consider maximum runtimes of 𝑡 ∈ {30,60,300,600}. 
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Furthermore, we test the deviation over created workstation classes of both strategies over the same 

input transport plans. This way, we test stochasticity of both strategies. We extend the test instance 

set by multiplying store order demand with factors 0.8 and 1.2. We test if the performance differs for 

variations of demand. Lastly, we compare the performance of the strategies to a manually created 

plan by comparing several performance indicators over a single test instance. 

7.3.1. Results 

Both the integrated and iterative strategy use random numbers. The iterative strategy uses random 

numbers to calculate probabilities and the integrated strategy in CPLEX uses random numbers in some 

if its internal operations. For example, it has an influence on probing and on branching. Therefore, we 

require multiple runs for each instance to derive a statistical basis of the cost evaluation function and 

make conclusions on performance.  

Runtime performance 

A factor to consider in the performance of the strategies is time. A strategy that converges more 

quickly is more favourable in practice. Table 11 shows the performance over time of the integrated 

and iterative strategy with time limits of 30, 60, 300 and 600 seconds. We evaluate these runs using 

the cost function.  

Initially, we provide a stopping temperature as a criterion for the simulated annealing. However, wedo 

not set a stopping temperature and use the best solution found after 𝑡 seconds so that we can 

compare the methods somewhat fairly. 

Generally, the integrated strategy outperforms the iterative strategy given sufficient time. We note 

that both strategies converge quickly. However, sometimes the integrated strategy fails to consider 

reasonable solutions initially (most often up to a minute) whereas the iterative strategy is generally 

quicker to converge. We presume that the reason for this is that the iterative strategy can easily 

remove shifts especially early on as many removals are feasible. On the other hand, the integrated 

approach includes the scheduling function orders as variables, which presumably takes more time to 

find a feasible configuration of both the planning and scheduling variables. We note that the iterative 

strategy performs better for the test instance with lead time variance (instance 2). In practice, input 

order set will have lead time variance, so the iterative strategy may be most performant. 

 T=30 T = 60 T=  300 T = 600  

 

Integrated Iterative Integrated Iterative Integrated Iterative Integrated Iterative Integrated LP 

(integrality gap) 

1 8949 10848 8949 9116 8568 8602 8521 8512 8400 (1.42%) 

2 33445 11876 11314 9788 9740 9654 9417 9238 9192 (2.38%) 

3 31913 14506 10496 11720 10204 10309 10186 10287 9827 (3.52%) 

4 43332 14258 11907 12672 11204 11423 10976 11242 10653 (2.94) 

5 43332 19238 38240 16924 15220 15846 15143 15548 14666 (3.15) 

% 123% 25% -1% -1%  
Table 11 – Performance over time of the integrated and iterative strategies 

Table 11 also shows the relaxed LP solution for the integrated strategy as well as the integrality gap. 

Note that the LP acts as a lower bound on the solution value for the integrated strategy. The true 

optimal value for the integrated strategy is somewhere between the lower bound and the best 
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solution value obtained at 600 seconds. Note however that this lower bound is obtained after the 

aggregation decisions proposed in Chapter 6. The true lower bound may be slightly lower as the 

granularity becomes finer.  

Performance over deviating demand 

Table 12 shows the mean solution cost for the two solution strategies: iterative and integrated. The 

integrated strategy outperforms the iterative strategy when lead times are high and constant, and 

when demand is generally high. On the other hand, the iterative strategy outperforms the integrated 

strategy for plans with low demand and small or variant lead time windows (instance 2). 

The scheduling bucket of 6 timeslots (1hour) leads to a loss in the scheduling part of the integrated 

strategy. Variables 𝑥𝑗𝑡  can be planned in multiples of the planning resolution. This creates larger time 

constraints on the solution space, thus increasing solution cost. The effect of this temporal 

aggregation and constraining decision seems to be more apparent as lead time windows and demand 

are smaller. On the other hand, as weekly demand increases, the performance of the integrated 

strategy improves.  

 Demand factor = 0.8 Demand factor = 1 Demand factor = 1.2 

 Integrated Iterative Integrated Iterative Integrated Iterative 

1  6995 7212 8521 8512 10684 10724 

2 7645 7566 9417 9238 11812 11943 

3 7340 7603 10186 10287 15156 15569 

4 7724 8004 10976 11242 16076 16412 

5 9205 9667 15005 15548 INF INF 

Table 12 – Mean solution cost comparison of strategies and instances with planning bucket = 2 and max runtime = 600, with n=5 

runs for each instance and strategy 

7.3.2. Comparison to manually created plans 

Whilst we show that we can obtain feasible capacity plans, we do not know how their performance 

relates to current (manual) allocations. We have a single reference plan for test instance 4. We use 

the performance indicators of this plan as a proxy for other test instances.   

 Manual Automatic 

 Integrated Iterative 

Operator timeslot 

cost (weighed hourly 

cost) 

13208 10976 (-16.9%) 11242 (-14.9%) 

Operator hours (incl 

indirect labor) 

3059 2694 -(11.9%) 2724 (-10.9%) 

Mean productivity 

(cases/operator hour) 

572 649 (13.5%) 642 (12.2%) 

Table 13 – Comparison of manual and automatic planning cost and utilization. 

Table 13 shows a performance comparison for the manually created plan as well as the automatically 

created plans using the integrated and iterative strategy for a single test instance. We compare the 

main performance indicator: weighed operator cost. The integrated and iterative strategy respectively 

incur 20,6% and -18,6% less cost than the manual plan on average. 
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The operator hours performance indicator shows the number of operators found when importing the 

allocations into the planning module. This amount of operator hours includes indirect personnel 

hours. We observe a smaller percentual decline. We find two main reasons. The first is that we do not 

include indirect tasks in the weighed operator cost calculation, as this personnel is not explicitly 

planned for. Another explanation is that we optimize for weighed operator cost, rather than the 

unweighted number of operator hours. 

7.4. Conclusion 

This chapter finds that the capacity plans created by both the iterative and integrated strategy remain 

valid when tested in the planning module. Moreover, their results seem promising as the integrality 

gap for the integrated strategy is in the order of several percentages, indicating that the plans can 

most likely not be improved beyond those few percentages. 

The integrated strategy generally outperforms the iterative strategy. However, the iterative strategy 

seems to perform well on the test instance that contains varying lead times. Practically, orders will 

contain varying lead times, so the iterative strategy may perform well on those test cases. On the 

other hand, we see that as the demand on the system increases, the outperformance of the integrated 

strategy increases as well. 

To conclude, both the iterative and the integrated strategy outperform the manually created plan (for 

a single test case) for the Albert Heijn distribution centre. 
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8. Discussion & Conclusion 

This chapter discusses the main research question: How can effective capacity plans for the 

distribution centre be made in reasonable time in the tactical planning phase?  

Section 8.1 provides an overview of the benefits and drawbacks of both the integrated and iterative 

strategy. Section 8.2 discusses generalizability and applications to other distribution centres in more 

detail. Section 8.3 provides recommendations for further research. 

8.1. Comparison integrated and iterative strategy 

With a limited sample size, we find that the integrated and iterative strategy outperform manually 

created plans. Generally, their performance is similar, with the integrated strategy showing a slightly 

higher mean productivity and lower mean cost for most problems. We compare other aspects of both 

strategies. Table 14 provides an overview of arguments made for and against each strategy in previous 

chapters. 

  Integrated Iterative 

Solution quality ~ For most test instances, the integrated 

strategy outperforms the iterative 

strategy 

~ The integrated strategy 

outperforms the iterative strategy by 

~2% given sufficient time 

Solution 

convergence  

- Generally takes more time to find (any) 

initial feasible solution 

+ Instances converge quickly, mainly 

attributable to constructive heuristic 

Solution 

deviation 

+ Multiple runs for the same test 

instance show less deviation for the 

iterative strategy 

- Multiple runs for the same test 

instance show greater deviation 

Feasibility 

probability 

- With the introduction of the planning 

resolution parameter 𝛼, we limit the 

solution space thus increasing the 
probability of not obtaining feasible 

solutions 

+ Greater feasibility probability:  We 

use normal 10 minute timeslot length, 

representing the full problem 

Validity - Timeslots and the scheduling algorithm 

are aggregated, while all instances we 
provide are valid, we cannot assume 

absolute validity 

+ Mimics scheduling algorithm, always 

valid 

Buffer 

constraints 

- Explicitly modelling buffers is difficult + Buffer constraints can be modelled 

explicitly 

Modeling 

breaks 

- Cannot explicitly model breaks, must 

adapt by lowering productivity 

+ Operator breaks can be modelled 

explicitly 

Shift time 

requirements 

- Can use any configuration of shifts, 

however they must start in increments 

of the planning resolution. 

- Can only use constructive heuristic 

when adjacent shifts spanning full day 

are available 

Additional 

requirements 
ILP solver, e.g.CBC or CPLEX 

 

Table 14 – Comparison between integrated and iterative strategy 
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8.2. Applicability to other distribution centres 

While this research considers the Albert Heijn distribution centre in Zaandam, the solutions proposed 

to our problem may be extended to other distribution centres. We consider several factors that 

influence the applicability of our methods: 

• Predictability of orders and processing rates – We consider all demand and supply rates as 

deterministic. This way, we focus on maximizing utilisation. However, If we were to include 

for instance stochasticity in demand, we would likely not focus on maximizing utilisation and 

lowering cost, but also include risks such downtime and queues that disturb productivity. 

• Priority rule / quick scheduling evaluation (in this case JIT) – In our case, the scheduling 

algorithm acts as a means of feedback for the capacity plan. We can iterate relatively quickly 

to the trivial nature of the scheduling problem as the scheduling rule is simple (JIT). Other, 

more complex scheduling methods may complicate the problem. 

• Clear input parameters (e.g. shifts definition, processing rates) – All input parameters to the 

problem are clearly defined for this distribution centre. For instance, the length of shifts as 

well as the offsets and processing rates are available as detailed knowledge as a result of prior 

simulation studies. For other distribution centre, this may hinder the rate of implementation 

as these parameters have to be determined first. 

8.3. Recommendations for further research 

With a limited sample size, we find that both strategies significantly outperform the manual planning 

procedure. Both strategies can provide solutions within a limited timeframe (10 minutes or less) for 

all instances tested. These automatically created plans could be used as a starting point or as a frame 

of reference for planners in order to save time and operator hours.  

We recommend Vanderlande to use the iterative strategy for capacity planning in the planning 

module. While the integrated strategy generally outperforms the iterative strategy in the weighed 

number of operator hours required, several arguments advocate implementing the iterative strategy. 

First of all, we find a mean cost performance difference between the integrated and iterative strategy 

of less than 2% in weighed operator cost, while we find a difference of 19% compared to manually 

created plans. The difference between the integrated and iterative strategy is far smaller. 

Furthermore, we note that the iterative strategy is more likely to obtain feasible solutions. 

Lastly, we find that commercial solvers (i.e. CPLEX) provide feasible solutions within reasonable time. 

Open-source solvers such as CBC require a significant additional time investment rendering them 

inferior to the iterative strategy as well. Opting for a commercial solver requires significant additional 

monetary investment compared to using the iterative strategy. 

A sidenote to using the iterative strategy is that a basis of adjacent shifts is required in the constructive 

phase. 

The current planning process is deterministic and does not consider robustness. (Forecasts of) demand 

is considered as deterministic input in the planning module. As we plan for high mean productivity 

and low operator cost, utilization approaches 1. As utilization increases, robustness towards 

uncertainty decreases. In other words, as we plan more efficiently, there is less free capacity to buffer 
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for unexpected positive demand increments. Therefore, further research could be aimed at creating 

robust plans. However this requires insights in the stochasticity of both supply and demand at the 

distribution centre.  

As we described in Chapter 2 there are indirect tasks in the distribution centre. These include for 

instance supplying empty load carriers and defoiling pallets. These tasks are not planned for by manual 

planners as they are linked directly to processes. 

This thesis considers simulated annealing as an improvement heuristic. There are numerous other 

metaheuristics such as tabu search (Glover & Laguna, 1998) and genetic algorithms (Gen & Lin, 2007) 

that could perhaps be applied to our problem 

While we provide an argument against the integrated strategy being the licensing cost for commercial 

solvers, there may be significant improvement potential for open-source solvers such as CBC through 

the tuning of parameters (Baz & Hunsaker, 2007).  

Similarly, we consider some experimentation to determine the simulated annealing and constructive 

heuristic parameters. We could include a more dynamic cooling scheme for simulated annealing, 

perhaps based on statistical analysis (Aarts & Korst, 2005). Furthermore, the constructive adaptive 

search procedure could be improved by altering the bias factor over time, i.e. starting deterministically 

and ending with more stochastic shift choices. 

8.4. Conclusion 

First, we wanted to know how capacity plans are made currently, and how their performance is 

assessed. We found that many parameters and variables are used as discrete input into the current 

manual planning function. Planners use a scheduling priority function to assess the performance of 

their manually created plans. In practice, production planners aim for maximum productivity while 

meeting all departure times and not violating any constraints.  

We find that planning for a week’s demand is complex as the time horizon is highly constrained and 

partitioned into many timeslots. Literature describes many combinatorial planning and scheduling 

problems, of which some exhibit properties similar to our problem. One of the most similar 

combinatorial planning problems is the time-driven rough-cut capacity planning problem. However, it 

differs in several aspects. The key discrepancy is in the hiring of non-regular capacity. In our problem, 

non-regular capacity can only be hired in fixed time intervals, and is available over multiple processes 

during that time. This further complicates the problem. 

We explore two approaches to the capacity planning problem: an integrated strategy combining the 

planning problem and scheduling function and an iterative strategy that communicates between these 

phases. 

The integrated strategy requires that all parameters, variables and constraints are modelled so that 

we can solve combinations of variable values that are feasible in practice following the scheduling 

function. As the problem is quite complex, we find that we cannot solve for all constraints and 

variables explicitly in a combinatorial integrated approach, as the time required for finding reasonable 

solutions expands quickly. We propose several methods to simplify the problem modelled for the 

integrated strategy, while retaining feasibility. 
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Furthermore, we propose an iterative strategy that automates a process similar to the current 

planning methodology. The iterative strategy starts with a maximum capacity allocation and continues 

to remove shifts if those decision are feasible. Then an improvement phase starts. The improvement 

phase focuses on using overlapping shifts and neglecting expensive timeslots as well as swapping 

humans over processes during their shifts, all while retaining feasibility following the scheduling 

priority function. 

Both the iterative and integrated strategy show promising results when comparing to solution cost of 

obtain capacity plans to manually created plans for the Albert Heijn distribution centre. We show that 

within an order of minutes, we can create plans that use few human operators. 

However, we note that especially the integrated strategy is somewhat tailored to our problem. For 

instance, if the shifts parameters were to change, then the integrated strategy would have to be 

adapted. Nonetheless, the iterative strategy provides a starting point that may be adapted easily to 

other distribution centres that use a similar means of iteration between planning and scheduling. 

However, the availability of accurate input parameters remains vital to the success of the algorithm. 
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Appendix A: Processing parameters for ILP 

Both the number of timeslots and jobs (in our case: production area orders) are large multiples of 

extremes found in literature for RCCP problems. As the RCCP problem is NP-hard, it may be 

cumbersome to solve for a solution space this large. Therefore we could decide to allow for some 

aggregation in the length- and planning of timeslots. E.g. if we decide to plan for a timeslot planning 

resolution of (multiple)hours rather than 10 minutes, we reduce the number of decision variables 

greatly, and can expect to obtain allocation results with less computational effort. 

However, a temporal aggregation decision is likely to come at the cost of accuracy with respect to the 

scheduling algorithm. If these timeslots are aggregated, then the order timeslots must be aggregated 

as well, while preserving the condition that orders are finished before their deadline. 

These deadline attributes are usually specified at a level of granularity finer than the aggregated 

planning resolution. To continue finding feasible solutions constrained by e.g. order lead times, we 

must set upper bounds smaller than true values as we are limited by the level of granularity. E.g. if the 

maximum lead time for an order is 07:30 (hh:mm) and we decide to use a resolution of 2 hours rather 

than 10 minutes, we can only state that the maximum lead time is 06:00 as we could otherwise violate 

hard lead time constraints. 

These aggregation decisions impact the solution space and the ability to find feasible solutions. In case 

the solution space is highly constrained, for instance when the number of required workstations is 

close to its maximum for several timeslots, we may never obtain feasible solutions when deciding to 

aggregating as time windows are further constrained. By lowering the planning granularity, we expect 

a smaller probability of attaining feasible solutions as the solution space for any job is constrained 

increasingly with coarser granularity. 

 

Introducing a shift resolution for resource planning 

Human resources can swap over processes during their shift. For instance, they can work at a semi-

automatic depalletizing workstation for the first 5 hours of their shift and at a semi-automatic picking 

workstation for the last 3 hours. In combinatorial optimization, solver seek the best combination of 

allocations for a human resource. In practice this may imply that a worker is planned to change process 

after every planning timeslot. If we plan in timeslots of 10 minutes, this is unrealistic and creates a 

large decision space. Changing every 10 minutes is unrealistic because there are significant 

changeover and setup times. 

Following the above arguments, there is good reason to reduce the number of times human resources 

can change over processes during their shift. Therefore, we introduce shift resolution parameter 𝛽 to 

bound the number of changes to a maximum of 𝛽 per shift.  
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Figure 39 – Illustration of shift resolution 

Figure 39 illustrates the introduction of the shift resolution parameter. As the shift resolution 

parameter 𝛽 increases, the number of allowed changes per shift increases. 

Aggregating store order demand over time 

Manual planning is done for timeslots of 10 minutes. For instance, planners can specify that a 

workstation is available from 00:00 to 00:10 but not from 00:10 to 00:20. The scheduling algorithm 

uses the same timeslot size. We previously determined that a combinatorial problem with many 

timeslots requires increasingly many computational steps for solving. For this reason, we suggest 

aggregating demand and capacity over time.  

To do this, we introduce a planning resolution parameter 𝛼. Previously, we stated that demand and 

capacity planning is currently done for windows of 10 minutes, thus planning for intervals of length 

[𝑡, 𝑡 + 1), where 1 is a timeslot of 10 minutes. We introduce a planning resolution parameter 𝛼, where 

we plan for intervals of the size of 𝛼 timeslots. This creates new timeslot for intervals of length [𝑡, 𝑡 +

𝛼). 

In practice, we know that there are only three processing paths. These are categorized by orders with 

demand for areas ACP, NC and RRP. As we introduced previously, a store order may specify for 

instance 14 load carriers from the ACP area and 12 from the NC area. The load carrier processing unit 

is the finest level of granularity provided in a store order. For that reason, all orders with demand for 

the ACP area must follow the exact same processing steps, and the rate of producing load carriers is 

equal for all orders in an area provided they are handled by the same workstation class. Therefore, if 

two orders constitute the exact same deadline timeslot and cut-off time, they could be aggregated in 

their area demand.   

For this reason, we can aggregate orders order demand for common timeslot deadlines, restricting 

the solution space. When planning for a greater time resolution (i.e. a multiple of timeslots), we can 

aggregate all area demand that is due in the window [𝑡, 𝑡 + 𝛼). To satisfy constraints, we must set the 

cut-off time in that time window as the minimum of all cut-off times of store orders with a deadline 

in the time window [𝑡, 𝑡 + 𝛼). By setting this minimum cut-off time, we ensure that we never violate 

any of the cut-off time constraints. 
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Figure 40 – Illustration of demand aggregation, orders with a departure time in timeslots [𝑡, 𝑡 + 𝛼) are aggregated. 

Figure 40 illustrates demand aggregation for orders with a common demand area. In this example 

there are seven store orders in this example each with a truck departure time in the interval [08:00, 

10:00]. In the first scenario, they are aggregated with 𝛼 = 1, or in intervals of 10 minutes. We obtain 

7 different parameters with demand > 0. In the second scenario, they are aggregated in intervals of 

30 minutes with 𝛼 = 3. The last scenario shows 𝛼 = 6.  Thus, the level of aggregation depends on the 

planning resolution. With an original planning horizon of 𝑡 timeslots and a resolution of 𝛼, we obtain 

𝑡/𝛼 timeslots in aggregation. With this decision, we aim to reduce the problem size while maintaining 

feasibility by taking the minimum of the cut-off times of the aggregate elements. 

 

Effect of temporal aggregation on offset accuracy 

The aggregation of timeslots has impact on the feasibility of processing offsets. In Chapter 2 we 

determined that the scheduling function uses fixed offsets to schedule demand. These offsets are 

multiples of 10 minutes and may not necessarily correspond to the aggregated time parameters 

introduced in the previous paragraph. 

 

 

By aggregating demand and supply over time, we lose planning accuracy and in some cases find 

infeasible solutions to allocations that could be feasible in reality. We provide an example. If we plan 

with 𝛼 = 6 in 1 hour timeslots rather than 10 minutes the available working window for each process 
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decreases. All offsets and processing windows must be rounded up to a multiple of the finest level of 

granularity 𝛼 timeslots to maintain feasibility and satisfy constraints. If they are not rounded up, we 

cannot explicitly model these steps as they might induce infeasible capacity plans. Thus, we lose a 

planning time window of the amount rounded up for each of these steps. The time lost is equal to 

((𝛼 −  𝛾 (𝑚𝑜𝑑 𝛼))(𝑚𝑜𝑑 𝛼) for each processing step with timeslot length 𝛾 and planning resolution 

𝛼. The solution space decreases as the working window sizes decrease as a function of the planning 

resolution. Therefore the likelihood of finding feasible allocations for transport plans decreases with 

a coarser planning resolution parameter 𝛼. 

Figure 42 shows the minimum attainable lead time for aggregate planning resolutions. The minimum 

attainable lead time is determined using the offsets and processing times introduced in Chapter 2. We 

round all offsets and minimum processing time up to the planning resolution to determine the 

minimum attainable lead time per production area. Figure 43 shows a typical weekly cut-off time 

distribution. A minimum and maximum cut-off time are promised to the warehouse customer. If we 

seek to satisfy these minimum cut off lead times, then the minimum feasible lead times in Figure 42 

must subceed the minimum cut-off time for any production area in an order. For this reason we draw 

a bounding line at the minimum attainable lead time equal to 6 hours, as it represents the minimum 

cut-off time allowed by customer stores in their orders. 

Figure 41 shows the composition of minimum attainable lead time for the ACP area for different 

planning resolutions. The figure shows that with an increasing planning resolution, more time must 

be reserved for each process to comply with constraints and offsets. The amount of time we reserve 

for each step is equal to the nearest upper multiple of the planning resolution 𝛼. When that finest 

level of granularity is greater than the time required for the step, the minimum attainable lead time 

increases. When many processing steps exist in an area, the planning process is constrained further. 

If the minimum cut off time is 6 hours (Figure 43), we must plan with a resolution smaller than 4 

timeslots as the sum of time required for processing steps and offsets (i.e. the minimum attainable 

lead time) in the ACP area is greater than 6 hours for a planning resolution greater than 4 timeslots 

highlighted in Figure 41. Note that if we do not include the timeslots required for processing (10 

minutes) directly, then we can plan with a resolution of 𝛼 = 6. 

The processing and offset times must be rounded up to the nearest multiple of the temporal planning 

resolution. The reason for this is that we require an upper bound on the total lead time to be created 

in order to mitigate lead time constraint violation. 

 

Breaks 

Chapter 2 introduces breaks in the shifts. We note that the ratio of work to breaks is similar among 

shifts. Each full-time shift incurs 0:50 of breaks for 7:10 of work. As we increase the planning resolution 

to values greater than 10 minute timeslots, we can no longer explicitly model all these shift breaks. 

Alternatively  

we propose to decrease mean timeslot productivity. We find the new timeslot productivity as: 

𝑇𝑆𝑁𝑘 =
43

48
𝑇𝑆𝑁𝑘  ∀𝑘 by following the same productivity ratio. 
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Constraining working windows 

The transport plan with outbound store orders serves as input for determining an optimal capacity 

plan. We must make some adaptations to the transport plan to create parameters for feasible ILP 

formulations. First of all, we introduced parameter 𝑅𝑗  as the earliest start timeslot of a work package. 

The value for this parameter is found by 𝑅𝑗 = 𝐷𝑗 − min(max(𝐶𝑗, 𝐿) , 𝑈). Parameter 𝐷𝑗 is the deadline 

of a store order 𝑗. 𝐶𝑗 refers to the cut-off offset. The interval [𝐿, 𝑈] denotes the lower and upper 

bounds of the allowed lead-times respectively. Orders with 𝐶𝑗 < 𝐿 are considered infeasible, so we 

transform them to the minimum attainable lead time. On the other hand, lead times cannot be greater 

than 𝑈. 

 
Figure 43 – Cutoff time distribution in a sample order set, correcting for lower- and upper bound values 

Figure 43 shows store orders in a sample transport plan sorted by their cut-off times (blue). Many 

store order cut-off times lie outside the allowed lead time window of [𝐿, 𝑈] and therefore require 

correction. They are transformed to the values highlighted in Figure 43 following the formula for 𝑅𝑗 . 

By constraining the cut-off times this way, we create working windows [𝑅𝑗 , 𝐷𝑗] that always satisfy the 

maximum leadtime constraint introduced in Section 2.6.1. We introduce the window [𝑅𝑗, 𝐷𝑗] as 

constraints for processing store order 𝑗. If all work 𝑥𝑗  cannot be performed in this window with 

available capacity, then the constraints cannot be satisfied, thus creating an infeasible solution. 

 

Accuracy and limitations 

The ILP formulation of the integrated strategy neglects the constraints on intermediate buffers levels 

introduced in Chapter 2. Explicitly adding constraints for the intermediate buffers levels between 

processes for each timeslot requires the introduction of many constraints and variables. This 

modification is expected to significantly add to required computation time as the program size 

increases. We cannot model empty buffers in practice as it requires the use of logic unsuitable for 

linear programs. However, we can add some simplified constraints for buffers that require less 

variables, as seen in constraint (b1), (b2) where 𝑏𝑘𝑡 is the variable buffer content in processing units 

and 𝐵𝑘 is the maximum buffer capacity.   

∑ 𝑄𝑗𝑥𝑗𝑡 + 𝑏𝑘𝑡 ≥ ∑ 𝑄𝑖𝑥𝑖𝑡        ∀𝑘, 𝑡, 𝑗  𝑖𝑓 𝐾𝑗 = 𝑘

𝑖

, 𝑖 ∈ 𝑃𝑗     (𝑏1)
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∑ 𝑏𝑘𝜏 ≤ 𝐵𝑘    ∀𝑘, 𝑡  (𝑏2)

𝑡

𝜏=max(𝑡−
𝑊
7 ,0)

 

𝑏𝑘𝑡 ∈ ℝ 

However, we observe that buffer restrictions in their maximum capacity hardly ever constrain the 

solution space. Lead time constraints introduced by maximum cut-off times bind buffer levels 

sufficiently so that buffers are unlikely to fill to maximum capacity in practice. 
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Appendix B: Strategy parameters 

In this chapter we cover the parameters for both the integrated and iterative solution strategies. We 

determine optimal parameters for both these strategies that are used to compare results for different 

transport plan dependent variables. 

For the integrated strategy, we consider including binary or relaxed precedence relations, the 

inclusion of buffer constraints and  

Integrated strategy 

In Chapter 5 we introduced the option of relaxing precedence constraints. We test if this decision 

creates feasible plans, and test its effect on performance over time. With a planning bucket (beta) of 

2 and a scheduling bucket (alpha) of 6 we test for 3 instances. 

 Mean, median (min, max) 

Instance Binary Relaxed 

2 13404, 11780 (9672, 26393) 9417, 9342 (9205, 9912) 

4 13784, 12993 (12402, 22087) 10976, 10969 (10892, 11146) 

5 16002, 15302 (15102, 19783) 15005, 15212 (14942, 15392) 

We observe that all allocations created with relaxed constraints are feasible. Moreover, they most 

often provide the most cost-effective resource plans compared to the binary constraints case. 

Table 15 shows the mean solution cost for test instances 2,4,5 with different values for the alpha 

(scheduling bucket) and beta (planning bucket) parameters. Observe that for small values of alpha and 

beta, the solver fails to converge. Presumably, this is because the solution space becomes excessive. 

  Scheduling bucket (alpha) 

  1 2 3 4 6 

P
la

n
n
in

g 

b
u
ck

e
t 

(B
e
ta

) 

1 none none 23854 17287 14802 

2 none none 18366 13905 11799 
4 none none none 24825 21079 

8 none none none 28846 22758 
Table 15 – Mean solution cost for test instances {2,4,5} with different values for alpha and beta 

When using a planning bucket of 1, the part time overlapping shifts are not considered. Therefore, 

the solution space is limited and cost remains relatively high. We note that using planning buckets 

greater than 2 have little benefits as they seemingly only add diversification at the cost of 

intensification of the solution space.   

Iterative strategy 

The approximate strategy considers a constructive and improvement heuristic. For the adaptive 

search constructive procedure, we consider the bias factor and number of shifts to remove as 

parameters. For the simulated annealing improvement heuristic, we consider the starting 

temperature, stopping temperature, decrease factor and markov chain length. 
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Initial phase parameters 

Figure 44 shows solution cost over three different test instances given their input bias factors. We test 

10 different bias factors. Also, the mean time to solution is displayed. 

 

Figure 44 – Solution progression over time for different Bias Factor values 

Choice for stopping criterion 

Figure 45 shows the tradeoff between the time used and the solution cost for different values of the 

stopping criterion. The mean indexed solution cost is determined by averaging the solution costs of 

the initial phase, after which the values are normalized with a minimum of 100. Logically, the mean 

time used increases with a greater stopping criterion value as more removal attempts will be made. 

Figure 45 shows that the solution cost initially declines quickly with a greater stopping criterion length. 

After some time however, the gains are only marginal while the time used continues to increase. For 

this reason, we set the length of the stopping criterion i to 100. This means that the initial phase stops 

after 100 iterations without a feasible removal attempt. 
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Figure 45 – Mean indexed solution cost and mean time used for different stopping criterion lengths 

 

Improvement phase parameters 

We introduced several parameters for the simulated annealing procedure. We test different values to 

determine the optimal values. 

Determining starting and stopping temperatures. 

Worsening solutions are accepted with probability 𝑒−
𝑓(𝑠′ )−𝑓(𝑠)

𝑇 . 𝜒(𝑐) is defined as the acceptance ratio 

of these worse solutions. We seek a value of 𝜒(𝑐) = 1 (Aarts & Korst, 2005) slowly converging towards 

𝜒(𝑐) = 0, so that we start with a global optimisation approach, ending in local optima. 

By intuition, we find that a single change in neighbourhood can never deteriorate the solution cost 

more than 48 * 2 (by swapping a shift from the least to most expensive time window in the semi-

automatic depalletizing process). Figure 46 shows that the probability of accepting the worst objective 

function deterioration is close to 1 for 𝑐 > 10000, implying that 𝜒(𝑐) ≈ 1 for 𝑐 = 10000. Figure 46 

tests this hypothesis. We observe that from around c = 8000, the acceptance ratio is close to 1 indeed. 

Therefore we set 𝑐𝑠𝑡𝑎𝑟𝑡 = 10000 
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Figure 46 – Acceptance probability for minimum and maximum cost deterioration 

We do not want to continue annealing if the acceptance probability stays close to 0. Therefore, we 

decide that 𝑐𝑠𝑡𝑜𝑝 = 1 as the minimum deterioration f(s’) – f(s) = 2, we expect few improvements below 

𝑐𝑠𝑡𝑜𝑝 = 1 as Figure 46 shows. 

Markov chain length 

As we finish the constructive heuristic, many ‘easy wins’ are available, such as swapping to less 

expensive timeslots. Therefore we expect that we can find improvements relatively often in early 

annealing. Perhaps an incremental chain length works better than a constant length, where the 

improvement over each chain is constant. We observe that the scheduling algorithm can be performed 

around 10 times per second on a regular laptop. For the experiments, we target a running time of 10 

minutes to compare the two strategies. Therefore, we expect to be able to perform around 600*10 = 

6000 iterations in total.  

Incremental length markov chain 

We test four incremental length markov chain, each amounting to around 6000 total iterations and 

300 chains, so equating to approximately the same runtime length. Table 16 shows multiple 

parameter configuration for the starting markov chain length and the number of chains to increment 

after. We note that an initial short length is generally beneficial, advocating the hypothesis that many 

improvements can be found early on following the introduction of new neighbour operators. We 

decide to use an initial length of 5, incrementing the length by 1 after every 10 iterations. 

Starting chain length Increment chain length by +1 

after n iterations 

Mean solution cost (of 3 test 

instances, each ran 5 times) 

3 9 12682 

5 10 12665 

8 12 12818 

10 15 12940 

Table 16 – Mean solution cost for different incremental markov chain parameters 

We test two scenario’s: one where the markov chain length is constant at k = 20, therefore we expect 

to be able to evaluate around 300 chains. Also, we test an incremental markov chain length starting 

at length 5, then incrementing the length by 1 after every 10 chains. This way, we evaluate the same 

300 chains ending at a length of k = 35. 
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Figure 47 – Comparing the incremental and constant markov chain length 

We use three test instances, (t2,t4,t5) specified in Chapter Appendix C. Figure Figure 47 shows that 

the incremental chain length outperforms the constant chain length in most cases. We decide to use 

the incremental chain length. 

Decrease factor 

We aim to go from initial temperature 10000 to the stopping temperature 1 in about 10 minutes, this 

equates around 300 chains. This equates a decrease factor of 0.97 
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Appendix C: Test Instances 

Table 17 shows the test instance properties. We use these instances to compare strategies. These 

instances are based on (expected) demand in the distribution centre for a given week. We extend the 

test set by a factor 2 by adding instances with demand multipliers 0,8 and 1.2, obtaining 15 total test 

instances.  

Instance 1 2 3 4 5 

Demand(week) 

in thousands 

1107 1234 1356 1751 1979 

D(Mon) 61 159 242 242 262 

D(Tue) 158 157 194 237 237 

D(Wed) 178 180 169 267 285 

D(Thu) 189 205 282 282 354 

D(Fri) 198 215 180 301 397 

D(Sat) 209 196 169 302 380 

D(Sun) 114 122 120 120 64 

RRP included? Yes Yes No No No 

Maxlead 

(stdev) in hr 

8.5 (0) 11.84 (0.86) 12 (0) 12 (0) 12 (0) 

Table 17 – Test instance properties 
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Appendix D: Infeasible allocation example through 

lead time violation 

We consider demand for an area that constitutes two processes. As we schedule recursively following 

the priority rule, we start with the last process.  The capacity at the process differs over time due to 

different multiples of workstations being allocated. First, we schedule all orders in the timeslots in 

which they are due. In this example, we highlight demand due in timeslot 8. The demand that is due 

in this timeslot has a maximum lead time of 4 timeslots, this cannot be exceeded (cut-off offset 

constraint). 

We observe that initially, there is excess demand at the final timeslot, so we must shift some demand 

forward. 

 

As we shift demand, lead time is added. We note that production in the last process must start at 

timeslot 4 already, rather than timeslot 8, as the production must be finished by the timeslot in which 

it is due (timeslot 8). Now this create some problems: processing at the first process cannot start at 

t=7, but only at t=3. 
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Similarly, there is under capacity at the first process. Again, lead time is added as processing starts at 

timeslot 1.  

While eventually there is no undercapacity for this demand, another constraint causes infeasibility. 

The lead time for timeslot t = 8 is exceeded. Production for this order must start at timeslot t=1 if it is 

to be finished by t=8, while only 4 timeslots (or a start at t=5) would be allowed. 


