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Abstract

A Markov decision process (MDP) is a common way to model stochastic decision problems.
Finding the optimal policy for an MDP is a challenging task. Therefore, approximation
methods are used to obtain decent policies. Approximate dynamic programming (ADP) is an
approximation method to obtain policies for an MDP. No approximate guarantees for ADP
related to MDP exist yet. This thesis searches for an approximate guarantee for ADP by using
an optimal stopping problem. In Chen & Goldberg, 2018 [10], an approximation method and
approximate guarantees were obtained for optimal stopping problems.
A Markov chain over the policy space of the MDP is created to obtain an optimal stopping
problem, denoted by OS-MDP. The method described by Chen & Goldberg applied on OS-
MDP yields error bounds for solution methods and approximation methods of MDP. The
estimation relates the policy found after N iterations to the policy obtained after M itera-
tions, where N < M . This estimation has an error bound of 1

k+1 , where k is a parameter
that determines the complexity of the computations. Solution methods discussed are; policy
iteration, value iteration and ADP.
A card-game, called The Game [36], is used as a running example. The Game is modelled as
MDP, approximated using ADP, and an error bound of ADP is obtained by using OS-MDP.
One small numerical test of OS-MDP is performed, where N = 5 and M = 10 yields an error
bound of 0.25, hence no more than a 25% improvement can be achieved.
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Chapter 1

Introduction

1.1 Motivation and framework

A Markov decision process, or MDP for short, is a widely used model for stochastic decision
problems. There are various fields where MDPs are used, for example, healthcare, logistics,
games and machine learning. Finding the optimal policy for an MDP is a challenging task,
and therefore receives significant academic interest. MDP can be solved using the Bellman
equation [24]. Various algorithms have been created that find the optimal policy for a given
MDP under a set of assumptions. Some example algorithms are value iteration, policy itera-
tion and modified policy iteration [24].
An issue is that many practical MDPs cannot be solved in a reasonable amount of time using
these algorithms, because the MDP is too large and complex to solve [18, 21]. This issue
creates the need for approximation methods that find a good policy for large MDPs. Approx-
imate Dynamic Programming (ADP) is an approximation method for MDP, which we will
focus on in this thesis.
One problem with ADP is that determining the quality of a solution is difficult [23]. This
problem could lead to cases where, without knowing, a very mediocre policy is used. Hence a
method to assess the quality of a policy is desired. There are several to estimate the quality
of a policy[22], for example, comparing different policies found by approximation methods.
One method to determine the quality of a policy is by finding an approximation guarantee,
which relates the policy obtained by the approximation method to the optimal policy of the
MDP. For ADP, no such approximate guarantee currently exist [23].
In this thesis, we explore an approach to find an approximate guarantee for ADP: To create an
optimal stopping problem from a general MDP, denoted by OS-MDP. The idea is to create a
stochastic process over the policy space. We then search for the stopping time that minimises
the expected costs. Solution methods for solving an MDP can be used to define the stochastic
process of OS-MDP. The following methods are used to illustrate this: value iteration, policy
iteration and ADP.
Since OS-MDP is an optimal stopping problem, methods for optimal stopping problems can
be related to an MDP. In [10], an approximation method for the optimal stopping problem
was created that includes approximation guarantees. This method is introduced and proven

1



2 Chapter 1. Introduction

in simpler terms. Additionally, we apply the approximation method to the OS-MDP model
to obtain bounds for different solution methods, namely policy iteration, value iteration and
ADP.

1.2 Running example: The Game

A game will be used as a running example throughout the thesis. The chosen game is a finite
horizon game with finite-sized policy space, finite costs and finite-sized state-space, namely
The Game, designed by White Goblin Games [36]. The Game is a cooperative or single-player
card game where the player(s) has to play cards numbered 2 till 99 on 4 piles in the centre,
following a set of playing rules. We consider only the single-player version, which makes The
Game a discrete-time stochastic decision problem with a short time horizon. Finding the
optimal strategy for The Game is difficult, since the state-space is large, making it a suitable
candidate for testing approximation methods.
Another game used to test approximation methods is Tetris [6]. Tetris is introduced and
modelled as MDP. The reason The Game is picked over Tetris as the running example is that,
even though Tetris ends with probability one [4], the horizon length is unknown beforehand.
The Game is modelled as MDP. We explain how ADP can be applied, and we obtain numerical
results for The Game. The different policies obtained by ADP are compared to find what
ADP settings perform best. Additionally, we test the OS-MDP model for The Game to obtain
bounds, which is done for value iteration, policy iteration and ADP. Finally, we compute a
simple error bound using OS-MDP with ADP.

1.3 Organisation of master thesis

In Chapter 2, a general literature overview is given. This chapter is split into different topics:
MDP, optimal stopping problems and ADP. Additionally, the contribution of the OS-MDP
model is stated as well as a brief comparison to similar models.
Chapter 3 contains the definition of a Markov decision process, including several exact solu-
tion methods. Additionally, approximate dynamic programming is introduced. Furthermore,
The Game and Tetris are introduced and modelled as MDP. Then a description is given on
how The Game can be approximated using ADP.
In Chapter 4, optimal stopping problems are introduced and defined. Additionally, we in-
troduce an approximation method for optimal stopping problems, taken from Y. Chen & D.
Goldberg 2018 [10], and state the approximate guarantee results.
Chapter 5 introduces the OS-MDP model formally. Several solution methods of MDP are
implemented into the OS-MDP, and additional results and bounds are given.
Chapter 6 contains all results related to The Game, including ADP approximations and OS-
MDP results.
Finally, the thesis is summarised, discussed and concluded in Chapter 7.



Chapter 2

Literature Research

This chapter gives a literature overview of several relevant topics. First, a discussion about
Markov Decision Processes (MDP), their solution methods and possible applications.Second,
we discuss the field of Optimal Stopping (OS). This overview includes practical applications
and possible solution methods. Third, a discussion about the field of Approximate Dynamic
Programming (ADP). ADP can be applied on both MDP and OS, which means it will contain
references to both fields. Several practical examples and algorithms of ADP will be given. In
section 2.4 we state the contribution of the thesis.

2.1 Markov decision process

MDPs offer a way to model stochastic decision problems. We give a general description of an
MDP. At every time step, the process is in some state. In this state, an action is picked and
consequently process randomly moves to a new state. Then some cost is obtained dependent
on the action and/or transition from state to state. The goal is to minimise the costs, which
is achieved by choosing the best action in every state. Combining all actions of all states
combined yields a policy. Hence we want to find a policy that minimises our costs. In MDP
it is assumed that given the present, then the future is independent of the past. This implies
that the state only consists of the present and not the past.
An MDP can be both discrete or continuous time. In this thesis, we will only consider
the discrete-time stochastic control problems. For a thorough treatment of MDP, we refer
the reader to [24]. MDP can be used to model various problems, we state several recent
examples. For an introduction on how MDP can be applied to practical instances including
several examples, we refer the reader to [3].
In [28], an optimal inventory control policy for medicines with stochastic demands was created.
The optimal policy determines the order quantity for each medicine for each time step that
minimises the expected total inventory costs. In [15], a model was created for the smart
home energy management system. The goal is to minimise the costs for supplying power and
extracting power from the grid for a residence. The idea is to balance out the production and
the expenditure of energy from devices at home. This can be achieved by saving energy in a
battery and use the energy at some point in the future. The model determines the optimal
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4 Chapter 2. Literature Research

policy for the usage of the battery that minimises the expected total costs. In [8], a model
was designed to assist food banks with equal distribution of different kind of supplies. Here
they consider one warehouse, in which supplies arrive either by donations and transfers from
other warehouses. Both supply routes are considered stochastic, and the demand is considered
deterministic. The goal is to find a good allocation policy that equally distributes food to the
people. Several allocation policies are tested and a description is given of the optimal policy.
In [20] a policy is created for the frequency and duration for the follow-up of breast cancer
patients. This policy is personalised for every patient, and several personal characteristics are
considered, for example age of the patient. The policy determines when a patient should get
a follow-up and when the patient should wait. The costs are a combination of the costs of the
mammography and the life expectancy, which tries to detect issues as fast as possible while
avoiding overtreatment.
Reinforcement learning is a field where MDP is used frequently. Reinforcement learning
is concerned with learning what actions an agent should perform to minimise the costs or
maximise the rewards. At the start the agent has no knowledge of which actions are good or
bad. Iteratively the agent learns what actions to take in each state by using the observations
made in previous iterations. For a complete introduction of the usage of MDP in reinforcement
learning, we refer the reader to [37].
All current solution methods for obtaining the optimal policy for an MDP use the Bellman
equations. Chapter 3 introduces the Bellman equations formally. The idea of the Bellman
equations is to obtain a recurrent relation between states. This is then used to obtain the
value of each state, where the value is equal to the instant reward plus the expected future
reward, captured in the values of possible next states. Picking the decision in each state that
maximises the expected reward determines the optimal policy.
Several exact algorithms that use the Bellman equations are backward dynamic programming,
value iteration, policy iteration and modified policy iteration. Chapter 3 introduces theses
algorithms. For a thorough treatment of these methods and the Bellman equations, we refer
the reader to [24].
Most practical MDPs are too difficult to solve in a reasonable amount of computational time
[18], [21]. The difficulties arise from the so-called curses of dimensionality. The three curses
are size state space, size action set and amount of random possibilities, see [21]. These
curses lead to the use of approximation methods to obtain an approximation of MDP. These
approximation make use of the Bellman equations. Some examples of approximation methods
for MDP are approximate dynamic programming (ADP), approximate policy iteration [7],
approximate linear programming [29], and approximate modified policy iteration [30]. This
thesis focuses on ADP, which is introduced in Chapter 3 and we will give a more extensive
literature review in section 2.3.

2.2 Optimal stopping problem

Optimal stopping problems are concerned with choosing a time to stop a process, so that the
costs are minimal. At every time step, the model is in a state. In this state, one can decide to
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stop or to continue. When the process continues, a new state is determined randomly. This
is repeated until the end horizon is reached, or when the process stops.
Time can be both discrete and continuous. Some practical examples of optimal stopping
problems occur in gambling, house trading, and options pricing. For example, in the field of
options pricing, the question resolves around when one should sell an option. The optimal
policy to sell the option then determines the initial cost of an option. For an introduction to
modelling of options pricing, we refer the reader to [32].
An optimal stopping problem can either be history-dependent or history-independent. If the
optimal stopping is history-independent, then it can be formulated as searching for a stop-
ping time in a Markov Chain [34]. A Markov Chain is a stochastic process that given a
state randomly goes to a new state at every time step. The transition from state to state is
history-independent and only depends on the current state. Markov Chains will be formally
introduced in Chapter 3.
Optimal stopping problems are often considered history-dependent in the literature of options
pricing [10]. Optimal stopping problems are difficult to solve optimally [10], hence approxi-
mation methods are used in most practical instances.
There are two commonly used types of solution methods for solving or approximating optimal
stopping problems. The first approach is the dual approach, which carries some similarities
to the dual approach of a linear program. The optimal stopping problem takes the view of
the customer that seeks the optimal strategy to minimise its costs. In the dual approach, the
problem is formulated that takes the view of the seller, where the maximum reward need to
be determined, taking into consideration the constraints of the option. These two problems
have different objective functions, where the optimums are equal. Instead of searching for a
stopping time, the dual approach searches for an optimal martingale that corresponds to the
costs. In [25] was the first occurrence of the dual method. Consequently, various algorithms
have been created using this method. A study of the dual approach, including its analysis, can
be found in [31], to which we refer the reader for a thorough treatment of the dual approach.
For a more extensive literature view of the dual approach, we refer the reader to [10]. Chapter
4 will formally introduce a novel approach introduced in [10].
The second method to solve optimal stopping problems is ADP. A representation of optimal
stopping problems with states and transitions can be made, making the Bellman equations
use-able for optimal stopping.

2.3 Approximate dynamic programming

The idea of ADP is to use dynamic programming and the Bellman equations to approximate
the value of each state. The values of each state are updated iteratively using the approximated
values from the previous iteration. ADP goes forward in time, which makes is a forward
dynamic programming method. The value of a state is updated by considering the instant
costs plus expected future costs. The expected future costs are approximated using the
approximated values from previous iteration. At every iteration an instance is created that
determines which states are visited and updated. For a complete introduction to ADP, we
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refer the reader to [21]. For a more practical view of the usage of ADP, we refer the reader
to [18]. We will focus our attention on ADP in this thesis.
ADP is a method frequently used in practise to obtain a good policy. As stated in previous
sections, ADP is used in both MDP and optimal stopping problems. We state several practical
examples of ADP. In [13] a policy for patient admission planning in hospitals was created
using ADP. The policy contains an admission and plan to allocate necessary resources to the
patients. The model considers stochastic patient treatment and patient arrival rate. The
state space considers multiple time periods, patient groups and different resources. The goals
is to minimise the wait time for the patients with the given resources. In [17] a policy was
obtained for the ambulance redeployment problem. In the ambulance redeployment problem
the question is when to redeploy idle ambulance to maximise the amount of calls reached
within a delay threshold. The state takes into consideration the state per ambulance (for
example: idle, moving, on site), location of the ambulance and a queue of calls with priority
and location that need to be answered. The objective is to minimise the amount of calls
that are urgent that exceed the delay threshold. In [19] the single vehicle routing problem
with stochastic demands was approximated using ADP. The single vehicle has to visit several
customers with an uncertain demand until the vehicle reaches the customer. The vehicle has
a maximum capacity and can restock its supplies at a depot. Travel costs are dependent on
the distances between customers and the depot. The goal is to minimise the expected total
travel costs. The policy consists of where the vehicle should drive in a given state, thus given
the current capacity, location and customer demand, where should the vehicle go to? In [9]
and [33] an policy was determined to play the game of Tetris. Tetris is a video game where the
player has to place blocks in a grid. By making full rows in the grid, the row gets cleared and
blocks are removed. The goal is to play for as long as possible. A more formal introduction
will be given in section 3.5.1 and for a more complete overview of Tetris we refer the reader
to [6]. In this thesis, we will approximate The Game [36] by using ADP, which has not been
done before.
ADP is also applied on optimal stopping problems, specifically options pricing problems. The
first occurrence of the usage of ADP in options pricing is [5]. Consequently in [16] and [34]
approximation methods were created for history dependent optimal stopping time problems.
Both methods use the basis functions approach to approximate the value of a state. The idea
of basis functions is to use characteristics of a state to determine the value of a state. For
a more formal definition of basis function, we refer the reader to [21]. We will also give a
definition of basis functions in 3.4.2.
One important question stated in Chapter 1 is about the quality of ADP. Since approximation
methods are used, one is interested in knowing whether the policy obtained is any good. We
will discuss this question throughout the thesis in depth. Additional information can also be
found in [21].
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2.4 MDP as optimal stopping problem and contribution

In this section, we state several models and briefly explain them. Consequently we link the
results of the thesis to these models and methods to show the contribution of this work. The
idea of the model, denoted by OS-MDP, is to define a stochastic process over the policy space.
The goal is to find a stopping time that minimises the expected total costs obtained by the
current policy. A formal definition of OS-MDP will be given in Chapter 5.
In [12] an constrained MDP model was created that implements a stopping time. Additional
to the normal set of actions, a terminate action is added that terminates the process. The
total costs are the sum of all previously obtained costs up till termination. After termination,
no more actions and costs are added. Hence a optimal stopping problem goes side by side
the MDP process, both run over the time. This is different from OS-MDP since the optimal
stopping problem goes on the policy space and the MDP goes through time.
A method that also searches in the policy space for a good policy is simulated annealing, as well
as other heuristic methods. At every iteration, a neighborhood of the policy is defined from
which the next policy is taken. This neighborhood consists of a set of policies which contain
both better and worse policies. The policy taken from the neighborhood is then accepted with
a certain probability, otherwise it remains at the current policy. This is repeated until some
stopping criteria is reached, usually using a cooling scheme. The idea of a cooling scheme is to
reduce the probability of accepting a policy that is very different from the current one as time
progresses. Hence when more iterations are performed and the algorithm ’cools down’, there
will be less exploration and more exploitation. For a more extensive overview of simulated
annealing we refer the reader to [1].
The difference between simulated annealing and OS-MDP is that OS-MDP seeks for a stopping
time, which simulated annealing does not.
The contribution of this thesis is a model that uses the policy space of an MDP and searches
for the optimal stopping time and its corresponding value. The idea is to define a Markov
chain that goes from policy to policy. The objective is to find the optimal stopping time on
which the Markov chain should stop. In other words, when is the policy found better then the
policies you expect to find in the future. Additionally the different results of optimal stopping
can be linked to solution methods of MDP, which we will discuss in Chapter 5.
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Chapter 3

Markov Decision Process

A Markov decision process, or MDP for short, is a widely used formulation for different prob-
lems. Chapter 2 lists various applications of MDP. This chapter gives a formal definition of
MDP in section 3.2. Additionally, in section 3.3, several exact solution methods are intro-
duced . We also introduce the curses of dimensionality, which are the reasons why MDPs are
so challenging to solve. Section 3.4.1 discusses approximate dynamic programming, or ADP
for short. Section 3.5 formulates two games, Tetris and The Game, as MDP.

3.1 Preliminaries

We denote the discrete set [1, 2, . . . , T ] as [1, T ] throughout the thesis. We assume T to be
finite. The norm of a vector v is defined as ||v|| = sups∈S |v(s)|. The definition of a stochastic
process is given [26].

Definition 1. (Stochastic process) A stochastic process Y = {Yt, t ∈ [1, T ]} is a collection of
random variables. That is, for each t in the set [1, T ], Yt is a random variable.

Any realization of Y is called a sample path. Define Y[t] = {Y1, Y2, . . . , Yt}, thus the stochastic
process until time t.
Let gt(Y[t]) be a payout function of Y[t] at time t. We assume that gt ∈ [0, 1]. Note that any
problem that does not satisfy these assumptions can be adjusted to satisfy the assumption.
Next, the definition of a Markov Chain is given, taken from [24].

Definition 2. (Markov chain) Let {Yt, t ∈ [1, T ]} be a sequence of random variables which
assume values in a discrete (finite or countable) state-space S. We say that {Yt, t ∈ [1, T ]} is
a Markov Chain if

P(Yt = st|Yt−1 = st−1, . . . , Y0 = s0) = P(Yt = st|Yt−1 = st−1), (3.1)

for t ∈ [1, T ] and st ∈ S for all t ∈ [1, T ].

Equation (3.1) is often called the Markov property, which states that given the current state
the future is independent of the past.

9
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A Markov chain can be stated as a 2-tuple (S, P ), state-space S and transition matrix P .
We extend the Markov chain by adding a cost function to a transition, therefore obtaining
a 3-tuple (S, P,CM ). Let MC = (S, P,CM ). The cost function CM (st, st+1) can depend on
both the state and the transition or either of them. Define

G(MC) = E
[ T∑
t=0

λtCM (st, st+1)
]
, (3.2)

which assigns a value to Markov Chain MC, where λ is the discount factor.

3.2 Definition Markov decision process

Markov Decision Processes (MDP) are discrete time multistage stochastic control problems.
An MDP consists of a state-space S, where at each time step t the process is in a state st. At
each time step, an action xt can be taken from the feasible action set X(st). Taking action
xt in state st results in a cost or reward, given by Ct(st, xt). The process then transitions to
a new state st+1 with probability P(st+1|st, xt). Note that the transition probability of state
st to st+1 is independent of previously visited states and actions; this is called the Markov
property. An MDP is often written as a 4-tuple: (S,X, P,C), where P is the transition
function that determines the transitions probabilities. Let π be a policy, which is a decision
function that assigns an action xt to every state st ∈ S. Denote Π as the set of potential
policies, thus π ∈ Π. Let |Π| denote the cardinality of Π, which we assume to be finite. Note
that if π is fixed, then the MDP becomes a Markov chain, see Definition 2.
Our goal is to find a policy that minimises the costs, which can be written as

min
π∈Π

E
[ T∑
t=0

λtCt(st, xt)
]
, (3.3)

where λ is the discount factor and T is the length of the planning horizon. If λ ∈ (0, 1),
then we have a discounted MDP. When λ = 1 it is an expected total reward MDP. Suppose
that π∗ is an optimal policy. We assume that T is finite, which means the problem becomes
a finite horizon MDP. Also, S is finite and, X(s) is finite for all s ∈ S. The cost function
Ct gives non-infinite costs. If the original problem is a maximisation problem, then a similar
minimisation problem can be created. This can be done by multiplying all rewards by −1,
turning the rewards into costs.
Given some MDP by (S,X, P,C) and some fixed policy π, then the transition probabilities
P are fixed. Consequently, the MDP becomes a Markov Chain denoted by (S, P,C). Let
MC(π) be the Markov chain created by fixing policy π for the MDP.

3.3 Exact solution methods

Several methods exist that can solve MDPs. This section introduces the general dynamic
programming approach. After that, four algorithms using this DP approach will be intro-
duced: backward dynamic programming, policy iteration, value iteration and modified policy
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iteration. Section 3.3.6 introduces the curses of dimensionality. These curses state the reasons
why an MDP is challenging to solve.

3.3.1 General approach: dynamic programming

Dynamic programming is a possible solution method for solving MDPs, which splits the
problem up in smaller sub-problems. The solutions of these sub-problems combined give the
optimal solution for the MDP. Applying the Bellman equations [24] solve an MDP using
dynamic programming. The Bellman equations are

Vt(st) = min
xt∈Xt

(
Ct(st, xt) +

∑
s′∈S

λP(st+1 = s′|st, xt)Vt+1(s′)
)
, ∀st ∈ S, (3.4)

which computes the value Vt(st) of being in state st. Let ωt+1 denote the random information
that arrives after t, thus after action xt is taken in state st. Therefore ωt+1 determines, given st,
the next state st+1. Let Ωt+1 be the set of all possible ωt+1. Define SM (st, xt, ωt+1) = st+1,
which determines the state st+1 given the previous state st, action taken xt and random
information ωt+1. Equation (3.4) yields,

Vt(st) = min
xt∈Xt

(
Ct(st, xt) +

∑
ω∈Ωt+1

λP(Wt+1 = ω)Vt+1(st+1|st, xt, ω)
)
, ∀st ∈ S. (3.5)

Equation (3.5) is used when we refer to the Bellman equations for the rest of the thesis. The
optimal policy consists of the best action in every state. Knowing the value of each state
determines the optimal action by choosing the action with the lowest expected costs.

3.3.2 Backward dynamic programming

Backward dynamic programming (BDP) is a solution method for finite horizon MDPs. BDP
goes backwards in time. Going backwards means that instead of starting at t = 1, it starts
at t = T . The values of all states sT ∈ ST are computed, hence computing VT (sT ) first. This
computation is not complicated, because the expected future cost is zero and therefore, only
the instant costs are relevant. After that, a step backwards is taken, going to t = T − 1.
Computing the value VT−1(sT−1) is then done by using VT (sT ), the expected future costs.
This process repeats until t = 1 is reached. The values of the states are then optimal, and
therefore, the optimal policy can then be computed.
Algorithm 1 gives BDP in pseudo-code. It might not be possible to list all possible states sT
because they are unknown or there are too many. In that case, BDP does not work and a
different method needs to be used.

3.3.3 Value iteration

Value iteration (VI) is an algorithm that iteratively computes the value of each state until
some stopping criteria is satisfied. We refer the reader to [24] for a complete overview of value
iteration. This section gives a summary of the method and results.
When value iteration terminates, then a policy is obtained by taking the best action in
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Algorithm 1: Backward dynamic programming for finite horizon MDP

Result: Optimal policy for finite horizon MDP
Set t = T ;
Set Vt(st) = Ct(st) for all st ∈ S ;
while t 6= 1 do

t=t-1 ;
for st ∈ S do

V (st) = min
x∈Xt

(
Ct(st, xt) +

∑
ω∈Ωt+1

P(Wt+1 = ω)Vt+1(st+1|st, xt, ω)
)

(3.6)

end
Set

X∗st,t = arg min
x∈Xt

(
Ct(st, xt) +

∑
ω∈Ωt+1

P(Wt+1 = ω)Vt+1(st+1|st, xt, ω)
)

(3.7)

end

each state. The stopping criterion is necessary, because even though the value of each state
converges, the values might never reach the limit. The stopping criterion relies on some small
parameter γ > 0. Definition 3 states the definition of a γ-optimal policy.

Definition 3. (γ-optimal) Let γ > 0 and denote Vπ as the vector that contains the value of
each state given policy π. A policy π∗γ is γ-optimal if for all s ∈ S,

Vπ∗γ ≥ Vπ∗ − γ. (3.8)

VI finds an γ-optimal policy. Denote V n as the value of each state in vector form at iteration n.
Algorithm 2 gives the basic value iteration algorithm. Define Πn

V I = arg minπ∈Π(Cπ+λPπV
n)

as all policies corresponding to value vector V n. Next, we state several essential results of
value iteration concerning the convergence of the algorithm.

Theorem 1. Let {V n} be the values of value iteration for n ≥ 1 and let γ > 0. Then the
following statements about the value iteration algorithm hold:

1. V n converges in norm to V ∗,

2. the policy πγ is γ-optimal,

3. the algorithm terminates in finite N ,

4. it converges O(λn).

5. for any πn ∈ Πn
V I ,

||Vπn − Vπ∗ || ≤
2λn

1− λ
||V 1 − V 0||. (3.11)

Generally, when λ is close to 1, the algorithm converges slowly. The convergence speed can be
improved by several improvements and variants of value iteration. We will not discuss these
variants and instead refer the reader to [24].
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Algorithm 2: Basic value iteration algorithm

Result: γ-optimal strategy πγ and value of MDP
Initialise V 0, γ > 0 and n = 0. ;
while ||V n+1 − V n|| ≥ γ(1− λ)/2λ or n = 0 do

For each s ∈ S, compute V n+1(s) using

V n+1(s) = min
x∈X(s)

(
C(s, x) +

∑
s′∈S

λP(s′|s, x)V n(s′)
)
. (3.9)

Increment n by 1.
end
For each s ∈ S choose

πγ(s) ∈ arg min
x∈X(s)

(
C(s, x) +

∑
s′∈S

λP(s′|s, x)V n(j)
)
. (3.10)

3.3.4 Policy iteration

Policy iteration (PI) is an algorithm that computes the optimal policy π∗ as well as the
corresponding value of each state. For a complete overview of PI, we refer the reader to [24].
This section summarizes policy iteration.
First, some preliminaries. Let Pπ be the transition matrix of the MDP under policy π. Let πn

denote the policy found in iteration n ∈ [1, N ]. Define Cπ as the vector of costs of every state
given policy π: a vector of length |S| containing Cπ(s) for all s ∈ S. Let Vπ also be a vector of
length |S| containing the value of each state under policy π and V n be the vector of values of
states at iteration n. The matrix I denotes the identity matrix. Algorithm 3 gives the policy
iteration algorithm. Define the set Πn

PI = arg minπ∈Π{Cπ +PπV
n} and additionally π ∈ Πn

PI

Algorithm 3: Policy iteration for infinite horizon MDP

Result: Optimal strategy π∗ and value of MDP
Select an arbitrary policy π0 ∈ Π and set n = 0 ;
while πn 6= πn−1 or n = 0 do

Obtain V n by solving
(I − λPπn)V n = Cπn . (3.12)

Choose
πn+1 ∈ arg min

π∈Π
{Cπ + PπV

n}, (3.13)

setting πn+1(s) = πn(s) whenever possible. Increment n by 1.
end
Set π∗ = πn

implies that π(s) = πn(s) is set as often as possible. Hence the set Πn
PI contains the set of

best-improving policies for πn that are as similar as possible. Next, an important result of
the policy iteration algorithm, which relates the successive values V n to V n+1.
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Theorem 2. Let V n and V n+1 be successive values of the policy iteration. Then V n+1 ≤ V n.

Theorem 2 implies that in every iteration V n improves or stays equal. Assume finite costs,
finite state-space and finite action set. This assumption implies that V n will converge to some
value V ∗. This value will be the optimal value, which gives us the optimal policy π∗.
The following theorem provides conditions for which the convergence is quadratic.

Theorem 3. Suppose {V n, n ≥ 1} is generated by policy iteration and πn ∈ Π for each n and
there exists a K, 0 < K <∞ for which

||Pπn − Pπ∗ || ≤ K||V n − V ∗||, (3.14)

for n = 1, 2, . . . . Then

||V n+1 − V ∗|| ≤ Kλ

1− λ
||V n − V ∗||2. (3.15)

3.3.5 Modified policy iteration

Modified policy iteration (MPI) is an algorithm that combines both value iteration and policy
iteration, introduced in sections 3.3.3 and 3.3.4, respectively. The idea of MPI is to execute
PI, and after every policy improvement step, perform several VI steps. This process repeats
until some stopping criterion is satisfied, which is similar to the stopping criteria of value
iteration. The algorithm gives an γ-optimal policy. This section gives a formal definition of
modified policy iteration.
Define {mn, n ≥ 1} as a sequence of non-negative integers, called the order sequence. The
order sequence determines the number of partial policy evaluations (or value iteration steps)
done per policy improvement. Algorithm 4 gives the modified policy iteration algorithm.

Theorem 4 is a theorem related to the convergence of modified policy iteration.

Theorem 4. Suppose V 0 initial value of modified policy iteration. Then, for any order
sequence {mn, n ≥ 1},

1. the iterations of modified policy iteration {V n} converge monotonically and in norm to
V ∗λ , and

2. the algorithm terminates in a finite number of iteration with an γ-optimal policy.

Deciding on the order sequence {mn, n ≥ 1} is an interesting topic. Theorem 4 states that
convergence of MPI is achieved for any mn. The convergence speed does depend on mn. The
next corollary state the convergence rate for modified policy iteration.

Corollary 1. Suppose V 0 ≥ 0 and {V n} is generated by modified policy iteration, that πn is
a V n-improving decision rule and π∗ is a v∗λ-improving decision rule. If

lim
n→∞

||Pπn − Pπ∗ || = 0, (3.19)

then, for any γ > 0, there exists an N for which

||V n+1 − V ∗λ || ≤ (λmn+1 + γ)||V n − V ∗λ || (3.20)

for all n ≥ N .
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Algorithm 4: Modified policy iteration

Result: γ-optimal strategy πγ
Select a V 0, specify γ > 0 and set n = 0 ;

1. (Policy improvement) Choose πn+1 to satisfy

πn+1 ∈ arg min
π∈Π
{Cπ + PπV

n}, (3.16)

setting πn+1 = πn if possible. ;

2. (Partial policy evaluation)

(a) Set k = 0 and compute
u0
n = min

π∈Π
(Cπ + λPπV

n). (3.17)

(b) If ||u0
n − V n|| < γ(1− λ)/2λ, go to step 3. Otherwise continue.

(c) If k = mn, go to (e). Otherwise compute

uk+1
n = Cπn+1 + λPπn+1ukn. (3.18)

(d) increment k by 1 and go to (c).

(e) Set V n+1 = umnn , increment n by 1 and go to step 2.

3. Set πγ = πn+1 and stop.

This corollary states that the rate of convergence is bounded by mn + 1. Note that value
iteration optimises over the entire policy space at every iteration. Modified policy iteration
does not do this, but instead uses a single policy to evaluate the value of each state and
updates the policy similar to policy iteration. This means that modified policy iteration has
a better convergence rate than value iteration.

3.3.6 Curses of dimensionality

Solution methods that find the optimal policy for an MDP generally do not work in practice
because of computational difficulties. These difficulties are called the curses of dimensional-
ity, which are now briefly discussed.
The first difficulty is the size of the state-space. In problems with a large state-space, com-
puting the value of every single state is hard. This difficulty is because equation 3.4 needs
solving for every single state.
The second curse of dimensionality is the size of the action set. To find the optimal action in
equation (3.4), possibly every action has to be checked to determine the optimal action. This
is computational difficult when the action set in every state is large.
The third and last curse of dimensionality is the size of the outcome space. The set of different
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random outcomes ωt defines the outcome space in a state. Computing the value of the state
requires a summation of ω ∈ Ωt, which is computational demanding when the set Ωt is large.
Because of these three curses, practical situations often use approximation methods.

3.4 Approximate dynamic programming

This section discusses approximate dynamic programming (ADP). Section 3.4.1 gives a formal
definition of ADP, including a pseudo-code. Section 3.4.2 explains several techniques that can
help overcome the curses of dimensionality. Consequently, section 3.4.3 discusses several
challenges of creating an ADP algorithm.

3.4.1 Definition approximate dynamic programming

Approximate dynamic programming (ADP) is a method to approximate the value of a state
using dynamic programming. The approximations then determine the corresponding policy,
which is not necessarily optimal. ADP goes forward in time, thus starting from t = 1 and
going forward. The general idea of ADP is to take N iterations, and for each iteration, a
sample path is used to update the value of being in a state. Let ω̂ = (ω1, ω2, . . . , ωT ) be
a sample path containing all relevant random information. Let ω̂n be the sample path of
iteration n ∈ [1, N ]. Define snt as the state at time t in iteration n and define V n

t (snt ) as the
approximate value of this state in iteration n. Let πn be the policy found in iteration n. Then
find πn(snt ) by computing

πn(snt ) = arg min
xnt ∈Xt

(
Ct(s

n
t , x

n
t ) + λ

∑
ω∈Ωt+1

P(Wt+1 = ω)Vt+1(snt+1|snt , xnt , ω)
)
, (3.21)

where xnt is the action taken in state snt . Let

v̂nt = min
xt∈Xt

(
Ct(s

n
t , x

n
t ) + λE[V

n−1
t+1 (snt+1|snt , xt)]

)
(3.22)

be the value approximation of state snt . Update the value V using

V
n
t (snt ) = (1− αn−1)V

n−1
t (snt ) + αn−1v̂

n
t , (3.23)

where αn is a scalar dependent on the iteration. Section 3.4.3 gives more in-depth information
on αn. Algorithm 5 gives the basic ADP method, using equation (3.23), as pseudo-code.

3.4.2 Techniques for ADP

There are several techniques that can be applied to ADP to improve it or give ways to deal with
the curses of dimensionality. This section discusses the following techniques: post-decision
state, state aggregation and basis functions.

Post-decision state

Introducing post-decision states give us a way to deal with the large outcome space, which
is one of the curses of dimensionality. The post-decision state is a state after action xt at
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Algorithm 5: Basic ADP algorithm

Result: Approximation of V ;
Initialize V 0

t (st) for all states st ;
Choose initial state s1

0 ;
for n = 1 to N do

Choose sample path ω̂n ;
for t = 0, 1, . . . , T do

Solve
v̂nt = min

xnt ∈X

(
Ct(s

n
t , x

n
t ) + λE[V

n−1
t+1 (snt+1|snt , xnt )]

)
; (3.24)

and
x̂nt = arg min

xnt ∈X

(
Ct(s

n
t , x

n
t ) + λE[V

n−1
t+1 (snt+1|snt , xnt )]

)
; (3.25)

Update V n−1
t (st) using

V
n
t (st) =

(1− αn−1)V
n−1
t (snt ) + αn−1v̂

n
t st = snt ;

V
n−1
t (st) otherwise;

(3.26)

Compute snt+1 = SM (snt , xt, ω̂
n(ωt+1);

end

end

state st but before any new information arrives (ωt+1). Therefore not all outcomes of ω need
consideration for every action.
Let sxt denote the post-decision state directly after taking action xt in state st. Let the
function SM,x(st, xt) = sxt output the post-decision state. The variable V x

t (sxt ) gives the value
of a post-decision state, and V x

t (sxt ) its approximation. The value of a post-decision state is
given by V x

t (sxt ) and its approximation is V x
t (sxt ). Compute the value of a post-decision state

by
V x
t (sxt ) = E[Vt+1(st+1|sxt , ω)]. (3.27)

Computing the value this way means we do not have to evaluate the different options of ω for
every action xt ∈ Xt for every state st. In addition to equation (3.27), an update of Vt(st) is
also required, given by

Vt(st) = min
xt∈Xt

(
Ct(st, xt) + λV x

t (sxt )
)
. (3.28)

Note that combining equations (3.27) and (3.28) obtains the Bellman equations.
Algorithm 5 needs some modifications to use post-decision states. Equation (3.24) changes
to

v̂nt = min
xnt ∈X

(
Ct(s

n
t , x

n
t ) + λV

x
t (sxt )

)
(3.29)

and equation (3.25) changes to

x̂nt = arg min
xnt ∈X

(
Ct(s

n
t , x

n
t ) + λV

x
t (sxt )

)
. (3.30)
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Updating V x,n
t can be done in several ways. We state one example [22]:

V
x,n
t−1(sx,nt−1) = (1− αn−1)V

x,n−1
t−1 (sx,nt−1) + αn−1v̂

n
t . (3.31)

State aggregation

One of the curses of dimensionality discussed in section 3.3.6 is the size of the state-space.
A possible way to overcome this is by aggregating the state-space. Aggregation means that
states get grouped, and only the new grouped states get considered. This aggregation reduces
the size of the state-space used. The aggregation depends highly on the problem. Usually,
states are grouped together based on characteristics that the states have in common.
It is possible to apply multiple levels of aggregations. For example, consider locations in a
city. Every location has some coordinate and naturally groups into some street, area, city,
region and country. Every step is an additional level of aggregation. Considering every single
location is very difficult, but considering a set of cities is do-able.
We will now define state aggregation formally. Define the function Gg : S → Sg, where g
stands for the level of aggregation. Let sg = Gg(s) be the gth aggregation of state s. An
important constraint on the aggregation is that every state s ∈ S belongs to some aggregated
state for every aggregation level g. Let G be the set of all aggregation levels; therefore, g ∈ G.
Define wg as weight function, dependent on the aggregation. Computing the approximate
value of a state is done by

V (s) =
∑
g∈G

wgV
g
(s), (3.32)

where V G(s) is the approximated value of the aggregated state. The weight wg is updated
every iteration; thus w(g,n) is used instead. For a complete overview of the usage of state
aggregation, we refer the reader to [21].

Basis functions

Basis functions is a commonly used strategy for ADP. The idea is to capture elements of a
state to compute the value of a state. These elements will be called features, denoted by f
and let F be the set of all features. The basis function then computes the value of a specific
feature, given by φf (s) for state s and f ∈ F . The approximated value of a state is then
computed by

V (st|θ) =
∑
f∈F

θfφf (st), (3.33)

where θf is a weight factor corresponding to feature f . Note that this is a linear function,
but the basis functions φf do not have to be linear. The weight factor θf updates at every
iteration and time step, hence depends on n. Therefore we write θnf .
Basis functions are often implemented simultaneously with post-decision states. Equation
(3.33) obtains a value for the post-decision state. The computation of v̂nt is done by

v̂nt = min
xt∈X

(
Ct(s

n
t , xt) +

∑
f∈F

θnfφf (sx,nt )
)
. (3.34)
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Note that basis functions can be applied in combination with both state aggregation and
post-decision states.
There are several methods to update θnf . The appendix contains the recursive least squares
method for updating θnf [18]. We apply the recursive least squares method in section 3.5.3 to
The Game.

3.4.3 Challenges of ADP

Step size function

Equation (3.23) introduces the factor αn. The factor αn ∈ [0, 1] assigns a priority to new
values. If αn = 0 for all n, then the value of a state is never updated. The challenge is to
pick a sequence αn that guarantees convergence of V (s). There are different update functions
used for αn [23]. Note that using basis functions makes the stepsize function unnecessary.

Exploration versus exploitation

Algorithm 5 chooses a sample path ω̂n every iteration. Deciding on a sample path is a chal-
lenge of its own. For example, when the best state is always visited, a problem occurs. When
the value of a state gets updated, usually it increases (or in other settings, decreases), making
it more likely to get picked in the sample path. Hence exploitation will be done, but the same
set of states will always be visited, meaning no exploration.
Generating a completely random sample path leads to exploration. However, the values of the
states will not be accurate, since they rarely update. Hence a balance between exploration
and exploitation is needed. A simple way to do this is at every time step of a sample path
is generated: flip a coin. Either the ’best’ state is picked or some random state. However, a
single step of exploration does not achieve much.
Therefore when deciding on a sample path, we need a balance between exploration and ex-
ploitation [21]. This is problem dependent since it depends on the size of the state-spaces and
action set.

Evaluating ADP

Using an approximation method raises a question about the quality [23]. Several methods
exist that evaluate the quality of approximations. Three methods are discussed.
The first way is to compare the solution of ADP with the optimal solution. A exact MDP
solution method is generally unfit for complex problems. However, MDP is usable for smaller
problems. Hence, computing solutions for a small MDP allows a comparison between the
exact solution and ADP solutions.
The second method is to compare ADP to other solution methods. ADP’s are comparable,
which indicates the quality of the chosen ADP. Another possibility is to use other approxi-
mation methods as comparison tools, for example, simulation methods.
The latter approach is by using an approximate guarantee, which a relation between the ap-
proximation and the optimum. For example, in a minimisation setting OPT ≤ APPROX.
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Figure 3.1: All tetrominoes with their corresponding initials.

This is a trivial bound, but it is an approximate guarantee nonetheless. In the subject of
scheduling problems, various approximate guarantees are known for algorithms. In the case
of ADP, though, there are no general approximate guarantees.

3.5 MDP examples

The upcoming sections discuss Tetris and The Game. Tetris is an infinite horizon MDP.
Tetris is a well-known benchmark problem, so there is plenty of literature available. This
thesis discusses Tetris due to its benchmark status. The Game is a card game developed by
White Goblin Games [36] playable by 1 to 5 players. This thesis discusses The Game because
it is a finite horizon MDP with a large state-space, large action set and a large variety of
random arrivals. This means that BDP approaches for MDP do not work because of the
curses of dimensionality. Therefore, we discuss how to apply ADP. Section 3.5.1 introduces
Tetris and section 3.5.2 introduces and models The Game. Section 3.5.3 defines ADP for The
Game.

3.5.1 Tetris

Tetris is a puzzle video game[6]. There are several definitions on how Tetris is played, differing
for example in the arrival of the tetrominoes. Therefore, explaining the rules of Tetris comes
first.
Tetris is played on a 10 by 20 grid, where every point in the grid is either full or empty. When
a row consists of only full cells, the row is cleared; becomes empty and everything above it
moves one row down. There are seven different tetrominoes that can arrive, all with equal
probability. When playing, only the current tetromino is known. When placing a block, it
falls from the top to the bottom, and can move horizontally and rotate.
Tetris ends when the block that needs placing can no longer be placed in the 10 by 20 grid by
a valid move. This is different from the original Tetris game, where the player has to survive
for a predetermined amount of turns [6].
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MDP formulation

Let t denote the time. There are seven different tetrominoes in total. The different tetrominoes
are shown in figure 3.1. Let D denote the set of all tetrominoes, and let bt ∈ D denote the
tetromino that needs placing at time t. Let H be a 10× 20 matrix containing zeros and ones.
A one corresponds with a full cell, and a zero corresponds with an empty cell. None of the
tetrominoes parts can cover an already full cell. Define c ∈ [1, 10] as the column of the grid
and r ∈ [1, 20] as the row of the grid. For example, H(c, r) corresponds to the cell in column
c and row r. Let H(:, r) corresponds to the entire row r, which is a vector with 10 elements
and H(c, :) denotes column c. Then the state at time t is defined as

st = {Ht, bt} (3.35)

and let S be the set of all possible states.
Note that in figure 3.1, there is a dot in every tetromino. Whenever a block is placed in
column c ∈ [1, 10], it means that the block with the dot is in column c. This placement rule
means that not every orientation of a block is possible in every column. Define Ct ∈ [1, 10]

as the decision to place the tetromino at time t in column Ct. Let Rt be the decision on how
to rotate bt, where Rt(bt) ∈ [0, 90, 180, 270]. Depending on bt, the decisions Rt and Ct are
constrained. Duplicate rotations, yielding the same shape, are excluded. For example with
SQ, which always has the same shape for every rotation. The constraint to Rt and Ct per
tetromino are as follows:

SQ Rt = 0, Ct ∈ [1, 10]

I

if Rt = 0, Ct ∈ [1, 10],

if Rt = 90, Ct ∈ [2, 8].

T


if Rt = 0 or 180, Ct ∈ [2, 9],

if Rt = 90, Ct ∈ [2, 10],

if Rt = 270, Ct ∈ [1, 9].

LS

if Rt = 0, Ct ∈ [1, 9],

if Rt = 90, Ct ∈ [2, 9].

RS

if Rt = 0, Ct ∈ [1, 9],

if Rt = 90, Ct ∈ [2, 9].

LG



if Rt = 0, Ct ∈ [2, 10],

if Rt = 90, Ct ∈ [1, 8],

if Rt = 180, Ct ∈ [1, 9],

if Rt = 270, Ct ∈ [3, 10].

RG



if Rt = 0, Ct ∈ [1, 9],

if Rt = 90, Ct ∈ [1, 8],

if Rt = 180, Ct ∈ [2, 10],

if Rt = 270, Ct ∈ [3, 10].

The decision xt is defined as
xt = (Ct,Rt). (3.36)

Define the function SM (st, xt, ωt+1)m which determines the state st+1. First ωt+1 ∈ D gives a
random block, hence bt+1 = ωt+1. Second, we give the transition from Ht to Ht+1 dependent
on bt and xt. Define function D as the function that removes any full rows in H and adds a
zero row at the top. Define hc = arg maxr∈[1,20](r ×Ht), which corresponds to the height of
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column c. Let Ĥt(bt, xt,Ht) denote the zero matrix of 10 × 20 with 1 entries on the cells of
block bt’s placement. The appendix includes a full overview of Ĥ. Define

Ht+1 = SM (st, xt, ωt+1) = D(Ht + Ĥt). (3.37)

The goal of Tetris is to survive for as long as possible. By placing tetrominoes such that
rows fill, which remove themselves, one can achieve survival. Define C(st, xt) = 1, whenever
a tetrominoes placement is successful, and 0 otherwise. Hence the goal is to compute

max
π∈Π

E
[ ∞∑
t=0

λtC(st, xt)
]
. (3.38)

3.5.2 The Game

The Game is a co-op card game made by White Goblin Games,played with 1 to 5 players [36].
This thesis considers the one player variant of The Game. The rules come first and after that
an MDP formulation.

Rules

The Game consists of 102 cards, each having a number. There are two cards with the number
1, two cards with the number 100 and the remaining 98 cards, numbered 2 to 99, and are
therefore unique. The 1’s and 100’s start open as four separate piles where cards are playable
on. The remaining cards are shuffled, and the player draws seven cards. Play starts from
here.
The goal is to play as many cards as possible. Playing all the cards means a perfect score.
The players turn consists of two phases:

1. Play at least two cards. If you cannot play two cards, then the game ends. When
possible, you can still play one card.

2. Refill hand to seven cards or until the draw pile is empty.

Cards are played on one of the four piles. Throughout the game, there will be four piles where
the player can play cards. On the two piles that started with a 1, only cards with a higher
number then the previous card played on that pile is playable. On the two piles that start
with 100 it is the other way around, so only cards with a lower number then the previous
card can be played. There is one exception: a card with a difference of exactly 10 in the other
direction. This is called jumping back. For example, on a 1 pile with 45, 35 is playable, but
44 is not.
When the drawing pile is empty, the player plays as many cards as possible. The player has a
’perfect memory’, meaning that the player knows what have been played previously, what the
cards in hand are and also what cards are in the drawing pile. The sequence of the drawing
pile is unknown the player. Figure 3.2 gives a possible initial setup, the only thing being
random are the cards in hand.
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Figure 3.2: Example initial setup for The Game

MDP formulation

The planning horizon length T can be bounded by 49 since at least two cards are played each
time step, and there are 98 cards in total. It is possible to finish earlier. This occurs either
by playing all cards or by not being able to play two cards in one turn. Let t ∈ [1, T ] be the
current time step.
To determine whether a card is playable on a pile, introduce the matrices N and K. Let N be
a 99× 99 with 1 entries in the lower triangular part and 0 entries on the diagonal and upper
triangular part. Let K be a 99× 99 zero matrix with 1 entries on the (i, i+ 10) entries, where
i = 1...89. For cards played normally, use matrix N . For cards played using the jump back
move, use matrix K.Define L = N + K, which is a matrix used to determine whether a card
can be played on a pile. Let h be a zero vector of length 99, with entry h(c) = 1 for c ∈ [2, 99].
Then, for a 1 pile, Lh outputs a vector of length 99, with 1 entries on cards playable on card
c. For a 100 pile, LTh outputs the vector, where LT is the transposed matrix of L.
DefineQt as a vector containing the numbers of the four piles at time t. LetQ0 = [1, 1, 100, 100].
Let Ht be a vector of length 99 containing ones and zeros. If a card c ∈ [2, 99] is in the player’s
hand at time t, then Ht(c) = 1 and is 0 otherwise. Define Kt similar to Ht, except it contains
information about the cards in the drawing pile. Thus Kt(c) = 1 implies c is in the drawing
pile and 0 otherwise. Note that Ht(c) = Kt(c) = 0 implies that card c has been played. The
state at time t can then be defined as

st = {Qt, Ht,Kt}, (3.39)

and S contains all possible combinations of st. The action xt determines which card is played
on which pile and letX be the action set. Let xt be a matrix of 4 by 99, where p ∈ [1, 4] denotes
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the pile and c ∈ [2, 99] denotes the card. Therefore xt(p, c) = 1 implies card c is played on
pile p at time t and 0 otherwise. Some constraints are required on xt in a given state st. First∑4

p=1

∑99
c=2 xt(p, c) ≥ 2, which implies that at least two cards are played. Second xt ≤ Ht,

which implies only cards in the current hand are played. Third
∑4

p=1 xt(p, c) ≤ 1∀c ∈ [2, 99],
which implies every card is only played once.
The action xt is not enough to determine the next state. For example, consider the action to
play 7, 13 and 17 on a 1 pile with number 8. There are two ways to play these cards, option
1: 13 → 17 → 7 and option 2: 17 → 7 → 13. Intuitively, option 1 looks better because it
obtains a lower number. But if number 3 is still in the drawing pile, then option 2 can be
better because of the jump back action 13 → 3. Therefore xt needs to be extended. Define
xet as a matrix of 4 by 99, where xet (p, c) = 1 implies that c is the number on pile p and 0
otherwise. The constraint xet (p, c) ≤ xt(p, c) is required, to make sure only played cards are
usable. Let Xe be the set containing all possible xet .
Combining all actions in every state gives a policy π ∈ Π. The goal is to maximise the amount
of cards played. Therefore the reward function C(st, xt) is equivalent to the amount of cards
played in that turn, thus C(st, xt) =

∑4
p=1

∑99
c=2 xt(p, c). The goal then becomes

OPT ′TG = max
π∈Π

E
[ T∑
t=1

99∑
c=2

4∑
p=1

xt(p, c)
]
. (3.40)

Note that this problem transforms into a minimisation problem with the following goal func-
tion:

OPTTG = min
π∈Π

(
98− E

[ T∑
t=1

99∑
c=2

4∑
p=1

xt(p, c)
])
. (3.41)

Since the maximum score is 98, OPT ′TG is non-negative.
Denote Wt+1 as a vector of length 99 with zero and one entries, where Wt+1(c) = 1 implies
card c is drawn and 0 otherwise. The vector Wt+1 then denotes the cards drawn after action
xt. The probability distribution of Wt+1 is

P(Wt+1 = ω) =



1 if
∑99

c=2

(
Kt(c) +Ht(c)

)
≤ 6, ω = Kt,

(
∑4
p=1

∑99
c=2 xt)!(

∑99
c=2Kt−

∑4
p=1

∑99
c=2 xt)!

(
∑99
c=2Kt)!

if


∑99

c=2

(
Kt(c) +Ht(c)

)
> 6, ω ≤ Kt,∑99

c=2 ω =
∑99

c=2 xt,

0 otherwise.
(3.42)

The constraint
∑99

c=2

(
Kt(c) + Ht(c)

)
≤ 6 implies that there are six or fewer cards left in

the game; therefore all remaining cards will be drawn, denoted by ω = K. When more then
six cards are remaining, ω ≤ K implies only cards in the drawing pile can be drawn and∑99

c=2 ω =
∑99

c=2 xt makes sure the same amount of cards are drawn and played.
The transition function SM (st, xt,Wt+1) determines the next state st+1 given the previous
state st, cards played in turn xt(p, c), and new cards added to hand Wt+1. Define the update
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function for Q, denoted by U , as

Qt+1(p) = U(Qt(p), x
e
t ) =

c xet (c, p) = 1,

Qt(p) otherwise.
(3.43)

Then the transition function becomes

st+1 = SM (st, (xt, x
e
t ),Wt+1) = {U(Qt, x

e
t ), H +Wt+1 − xt,K −Wt+1}. (3.44)

Next, algorithm 6 gives a pseudo-code for playing The Game.

Algorithm 6: Pseudo-code for The Game
Result: Score=Amount of cards played
Initialization, t = 0 ;
Qt = {1, 1, 100, 100} ;
Kt = contains all cards;
Draw Hand ;
while Game not ended do

t=t+1 ;
Determine action set X;
if
∑99

c=2Kt(c) = 0 then
Play as many cards as possible ;
Game ends ;

else
if X = ∅ then

Play 1 or 0 cards ;
Game ends ;

else
Find x ∈ X and xe ∈ Xe that maximises reward function ;
Update Qt to Qt+1 ;
Draw cards and update Ht to Ht+1 and Kt to Kt+1 ;

end

end

end
Score= 98−

∑99
c=2K −

∑99
c=2H;

3.5.3 Applying ADP on The Game

This section describes how to apply ADP on The Game. A description of how to create a
sample path is included and how we dealt with exploration versus exploitation. After that,
an overview of the basis functions approach is given.
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Deciding on a sample path

The basic ADP algorithm generates a sample path ψn. Section 3.4.3 discusses the problem
of exploration versus exploitation. Here we state the specifics for The Game.
So how do we generate a sample path for The Game? The algorithm starts with some initial
state, which corresponds to some initial starting hand with no cards played yet. Then a
sample path is a random sequence of cards of the drawing pile.
How should this random sequence be generated? Total random is a possibility, which implies
much exploration. It is also possible to use the same sequence or make tiny changes, in which
case there is exploitation but little exploration.
What is the ’best’ can only be determent by trying different strategies and concluding which
one is best. In the example of The Game, the following strategy will be applied:

1. Generate some random sequence.

2. Use this random sequence for N1 iterations, possibly with some very small changes to
the sequence. (Exploitation)

3. Go back to 1. Repeat N2 times. (Exploration)

This requires N1×N2 iterations. To find the right balance between exploration and exploita-
tion, experiment with different combinations. In Chapter 6, several different settings of N1

and N2 will be tested.

Value of state: basis function

The basis function approach, introduced in section 3.4.2, will be applied to approximate the
value of the post-decision state. We will use the recursive least squares method [18] to update
θnf , which is also in the appendix. There are many possible features, we state several examples:

1. Playable space per pile, which implies 4 different features.

φf (st) = 99−Qt(p) for p = 1, 2 and φf (st) = Qt(p) for p = 3, 4 (3.45)

2. Total of playable space remaining.

φf (st) = (99−Qt(1)) + (99−Qt(2)) +Qt(3) +Qt(4). (3.46)

3. Total amount of cards remaining in play.:

φf (st) =

99∑
c=2

(
Kt(c) +Ht(c)

)
. (3.47)

4. Total amount of cards in hand:

φf (st) =

99∑
c=2

Ht(c). (3.48)
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5. Absolute difference in piles that have the same direction, thus two features.

φf (st) = |Qt(1)−Qt(2)| φf (st) = |Qt(3)−Qt(4)|. (3.49)

6. Sum of numbers in hand:

φf (st) =

99∑
c=2

(
c×Ht(c)

)
. (3.50)

7. Amount of jumping back pairs pairs still present.

8. Smallest valid play using cards from hand on pile, summed up over all 4 piles.

2∑
p=1

min
c∈[2,99],cHt(c)−Qt(p)>0

|Qt(p)− c×Ht(c)|+
4∑
p=3

min
c∈[2,99],cHt(c)−Qt(p)<0

|Qt(p)− c×Ht(c)|

(3.51)

Observe that every feature f ∈ F of the list above satisfies φf (s) ≥ 0.
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Chapter 4

Optimal Stopping Problem

Optimal stopping problems focus on when to take a certain action to maximise the reward or
minimise the cost. For example, consider house selling, in this case you want to sell the house
at the moment your reward is maximised. The pas and current state of the housing market
is known, whereas the future remains uncertain, creating a problem. The decision whether to
sell only depends on what is known. Another example is options trading, which has a similar
problem, except instead of a house, we are selling or buying options. Options usually have
constraints on when the option can be sold or bought. Optimal stopping problems focus on
the optimal decision rule.
In this thesis, the optimal stopping problem is used to try and find an approximate guarantee
for ADP, which is done in Chapter 5. In this chapter, the optimal stopping problem is intro-
duced together with one approximation method. The approximation method used is taken
from an article by Y. Chen & D. Goldberg, see [10].
Section 4.1 gives a definition of optimal stopping problems. Several required definitions and
other preliminaries are stated in section 4.2. The theorem that forms the basis of the approx-
imation method is introduced in section 4.3. Section 4.4 states three different approximate
guarantees. Finally, in section 4.5, an algorithm to approximate the optimal stopping problem
is given, including confidence interval, computational time and randomness calls.

4.1 Definition optimal stopping problem

Recall the definition of a stochastic process (Definition 1). In addition, recall that gt(Y[t]) is
a cost function dependent on the entire process up till t, denoted by Y[t] = {Y1, Y2, . . . , Yn}.
The definition of a stopping time, as given by [27], can be seen in Definition 4.

Definition 4. (Stopping Time) The positive integer-valued, possibly infinite, random variable
τ is said to be a random time for process {Yn, n ≥ 1} if the event {τ = n} is determined by
the random variables Y1, . . . , Yn. That is, knowing Y1, . . . , Yn tells us whether or not τ = n.
If P(τ <∞) = 1, then the random time τ is said to be a stopping time. Denote T as the set
containing all stopping time τ .

29
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As previously mentioned, optimal stopping problems focus on finding the optimal stopping
time to minimise the costs. Therefore, the goal is to compute

OPT = inf
τ∈T

E[gτ (Y[τ ])]. (4.1)

So, an optimal stopping problem consists of a stochastic process and a decision, based on
the past and present, to stop or to continue. The decision rule states in what situations one
should continue and when one should stop. Note that an optimal stopping problem is not
necessarily an MDP, as an optimal stopping problem can be history dependent and hence
does not have the Markov property, see equation (3.1).

4.2 Preliminaries

Recall that Y = {Yt, t ∈ [1, T ]} is a stochastic process and let gt(Y[t]) be a cost function.
Define Zt = gt(Y[t]) and let τ ∈ T be a stopping time in [1, T ]. This means {Zt, t ≥ 1} is also
a stochastic process. The goal is to compute

OPT = inf
τ∈T

E[Zτ ]. (4.2)

This means we have an optimal stopping problem. Any relevant information concerning the
stochastic process Y up to time t is denoted by Ft. The set Ft is called the natural filtration.
The definition of a martingale is stated in Definition 5 [26].

Definition 5. (Martingale) A stochastic process {Yn, n ≥ 1} is said to be a martingale process
if

E[|Yt|] <∞ for all t (4.3)

and

E[Yt+1|Y1, Y2, . . . , Yt] = Yt. (4.4)

A consequence of Definition 5 is that, for a martingale {Yt, t ≥ 1}, the following must hold

E[Yt] = E[Yt−1] = · · · = E[Y1]. (4.5)

Next, define a Doob martingale [26] in Proposition 1, which is a stochastic process that by
construction is always a martingale.

Proposition 1. Let X , Y1, Y2, . . . be arbitrary random variables such that E[|X |] <∞, and let
Mn = E[X|Y1, Y2, . . . , Yt]. Then {Mt, t ≥ 1} is a martingale, also called a Doob martingale.

Proof. To prove that {Mt, t ≥ 1} is a martingale, it needs to satisfy equations (4.3) and (4.4).
Equation (4.3) holds since E[|X |] < ∞. Next we show that equation (4.4) is also satisfied.
First the definition of Mn is filled in to obtain

E[Mt+1|Y1, . . . , Yt] = E[E[X , Y1, . . . , Yt+1]|Y1, . . . , Yt]. (4.6)
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Since E[X|U ] = E[E[X|Y, U ]|U ] ([26]), where U is an arbitrary random variable, it follows
from equation (4.6) that

E[Mt+1|Y1, . . . , Yt] = E[X|Y1, . . . , Yt]

=Mt. (4.7)

This completes the proof of Proposition 1.

Theorem 5 states the optimal stopping theorem. A proof is available in [26]. Recall that τ is
the stopping time introduced in Definition 4.

Theorem 5. (Optional stopping theorem) Let {Mt, t ≥ 1} be a martingale. If either

1. Mt are uniformly bounded, where

Mt =

Mt if t ≤ T

MT if t ≥ T, or,
(4.8)

2. τ is bounded, or,

3. E[τ ] <∞, and there is an L <∞ such that

E[|Mt+1 −Mt||M1, . . . ,Mt] < L, (4.9)

then E[Mτ ] = E[M1].

4.3 Main theorem

DefineMt = E[mini∈[1,T ] Zi|Ft]. By Proposition 1 {Mt, t ≥ 1} is a martingale. The following
lemma gives us the first step to proofthe main theorem.

Lemma 1.

inf
τ∈T

E[Zτ ] = E[ min
t∈[1,T ]

Zt] + inf
τ∈T

E
[
Zτ − E[ min

t∈[1,T ]
Zt|Fτ ]

]
, (4.10)

Proof. Condition 2 of the optional stopping theorem (Theorem 5) is satisfied, which implies
E[Mt] = E[Mτ ] for all t ∈ [1, T ] and stopping times τ ≤ T . Since E[X|U ] = E[E[X|Y, U ]|U ],
we obtain E[M1] = E[mint∈[1,T ] Zt]. In view of E[E[X ]] = E[X ], for arbitrary random variable
X , we have E[Mt] =Mt and therefore

E[ min
t∈[1,T ]

Zt] = E[ min
t∈[1,T ]

Zt|Fi] = E[ min
t∈[1,T ]

Zt|Fτ ] ∀i ∈ [1, T ], τ ∈ T . (4.11)

This implies

inf
τ∈T

E[Zτ ] = inf
τ∈T

E[Zτ ] + E[ min
t∈[1,T ]

Zt]− E[ min
t∈[1,T ]

Zt|Fi] ∀i ∈ [1, T ]. (4.12)
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Since E[mint∈[1,T ] Zt|Fi] is independent of τ , equation (4.12) yields

inf
τ∈T

E[Zτ ] = E[ min
t∈[1,T ]

Zt] + inf
τ∈T

E
[
Zτ − E[ min

t∈[1,T ]
Zt|Fi]

]
∀i ∈ [1, T ]. (4.13)

Since (4.11) holds for all stopping times, we obtain

inf
τ∈T

E[Zτ ] = E[ min
t∈[1,T ]

Zt] + inf
τ∈T

E
[
Zτ − E[ min

t∈[1,T ]
Zt|Fτ ]

]
. (4.14)

This completes the proof of Lemma 1.

Definition 6. (Zkt ) Define Z1
t = Zt and

Zk+1
t = Zkt − E[ min

i∈[1,T ]
Zki |Ft] ∀k ≥ 1. (4.15)

Using Definition 6 and Lemma 1, gives the initial step for the main theorem.

Lemma 2. For all K ≥ 1, the following equality holds

inf
τ∈T

E[Zτ ] =

K∑
k=1

E[ min
t∈[1,T ]

Zkt ] + inf
τ∈T

E[ZK+1
τ ]. (4.16)

Proof. Proof of this lemma is by induction. First consider K = 1. By the definition of Z2
t ,

equation (4.10) of Lemma 1 yields

inf
τ∈T

E[Zτ ] = E[ min
t∈[1,T ]

Z1
t ] + inf

τ∈T
E[Z2

τ ]. (4.17)

Now assume equation (4.16) holds for some K ≥ 2. The goal is to show, for K ≥ 2,

inf
τ∈T

E[Zτ ] =
K+1∑
k=1

E[ min
t∈[1,T ]

Zkt ] + inf
τ∈T

E[ZK+2
τ ]. (4.18)

First, rewrite the term
∑K+1

k=1 E[mint∈[1,T ] Z
k
t ] to

K+1∑
k=1

E[ min
t∈[1,T ]

Zkt ] =
K∑
k=1

E[ min
t∈[1,T ]

Zkt ] + E[ min
t∈[1,T ]

ZK+1
t ]. (4.19)

Second, by Definition 6, ZK+2
t = ZK+1

t − E[mini∈[1,T ] Z
K+1
i |Ft]. This yields

inf
τ∈T

E[ZK+2
τ ] = inf

τ∈T
E
[
ZK+1
τ − E[ min

t∈[1,T ]
ZK+1
t |Fτ ]

]
. (4.20)

By Proposition 1, E[mint∈[1,T ] Z
K+1
t |Fi] is a martingale, since it is a Doob martingale.

Since τ is finite, the Optional Stopping Theorem can be applied, implying that E[mint∈[1,T ] Z
K+1
t ] =

E[mint∈[1,T ] Z
K+1
t |Fτ ] for all stopping time τ ∈ T . Rewrite equation (4.20) as

inf
τ∈T

E[ZK+2
τ ] = inf

τ∈T
E[ZK+1

τ ]− E[ min
t∈[1,T ]

ZK+1
t ]. (4.21)

Substituting (4.19) and (4.21) into (4.18), yields (4.16) for K + 1. This completes the proof
of Lemma 1.
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Using Lemma 2, OPT can be rewritten to a sum with K terms plus some remainder term. If
K goes to infinity, then a sum with an infinite amount of terms is obtained. The remainder
term will go to 0, which is shown in Lemma 3. The definition of almost sure convergence is
given [14].

Definition 7. (Almost sure convergence) We say Zn converges almost surely to Z if

P( lim
n→∞

Zn = Z) = 1. (4.22)

Lemma 3 shows that the remainder goes to zero, as well as two properties of Zkt .

Lemma 3.
lim
k→∞

inf
τ∈T

E[Zkτ ] = 0. (4.23)

Additionally Zkt is non-negative and a monotone decreasing sequence of random variables in
k.

Proof. First, observe that Z1
t = Zt ≥ 0 and Zk+1

t = Zkt − E[mini∈[1,T ] Z
k
i |Ft] by Definition 6.

Since Zkt ≥ E[mini∈[1,T ] Z
k
i |Ft] because of the minimisation function, Zkt ≥ 0 for all k ≥ 1.

Therefore Zkt is non-negative.
Second is to show that {Zkt , k ≥ 1} is a monotone decreasing sequence of random variables,
thus Zk+1

t ≤ Zkt for all k ≥ 1. Observe that Zkt is non-negative and as a consequence
E[mini∈[1,T ] Z

k
i |Ft] ≥ 0. This yields

Zk+1
t = Zkt − E[ min

i∈[1,T ]
Zki |Ft] ≤ Zkt . (4.24)

Consequently, {Zkt , k ≥ 1} is a monotone decreasing sequence of random variables.
Next, we proof equation (4.23). Since Zkt ≥ 0 and by the monotone decreasing property of Zkt ,
the sequence {Zkt , k ≥ 1} converges almost surely because of the Monotone Convergence The-
orem [35]. The limit of this sequence is unknown. Let t = T , then the sequence {ZkT , k ≥ 1}
converges almost surely to some random value.
Because {ZkT , k ≥ 1} converges, it also has the Cauchy property [35]. This implies {Zk+1

T −
ZkT , k ≥ 1} converges almost surely to 0. Also observe that E[mini∈[1,T ] Z

k
i |FT ] = mini∈[1,T ] Z

k
i ],

since FT contains all information about stochastic process until the horizon T . Therefore, by
definition of Zk+1

T ,

min
t∈[1,T ]

Zki = ZkT − Zk+1
T , for k ≥ 1. (4.25)

It was already shown that the right side of equation (4.25) converges almost surely to 0.
Therefore {mint∈[1,T ] Z

k
t , k ≥ 1} converges almost surely to 0.

Hence for any j ≥ 1, there exists Kj s.t. k ≥ Kj implies

P( min
i∈[1,T ]

Zki ≥
1

j
) <

1

j2
. (4.26)

This statement holds because of the monotonic decreasing property of mini∈[1,T ] Z
k
i and almost

sure convergence to 0 implying that for any d ≥ 0 there is a K such that mini∈[1,T ] Z
K
i ≤ d.
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Let d = 1
j where j ≥ 1, then P(mini∈[1,T ] Z

K
i ≥ 1

j ) = 0 < 1
j2

for K sufficiently large. Therefore

there exists a strictly increasing sequence of integers {K ′j , j ≥ 1} s.t. P(mini∈[1,T ] Z
K′j
i ≥ 1

j ) <
1
j2
.

Consider the stopping time τ ′j that stops when Z
K′j
t ≤ 1

j or at T otherwise. Let I ′j be the

indicator function for the event {mini∈[1,T ] Z
K′j
i > 1

j }. This creates the following inequality

Z
K′j
τ ′j
≤ 1

j
+ I ′jZ

K′j
T . (4.27)

Because ZkT is monotone decreasing, it follows that {Z
K′j
T , j ≥ 1} is also monotone decreasing

because it is a subset.
Next,consider the sequence {I ′j} and apply the Borel-Cantelli Lemma1. Using equation (4.26)
shows that the following holds:

∑∞
j=1 P(I ′j) ≤

∑∞
j=1

1
j2

= π2

6 < ∞. This implies that

P(lim supj→∞ I
′
j) = 0, therefore I ′j = 0 after some finite time. Therefore 1

j +I ′jZ
K′j
T converges

almost surely to 0. By inequality (4.27) and the convergence of the right side of the inequality,

it follows limj→∞ E[Z
K′j
τ ′j

] = 0. Therefore

lim
j→∞

inf
τ∈T

E[Z
K′j
τ ] = 0, (4.28)

because of non-negativity and the almost sure convergence of a stopping time to 0.
This proves the convergence of a subsequence of {infτ∈T E[Zjτ ], j ≥ 1} to 0. Let p1 and p2

be two consecutive elements of the subsequence. Adding an element q where p1 ≤ q ≤ p2

still implies convergence. Because of the monotone decreasing property, any elements of
{infτ∈T E[Zjτ ], j ≥ 1} not in the subsequence can be added without altering the convergence
property. Hence the sequence {infτ∈T E[Zjτ ], j ≥ 1} also converges to 0. Let k → ∞, then
limk→∞ infτ∈T E[Zkτ ] = 0. This completes the proof of Lemma 3.

Now follows the main results, which is a theorem that states that OPT can be rewritten to
a sum with an infinite amount of terms.

Theorem 6.

OPT = inf
τ∈T

E[Zτ ] =
∞∑
k=1

E[ min
t∈[1,T ]

Zkt ]. (4.29)

Proof. Let K to infinity in Lemma 2 and apply Lemma 3 yields the result.

Define

EK =

K∑
k=1

E[ min
t∈[1,T ]

Zkt ]. (4.30)

The remainder of the chapter will consider EK , how to approximate it, and the quality of the
approximation compared to OPT .

1The Borel-Cantelli Lemma states, given some sequence of events {En}, that if
∑∞
n=1 P(En) < ∞, then

P(lim supn→∞En) = 0.[26]
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4.4 Approximate guarantees and rate of convergence

This section states three different approximate guarantees; two assume normalization of Zt
and one assumes non-negativity of Zt.

4.4.1 Normalized

This section starts by stating and proving Lemma 4, because proving the main results requires
Lemma 4.

Lemma 4. Suppose with probability 1 Zt ∈ [0, U ] for all t ∈ [1, T ]. Then for all k ≥ 1, w.p.1
mint∈[1,T ] Z

k
t ≤ U

k .

Proof. Rewriting Definition 6 yields Zk+1
T = ZT −

∑k
i=1 mint∈[1,T ] Z

i
t . By Lemma 3, Zk+1

T is
non-negative and as a consequence

ZT ≥
k∑
i=1

min
t∈[1,T ]

Zit . (4.31)

Because of the monotone decreasing property of mint∈[1,T ] Z
i
t (see Lemma 3), it follows that∑k

i=1 mint∈[1,T ] Z
i
t ≥ k ×mint∈[1,T ] Z

i
t . Recall that Zt ∈ [0, U ] and therefore

U ≥ Zt ≥ k × min
t∈[1,T ]

Zit ∀k ≥ 1. (4.32)

Dividing the above inequality by k gives us the statement of Lemma 4. This completes the
proof.

Note that Lemma 4 does not assume normalization of Zt. Theorem 7 states an approximate
guarantee for EK .

Theorem 7. Suppose w.p.1 Zt ∈ [0, 1] for all t ∈ [1, T ]. Then for all k ≥ 1,

0 ≤ OPT − Ek ≤
1

k + 1
. (4.33)

Proof. Since Zk is normalised, fix U = 1. Define τk+1 as the stopping time that stops when
Zk+1
t ≤ 1

k+1 or stop at T otherwise. By Lemma 4, mint∈[1,T ] Z
k+1
t ≤ 1

k+1 . This implies that
the condition Zk+1

t ≤ 1
k+1 of stopping time τk+1 will be satisfied for some t ∈ [1, T ], thus

E[Zk+1
τk+1

] = E[mint∈[1,T ] Z
k+1
t ]. If Zk+1

t ≤ 1
k+1 , then E[Zk+1

t ] ≤ 1
k+1 as well. Combining the

above gives

E[Zk+1
τk+1

] = E[ min
t∈[1,T ]

Zk+1
t ] ≤ 1

k + 1
. (4.34)

Also infτ∈T E[Zk+1
τ ] ≤ E[Zk+1

τk+1
]. Lemma 2 states OPT =

∑k
i=1 E[Zit ] + infτ∈T E[Zk+1

τ ].
Combining the above implies

OPT −
k∑
i=1

E[Zit ] = inf
τ∈T

E[Zk+1
τ ] ≤ 1

k + 1
. (4.35)

This completes the proof of Theorem 7.
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The next lemma is required to show that the bound of Theorem 7 cannot be improved.

Lemma 5. Consider the setting for n ≥ 1 where T = 2, D = 1, Zt = Yt for t ∈ [1, 2]

and P(Y1 = 1
n) = 1, P(Y2 = 1) = 1

n , P(Y2 = 0) = 1 − 1
n . In this setting, for all k ≥ 1,

OPT − Ek = 1
n × (1− 1

n)k.

Proof. First, show by induction that Var[Zk1 ] = 0 for all k ≥ 1. Consider k = 1, then
Var[Z1

1 ] = 0 because Z1 = 1
n and therefore constant. Next assume that Var[Zk1 ] = 0 for some

k ≥ 1. Then it must also hold for Var[Zk+1
1 ], which by Definition 6 is equal to Var[Zk1 −

E[mini∈[1,2] Z
k
1 |F1]]. Observe for arbitrary random variable X that Var[E[X]] = 0 since E[X]

is a number. Combined with the induction hypothesis, it follows that Var[Zk+1
1 ] = 0. This

completes the induction and hence Var[Zk1 ] = 0 for all k ≥ 1.
Recall Definition 5 of a Martingale and the fact that {Zkt , t ∈ [1, T ]} is a martingale by
Proposition 1. Because of E[Z1] = 1

n and E[Z2] = 1
n , the fact that {Zkt , t ∈ [1, T ]} and by the

Optional Stopping Theorem 5, obtain OPT = 1
n .

Additionally, by the Optional Stopping Theorem infτ∈T E[Zk+1
τ ] = E[Zk+1

1 ] for all k ≥ 1,
combined with Lemma 2, it is sufficient to show that E[Zk1 ] = 1

n×(1− 1
n)k−1. Since Var[Zk1 ] =

0, the last step is to proof P(Zk1 = 1
n×(1− 1

n)k−1) = 1 for all k ≥ 1. This is done by induction.
First consider k = 1, thus P(Z1 = 1

n) = 1, which holds by definition of Z1. Second, assume
P(Zk1 = 1

n × (1 − 1
n)k−1) = 1 for some k ≥ 1. The martingale property and induction

hypotheses imply

Zk1 =
1

n
× (1− 1

n
)k−1, and Zk2 =

(1− 1
n)k−1 w.p. 1

n

0 w.p. 1− 1
n .

(4.36)

Therefore

Zk+1
1 = Zk1 − E[ min

t∈[1,2]
Zkt ] =

1

n
(1− 1

n
)k−1 − (

1

n
)2(1− 1

n
)k−1 =

1

n
(1− 1

n
)k, (4.37)

completing the proof of Lemma 5.

Theorem 8 shows that the linear convergence of Theorem 7 cannot be improved.

Theorem 8. For any n ≥ 2, there exists an optimal stopping problem with T = 2, P(Zt ∈
[0, 1]) = 1 for t ∈ [1, 2], yet OPT − Ek ≥ 1

4n for all k ≤ n.

Proof. Note that for any n ≥ 2, (1− 1
n)k ≥ 1

4 for all k ≤ n. Lemma 5 states that the optimal
stopping problem constructed yields OPT − Ek ≥ 1

4n . This completes the proof of Theorem
8.

4.4.2 Normalized and prophet equations

This section states an approximate guarantee, that relies on the prophet inequalities [11]. Let
z ∈ [0, 1], h1(z) = (1− z) log( 1

1−z ) and for k ≥ 2, hk(z) = h1(hk−1(z)). The functions hk are
the prophet equations. Lemma 6 is required for the proof in the upcoming theorem, and [11]
proofs Lemma 6.
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Lemma 6. Suppose P(Zt ∈ [0, 1]) = 1 for all t ∈ [1, T ]. Then

OPT − E[ min
t∈[1,T ]

Zt] ≤ h1(OPT ). (4.38)

Theorem 9. Suppose w.p.1 Zt ∈ [0, 1] for all t ∈ [1, T ]. Then for all k ≥ 1,

0 ≤ OPT − Ek ≤ hk(OPT ). (4.39)

In addition, for each fixed z ∈ [0, 1], {hk(z), k ≥ 1} is a monotone decreasing sequence
converging to 0; and limz↓0 h1(z) = limz↑1 h1(z) = 0.

Proof. First assume several basic properties of h1(z). The properties are easily verified by
plotting the function. First h1(z) ∈ [0, 1] for all z ∈ [0, 1]. Second h1(z) ≤ z for all z ∈ [0, 1]

from which follows that each {hk(z), k ≥ 1} decreases monotone (by induction argument and
definition of hk(z)). Third h1 strictly increases on [0, 1 − e−1]. Fourth h1(z) ≤ e−1 for all
z ∈ [0, 1].
Next, show that OPT − Ek ≤ hk(OPT ), which by Lemma 2 is equivalent to

inf
τ∈T

E[Zk+1
τ ] ≤ hk(OPT ). (4.40)

Proof inequality (4.40) by induction. First, consider k = 1. Lemma 2 gives infτ∈T E[Zk+1
τ ] =

OPT − Ek. Since Zt ∈ [0, 1], Lemma 6 can be applied, which completes the first part of the
induction.
Second assume inequality (4.40) holds for some k ≥ 1. Definition 6 and Lemma 6 yields

inf
τ∈T

E[Zk+2
τ ] = inf

τ∈T
E[Zk+1

τ ]− E[ min
t∈[1,T ]

Zk+1
t ] ≤ h1

(
inf
τ∈T

E[Zk+1
τ ]

)
. (4.41)

The induction hypotheses states infτ∈T E[Zk+1
τ ] ≤ hk(OPT ). Recall hk(OPT ) ≤ h1(OPT ) ≤

e−1 ≤ 1− e−1, and h1(z) is increasing on z ∈ [0, 1− e−1]. Therefore

h1

(
inf
τ∈T

E[Zk+1
τ ]

)
≤ h1

(
hk(OPT )

)
= hk+1(OPT ). (4.42)

This implies that infτ∈T E[Zk+1
τ ] ≤ hk(OPT ) for all k ≥ 1. This completes the proof of

Theorem 9.

4.4.3 Non-normalized

Theorems 7 and 9 state guarantees for instances where Zt ∈ [0, 1]. This section states an
approximate guarantee for non-normalised instances. This implies a lower rate of convergence.

Theorem 10. Assume {Zt, t ≥ 1} is non-negative, then for all k ≥ 1,

OPT − Ek ≤ 2×
(E[(ZT )2]

OPT 2

) 1
3 × k−

1
3 ×OPT (4.43)

Proof. By Lemma 2 and the non-negative property of E[Zkt ], it follows thatOPT ≥
∑k

i=1 E[Zit ].
Also

∑k
i=1 E[Zit ] ≥ k × E[mint∈[1,T ] Z

k
t ], since the sum is larger then k times the minimum.

This implies for all k ≥ 1,

E[ min
t∈[1,T ]

Zkt ] ≤ 1

k
×OPT. (4.44)
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Using Lemma 2 and rewriting inequality (4.43), it is sufficient to show that

inf
τ∈T

E[Zk+1
τ ] ≤ 2×

(
OPT × E[(ZT )2]× k−1

) 1
3
. (4.45)

Let zk =
(
E[(Zt)

2] × OPT × k−1
) 1

3 . Define the stopping time τk as follows: stops the

first time Zk+1
t ≤ zk and stops at T otherwise. Let I denote the step function. Then

Zk+1
τk
≤ zk + I(mint∈[1,T ] Z

k+1
t > zk)Z

k+1
T , combined with Zk+1

T ≤ ZT , implies that Zk+1
τk
≤

zk + I(mint∈[1,T ] Z
k+1
t > zk)ZT . Taking expectation on both sides gives

E[Zk+1
τk

] ≤ zk + E
[
I( min
t∈[1,T ]

Zk+1
t > zk)ZT

]
, (4.46)

where by definition of zk, it follows that E[zk] = zk. Now apply the Cauchy-Schwarz inequal-
ity2 on E

[
I(mint∈[1,T ] Z

k+1
t > zk)ZT

]
in the above inequality to obtain

E[Zk+1
τk

] ≤ zk +
(
E[(ZT )2]

) 1
2 ×

(
P( min
t∈[1,T ]

Zk+1
t > zk)

) 1
2
. (4.47)

Next, apply Markov’s inequality3 and inequality (4.44) on P(mint∈[1,T ] Z
k+1
t > zk), which

yields P(mint∈[1,T ] Z
k+1
t > zk) ≤ k−1×OPT

zk
. Therefore, rewriting inequality (4.47) gives

E[Zk+1
τk

] ≤ zk +
( 1
k ×OPT × E[(ZT )2]

zk

) 1
2

= 2zk. (4.48)

Filling in the definition of zk completes the proof of Theorem 10.

4.5 Algorithm

Theorem 6 states a method to compute the optimal costs for an optimal stopping problem.
Instead of computing the optimum, the approximation Ek is computed. Theorems 7, 9 and
10 give bounds on the approximation Ek as well as a rate of convergence. In this section,
an algorithm for approximating Ek will be stated, including computational time, calls to
randomness and confidence interval.
In section 4.5.1 the preliminaries of the algorithm are given. Section 4.5.2 gives the pseudo-
code of the algorithm to approximate Ek. Finally, section 4.5.3 states the relevant results of
the algorithm.

4.5.1 Preliminaries

Define η ∈ N t as some instance up to time t ∈ [1, T ]. Then Y (η) is the event conditioned on
{Y (t) = η}. Let D be the dimensions of some instance Y1. Assume that there exists some
base simulator B that has the following properties:

• B(0, ∅) returns an independent sample path Y that is unconditioned,
2Cauchy-Schwarz inequality: |E[XY ]|2 ≤ E[X2]E[Y 2]
3Markov’s Inequality:P(X ≥ a) ≤ E[X]

a
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• B takes C units of computational time to generate Y , and

• C depends on T,D, but NOT on t, η,B.

Next, state some assumptions on the computational and memory costs. First computing
gt(η) takes G computational time, where G can depend on T and D, but not on t, η and B.
Furthermore addition, subtraction, multiplication, dividing and computing max() and min()

of two numbers take one computational time. Reading writing and storing input has no cost.
Let ε, δ ∈ (0, 1). Define

N(ε, δ) = d 1

2ε2
log(

2

δ
)e, (4.49)

which is plotted in figure 4.1.

Figure 4.1: Plot of N(ε, δ) for different δ and ε.

Define for k ≥ 1,

fk(ε, δ) = 102(k−1)2 × ε−2(k−1) × (T + 2)k−1 ×
(

1 + log(
1

δ
) + log(

1

ε
) + log(T )

)k−1
. (4.50)

The function fk(ε, δ) is plotted for T = 50, different k, ε and δ in figure 4.2.
Lemma 7 states a recursive relation of fk(ε, δ). The proof is omitted and instead we refer the
reader to [10].

Lemma 7. For all ε, δ ∈ (0, 1) and k ≥ 1,

fk+1(ε, δ) ≥
(
N(

ε

4
,
δ

4
) + 1

)
× (T + 2)× fk

( ε
4
,

δ

4N( ε4 ,
δ
4)T

)
. (4.51)

The upcoming proofs use Hoeffding’s inequality [2], which is stated in Lemma 8.
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Figure 4.2: Plot of fk(ε, δ) for T = 50.

Lemma 8. (Hoeffding’s inequality) Suppose that for some n ≥ 1 and U > 0, {Xi, i ∈ [1, n]}
are i.i.d., and P(X1 ∈ [0, U ]) = 1. Then

P
(
|n−1

n∑
i=1

Xi − E[X1]| ≥ η
)
≤ 2 exp (−2η2n

U2
). (4.52)

4.5.2 Pseudo-code algorithm

Recall that

EK =

K∑
k=1

Dk =

K∑
k=1

E[ min
t∈[1,T ]

Zkt ]. (4.53)

First, state the algorithm for approximating Zkt given (partial) sample-path η, denoted by Bk,
see algorithm 7. Next, algorithm B̂k, that obtains an ε-approximation of Dk. See algorithm
8. Algorithm B̂k computes the approximation EK by computing Dk for all k ∈ [1,K].
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Algorithm 7: Approximate Zkt (η)

Result: ε-approximation to Zkt (η) w.p. at least 1− δ
Algorithm B1(t, η, ε, δ);
Return gt(η) ;

Algorithm Bk+1(t, η, ε, δ) (for k ≥ 1);
Create a length-N( ε4 ,

δ
4) vector A0 ;

for i=1 to N( ε4 ,
δ
4) do

Generate an independent call to B(t, η) and store in D by T matrix A1 ;
Create a length-T vector A2 ;
for j=1 to T do

Generate an independent call to Bk
(
j, A1

[j],
ε
4 ,

δ
4N( ε

4
, δ
4

)T

)
and store in A2

j ;

end
Compute the minimum value of A2 and store in A0

i ;

end
Generate an independent call to Bk(t, η, ε2 ,

δ
2) and store as variable A3 ;

Return A3 − (N( ε4 ,
δ
4))−1

∑N( ε
4
, δ
4

)

i=1 A0
i ;

Algorithm 8: Approximate Dk

Result: ε-approximation to Dk w.p. at least 1− δ
Algorithm B̂k(ε, δ) ;
Create a length-N( ε2 ,

δ
2) vector A0 ;

for i=1 to N( ε2 ,
δ
2) do

Generate an independent call to B(0, ∅) and store in D by T matrix A1 ;
Create a length-T vector A2 ;
for j=1 to T do

Generate an independent call to Bk
(
j, A1

[j],
ε
2 ,

δ
2N( ε

2
, δ
2

)T

)
and store in A2

j ;

end
Compute the minimum value of A2 and store in A0

i ;

end

Return (N( ε2 ,
δ
2))−1

∑N( ε
2
, δ
2

)

i=1 A0
i ;
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4.5.3 Main algorithmic results

Algorithm 8 allows a trade-off between the accuracy parameters ε, δ and the computational
costs. Even for the full path dependence and high-dimensionality instances, the algorithm
can for any ε compute an ε-approximation in polynomial time. The proof of the main results
of B̂k require the relevant results for Bk in Lemma 9.

Lemma 9. For all k ≥ 1, t ∈ [1, T ], η ∈ N t, ε, δ ∈ (0, 1), algorithm Bk achieves the following
when evaluated on t, η, ε, δ. In total computational time at most (C +G+ 1)fk(ε, δ) and with
only access to randomness at most fk(ε, δ) calls to the base simulator B, returns a random
number X satisfying P(|X − Zkt (η)| ≥ ε) ≤ δ.

Proof. Three elements need to be shown: computational costs, access to randomness and
confidence interval. Using induction shows this by considering all three elements in the k = 1

and k ≥ 1 case.
Consider the case where k = 1, then B1(t, η, ε, δ) will output Zt(η) with no error, compu-
tational cost G and no calls to B. Therefore satisfies the confidence interval and calls to
randomness. Since f1(ε, δ) ≥ 1, it also satisfies the computational costs.
Next, assume that Lemma 9 holds for some k ≥ 1, then show that the lemma holds for k+ 1.
First, proof of the confidence interval results. The induction hypothesis states that Bk outputs
a random number X satisfying

P(|X − Zkt (η)| ≥ ε) ≤ δ. (4.54)

Let {Xi, i ∈ [1, N( ε4 ,
δ
4)]} be an i.i.d. sequence of random variables each distributed as

minj∈[1,T ] Z
k
j (Y (η)[j]). Then {Xi, i ∈ [1, N( ε4 ,

δ
4)]} and {A0

i , i ∈ [1, N( ε4 ,
δ
4)]} are constructed

on the same probability space subject to |Xi−A0
i | < ε

4 for all i with probability at least 1− 1
δ .

First, show the common probability claim. Second, show the error and probability bound.
A probability space of a random variable is defined as {ω, F,P}, where ω is the sample space
or the space of outcomes, F is the set of events and P is the set of probabilities of events.
Two random variables (1 and 2) have a common probability space when ω1 = ω2, F1 = F2

and P1 = P2. Since Xi and Ai both have i ∈ [1, N( ε4 ,
δ
4)] and both take on values of Zki in the

real numbers, hence ω1 = ω2. Since both Xi and A0
i depend on η as input, they also share

the same events, implying F1 = F2. Xi has a distribution of events which the algorithm B
uses for computing A0

i , hence P1 = P2.
Now to proof the statement that for all i ∈ [1, N( ε4 ,

δ
4)]

P(|Xi −A0
i | ≥

ε

4
) ≤ δ

4
. (4.55)

First, consider only one i ∈ [1, N( ε4 ,
δ
4)]. The definitions of Xi and A0

i are filled in to obtain

P(|Xi −A0
i | ≥

ε

4
) = P

(
| min
j∈[1,T ]

Zkj (Y (η)[j])− min
j∈[1,T ]

Bk(j, A1
[j],

ε

4
,

δ

4N( ε4 ,
δ
4)T

)| ≥ ε

4

)
(4.56)
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The min() function satisfies the Lipschitz property4, with m = 1. Therefore, the following
equation bounds equation (4.56).

≤ P
(
∪j∈[1,T ] |Zkj (Y (η)[j]))− Bk(j, A1

[j],
ε

4
,

δ

4N( ε4 ,
δ
4)T

)| ≥ ε

4

)
. (4.57)

Next, apply Boole’s inequality5 on equation (4.57), which yields

≤
T∑
j=1

P
(
|Zkj (Y (η)[j]))− Bk(j, A1

[j],
ε

4
,

δ

4N( ε4 ,
δ
4)T

)| ≥ ε

4

)
. (4.58)

Observe that equation (4.54) bounds every term in the summation of equation (4.58) to obtain

T∑
j=1

P
(
|Zkj (Y (η)[j]))− Bk(j, A1

[j],
ε

4
,

δ

4N( ε4 ,
δ
4)T

)| ≥ ε

4

)
≤

T∑
j=1

δ

4N( ε4 ,
δ
4)T

=
δ

4N( ε4 ,
δ
4)
.

(4.59)

Therefore, for a single i ∈ [1, N( ε4 ,
δ
4)], it follows that P(|Xi − A0

i | ≥ ε
4) ≤ δ

4N( ε
4
, δ
4

)
. Equation

(4.55) needs to hold for every i ∈ [1, N( ε4 ,
δ
4)] and therefore requires P(∩i∈[1,N( ε

4
, δ
4

)]|Xi−A0
i | ≥

ε
4). Since the intersection set is smaller than the union set, and by applying Boole’s inequality,
yields

P(∩i∈[1,N( ε
4
, δ
4

)]|Xi −A0
i | ≥

ε

4
) ≤ P(∪i∈[1,N( ε

4
, δ
4

)]|Xi −A0
i | ≥

ε

4
) (4.60)

≤
N( ε

4
, δ
4

)]∑
i=1

P(|Xi −A0
i | ≥

ε

4
). (4.61)

Applying inequality (4.59) further bounds equation (4.61) by

P(∩i∈[1,N( ε
4
, δ
4

)]|Xi −A0
i | ≥

ε

4
) ≤

N( ε
4
, δ
4

)]∑
i=1

δ

4N( ε4 ,
δ
4)

=
δ

4
. (4.62)

Hence, P(|Xi − A0
i | ≥ ε

4) ≤ δ
4 for all i ∈ [1, N( ε4 ,

δ
4)]. This proves that {Xi, i ∈ [1, N( ε4 ,

δ
4)]}

and {A0
i , i ∈ [1, N( ε4 ,

δ
4)]} are constructed on the same probability space.

Apply Lemma 8 on {Xi}, with parameters η = ε
4 , U = 1 and n = N( ε4 ,

δ
4). This yields

P
(
|N(

ε

4
,
δ

4
)−1

N( ε
4
, δ
4

)∑
i=1

Xi − E[X1]| ≥ ε

4

)
≤ 2 exp

(
− 2(

ε

4
)2N(

ε

4
,
δ

4
)
)
. (4.63)

Rewriting the right side of the above equation yields

P
(
|N(

ε

4
,
δ

4
)−1

N( ε
4
, δ
4

)∑
i=1

Xi − E[X1]| ≥ ε

4

)
≤ δ

4
. (4.64)

4Lipschitz property of function l: there exists a m ≥ 1 such that |l(x1)− l(x2)| ≤ m|(x1 − x2)|
5Boole’s inequality: P(∪iYi) ≤

∑
i P(Yi)
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Since {Xi} and {A0
i } are constructed on the same probability space, the event {|Xi − A0

i | <
ε
4 ,∀i} implies

P
(
|(N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

A0
i − (N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

Xi| ≥
ε

4

)
≤ δ

4
, (4.65)

which means that, if the individual events hold, then the average must also be smaller then
ε
4 . Combining equations (4.64) and (4.65) using Boole’s inequality, yields

P
([
|(N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

A0
i−(N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

Xi| ≥
ε

4

]
∪ (4.66)

[
|N(

ε

4
,
δ

4
)−1

N( ε
4
, δ
4

)∑
i=1

Xi − E[X1]| ≥ ε

4

])
≤ δ

2
. (4.67)

Next, apply the triangle inequality6 to inequality (4.67) to obtain

P
(
|(N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

A0
i − E[X1]| ≥ ε

2

)
≤ δ

2
. (4.68)

The induction hypothesis states that P(|A3 − Zkt (η)| ≥ ε
2) ≤ δ

2 , since A
3 uses Bk. Applying

Definition 6, Zkt (η)−E[X1] = Zk+1
t (η), and the triangle inequality to inequality (4.68) yields

δ ≥ P
(
|E[X1]− (N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

A0
i | ≥

ε

2

)
+ P(|A3 − Zkt (η)| ≥ ε

2
) (4.69)

≥ P
(
|E[X1]− (N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

A0
i +A3 − Zkt (η)| ≥ ε

)
(4.70)

= P
(
|A3 − (N(

ε

4
,
δ

4
))−1

N( ε
4
, δ
4

)∑
i=1

A0
i − Zk+1

t (η)| ≥ ε
)

(4.71)

= P
(
|Bk+1(t, η, ε, δ)− Zk+1

t (η)| ≥ ε
)
. (4.72)

Hence Bk+1 outputs a random number X satisfying P(X − Zk+1
t (η)| ≥ ε) ≤ δ. This proves

the error and probability bound of Lemma 9.
Next, proof the statement about the amount of calls to the base simulator B. The induction
hypothesis states that the algorithm Bk only needs access to randomness at most fk(ε, δ) calls
to the base simulator B.
Now follows the proof that Bk+1 requires at most fk+1(ε, δ) calls to the base simulator.
Consider algorithm 7 for Bk+1, where k ≥ 2. First N( ε4 ,

δ
4) calls are made to the base

simulator B, then N( ε4 ,
δ
4) × T calls to Bk and at the end one call to Bk. By the induction

hypothesis, we know that Bk has at most fk(ε, δ) calls to the base simulator. Hence the
amount of calls to the base simulator is bounded by

N(
ε

4
,
δ

4
) +N(

ε

4
,
δ

4
)× T × fk

( ε
4
,

δ

4N( ε4 ,
δ
4)T

)
+ fk(

ε

2
,
δ

2
), (4.73)

6Triangle inequality: ||a||+ ||b|| ≥ ||a+ b||
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which is bounded by

≤ N(
ε

4
,
δ

4
)× (T + 2)× fk

( ε
4
,

δ

4N( ε4 ,
δ
4)T

)
. (4.74)

The function fk+1(ε, δ) bounds this due to Lemma 7, which completes this part of the induc-
tion. This proves the statement regarding the amount of calls to the base simulator
Next follows the proof of the computational cost statement. Assume that (C +G+ 1)fk(ε, δ)

bounds the computational costs of Bk. The proof that is also holds for k + 1 follows.
In each of the N( ε4 ,

δ
4) iterations in the Bk+1 algorithm, the following computations occur.

First, one call to B(t, η) which has C computational cost. Second, T calls are made to Bk

and by the induction hypothesis we know that each has computational cost (C + G + 1) ×
fk(

ε
4 ,

δ
4N( ε

4
, δ
4

)T )
). Third, the minimum of a T length vector is computed. Hence the total

amount of computational costs per iteration is bounded by

C + (C +G+ 1)× T × fk
( ε

4
,

δ

4N( ε4 ,
δ
4)T

)
+ T. (4.75)

The remaining costs of the algorithm are the following. One call is made to Bk with cost
(C+G+1)fk(

ε
2 ,

δ
2). Finally, the algorithm computes the average, and after that a subtraction

is done, costing N( ε4 ,
δ
4) + 1. The total computational cost is therefore bound by

N(
ε

4
,
δ

4
)×
(
C+(C+G+1)×T×fk

( ε
4
,

δ

4N( ε4 ,
δ
4)T

)
+T

)
+(C+G+1)fk(

ε

2
,
δ

2
)+N(

ε

4
,
δ

4
)+1.

(4.76)
This is bound by

≤ (C +G+ 1)× (N(
ε

4
,
δ

4
) + 1)× (T + 2)× fk

( ε
4
,

δ

4N( ε4 ,
δ
4)T

)
. (4.77)

Lemma 7 bounds this by (C +G+ 1)fk+1(ε, δ) which completes the induction.
This completes the proof of Lemma 9.

Theorem 11 shows the computational costs, calls to randomness and quality of the approxi-
mation Dk of algorithm B̂k.

Theorem 11. Suppose w.p.1 Zt ∈ [0, 1] for all t ∈ [1, T ]. Then for all k ≥ 1, there exists a
randomized algorithm B̂k which takes as input any ε, δ ∈ (0, 1), and achieves the following. In
total computational time at most (C+G+1)fk+1(ε, δ), and with only access to randomness at
most fk+1(ε, δ) calls to the base simulator B, returns a random number X satisfying P(|X −
Dk| ≤ ε) ≥ 1− δ.
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Chapter 5

MDP as an optimal stopping
problem

Recall that Chapter 3 introduced MDP, as well as several exact algorithms and an approx-
imation method. The chapter discusses some difficulties of MDP and the reason why exact
methods generally do not work. This difficulty raised the need for approximation methods,
but these approximation methods generally do not have an approximate guarantee. This
chapter discusses a way to obtain approximate guarantees related to MDP, using an optimal
stopping problem. We do this by creating an optimal stopping problem from an MDP, de-
noted by OS-MDP. Hence, the bounds obtained in Chapter 4 apply on OS-MDP.
Section 5.1 introduces OS-MDP. Section 5.2 discusses policy iteration in the OS-MDP set-
ting. Section 5.3 uses the value iteration algorithm, and finally, section 5.4 applies ADP to
OS-MDP.

5.1 OS-MDP model: stochastic process over policy space

First, some preliminaries. Recall the definition of a Markov chain (Definition 2) and that an
MDP with a fixed policy becomes a Markov chain. Additionally, recall that πn is a policy in
iteration n and that Π is the set of all policies. The value of a Markov chain MC is denoted
by G(MC), see equation (3.2). Let MC(π) denote the Markov chain obtained from fixing
policy π in the MDP.
Next, construct the stochastic process over the policy space. Let πi, πj ∈ Π be two arbitrary
policies and denote U as a transition kernel. Then U(πi, πj) denotes the probability to go from
πi to πj . The transition kernel U can be written as a |Π|×|Π| matrix. Consequently, U defines
a Markov chain with state space Π. Let this Markov chain be defined as π̂ = {πn, n ≥ 1}.
Denote π̂N = {πn, 1 ≤ n ≤ N}. The value G(MC(π)) denotes the costs for state π ∈ Π.
Define

OPT = inf
τ∈T

E
[
G(MC(πτ ))

]
, (5.1)

where τ is a stopping time and T is the set of stopping times bounded on [1, |Π|]. Define
OPT (N) = infτ∈TN E[Zτ ], where TN denotes the set of all stopping times bounded on [1, N ].
This completes the formulation of OS-MDP.

47
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The objective OPT uses the entire interval while OPT (N) uses the interval [1, N ]. The policy
obtained at τ and value OPT are not necessarily optimal for the MDP. Instead, OPT outputs
the costs of the Markov chain corresponding to the policy obtained at stopping time τ . It
depends on the method used whether this policy will be optimal for the MDP or not.
Observe that π̂ is a Markov chain over the policy space, and MC(π) is a Markov chain over
the state space S going through time t in the original MDP. For the remainder of the chapter,
define Zn = G(MC(πn)). Recall Definition 6 and denote Zkn(N) as Zkn where n is bounded
on [1, N ]. Recall the definition of EK , repeated here for clarity:

EK =
K∑
k=1

E
[

min
n∈[1,N ]

Zkn(N)
]
. (5.2)

Let EK(N) denote EK where n is bounded on [1, N ]. Next, define the regret term Z
k
n =

Zkn(N)− E[mini∈[1,M ] Z
k
i (M)|Fn] for k ≥ 1.

Definition 8. Define

EK(N,M) =
K∑
k=1

E
[

min
n∈[1,N ]

Z
k
n(N,M)

]
. (5.3)

The following corollary states a general result for the error between OPT (N) and OPT using
the approximations EK(N) and EK(|Π|).

Theorem 12. If Zn ∈ [0, 1] for all n ∈ [1, |Π|] and 1 ≤ N < |Π| <∞, then for any K ≥ 1

EK(N, |Π|)− 1

K + 1
≤ OPT (N)−OPT ≤ EK(N, |Π|) +

1

K + 1
(5.4)

Proof. Recall Theorem 7 which applied on OPT (N) and OPT yields

OPT (N) ≤ EK(N) +
1

K + 1
∀K ≥ 1, (5.5)

and
OPT ≤ EK(|Π|) +

1

K + 1
∀K ≥ 1. (5.6)

Recall Theorem 6 which states thatOPT =
∑∞

k=1 E[minn∈[1,|Π| Z
k
n(|Π|)]. Additionally, Lemma

3 states that Zkn is non-negative. Therefore by definition of EK

OPT ≥ EK(|Π|) ∀K ≥ 1, (5.7)

and
OPT (N) ≥ EK(N) ∀K ≥ 1. (5.8)

Combining inequalities (5.5) and (5.7) yields

OPT (N)−OPT ≤ 1

K + 1
+ EK(N)− EK(Π) ∀K ≥ 1. (5.9)

Using inequalities (5.6) and (5.8) we obtain

OPT (N)−OPT ≥ −1

K + 1
+ EK(N)− EK(Π) ∀K ≥ 1. (5.10)
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Consider

EK(N)− EK(|Π|) =
K∑
k=1

(
E[ min
n∈[1,N ]

Zkn(N)]− E[ min
i∈[1,|Π|]

Zki (|Π|)]
)
. (5.11)

Using the law of total expectation1 and setting the random variable Y to Ft for some t ∈
[1, |Π|], allows to rewrite equation (5.11) to

EK(N)− EK(|Π|) =

K∑
k=1

(
E[ min
n∈[1,N ]

Zkn(N)]− E[E[ min
i∈[1,|Π|]

Zki (|Π|)|Ft]]
)
. (5.12)

Rewriting equation (5.12) using E[X + Y ] = E[X] + E[Y ] for arbitrary random variables X
and Y and independence in n of the right term, yields

EK(N)− EK(|Π|) =
K∑
k=1

(
E[ min
n∈[1,N ]

(
Zkn(N)− E[ min

i∈[1,|Π|]
Zki (|Π|)|Ft]

)
]
)
. (5.13)

Observe that {E[mini∈[1,|Π|] Z
k
i (|Π|)|Ft], t ≥ 1} is a martingale by Proposition 1. Recall

equation (4.5), which states that the martingale {Yt, t ≥ 1} has E[Yt] = E[Y1]. Set t = n,
which yields

EK(N)− EK(|Π|) =
K∑
k=1

(
E[ min
n∈[1,N ]

(
Zkn(N)− E[ min

i∈[1,|Π|]
Zki (|Π|)|Fn]

)
]
)

(5.14)

= EK(N, |Π|) (5.15)

Combining inequalities (5.9) and (5.10) with equality (5.15) yields inequality (5.4), which
completes the proof of Theorem 12.

The term EK(N, |Π|) is the approximation of the error between OPT (N) and OPT . Recall
that section 4.5 introduced the algorithm to approximate EK for a general optimal stopping
problem. Observe that EK(N, |Π|) consists of terms that can be estimated using algorithms
BK and B̂K , see algorithms 7 and 8 respectively. Algorithm 10, denoted by BK , is a sketch
of the algorithm to approximate the terms of EK(N,M), which uses algorithm 9, denoted by
B̃K . The calls to the base simulator B correspond to an instance of π̂.
There are many possibilities to design the transition matrix U . For example completely ran-
dom, implying that every policy has equal probability after every iteration. Other options
include using MDP solution methods to define U . The upcoming sections discuss the impli-
cations of Theorem 12 for policy iteration, value iteration and ADP. Each of these solution
methods include a defined transition matrix U .

5.2 Policy iteration

Recall the policy iteration algorithm and relevant results from section 3.3.4. Policy iteration
outputs an optimal policy π∗. The cardinality |Π| bounds the amount of iterations, since
the algorithm never visits a policy twice unless it is the optimal policy, in which case the
algorithm terminates [24].

1Law of total expectation: E[X] = E[E[X|Y ]] for any random variable Y on the same probability space.
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Algorithm 9: Approximate Zkt (N,M) for given instance η.
Result: ε-approximation to Zkn(N,M) given η w.p. at least 1− δ
Algorithm B̃k(n, η, ε, δ) ;
Create a length-N( ε4 ,

δ
4) vector A0 ;

for i=1 to N( ε4 ,
δ
4) do

Generate an independent call to B(n, η) and store in D by M matrix A1 ;
Create a length-M vector A2 ;
for j=1 to M do

Generate an independent call to Bk
(
j, A1

[j],
ε
4 ,

δ
4N( ε

4
, δ
4

)M

)
and store in A2

j ;

end
Compute the minimum value of A2 and store in A0

i ;

end
Generate an independent call to Bk(n, η, ε2 ,

δ
2) and store as variable A3 ;

Return A3 − (N( ε4 ,
δ
4))−1

∑N( ε
4
, δ
4

)

i=1 A0
i ;

Algorithm 10: Approximate E[minn∈[1,N ] Z
k
n(N,M)]

Result: ε-approximation to E[minn∈[1,N ] Z
k
n(N,M)] w.p. at least 1− δ

Algorithm Bk(ε, δ) ;
Create a length-N( ε2 ,

δ
2) vector A0 ;

for i=1 to N( ε2 ,
δ
2) do

Generate an independent call to B(0, ∅) and store in D by N matrix A1 ;
Create a length-N vector A2 ;
for j=1 to N do

Generate an independent call to B̃k
(
j, A1

[j],
ε
2 ,

δ
2N( ε

2
, δ
2

)N

)
and store in A2

j ;

end
Compute the minimum value of A2 and store in A0

i ;

end

Return (N( ε2 ,
δ
2))−1

∑N( ε
2
, δ
2

)

i=1 A0
i ;

Next, construct Markov chain π̂ for policy iteration. Recall the definition of Πn
PI from section

3.3.4, thus Πn
PI denotes the set of best improving policies that are as similar as possible to

πn. Define U as

U(πn, πj) =


1
|ΠnPI |

if πj ∈ Πn
PI ,

0 otherwise.
(5.16)

Assume that |Πn
PI | = 1 for all n ∈ [1, |Π|], thus always a single best improving policy, unless

stated otherwise.
Consider the optimal stopping problem defined by Markov chain π̂. Observe that when con-
sidering π̂N for 1 ≤ N < |Π|, the policy found at N is not necessarily optimal. But the best
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policy for the Markov chain is always obtained at N , by Theorem 2, hence τ = N is optimal.
Next, consider Theorem 12 in the setting of policy iteration. Here OPT is the value corre-
sponding to an optimal policy for the MDP and OPT (N) uses the policy found at N , since
the stopping problem defined on [1, N ] has as optimal stopping time τ = N . Therefore The-
orem 12 gives an estimate of the difference between πN and π∗, which is an estimate of the
error of terminating policy iteration early.

Corollary 2. Let |Πn
PI | = 1 for all n ≥ 1 and 1 ≤ N < |Π|. Let π̂ the Markov chain created

by policy iteration and π̂N the N steps Markov chain using policy iteration. Then

OPT (N)−OPT = E1(N, |Π|) (5.17)

Proof. Let a ∈ [1, |Π|]. First, show that OPT (a) = E[Za] for any a ∈ [1, |Π|]. Recall that
OPT (a) = infτ∈T E[Zτ ]. The construction of U yields that the best policy is always obtained
at a, therefore τ = a is optimal. This implies OPT (a) = E[Za], which completes the first part
of the proof.
Second is to show that EK(a) = E[Za]. Recall the definition of Zkn at Definition 6. Consider
E1(a) = E[minn∈[1,a] Zn]. The construction of U yields that n = a obtains the best policy,
and therefore E1(a) = E[Za]. Next is to show that E[minn∈[1,a] Z

k
n] = 0 for k ≥ 2. Induction

shows this. First, consider k = 2 and use Definition 6 to obtain

E[ min
n∈[1,a]

Z2
n] = E[ min

n∈[1,a]
(Zn − E[ min

i∈[1,a]
Zi|Fn])]. (5.18)

Since |Πn| = 1 for all n ≥ 1, there is an unique policy at every iteration n. Therefore the
term E[mini∈[1,a] Zi|Fn] = E[Za], since the filtration has no influence. This implies

E[ min
n∈[1,a]

Z2
n] = E[ min

n∈[1,a]
[Zn − E[Za]]] = 0. (5.19)

This proves the first part of the induction.
Assume that E[minn∈[1,a] Z

k
n] = 0 holds for some K ≥ 2, then show that E[minn∈[1,a] Z

K+1
n ] =

0. Applying Definition 6 gives

E[ min
n∈[1,a]

ZK+1
n ] = E[ min

n∈[1,a]
ZKn − E[ min

i∈[1,a]
ZKi |Fn]]. (5.20)

Observe that by |Πn
PI | = 1 we obtain E[mini∈[1,a] Z

K
i |Fn] = E[mini∈[1,a] Z

K
i ] for all n ∈ [1, a].

The induction hypothesis states that E[mini∈[1,a] Z
K
i ] = 0 and therefore

E[ min
n∈[1,a]

ZK+1
n ] = E[ min

n∈[1,a]
ZKn − 0] = 0. (5.21)

This completes the induction. Using the previous results and the definition of E1(N,M)

yields
OPT (N)−OPT = E1(N)− E1(Π) = E1(N, |Π|). (5.22)

This completes the proof of Corollary 2.
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Recall MC(π) denotes the Markov chain obtained by fixing policy π in the MDP and that
G(MC) computes the value of Markov Chain MC. The next corollary makes Corollary 2
more specific.

Corollary 3. Let |Πn
PI | = 1, ∀n ≥ 1 and let π̂ denote the Markov chain obtained by policy

iteration. Let G(MC(π)) ∈ [0, 1] for all π ∈ Π. Then

OPT (N)−OPT = E[G(MC(πN ))]− E[G(MC(π∗))]. (5.23)

Proof. Corollary 2 states that OPT (N) − OPT = E1(N, |Π|). By the definition of Zkt and
Definition 6,

E1(N,Π) = E[ min
n∈[1,N ]

(
Zn(N)− E[ min

i∈[1,|Π|]
Zi(|Π|)|Fn]

)
]. (5.24)

Since |Πn
PI | = 1, there is always a single best improving policy and hence the filtration Fn

has no influence on the right term. Additionally, the term Zn = G(MC(πn)) denotes the
value of the Markov chain obtained by applying πn to the MDP. Recall from Theorem 2 that
V n+1 ≤ V n and as a consequence G(MC(πn+1)) ≤ G(MC(πn)). Therefore the minimum
Zi, i ∈ [1, |Π|] will be obtained at |Π|, thus obtaining the optimal policy. Therefore

OPT (N)−OPT = E[G(MC(πN ))]− E[G(MC(π∗))]. (5.25)

This completes the proof of Corollary 3.

Corollary 3 states that the error between OPT (N) and OPT is the expected value obtained
at N minus the expected value of the optimal policy. This is not a surprise, since policy
iteration improves in every iteration and there is no randomness involved.

5.3 Value iteration

The value iteration algorithm is introduced in section 3.3.3. Recall that the value iteration
algorithm computes an γ−optimal policy and that updating the values of each state, until the
stopping criteria is satisfied, achieves this. The sequence {V n, n ≥ 1} converges in norm to
V ∗, by Theorem 1, where V ∗ is the value of each state corresponding to the optimal policy π∗.
Any value vector V n has a corresponding policy, denoted by πn. Observe that G(MC(πn))

has no specific relation to G(MC(πn+1)) as was the case in policy iteration. This implies that
the policy πn can be better then πn+1 [24]. The parameter M is used instead of |Π|, where
N < M <∞.
The amount of iterations is finite, by Theorem 1, but is unknown at the start of the algorithm.
Recall the definition of Πn

V I in section 3.3.3, which denotes the set of policies corresponding
to value vector V n. Assume |Πn

V I | = 1. Define the transition matrix U as

U(πn, πj) =

1 if πj ∈ Πn+1
V I ,

0 otherwise.
(5.26)

Corollary 4 applies Theorem 1 on Theorem 12.
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Corollary 4. Let π̂ denote the Markov chain obtained by value iteration. Let G(MC(π)) ∈
[0, 1] for all π ∈ Π and |Πn

V I | = 1. Then

OPT (N)−OPT (M) ≤ 1

2
+ 2T

λN + λM

1− λ
||V1 − V0||+ min

i∈[1,M ]
(T ||Vπi || − Zi). (5.27)

Proof. Recall equation (3.11). Additionally recall the definition of the vector norm ||V || =

sups∈S |V (s)|.
Next consider EK(N,M) =

∑K
k=1 E[minn∈[1,N ] Z

k
n(N,M)] and recall the definition of Zkt . Let

k = 1, which yields

E1(N,M) = E[ min
n∈[1,N ]

Z
1
n(N,M)] (5.28)

= E
[

min
n∈[1,N ]

(
Zn(N)− E[ min

i∈[1,M ]
Zi|Fn]

)]
. (5.29)

Recall that the MDP has T time steps. This implies, given some policy πn, that Zn ≤ T ||Vπn ||.
This holds because visiting the state with the highest costs T times is worse or equal then
any other sequence of states visited. Hence a bound on equation (5.29) is

≤ E
[

min
n∈[1,N ]

(
T ||Vπn || − E[ min

i∈[1,M ]
Zi|Fn]

)]
. (5.30)

The triangle inequality states ||x+ y|| ≤ ||x||+ ||y||. Therefore ||Vπn || = ||Vπn −Vπ∗ +Vπ∗ || ≤
||Vπn − Vπ∗ ||+ ||Vπ∗ ||. Applying this to inequality (5.30) yields

≤ E
[

min
n∈[1,N ]

(
T ||Vπn − Vπ∗ || − E[ min

i∈[1,M ]
(Zi − T ||Vπ∗ ||)|Fn]

)]
. (5.31)

Next, apply Theorem 1 to the above equation to obtain

≤ E
[

min
n∈[1,N ]

(
T

2λn

1− λ
||V 1 − V 0|| − E[ min

i∈[1,M ]
(Zi − T ||Vπ∗ ||)|Fn]

)]
. (5.32)

Note that the filtration Fn and the expectation are removable, since |Πn
V I | = 1 for all n.

Additionally, observe that for λ ∈ (0, 1) the left term is minimised at N . Therefore, equation
rewrites (5.32) to

= T
2λN

1− λ
||V 1 − V 0|| − min

i∈[1,M ]
(Zi − T ||Vπ∗ ||). (5.33)

Let ||Vπ∗ || = ||Vπ∗ + Vπi − Vπi ||, then rearranging terms in (5.33) and applying the triangle
inequality yields

≤ T 2λN

1− λ
||V 1 − V 0||+ T (||Vπ∗ || − ||VπM ||)− min

i∈[1,M ]
(Zi − T ||Vπi ||). (5.34)

Theorem 1 bounds equation (5.34) by

≤ 2T
λN + λM

1− λ
||V 1 − V 0||+ min

i∈[1,M ]
(T ||Vπi || − Zi). (5.35)

This completes the proof of Corollary 4.
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5.4 Approximate dynamic programming

Recall ADP from section 3.4.1. The idea of ADP is to approximate the value of each state,
denoted by V n for n ≥ 1. Similar to value iteration, discussed in the previous section, a value
vector has a corresponding policy. Define the set Πn

ADP as arg minπ∈Π{Cπ + λPπV
n}, which

is the set of optimal policies given value vector V n. The method in which V n is computed
can vary. For example, the standard ADP algorithm 5, or the basis function approach, as
discussed in section 3.4.2, are both possibilities. Define U as

U(πn, πj) =


1

|Πn+1
ADP |

if πj ∈ Πn+1
ADP ,

0 otherwise.
(5.36)

In policy iteration and value iteration, it is certain that the set Πn would at some point contain
optimal policies or γ-optimal policies respectively. This is not the case for ADP, hence OPT
is not the optimum for the MDP.
Let M bound the amount of iterations used by ADP, because ADP can visit policies multiple
times. Denote OPT (M) instead of OPT to differ between the optimum for ADP and MDP
respectively. The ADP algorithm finds OPT (M) when it terminates after M iterations.
Theorem 12 gives an estimate of the error using πn versus πm, where n ∈ [1, N ] andm ∈ [1,M ]

for N < M . Algorithm 10 approximates the difference between the values obtained by πn

and πm.



Chapter 6

Results for The Game

This chapter applies the results obtained in Chapter 5 to The Game. This is done for illustra-
tion. Section 3.5.2 introduces The Game and models it as an MDP. Additionally, 3.5.3 gives
a description of the application of ADP to The Game.
Section 6.1 applies OS-MDP to The Game for the three solution methods; policy iteration,
value iteration, and ADP. Section 6.2 contains the results of the ADP method applied on The
Game. Finally, section 6.3 gives a numerical example to bound The Game using OS-MDP.

6.1 Applying OS-MDP to The Game

This section uses the bounds obtained in Chapter 5 and relates them to The Game. Recall
equation (3.41) and define the objective of the OS-MDP for The Game as

OPTTG(N) = inf
τ∈T

(
98− E

[ T∑
t=1

99∑
c=2

4∑
p=1

xπ
τ

t (p, c)
])
, (6.1)

where xπt (p, c) denotes whether policy π plays card c on pile p in turn t. Applying the results
of Chapter 5 require OPTTG(N) ∈ [0, 1], obtained by dividing the objective value by 98.
Additionally, define Zn as the expected value obtained by policy πn. Therefore

Zn = 1− 1

98
E
[ T∑
t=1

99∑
c=2

4∑
p=1

xπ
n

t (p, c)
]
. (6.2)

6.1.1 Policy iteration

To determine the error of stopping early in policy iteration for The Game, compute the error
OPTTG(πN )−OPTTG. Applying Corollary 3 and rearranging the terms yields

0 ≤ OPTTG(N)−OPTTG(|Π|) =
1

98

(
E
[ T∑
t=1

99∑
c=2

4∑
p=1

xπ
∗
t (p, c)

]
− E

[ T∑
t=1

99∑
c=2

4∑
p=1

xπ
n

t (p, c)
])
.

(6.3)

Unfortunately, equation (6.3) is not particularly useful, since it simply states the difference
between the two expected values of the policies.
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6.1.2 Value iteration

Recall Corollary 4, which bounds the error using value iteration. The parameter T = 49 in
The Game. Additionally, fill in Zi using equation (6.2). Assume that V0 = 0. Therefore,
||V1 − V0|| ≤ 7

98 , which denotes the largest possible jump in value from one instant reward.
Combining this yields

OPTTG(N)−OPTTG(M) ≤ 1

2
+

7

2

λN + λM

1− λ
+ min
i∈[1,M ]

(
49||Vπi ||−1+

1

98
E
[ T∑
t=1

99∑
c=2

4∑
p=1

xπ
i

t (p, c)
])
.

(6.4)
Note that OPTTG(N)−OPTTG(M) ∈ [0, 1]. Therefore, inequality (6.4) needs 7

2
λN+λM

1−λ < 1
2 .

For example, for λ = 0.9 andM = 50 requires N = 45. And λ = 0.99 andM = 1000, requires
at least N = 656. This observation excludes the impact of the minimisation term in equation
(6.4), thus larger M and N are probably required.

6.1.3 ADP

Recall Definition 8. Apply equation (6.2) to EK(N,M), and rearrange the terms to obtain

EK(N,M) =
1

98
E
[

min
n∈[1,N ]

(
E[ min
i∈[1,M ]

T∑
t=1

99∑
c=2

4∑
p=1

xπ
i

t (p, c)]|Fn]− E[
T∑
t=1

99∑
c=2

4∑
p=1

xπ
n

t (p, c)]
)]

+
K∑
k=2

E
[

min
n∈[1,N ]

Z
k
n(N,M)

]
. (6.5)

As illustration, let k = 1. Combining Theorem 12 and equation (6.5), yields the following
upper and lower bound,

OPTTG(N)−OPTTG(M) ≤ (≥)
1

98
E
[

min
n∈[1,N ]

(
E[ min
i∈[1,M ]

T∑
t=1

99∑
c=2

4∑
p=1

xπ
i

t (p, c)]|Fn]

− E[

T∑
t=1

99∑
c=2

4∑
p=1

xπ
n

t (p, c)]
)]

+ (−)
1

2
. (6.6)

6.2 Approximating The Game using ADP

This section applies the approximation method described in section 3.5.3 for The Game.
This sections also tests several different initial settings and sets of features. The updating
parameter κ for the recursive least squares method (see appendix) is set on either 0, implying
stationary, or 0.5, implying non-stationary. The exploration and exploitation settings N1 and
N2 are set such that N1 ×N2 equals 300. All runs use the same set of sample paths. Table
6.1 contains all settings for each run. Additionally, the initial feature weights θ0

f are always
initialised on 1 for every feature f ∈ F . The settings of each run are as follows;

R1: Initial run with a set of features which seemed reasonable. Non-stationary data.

R2: A larger set of features with stationary data.
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R3: The features ’Jumping back pairs’ and both ’abs dif’ features are removed. The absolute
difference between piles feature is obsolete, which we will explain in section 6.2.1. Non-
stationary data.

R4: Same as R3, except stationary data.

R5: Similar to R3, however without the ’Sum min dif hand’ feature, because it had a small
feature weight and hence little impact.

R6: Same as R5, except stationary data.

R7: Same as R3, but instead a more exploitation heavy approach is taken. Therefore N2 is
increased and N1 decreased.

R8: Same as R7, except stationary data.

Table 6.1: Initial settings for ADP applied on The Game. Number in brackets refer to the
features in section 3.5.3.

Name R1 R2 R3 R4 R5 R6 R7 R8
Features Pile 1 (1) * * * * * * * *

Pile 2 (1) * * * * * * * *
Pile 3 (1) * * * * * * * *
Pile 4 (1) * * * * * * * *
Playable space (2) * * * * * * * *
Amount of cards in play (3) * * * * * * * *
Abs dif 1 and 2 (5) * *
Abs dif 3 and 4 (5) * *
Jumping back pairs (7) *
Sum min dif (8) * * * * *

Initial settings N1 50 50 50 50 50 50 15 15
N2 6 6 6 6 6 6 20 20
κ (0 means stationary) 0.5 0 0.5 0 0.5 0 0.5 0

6.2.1 Analysis of different settings

Every run yields feature weights of the final iteration, given in table 6.2. The feature weights
determine the policy used for The Game. One iteration of ADP takes approximately 5 min-
utes. Hence 300 iterations take close to 25 hours.
Recall the definition of OPTTG from equation (3.41). The formulation of OPTTG maximises
the value of each state. Additionally, recall that every feature f ∈ F satisfies φf (s) ≥ 0.
Therefore, a positive feature weight implies good characteristic of the state, while a negative
feature weight corresponds to a bad characteristic of the state. For example, consider R1,
where θ1 = −67.7 and θ2 = 10.2. Therefore in R1, actions are preferred that reduce the
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playable space on pile 1 and maximise the playable space on pile 2. Hence, playing a 90 on
pile 1 is an improvement of the value of the state, while playing a 90 on pile 2 is not.
The features ’abs dif 1 and 2’ and ’abs dif 3 and 4’ were removed after R2. This removal is
because they were obsolete. Consider R1, where the feature weight for θ7 = 197. However,
observe that the separate feature values also differ, θ1 = −67.7 and θ1 = 10.2. Therefore,
assume that the number on pile 1 will be larger than on pile 2. Hence feature ’abs diff 1 and
2’ can be written as Qt(1)−Qt(2), which implies

V (s) = θ1Qt(1) + θ2Qt(2) + θ7(Qt(1)−Qt(2)) +
∑

f∈F\{1,2,7}

θfφf (s) (6.7)

= (θ1 + θ7)Qt(1) + (θ2 − θ7)Qt(2) +
∑

f∈F\{1,2,7}

θfφf (s). (6.8)

Therefore ’abs diff 1 and 2’ is obsolete when there is a strong preference for one of the two
piles since features ’Pile 1’ and ’Pile 2’ capture this.
Several observations can be made from table 6.2 for each run. In every run, ’cards in play’ has
a positive influence on the value of the state, except for R1. The instance R6 is interesting
since it contains two feature weights very close to zero. There are several instances with
almost the same feature weights for piles 3 and 4, namely R1, R4, R5 and R6. Piles 1 and 2
do not have such similar feature weights.

Table 6.2: Feature weights for every feature after 300 iterations. Numbers between brackets
correspond to the feature defined in section 3.5.3.

R1 R2 R3 R4 R5 R6 R7 R8
Pile 1 (1) -67.7 1.16 -2.85 5.67 31.1 -0.0664 -3.87 -4.77
Pile 2 (1) 10.2 -1.06 30.5 4.91 30.4 0.792 21.8 -2.80
Pile 3 (1) 129 0.761 -7.31 -1.18 -1.28 1.00 -73.1 -7.13
Pile 4 (1) 129 -0.633 8.37 -1.18 -1.31 1.00 -43.5 4.71
Playable space (2) -80.1 1.08 -12.6 -1.85 16.1 -0.0962 -1.99 3.04
Cards in play (3) -162 17.3 101 19.0 173 14.0 108 18.89
Abs dif 1 and 2 (5) -197 0.844
Abs dif 3 and 4 (5) 0.105 2.52
Jumping back pairs (7) -0.896
Sum min dif (8) 0.383 -0.246 1.51 -0.564 3.17

6.2.2 Comparing strategies for The Game

Feature weights yield policies for The Game. This section compares these obtained policies.
First, two random instances are created, which are played out by the policies and a card game
expert. Then observe how the policies perform compared to the expert. Second, construct
several instances where a perfect score is obtainable. These instances are then played out by
the policies and compared. The instances are found in the appendix. Table 6.3 states the
results.
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The expert performs best in the two random instances. Policy R6 performed very well and
achieved an almost equal score. All other policies are significantly worse.
The three winnable instances also show policy R6 as best. The expert did not play the
constructed instances, since the expert knew the sequence. Policy R2 also performed well
in these three instances. In both the random instances and winnable instances, policy R8
performed terribly.
Observe that policies R7 and R8 seem to perform worse. These two settings used a more
exploitation heavy approach and less exploration. Therefore more exploration is preferred for
The Game. Let us analyse policies R2, R6 and R8 more thoroughly. First, consider policy
R6, which performed the best of the policies created by ADP. Features ’Pile 1’ and ’Playable
space’ are close to zero, which implies that they have little impact on the value of a state. All
other feature weights are positive. None of the other policies has this; there is always a feature
with a significant negative weight. The non-negative feature weights are what sets R6 apart
from the other policies. Policy R2 performed second best, even obtaining a perfect score in
one winnable instance. What policies R2 and R6 have in common, is that the feature weight
differences between piles 1-2 and 3-4 are rather small. For example, consider R2. Features
’Pile 1’ and ’Pile 3’ have feature weights θ1 = 1.16 and θ3 = 0.761 respectively. Though there
is a difference, the difference in other runs is larger, for example, R1, with feature weights
θ1 = −67.7 and θ3 = 129.
Policy R8 performed worse in all instances. Several negative feature weights for the individual
piles imply that the policy wants to make big jumps. The relatively large feature weight for
’sum min dif’ implies that a small jump from hand cards to pile cards is preferred. Therefore,
the policy will refrain from playing cards with small differences and rather play cards with
large differences on piles. This behaviour explains why R8 performs terribly.

Table 6.3: Amount of cards remaining after playing The Game.
Self R1 R2 R3 R4 R5 R6 R7 R8

Random 1 28 65 50 58 58 60 29 66 74
Random 2 38 63 60 60 57 58 41 78 80
Winnable 1 - 20 0 19 18 19 0 19 58
Winnable 2 - 68 31 69 60 63 3 77 87
Winnable 3 - 69 6 56 71 73 1 83 89

6.3 Error bound for The Game using ADP

This section discusses the approximation Ek(N,M) and whether it can be approximated
efficiently for ADP. For the ADP, use the initial settings of R6. Algorithm 10 uses N = 5,
M = 10 and k = 1. Additionally, the computation of G(MC(π)) was approximated for
all policies, using 2 samples to approximate the value. Also, the parameters ε and δ were
not assigned and instead assign N(ε, δ) = 2. One test instance, using the settings of R6, is
performed.
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The result is Ek(N,M) = 0.25, which yields the following bound

0 ≤ OPT (N)−OPT (M) ≤ 0.25. (6.9)

The lower bound found −0.25, however it is not useful since OPT (N) − OPT (M) ≥ 0.
The difference between OPT (N) and OPT (M) is at maximum 0.25, which corresponds with
24 cards. Hence, running the ADP algorithm for 10 iterations instead of 5 would yield a
maximum expected improvement of 24 cards. This bound has no guarantee since the error
parameter ε, and δ were not initialised formally. This simple instance required four days of
computation.



Chapter 7

Conclusions and Recommendations

7.1 Conclusions

MDPs are challenging to optimally solve in practical instances. This challenge is due to the
three curses of dimensionality: size state-space, size action set and random information possi-
bilities. The Bellman equations show this since large state-space implies many equations that
require solving. Simultaneously, a large action set requires checking of each action and large
random information set implies the computation of large sums.
Approximation methods are frequently used in practical instances to solve MDPs. One ap-
proximation method is ADP, which uses the Bellman equations to approximate the value of
each state. Determining the quality of different ADP settings is achieved by comparing it to
other approximation results or smaller MDPs instances. However, there are no approximate
guarantees for ADP related to MDP.
In this thesis, we attempted to apply the results from Chen & Goldberg [10] to general MDPs.
We were able to create an optimal stopping problem from an MDP by creating a stochastic
process over the policy space, denoted by OS-MDP. This model creates an optimal stopping
problem to which the results of [10] can be applied, mainly the approximate guarantee given
in Theorem 7.
The approximate guarantees obtained were applied to the OS-MDP model created in Chap-
ter 5. We obtained an error bound between running methods N steps versus M steps, where
N < M . For this it was required that the MDP is normalised and formulated with a min-
imisation objective function. The bound is denoted by EK(N,M) and can be approximated
with error parameters ε, δ and with absolute difference of 1

k+1 from OPT (N)−OPT (M).
The OS-MDP was constructed by using policy iteration, value iteration and ADP. However,
the bounds could not be applied effectively on policy iteration, as the regret terms Zkn for
k ≥ 2 would always be equal to 0. Therefore, the approximation that should depend on k,
did not depend on k at all.
Value iteration applied to OS-MDP did yield a bound, given in Corollary 4. The bound was
only from above and dependent on the discount factor λ and the MDP horizon length T .
Applying ADP to construct the OS-MDP, yields a way to determine the error of terminating
ADP algorithm early, therefore determining the benefit of continuing ADP. This however,
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is not an approximate guarantee related to a MDP, but an approximate guarantee only for
ADP.
The Game was used as the running example throughout this thesis. Several policies were
acquired by applying ADP on The Game. The basis function approach was applied to ap-
proximate the value of the post-decision state. The recursive least squares method was used
with both stationary and non-stationary settings to update the feature weights.
Every setting used 300 iterations, with a combination of exploitation and exploration. The
run-time was approximately 25 hours. Every obtained policy was tested for several random
examples and several winnable examples. Comparing the results of the random examples
shows that policy R6 plays equally good as an expert, while the other policies performed
worse than R6. The winnable instances showed that again policy R6 performed best, how-
ever, policy R2 also obtained good results. Both R2 en R6 use stationary data updating,
therefore, when ADP is applied to The Game, stationary data updating is preferred. Polices
R1 up to R6 used N1 = 50 and N2 = 6, while R7 and R8 used N1 = 15 and N2 = 20. This
change in settings resulted in R7 and R8 performing terribly and as such a more exploration
heavy approach is preferable.
Finally, one OS-MDP instance was tested on The Game. The parameters ε and δ were not
initialised, instead the number of iterations were fixed. Additionally, N = 5, M = 10 and
the settings of R6 were used for the ADP script. Doing so, an upper bound of 0.25 between
OPTTG(N) and OPTTG(M) was obtained. This result corresponds with an maximal im-
provement of 24 more cards played. Four days were required to carry out the test of this
small scenario.
The goal of this thesis was to determine whether optimal stopping problems can be used to
obtain an approximate guarantee for ADP related to MDP. This goal was not achieved, since
no good relation between the ADP solutions and MDP solution was found.

7.2 Recommendations and future research

Several assumptions were made on the initial MDP. Namely, a finite horizon, finite-sized state-
space and a finite action set in each state. Future research is needed to formulate OS-MDP
for MDPs where these assumptions do not hold.
Only the approximate guarantee of Theorem 7 was applied to OS-MDP, whereas, Theorems
9 and 10 also give an approximate guarantee.
In both value iteration and policy iteration, it was assumed that there is always a single best
improvement in the OS-MDP model. For future research it can be interesting to remove this
assumption and see how Corollaries 2 and 4 change.
The bounds obtained for value iteration in section 5.3 can most likely be improved, as currently
it only contains a bound for k = 1 and no lower bound. Doing so, a lower bound can be
obtained, as well as a statement for larger k.
Another possible topic for future research is to apply OS-MDP on simulated-annealing since
both search in the policy space. Other solution methods or heuristic approaches, for example,
tabu-search or generic algorithms, can also be used as input for OS-MDP.
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Algorithms 9 and 10 were not shown to have guarantees and are only given as a sketch of
the application of OS-MDP. Proving the correctness of these algorithms or modifying the
algorithms so that they hold, can be a possible direction for future research.
The numerical test of OS-MDP on The Game was carried out for a small instance and a few
iterations. Only a small numerical test was conducted, due to the computational difficulties as
even this small scenario took four days to compute. With this in mind, a smaller or different
problem than The Game is required to test the boundaries numerically.
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Appendix

Recursive least squares method

Taken from [18]. Initialise θ0
f for all f ∈ F . Let B0 be a |F | × |F | diagonal matrix with some

small constant on the diagonal. Let φ(sx,nt denote the |F | length vector containing the value
of each feature in vector form. Then

Bn =
1

αn

(
Bn−1 − 1

γn
(Bn−1φ(sx,nt )(φ(sx,nt ))TBn−1)

)
, (7.1)

and
γn = αn + φ(sx,n, t)TBn−1φ(sx,nt ). (7.2)

Define
Hn =

1

γn
Bn−1. (7.3)

Updating of θnf is done by computing

θnf = θn−1
f −Hnφ(sx,nt )(V

n−1
t−1 (sx,nt )− v̂nt ). (7.4)

The parameter αn determines the weight of the observations on the feature weights. We let

αn = 1− κ

n
, (7.5)

where κ ∈ [0, 1) is a parameter that requires initialising. Setting κ = 0 gives stationary data
updating and other κ give non-stationary data updating.
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Instances The Game

Table 7.1: Sequence of the numbers for each instance used for The Game.
Random 1 Random 2 Winnable 1 Winnable 2 Winnable 3

99 (1st) 53 2 90 45 86 6 94 53 99 54 60 90 17 14
71 (2nd) 15 73 71 29 85 17 95 43 96 64 36 4 54 62
48 (3rd) 62 88 59 72 92 20 3 27 3 72 41 89 63 80
47 13 86 56 93 44 22 7 21 6 34 63 10 21 28
29 84 33 54 9 87 26 8 18 90 46 12 98 51 52
19 37 81 42 12 10 29 14 13 7 62 49 6 57 99
17 59 11 30 5 75 19 16 12 92 24 10 83 42 24
3 12 57 39 62 78 42 25 10 17 47 57 13 58 84
26 77 70 25 47 13 32 15 9 68 53 23 97 53 65
32 35 20 35 55 88 46 34 5 8 50 9 9 41 38
61 34 22 26 58 49 47 24 4 66 82 5 71 40 66
66 24 51 99 48 52 50 31 2 14 43 69 26 48 76
68 89 90 57 76 65 58 35 96 83 58 33 91 45 19
58 31 96 4 94 96 48 39 92 20 31 70 12 44 85
50 39 7 15 46 79 38 52 83 61 35 4 81 39 23
46 18 52 77 14 66 28 59 80 16 27 74 77 61 79
76 94 16 6 60 34 30 60 79 80 48 73 74 55 16
83 27 95 63 43 38 37 63 78 22 39 11 70 49 33
65 40 87 69 67 98 41 69 76 26 77 84 2 36 82
92 75 60 2 19 11 49 74 75 79 21 85 30 50 8
30 36 55 91 16 97 57 87 72 29 38 93 59 32 86
38 72 21 17 61 37 70 99 82 71 67 97 3 60 88
25 45 56 41 24 23 73 90 77 19 52 98 73 47 22
97 82 6 68 31 74 84 68 67 78 56 88 35 64 87
80 67 8 80 50 73 85 66 56 25 28 89 69 43 94
44 4 5 21 20 83 93 61 51 42 51 91 5 29 20
93 63 43 32 28 36 97 71 45 65 59 81 18 67 92
28 9 69 18 51 70 98 65 40 76 45 86 25 37 11
78 41 79 3 7 40 88 55 36 15 30 94 34 75 7
54 10 23 53 82 89 89 44 23 55 40 95 15 27 95
98 49 42 64 22 8 91 54 33 32 18 87 68 31 96
64 74 14 84 33 27 81 64 11 75 37 2 46 72 93
85 91 95 81 86 62 44 13 56 78
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