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Preface
During my study in mechanical engineering, I progressively developed more interest in dynamics and finite element

applications. After I did an internship at Van Velzen Extern Engineering B.V. (now Intamin Holland B.V.), a company
specialized in design and analysis of amusement rides, I was quite sure to do my master thesis about an amusement ride.
Actually I am not that big of a fan of amusement rides, but the application of knowledge about subjects I really enjoy can
wonderfully be used to design and especially analyse amusement rides.

Unfortunately due to personal circumstances I have taken a little too much time for my personal liking to perform this
research, but I am very pleased with the final result. Hopefully this research does contribute in making it easier and more
predictable to design a roller coaster in the future.

I would like to thank Jurnan Schilder for his supervision, without his help and knowledge this research was not possible.
We always had very efficient meetings, helping me to get along. Furthermore I would like to thank my family, who stood by
my side during tough times. At last I would like to thank Helmer van den Hoorn, who helped me by creating the multibody
dynamic model used in the analysis.

Rob Mekers
Enschede, 3 January 2020
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ABSTRACT

In this paper a method for the analysis of vibrations in roller coaster structures is described. An initial
design is required, from which the dimensions, material properties and the time histories of contact
forces between vehicles and rails have to be retrieved as an input for the Finite Element model. The
transient loads applied on the structure are obtained from a multibody dynamic model. The guiding
principle of the Finite Element model is the equation of motion, which is solved iteratively to obtain
the displacements of the structure for each load case. The proposed method is applied to an existing
roller coaster to clarify the essential steps in the model and to test its capabilities. In the end, a second
roller coaster is treated where undesired vibrations showed up, which could potentially have been
identified before building it using the method proposed in this paper. The method is developed such
that existing Finite Element models and multibody dynamic models of roller coasters can be reused
to perform a transient analysis of the structure.

1. Introduction
Roller coasters are designed to be fun and safe at the

same time. International norms dictate, therefore there are
restrictions on the amount of G-forces on passengers and
safety of the train, track and supporting structure. These re-
strictions directly influence themaximum allowable stresses,
often by defining safety factors to multiply the calculated
stresses with. These safety factors cover the uncertainties
present in the stresses. Dynamic effects are considerably
responsible for this, as these effects are not modelled pre-
cisely in industry practice. Hence if these dynamic effects
can be modelled (more) accurately, safety factors can be re-
duced and roller coasters could be more fun without sacri-
ficing structural integrity.

The current state of the art and international norms are
tailored to the quasi-static analysis of the structure of roller
coasters. Earlier papers like [1, 2] are assuming the struc-
ture to be "sufficiently stiff". The first paper [1] considers a
procedure to properly and quickly size the rails, whereas the
second paper [2] presents a tool for the design of support-
ing structure characteristics. With the help of these two pa-
pers roller coaster structures can be modelled properly on a
global scale, however problems occur when dynamic effects
are underestimated (Lost Gravity [3]) or when a structure is
designedmore lightweight (Karacho). In both roller coasters
tuned mass dampers are installed after opening to minimize
the (unexpected) structural vibrations. Therefore, in this pa-
per a method is proposed to predict these vibrations before
building the actual roller coasters, so the general design of
roller coasters can be improved.

In this paper a Finite Element Method (FEM) (now also
readily available) is proposed as a fundamental concept to
solve the equation of motion. Performing a transient analy-
sis gives the displacements of the structure while a train is
running.

The representative loads on the track are obtained from a
∗Corresponding author

r.mekers@hotmail.com (R.L.J. Mekers)

multibody dynamic (MBD) model; a complete roller coaster
ride is simulated during one lap. The loads and positions of
the wheels are retrieved for each time step, where each time
step represents a slightly different position of the train on the
track, so each time step can also be seen as a new load case.
The obtained loads retrieved from the MBD-model are used
as external loads in FEM, after which the stiffness and mass
matrix can be determined.

The FEM-model is based on beam elements. The ap-
propriate local properties are retrieved from CAD-models,
fromwhich the stiffness andmassmatrix of each element can
be obtained. These local matrices are rotated to the global
coordinate system using rotation matrices, after which the
stiffness and mass matrices are collected in two uncoupled
global matrices. The constraint stiffness andmass matrix are
obtained after coupling the degrees of freedom by means of
a boolean matrix. The resulting equation of motion is solved
iteratively using the Newmark-Beta integration method.

Throughout this paper the reference roller coaster is con-
sidered based on Zierer’s Donderstenen, however it must be
noted the method proposed is not limited to this track. A
schematic overview of the track is shown in Fig. 1. The
displacements obtained from the transient analysis are com-
pared with the static solution for each load case to show the
benefits of this method.

In the end, a second analysis is performed on a roller
coaster where undesired transverse vibrations showed up.
Thismodel is inspired byMACK’s Lost Gravity roller coaster
and analysed as a test case for the proposed FEM-model to
test its capabilities.

The proposedmethod in this paper is developed such that
existing FEM- and MBD-models can be reused as an input
to the developed transient analysis method. Therefore this
method can be thought of as an additional analysis to already
existing methods (e.g. static calculations), with the intention
to make the method as efficient as possible to limit compu-
tational time.
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Fig. 1: Reference roller coaster track layout, the driving direction is indicated by the arrow.

2. Moving load application
The equation of motion to be solved is defined as:

Mc q̈ + Cc q̇ +Kcq = f (1)

With Mc the constraint mass matrix, Cc the constraint
dampingmatrix,Kc the constraint stiffness matrix, q the dis-
placement vector and f the force vector.

Throughout this paper it is assumed that the damping
matrix Cc is equal to zero, since it is not required to show
the advantages of the proposed method and due to the fact
that knowledge about the damping parameters of the con-
sidered roller coaster is lacking. The first step in solving the
equation of motion is to define the loads applied on the track.

To obtain an as close to realistic model as possible, the
loads applied on the track are retrieved from a MBD-model,
which is created in Simscape [4]. In this model, a full cir-
cuit of the reference roller coaster is simulated. Parts of the
train as well as all structural parts are modelled using CAD-
software and loaded into the MBD-scheme.

Fig. 2: 12 degrees of freedom beam element used in the Finite
Element Model.

A total of ten carts make up for the train, where each
cart has four guide wheels and four running wheels, except
the front cart, which has eight guide wheels and eight run-
ning wheels. Hence in total 88 wheels make contact with the
track (which is rigid) at each time step resulting in 88 loads,
consisting of components in orthogonal (y and z) direction
as well as some tangent (x) components (friction force) ac-
cording to Fig. 2. The wheels are connected to the track
using point on curve constraints, from which the position
(parametrized relative to the track) and loads can be retrieved
for each time step.

The initial position of the train in the MBD-model is
shown in Fig. 3. After positioning the train in the station,
it is transported to the top of the lift with a prescribed veloc-
ity, whereafter the train completes a lap under the action of

Fig. 3: Initial position of the train in the MBD-simulation,
columns and cross ties are not shown.

R.L.J. Mekers et al.: Preprint submitted to Elsevier Page 4 of 16
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Fig. 4: Local reaction z-forces on the left track when following the train along the track of the reference roller coaster. Positive
forces imply the train is pushing down on the track.

gravity until the brakes. A full circuit takes 45 seconds to
complete; using a sample time of 0.0025 seconds, a total of
45∕0.0025 = 18,000 time steps are simulated. The sample
time has to be sufficiently small in the MBD-simulation for
stability reasons.

After the simulation has completed, the loads and po-
sitions of the wheels at each load case are exported to the
FEM-model. To reduce computational time, the number of
load cases solved in the MBD-simulation is reduced by a
factor 10, so a total of 1,800 load cases remain. This di-
rectly affects the accuracy of the final solution, so it is im-
portant to choose the reduction factor wisely (or take this
factor equal to one if the solution should be as accurate as
possible). Hence a more accurate final solution can be ob-
tained if the time step in the MBD-simulation is decreased,
however this comes at the cost of increased computational
time.

The loads acting on the track directly underneath two
wheels of the train are considered as a function of time. The

Fig. 5: Structural elements of the reference roller coaster, the
driving direction is indicated by the arrow. The local coordinate
frames are shown for each element type.

figure is shown in Fig. 4, where the front wheels of the front
cart and the fifth cart (middle cart) are taken as the positions
where the local z-loads according to Fig. 5 are plotted.

2.1. Equivalent nodal loads/moments
Before the loads can be used in the equation of motion,

an additional check is performed to determine betweenwhich
nodes (or on which node) the loads are applied. The loads
are known on a [mm] level, but the elements of the FEM-
model are created on a [m] level (section 3). This implies
interpolation is required if loads are not applied directly on
a node of an element (Appendix A). The tangent compo-
nents of the loads (friction forces) are distributed linearly
between the two nodes of an element, whereas the orthog-
onal components (normal forces) require some more atten-
tion; the equivalent nodal forces and moments are calculated
with the help of beam deflection formulas. The situation is
shown in Fig. 6, a cantilever beam is used to calculate equiv-
alent nodal loads and moments. This method provides the
statically and kinematically equivalent solution in the nodes,
but only approximates the exact solution along the element.

To find the equivalent nodal forces and moments, stan-
dard formulas to calculate the deflection and slope of the
beam are used [5]. The method is based on the fact that the
deflection and slope of the beam caused by an arbitrary load
should be equal to the deflection and slope caused by nodal
forces and moments (kinematically equivalent).

The deflection and slope at the free end of the beam caused
by an arbitrary load can be found using the following equa-
tions respectively:

v = −Fx
2

6EI
(3L − x) (2)

R.L.J. Mekers et al.: Preprint submitted to Elsevier Page 5 of 16
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(a) Load retrieved from MBD-simulation
applied between two nodes.

(b) Equivalent nodal force and moment
for FEM-model.

(c) Final FEM loads and moments, after
replacing the clamping.

Fig. 6: If a load is applied between nodes, it has to be translated to equivalent nodal forces and moments.

� = −Fx
2

2EI
(3)

Where E is the Young’s modulus, I the area moment of
inertia and x the distance between the clamping and the load
application point. Hence in this situation (Fig. 6a) x = aL
where 0 < a < 1.

The deflection and slope caused by the applied load should
be equal to the deflection and slope caused by the load and
moment at node j (Fig. 6b):

v = −Fa
2L2

6EI
(3L − aL) =

FjL3

3EI
+
MjL2

2EI
(4)

� = −Fa
2L2

2EI
=
FjL2

2EI
+
MjL
EI

(5)

From these two equations the equivalent force and mo-
ment at node j can be determined. Thereafter, static equi-
librium is considered to determine the force and moment at
node i, resulting in the following expressions:

Fj =
(

2a3 − 3a2
)

F (6)

Mj =
(

a2 − a3
)

FL (7)

Fi =
(

1 − 2a3 + 3a2
)

F (8)

Mi =
(

a + 2a2 − a3
)

FL (9)

After performing this procedure for all loads from the
MBD-simulation, they are rotated using the corresponding
element rotation matrices (10). All loads and moments are
collected in a matrix with dimensions number of degrees of
freedom by number of load cases (4,164×1,800) (section 3).
For each load case the corresponding column of the matrix
is selected to insert in the equation of motion (1).

3. The Finite Element Model
The reference roller coaster to be analysed is composed

of several types of structural elements; track elements, cross
ties and columns as shown in Fig. 5. Since the columns are
connected at the center between the left and right track, all
cross ties are split up in two beam elements to create nodes
to connect the columns to. For programming reasons it is
convenient to do this for all cross ties instead for those only
where the columns are attached; the computational time does
not increase disproportionately doing so; it takes approxi-
mately one minute to complete the calculations of the refer-
ence roller coaster including split up cross ties.

All of the aforementioned elements are modelled using
beam elementswith 12 degrees of freedom as shown in Fig. 2.
The Craig-Bampton method [6] can be used to reduce the fi-
nite element model of e.g. a cross-tie to an equivalent beam.
Although the degrees of freedom of all beams are equivalent,
inertial properties differ for each element type and could be
obtained from CAD-models that contain detailed informa-
tion about geometry.

The complete model consists of 916 elements (222 left
track elements, 222 right track elements, 444 cross ties and
28 columns) and 694 independent nodes (222 left track nodes,
222 right track nodes, 222 nodes between the left and right
track and 28 columns). This leads to a total of 694 × 6 =
4,164 independent degrees of freedom.

After identifying each element type and assigning the
correct inertial properties, the stiffness and mass matrix can
be created. Both matrices are based on the convention in
Fig. 2 when considering the local coordinate frame.

3.1. Stiffness matrix
The local element stiffness matrix used for all elements

in the roller coastermodel is stated in [7]. As the columns are
connected to the fixed world, boundary conditions should be
applied. There are two methods to accomplish this, namely
by assuming a rigid connection (infinite stiffness) or esti-
mating the foundation stiffnesses and including them in the
stiffness matrices of the columns. Since the latter is a more
accurate representation of reality, it is chosen to add addi-
tional stiffness at the bottom nodes of all columns as shown
in Fig. 7.

The stiffness of each (massless) spring is added at the
corresponding translational degree of freedom in the ele-
ment stiffness matrix, with the assumption kx = ky = kz.

The local matrices have to be rotated such that the local

R.L.J. Mekers et al.: Preprint submitted to Elsevier Page 6 of 16
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Fig. 7: Additional springs added to the lower node of a column
to represent connectivity to the �xed world.

coordinate frame of each element is aligned with the global
reference frame of the entire model. Each element therefore
requires an unique rotation matrix, which is defined as:

R =

⎡

⎢

⎢

⎢

⎣

R3×3 0 0 0
0 R3×3 0 0
0 0 R3×3 0
0 0 0 R3×3

⎤

⎥

⎥

⎥

⎦

(10)

With 0 a 3 × 3 zeros matrix. R3×3 is a direction cosine
matrix, defined as follows:

R3×3 =
⎡

⎢

⎢

⎣

cos(xX) cos(xY ) cos(xZ)
cos(yX) cos(yY ) cos(yZ)
cos(zX) cos(zY ) cos(zZ)

⎤

⎥

⎥

⎦

(11)

The local coordinate system is indicated with the lower
case letters whereas the global coordinate system is repre-
sented by the capital letters. To show the approach taken
to define a rotation matrix, element AB (left track element)
from Fig. 5 has been taken as an example (Appendix B).

It is assumed the local x-axis lays in the direction of the
element (from A to B). Accordingly, the first three direc-
tion cosines (the first row in (11)) can be determined. As
the cross-ties are all orthogonal to the left track elements
they can be used to create a second axis, giving the second
three direction cosines. This y-axis is defined positive from
C to A, so the remaining z-axis is automatically pointing up-
wards (cross product) because a Cartesian coordinate system
is used. Similar procedures can be performed to obtain the
rotation matrices for the remaining elements in Fig. 5.

After rotating all element stiffness matrices to the global
coordinate system, they can be collected in an assembled
(uncoupled) global stiffness matrix Kass (10,992 × 10,992):

Kass =

⎡

⎢

⎢

⎢

⎣

Kel,1 0 … 0
0 Kel,2
⋮ ⋱
0 Kel,n

⎤

⎥

⎥

⎥

⎦

(12)

With Kel,1 until Kel,n the n global element stiffness ma-
trices and 0 a 12x12 zeros matrix. The order of the types
of elements from top left to bottom right is as follows: left
track - right track - cross ties (left track to center) - cross ties

(a) Uncoupled situation.

(b) Coupled situation.

Fig. 8: Coupling of 2-D beam elements.

(center to right track) - columns. In general this order can
be arbitrary as long as it is consistent throughout the entire
model.

The last step to obtain the global stiffness matrix is cou-
pling the degrees of freedom. As an example two 2-D beams
will be coupled like shown in Fig. 8.

Each beam has six degrees of freedom in total, where
the degrees of freedom of the first beam (e1) will be num-
bered one to six, and the degrees of freedom of the second
beam (e2) will be numbered four to nine. Hence they share
three degrees of freedom, as the beams will be coupled at
one node. The coupling can be captured using a boolean
matrix B containing zeros and ones only:

B =

S1 S2 S3 S4 S5 S6 S7 S8 S9
S1,e1 1
S2,e1 1
S3,e1 1
S4,e1 1
S5,e1 1
S6,e1 1
S4,e2 1
S5,e2 1
S6,e2 1
S7,e2 1
S8,e2 1
S9,e2 1

(13)

The zeros are not shown for readability purposes. The
columns represent the independent (global) degrees of free-
dom and the rows represent the (local) degrees of freedom
of both elements. This principle can be extended to 3-D sit-
uations and applied to the reference roller coaster to find the
constraint stiffness matrix:

Kc = BTKassB (14)

R.L.J. Mekers et al.: Preprint submitted to Elsevier Page 7 of 16
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(a) Load case 1 (b) Load case 600

(c) Load case 750 (d) Load case 1,200

Fig. 9: Four load cases (out of 1,800) of the reference roller coaster. The original track is shown with the continuous black line
whereas the deformed track is shown with the dashed red line (deformations are multiplied by a factor 800), cross ties are not
shown for clarity. The positions of all (44) wheels are indicated by the black lines perpendicular to the track.

This constraint stiffness matrix is square with dimen-
sions equal to the number of degrees of freedom of the entire
roller coaster (4,164 × 4,164). It can be filled in the equation
of motion (1).

3.2. Mass matrix
The local element mass matrix used for all elements in

the roller coaster model is stated in [7]. The procedure to
obtain the coupled global mass matrix is the same as for the
stiffness matrix. Hence the same boolean matrix as before
can be used, so the constraint mass matrix can be found by:

Mc = BTMassB (15)

WhereMass (the assembled (uncoupled) globalmassma-
trix) is a sparse matrix composed of all element mass matri-
ces, constructed in a similar fashion as Kass (12).

The constraint mass matrix (4164 × 4164) can be filled
in the equation of motion (1).

4. Solving the equation of motion
The equation of motion (1) is solved for the displace-

ments q using an iterativeNewmark-Beta integration scheme
[8]. The scheme is based on two update rules:

q̇t+Δt = q̇t + Δt
[

(1 − 
)q̈t + 
q̈t+Δt
]

(16)

qt+Δt = qt +Δtq̇t +Δt2
[(1
2
− �

)

q̈t + �q̈t+Δt
]

(17)

Where Δt is the time step, � the Newmark-Beta param-
eter (0 ≤ � ≤ 1∕4) and 
 the Newmark numerical damping
parameter (
 = 1∕2). The second equation can be rewrit-
ten into an expression for q̈t+Δt, which in turn can be filled
into the equation of motion (when analysed at time t + Δt).
Rewriting the equation of motion (without damping) finally
gives an expression for qt+Δt as a function of variables cal-

R.L.J. Mekers et al.: Preprint submitted to Elsevier Page 8 of 16
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(a) Load case 1 (b) Load case 600

(c) Load case 750 (d) Load case 1,200

Fig. 10: Four load cases (out of 1,800) of the reference roller coaster, deformations are multiplied by a factor 800. The locations
of the columns are shown with the markers.

culated at the previous time step t only:

qt+Δt =
[

1
�Δt2

Mc +Kc

]−1{

ft+Δt

+Mc

[

1
�Δt2

qt +
1
�Δt

q̇t +
(

1
2�

− 1
)

q̈t
]}

(18)

It should be noted that the force vector f is required at
the current time step, nevertheless this does not impose any
problems as it is known for all time steps from the MBD-
simulation.

Choosing 
 equal to 1∕2 results in no numerical damp-
ing, whereas for stability reasons [9] � has been chosen equal
to 1∕4, resulting in the average acceleration scheme which
is implicit and unconditionally stable. Since the scheme is
implicit, initial conditions have to be chosen: q0 = q̇0 =
q̈0 = 0.

After incorporating the constraint stiffnessmatrixKc (14)
and the constraint mass matrixMc (15) the equations can be
solved. Solving the equations for every time stepΔt give the
final displacements of every node for each load case. A few
results of the 1, 800 load cases of the reference roller coaster
are shown in Fig. 9.

To quantify the displacements, it is convenient to show
them in a 2D-plot as a function of the length of the track.
This has been done for the left track elements (Fig. 5) in
Fig. 10, where also the displacements obtained from the static
calculation q = K−1f are shown to compare with.

The differences between the transient and the static solu-
tions are limited, especially at the location of the train they
are negligible. However some discrepancy shows up when
the train is further up along the track, as vibrations are not
damped (no damping was used during these simulations).
The absolute maximum local z-displacements (without mul-

R.L.J. Mekers et al.: Preprint submitted to Elsevier Page 9 of 16
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Fig. 11: Local z-displacements (multiplied by a factor 800) of the left track when following the train along the track of the
reference roller coaster.

Table 1

Absolute maximum local z-displacements per load case (with-
out multiplication factor).

Maximum (static)
displacement [mm]

Maximum (transient)
displacement [mm]

LC 1 0.415 0.313
LC 600 1.180 1.319
LC 750 5.066 5.237
LC 1200 1.306 1.496

LC 783 6.593 7.089

tiplication factor) per load case considering all track ele-
ments are shown in Table 1. Load case 783 is added since
it result in the largest displacements for the transient as well
as the static analysis.

In general it can be concluded that the displacements cal-
culated using the transient analysis are slightly higher than
those of the static analysis. Considering the first few load
cases this is the other way around, due to the fact that no vi-
brations caused by the train are present yet. Hence vibrations
amplify displacements, so when another lap is completed af-
ter the first one, displacements will be even higher. Adding
damping to the transient model can reduce this amplification
significantly, hence estimating dynamic effects and thereby
identifying the occurring vibrations is a very important step
in designing a roller coaster.

To conclude, the displacements of the track directly un-
derneath two wheels of the train are considered as a func-
tion of time. The figure is shown in Fig. 11, where the front
wheels of the front cart and the fifth cart (middle cart) are
taken as the positionswhere the local z-displacements (Fig. 5)
are calculated. Since the deformations are only known at the
nodes, interpolation is required to find the deformations for

each load case. This interpolation has been implemented us-
ing piecewise polynomials (spline method).

5. Test case
In this section a test case is analysed, where an attempt

has been made to mimic (undesired) transverse vibrations
in roller coasters. The model is inspired by MACK’s Lost
Gravity roller coaster; a schematic overview of the part of
the structure where the vibrations showed up is shown in
Fig. 12.

5.1. Moving load application
The (single) cart has four running wheels, so for each

load case two wheels make contact with the left track and
two wheels make contact with the right track. The loads ap-
plied on the structure are the same for each load case, where
only normal and friction forces are taken into account (in to-
tal eight loads are simultaneously acting on the track). The
magnitudes of the normal forces are chosen to be 5kN on
the left track and 2kN on the right track respectively, repre-
senting an asymmetrical load case e.g. caused by passengers
seating on one side of the cart only.

The friction forces can be calculated as a function of nor-
mal forces:

ff = −�fn (19)

With ff the friction force vector, � the friction coefficient
(chosen to be 0.15) and fn the normal force vector.

In this simulation 10 load cases per element are taken,
where each load case represents a shift of 0.03meters (hence
the loads are applied equidistant instead of isochronal as is
the case for the reference roller coaster), resulting in a total
of 406 load cases. All loads are again converted to nodal

R.L.J. Mekers et al.: Preprint submitted to Elsevier Page 10 of 16



R.L.J. Mekers, J.P. Schilder

Fig. 12: Part of the test case track, the driving direction is indicated by the arrow.

Fig. 13: Displacements (multiplied by a factor 800) of node 22 of the left track (top of the hill).

loads according the method explained in subsection 2.1. In
the end, all loads and moments are collected in a matrix with
dimensions of number of degrees of freedom by number of
load cases (780 × 406) (subsection 5.2).

5.2. The Finite Element Model
The structure is composed of the same elements as the

reference coaster like shown in Fig. 5, where each beam has
12 degrees of freedom according Fig. 2. Hence the cross
ties are split up in two elements again, resulting in a total of
170 elements (41 left track elements, 41 right track elements,
84 cross ties and 4 columns) and 130 nodes (42 left track
nodes, 42 right track nodes, 42 nodes between the left and
right track and 4 columns). This leads to a total of 130×6 =
780 independent degrees of freedom.

The columns are connected to the fixed world in a sim-
ilar fashion as those of the reference roller coaster, namely
making use of massless springs like shown in Fig. 7. Fur-
thermore, the first and last node of the left and right track are
also connected to massless springs to represent the stiffness
of the remainder of the track. These stiffnesses are added to
the corresponding translational degrees of freedom in the el-
ement stiffness matrices, where it is assumed every stiffness
is equal in size.

The constraint stiffness and mass matrix are constructed
according (14) and (15) respectively, both having dimen-
sions equal to the number of degrees of freedom of the entire
structure (780×780). Both matrices are filled in the equation
of motion (1).
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(a) Load retrieved from MBD-simulation
applied between two nodes.

(b) Equivalent nodal force and moment
for FEM-model.

(c) Final FEM loads and moments, after
replacing the clamping.

Fig. 14: If a load is applied between nodes, it has to be translated to equivalent nodal forces and moments.

5.3. Solving the equation of motion
The local y-displacements obtained from iteratively solv-

ing the equation of motion using the Newmark-Beta integra-
tion scheme (section 4) are shown for node 22 (on top of the
hill) of the left track in Fig. 13. Again interpolation has been
used to obtain a solution for each load case since the solution
is only known at the nodes.

Unfortunately the model created is not able to capture
the transverse vibrations occurring in roller coasters. Some
small vibrations are visible, however these are not of the or-
der that is expected beforehand (the displacements do not
switch sign). Most likely another phenomenon is responsi-
ble for these vibrations, e.g. structural imperfections or wind
loads.

6. Conclusions
In this paper amethod to analyse vibrations in roller coaster

structures is proposed. Existing FEM and MBD-models can
be used to perform a transient analysis of roller coaster struc-
tures, making it possible to identify possible vibrations be-
fore building the actual roller coaster. This can potentially
enhance the lifespan of roller coasters, as vibrations can cause
the track to wear out faster. Furthermore, safety factors can
be reduced significantly, striving for the complete removal
of them. Hence this method can be incorporated with ex-
isting models efficiently, making it a practical tool to better
design roller coasters in the future.

A. Nodal loads
The deflection and slope at the free end of the beam caused

by an arbitrary load can be found using the following equa-
tions respectively:

v = −Fx
2

6EI
(3L − x) (20)

� = −Fx
2

2EI
(21)

Where E is the Young’s modulus, I the area moment of
inertia and x the distance between the clamping and the load
application point. Hence in this situation (Fig. 14a) x = aL
where 0 < a < 1.

The deflection and slope caused by the applied load should
be equal to the deflection and slope caused by the load and

moment at node j (Fig. 14b):

v = −Fa
2L2

6EI
(3L − aL) =

FjL3

3EI
+
MjL2

2EI
(22)

� = −Fa
2L2

2EI
=
FjL2

2EI
+
MjL
EI

(23)

Which can be simplified to:

1
3
Fa3L − Fa2L = 2

3
FjL +Mj (24)

−1
2
Fa2L = 1

2
FjL +Mj (25)

Equation (25) can be rewritten to find an expression for
Mj , which in turn can be plugged in (24). This gives:

1
3
Fa3L − Fa2L = 2

3
FjL −

1
2
Fa2L − 1

2
FjL (26)

Grouping the terms results in the expression for Fj :

Fj =
(

2a3 − 3a2
)

F (27)

Equation (27) can be filled back in (25) to find the ex-
pression forMj :

Mj =
(

a2 − a3
)

FL (28)

Fi (Fig. 14c) can be found using force equilibrium in y-
direction:

ΣFy = Fi + Fj − F = 0 (29)

Equation (27) can be filled in this equation to find the
expression for Fi:

Fi =
(

1 − 2a3 + 3a2
)

F (30)

Mi can be found using moment balance:

ΣMi =Mi +Mj + FjL − FaL = 0 (31)

Equation (27) and (28) can be filled in this equation to
find the expression forMi:

Mi =
(

a + 2a2 − a3
)

FL (32)
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Fig. 15: Structural elements of the reference roller coaster, the
driving direction is indicated by the arrow. The local coordinate
frames are shown for each element type.

B. Rotation matrix
The local matrices have to be rotated such that the local

coordinate frame of each element is aligned with the global
reference frame of the entire model. Each element therefore
requires an unique rotation matrix, which is defined as:

R =

⎡

⎢

⎢

⎢

⎣

R3×3 0 0 0
0 R3×3 0 0
0 0 R3×3 0
0 0 0 R3×3

⎤

⎥

⎥

⎥

⎦

(33)

With 0 a 3 × 3 zeros matrix. R3×3 is a direction cosine
matrix, defined as follows:

R3×3 =
⎡

⎢

⎢

⎣

cos(xX) cos(xY ) cos(xZ)
cos(yX) cos(yY ) cos(yZ)
cos(zX) cos(zY ) cos(zZ)

⎤

⎥

⎥

⎦

(34)

The local coordinate system is indicated with the lower
case letters whereas the global coordinate system is repre-
sented by the capital letters. To show the approach taken
to define a rotation matrix, element AB (left track element)
from Fig. 15 has been taken as an example.

It is assumed the local x-axis lays in the direction of the
element (from A to B). Now the first three direction-cosines
are calculated to be:

cos xX = lx =
XB −XA
LAB

(35)

cos xY = mx =
YB − YA
LAB

(36)

cos xZ = nx =
ZB −ZA
LAB

(37)

Hence the (normalised) unit vector along the local x-axis
is given by:

x̂ = lxi + mxj + nxk (38)

Either the y-axis or the z-axis still has to be chosen. Since
a Cartesian coordinate system is used, the remaining axis can

be found using the cross product. As all cross ties are always
orthogonal to the left track (and the right track), the coordi-
nates of them can be used to create a local y-axis (positive
from C to A):

cos yX = ly =
XA −XC
LAC

(39)

cos yY = my =
YA − YC
LAC

(40)

cos yZ = ny =
ZA −ZC
LAC

(41)

Hence the unit vector along the local y-axis is given by:

ŷ = lyi + myj + nyk (42)

The last step in obtaining the rotation matrix is to deter-
mine the z-axis by using the cross product. This is done by
calculating the determinant of the following matrix:

ẑ = det
|

|

|

|

|

|

i j k
lx mx nx
ly my ny

|

|

|

|

|

|

(43)

Resulting in:

cos zX = lz = mxny − mynx (44)

cos zY = mz = −lxny + lynx (45)

cos zZ = nz = lxmy − lymx (46)

And accordingly the unit vector along the local z-direction
becomes:

ẑ = lzi + mzj + nzk (47)

Now all rotations are defined, the results can be gathered
so the rotation matrixR3x3 for an arbitrary element along the
left track becomes:

R3x3 =
⎡

⎢

⎢

⎣

nx mx nx
ny my ny
nz mz nz

⎤

⎥

⎥

⎦

(48)
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Progress discussion
This report is based on a paper written for publication at Elsevier. As only the final results are stated in this paper, the

progress during developing the method is discussed in this section. The Finite Element method has been developed and
implemented for increasingly complex structures, until it was working flawlessly and could be used to analyse the track of
the reference coaster. The structures used during the development are shown in Fig. 16.

First a simple two-dimensional track with two columns was modelled (Fig. 16a). This model has been made using truss
elements (2 degrees of freedom per element); instead of using a boolean matrix to assemble the global stiffness matrix this has
been done manually for each element. Forces are only acting on the nodes, so no interpolation is required to translate forces
to nodal forces. The mass matrix has not been used yet since a static calculation was performed to check if the displacements
looked realistic (magnitude and direction). After this simulation was running successfully, the truss elements are replaced by
beam elements (6 degrees of freedom) and the same procedure was performed again.

Hereafter, a boolean matrix has been used to assemble the global stiffness matrix. This saves a significant amount of
coding, making the method more comprehensible and easier to adapt. Furthermore, a global mass matrix has been added
whereafter the displacements are calculated using the Newmark-Beta integration method.

The next model (Fig. 16b) is even simpler than the first one, used to implement the method to translate forces to nodal
forces only. Initially, only normal forces are used since they are the hardest to distribute along the nodes. Later on friction
forces were added and linearly distributed along the nodes. After this worked for this model, it has been implemented in the
first model (Fig. 16a)

The next step was to extend the model to a three-dimensional structure. This model is shown in Fig. 16c, where the track
makes a curve of exactly 90 degrees to be able to check the rotation matrices. Hence only one curve has been plotted instead
of both the left and right track, which was easier to start with.

At this point in time the model is working nicely, so the reference roller coaster based on the Donderstenen (Fig. 16d)
could be analysed. First this has been done using one curve only, whereafter the left and right track and ties were added.
The forces applied were initially fictive, as no multibody dynamic model was at hand yet. It took a lot of time to correctly
apply the forces for each load case, since they required rotation to the global coordinate system, translation to nodal forces
and placing them in the correct position in a matrix.

The final step in completing the model was to incorporate the multibody dynamic model. Helmer van den Hoorn created
an initial model in Simscape, whereafter modifications to the scheme are applied. These modifications are mainly about
retrieving the positions of every wheel for each load case. Furthermore the starting position of the train has to be related to
the starting position of the track, which has been implemented in the code.
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(a) First model (b) Second model

(c) Third model (d) Fourth model

Fig. 16: The four models used in the process of developing the method described in the paper.
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