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Abstract

Ultrafast charging, with speeds of 350 kW and more, is developing and will soon be available to
electric vehicles (EV). Charging at such speeds implies being able to load a range of 100 kilome-
tres in a couple of minutes. This research focuses on the user preferences of the approximately
45,000 current Dutch full electric drivers for slow charging, fast charging and ultrafast charging
(RVO, 2018). The research goal is to investigate the feasibility of ultrafast charging of EV in
the Netherlands, based on a user perspective. A stated choice experiment with 171 respondents
has been carried out, after which multinomial logit and mixed logit models have been estimated
based on random utility maximisation theory. In total, 57 variables including charging point-
and user characteristics have been tested in the models. Charging point characteristics including
price, proximity to shopping facilities or the absence of facilities, certainty of availability, and
(not) having to make a detour are influential factors for EV drivers in deciding which charging
type to choose. Elasticity calculations do also show that price changes and (not) having to
make a detour substantially affect user choices for the charging types. An interesting result
from the model estimations is that when one finds comfort important, this increases one’s likeli-
hood of choosing ultrafast charging. Contrary to expectations, no significant results were found
for, amongst others, urban density, age, technology awareness and importance of sustainabil-
ity. Mixed logit models reveal that preference heterogeneity is found for ultrafast charging, but
not for slow and fast alternatives. Additional semi-structured interviews with stakeholders em-
phasize the possible difference between expected and modelled users’ preferences. Stakeholders
acknowledge that the user perspective is important for their goals and strategies. The research
results show that there is a possible future for ultrafast charging for EV in the Netherlands:
people are willing to pay slightly more to charge ultrafast than to slow charge, but all else equal,
they will also still opt for slow and regular fast charging.

Keywords: electric vehicles; charging behaviour; ultrafast charging; stated preference; discrete
choice modelling.

1. Introduction1

Electric vehicles (EVs) provide a promising sustainable possibility with regard to environ-2

mental problems, including rising CO2 emissions, particulates and other pollution. As is inherent3

to new developments, challenges do and will occur due to the rapid growth of EV in the past five4

years (RVO, 2018). One of the main challenges is the provision of a solid network of charging5

infrastructure, for which many aspects are crucial to consider, including the type of charging6
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points. Developments in the type of charging affect consumers as well as policy decisions about7

refuelling EVs. One of the most recent and possibly most impactful developments in this field is8

ultrafast charging (>350kW). Such speeds imply recharging 100 kilometres of range in approx-9

imately three minutes or less, compared to hours of slow charging.10

Currently the charging system comprises of standard charging points (<22kW), used for11

destination charging – another term for slow charging – and an increasing amount of fast charging12

points (22-50kW). These fast charging points will likely become ultrafast charging points (350-13

450kW) in the near future. In the Netherlands, the first ultrafast charging points have been14

installed in July 2018 (Allego, 2018), even though currently, vehicles cannot yet charge at such15

high speeds. It is unclear how the EV drivers will make use of such infrastructure when their16

vehicles are ready for this technology in the near future. This charging behaviour is a key17

parameter in a well-functioning charging system. Ultrafast charging (>350 kW) has so far18

not been at the centre of attention of scientific studies, most likely because it is such a recent19

development (Hardman et al., 2018; Gnann et al., 2018; Neaimeh et al., 2017). This research20

therefore aims at finding which factors determine the user choice for certain types of charging,21

understanding charging behaviour, and collecting opinions and visions on the balance between22

destination charging, fast charging and ultrafast charging. This may help to develop strategies23

for promoting more efficient use of the charging infrastructure, as well as policies concerning the24

installation of different types of charging points (Ecofys, 2016).25

Developing a basis for such charging infrastructure policies as mentioned above is the core26

research motive for this study. The development of charging infrastructure in the Netherlands27

is on the move from demand-driven to strategic data-driven methods. This implies that pub-28

lic charging infrastructure will be installed based on charging data instead of on the current29

charging-point-follows-car principle, where an EV driver requests a charging point to be placed30

near his or her home. The challenge is what the plan for the next five years should look like: is31

destination charging still necessary or can an ultrafast alternative serve the same purpose with32

less pressure on public space? Which alternative will EV drivers use the most? This research33

could inform municipalities and other stakeholders alike about user preferences on different34

charging types. Furthermore, concerning theoretical motives, this research would contribute35

to the existing body of research on EV charging infrastructure, and add new insights on user36

choices for destination charging, fast charging and ultrafast charging. To the best of the author’s37

knowledge, no previous research on ultrafast charging has been conducted, emphasizing why this38

study will be a valuable addition to the field.39

This research aims to facilitate the understanding of EV driver behaviour and to evaluate40

the potential of ultrafast charging in a constantly developing world of sustainable mobility. The41

following research goal provides the basis on which the research questions have been formu-42

lated. The goal of this study is to investigate the feasibility of ultrafast charging of EV in the43

Netherlands, based on a user perspective.44

From the research goals, the main research question follows: What is the quantitative influ-45

ence of various factors on the EV user choices for destination charging, fast charging or ultrafast46

charging in the Netherlands?47

To be able to examine the feasibility and importance of ultrafast charging, it has to be48

compared to current alternatives, being fast charging and destination (slow) charging. Corre-49

sponding subquestions to guide the research have been formulated, relating to current behaviour,50

researched factors, sensitivity analysis and stakeholder perspectives.51

1. What does current charging behaviour of EV users in the Netherlands look like?52

2. What are the factors that influence charging behaviour of EV users in the Netherlands?53
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3. What happens to the likelihood of EV users’ choices for charging types subject to param-54

eter changes?55

4. What are EV stakeholders’ perspectives regarding user preferences for different charging56

types?57

Important to note is the focus of this research on the user perspective in EV-charging. It is58

likely that differences will occur between government, business and user perspectives concerning59

choices for the ideal charging infrastructure (Bakker et al., 2014). Whereas a user might prefer60

ultrafast charging, for government this might be too expensive, there might be too little public61

space, or this could mean too much pressure on the grid during peak times. The other way around62

is also possible. For companies, it is relevant to develop a proper business model that should63

eventually align with user preferences as well as with government regulations. With the answer64

to the main research question, it is possible to derive recommendations for (local) governments65

and businesses on the installation and the ideal mix of public charging infrastructure, based on66

the user perspective.67

The remainder of this thesis is structured as follows. First, theory and literature have been68

studied (section 2), after which primary factors to research were identified. The data collection69

took place through an online survey with stated choice experiment among EV drivers in the70

Netherlands (sections 3 and 4). After finishing the data collection and preparation, the data71

analysis has been completed. By evaluating descriptive statistics, estimating multinomial logit72

and mixed logit models, calculating elasticities and analysing stakeholder interviews, the answers73

to the research questions were found (section 5). The paper concludes with a discussion (section74

6) and conclusion (section 7).75

2. Background and literature76

Due to the substantial contribution of the transport sector to current environmental prob-77

lems, electromobility is seen by many as the future of mobility. A paradigm shift is re-78

quired, meaning that the current dominant vehicle type, the Internal Combustion Engine Vehicle79

(ICEV), needs to be replaced by electric vehicles (EVs) powered with renewable energy (Gnann80

et al., 2018). In the Netherlands, the first plug-in EVs were sold in 2011 and their sales increased81

sharply afterwards. The term plug-in hybrid EV (PHEV) is internationally used for plug-in hy-82

brid electric vehicles, like the Mitsubishi Outlander. A full electric vehicle is a battery electric83

vehicle (BEV), like the Nissan Leaf or Tesla models. The number of registered electric vehicles84

in the Netherlands increased from 87,552 in December 2015 to 134,062 in October 2018 (RVO,85

2018). Next to PHEV or BEV, an electric vehicle can be a Fuel Cell EV (FCEV) which uses a86

fuel cell instead of a battery to power its electric motor. The number of FCEV is only marginal87

(21 in 2015 and 53 in 2018) meaning that the rise of PHEVs and especially BEVs account for88

the increase and put more pressure on the charging infrastructure. The focus of this study is89

on BEVs since market developments are primarily aimed at this type of EV. Besides, ultrafast90

charging is only suitable for BEVs; PHEVs do not have the required technology built in.91

Concerning policy, interesting to note is that European Union member states are required to92

design national action plans on charging point infrastructure. They have to install an appropriate93

number of electric recharging points accessible to the public by the end of 2020 (EU, 2014).94

The following sections expand on the types of charging, charging infrastructure, charging95

behaviour and the research gap that this study aims to fill.96

2.1. Types of charging: standard, fast and ultrafast97

In Table 1, the three different types of charging regarded in this research are shown. Several98

characteristics, advantages and disadvantages are provided.99
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Table 1: Different types of charging and their characteristics, advantages and disadvantages (Hardman et al.,
2018; Neaimeh et al., 2017).

Slow charging Fast charging Ultrafast charging

Speed in kW (type) < 22 kW (AC) 43 kW (AC) or 50 kW (DC) > 350 kW (DC)
Time to charge 100 km 1-6 hours or more 20 minutes or less 3 minutes or less

Typical location
Shopping areas, office buildings,
parking garages and on private property

Corridors and increasingly at standard
charging spots

Corridors

Advantages
Possible with regular household grid connection
Close to destination

Help to overcome perceived and actual
range barriers

Similar to ICEV refuelling
(almost no behavioural change required)
No parking problems
Lower occupancy rate

Disadvantages
Charging point congestion
Unnecessary occupancy

Unnecessary occupancy
Longer travel times to locations

Extreme electricity peak demands
High installation costs
Longer travel times to locations

Remarks
Also called destination charging
Suitable for smart charging
Complicated relationship with parking behaviour

Vehicle battery capacity and condition
are important

In the future, a possible ideal charging infrastructure mix could be made up by only slow and100

ultrafast charging, by all three, or without ultrafast charging at all. The results of this study will101

provide some first guidance on expected future charging behaviour based on user preferences for102

slow, fast and ultrafast charging.103

2.2. Charging infrastructure in the Netherlands104

The charging infrastructure in the Netherlands is said to be the densest charging system in105

the world (InsideEVs, 2019). According to recent data of the Dutch government, as of October106

2018 there are 134,062 electric passenger cars and 36,987 public and semi-public charging points107

(of which 19,812 public, the rest is semi-public). This means that there are on average 6.8108

electric passenger cars per public charging point, and only 3.6 electric passenger cars per public109

or semi-public charging point, assuming interoperability. Note that these calculations include110

both BEV and PHEV. Only looking at the number of BEV (35,965 in October 2018) the ratio is111

almost 1 (0.97) BEV per public or semi-public charging point. The number of BEV has doubled112

during 2018, while the number of PHEV decreased by 3% and this trend will likely continue113

(CBS, 2019). In addition, there are 967 public and semi-public fast charging points registered;114

however, these are divided among just 206 geographical locations, meaning that the distribution115

is not too extended. Furthermore, it is estimated that there are about 93,000 private charging116

points in the Netherlands (RVO, 2018). In Figure 1, the growth and distribution of (semi)public117

charging points in the Netherlands is shown.118
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Figure 1: Development in the number of charging points in the Netherlands (RVO, 2018).

The distinction between public, semi-public and private charging points is often made. Figure119

1 is based on data by ElaadNL, Nuon, EVBox, The New Motion and Essent and information120

provided by Eco-movement and oplaadpalen.nl (RVO, 2018). Semi-public charging points are121

interoperable and have been reported as accessible by their owners. These charging points can for122

example be found in shopping areas, office buildings, parking garages and at private property of123

persons who have made their charging point accessible to others (RVO, 2018). Private charging124

points are also referred to as home chargers, meaning they are privately owned, usually on125

someones private driveway or parking spot, and not accessible by others than the (land) owner.126

2.2.1. Searching for an optimal charging infrastructure127

Several studies have been conducted to determine the optimal density of charging infras-128

tructure. The ratio of one fast charging point of approximately 150 kW per 1,000 vehicles is129

repeatedly mentioned (Funke and Plotz, 2017; Gnann et al., 2018), however uncertainties about130

battery development and vehicle ranges dominate these conclusions. Interesting to note is that131

this ratio is close to the current ratio of conventional refuelling stations (which is about 0.3 sta-132

tions per 1,000 vehicles for Germany and 1.8 for Sweden (Gnann et al., 2018)). Previous studies133

assume that a fast charging network could be a good complement to slower (home) charging134

points (Gnann et al., 2018; Morrisey et al., 2016). The influence of private charging points to135

this fast charging network was not part of any of this research.136

Hardman et al. (2018) note that wide conclusions on the number of required charging stations137

cannot be drawn from the above-mentioned studies alone, as more research is needed about138

different countries and with a larger number of electric vehicles. This implies that the number139

of required charging locations is currently unknown (Hardman et al., 2018).140

2.2.2. Costs141

Costs are an important aspect of EV charging, for governments and private parties as well142

as for the user. Usually the user either pays a start tariff per session or service costs in the form143

5



of a membership. An indication of the costs that the user pays per kWh for public charging in144

the Netherlands is provided in the table below. For reference, the average price per kWh at a145

homecharger is 0.23 euro per kWh excluding other costs like installation investments.146

Table 2: Costs per kWh that user currently pays for public charging points in the Netherlands (Flowcharging,
2019)

Destination charging Fast charging Ultrafast charging

Price in euro/kWh (incl VAT) 0.22-0.35 approx. 0.59 > 0.69

The installation (one-time costs) and exploitation (periodical costs) of a charging point147

are crucial for EV infrastructure but are not cheap. These costs, generally borne by (local)148

governments and private companies, add up to a price of approximately 3,000 euro per charging149

point installation plus 600 euro periodical costs per year and additional costs dependent on the150

number of kWh sold (taxes and energy prices) (NKL, 2018). For ultrafast charging the costs151

are higher, especially due to a more expensive grid connection and extra requirements for e.g.152

liquid cooling cables.153

2.3. Charging behaviour154

Several studies on charging behaviour have been conducted recently. It is repeatedly found155

that the majority of EV charging takes place at home chargers (Franke and Krems, 2013; Funke156

and Plotz, 2017; Hardman et al., 2018), but it is argued that, despite this current trend, away-157

from-home charging is needed to grow BEV markets (Caperello et al., 2015; Neaimeh et al.,158

2017). Such public infrastructure may include fast chargers (50 kW) or in the near future,159

ultrafast chargers (> 350 kW).160

Neaimeh et al. (2017) explored the impact of fast chargers (50 kW) on driving behaviour161

in the US and UK, in order to demonstrate the importance of fast chargers. They found that162

both fast charging and slow charging have a statistically significant and positive effect on daily163

distance, where the impact of fast charging is more influential than slow (Neaimeh et al., 2017).164

Since better coverage of charging infrastructure increases the possibility to drive longer distances165

(and recharge halfway), it is said that increased coverage of a fast charging network will increase166

EV adoption (Axsen and Kurani, 2013), which is favourable for national and international policy167

goals. Vice versa, creating uncertainty about the availability of charging stations reduces the168

purchase intention for full EVs (Wolbertus et al., 2018c).169

Hoekstra and Refa (2017) surveyed Dutch EV drivers to find out about their character-170

istics. Their conclusions include that Dutch EV drivers are found to be middle aged males,171

highly educated, with high incomes, who purchased the car because tax incentives made it cost172

effective and because they like to try new technology. This latter characteristic hints at the173

idea that the current EV drivers are still early adopters in the technology diffusion model as174

proposed by Rogers (1983). In addition, the EV drivers surveyed by Hoekstra and Refa find175

themselves environmentally friendly. Lastly, they are generally unsatisfied about their vehicles176

range, however, instead of a very large vehicle range, they would rather like good fast charging177

infrastructure. All respondents strongly disagree with the idea that fast chargers can replace178

standard chargers (Hoekstra and Refa, 2017). Note that this study considered fast chargers of179

50 kW, and that ultrafast charging (> 350 kW) was not considered. It is possible that users180

would regard ultrafast charging as a plausible alternative. Robinson et al. (2013) emphasize181

the potential of public charging infrastructure, as different user types appear to have different182

charging patterns. This would ensure optimal usage of public charging infrastructure (Robinson183

et al., 2013). This finding stresses the importance of considering user type factors in research184

on different charging types.185
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In his research, Spoelstra (2014) found that as the average charging frequency increases, the186

average energy transfer decreases, implying that frequent users commonly charge with a less187

depleted battery (Franke and Krems, 2013). In addition, it was found that if the power supply188

of a charging point increases (up to 50 kW only), the amount of energy transfer per transaction189

increases only marginally. This implies that the battery level and/or battery capacity might not190

have an effect on the EV drivers’ choice for a certain charging point type. This is surprising191

because the required charging duration may increase drastically when charging a large capacity192

vehicle with a low power output charging point (Spoelstra, 2014). When the differences between193

power supply increase (current difference is between 11 and 50 kW, while ultrafast power of >194

350 kW will become a reality), it is expected that this will affect the user’s choice.195

Future scenarios for EV have been developed by research institutes Ecofys and CE Delft in196

2016 and 2017 respectively. Ecofys emphasizes the need for a covering fast charging network197

to gain the EV drivers’ trust in the possibility of driving long distances with electric cars. In198

addition, only about 25% of Dutch households has access to a private parking space (Hoekstra199

and Refa, 2017), stressing the importance of public charging infrastructure. It is suggested that200

fast chargers might change roles with slow (destination) chargers (Ecofys, 2016). CEDelft (2017)201

concludes that access to private parking, the number of EV, trip distance and charging speed202

all influence individual choices for a certain type of charging point.203

2.4. Research gap and contributions204

This research is initiated due to the lack of knowledge on user behaviour considering the205

potential of ultrafast charging. In 3-5 years, ultrafast charging will most likely be technically206

possible for cars, however in current climate policies this ultrafast charging is not considered207

as a possibly dominant EV-charging option (Klimaatakkoord, 2018). Ultrafast charging could208

solve the parking and charging issues that are steadily developing due to waiting times for209

charging points, increasing number of EV, attractive pricing policies for parking at charging210

spots and more (Wolbertus et al., 2018b,c). To the best of the researcher’s knowledge, the211

potential of ultrafast charging from a consumer perspective has not yet been studied. It has212

been suggested in recent literature to pursue this line of research, in order to possibly influence213

charging infrastructure decisions in a way that less charging points can meet growing demands214

and therefore put less pressure on the availability of public space (Wolbertus et al., 2018b).215

Therefore, it is valuable to look into the factors that influence EV charging behaviour with a216

focus on ultrafast charging. Recent literature also suggested to explore potential effects of e.g.217

one’s residential situation (rural versus urban) and charging possibilities at work and at home218

to get a more complete picture of user needs and desires for (fast) charging (Philipsen et al.,219

2016). This research will make it possible to subsequently analyse what the findings might mean220

for the decision making on future infrastructure. Consequently, this ensures both the scientific221

and societal relevance of this line of research.222

This study attempts to fill the research gap that exists on factors that possibly influence the223

consumers choice between standard charging (up to 22 kW), fast charging (around 50 kW) and224

ultrafast charging (> 350 kW). In this pursuit, a stated choice experiment is performed to explore225

such influential factors. In addition, elasticity calculations as well as stakeholder interviews help226

to place the findings in perspective. This research contributes to understanding how ultrafast227

infrastructure would and could be used by consumers in the near future (approximately in the228

year 2025). Estimation results from both MNL and ML models point out factors that are229

important to EV drivers’ choices for slow, fast and ultrafast charging points.230
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3. Data collection, preparation and description231

In this section, first the data collection and preparation will be described, followed by some232

descriptive statistics of the sample.233

3.1. Data collection234

A stated choice experiment was distributed as part of a survey among EV drivers in the235

Netherlands. Such stated preference methods, in which the respondent is asked for a discrete236

choice, offer the possibility of examining user choices for future options that not yet exist - so237

cannot be measured by revealed preference methods. The focus of the survey was on regular EV238

passenger cars, excluding taxi transport and public transport. EV users themselves are found239

most capable of comparing different charging type alternatives and picking their best one, since240

they know what charging an EV is like. For research purposes, it is assumed that current EV241

mobility patterns (like trip purpose and regular trip length) are similar to future EV patterns.242

An attempt is made to include as many different EV users as possible, including lease drivers,243

EV owners and users of shared EVs. This research looks at the Netherlands and Dutch EV244

users only.245

The survey starts with a screening question (‘How often do you drive an EV?’) and fur-246

thermore consists of the following parts: (A) questions on current mobility pattern, charging247

behaviour and user satisfaction, (B) attitude statements, (C) the discrete choice experiment,248

and (D) sociodemographic and personal characteristics. In the design of the stated choice ex-249

periment, the first step is to specify alternatives (the choice options) and their attributes and250

levels. The selection of factors to be included is based on literature (e.g. Axsen and Kurani251

(2013); Björnsson and Karlsson (2015); Dong et al. (2014); Figenbaum (2017); Nicholas and252

Tal (2014)). After selecting the alternatives, attributes and levels, the choice sets are chosen,253

creating the experimental design and finally constructing the survey. JMP14 (SAS, 2019) and254

Excel were used for this purpose. Different designs were compared and an orthogonal design255

with the highest D-efficiency was chosen. An orthogonal design is desired since it is produced256

so as to have zero correlations between the attributes in the experiment, making it excellent257

for estimating linear models (Ortúzar and Willumsen, 2011). The D-efficiency measures the258

goodness of a design relative to hypothetical orthogonal designs. When the D-efficiency is 0,259

one or more parameters cannot be estimated. When it is 100, the design is perfectly balanced260

and orthogonal. Values in between mean that all of the parameters can be estimated, but with261

less than optimal precision (Kuhfeld, 2010). The D-efficiency of the design used in this research262

is 99.6. This design has 16 choice sets with four alternatives each. Pilot testing in small groups263

of 8 and 10 respondents improved earlier versions of the questionnaire. The main changes that264

were incorporated after the pilots include a reduction of the amount of choice sets per survey265

and improvements in the formulation of the attitude statements. An example of a choice set266

used in the survey is shown in Figure 2. Using a blocking variable, four blocks of four choice sets267

were generated. Each respondent randomly received one of the four blocks. The entire choice268

experiment design can be found in the appendix.269
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Figure 2: Example of a choice set as used in the stated choice experiment. The input for ‘You will charge [...]
kilometres of range’ is taken from the previous question on the respondent’s most recent charging session.

The survey is web-based and was distributed digitally, using the university’s Qualtrics en-270

vironment. The survey was drawn up in Dutch to accommodate Dutch respondents who are271

the target group. Several organisations and car sharing initiatives were asked to help spread272

the survey. Social media platforms have also been used. A flyer has been designed and dis-273

tributed at several fast charging locations in the west of the Netherlands. This flyer has also274

been emailed to several lease companies in the Netherlands that lease out electric cars. Since275

the survey was distributed using a so-called anonymous link, it cannot be said which of those276

distribution methods have been the most effective. The survey was open for responses from the277

1st to 28th of April 2019. The original version and an English translation of the survey can be278

found in the appendix.279

3.2. Data preparation280

The total number of respondents that participated in the survey is 311. From this, 265281

indicated to drive a BEV, the rest drives in a plug-in hybrid vehicle and were excluded from282

the sample for this reason. 37 BEV drivers were excluded because they had not completed the283

choice questions. A further 57 respondents were excluded because they opted for the same choice284

in all four scenarios, which indicates that the choice context was not properly defined for these285

respondents. This leaves 171 respondents to be analysed. Since each respondent received four286

choices, a total of 684 observations can be regarded in the choice modelling procedure. Four287

respondents only made one out of four choices, which means 12 observations were excluded as288

these did not include a choice (3 open choices*4 respondents=12 observations). A final number289

of 672 observations is used in the remainder of this paper for analysis.290

All binary and categorical variables were dummy-coded for usage with Biogeme software291

(Bierlaire, 2003). Concerning the attitude statements, the ‘don’t know’ option was only picked292

by one user per statement, so it is decided to add these to the ‘neutral’ category.293
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3.3. Descriptive statistics294

After data collection and preparation, a descriptive analysis of the sample was carried out.295

The distribution of vehicle types within the sample was compared to publicly available data on296

all electric vehicles in the Netherlands (RDW, 2019). This indicates a rather good fit of the297

sample with respect to the vehicle types, as can be seen in Figures 3a and 3b.298

Figure 3: Distribution of vehicle types in the sample (l) and in the Netherlands (r).

(a) Distribution of BEV types in the
sample used in this research

(b) Distribution of BEV types in the
Netherlands (RDW, 2019)

A comparison is made with available data of a large group of Dutch drivers who are in-299

terested in driving EV (n=694) (ANWB, 2019). This has been one of the few studies on the300

characteristics of (future) Dutch EV drivers. The sample of 171 respondents in this research301

includes considerably more highly educated people (80% compared to 38% in the Netherlands),302

males (90% compared to 60%), and people who live in strongly or extremely urbanised areas303

(43% compared to 25%) than the sampled population by ANWB (2019). 43% of the sample304

is younger than 45, while 64% of Dutch EV-enthusiasts is this age. This should be taken into305

account when analysing the results of this study. This age variable is rather well distributed,306

with 19% aged between 25-35, 30% aged between 35-45, 31% aged between 45-55, and 15% aged307

55-65. This distribution as well as the frequencies of average length of regular trip in km are308

shown in Figure 4. It can be seen that most of the EV users have regular trip lengths between309

5 and 100 kilometres, with some outliers in the direction of 300 kilometres.310

30 40 50 60 70
Age

0

10

20

30

40

50

Fr
eq

ue
nc

y

Histogram age variable

(a) Age in years

0 50 100 150 200 250 300
Average length of regular trip (km)

0

20

40

60

80

100

Fr
eq

ue
nc

y

Histogram average trip length variable

(b) Average length of regular trip (km)

Figure 4: Histograms for age and average trip length in km. The youngest respondent is 23 years old, the oldest is
69. The average trip length in km ranges from 0 to 300 km; the last category captures respondents who answered
300 km or more.

The current sample has also been compared to a similar research that was conducted two311
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years ago by Hoekstra and Refa (2017). Some frequencies of specific characteristics of the sample312

are shown in Table 3. It can be seen that the majority of the sample (84.5%) drives an EV313

four or more days a week, indicating a substantial charging need. The majority, 90.5%, of314

the respondents were male (compared to 92% in Hoekstra and Refa’s research), whereas only315

9.5% were female EV drivers. The variables income and education also have a very unequal316

distribution: many respondents have a high income (40% income of 77,500 euros or more) and317

are well-educated (42% WO Bachelor and 34% WO Master). In Hoekstra and Refa (2017),318

68% of the respondents earns more than 50,000 on a yearly basis, and 73.7% has followed high319

education, which is very similar to the sample in this study. It is decided not to use weights in320

this research due to the lack of data about the total population of Dutch EV drivers. Note that321

therefore, all results are specific to the studied sample.322

Table 3: Frequencies of EV driving, type of EV driver and gender of the sample (n=171)

Frequency of EV driving (%) Type of EV driver (%) Gender (%)

<1 day per year 0.6 Ownership 33.8 Male 90.5
1-5 days per year 0.6 Private lease 0.6 Female 9.5
6-11 days per year 0.6 Business lease 54.3
1-3 days per month 3.0 Private car sharing 0.6
1-3 days per week 10.7 Business car sharing 6.5
4 or more days per week 84.5 Other 6.7

The first research question about what is the current charging behaviour of Dutch EV users,323

can be answered on the basis of descriptive analysis. In Figure 5, one can see what percentage of324

respondents chooses to use a certain type of charging how often. It can be seen that destination325

charging at work, on-street slow charging, and fast charging are used more than once a week326

by 25-55% of the respondents. In contrast, charging at sportsclubs is the least popular, as327

about 75% of the respondents indicates to use this type of charging less than one day per year.328

Interesting is that almost 40% of the respondents uses fast charging 11 days or less per year,329

which means that a very large part of the EV drivers is not a regular fast charger. To the330

question why people do not make use of fast charging at all (if they indicated they do not, n =331

10), answers include that fast charging is not necessary (n = 3), it is too expensive (n = 1) and332

that one’s car does not have the technology to fast charge (n = 6).333

At work

Near shops

Near sportsclub

On the street

Fast, along route

17

39

74

11

7

6

23

10

10

10

6

11

4

12

21

13

18

6

24

36

31

6

3

26

21

25

0

0

13

2

Charging frequencies for several locations (%)

<1 day per year 1-5 days per year 6-11 days per year 1-3 days per month 1-3 days per week 4 or more days per week

Figure 5: Charging frequencies for several locations (%).
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Without executing any model analysis yet, the respondents’ choices show that there is a334

slight preference for ultrafast charging (34%) compared to slow (31%) and fast (32%) charging.335

The no preference alternative was chosen in 3% of the choice scenarios. In Table 4, different336

sample segments are presented along with their choices. These variables are significantly related337

to choice as can be seen in the most right column of the table. Also importance of travel costs338

is significantly related. However, since another cost variable (price) is explored in the choice339

models later, this is left out. Insignificant variables are not shown.340

The Cramer’s V test is executed for the categorical variables, checking whether there is a341

relationship between the selected variables. When the Cramer’s V statistic is significant, this342

means that the null hypothesis stating that there is no relationship, can be rejected, imply-343

ing that there is a relationship. For the continuous variables, the ANOVA test procedure is344

used, using the F statistic in the same way as Cramer’s V, testing the independence between345

a continuous variable and a categorical variable (in this case choice) (IBM, 2019). Note that346

this analysis of correlations is purely exploratory, meaning that relationships between variables347

are not taken into account. In statistics, when the null hypothesis cannot be rejected, it does348

not necessarily mean that there is no relationship. However, no final conclusion can be derived349

about the relationship between these variables.350

It can be seen that the largest age group (41-50 years old) together with the youngest351

age group (23-30 years old) are the only groups of which the largest share opted for ultrafast352

charging. An interesting finding is that the respondents who value driving comfort the most353

(‘very important’), choose for ultrafast charging in the most scenarios. The degree of urban354

density does not seem to encourage the choice for ultrafast charging. On the contrary, the355

‘extremely urbanised’ group favours slow charging most of the time, while the ‘not urbanised’356

group has a preference for ultrafast charging. These findings could be used to guide the model357

estimation process in a later stage.358

Table 4: Choices made per sample segments by age, importance of driving comfort and degree of urban density.
These variables are significantly related to the choice variable.

Sample composition Choice p-value for variable
Variable Segment Freq (%) Slow Fast Ultra No

Age 23-30 years 13.1 39.8 15.9 40.9 3.4 0.001 (F=5.215; df=3)
31-40 years 19.0 37.5 28.1 32.8 1.6
41-50 years 35.1 27.5 33.9 34.3 4.2
51-60 years 23.8 25.0 37.5 35.0 2.5
61-70 years 6.5 29.5 40.9 25.0 4.5
Unknown 2.4 31.3 31.3 31.3 6.3

Importance of Neutral 6.0 37.5 40.0 12.5 10.0 0.014 (Cramer’s V=0.109)
driving comfort Important 44.5 29.4 33.1 33.8 3.7

Very important 49.6 30.9 29.4 37.5 2.1
Degree of urban density Extremely urbanised 16.7 43.8 23.2 30.4 2.7 0.002 (Cramer’s V=0.133)

Strongly urbanised 26.8 26.1 42.2 30.6 1.1
Moderately urbanised 14.9 26.0 27.0 44.0 3.0

Hardly urbanised 20.8 34.3 24.3 35.7 5.7
Not urbanised 14.9 22.0 36.0 38.0 4.0

Unknown 6.0 35.0 35.0 25.0 5.0

4. Methodology359

In this section, the theoretical conceptual framework and the technical analytical framework360

are explained.361
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4.1. Conceptual framework362

A conceptual framework was set up to show the expected relationships of the variables that,363

after careful selection on the basis of literature, were included in the survey. The Technology364

Acceptance Model (TAM), originally developed by Davis in 1986 to forecast the use of infor-365

mation systems (Davis, 1989), serves as the basis for the conceptual framework of this research.366

The model depicts how external factors influence core factors perceived usefulness and perceived367

ease of use directly. It shows the relationship of these factors to attitude towards using a new368

technology and behavioural intention. Extending this model, by adding the factors social in-369

fluence, facilitating conditions, performance expectancy and effort expectancy, the model is said370

to explain the usage of new technology (Samaradiwakara and Gunawardena, 2014). The result-371

ing model is called the Unified Theory of Acceptance and Use of Technology (UTAUT). The372

UTAUT is most suitable to serve as theoretical framework because it deals with the impact of a373

concrete technological development. The factors that are expected to influence the behavioural374

intention of the respondents (the choice in the choice experiment), are shown in Figure 6. A list375

of all variables that are examined can be found in the appendix.376

Several hypotheses were drawn up, amongst which are the following. More hypotheses can377

be found in the appendix.378

• Price is expected to have the largest influence (negative relationship, the higher the price,379

the less it is chosen).380

• Ultrafast charging is generally favoured over slower charging types.381

• A high valuation of travel time makes that people prefer ultrafast charging over other382

alternatives.383

• Drivers that make longer trips prefer faster charging.384

• Drivers with access to a homecharger prefer slow charging in the choice scenarios.385
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Attitudes

Importance on scale 1-5 of...

Travel time
Travel cost
Comfort
Sustainability
Technology
awareness

Socio-economic	char.

Gender, age
Education level
Income level
No. of cars per
household
Type of EV driver
Private parking
Urban density

Satisfaction	levels

No. of charging
points
Speed of charging
Information on
availability
Information on price

User characteristics: used survey variables

Travel	behaviour

Regular trip length in
km
Most recent trip
length
Longest trip length
Frequency of EV use
Primary trip purpose

Charging	behaviour

Frequency of use of
certain charging
points:
on street, at shops,
sportsclubs, work,
home; fast charging
along the route
Recent km charged

Constant	attributes

Speed of charging
Location of charging
point
Duration of charging
session

Availability

Availability of
charging point
Binary attribute

Charging point characteristics: attributes used in choice sets

Choice

Choice for slow, fast,
ultrafast charging or
no preference

Detour

Having to make a 5
minute detour
Binary attribute

Facilities

Facilities present at
charging location
Four level attribute

Price

Price of charging
session
Four level attribute

Vehicle

Type of battery
electric vehicle
Range in km

Figure 6: Conceptual framework based on the UTAUT model to derive the quantitative influence of user and
product characteristics on the choice for slow, fast or ultrafast charging. Each box contains variables that may or
may not influence the final choice (bottom box). The light blue headings indicate that these variables are related
to the user, while the orange headings indicate a relation with the product (the charging point). Both user and
product characteristics influence the final (utility of each) choice.

4.2. Analytical framework386

To investigate the influence that the variables mentioned in Figure 6 have on the prefer-387

ences of EV users and their use of different charging types, discrete choice modelling is used.388

Such modelling procedures are widely used in transport behaviour studies to model the deci-389

sion makers choice between alternative services, often transport modes. Since the goal of this390

research is to explore which factors influence a users choice for certain charging types – which391

are alternative services – discrete choice modelling is found applicable. The estimated models392

can determine which variables are most important in influencing the user’s choice, on the basis393

of many different observations. This approach is based on the idea that every individual subject394

to a choice, chooses the option (called alternative) that maximises their net personal utility.395

The utility of an alternative is derived from its characteristics and the individual. The vast396

majority of travel demand models are based on this concept of utility maximisation (Ortúzar397

and Willumsen, 2011; Louviere et al., 2000). This rational way of choosing the option with398

the highest utility matches with the UTAUT model, of which the basic assumption is that the399

decision maker is rational (Yoo et al., 2017). The UTAUT model indicates that a relationship400

exists between the perceived utility and the decision makers intention to use a new technology.401

Utility maximisation theory follows this idea and theorises that the higher the utility, the higher402

the adoption or use rates. Both theories are central to this research.403

For each alternative, the utility can be expressed as a function of the weighted sum of404

attributes of the alternative. The utility of selecting a certain charging type by individual q405

is function Uq(a1, a2, ..., a|A|) where j ∈ {a1, a2, ..., a|A|} is a possibly chosen alternative and406

A = {a1, a2, ..., a|A|} the set of all possible alternatives. Note that the decision maker q can only407

choose one alternative. That is, if j = 1, then j′ = 0, ∀j′ ∈ {A} \ {j}, and j will be chosen if its408

utility is higher than the utility of selecting any other alternative.409

Lancaster (1966) defined the utility function of selecting an alternative j ∈ A by individual
q as Ujq = U(xjq) where xjq = xjq1, ..., xjqn, ..., xjqk is the vector of the attribute values for
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every alternative j by a decision maker q. The utility Ujq has two components. The first is a
measurable, systematic or representative part Vjq which is a function of the measured attributes

x (expressed as Vjq =
∑k

n=1(βjnxjqn) where n ∈ {1, 2, . . . , k} and with β constant for all
individuals but possibly varying across alternatives). The second is a random part εjq which
reflects particular preferences of each individual, together with any measurement or observational
errors made by the modeller. That is to say, this component includes the importance of factors
that are not included in Vjq because they are not known to the researcher or cannot be observed
(Louviere et al., 2000; Ortúzar and Willumsen, 2011; Train, 2002). This is expressed by the
following equation.

Ujq = Vjq + εjq (1)

By including the random component, two situations can be explained. The first is that two
individuals with the same characteristics and facing the same choice set might choose differently.
The second is that some individuals may not always select what appear to be the best alternative
(considered by the researchers) (Ortúzar and Willumsen, 2011). That is, alternative j ∈ A might
be selected by individual q even if ∃j′ ∈ A such that Vj′q > Vjq. The random component ensures
that these situations can be explained by the utility maximisation model. Per alternative j, the
utility function can be expressed as:

Ujq = βj1xjq1 + βj2xjq2 + . . .+ βjkxjqk + εjq (2)

where Ujq is the net utility function for charging type j of individual q. βj1, βj2, . . . , βjk are
k numbers of coefficients (that indicate the relative importance of the attribute). The sign of
the βs in the model estimation results shows whether the attribute contributes positively or
negatively to the utility of the alternative. xjq1, xjq2, . . . , xjqk are the attributes for charging
type j of individual q. Attributes used in this study include price, whether a detour has to
be made, certainty of availability and the presence of facilities. εjq is the random component.
Based on the maximising-utility-reasoning, the individual q selects the alternative j if and only
if:

Ujq ≥ max
i∈A

Uiq (3)

where j is the chosen alternative from the set of alternatives A.410

The probability of choosing alternative j is given by:

Pjq = Pr(Vjq + εjq ≥ max
i∈A

(Viq + εiq)) (4)

As εiq is a random variable, maxi∈A(Viq + εiq) will be also a random variable. The same411

holds true for Vjq + εjq. The distribution of the above terms is derived from the underlying412

distribution of the disturbances (errors).413

This study focuses on the systematic component, since the random component of the utility414

function cannot be observed. This systematic component can be determined on the basis of415

the outcomes of the choice experiment that has been executed. Both multinomial logit and416

mixed logit models will be used to estimate the unknown values of this component, or in other417

words: the betas of the factors that are chosen to be incorporated in the choice experiment418

will be estimated. Maximum likelihood estimators (MLE) are used to estimate the parameters419

βj1, βj2, ..., βjk from a (random) sample of observations. This way, the level of influence of these420

factors on the utility of certain charging types can be determined. The beta values indicate the421

size and sign of possible relationships. This will be further elaborated in the next sections.422
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4.3. Multinomial logit423

If the disturbances follow a Gumbel distribution and are independent and identically dis-424

tributed (IID assumption) (Gkiotsalitis and Stathopoulos, 2015; Louviere et al., 2000), then the425

probability of selecting alternative j is given by the multinomial logit (MNL) model:426

Pjq =
eVjq∑
i∈A e

Viq
(5)

In Eq.5 the utility of alternative j, (Ujq), is compared with the total utility of all available427

alternatives (
∑

i∈A Uiq). The assumption that errors follow a Gumbel distribution and they are428

independent and identically distributed is used since only rankings of alternatives are observed,429

and not actual utilities, and thus the scale of the utility function has to be normalised. This430

is done by normalising the variance of the unobserved effects (ε), which for logit models, is431

assumed to be the same for all alternatives. That the errors are “independent” implies that432

there are zero covariances or correlations between these unobserved effects (ε), while “identical”433

implies that the distributions of the unobserved effects are all the same (Hensher et al., 2015).434

4.4. Mixed logit435

Mixed logit (ML) is highly flexible and can approximate any random utility model (McFadden436

and Train, 2000). In contrast to the MNL model that has several limitations due to its various437

assumptions, ML allows for random taste variation, unrestricted patterns and correlation in438

unobserved factors over time. For instance, ML takes into account unobserved factors that439

persist over time for a given decision maker.440

In ML, βj is not the same across all decision makers, but is treated as a random variable βjq441

that follows a probability distribution f(β|θ) where θ are the parameters of the distribution of442

βjq over the population (i.e., mean and variance).443

Using mixed logit, the unconditional probability of decision maker q choosing alternative
i ∈ A is the integral of the logit formula over the density of βjq:

Piq =

∫
Liq(β)f(β|θ)dβ (6)

where Liq(β) is the logit probability evaluated at parameters βjq, and f(β|θ) is a density function.
When utility is linear with β, the portion of the utility that depends on parameter βjq, Viq(βiq) =
β′iqxiq. In this case, the mixed logit probability becomes:

Piq =

∫
eβ
′xiq∑

j∈A e
β′xjq

f(β|θ)dβ (7)

To account for panel effects, error components can be added to the utility functions. These444

components vary between respondents, but not between observations for the same respondent.445

They indicate the loyalty of a respondent to a specific alternative. A positive value for this error446

component indicated that respondents opted for the same alternative in different situations; a447

negative value means the opposite. Simulation is required to estimate the parameters for the448

ML model, as there is no closed form function for the integral in Eq. 6. How this simulation449

works is illustrated in Algorithm 1. 250 draws are used to estimate the model in this study. Up450

to 1000 draws were tested, but this made no substantial difference with respect to the results.451
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Step 1: Take a draw from probability density function f(β|θ). Label the draw βr for r = 1
representing the first draw;

Step 2: Calculate conditional probability Lq(β
r);

Step 3: Repeat at least 250 times, for r = 2, ..., R. R is the total number of draws taken from
the distribution, r is one draw;

Step 4: Average the results. Calculate a value for the probability of alternative j for individual
q using:

P̃jq =

∑
r Ljq(β

r)

R
(8)

Algorithm 1: Simulation of the choice probability value used in ML.

4.5. Model specification452

The goal of estimating choice probabilities is to specify the (linear) utility function per alter-453

native. This is called parameter estimation. It will be done by maximum likelihood estimation454

using the open source software Biogeme (Bierlaire, 2003). To decide which variables xk ∈ x enter455

the utility function, a search process is executed. Variations are tested at each step to check456

whether they add explanatory power to the model. If they do, they are kept; if not, they are left457

out. One of the values of x is defined equal to one, for all individuals that have a given alterna-458

tive available. This is interpreted as the alternative specific constant (ASC). This ASC is taken459

as reference (fixing it to 0 without loss of generality) so the remaining (N − 1) values obtained460

in the estimation process can be interpreted as relative to that of the ASC. In this research, the461

no-preference-alternative is the reference alternative. Ortúzar and Willumsen (2011) mention462

that it is not always easy or clear to decide in which alternative utility or utilities the variable463

should appear, even for a small number of options and attributes. If we lack insight and there464

are no theoretical grounds for preferring one form over another, the only viable alternative is465

trial and error. The maximum likelihood estimator is the value of θ that maximises the function466

of LL(θ) expressed in Eq. 10.467

4.6. Goodness of fit468

To evaluate the models’ goodness of fit, the likelihood ratio index is used, measuring how
the model with the estimated values for the parameters performs compared to the null model
(when all betas are equal to zero). This is expressed in Eq. 9. This equation is based on the
log-likelihood, shown in Eq. 10.

ρ2 = 1− LL(β)

LL(0)
(9)

where LL(β) is the log-likelihood function of the model with estimated values for the parameters
(βs), and LL(0) is the log-likelihood function of the model when all betas are equal to zero (null
model). This log-likelihood function is expressed in Eq. 10.

LL(θ) =

Q∑
q=1

A∑
j=1

yqj lnPqj(β|θ) (10)
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where Q is the number of individuals that choose an alternative j from the set of choice al-469

ternatives A. yqj is the observed choice (0 or 1) and Pqj is the probability that yqj equals470

one.471

If ρ2 = 1, this indicates a perfect fit. However, Louviere et al. (2000) state that a value of ρ2

between 0.2 and 0.4 is considered to indicate extremely good model fits (p.54). The likelihood
ratio index can be improved by keeping in mind the degrees of freedom (Louviere et al., 2000).
When doing this, one calculates this ρ̃2 as in Eq. 11.

ρ̃2 = 1− LL(β)−K
LL(0)

(11)

where K is the number of estimated parameters (indicating the degrees of freedom).472

4.7. Model application: scenario analysis473

In the last step, model application, we investigate the percentage change in the choice prob-
ability of an alternative with respect to a marginal change in the explanatory variable. The size
of such changes in probabilities indicate direct elasticities of the model. This is given by the
following equation:

EPiq ,xikq = βikxikq(1− Piq) (12)

where EPiq ,xikq is the direct point elasticity, or the percentage change in the probability of474

choosing i with respect to a marginal change in a given attribute xikq.475

The cross-point elasticity is given by:

EPiq ,xjkq = −βjkxjkqPjq (13)

where EPiq,xjkq is the cross-point elasticity, or the percentage change in the probability of choos-476

ing i with respect to a marginal change in the value of the kth attribute of alternative j, for477

individual q.478

It is important to note that this cross-point elasticity is independent from alternative i. This479

means that all cross-elasticities of any option i with respect to attributes xjkq of alternative j480

are equal (Ortúzar and Willumsen, 2011).481

5. Model estimation results482

The model estimation results follow in the subsequent sections and are shown in Table 5.483

The first column of this table refers to the mathematical notation as used in Eq. 2. The columns484

of Table 5 titled ‘Value’ contain the estimated parameter values of the variables named on the485

left. The columns titled ‘T-test’ contain the value of the T-test, of which a value of > |1.96|486

indicates a significant contribution to the model (McClave et al., 2011).487

Several models were estimated using the attributes included in the choice experiment. Vari-488

ables were added one by one to the model, per category as outlined in the UTAUT framework489

in Figure 6. When they are insignificant, they are removed from the model, otherwise they are490

kept. Three models are reported to show these steps that have been taken in the model esti-491

mation process. The MNL model in this research contains 18 significant variables, the reported492

ML models contain 17 and 18 significant variables respectively, and the final ML model contains493

21 significant variables. In total, 57 variables have been tested as both alternative-specific and494

generic parameters. Using this approach, it can be tested whether the utility of an attribute495

depends on the alternative. For example, certainty of availability might be valued differently496

for the ultrafast alternative than for the slow charging alternative. It can be assumed that if an497
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Table 5: Model estimation results. This table only displays the significant factors, which is why not every
attribute is mentioned for slow, fast and ultrafast. A positive variable value can be interpreted as having a
positive relationship with the utility of the alternative (Slow, Fast or Ultrafast) mentioned, a negative value
indicates a negative relationship.
* Used as reference level; ** Insignificant, but kept in the model

Multinomial logit Mixed logit (1) Mixed logit (2) Mixed logit, final model

Variable Value T-test Value T-test Value T-test Value T-test
εS1 ASC (S) 2.43 6.01 3.78 7.43 3.49 6.94 2.19 5.82
εF1 ASC (F) 1.24 2.63 2.48 8.03 1.33 2.95 1.26 2.65
εU1 ASC (U) 2.6 3.21 3.6 3.24 1.94 1.33* 1.06 0.91**
εno ASC (no preference) 0 Fixed* 0 Fixed* 0 Fixed* 0 Fixed*
β1 Certainty of charging point availability (S) 0.729 3.59 0.863 4.16 0.878 4.47 0.797 3.86
β2 Certainty of charging point availability (F) 1.36 6.62 1.05 5.4 1.03 5.25 1.42 6.27
β3 Certainty of charging point availability (U) -1.34 -6.73 -1.51 -6.62 -1.58 -6.81 -1.47 -6.43
β4 Not having to make a detour (U) -0.988 -5.08 -1.17 -5.65 -1.15 -5.5 -1.14 -5.56
β5 Price (S, F and U) -0.0511 -3.41 -0.0676 -4.61 -0.0651 -4.42 -0.0569 -3.83
β6 Proximity to shopping area (S) 0.979 3.47 0.531 2.07 0.739 2.99 1.03 3.45
β7 Proximity to small shop/caf (S) -1.37 -2.76 -1.48 -2.99 -1.45 -2.83
β8 No facilities nearby (S) 0.961 4.1 0.973 4.69
β9 No facilities nearby (F) 1.2 4.3 1.27 4.25
β10 No facilities nearby (S, F and U) 0.557 4.65 0.684 6.41
β11 Current frequency of using fast charging (F) 0.341 4.11 0.299 3.9 0.344 4.41
β12 Income level (S) -0.00013 -2.5 -0.000135 -2.44
β13 Income level (F) -0.00014 -2.79 -0.000138 -2.41
β14 Income level (U) -0.00015 -3.02 -0.000151 -2.48
β15 Access to private parking (S) -0.392 -2.01
β16 Importance of comfort (U) 0.458 3.07 0.495 2.61 0.52 2.74
β17 Age (S, F and U) -0.0359 -3.85
β18 Age (S) -0.0351 -3.71
β19 Age (U) -0.0252 -2.14
β20 Education level (U) 0.25 2.39 0.224 2.3 0.236 2.56
β21 Importance of travel time (U) 0.235 2.06
εS2 Sigma (S) 0.316 1.13** -0.271 -0.95** -0.472 -1.96**
εF2 Sigma (F) -0.0869 -0.44** 0.0267 0.86** 0.0409 0.73**
εU2 Sigma (U) 0.648 4.13 0.559 2.82 0.548 2.74

Model statistics
Null loglikelihood -909.409 -909.409 -909.409 -909.409
Final loglikelihood -692.562 -704.891 -703.762 -689.898
Rho-squared 0.238 0.225 0.226 0.241

ultrafast charging point is not available at the moment the driver arrives, it will be very soon,498

while for slow charging this is not the case.499

All models are estimated using ASCs (alternative specific constants), attributes of the choice500

experiment, socio-economic variables and attitude statement variables. Important to note is that501

the ASCs capture the errors (ε as in Eq. 1) associated with each alternative. The ‘no preference’502

alternative is used as the reference level in all models. For illustrative purposes, Eq. 14 shows503

the systematic component of the utility function for the slow charging alternative (S) in the504

estimated MNL model. The variable names used in this equation can be found in Table 5 (cer505

refers to certainty, shoparea to shopping area, smallshop to small shop or cafe, nf to no facilities,506

inc to income, and park to private parking).507

VS = 2.43 + 0.729xcerS − 0.0511xprice + 0.979xshopareaS − 1.37xsmallshopS + 0.961xnfS
− 0.00013xincS − 0.392xparkS (14)

For example, the estimated parameter value of the xprice variable is −0.0511, meaning that508

if prices (of all three options, since this is a generic parameter) increase, the overall utility for509

the S (slow) alternative decreases, given all other attributes are held the same. When there is510

a shopping area near the slow charging point, this will increase the utility of the slow charging511

alternative, since the parameter for this variable is positive (0.979). Again, the interpretation512
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is valid when all other parameters are held constant. All utility functions and their parameters513

work similarly for each alternative in each model. This way, using the information provided in514

Table 5, utility functions for all alternatives in all models can be constructed and interpreted.515

We continue with exploring the found parameter values of the MNL model, followed by the516

evaluation of the ML models.517

5.1. MNL model518

For the estimated MNL model, first the significant parameters related to the charging point519

(the attributes of the choice experiment) are discussed, after which the user- and vehicle-related520

parameters follow.521

The certainty of availability parameter has a surprising outcome, since it is found to be522

negative for the ultrafast alternative, meaning that when one is certain that the ultrafast charging523

point is available, the less attractive it becomes. This might have to do with the relative value524

towards the ‘no preference’ alternative (which is the reference level). This way of thinking implies525

that being sure of an available charging point is a kind of prerequisite for most EV drivers.526

Interestingly, in practice, charging availability problems occur repeatedly in the Netherlands527

(see for example NOS (2018)). For slow and fast charging, the positive values for the certainty528

variable imply that once one is certain of an available slow or fast charging point, the more529

attractive that alternative becomes.530

Having to make a detour would most likely discourage people from choosing that particular531

alternative. The fact that this detour parameter is insignificant for the slow charging alternative,532

indicates that people would not mind making a small detour in order to reach a destination533

charger. This is logical since they will usually leave their car at such a spot for a longer period534

of time. On the other hand, the detour parameter is negative and significant for the ultrafast535

alternative, indicating that when people have to make a detour, the ultrafast charging alternative536

becomes more attractive. This is rather unlikely, however it is possible that other unobserved537

factors or circumstances influence such a notable value. Further research is required to draw538

conclusions on the effect of having to make a detour for ultrafast charging.539

As expected, the variable price is a significant factor in influencing the choice for all consid-540

ered charging types for EV users in the Netherlands. A generic parameter was estimated, which541

has a negative sign. This implies that the higher the price, the less attractive the alternative542

becomes, and vice versa. This confirms the price hypothesis mentioned earlier and is in line543

with logical assumptions, which would usually be to prefer the cheaper option.544

For the slow charging alternative, the proximity to a shopping area parameter has a positive545

and significant value. This indicates that the presence of a shopping area at these locations546

increases people’s tendency to opt for this alternative. This matches logical assumptions, since547

slow charging takes more time than fast and ultrafast charging, so the desire for a shopping area548

where one can spend time is larger. Interestingly, the opposite is true for the presence of a small549

shop or cafe, according to the model. This implies that when there is only a small shop or cafe at550

a slow charging point, it makes the charging point less attractive, all else equal. Another notable551

finding is the positive parameter for no facilities for the slow and fast charging alternatives. This552

indicates that, given all other variables are held the same, people have higher odds of choosing553

slow or fast charging when there are no facilities. This could have to do with the idea that554

people who use slow or fast charging may do this at their final destinations. Currently it is the555

case that EV users prefer to charge at their destination rather than on their way, especially due556

to current charging speeds (Hardman et al., 2018; Spoelstra, 2014). These final destinations are557

most likely not regarded as ‘facilities’ when asked in this research. It is however not possible to558

draw conclusions on this with the currently available data of this study, since no question was559

asked about the respondents’ interpretation of destinations and facilities.560
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The next parameter value in Table 5 implies that a higher current frequency of fast charg-561

ing indicates a higher tendency to opt for fast charging in the choice experiment. A possible562

explanation might be habitual behaviour that may substantially influence people’s choices (Ver-563

planken and Aarts, 1999). In line with this habitual behaviour theory, it was expected that564

when one has access to a homecharger on their private parking spot, one is more likely to opt565

for slow charging in the experiment. However, interestingly, the homecharger variable that was566

examined, was not significant. In addition, the variable access to private parking (S) is positive567

and significant, meaning that when one has access to a private parking spot, the utility of slow568

charging decreases. This is contrary to what was expected in the hypotheses.569

The income parameters in this MNL model are all found to have a very small negative570

value, indicating a weak negative relationship between income and the utility that is associated571

with each charging alternative. There may exist several moderating variables that have not572

been researched in this study, so follow-up research is advised. The income variable has a weak573

positive correlation with access to private parking (Pearson correlation=0.117, p=0.002) and a574

weak negative one with the variable regular trip length (Pearson correlation=-0.168, p=0.000).575

That people with a higher income more often have access to private parking and drive less576

kilometres on a regular trip may influence their lower tendency to opt for any of the three public577

charging alternatives.578

In the survey, five attitude statements were included so they could be used to answer the579

research question on to what extent these user-related factors influence charging behaviour580

of EV users in the Netherlands. Respondents were asked to report how important they find581

sustainability, comfort, travel time, travel cost, and being up to date with new technologies on582

a scale from 1-5. These variables make up the ‘Attitudes’ box of the UTAUT framework in583

Figure 6. Of all these variables, only the importance of comfort (U) parameter is significant584

in the MNL model. The more important one finds comfort, the more likely one is to opt for585

ultrafast charging. This is in line with expectations, as ultrafast charging is possibly the most586

comfortable option, especially in terms of time, availability and location. That no significant587

parameter is found for travel time means that no conclusions can be drawn about a relationship588

between how important one finds travel time and the utilities of the charging alternatives. This589

hypothesis can therefore not be confirmed.590

5.2. ML models (1) and (2)591

In retrieving ML model (1) and (2), all parameters were estimated again in the same manner592

as for the MNL model: adding variables one by one and using their significance as criterion593

whether the variable is kept in the model. These models (1) and (2) are estimated in the594

process of arriving at the final model with the best fit, and they are shown to provide insight in595

this process. Respectively 17 and 18 parameters were significant (at a 90% significant level) for596

the reported models. Model (2) is retrieved after improving model (1). Several socio-economic597

variables were significant in ML model (1), including a generic parameter for age, education598

for ultrafast charging and the importance of travel time for ultrafast charging. In the ML599

models, error components (the sigmas) are added to be able to estimate possible panel effects.600

These sigma parameters, together with the ASCs, explain part of the error (ε) in the utility601

function as mentioned in Eq. 1. This error term ensures that the model is not biased, which is602

why also insignificant error components are kept in the models. Only the error component for603

ultrafast charging is significant and positive (εU 2=0.548), indicating the presence of preference604

heterogeneity in the sampled population for this alternative (Hensher and Greene, 2003). This605

implies that respondents have a certain ‘loyalty’ to this alternative. This could be due to the606

fact that ultrafast charging is not yet possible but that it seems an attractive new technology.607

Such respondent loyalty is not found for slow and fast charging. The estimated parameters can608

be seen in Table 5.609
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In ML model (2), the ASC for the ultrafast alternative is not significant anymore, however610

it is kept in the model because it is a necessary and important part of the utility function. The611

values of the ASCs for all alternatives increased in ML model (1) compared to the MNL model,612

but decreased again in ML model (2). This decrease of ASCs indicates that a larger part of the613

utility of the alternatives is explained by the variables added to the model, but the opposite is614

true for ML model (1) as compared to the earlier estimated MNL model.615

In both ML model (1) and (2), a generic parameter for no facilities was estimated. Its616

positive value indicates that for all charging types, the likelihood of choosing a certain charging617

type increases when there are no facilities present. As explained before, for slow and fast charging618

this could be due to EV drivers’ preferences to charge at their final destinations, and for ultrafast619

charging, no facilities are necessary due to the very short charging sessions. In ML model (1),620

the importance of comfort (U) parameter was not significant, but importance of travel time (U)621

was. However when further developing the model, this was reversed again in ML model (2),622

resulting in the same interpretation as given for this parameter in the MNL model.623

A generic parameter for age was significant in ML model (1), indicating that when people624

are older, they are less likely to opt for any of the three alternatives. Since this is hard to believe,625

the parameter was split into several alternative-specific parameters for age in ML model (2).626

This resulted in a negative parameter for the slow and ultrafast alternatives. These values imply627

that the younger people are, the higher their tendency is to choose slow or ultrafast charging628

types, and the other way around. For fast charging, no conclusions can be drawn anymore, since629

the parameter was not found to be significant in this model.630

Concerning the level of education, a positive parameter value for ultrafast charging indicates631

that one is more likely to opt for ultrafast charging when one has a higher level of education,632

and vice versa. Care should be taken when interpreting these results, since the sample in this633

study has an above average education level (ANWB, 2019).634

5.3. Final ML model635

The final ML model provides the best fit to the data (ρ2 = 0.241), which is said to be a636

good model fit (Louviere et al., 2000). In Table 5 it can be seen that in the final model one637

error component (εU 2) is found to be significant, which means there is preference heterogeneity638

of respondents towards the ultrafast charging alternative. The positive sigma value for ultrafast639

charging (εU2 = 0.548) indicates that respondents opted for the same alternative in different640

situations. It can be concluded that there is a panel effect for the ultrafast alternative, but641

this is not the case for the slow and fast alternatives. The sigma values for the latter two are642

insignificant, indicating that it is impossible to draw any conclusions on plausible panel effects.643

The significant ASC values for slow and fast charging are lower than in the previous ML644

models, which means that more explanatory power is captured by the other estimated parameters645

in the model.646

Comparing the final ML model to the earlier models, the age parameter is no longer sig-647

nificant, the income parameters are included and significant, and the generic parameter for no648

facilities has been replaced by two significant no facilities parameters for slow and fast charging,649

as can be seen in Table 5. Higher income implies a lower tendency to opt for all three alterna-650

tives. This possibly indicates that public charging, compared to other (undefined) alternatives,651

is preferred less by people with a higher income. The final model also shows that both slow and652

fast charging become more attractive when no facilities are present.653

No significant values were found for gender and urban density in the models, and also age654

is no longer significant in the final ML model. This is encouraging because in policymaking,655

it avoids the dilemma of which interest to serve when it comes to these aspects. Government656

and other stakeholders can ensure the installation of charging infrastructure in such a way that657
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EV drivers consider all charging types as viable alternatives. The found values for income and658

education do indicate that a difference between income and education groups exist. However,659

this should be taken with care as the sample includes many high-income and highly-educated660

individuals.661

5.4. Model application662

The final mixed logit model was used to evaluate different scenarios with changing levels of663

the price and detour attributes. These attributes are chosen since price as well as location are664

most easily influenced by stakeholders, so they are the most relevant to explore. Firstly, scenarios665

in which the price for slow charging and the price for ultrafast charging change were explored.666

Both scenarios are possible future situations in which a price change of either two alternatives667

pushes EV users into opting for another charging point type. The base scenario includes similar668

pricing for all three alternatives. Both direct-point and cross-point elasticities are calculated.669

Direct-point elasticities look at the impact of a change of an attribute of alternative j on the670

choice probability of the same alternative; cross-point elasticities measure the sensitivity of the671

model for alternative j with respect to a modification of the attribute of another alternative672

(Bierlaire, 2017). These predicted probabilities of choice can be seen in Figures 7a and 7b. It673

can be seen that price has a substantial influence on the predicted probabilities of the sample,674

keeping all other parameters constant. A price decrease for a certain alternative results in a675

higher predicted probability for the respective alternative. All else equal, the figures show that676

it is predicted that people are willing to pay slightly more for ultrafast charging than for slow677

charging, since the intersection of all alternatives occurs at a price increase of 25% for ultrafast678

charging and at a price decrease of approximately 25% for slow charging. This price sensitivity679

should be kept in mind when installing charging stations. When for example high land prices680

will increase slow charging prices, this will affect the choice probabilities of people opting for681

that alternative. Price change could be used as steering mechanism by several stakeholders.682

Figure 7: Predicted probabilities for scenarios with price changes per alternative.
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(a) Price changes for slow charging
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(b) Price changes for ultrafast charging

After this exploration of the influence of price changes in general, it is also interesting to look683

at socio-economic characteristics. Since income was one of the socio-economic variables found684

to be significant in the final model, the probability distribution for different alternatives among685

income classes is examined. This can be seen in Figure 8. The income class ‘unknown’ is not686

included. The other six defined income classes can be found on the horizontal axis of Figure 8.687
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The influence of ultrafast price changes per income class can be clearly observed in the688

figures. All else equal, when ultrafast charging becomes 50% cheaper, it has the highest predicted689

probability for all income classes except the lowest class. When ultrafast charging becomes 50%690

more expensive, it is a lot less attractive for the lowest income classes, as is logically expected.691

For the higher income classes, the predicted choice probabilities in Figure 8 are similar for all692

three alternatives when ultrafast prices increase. The most important conclusion from this is693

that possibly quite a large difference exists between different income classes. It is interesting to694

see that mainly for gross yearly incomes of 26,201-38,000 euros and higher, a different market695

leading alternative can emerge due to price variations. When the Dutch EV driver population696

(and the used sample) will be more diverse, this possible difference should be further explored.697

Figure 8: Probabilities per income class for scenarios with price changes for ultrafast charging. The scenarios
include a 50% price decrease for ultrafast charging, the base scenario and a 50% price increase for ultrafast
charging.
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Next, detour scenarios are explored. In Figure 9, three scenarios are shown: one in which698

people do not have to make a detour to get to an ultrafast charging point, the base scenario in699

which people sometimes have to make a detour, and one in which people always have to make a700

detour to reach a charging point. The detour has a set length of five minutes in the model. The701

hypothetical scenario that no one ever has to make a detour for ultrafast charging indicates a702

future with an immense penetration rate of ultrafast charging points. In this case, the predicted703

probability that people opt for ultrafast charging along their route, taken all else equal, is 45.5%704

compared to 34% in the base scenario. Always having to make a detour makes the alternative705

a lot less attractive, looking at the predicted probability of only 23%. This implies that for the706

installation of new charging points, it is advised to look at the most used roads and routes to707

determine optimal locations for charging.708

5.5. Stakeholder perspectives709

To obtain information about opinions and visions of stakeholders in the field of EV, the710

researcher has spoken with six Dutch organisations and companies that are currently involved711

in the EV-sector. Both the user views on charging and whether a feasible scenario for ultrafast712

charging in the Netherlands exists, were part of the semi-structured interviews. All interviews713

were held in February 2019 and lasted approximately 30 to 70 minutes per interview.714
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Figure 9: Predicted probabilities for a scenario with and without having to make a 5 minute detour for an ultrafast
charging point.

All stakeholders that were spoken to regard the user view as very relevant to take into715

account. Despite this, the user perspective is not put first in their considerations as this takes a716

lot of research and it is found difficult to consider different user types equally. For businesses, it717

is the most interesting to find out what types of charging users prefer, since they can then adjust718

their business model accordingly. For the government stakeholders, the primary interest is to719

achieve a covering and fully functioning charging infrastructure, almost independent of which720

charging types this comprises. Both types of stakeholders share the idea that interpretations721

of user preferences for charging are important, since the choices of these users will influence722

their goals and strategies. Several noticeable findings on stakeholder views compared to the user723

perspective are discussed next.724

One important contrast between what users seem to want versus what local government725

thinks users want, concerns the relationship between current behaviour and future choices. For726

the data-driven strategies on the installation of charging infrastructure, the government relies on727

the measured occupancy rate as main key performance indicator [Interview sources]. Interest-728

ingly, in the models, the only variable regarding current charging behaviour that was significant729

is current frequency of using fast charging. The current frequency of charging at several loca-730

tions and the current usage of a homecharger (if applicable) were not significant. This means731

that from this research, there is no evidence that the current charging behaviour reflects future732

choices of users, implying that more ways or additional indicators should be used to determine733

the number of to-be-installed charging points.734

Secondly, a charging infrastructure exploitation party indicates that they follow their own735

vision, but that they believe what they do is in the interest of the EV user [Interview sources].736

This stakeholder is planning to add small shops to some of the fast charging points they exploit,737

since they believe this is what the EV user wants. Recent literature shows that when users738

have to choose from leisure facilities, shopping facilities, motorway service stations, gas stations,739

workplaces or educational institutes, indeed shopping facilities were found the most important740

(Philipsen et al., 2016). A no-facilities option was however not included. The model results741

reported in Section 5 indicate that fast charging stations are found more attractive when there742

are no facilities present. In contrast to this research, the respondents of the study by Philipsen743

et al. (2016) also included non-EV users. It cannot be concluded whether this impacts the results744

substantially. Based on these findings, the advise would be to investigate user needs regarding745
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shops more extensively, since otherwise resources may be spent on something that is not directly746

desired.747

Thirdly, some stakeholders expect that ultrafast charging may be overdimensioned for the748

average Dutch EV user. They state that such high charging speeds are not necessary for a749

regular user, but only for example for taxis, with very high mileages, or for high segment cars750

that can reach top speeds [Interview sources]. From this research, no conclusions can be drawn751

about taxis since they were not part of the target group. However, vehicle-related variables like752

range (km) were included in the models, but were insignificant. This implies that there is no753

confirmed relationship between higher range cars and a higher (or lower) tendency to ultrafast754

charge, or vice versa. Looking at the choices made by the respondents, it can be concluded that755

in the presented choice scenarios, people regarded ultrafast charging as a viable and realistic756

alternative, since it was chosen in 34% of the scenarios. This finding does not align with the757

stakeholders’ view on the ultrafast charging developments.758

Lastly, several stakeholders acknowledge that it is hard to take into account different user759

profiles equally. This research shows that the current group of Dutch EV users is rather homoge-760

neous, indicating that the confrontation with different user types may not yet be a very pressing761

issue. However this will probably change in the near future due to the growing popularity of762

EV (CEDelft, 2017; Ecofys, 2016). The larger the group of EV users, the more important the763

stakeholder perceptions of user preferences become. Clear is that both user preferences and764

stakeholders’ perceptions indicate that (low) costs and (suitable) locations (and thus comfort)765

are prerequisites for well-used charging points [Interview sources].766

6. Discussion767

The results of this study about whether ultrafast charging can be the future for EV in the768

Netherlands from a user perspective should be carefully evaluated. It has been shown that769

price, not having to make a detour, certainty of availability, proximity to shopping facilities or770

the absence of facilities, income, education and comfort are important for the users’ choice for771

certain charging speed types. Several of these variables are in accordance with a previous study772

on user criteria for EV fast-charging locations, in which detours and shopping facilities were773

proven to be very important to users (Philipsen et al., 2016). It should be noted that shopping774

facilities were chosen from several options where a no-facilities option was not included. In the775

following sections, the interpretation of results, putting these results in a broader perspective776

and the limitations of this study are discussed.777

6.1. Interpretation of results778

Users generally do not show a conclusive clear preference for ultrafast charging (chosen 34.1%779

of the time), indicating that this is at least not the one and only charging method to implement780

in the Netherlands. Part of this may be due to the currently well-functioning and covering781

destination charging infrastructure, shown by the current ratio of only 0.97 BEVs per public or782

semi-public charging point (RVO, 2018). This may be subject to change when the number of783

BEVs will continue to increase the coming years (CEDelft, 2017; Ecofys, 2016; Gnann et al.,784

2018). In this research, it is found that some preference heterogeneity for ultrafast charging785

(panel effect) plays a role in the users’ choice, which is likely to be explained by the influence of786

habits on decisions as mentioned in the literature (Verplanken and Aarts, 1999). However, even787

though this might be true, only a significant value was found for the current usage frequency of788

fast charging influencing the tendency to opt for fast charging. Other variables concerning the789

current usage frequency of charging points at different locations were not significant.790

The estimated parameter values for certainty of availability are interesting to look at, since791

their sign is not similar across alternatives. The reasons for this cannot be explained just by792
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looking at the model results. The response of people about this parameter might be due to793

their current main reason to use fast charging, as investigated by Wolbertus et al. (2018a). This794

reason is ‘Time left and possibility to charge’, indicating that people use faster charging only795

when it is available. This may distort the results of the choice model as people might take796

availability as a prerequisite and only look at other parameters when making their choice. This797

is a noticeable result, as charging availability issues occur repeatedly in the Netherlands (e.g.798

NOS (2018)). Such issues are assumed to be less apparent for faster charging, since the duration799

of the sessions is much shorter. This leads to the expectation that the availability should be800

most important for slow charging, however this was not the case in the model.801

The parameter not having to make a detour is negative for ultrafast charging, implying that802

when no detour has to be made, the alternative becomes less attractive, which is not in line with803

expectations. It is also contradictory to what is found in earlier studies on fuelling locations:804

drivers prefer to recharge along their frequently used routes (Kelley and Kuby, 2013). It can805

be said that, also considering the significant results of proximity to a shopping area, proximity806

to a small shop or cafe and no facilities for some alternatives, that the location of the charging807

point is important to the user. Also, when people find comfort important, this increases their808

tendency to opt for ultrafast charging, indicating that the comfort associated with ultrafast809

charging is valued highly by Dutch EV users.810

A sensitivity analysis is executed on the models used in this research. Since linear models are811

estimated, simple elasticity calculations could be applied to retrieve results. As expected, price812

and whether or not having to make a detour influence choice probabilities of the alternatives in813

the expected directions. Interestingly, income classes do not follow a straightforward pattern,814

indicating that there probably are other moderating or explanatory variables that impact the815

probabilities found. Comparing this finding to the result of the final ML model, it is also816

possible that higher income classes have a lower preference for public charging at all. Private817

homecharging could well be their first choice. Unfortunately these results cannot be retrieved818

from this study alone, which leaves it for further research.819

6.2. Placing results in a broader perspective820

To answer the question about the feasibility of ultrafast charging in the Netherlands, it821

is important to put this user-focused research into a broader perspective. The stakeholder822

interviews provide valuable input for this. The current situation in the Netherlands is one with823

a rather good network of destination chargers (37,000 public and semi-public charging points as824

of January 2019). This could possibly be a drawback to the development of a ultrafast charging825

network, since this new technology has to compete with the existing ones. The current Dutch826

charging behaviour is summarised quite well as: ‘You don’t stop to charge, you charge when827

you stop’ [Interview sources], to which fast charging simply does not live up. The interviewed828

stakeholders predict that (ultra)fast charging will become much cheaper in the future, making829

it more attractive. Since price is considered important by the respondents in this research, this830

can be confirmed. A considerate remark is made that no behavioural change would be required831

for drivers that currently drive a conventional vehicle since ultrafast charging will be similar to832

conventional refuelling. As habits may substantially influence people’s choices (Verplanken and833

Aarts, 1999), this could have some impact positively related to ultrafast charging preferences.834

This might boost the ultrafast charging point market eventually. To examine this, further835

research could focus on drivers who do not (yet) drive an EV.836

Furthermore, fast changes in the automotive industry concerning both cars and batteries837

might have large impacts on the future use of charging infrastructure types. Satisfaction levels838

of current infrastructure may decrease, and ultrafast charging might rise as a plausible alter-839

native. A possible contextual variable might be the generally short distances driven in the840
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Netherlands, which might not be the ideal environment to implement a network of ultrafast841

chargers. Regular fast or destination charging might just be enough. However, when price and842

location are selected well, ultrafast charging is certainly an option for EV drivers as can be843

deduced from the models. Such pricing and location decisions can be influenced by businesses844

as well as government stakeholders, making ultrafast charging an interesting alternative.845

Future developments that are hard to predict will likely impact the success of ultrafast846

charging in the Netherlands. An example of such a development is smart charging in combination847

with vehicle-to-grid or vehicle-to-home technologies (ElaadNL, 2019), which is only useful for848

slow charging. Automotive industry innovations in cars and batteries will also impact the level849

playing field. In addition, developments in costs per kWh as well as costs for newly to be850

installed infrastructure (hardware and grid connections) will influence the feasibility of ultrafast851

charging as primary charging mode. A future consideration that puts ultrafast charging in a852

positive light, is the impact charging infrastructure has on public space. When the masses start853

driving BEVs, it is questionable whether primarily slow charging could cover the charging needs854

of all users. Since faster charging points can serve more customers in less time, this would be855

more practical and additionally put less pressure on public space.856

6.3. Limitations and further research857

The main limitations of this research on EV drivers’ charging preferences include the follow-858

ing:859

• The sample size in this study is just 171 respondents or 672 observations. Sample sizes of860

this kind allow only drawing preliminary results;861

• The choice context for lease drivers may not be realistic, since it was asked that the862

respondents consider paying for charging themselves, which is usually not the case. This863

could have made the choice scenarios less realistic for lease drivers;864

• This research rests on several assumptions about charging, including the usual locations865

and the time it takes to charge (this is in fact dependent on many factors). These assump-866

tions may impact the results of this study by overlooking (and thus underestimating) the867

importance of such assumed variable values;868

• Linked to the previously mentioned limitation, a large significant alternative-specific con-869

stant for fast charging in the ML model indicates that there are variables influencing the870

choice for this alternative that are not included in the model. This could be improved in871

follow-up research by studying additional variables in the choice models.872

Further research could focus on using a larger sample size, trying different attribute(s) (levels)873

in a similar choice experiment (for instance time of the day or week), or combining such data874

with a revealed preference survey. More specifically, future research into user preferences for875

ultrafast charging could focus on the impact of charging locations, relating to possible necessary876

detours and installed facilities. The difference between facilities and final destinations should877

be incorporated in any follow-up research. The influence of income on charging choices is878

also interesting to further explore, since from this research it seems likely that there are more879

variables that have an impact on this relationship. Related to this is the recommendation to aim880

for a more diverse sample in a similar choice experiment, especially regarding educational level,881

income, and (a lower) frequency of EV use. The inclusion of private charging in such research882

would be very interesting.883

Quite a large group of respondents was excluded from analysis, mainly because the respon-884

dents opted for the same alternative in all four choice scenarios. It was assumed that the choice885
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context for these EV users was not properly defined, so estimating the models with these results886

would not make sense. In follow-up research, more attention could be paid to seeking a balance887

between realistic but distinctive enough choice sets. Including broader price ranges as attribute888

levels is one way to achieve this. Another option is to use an adaptive choice experiment, so the889

attribute levels change depending on answers given to previous questions in the survey.890

Lastly, it would also be interesting to study non-EV drivers, however the presence of required891

pre-knowledge on EV charging should be carefully considered. Linking to the remark by an892

interviewee about the possible future of smart charging, it would be very interesting to focus893

follow-up research on this topic.894

7. Conclusion895

The aim of this research was to investigate the feasibility of ultrafast charging in the Nether-896

lands, from a user perspective. In a choice modelling procedure, several MNL and ML models897

were estimated to retrieve the quantitative influence of various factors on the EV driver choices898

for different charging types. Concluding this thesis, the research questions are answered one by899

one.900

What does current charging behaviour of EV users in the Netherlands look like?901

Looking at the descriptive analysis of the sample of EV users of this research, several remarks902

can be made about the current charging behaviour in addition to what is known from recent903

literature. Most of the EV users have regular trip lengths between 5 and 100 kilometres, with904

some outliers in the direction of 300 kilometre-trips. The majority of the sample (84.5%) drives905

an EV four or more days a week, indicating a substantial charging need. Slow charging at work906

or on-street, and fast charging are used more than once a week by 25-55% of the respondents.907

Interesting is that almost 40% of the respondents uses fast charging 11 days or less per year,908

indicating that a very large part of the EV drivers is not a regular fast charger. Both EV909

owners (77.6%) and leasedrivers (88.9%) who have private parking often also have access to a910

homecharger. Of the people who have a homecharger, the majority (67.5%) uses it four or more911

times per week. 27.3% of the EV owners in the sample does not have private parking, against912

40.5% of the leasedrivers, making them dependent on public and semi-public infrastructure. As913

much as 75% of Dutch households does not have access to private parking, which is why the914

future use of (semi-) public charging points will likely increase when the number of Dutch EV915

drivers grows.916

What are the factors that influence charging behaviour of EV users in the Netherlands?917

The results of the MNL and ML choice models are used for answering this question. All918

variables as outlined in the conceptual framework based on the UTAUT model (see Figure 6)919

were added to and tested in the model. It can be concluded that this conceptual framework920

adequately presents the theoretical model used for this research, even though not all factors were921

found to be significant. Using this framework, all charging point characteristics (which were922

attributes in the choice sets) were found to have significant influence in the estimated models.923

The other part of the framework, concerning user characteristics, partly applies. One attitude924

variable, several socio-economic variables and one charging behaviour variable were found to be925

significant in the final ML model. This means that satisfaction levels, travel behaviour variables926

and vehicle characteristics did not have a substantial influence on the user choice, as found in927

this research.928

All researched charging point characteristics are found to be significant, including price929

and proximity to facilities. Price is found to have a negative relationship with the utility of930
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ultrafast, fast and slow charging alternatives (β5 = −0.0511). This means that a lower price for931

an alternative makes that alternative more attractive. A slow charging point location next to a932

shopping area boosts the utility of this charging alternative (β6 = 0.979). However, respondents933

also have a higher tendency to opt for fast and slow charging points without facilities. Noticeable934

is a decrease in utility of slow charging linked to access to private parking, when one would have935

expected the opposite.936

Comfort is the only attitude variable that was significant in the model. When someone937

finds comfort important, his assigned utility to ultrafast charging becomes larger. This can be938

explained by the fact that ultrafast charging sessions are usually en route, have the shortest939

waiting times and charging durations and therefore add to charging comfort. Interestingly,940

awareness of new technology and importance of sustainability did not have a significant value,941

while this was expected. A (preliminary) conclusion from this could be that the market focus942

should be more on the comfort of a charging type, rather than on its ‘new tech’ or ‘sustainable’943

image, according to the final ML model.944

Both the socio-economic factors income and education were found to have significant influ-945

ence on the utility of several alternatives. Higher income levels decrease people’s tendency to opt946

for any of the alternatives, while a higher level of education increases one’s likelihood to choose947

ultrafast charging. Urban density, gender, and age were not significant in the final ML model,948

indicating that no conclusions can be drawn concerning the influence of these socio-economic949

aspects.950

Regarding the variables on current charging behaviour, it was expected that when people951

drive more kilometres, they would prefer to charge ultrafast more often. However, this could952

not be confirmed by the models in this research. Based on the finding that people who currently953

frequently fast charge have a higher tendency to choose fast charging in the choice scenarios,954

it can be expected that when people will use ultrafast charging in the future, they will use it955

regularly. The preference heterogeneity found for ultrafast charging (εU 2 = 0.548) confirms this956

expectation. Theoretically, the significant error component may have a distorting effect on the957

estimated parameters, but this seems not to be the case (see Table 5). The best model, which is958

the final ML model, has a model fit of ρ2 = 0.241. This means that the model explains almost959

25% of the variability. This can be classified as a good model fit (Louviere et al., 2000).960

What happens to the likelihood of EV users’ choices for charging types subject to parameter961

changes?962

A sensitivity analysis was executed, looking at what happens to choice probabilities of dif-963

ferent alternatives when parameter changes occur. It is found that price has a substantial964

influence on the predicted probabilities of the sample, keeping all other parameters constant. A965

price decrease for a certain alternative results in a higher predicted probability for the respective966

alternative and in lower predicted probabilities for the other alternatives. All else equal, the967

results show that it is predicted that people are willing to pay slightly more for ultrafast charging968

than for slow charging. This is because the predicted choice probabilities for these alternatives969

are equal at a price increase of 25% for ultrafast charging and at a price decrease of approx-970

imately 25% for slow charging. This price sensitivity should be kept in mind when installing971

charging stations. When for example high land prices will increase slow charging prices, this will972

affect the choice probabilities of people opting for that alternative. So price changes - whether973

as a result of market interactions or put in place by government regulations - will impact user974

choices substantially and can therefore be used as a steering mechanism if required.975

Comparing scenarios in which no detour or a detour of five minutes has to be made to reach976

an ultrafast charging point, it is found that a required detour for ultrafast charging lowers the977

respondents’ tendency to choose this option by as much as 11% as compared to the base scenario.978
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For the installation of new charging points, it is advised to look at the most used roads and979

routes to determine optimal locations for charging.980

Interesting is to see whether an answer can be formulated to the question at what point people981

will switch from their current charging habits to ultrafast charging. Based on the sensitivity982

analysis, ultrafast charging is currently seen as viable and competitive alternative. For this to be983

the case, the price of ultrafast charging should not be more than approximately 20% higher than984

the prices of other alternatives. In addition, an incidental detour of five minutes is acceptable.985

What are EV stakeholders’ perspectives regarding user preferences for different charging types?986

For both business and government stakeholders, the user perspective is important to take987

into account, as was acknowledged by the interviewees. Several differences between what users988

want (from the model outcomes) and what EV stakeholders think users want, were found in989

this research. The first concerns the relationship between current behaviour and future choices,990

which is not as clear as stakeholders expect. Secondly, different opinions based on the model991

outcomes and stakeholders’ input on the presence of facilities at charging point locations do not992

provide conclusive answers as to whether to install which facilities. Thirdly, in this research it993

appears that Dutch EV users regard ultrafast charging as a plausible alternative (chosen 34% of994

the time), while some stakeholders address that ultrafast charging may be well overdimensioned995

for the average Dutch EV user.996

Businesses may adjust their business models to be able to provide the charging types users997

prefer. The results from this study include that price, comfort and availability are found impor-998

tant. This should be taken into consideration by market parties when setting out their future999

strategies in the developing world of EV. Government stakeholders will want to act in accor-1000

dance with user preferences, in order to achieve a covering and well-used charging infrastructure1001

network. The availability of public space and suitable grid connections are possible issues to be1002

aware of. Once this is not regulated well, this may impact the user experience of charging, since1003

malfunctions can occur. From the interviews it can be concluded that EV stakeholders share1004

the idea that interpretations of user preferences for charging are important, since the choices of1005

these users will influence their goals and strategies.1006

Feasibility of ultrafast charging in the Netherlands, based on a user perspective1007

Looking at the model outcomes and stakeholder attitudes, a feasible scenario exists for1008

the development of ultrafast charging in the Netherlands. However, it might not become the1009

dominant charging type in the Netherlands. The results of this research may have implications1010

on charging infrastructure policy in the Netherlands. Due to the size of the sample, policy1011

implications are limited, however some preliminary results can be provided. The results indicate1012

that a sole focus on ultrafast charging is not the ideal way to go, since people also express1013

their preference for regular fast and destination (slow) charging. A mix of these options is1014

recommended. All else equal, when building charging infrastructure from scratch, it is definitely1015

interesting to consider focusing on ultrafast charging. It should furthermore be stressed that1016

as of this moment, many different developments will likely influence the feasibility of ultrafast1017

charging which were out of the scope of this study. These developments include the effects of the1018

habits of new EV drivers (who are currently used to conventionally fuelling their ICEV); possible1019

benefits of smart charging for EV users, which promote slow charging; and cost fluctuations for1020

usage as well as for newly to be installed infrastructure.1021

All in all, coming back to the main research goal of investigating the feasibility of ultrafast1022

charging in the Netherlands, from a user perspective, this research leads to believe that ultrafast1023

charging has a bright future as additional charging technology, given it is provided at a decent1024

price and at suitable locations.1025
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