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ABSTRACT 

With the depletion of fossil fuel and the acceleration of climate change, sustainability is more valued by the 

public and governments. Sustainable technologies, such as renewable energy technologies and smart 

appliances, are acknowledged as promising solutions to reduce carbon footprint. The University of Twente 

initiated a project named the LIFE with the intention to research residential energy and water system by 

incorporating various sustainable technologies. In this thesis, we explore the possibility of the LIFE microgrid 

to operate in a near-autarkic condition by DEMKit. 

 

The LIFE  as envisioned consists of a 3 kW wind turbine, an EV parking lot with 25 kWp PV panels, a hybrid 

storage system (a short-term and seasonal buffer), and three tiny houses (including underfloor infrared 

heating systems). The models of the first three components are created and integrated into the DEMKit. Also, 

a long-term planning approach for buffers is developed to support seasonal storage. Besides, the Profile 

Steering control algorithm (PS) is applied to improve the Degree of Autarky (DoA) of the microgrid. The 

continuous power mode without loss and discrete power mode with the seasonal buffer conversion 

efficiencies, 45% for discharging and 65% for charging, are used in the simulation.  

 

The potential interactions between users and sustainable technologies and the consequential user behavior 

change are studied through literature research. A decrease of 10% is estimated for each house. The annual 

energy consumption of a normal household and a campus EV are estimated to be 4-4.5 MWh (including 

heating) and 2-2.5 MWh, respectively. The wind turbine and PV panels generate around 29.3 MWh of 

electricity a year. Based on this knowledge, we create a normal-behavior scenario and energy-saving scenario 

based on 10% household consumption decrease). 

 

We studied the impact of potential households’ behavior change on the sizing of the storage system, using 

continuous mode. It is found that PS is capable of improving DoA over 10 percent points alone and around 

12 percent points with a hybrid buffer system. With it implemented, the normal-behavior scenario can achieve 

a 99.8% DoA with a 90 kWh short-term battery and 9000 kWh seasonal storage system. Whereas, a ceiling 

of 95% DoA exists for the energy-saving scenario under the present storage configuration, predominantly 

subjected to intentionally introduced prediction error. Nonetheless, a smaller seasonal buffer, 3000 kWh, is 

enough to reach its maximum DoA.  

 

When exploring the maximum amount of tiny houses that the LIFE can supply with the aforementioned PV 

and wind turbine, the 95% ceiling appears again (using continuous mode). With a 210 kWh short-term battery 

and 12000 kWh seasonal storage, six tiny houses plus a campus EV, whose total loads is 27.26 MWh, can 

achieve 94.7% of DoA. Moreover, the discrete power mode is exerted on the normal behavior scenario of 

three tiny houses. A 60 kWh short-term battery and 6000 kWh seasonal buffer results in 78.5% for DoA. The 

relatively low degree of autarky is mainly due to the enormous conversion losses, around 14.18 MWh, which 

turns the scenario into an extreme case. For a more compelling storage model, integrating loss into the 

continuous power mode of DEMKit and tackling prediction errors (95% ceiling problem) is desired. It is 

expected that with these improvements, the normal-behavior scenario may accomplish the target of near 

autarky with a larger long-term buffer. 
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1. INTRODUCTION 

1.1 Background 

In the context of climate change, the Dutch government set sustainable development goals (SDGs) for 2030 

[1]. In the energy sector, a transition from fossil fuels to renewable energy (RE) by promoting RE access for 

households is emphasized. 16% and nearly 100% sustainable energy are the targets by 2023 and 2050, 

respectively. An associated UN goal, SDG 11 sustainable cities and communities, expresses the idea of safe, 

affordable, good-quality housing with adequate room improving the dwellers’ sense of well-being. Along 

with the penetration of RE technologies and relevant smart devices, the way of how people lives will be 

unconsciously changed, which is an inevitable topic while studying smart energy community. 

 

Living Lab for Innovative Future Environments (LIFE) is initiated by the University of Twente (UT), 

cooperating with multiple RE companies, e.g., Super B, and aims to explore a residential solution by 

integrating various sustainable technologies in the aspects of water recycling, energy generation and storage, 

and sustainable community. In terms of energy demand and supply, the goal is to achieve a ‘soft-islanding’ 

(near autarkic behavior) scenario of multiple houses, first stage with three tiny houses followed by six houses, 

and will expand in an evolutional fashion subsequently. The initial proposition for RE technologies is to 

include electric boiler (E-boiler), underfloor infrared heating system (UIHS), PV, wind turbine, short-term 

battery storage, and hydrogen system (seasonal storage). On the other hand, research also covers the synergy 

among dwellers, smart devices, and RE technologies for energy consumption reduction and efficiency 

improvement. 

 

The sizing of energy generation and storage assets to achieve soft-islanding for 16 houses in the Netherlands 

was investigated [2]. This study finds that if each house is equipped with 4 kWh battery and 22.4 m2 PV 

panels and shared a 60 kWthermal / 30 kWelectricity CHP unit, a Degree of Autarky (DoA) of 99.1% can be 

achieved. In this case, Profile Steering control methodology (PS) is applied to control the micro-grid. The 

results shows the potential of such an autarkic solution from the technical perspective. With this result, we 

involve the aims to achieve similar results from the LIFE project. In order to do so, we require such a model 

of the tiny houses project to determine the following proper steps for its evolution.  

1.2 Problem definition 

The LIFE, as a demonstration project, is expected to explore all possibilities of cutting-edge technology 

application. Aside from the aforementioned RE technologies, other promising technologies, especially smart 

devices, can be added as testing components. The use of these smart devices is supposed to benefit the DoA 

and the synergy effect with the user’s behavior. An example is that people are willing to engage in load-

shifting activity with a visual energy display [3]. One of the main objectives is to study these state-of-the-art 

technologies, their interaction with users, and, more importantly, the changes they impose on energy 

conservation and dweller behavior. 

 

Due to the asynchronization of RE production and household consumption (e.g., usage peak in the evening 

while PV production during the day), a well-designed micro-grid system is necessary. Such a system requires 

the proper sizing of different RE and storage components, and suitable control strategy, especially for buffers, 

predominantly seasonal storage. The second main objective of this study is thus to explore what is needed 

from the technical part to create an autarkic field lab. As mentioned above, user behavior may also impact 

the efficiency of the system. We explore these options for future expansions of the living lab by means of 

simulation studies using the Decentralized Energy Management Simulation and Demonstration Toolkit 
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(DEMKit) [4]. Note that, the social and technical aspects are intertwined with each other, and the thesis will 

be centered around the ‘human-in-the-loop’ scope.  

1.3 Research questions 

To reach the objectives and requirements mentioned in the previous section, the following research questions 

have to be answered:  

 

Main research question:  

What is needed from the technical part to create an autarkic field lab? 

 

The main research question can be decomposed into the following sub-questions: 

1) What are the state-of-the-art sustainable technologies that can be included to improve system DoA? 

2) How would user behavior change with these technologies being applied, and how would these 

changes influence power balance in the microgrid? 

3) What is needed from the technical part to support people in making these social changes? 

4) How can the optimal size of these technologies be determined in the light of system integration? 

1.4 Approach 

As this thesis only contributes to the theoretical study in the preliminary phase of the LIFE project, the first 

main objective is conducted through a literature study. First of all, promising smart appliances and RE 

technologies are reviewed. We analysis the role they play in energy saving or efficiency improvement, 

especially their impact on user behavior shaping. From a practical point of view, the user experience is 

summarized, and the energy performance results are estimated as references for the testing and analysis phase 

of the LIFE project. 

 

We use DEMKit to model the micro-grid system, three tiny houses plus a shared electric vehicle (EV) 

charging parking lot with PV panels on the top. Component models, such as  PV, EV, E-boiler, etc., are 

already available in DEMKit. Instead, the models of a wind turbine, an infrared underfloor heating system, 

and a hybrid battery system (short-term and seasonal storage system) need to be created for this assignment. 

The mathematic models are integrated into DEMKit, and thus, the smart grid control algorithm, Profile 

Steering, can implement seasonal planning. Besides, two scenarios, energy-saving and energy-intense 

referred to household consumption, are analyzed and compared to explore the different possibilities in reality. 

The profiles of these scenarios are generated by Artificial Load Profile Generator (ALPG) [5], the result of 

which is the input to DEMKit. 

1.5 Outline of the thesis 

In this chapter, we introduced the background of the LIFE project and the technical challenges it is facing. 

These challenges are translated into research questions, based on which a specific approach is given to 

conduct the research. A literature study is presented in Chapter 2. We focus on reviewing energy conservation 

strategies and sustainable technologies, including RE technologies and smart home appliances. Besides, 

performance indicators are discussed. In Chapter 3, we create a model for the tiny house micro-grid. The 

layout of the tiny houses is first illustrated, followed by introduction of the used software, ALPG and DEMKit, 

and profile steering control algorithm. More importantly, we present the modeling details of the three critical 

components, wind turbine, the infrared heating system, and seasonal battery. Chapter 5 uses this model to 
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simulate the two scenarios, and the results are analyzed by using performance indicators introduced 

beforehand. Chapter 6 concludes the thesis by answering the introduced research questions, and 

recommendations for future work are presented. 
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2. LITERATURE STUDY 

Technical resorts are not the exclusive way to energy conservation. Influencing people psychologically and 

sensually can also lead to behavior change towards a more sustainable pattern. All these methods are 

potentially carried out in the LIFE project. Therefore, literature research is not only about advanced 

sustainable technologies, particularly smart home appliances, but also non-technical strategies. The intention 

is to study the likely consequences so as to conceive a general idea of how to build a model for the energy-

saving scenario. 

2.1 Energy conservation strategies 

Household energy conservation has been a topic of interest in the field of applied social and environmental 

psychological research for several decades. Along with the focus being shifted to climate change, household 

energy conservation, as an efficient way, has become a hot topic in the sustainability domain as well. 

Abrahamse et al. [6] categorized energy conservation strategies into antecedent and consequence strategies. 

These two strategies clarify various interventions that could potentially help households to reduce energy 

consumption. Note that a variety of interventions are commonly used in a combined fashion. 

2.1.1 Antecedent strategies 

Antecedent strategies, as the name suggests, are the interventions used before energy is consumed. This type 

of intervention would impact the households’ determinants (the factors that cause behavior change, e.g., 

knowledge) and thus lead to behavior alteration. For example, affirmative information can endow knowledge 

about sustainability and changed knowledge would affect people’s lifestyle towards a more green one. These 

interventions include commitment, goal setting, modeling, and information. 

 

Commitment refers to a pledge or promise to alter behavior, which is always involved in goal setting (e.g., 

decrease energy consumption by 10%). In the research of Pallak et al. [7], commitment showed better effect 

if it is made publicly, as social norms (e.g., expectations of neighbors) could exert active causes leading to 

more significant change. The drawback, nonetheless, is the probable discontinuation behavior of conserving 

energy after 6 months.  

  

Goal setting is always committed with feedback intervention (a type of consequence strategy). Becker [8] 

compared different goal-setting levels, 20% and 2% of saving energy in the research. The results shows the 

20% goals perform better with 15.1%, whereas the 2% goal is barely useful. 

 

Modeling advises people with examples of recommended behaviors. Winett et al. [9] provided various 

energy-saving measures through a TV channel that targets middle-class homeowners. The energy use was 

reduced by 10% through modeling. 

 

Information is the most commonly used strategy. The intention is to impart knowledge and to increase the 

household’s awareness in multiple ways, such as tailored information, workshops, and mass media 

campaigns. The latter three methods not necessarily lead to behavior change, and in fact, even if the change 

was triggered, the effect is mild. The tailor information differs in provided information, and thus targets 

would get overload with general information. Winett et al. [10] provide personalized information on air 

conditioning and heating to subjects, which resulted in 21% energy being conserved. 
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2.1.2 Consequence strategies 

Opposite to antecedent strategies, the measures of consequence strategies are based on the preceding energy 

consumption pattern and influence household based on observed behaviors. The primary consequence 

interventions are reward and feedback. 

 

Money is the most straightforward reward and also an effective one. Winett et al. [11] offered a monetary 

reward to households with information and feedback can save about 12% in 6 weeks. On the other hand, the 

study of McClelland et al. [12] found that the savings would diminish as the experiment progressed. Other 

types of rewards comprise tax credit, emoticons, and social rewards (performance indicator with a descriptive 

comment). Pitts et al. [13] utilized tax deduction from total income taxes as the incentive to attract households 

to insulate their houses. It turns out the tax credit had no effect at all. Handgraaf et al. [14] claim that social 

rewards are more effective than these financial rewards since social norms are involved. He conducted a 

comparative experiment that targets employees in a Dutch company for 13 weeks with grade points with a 

descriptive comment as social rewards. The results reveal that social rewards outperform financial rewards, 

and public rewards outperform private rewards. Schultz et al. [15], instead, use emoticons as social rewards 

among neighbors. People receive either “positively ( ) or negatively ( ) emoticons” depending on whether 

they consumed less or more than average consumption. Households try to obtain or maintain the positively 

valenced emotions by saving energy. They are sensitive to if they behave appropriate or not. 

 

Feedback can be regarded as the most flexible strategy, as it is related to or can be applied jointly with all 

other energy conservation strategies. In general, the provision of feedback can save about 5%-15% of energy 

[16]. We break down the feedback intervention into the following aspects: why (intention), what (content), 

when (frequency), and how (approach). 

 

First of all, the same as why people participated in Hargreaves smart monitor/display trial [3], it is believed 

that the motivations to adopt smart monitors are saving money (also frustration on rising energy prices), 

environmental concerns, the curiosity on the details of energy consumption, the interest in the technology 

itself. 

 

The feedback contents are diversified [3]. The most basic ones are real-time and accumulated consumption. 

Bittle et al. [17] found that for high-energy consumers, cumulative consumption is more effective than daily 

electricity use, but for medium and low consumers, the effect is opposite. Distinguished to frequency varying 

in feedback content, continuous and periodical feedback differ in feedback frequency. In Houwelingen and 

Van Raaij’s research [18], the continuous feedback on gas consumption can save about 5% more than that of 

monthly feedback. The content and scale of consumption feedback also matter. Users argue that the 

consumption in kWh and translated carbon emission are abstract and too small to provoke action. Instead, 

the financial interpretation, such as pounds or pence, is preferred [3]. 

 

Another associated feedback content is about consumption peak indication with a pricing framework that can 

provoke load shifting [19]. People also emphasized the necessity of identifying high-consumption or greedy 

devices [3]. A relatively novel feedback is health based, which frame energy conservation as altruistic and 

raise the moral cost. Asensio and Delmas [20] framed it as ‘Last week, you used XX% more/less electricity 

than you efficient neighbors. You are adding/avoiding XX pounds of air pollutants, which contribute to 

known health impacts such as childhood asthma and cancer’. As a result, users displayed a more persistent 

and effective energy-saving behavior of 10% than a typical financial frame. Feedback content can also be 

comparative [21]. The comparison objects can be historical data and the consumption of neighbors, friends 

(from social media), etc. Such comparison plays a role in setting a benchmark, involving competition, and 

boosting the learning-and-improving loop in the new habit formation process. As for goal setting, people 

welcome the feedback named ‘credit’ that suggests the difference between consumption limit and 
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accumulated consumption in a period [3]. Furthermore, some households ask more than domestic energy 

information, but also wish to incorporate data about transportation, water and gas usage [3]. 

 

Email is a traditional but high-engagement approach to deliver feedbacks. Although Asensio and Delmas 

conveyed the feedback through both email and online portal [20], the online portal was most commonly 

visited through the link in the weekly email. On the other hand, online portal is a friendly approach for 

research to check the engagement of users (e.g., through login frequency). A more recent alternative is the 

mobile app that is characterized by higher accessibility. A home monitor/display is also a popular feedback 

tool and sometimes is treated as a new attractive gadget that brings more engagement. However, users express 

the concerns about the consumption provoked by the monitor itself [3]. 

 

In this delivery agency topic, an important branch is the design of the interface [3]. On the one hand, users 

complain about some unwelcome information and appeal to the agency whose interface is customizable. On 

the other hand, the level of interface sophistication can affect the effectiveness of the feedback. Besides, the 

aesthetic appearance of the monitor is essential, and a touch screen is preferred. Users tend to move and 

corner their monitor, due to the inconvenience caused by its volume, the mismatch of the style with 

surroundings, or no demand for already predictable information. Another interesting subject is gender related. 

Some monitor users reflected that their female family members are either not interested it or do not 

understand the monitor. Different schemes are supposed to be included not only for females but also for 

children and elders. 

 

The feedback methods, as mentioned above, are known as factual feedback (e.g., by providing consumption 

numerically), through which users need to process the information consciously. People, however, typically 

lack the motivation or ability to engage. Ambient feedback is found to be a more effective approach 

(approximately 27% saving) that can be handled even without conscious attention [22]. A typical form is a 

color-changing light, which is cheap, energy-friendly, low-conspicuity, color- and intensity- changeable, and 

easily-reachable (as long as light can get to). More importantly, this technology offers feedback that already 

being evaluated based on a benchmark, hence save the user a lot of effort. Aside from consumption, the color 

of light can be based on a time-of-use tariff [23] to help achieve energy-saving or load-shifting. From a 

different perspective, color-changing light can influence people’s feelings. 15% of heating energy is found 

to be saved through regulating light intensity to ‘deceive’ users perceptually [24]. 

2.1.3 Implications for LIFE 

All the strategies mentioned above seem suitable to be applied in the LIFE project, but still, several items 

need to be addressed. First, the ‘recipe’ of combined applications is essential and should be delicately 

designed, especially when it comes to the incorporation with RE and smart technologies. And the experience 

of previous research should be considered in experiment design, particularly the details. More specifically, 

not many variations are expected for antecedent strategies. Instead, consequence strategies have more room 

to explore and extend. For example, we should not be limit to ‘reward’, but also to explore the ‘punishment’ 

as a consequence intervention.  

 

DEMKit can be connected to a third-party HEMS. Figure 2-1 is an example that DEMKit utilizes the user 

interface of Home Assistant to display its output. Based on section 2.1.2, a more promising display should 

be capable of: 1) provide tips for potential improvements, 2) indicate high-consumption and greedy devices, 

3) include information about transportation, water and gas usage, travel, etc., 4) incorporate financial and 

health-based feedbacks, 5) create new branch for goal setting and commitment and their feedbacks 6) the 

dashboard interface should be designed to be customizable, 7) design gender- and age-specific schemes 8) 

add share function for friends, etc. 
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Figure 2-1 The display of DEMKit outputs through third-party (Home Assistant) user interface 

Moreover, the novel ambient feedback is not regarded as an alternative or a competitor with factual feedback. 

They can rather play a symbiotic role together in this project: factual feedback can persuade households to 

increase their awareness in the early phase; ambient feedback can save user effort and relief or solve the 

discontinuation problem. Here, we recommend sticking with color- and intensity-  changing light indicator 

as an agency for ambient feedback. 

 

On the other hand, some households express that they would not change certain habits or behavior either by 

financial incentives or moral pressure to shift the load. These peaks still need to be matched by renewable 

energy generators or buffers. Meanwhile, some energy conservation strategies, especially the monitor 

feedback, are reported to be able to prompt users a lot of interest in RE technologies [3]. In addition, the 

decay of the effectiveness of these strategies over time is normal, which is, however, not wanted. 

 

The majority of the strategies described in this section are all (implicitly or explicitly) based on the 

assumption that energy-related choices are made after elaborating on the information; the underlying 

theoretical model would be the Theory of Planned Behavior [25]. The essence here is that consumer’s 

attitudes and social norms play a predominant role in the intention which further alters their behavior. 

Habituation is one of the causes that often weakens the association between intentions and behavior.  

McCalley et al. [26] argue that habits are more influential than intentions on everyday life behaviors, and 

tends to override intentions when the latter goes against the former. As habits happen without conscious 

deliberation, the LIFE project thus ought to focus on ‘conscious behavior’ for antecedent and consequence 

strategies to be effective. While if feedback is presented at the moment the behavioral choice is made, the 

situation would be different. Confronting people with their prospective energy use at the moment they are 

setting their washing machine may well work because it interrupts (potentially) routinized behavioral patterns  

[27]. This beforehand feedback just corresponds to what DEMKit is capable of that predict the event and 

analysis its potential outcomes. 

 

In terms of the implication for modeling, the effect of these strategies varies a lot, which largely depends on 

the awareness, knowledge, characteristics and old habits. We take the average value of energy-saving which 

is around 15% for the LIFE. In the following section, we will start by discussing the interaction between RE 

technologies and the users. 

2.2 Sustainable technologies 

2.2.1 Renewable energy technologies 

The well-known renewable energy technologies are PV, wind turbine, biomass, etc. Their technologies are 

mature, and knowledge is abundant. However, the study of their interaction with users is rare. Although these 
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technologies are characterized by distinct generation profiles, the insights of their interaction with humans 

are consistent. Here, we take the PV panel as an example to illustrate how they alter users’ behavior.  

 

The majority of researchers hold that micro generations can enhance the users’ awareness and hence favor 

energy conservation and load shifting [28, 29]. The environmental awareness of these RE technology 

adopters is more or less stronger than most public even before they decided to purchase a RE product. The 

employ of these appliances further helps users gain more knowledge about (domestic) energy. Nevertheless, 

with lower bills, users might start to consume more energy, which is known as the rebound effect in energy 

economics. Qiu et al. [30] ascribe it to the perceived additional ‘income’ (from selling productions) or shrunk 

energy bill. Their research outcome of PV rebound effects is measured to be 18%: 1 kWh PV yield induces 

an additional 0.18 kWh consumption from 277 solar homes in 4 years. Other researches also reported a 

similar value of 20% for rebound effect [31-33].  

 

On the other hand, along with the installation of these RE appliances, a home display is usually adopted to 

monitor the micro-grid. Keirstead [34] found that the monitoring device is mostly used to check the 

functioning of the PV system, instead of for load-shifting. A wiser option to accomplish load-shifting might 

be through smart appliances, which we describe in the next section.  

2.2.2 HEMS and Smart appliances 

Home energy management system (HEMS) is acknowledged to be a handy tool to facilitate households living 

a sustainable life. Commercialized compatible components are smart plugs, smart lighting systems, smart 

thermostats, and other smart appliances (e.g., refrigerator). HEMS  and its components are often labeled with 

‘intelligence’ or ‘smart’ because they can turn domestic energy management to (semi-) automatic. Their tasks 

generally include analyzing device status and environment (e.g., diagnose operation conditions), predicting 

future energy demand,  determining control setting or management strategies (e.g., optimizing device’s 

operation state/efficiency, and interaction with the users (e.g., suggest the device’s maintaining schedule and 

take users’ preset).  

 

The HEMS we discussed in this section is different from DEMKit, as these smart appliances are not 

compatible with DEMKit yet. These market-available smart appliances are usually able to work 

independently, and the literature about their user interaction study usually targets only one technology. Ford 

et al.[35] reviewed 308 HEMS products from the market and summarized available functions for each smart 

appliance category mentioned above. Their study also revealed that the trend of energy portal is shifting from 

websites and computer software to mobile apps. Lee and Cheng [36] summarized the energy-saving efficacy 

of individual categories from 305 cases: up to 39.5% averagely for the smart lighting system, around 14.07% 

for Heating, ventilation, and air conditioning (HVAC), and 16.66% for other products. Alaa et al. [37] 

reviewed the new and disruptive technology of smart home applications based on Internet of Things (IoT). 

Hence this literature study no longer repeats these content but focuses on user behavior influence and 

corresponding energy-saving ratio of varying cases. We aim at the cases in two categories, smart thermostats, 

and smart lighting systems, as they are the most efficient energy-saving choices. 

 

2.2.2.1 Smart lighting system 
    

Smart lighting systems are more often applied in the office rather than a house or apartment. Nonetheless, 

similarity exists more or less in the use pattern, user behavior change, and energy use reduction. This part 

literature study is based on mixed research of household and office smart lighting systems. In this system, 

color, lighting brightness, and Correlated Color Temperature (CCT) are traditional controllable variables. 

Conventional techniques are occupancy sensing, daylight harvesting, and dimming. Neida et al. [38] reported 

that integrated smart lighting systems typically exhibit 17-60% energy savings, and the varying comes from 

distinct use patterns of the system. 
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For occupancy-sensing lighting based systems, energy-saving potentially range from 3-60% [38]. Current 

occupancy sensors generally are based on single-point detection and thus introduce uncertainty in the sensor 

feedback data. Preset time delays is a regular solution, and need to be calibrated appropriately. Otherwise, 

more energy might be consumed than a conventional lighting system. The typical time delays are between 5 

and 30 min [39]. Eilers et al. [40] revealed that even with occupancy detection, users are half likely to switch 

on or off the lights manually of 63 offices, and this behavior had induced 30% additional electricity saving. 

 

Heschong Mahone Group [41] conducted phone surveys to their customers, including schools, offices, and 

other types of occupancy, to compare the switching system and dimming system. The result shows that 

although the dimming system has higher performance, the switching system is more welcomed (56% vs. 

41%). Meanwhile, users complain about the complexity of system operation, difficulty in initial calibration, 

and brightness not being kept enough. For a dimming system, if with an occupancy detection sensor, users 

are more likely to select maximum light output, the possibility increase from 89% to 95% [42]. 

 

In terms of the daylight-harvesting system, Chew et al. [39] concluded that reported energy-saving is usually 

over 40%. Besides, Daylight presented a positive effect on the well-being and health of users and thus is a 

preferable solution. Moreover, the design of the system is supposed to prevent glare that might cause user 

discomfort. 

 

Non-visual effects of light is a non-negligible factor when it comes to lighting quality that potentially impacts 

human well-being [43]. An example is that the diversified color temperatures would influence the human 

perception of a space. Moreover, the immense impact on the human physiological process was confirmed 

[44], so as the distinct preferences of color temperatures for different spaces [45]. Higher color temperatures 

that characterized by greater alertness are more suitable for workspace, while lower color temperatures are 

usually preferred in bedrooms and living rooms [39]. 

 

2.2.2.2 Smart thermostat 
 

The smart thermostat is not the traditional energy-consuming devices, but its control subject HVAC is. 

Different from an occupancy-based lighting system that usually needs only one sensor, a smart thermostat 

can collect various information, such as occupancy, humidity, temperature, etc. from multiple sensors as 

inputs to determine the action of HVAC. In this section, we discuss the smart thermostat through pilot project 

researches findings. 

 

Since the heating or cooling process is time-consuming, pre-cooling or pre-heating is a popular function in 

smart thermostat products. Schedule-learning algorithms thus could be a helpful auxiliary to enhance the 

degree of automation. Aarish and Jones [46] evaluated two smart thermostat pilots that compare occupancy 

sensing only thermostat (OST), occupancy sensing thermostat with schedule-learning algorithms (OSST), 

and programmable thermostat (PT). In terms of energy saving, OSST resulted in averagely 13.3% gas saving 

for heating and 14.5% electricity saving for cooling, which outperformed PT with 7.8% gas reduction, and 

performs slightly better than OST for heating and saved around 10% more for cooling. As for heating season 

comfort, majority users reflected that they did not notice a change in comfort level, 57% for OST, 65% for 

OSST. About 20% of user feedback on the comfort level is acceptable. According to the test, precooling can 

cut 7.9 and 3.6 mins running time from the first and second events. The energy-saving is not significant about 

0.847 and 0.472 kW, but saved time potentially contributes to peak load reduction. 

 

Lieb et al. [47] evaluated a smart thermostat pilot that compares two products that are both occupancy-based 

with remote control options for gas heating systems. For occupancy detection, two technologies are available, 

motion sensor and GPS. 88% of users kept the sensor on as default, and less than 50% of users turned on 

GPS. Besides, users are less willing to override the motion sensor. Over 4 months, both product users showed 
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a decline in manual engagement, and the ratios are 60% and 35% individually. Only a few participants 

disabled the occupancy detection as they claimed that it did not work well for their home. Few users also 

replaced thermostat to programmable ones. It turns out manual thermostats realized higher gas-saving than 

programmed ones. Furthermore, users’ major complaints are about operational issues, scheduling 

adjustments, Wi-Fi connectivity, and occupancy detection. 

2.2.3 Implications for LIFE 

RE technologies are often more acknowledged or realized by the public, but its limitations are obvious too, 

especially the mismatch between production and demand, and sole solution by providing green energy. 

However, HEMS and the smart appliance can not only relieve households from trifles; more importantly, it 

can save a considerable amount of energy and shift peaks if it is well-designed. Also, IoT would also be an 

indispensable element in the future. These three technologies are essentially mutually beneficial and should 

be well balanced in the LIFE project. 

 

Regarding to implications of specific technology, the rebound effect of the integration of RE technologies is 

too significant to be not underscored in the LIFE project. Potential solutions, such as warning rebound effect 

when it occurred and cautiously presenting financial data. On the flip side, previous research about the 

rebound effect did not adopt smart appliances, which might mitigate or even eliminate this side effect. 

Therefore, the effect of (semi-) automated HEMS on the RE rebound effect is worthy of the effort to explore. 

While for modeling, we estimate the rebound effect to be 15%, considering the knowledge and awareness of 

the dweller would be higher than average. 

 

For smart appliances, several commons should be realized and accounted for in the LIFE projects. First, the 

efficacy of smart appliances varies a lot in different scenarios, mostly depend on the use pattern. Hence, the 

product selection and delicate calibration are critical as it would directly influence the outcome. Second, the 

service or device accessibility and robustness are essential, sometimes even play a more significant role than 

energy saving for user adoption and behavior change. Third, the simplicity or the degree of automation of 

the system more or less determines the continuation of sustainable behavior. Last but not least, the application 

of HEMS and smart devices is supposed to coordinate with the use of energy conservation strategies, as 

mentioned above. Last but not least, energy saved by smart appliances can be very high, but probably it partly 

overlaps with that of energy conservation strategies. Based on the estimation of energy conservation 

strategies in section 2.1.3 and the rebound effect, we conservatively reckon the average energy saving per 

household for the LIFE is around 10%. 

2.3 Performance indicator 

As mentioned in the Introduction, the goal of this thesis project is to achieve near autarkic scenarios for the 

LIFT project. In order to so, proper evaluation method needs to be introduced. In accordance with previous 

work of 16 soft-islanding houses [2], the performance indicator used here is DoA, instead of widely-used 

self-sufficiency, self-consumption, or Demand Cover Factor.  

 

𝐷𝑜𝐴 =
𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛_𝑦𝑒𝑎𝑟𝑙𝑦 − 𝐸𝑖𝑚𝑝𝑜𝑟𝑡_𝑦𝑒𝑎𝑟𝑙𝑦

𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛_𝑦𝑒𝑎𝑟𝑙𝑦

 × 100% 

 

Where 𝐸𝑖𝑚𝑝𝑜𝑟𝑡 is the total amount of electricity imported from the grid. In contrast with self-sufficiency, 

DoA accounts for the part of surplus self-produced energy that stored in buffers and would be consumed by 

microgrid but at different time intervals. While self-sufficiency is defined as the ratio between the energy 

directly from RE production and total energy consumption.  
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The ideal situation is the microgrid to be fully islanded. However, the cost to assure the last few percent 

points of DoA is too high to be cost-efficient. Therefore, in the case of the LIFE project, we consider 98% as 

the lower limit for the microgrid to be near autarky. 
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3. MODELING 

3.1 The layout of tiny houses 

In the LIFE project, multiple tiny houses along with RE technologies, a wind turbine and an EV parking lot 

with PV panels, is planned to be situated near the front gate of the University of Twente. The tiny houses are 

manufactured by EcoCabins [48], and manifold models are available. The model for the LIFE project is not 

decided yet. Here, we choose the unit of 32 m2 for modeling. Saxion University of Applied sciences also gets 

involved in the LIFE project, and they will tackle the application of artificial intelligence (AI) technology to 

improve the performance of the microgrid, especially to perfect the prediction of the consumption. For this 

reason, even if different tiny houses would be added in the future, establishing new models is not necessary. 

Instead, AI technology can solve the problem of demand difference through scaling. Figure 3-1 shows the 

approximate area of the project inside the campus. Figure 3-2 sketches the layout of six tiny houses and RE 

technologies. 

 

  
Figure 3-1 The satellite image of tiny houses’ location in University of Twente (left) and the arrangement of tiny houses 

and other components  

 
Figure 3-2 The design sketch of a 32m2 tiny house 

Figure 3-3 gives a schematic representation of the composition of the individual houses. The square icons 

represent the devices and energy demands. Each house is equipped with an underfloor infrared heating system 

and an E-boiler with a buffer/water tank to fulfill the demand of spacing heating and tap water, respectively. 

The loads are categorized to fixed and flexible. Flexible loads are devices that can be switched on or off at 
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specific times, as long as their function fulfils the requirements of the users (e.g., an EV should be finished 

charging at the time specified by the user). Whereas fixed loads can not be compromised, for example, 

watching TV or charging a mobile phone is not supposed to be delayed. 

 

 
Figure 3-3  Schematic representation of an individual house and its connection to the central battery, EV parking lot 

and control system. 

3.2 Methods 

3.2.1 ALPG 

As mentioned in the introduction, DEMKit is used to model and simulate the micro-grid of the tiny houses. 

However, DEMKit cannot work alone; it requires specific inputs data for simulation, so-called scenarios. 

ALPG, an open-source software, is created to generate such data and is compatible with DEMKit [5]. We 

use it to generate data, such as load profiles, flexibility details, start/end times of EV, in 1 min interval as 

inputs for DEMKit. For the user, the most crucial step is to determine the input parameters for the ALPG:  

 

• Simulation parameters: time base, the start day, the number of days to be simulated, and so on. 

• Emerging (smart grid) technology penetrations (percentages): EV, PV, heat pump, and so on. 

• Power consumption of devices: induction stoves, microwaves, and so on. 

• Geographical location: to obtain sunrise and sunset times 

• Weather data: temperature and irradiance hourly data 

• Household types: SingleWorker, DualWorker, FamilyDualWorker, DualRetired, and so on. 

 

ALPG utilizes probability distributions to determine house occupancy profiles (e.g., When dwellers would 

be in the house), followed by user behavior (e.g., when to shower, cook, or charge EV, etc.). According to 

these stochastic profiles, load profiles are yield. The flow-chart below shows the complete simulation process 

(see Figure 3-4). 
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Figure 3-4 ALPG simulation flow chart [5] 

To support the functionalities of the DEMKit and Profile Steering algorithm, ALPG needs to provide extra 

data aside from consumption profiles. In DEMKit, the devices are categorized into eight classes (see Table 

3-1). Each class is labeled with different kinds of flexibility. For example, the operation of a washing machine 

(Timeshiftable) can be scheduled from peak hours to off-peak time through the built-in algorithms in DEMKit. 

The main functionality of PS, in short, is to shift peaks to acquire a profile as flat as possible (details see 

section 3.2.3). The key resorts are adjusting the operation time, controlling the power of certain devices, and 

controlling the energy flow of buffers. In order to do so, the flexibility of each device needs to be first 

identified. Hence, ALPG also yields data for flexible devices, such as start time and end time for timeshiftable 

devices. Furthermore, other simulation outcomes comprise device parameters, environment data (e.g., 

ventilation airflow profiles), and so forth. 

 

Due to the feature of reliance on the possibility distribution, the more households being simulated by ALPG 

the more accurate the outcome would be, and vice versa. Figure 3-5 shows an example of an annual electricity 

curve of a neighborhood of 81 households in Lochem. 

 

 
(a) 

 
(b) 

Figure 3-5 (a) Annual electricity duration curve for a neighborhood of 81 households in Lochem; (b) Neighbourhood 

active power consumption for one day, depicting measurement data and artificial data. The two upper lines depict the 

active power load in kW; the two lower lines show the reactive power consumption in kvar[5]. 
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3.2.2 DEMKit 

DEMKit, developed the University of Twente, is originally designed to test different control algorithms. By 

further development, it now can be utilized for modeling and simulation. DEMKit is written in python and 

connected to several open-source software packages, such as InfluxDB (time-series database) and Grafana 

(data visualization). It can also interact with the API of the open-source home automation software OpenHAB, 

which can host a user interface to adjust the scenario on the fly. DEMKit applies a cyber-physical systems 

architecture for a strict separation between control algorithms and physical (device) models (see Figure 3-6).  

 

 
Figure 3-6 Diagram of DEMKit with object references between devices (squares), controllers (hexagons) and 

infrastructure (circles) in dashed lines[4] 

DEMKit uses a set of generic classes to category and distinguish various devices (see Table 3-1). Thanks to 

this classification schema, new devices can be easily integrated, and it also supports the application of control 

algorithms. The built-in control algorithms of DEMKit are Profile Steering, Double-sided Auction, and 

Planning-based Auction. As mentioned before, we only use the Profile Steering algorithm in this thesis. 

Besides, DEMKit is under continuous development; new functions and components keep being added. 

 

 
Table 3-1 Implemented component classes and supported control and optimization functionality of DEMKit [4] 

3.2.3 Profile Steering algorithm 

Profile Steering [49] methodology consists of two phases, namely asynchronous scheduling phase, and 

asynchronous realization phase. The first phase makes use of predictions, based on previous time interval 

data, to optimize power profile for upcoming time intervals. Subsequently, yield a schedule. The second 

phase devices exploit their flexibilities, e.g., time-shiftable devices, trying to follow this schedule as good as 

possible [50]. While prediction errors happen from time to time, for example, an EV needs to finish its 

charging earlier than predicted, Such that balance between meeting short- and long-term objectives (peak 

shaving) can be achieved. 
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Figure 3-7 Schematic overview of profile steering and example of EV heuristic [51]. 

How prediction is tackled by DEMKit in a computationally efficient way, will not be explained here, but is 

addressed in the aforementioned references. The optimization algorithms of synchronous scheduling, yet, 

will be elaborated to have a better understanding of this approach. The profile steering heuristic consists of 

initialization and iterative optimization process, coordinated by a (sub)fleet controller, e.g., HEMS (Figure 

3-7). Here, take two levels of hierarchy as an example. The first level is HEMS and device controllers at the 

bottom. An example of an EV arriving at 17:00 with a charging deadline at 7:00 the next day and energy 

demand of 55 kWh will be explained below. 

 

The main processes: 

1. Initialize 

(1) HEMS (fleet controller) signals each device controller m ∈ {1,2, … , M}  to create an initial 

schedule/power profile �⃗�𝑚 = [ 𝑥𝑚,1, 𝑥𝑚,2, … , 𝑥𝑚,𝑁]  𝑇  in greedy strategy, e.g., charge an EV as soon as 

possible. EV power profiles are (a) in the figure. 

(2) HEMS receives and aggregates all individual profiles to obtain the overall power profile  �⃗� =  ∑ �⃗�𝑚
𝑀
𝑚  , 

see (b).  

2. Send desired profile 

After initialization, it is likely that the current profile deviations from the desired profile 𝑝 (usually 𝑝 =

[ 01, 02, … , 0𝑁]𝑇  , see (b). HEMS will request device controllers to alter their schedules to obtain a better 

overall profile, minimizing ‖�⃗� − 𝑝‖2.  

(1)  HEMS sends difference profile, 𝑑 =  �⃗� − 𝑝 to all devices, see (c). 

(2)  EV (device) controller(s) calculate a new local desired profile 𝑝𝑚 =  �⃗�𝑚 −  𝑑 , see (d).   

3. Receive improvement 
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(1)  EV controller need to construct a new feasible candidate power profile �⃗̂�𝑚 that minimizes  ‖�⃗̂�𝑚 − 𝑝𝑚‖
2
, 

see (e).  

(2) Each device calculate improvement 𝑒𝑚 = ‖�⃗�𝑚 −  𝑝𝑚‖2 − ‖�⃗̂�𝑚 −  𝑝𝑚‖
2
 and sent back to HEMS. 

4. Select winner 

(1) HEMS collects all devices improvements and selects the largest (positive) improvement 𝑒𝑚. 

(2) HEMS sends requests to corresponding device controller m to replace its scheduled power profile by the 

candidate power. 

5. Synchronize profile 

(1) Selected device controller responds with local difference profile 𝑑𝑚 =  �⃗̂�𝑚 − �⃗�𝑚 and updates  its own 

power profile �⃗̂�𝑚 ∶= �⃗�𝑚.  

(2) The fleet controller uses the received local difference profile to update its own power profile �⃗�𝑚 ≔  �⃗� +

 𝑑𝑚 (see (g)). This also results in a new difference profile 𝑑 at HEMS. 

6. Repeat for all devices 

Another device may have a significant improvement based on this new difference profile. Hence we repeat 

this process iteratively until none of the candidate profiles result in significant improvements or a predefined 

maximum number of iterations have been exhausted. Note that only one device controller is selected per 

iteration to prevent possible oscillation and overshoot problems. 

 

In a nutshell, the optimization process tries to reshape and relocate the device power profile (see yellow 

highlights in the figure) to minimize ‖�⃗� − 𝑝‖2 with 𝑝 = [ 01, 02, … , 0𝑁]𝑇. The drawback that PS requires 

too much computational power to be employed in real-time control is solved. Overall, the Profile Steering is 

a promising approach to help the tiny house microgrid to achieve the target of the near autarkic operation. 

3.3 Components modeling 

The major components of the LIFE project are three tiny houses, EV parking lot with PV panels, wind turbine, 

and storage system. Except for the basic houses and PV, all other components do not have a generic model 

in DEMKit. Also, the built-in DEMKit heating systems are the gas boiler, electric boiler, heat pump, and 

CHP. Whereas the tiny house takes advantage of the underfloor heating system. In short, we need to create 

four models with DEMKit. To be noticed, in the modeling results of component profiles, positive values are 

the consumption, and the negative value represents production or the electricity export to the grid. 

3.3.1 Underfloor infrared heating system 

The conventional underfloor heating system is powered by hot water, while cutting-edge technology is 

infrared heating. An easy-deployment product is the infrared heating panel, which is usually attached to a 

wall. The heat source of this underfloor heating system is infrared heating films powered by electricity. The 

film works based on electrical resistance by emitting far-infrared rays and far anionic rays [52]. These 

harmless rays directly heat people and objects (e.g., walls and furniture), similar to the working of the sun 

rays. The heated objects then further warm up the room air. The modeling of a heating system always consists 

of demand and supply. We first discuss the way to modeling the heating supply as it shapes the model of 

demand. 



18 

 

 
Figure 3-8 An example of the infrared heating film [53] 

To the best of our knowledge, no literature exists on the modeling of UIHS. Only a few are about infrared 

heaters for greenhouses [54, 55], but the heating media is not thin film, and the objects heated are plants. 

Another paper is about the numerical model and thermal behavior of electric radiant heating panels. Even 

these film and panel products both take advantage of radiation technology, their mathematical models still 

differ, and the parameters of the infrared film (e.g., thermal resistance) are not disclosed. Despite the working 

principle differs, IUHS inherits the controlling method of using thermostats from traditional heating systems. 

Plus, the main task of this thesis is not to model a heating system, but more on seasonal storage. We consider 

simplifying the heating system modeling by using an available model in DEMKit. The idea is that we do not 

model the psychical processes (e.g., radiation). Instead, we directly use the heat input that is converted from 

electricity by Coefficient of Performance (CoP). This way, we end up with an electricity demand profile that 

matches the thermal energy used by a tiny house. 

 

 
Figure 3-9 The schematic diagram of the temperature distribution comparison between a heat pump (left) and UIHS 

(right) [56] 
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Figure 3-10 An example of underfloor infrared heating system of Heat Décor [57] 

The features of IUHS and the corresponding modeling solutions are presented next. In contrary to traditional 

heating that directly heats the air, UIHS reduces the loss through radiation, conduction, and convection. 

Arkon [58] and Termofol [59] claim that their products can save 50% energy compared to conventional 

heatings (e.g., gas boiler). Besides, the temperature stratification of UIHS is opposite to that of traditional 

heating systems (see Figure 3-9 and Figure 3-10). With surface heating, the average temperature of the floor 

and wall surfaces remains around 1-2 ℃ higher than with air heating. Every one-degree drop in air 

temperature saves about 6% of energy [60]. Therefore, we decrease the temperatures of the thermostat at 

2 ℃, in contrast to the default ALPG output, in the modeling. This descent also ascribes to the effect of 

radiation on the human body, which would lower the heating demand.  

 

In terms of the efficiency of UIHS, Flickstein [61] stands that with tuned energy output, the human body can 

absorb 93% of the infrared waves that reach the skin. The heating effectiveness of UIHS reaches about 99% 

[52]. Accordingly, the CoP is set to 100% in DEMKit. The operation of UIHS is confirmed by a product 

company through emails that the thin film is an on-off device. Unlike conventional electric heating devices, 

UIHS would switch off as long as the set temperature reached and switch on again until the room temperature 

drops its tolerance temperature (e.g., 2 ℃). Furthermore, UIHS would bring a more pleasing experience to 

users [56]. It can accomplish the set temperature in 5 min, much quicker than traditional heating systems. 

UIHS also keeps walls from impairment by humidity, users from arthritis, and muscle pain from humidity. 

 

 
Thermal camera testing, infrared vs. hot air fan heater [62] 

 

DEMKit is embodied with two zone demand models, namely 1R1C and 2R2C [63]: 

 

• 1R1C model: contains one thermal mass for the zone and one overall building thermal resistance. 

All heating inputs and direct losses are defined at the zone thermal mass. 
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• 2R2C model: besides the zone thermal mass, the variety one additionally contains a thermal mass 

for the floor heating with connected heating input. Variety two contains a thermal mass for the 

interior house structure, and the heating input is then defined at the zone thermal mass. 

 

Heat pump and E-boiler can use the 2R2C model, as their heater thermal resistance value is easy to access. 

As for IUHS, neither its thermal resistance or the thermal capacity of its heating objects can be obtained. 

Hereby, we stick with a simplified demand model, 1R1C. The rest is to calculate the input data for tiny houses, 

especially (envelope) thermal resistance and thermal mass/capacity. 

 

Table 3-2 The table of (zone) thermal capacity calculation data of 32 m2 tiny houses 

 Material 
Area 

[m2] 

Thickness 

[mm] 

Reference 

material 

gross 

density r 

[kg/m³] 

spec. heat 

capacity C 

[J/kg.K] 

heat  

capacity 

[J/K] 

Façade 

wood frame 58.5 285 Wood 500 kg/m³ 500 1600 13338000 

softwood covering 60.4 18 Wood 500 kg/m³ 500 1600 869760 

Threefold Glass 14.3 16 Quartz glass 2200 1050 528528 

Chipboard window sills 6.8 30 Chipboard(wood) 500 2500 255000 

Floor 

wood 36.5 280 Wood 500 kg/m³ 500 1600 8176000 

cement tiles 2.4 15 Tiles, concrete 2100 1000 75600 

Roof 

  

wood (R-6) 47.6 120 Wood 500 kg/m³ 500 1600 4569600 

softwood covering 51.6 30 Wood 500 kg/m³ 500 1600 1238400 

 

Eco-Cabins provided us with the explicit building material of 32 m2 tiny house type. In Table 3-2, we use 

specific heat capacity to calculate heat capacity for each item, and the sum, 29 ∙ 106 J/K, is the thermal mass 

of the tiny house. As for windows and glass facades, their total surface is 3.84 m2, 10.5 m2, 6.91 m2 in North, 

South, East, respectively. According to the window type-triple glazing, 0.7 is chosen as the shading 

coefficient [64]. Other parameters include 35 dm3/s for ventilation and 0.4 dm3/s per m2 for infiltration. In 

Table 3-3, the thermal parameter, either thermal insulance or thermal transmittance, is known for each 

construction material. The transmittance is the reciprocal of insulance. Thermal conductance is the product 

of Area and transmittance. Then we can calculate the envelope thermal resistance, 𝑅𝑒, the reciprocal of 

average thermal conductance, as a result of 0.01817 K/W. 

 

Table 3-3 The table of thermal resistant calculation data of 32 m2 tiny houses 

Direction Construction Structure 
Area 

[m2] 

Thermal  

insulance 

R [m²K / W] 

thermal 

transmittance  

U [W / m²K] 

Thermal 

conductance  

[W/K] 

 Floor,33.1 m² Floor 33.06 3.50 0.29 9.45 

North 

(front) 

Front façade,  

N - 24.5 m² - 90 ° 

Façade 20.65 4.50 0.22 4.59 

window 

1.6  1.20 1.92 

0.64  1.20 0.77 

1.6  1.20 1.92 

Front Roof (Façade), 

 N - 21.5 m² - 14 ° 
Pitched roof 21.53 6.00 0.17 3.59 
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West 

(right) 

Right façade, 

 W - 14.8 m² - 90 ° 
Façade 14.77 4.50 0.22 3.28 

South 

(rear) 

Rear facade, 

 Z - 24.5 m² - 90 ° 

Façade 13.99 4.50 0.22 3.11 

window 1.6  1.20 1.92 

Door with glass 1.98  1.30 2.57 

Terrace door 6.92  1.20 8.30 

Roof Rear facade, 

 Z - 21.5 m² - 14 ° 
Pitched roof 21.53 6.00 0.17 3.59 

East 

(left) 

Left facade, 

 O - 14.8 m² - 90 ° 

Façade 7.86 4.50 0.22 1.75 

window 6.9   1.20 8.28 

 

Figure 3-11 shows the simulation results of UIHS for three days with the simulation time base set to 1 min. 

We set the constant power output of UIHS to 5120 W, and the temperature tolerance to 0.2 ℃. ALPG 

generates the profile of thermostats temperature setpoints according to the occupancy of the house. It can be 

seen that as long as the room temperatures drop further than the tolerance, the UIHS would be started. When 

the room temperature reaches to setting point, the UIHS will shut down.  

 

Furthermore, the room temperature not always vary linearly. It is also affected by the environment, such as 

sunshine and cold air infiltration (see the blue line from 9:00 to 13:00). As for control, UIFS does not have a 

conventional heat buffer like a water tank. Although the house structure can act as a free buffer; considering 

the heat capacity and resistance of wood as well as the complexity, UIFS is set to be uncontrollable in 

DEMKit. However, when applying PS control for the micro-grid, DEMKit can still predict the consumption 

of UIFS. 

 

 
Figure 3-11 The simulation results of the underfloor infrared heating system for 3 days in 2017 January 

3.3.2 EV charging parking lot with PV panels 

In LIFE, an EV charging parking lot with PV panels is along with the tiny houses. This parking lot will not 

only serve the residents of tiny houses but also open for the public, especially for university employees. 

Amperapark is responsible for providing the main parking lot equipment – the Amperaport, a unit with the 

roofs built of PV panels (see Figure 3-12). 85 PV panels, each in 300 Wp, will be used to support the LIFE 

project. The quantity in Wp is translated to area and efficiency as inputs to DEMKit by using the following 

equations: 

 

𝑃𝑛𝑜𝑚 = 𝑃 ∗ 𝐴 
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𝜂 =
𝑝

𝐴 ∗ 𝐺
 

 

Where 𝜂 is efficiency, 𝑝 is power, 𝑃𝑛𝑜𝑚 is nominal power, A is area, and G is the standard (testing) irradiance, 

100W/m2. We first estimated the size of one PV penal to be 1.6 m2, leading to 187.5 W/m2 and 18.75% of 

efficiency. Totally, 136 m2 PV panels with 18.75% of efficiency, a 10° inclination angle, and a 193° azimuth 

angle would yield green energy for the tiny houses. The hourly time-series data of solar irradiation is obtained 

from KNMI [65], as well as other environmental data, such as wind speed for the next section. This results 

in a total PV yield of 22.42 MWh in 2017, and the yearly profile can be seen in Figure 3-13. 

 

 
Figure 3-12 The Amperaport – EV parking lot built by PV panels [66] 

 

Figure 3-13 The PV production  profile of 2017 

To model the parking lot as an independent unit, the house concept in the DEMKit default model is borrowed. 

The production units in this parking lot unit include PV and a wind turbine. A university EV is the only fixed 

consumption device in this parking lot. This EV shared by the employees of the university for outings (mainly 

meetings). Therefore, we wrote a new algorithm to create the university EV profile based on built-in EV code 

in ALPG (see algorithm below). This algorithm utilizes a modified probability distribution of charging events. 

It is adapted to reflect the expenditure of EV usage for the UT. The input parameter is the range of outing 

possibility on weekdays. Here, we use a 40%-50% probability. The whole year's energy consumption would 

vary in each simulation, but around 2 MWh in general. 

 

Algorithm: University EV consumption profile generation 

1: function EVoutings(startDay, endDay, outingFreq)  

2:  for day in range (startDay, endDay)  

3:   if day in weekdays, and random() < outingFreq ➢ determine if there is outings  

4:    if random() < 0.6 ➢ Long event 

5:     eventStart = randint (8.5*60, 11*60) ➢ Event start time in morning hours 

6:     eventDura = randint (5*60, 11*60) ➢ Event duration in minutes 

7:    else ➢ Short event  
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8:     If random() < 0.5 ➢ Start in morning or early afternoon 

9:      eventStart = randint (9*60, 11*60)  

10:     Else  

11:      eventStart = randint (13*60, 14*60)  

12:     eventDura = randint (2*60, 5*60)  

13:      

14:    if eventStart + eventDura > 19*60 ➢ Event must end before 19:00 

15:     eventDura = max (0, 19*60 – eventStart + randint (-20 , 0)) 

16:     

17:   generateProfile(day, eventStart, eventDura) ➢ Run function to yield profile 

18: end ➢  

19:   

20: function generateProfile(day, eventStart, eventDura)  

21:  dis=np.interp(eventDura,[2,6],[5,60])+randint (-10,10) ➢ Calculate drive distance in km 

22:  dis = max (5, dis) ➢ Ensure distance is larger than 5 km 

23:  cons = round (dis / (5+random()) * 1000 ➢ Energy consumption, 1kWh/5km 

24:   

25:  if random() < 0.4 ➢ If destination has charging facility 

26:   cons += max ( 0, cons-eventDura * random.uniform(0.5,07) * random.choice([3.5,7,11,22])) 

27:  else  

28:   cons *= 2 ➢ No charging, double for return trip 

29:   

30:  cons = max (cons, battery) Ensure cons smaller than battery 

31: end  

3.3.3 Wind turbine 

Other than an EV parking lot, a wind turbine is also envisioned to power the LIFE project. A specific wind 

turbine not determined yet. However, the choices are relatively limited. An airport is located within a 4km 

radius from the university campus, and thus 45m is the limitation of the highest position of turbine blade tips 

by regulation [67]. Also, the estimated PV production is already much higher than the annual consumption 

of three tiny houses. We, therefore, consider a small wind turbine whose parameters are disclosed. As a result, 

the wind turbine, ZEFIR D7-P3-T10, from Dr Zaber is chosen to be modeled in this thesis (see Figure 3-14). 

The nominal power of the ZEFIR D7-P3-T10 is 3 kW; rotor diameter is 10m; the hub height is 10m. An 

advantage of this company is that their products are multifarious, and a lot of information avaible for 

modelling a wind turbine in DEMKit. 

 

 
Figure 3-14 wind turbine ZEFIR D7-P3-T10 [68] 
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A commonly used mathematical model for a wind turbine is based on the power coefficient of the blade that 

further depends on the tip speed ratio and blade angle [68]. Considering the computational power and 

accessibility of parameters, we decide to adopt a relatively straightforward approach. We take advantage of 

the power curve of the wind turbine (see Figure 3-15) to estimate the output power. The nominal power of 

each integer wind speed is taken, and then use interpolation to compute time-series wind turbine production, 

based on wind measurements. Before that, the wind speed at hub height needs to be obtained. First, we 

calculate the roughness length, 𝑍𝑜, by average wind speed over at different heights by the following equation: 

 

𝑉

𝑉𝑟𝑒𝑓

=
𝐿𝑜𝑔10(H/𝑍𝑜)

𝐿𝑜𝑔10(𝐻𝑟𝑒𝑓/𝑍𝑜)
 

 

Where 𝑉 and 𝑉𝑟𝑒𝑓  are the wind speeds at height H and 𝐻𝑟𝑒𝑓 , respectively. From the IRENA database [69], 

we obtained 5.6365 and 4.8072 m/s average wind speeds in 2015 for a height of 100m and 50m respectively 

and for the location of UT campus. The 𝑍𝑜 results in 0.9, which conforms to the terrain surface characteristics 

description of roughness class, between forest and city [70]. 

 

 
Figure 3-15 the power curve of wind turbine ZEFIR D7-P3-T10 [68] 

We can use the same formula to calculate the hub height wind speed, knowing the roughness length, and the 

wind speed at reference height. The time-series data of wind speed at 10 m height at location 52 ° 16 'NB 

06 ° 53'OL (nearby airport) is acquired from the KNMI [71]. Additionally, a scale factor is used to offset the 

wind speed difference between the locations of the wind turbine and the meteorological station. With the 

average wind speed at 50m of the Twenthe weather station,4.9292 m/s from the IRENA [69], the scale factor 

results in 0.975. The total production of the wind turbine in 2017 is 6.88 MWh, and the profile is shown in 

Figure 3-16. The maximum energy output is fixed at 3 kW, as the limitation of the cut-out speed of 20 m/s. 

In terms of the model implemented in DEMKit, we wrote a class called windEnv, similar to sunEnv for PV 

panels. It is in charge of reading and transforming wind data. The model uses this input to yield a production 

profile of the wind turbine. 

 

 

Figure 3-16 The Wind turbine production  profile of 2017 
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3.3.4 Hybrid storage system 

3.3.4.1 Introduction 
 

In order to approach the target of a near-autarkic community, the deployment of RE technologies is necessary 

but not cost-efficient if not with a battery system. Otherwise, the size of the RE appliances would be 

substantial, as well as overproduction. The seasonal difference of the supply and demand of the micro-grid 

need to be overcome, the solution depends heavily on the specific case. While, one of the promising solutions 

is to use a hybrid storage system, storing the overproduction and extracting them when generation cannot 

meet the demand. Such a system consists of a short-term battery and seasonal storage. The short-term battery 

mainly tackles short-term fluctuation (day-to-day). The seasonal one is responsible for storing excess RE 

yield in production peak time (e.g., summer) and supplying energy in high demand periods (e.g., winter). In 

this thesis, we develop a general control methodology to this hybrid storage system, especially for 

seasonal/long-term storage, based on the part of the built-in buffer optimization algorithm [72] implemented 

in DEMKit. A conventional short-term battery and hydrogen storage are expected to be adopted for the LIFE 

project. 

 

The built-in buffer planning algorithm in DEMKit does not account for conversion losses and losses over  

time/storage losses. The feasible solution yet to integrate the losses is by the discrete power mode in the PS 

algorithm rather than normally adopted continuous power mode. In discrete power mode, the buffer can only 

operate at a set of predefined powers, in contrast to a power range of continuous mode. As this option is also 

not how seasonal storage works in reality, we will present both models, providing concepts for future work. 

 

In order to test the performance of the hybrid storage system, we generate a different scenario where the total 

load approach to the generations in 2017. The loads consist of a campus EV and three tiny houses with the 

yearly consumptions of 1.99 MWh and 12.68 MWh (for white goods and heating), respectively. The yearly 

renewable energy production is composed of 7.91 MWh PV yield and 6.88 MWh wind turbine generation. 

The composition of the hybrid storage system is a short-term battery with 20 kWh capacity and 20 kW power 

and seasonal storage with 300 kWh capacity and 150 kW power. The initial SoC for both buffers is 80% of 

its capacity. Unless specially specified, all simulations in this section use this scenario. 

 

3.3.4.2 Hydrogen storage 
 

The Hygear will provide a hydrogen storage system, but the product and parameters are not certain yet. 

Hereby, (operational) criterions in the model are based on typical hydrogen storages. A hydrogen storage 

system comprises three main components, an electrolyzer that converts electricity into chemical energy 

(charging), a storage container, and a fuel cell that reverses the process of the electrolyzer (discharging). 

Typical technologies of electrolyzer and fuel cell are alkaline and proton Exchange Membrane (PEM). The 

approaches to store hydrogen energy are compression in gas cylinders, as a cryogenic liquid, and as a 

reversible metal hydride. Each technology is characterized by unique strengths, weaknesses, and operational 

conditions. Instead of determining a specific system, we utilized the average parameters (e.g., conversion 

efficiency) and common operational rules to create a general model. 

 

During the conversion between chemical energy and electricity, the losses are high in contrast with near 100% 

efficiency of the storage phase. The theoretical conversion efficiencies of an electrolyzer, 𝜂𝐸𝑙𝑒𝑐𝑡, and fuel 

cell, 𝜂𝐹𝐶 , are higher than those measured ones in demonstration projects or lab experiments. Theoretically,  

𝜂𝐸𝑙𝑒𝑐𝑡 is around 74% and 𝜂𝐹𝐶  is around 50% [73, 74]. In practice, 𝜂𝐸𝑙𝑒𝑐𝑡 is around 65% and 𝜂𝐹𝐶  is around 45% 

[75-79]. In consequence, the latter one is adopted for the LIFE modeling.  

 

When no control applied, the operation of a hydrogen storage system depends on the SoC of short-term 

battery for a hybrid buffer system, namely on-off cycling limitations [78]. The adopted limitations is 10% 
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and 90%, which means, as long as short-term battery SoC is higher or lower than 90%, the electrolyzer will 

start or shut down, the same principle for the fuel cell. 

 

3.3.4.3 The algorithm  for no control without losses 
 

In this case, seasonal storage is integrated by utilizing the generic buffer device type into DEMKit. The task 

is then to link two devices and to coordinate them to work together. The short-term battery will try to achieve 

balance in the first place. The operation of long-term storage depends on the ratio of short-term buffer SoC 

to its capacity, known as the on-off condition.  10% and 90% are used as the setpoints for discharge and 

charge of the seasonal buffer respectively. Once the on-off condition of seasonal storage is triggered, the 

seasonal storage will response (see algorithm below). 

 

Algorithm: The consumption calculation of seasonal buffer in a hybrid buffer system 

1: function simulate ()  

2:  calcCons = True ➢ Set calculateConsumption to True  

3:   if hybridStorage == True: ➢ Check if hybrid buffer system  

4:    if onOff[1] < stbuffer.soc/ stbuffer.capa < onOff[-1]: ➢ Check short-term buffer SoC/capacity 

5:     cons = 0.0 ➢ Seasonal buffer is off 

6:     calCons = False ➢ Will not participate balancing grid 

7:   

8:   if calcCons == True ➢ Seasonal buffer is on 

9:    calculatingCons() ➢ DEMKit built-in function calc cons 

10: end  

 

Figure 3-17 shows how hybrid storage works under no control (the seasonal storage capacity is lowered to 

50 kWh in this case). As long as the SoC of short-term battery stays in the range of the on-off condition, the 

seasonal buffer would stay off. Also, in this scenario, the short-term battery a lot of the time is either fully 

charged or fully discharged over a year (see Figure 3-18). In other words, the seasonal buffer is forced to take 

the job that it is not supposed to, dealing with daily fluctuations. This would speed up degradation and 

decrease its lifetime. An appropriate control algorithm thus is noteworthy.  

 

 
Figure 3-17 The operation of the hybrid storage system based on the on-off condition for no control 
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Figure 3-18 Control group – the hybrid storage system  with no control 

 

3.3.4.4 The algorithm for Profile Steering algorithm 
 

3.3.4.4.1 The algorithm for a sole seasonal storage without losses 
 

The literature regarding the control algorithm of seasonal storage is all about economic conservation, 

improving the lifetime, and robustness of the system, especially hydrogen storage [80, 81]. Therefore, we 

need to develop a novel seasonal/long-term optimization approach. This approach requires to be compatible 

with the built-in Profile Steering algorithm of DEMKit, and able to be integrated into DEMKit. Our solution 

is based on this existing buffer planning. The basic idea is that we conduct the planning twice, and both use 

the built-in buffer algorithm for both plannings. The first planning is for the long-term, on which the second 

(short-term) plan is based. We will illustrate how it works with a single seasonal battery, followed by with 

the hybrid storage system within the Profile Steering algorithm (PS). 

 

First of all, we need to understand the buffer planning algorithm in DEMKit. Beforehand, two parameters 

must be known, plan interval that refers to the time interval between two planning sessions and plan horizon 

that is the period being planned. DEMKit precedes the simulation in a rolling-horizon fashion (see algorithm 

below). In the default settings, PS make a plan for next two days in day one (plan horizon equals to two days); 

in day two, new planning would be triggered (plan interval is one day); the original plan for day three is then 

overwritten by the plan yielded for next two days. The time base is usually set to be 15 mins in simulation 

and 1 min for real-time operation. One of the reasons to set the default plan horizon to two days is to schedule 

EVs being charged overnight and thus enhance the load shifting. As for the default plan interval, 1 day, the 

purpose is the reduce the prediction and scheduling time in reality and also limit the prediction of errors [51]. 

 

Algorithm: The rolling-horizon fashion of DEMKit simulation for built-in buffer short-term planning 

1: function simulate(time)  

2:  …  

3:   

4:  if time >= nextPlan: ➢ Check if do new plan this time interval 

5:   currentPlan = doPlanning(time) ➢ Trigger function to do planning  

6:   nextPlan = time + planInterval * timebase ➢ Set time for next planning (1 day later) 

7:  …  

8:   

9: end  

10:   

11: function doPlanning (time)  

12:  planStart = time ➢ Define the start time of the plan 

13:  planEnd = planStart + planHorizon * timebase ➢ Plan end time is 2 days later 
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14:  plan = bufPlanning (time planStart, planEnd) ➢ Call built-in function of buffer planning 

15: return plan ➢ The plan is for next 2 days 

 

In the built-in buffer planning algorithm of DEMKit, firstly, the profile of energy exchange with the grid 

(aggregated profile) is predicted to the planning horizon. Based on the current status and pre-set parameters 

(e.g., charging powers and capacity) of the buffer, the aggregated profile is translated to the target SoC. This 

target SoC, rather than the aggregated profile, is an essential input to the planning algorithm. The output of 

the buffer algorithm is the profile of a plan. Inspired by this, we first simulate for 366 days to gain the yearly 

aggregated profile, a vector of 366*(24*60/15) elements. We resample this profile based on the time bases 

of the short-term and seasonal planning, which differs and in this case are 15min and 2 days respectively. 

The resampled profile is a vector of 183 elements; each element represents the average electricity exchange 

with the grid of 2 days. Then, we conduct the seasonal buffer planning with the resampled profile, resulting 

in a profile of the seasonal plan of the (daily average) electricity exchange with the grid. Finally, this profile 

is translated to the seasonal SoC, also a vector of 183 elements. The seasonal SoC will overwrite the short-

term target SoC to lead short-term buffer planning. 

 

Here, the seasonal time base must equal to the short-term plan interval. This is because we try to obtain a 

target SoC for each short-term planning through seasonal planning, and the premise is the number the 

seasonal SoC matches with the seasonal simulation interval (simulation time/seasonal time base; e.g., 366 

days/1day). On the other hand, to ensure the short-term planning can satisfy the seasonal SoC, the short-term 

plan interval and horizon need to be equal. If short-term planning continues with the rolling-horizon approach, 

its short-term prediction would be contradictory to seasonal planning. Plus, with the same reasoning for the 

default short-term plan horizon, as mentioned above, we change the short-term plan interval to 2 days.  

 

 

 
Figure 3-19 The comparison between the on (lower) and off (upper) of the balancing mode for  solo seasonal storage 

with PS control algorithm 

Furthermore, in DEMKit, a buffer can either be fully dedicated to follow the plan or can deviate slightly to 

make up for the uncertainties (balancing mode). Figure 3-19 shows the simulation results of both options. 

Note that the capacity for seasonal storage is raised to 320 kWh, and its power is elevated to 170 kW, in order 
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to compare with no battery scenario. Though the profiles of seasonal storage in two balancing modes appear 

to be similar, the smart meter profile of the balancing case is much less violent. In contrast with no control 

scenario, the balancing case shaves most of the peaks and results in a smooth and flat smart meter profile.  

Hereby, our seasonal planning approach is viable to some extent, and further (statistical) evidence is given 

in section 3.3.4.5 and Chapter 4. Notice that in the simulation, we use the perfect prediction, which means 

that the prediction is the same as the future. In practice, DEMKit can do these predictions based on historical 

data. 

 

3.3.4.4.2 The algorithm for hybrid seasonal storage without losses 
 

As for the hybrid storage system, the planning algorithm for seasonal storage remains the same, but a link to 

the short-term battery needs to be established. Short-term buffer takes the responsibility to smooth the daily 

fluctuation, while long-term storage only requires to focus on fulfilling the seasonal target SoC. The 

realization of seasonal planning is the first priority. Therefore, the balancing mode is disabled for seasonal 

buffer and enabled for the short-term battery. The consumption and prediction of the seasonal storage have 

to be communicated to the short-term before the latter makes any decision. The seasonal storage thus must 

be simulated in advance to the short-term storage in each time interval, in contrast to the case of no control 

(see section 3.3.4.4.3). 

 

 

 
Figure 3-20 The comparison between the perfect realization of the seasonal target (upper) SoC and  short-term rolling-

horizon simulation method (lower)  for hybrid storage system 

Notice that during the long-term planning of the hybrid system, the capacity of the short-term battery is not 

considered. We deem this approach is not only more straightforward but also more robust. Besides, in case 

of prediction deviation in reality, DEMKit uses parameters namely, plan capacity and plan power, which 

specifies the proportion of the buffer capacity and power is exploited in the planning. In other words, partial 

buffer capability is reserved for unexpected peaks. The default values for plan capacity and power are 80% 

and 60% respectively. The drawback of this setting is that in some cases, the buffer with no control would 

perform better than that of PS case, as these two default values are both 100% for no control. In the LIFE 
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project, we keep the flexibility for the short-term battery to resolve prediction errors, but adjust both planning 

capacity and power to 100% for seasonal storage. Even so, the worse results cannot be eradicated, particularly 

when no battery scenario is already near-autarkic. 

 

The conflict between the short-term rolling-horizon simulation method and the realization of seasonal target 

SoC, as mentioned above, is comprehended as a beneficial characteristic rather than a problem. We compared 

the two modes (see Figure 3-20).  The only difference is the short-term plan interval; 2 days for the upper 

figure that represents the perfect realization; 1 day for the lower one that is the rolling-horizon method. The 

results suggest that the perfect realization mode can indeed achieve the seasonal target SoC at the end of 

every 2 days. Despite that the rolling-horizon model failed to do so, it still follows the trend of seasonal target 

SoC. This deviation somehow can be utilized to make up the uncertainties for the model, as this is what 

would happen in reality. As we want to create a model as real as possible, 1 day and 2 days are adopted for 

short-term plan interval and horizon, respectively. It can also be seen that the planned seasonal SoC of the 

two modes slightly differs. The reason is that the resampled aggregated profiles are distinct owing to short-

term plan interval or the time base of seasonal planning. 

 

Similarly, the seasonal plan interval and horizon can be either identical or distinct. Notwithstanding, they 

play a different role in long-term planning. We set the plan interval to a half-year for seasonal rolling-horizon 

mode, and 1 year for comparison; the seasonal plan horizon equals to 1 year for both cases. In order to do 

simulation, more data at least for an additional half-year aggregate profile is needed. The results can be seen 

in Figure 3-21. The main difference lies in planned seasonal target SoC in last season, winter. The seasonal 

rolling-horizon mode makes an additional plan in the middle of the year, and this planning takes the next 

spring into account. Consequently, its SoC is not fully consumed or exported at the end of the year. This 

seasonal rolling-horizon mode is more realistic and will also be used for the subsequent simulations. 

 

 

 
Figure 3-21 The comparison of plan interval and plan horizon for long term planning (upper: interval = horizon = 1 

year; lower: interval = ½ horizon = half year) 
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In short, the agreed settings for the hybrid storage system include 1 day and 2 days for short-term plan interval 

and horizon, half-year and 1 year for seasonal plan interval and horizon, balancing mode for short-term 

battery but not for seasonal buffer. There is so much to play with DEMKit, e.g., a buffer can be either 

controlled or not in a hybrid storage system, even the PS will be exerted on all other components.  

 

3.3.4.4.3 The discrete-mode algorithm for hybrid seasonal storage with losses 
 

In previous sections of this chapter, we have discussed the modeling of the hybrid storage system, while 

without loss considered. The only way yet to involve the loss or the efficiency of seasonal buffer in DEMKit 

is through discrete mode. The discreteness, here, refers to the nature of the power and the corresponding 

efficiency. The seasonal storage can only operate at specified powers (a vector in DEMKit). In contrast, the 

continuous mode specifies a range for power. Following the scattered power,  the efficiency needs to be 

defined in a discrete fashion. Each power can be assigned with unique efficiency. So far, only conversion 

efficiencies can be appointed in DEMKit. Nonetheless, the tuning on conversion efficiencies can be done to 

take into account the storage efficiency. In this thesis, we allocate coherent conversion efficiencies, 45% and 

65%, for the discharging and charging respectively. Notice that the discrete mode is only for seasonal storage, 

and we ignore the losses for the short-term battery. 

 

The specification of the power is, however, tricky. First of all, the length of the discrete power vector ought 

to be a compromise between a computationally efficient simulation and decent simulation results. Moreover, 

the long-term planning and ultimate realization of the power shall approach that of the continuous mode as 

much as possible. Figure 3-22 shows an example in continuous mode. The power of long-term planning 

mostly lands on relatively small values, compared to the ultimate realization. That is because long-term 

planning is based on average consumption each day, whereas the realization deals with short-term 

fluctuations. Besides, the violent realization is more ascribed to the way of seasonal planning being modeled. 

As we described in section 3.3.4.4.2, the seasonal storage is always simulated before the short-term battery. 

This means that the short-term planning of seasonal storage is conducted first and thus, the seasonal storage 

would deal with the fluctuations first. 

 

 
Figure 3-22 An example of the realization (timebase =15 min) and long-term planning (timebase = 1 day) of the 

seasonal storage power in continuous mode for three tiny houses 

Considering the power characteristics of seasonal planning, we use two approaches to specify the discrete 

power options, namely, evenly-spaced and log-scale methods. The first method returns evenly spaced values 

within a given interval, and the latter function returns numbers spaced evenly on a log scale. Figure 3-23 

gives an example of two methods. As shown in the figure, we first state the ratio of discrete powers to the 

maximum one. Then we decide the maximum power to create the discrete power vector. 
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Figure 3-23 The approaches of specifying discrete power, evenly-spaced vs. log-scale (positive part) 

The maximum power here is determined to be 20 kW, as all power in continuous mode is below it (see Figure 

3-19). The complexity of the discrete power mode method is O(TM) where T denotes the number of time 

intervals, and M denotes the total number of pieces in the piecewise linear approximation of the discrete 

versions of the problems [72]. The used length of the power vector is 80, which can lead to proper results 

with adequate simulation speed. To be noticed, the specified power, as input parameters to DEMKit, does 

not need to scale according to the efficiency, as the unique way of discrete mode dealing with losses. Figure 

3-24 presents the simulation results of two methods (both no losses). The evenly-spaced method barely works, 

at least on seasonal planning with this limited vector length. We deem it is because that the specified power 

is sparse in the range of seasonal planning powers, when the maximum power is enormous, 20kW, here. 

Long-term planning power is the average of the whole day ones, which include negative and positive values 

for import and export power. Plus, the system barely runs the full day and thus leads to a lower power value. 

 

The log-scale one, while, gives similar long-term planning to that of the continuous mode. Moreover, the 

seasonal buffer SoC follows the plan quite well in general, though the short-term deviation is more significant 

than that of continuous mode. More peaks of the electricity exchange with the grid appears as well, but the 

overall profile is more or less the same as that of continuous mode. Therefore, we adopt the log-scale method 

to set discrete power for the subsequent simulations. The interesting point is that the SoC of seasonal buffer 

deviates more in summer than winter from the long-term planning. The cause is held to be the fluctuation 

nature of PV production. 
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Figure 3-24 The comparison between the simulation profiles of evenly-spaced (upper) and log-scale (lower) discrete 

power of the seasonal storage with Profile steering and without losses 

The simulation result with losses considered is given in  Figure 3-25. The long-term planning of seasonal 

buffer SoC is not well followed in summer. The reason is the priority of the buffer is to balance to the load 

to some extent and then try to achieve the plan, which can also be seen in the case of evenly-spaced discrete 

power (see the upper image of Figure 3-24). The SoC following in winter can also confirm the reason. We 

expect a much smaller deviation between the plan and realization in near-autarkic scenarios. 

 

 
Figure 3-25 The simulation profiles of the seasonal storage with Profile steering and with losses and log-scale (lower) 

discrete power 

 

3.3.4.5 Modeling results 
 

Lastly, we compare the electricity exchange with the grid of five scenarios, namely no battery (NB), no 

control (NC), continuous Profile Steering (PSC), discrete Profile Steering (PSD) and discrete Profile Steering 

without losses (PSD-noLoss)  with values being sorted from high to low (see Figure 3-26). With a hybrid 

storage system, either controlled or not, the import power is much less. The NC stores and supplies the 

electricity in a greedy way and therefore leave the head and tail of the curve still steep. While the Profile 

steering allocates the storage and supply quite well, and its curve is retracted toward the x-axis. The curve of 

the PSD-noLoss almost overlaps with that of PSC, which stands that our definition of the discrete power is 

qualified. Even with conversion losses, the PSD still shows a fair amount of improvement. Hereby, our 

seasonal planning approach is proven to be a success. We anticipate that the seasonal buffer would play a 

greater role in the scenarios with high penetration of PV panels. The curve suggests that the results tend to 

approach near autarky. With larger buffer capacities and a well-design hybrid storage system, the fulfill of 

near autarky is feasible. 
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                          (a)  Full load duration curve                                                  (b) Zoomed load duration curve 

Figure 3-26 Load duration curves of the power demand of the entire microgrid. (no battery, no control, and with 

continuous Profile steering, discrete Profile Steering)  
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4. SIMULATION AND RESULTS 

4.1 Introduction 

In the first chapter, we raised the main research question and four sub-questions. In the literature research, 

the potential interactions between users and sustainable technologies are studied. In this section, we continue 

on the outcome of the second chapter, and model and simulate the energy-saving scenario. The goal is to 

explore the potential impact of energy-saving behavior on the technical part, notably the sizing of the hybrid 

storage system. The simulation results of the energy-saving scenario will also be compared with that of the 

normal/ordinary behavior scenario. The second objective is to explore the extreme scenario when the total 

load approaches the sum of RE production. The extreme scenario is recognized as the six tiny houses plus a 

campus EV, which happens to be the first extension of the LIFE project. The third intention is to test the 

discrete mode (with loss). The simulations for these three targets will be analyzed in the next three sections 

in order. Among them, we also aim to explore the characteristics of our developed hybrid system. To be clear, 

the simulations of all objects except the extreme case are based on the model of three tiny houses. The 

research on all objects, except the discrete mode one, uses continuous mode to do simulations. The first 

reason is to investigate for the third intention. The second motivation is to explore the possibility of normal-

behavior and energy-saving scenarios and compare the results. 

 

As mentioned in section 3.2, we use ALPG to generate the profiles for simulation. We assume three distinct 

households, namely Single worker, Single part-term, and Dual worker (full-time, part-time), would live in 

the tiny houses. For the scenario of six tiny houses, each type of household is assumed to be two. Our 

expectations and the ALPG profile results for the loads are given in Table 4-1. As estimated in Chapter 2, 

the energy-saving scenario would conserve around 10% energy, compared to normal-behavior. And we keep 

the campus EV consumption the same for comparison. Except for these in the modeling chapter, all other 

components take the default parameters while generating profiles by ALPG. To reach the expectation, a 

function of scaling the loads in ALPG is used. And the proposed heating demand is met by adjusting the 

(temperature) setting points of the thermostat. The energy-saving scenario is also generated by scaling the 

consumption to simulate the behavior change. The RE appliances are fixed, PV panels and a wind turbine, 

and their yearly production is 22.42 MWh and 6.88 MWh. We believe the different ratio of the total load to 

production (RLtP) would influence the sizing of the storage system and thus, it is given in the table. 

 

Table 4-1 Loads of average household supposition and three scenarios 

Scenarios 

Ordinary loads Heating system campus EV Total loads 
The ratio of total load 
 to production (RLtP) 

[MWh] [MWh] [MWh] [MWh] % 

Supposition average household 1.5 2.5-3 2-2.5   

Three tiny 
 houses 

Normal-behaviour 4.46 8.08 1. 99 14.53 49.59 

Energy-saving 4.02 7.24 1.99 13.25 45.22 

Six tiny houses Normal-behaviour 9.3 15.76 2.2 27.26 93.04 

 

The following settings are default ones for all simulation in this chapter unless particularly declared. The 

time interval of simulations is one year, and the start time is the 1st of January 2017. The same as stated in 

section 3.3.4.4.2, the short-term plan interval and horizon are 1 and 2 days, respectively; balancing mode is 

on for short-term battery but not for seasonal buffer. The initial SoC of short-term battery is 80% of its 

capacity and its power is half of its capacity in magnitude. We intend to do the simulation close to reality as 
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much as possible and thus, the initial SoC of the seasonal buffer is always calibrated to equal the SoC at the 

end of the year. 

 

Lastly, we introduce the nomenclature for the simulation scenarios in this chapter (see Table 4-2). The 

nomination consists of different elements (maximum four) that separated by dash ‘-’. Unless noted in remarks, 

the scenario is based on three tiny houses and normal behavior. An example is ‘PSHBC-60-6000-NL’, which 

stands for the scenario of continuous profile steering control with a hybrid storage system, 60 kWh short-

term battery and 6000 kWh seasonal storage and no loss. 

 

Table 4-2 The nomenclature of simulation scenarios 

Place First Second Third Fourth 

Options 

Control  
algorithm 

Storage  
system  

Power  
mode 

Short-term buffer 

capacity [kWh] 

Seasonal buffer 

 capacity [kWh] 
Remarks 

NC  
(no control) 

SB (short- term 
buffer) 

C (continuous)    SBNC (short-term  
buffer not controlled) 

PS  
(Profile steering) 

HB (hybrid  
buffer system) 

D (discrete)   NL (no loss) 

     ES (energy-saving) 

     ST (six tiny houses) 

4.2 Three tiny houses 

4.2.1 Normal-behavior scenario 

Firstly, we simulated the scenarios of NC, NB, and PSSB as control groups. The sorted profiles of the 

electricity exchange with the grid are given in Figure 4-1 and Table 4-3 shows the statistic results. The only 

PS can increase the DoA by over 10 percent points (for the loads of white goods and heating, as well as for 

the rest of results in this thesis). PS-SB can almost double the DoA compared to NB, although still a bit far 

from near autarky. The excess RE production, ‘export’ in the table, is far enough to support DoA. A decent-

sized seasonal buffer is needed to shift the electricity supply from the grid to buffer. 

 

 

                          (a)  Full load duration curve                                                  (b) Zoomed load duration curve 

Figure 4-1 Load duration curves of the power demand of the entire microgrid for all simulation in this section 
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We then explore the PSHBC with various combinations of short-term and seasonal storages. Figure 4-2 

visualized the DoA results in 3D plots. It suggests that the increase of the seasonal buffer capacity is more 

effective than that of short-term battery. The improvement of DoA tends to decrease with the augment of 

seasonal buffer capacity. Double the seasonal buffer capacity from 3000 kWh can (almost) achieve near 

autarky (over 98%), while tripling can only enhance DoA by around 1 percent point.  

 

Table 4-3 Statistic results of the simulations for three tiny houses with normal user behavior 

Control  
algorithm 

Short-term  
buffer SoC 

Seasonal 
buffer SoC  

Import Export DoA Share in electricity supply [%]  
Buffer exchange  
with grid [MWh] 

 [kWh] [kWh] [MWh] [MWh] [%] Grid RE Buffer Import Export 

NB   9.33 24.07 35.8 64.2 35.8    

PS   7.67 22.41 47.2 52.8 47.2    

PSSB 30  4.56 19.31 68.6 17 44.7 38.3 2.1 4.43 

NC 60 6000 1.98 14.8 86.4 11.8 35.8 52.4 0.26 1.56 

PSHBC 

30 

3000 1.58 16.16 89.2 6.3 39 54.7 0.66 8.32 

6000 0.43 14.78 97.1 2.2 39.2 58.6 0.11 7.62 

9000 0.32 13.34 97.8 2.1 39.4 58.5 0.02 7.04 

60 

3000 1.42 16.03 90.2 5.4 38.9 55.8 0.63 8.23 

6000 0.27 14.62 98.2 1.3 38.8 59.9 0.08 7.57 

9000 0.14 13.15 99.1 0.6 38.7 60.7 0.04 7.04 

90 

3000 1.42 16.02 90.2 5.4 38.8 55.7 0.63 8.24 

6000 0.25 14.59 98.3 1.2 38.7 60.1 0.08 7.57 

9000 0.04 13.04 99.8 0.2 38.7 61.1 0.01 6.95 

 

As for short-term battery, although it plays a minor role in improving DoA at the RLtP of 49.59%, it indeed 

reduces the amount of electricity imported from the grid to the buffer system (see Table 4-3). Note that the 

buffer would import electricity from the grid in off-peak time and supply the load in peak hours to flat out 

the overall profile. Here we believe the import to buffer from the grid is mainly contributed by the short-term 

battery since we use perfect prediction, as mentioned in section 3.3.4.1, to plan the seasonal SoC, plus the 

production is quite sufficient in this scenario. It is also noticeable that the DoA of PSHBC-60-3000 and 

PSHBC-90-3000 is the same, due to the rounding. The short-term buffer is necessary not only on the sense 

of tackling the fluctuation but also support the seasonal buffer to reach its target SoC of the long-term plan.  

 
Figure 4-2 The 3D plot of the DoA of all PSHBC scenarios 
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Figure 4-3 is an example of profile results of a near-autarkic scenario, PSHBC-60-6000. The buffer system 

just supplied winter demand and smoothed the export of surplus RE production as well, resulting in a 

relatively smooth S-shape curve of the seasonal buffer SoC over the full year. This kind of S-shape curve is 

also regarded as a sign of near-autarkic scenario with proper sizing of the buffer system. The storage of the 

season buffer just touches down the ground and meanwhile keeps the import nearly zero around. Besides, the 

top of the S-shape curve (almost) reach the capacity of the buffer, which signifies that the seasonal buffer is 

fully exploited. 

 

 

 
Figure 4-3 The comparison between the simulation profiles of NC-60-6000 (upper) and PSHBC-60-6000 (lower) (an 

example of near-autarkic scenario) 

Lastly, we compared the results of NC-60-6000 and PSHBC-60-6000 (see Figure 4-3 and Table 4-3). Despite 

that the seasonal buffer SoC curve of no control case shows it supplies electricity in winter and charges in 

summer, the fluctuation and import part of power exchange with the gird is significant in contrast to that of 

PS case. The implement of PS prompts around 12 percent points enhancement of DoA for this case as well 

for energy-saving scenarios (see Table 4-4). 

4.2.2 Energy-saving scenario 

The same as the normal-behavior scenario, we start the simulation with the PSHBC-30-3000-ES. However, 

the maximum (planned) SoC does not reach its capacity 3MWh for seasonal buffer (see Figure 4-4). That is 

abnormal as the seasonal storage could have import more electricity in the summer to prevent import in the 

winter. The default long-term plan interval and horizon are six months and one year, respectively. First-time 

seasonal planning (at 1st January) would only consider to balance the demand and supply in 2017. The second 

time long-term planning (on 1st July) would instead consider both the second half-year of 2017 and the first 



39 

 

half-year of 2018. Hence, We then speculate that the second-time long-term planning is too late to import 

enough energy for the consumption of succeeding 12 months. Hence, part of the energy stored in the seasonal 

buffer would remain for the first 6 months of 2018.  

 

 
Figure 4-4 The simulation profiles of PSHBC-30-3000 

Therefore, we simulated the PSHBC-30-3000-ES again, but with the long-term plan interval of 3 months. 

Besides, we plotted the long-term planning of seasonal SoC for both PSHBC-30-3000-ES and PSHBC-30-

3000-3m-ES in Figure 4-5. The maximum seasonal buffer SoC is enhanced with a smaller long-term plan 

interval. The static results are in Table 4-4. The DoA also increased around 1 percent point with a long-term 

plan interval halved. Therefore, we use 3 months as the seasonal plan interval for the rest simulations in this 

section. For the simulations in the normal user behavior scenario, this phenomenon would not happen, as the 

loads in the second half-year are higher than that of the energy-saving scenario, which would influence the 

plan. 

 

 
Figure 4-5 The long-term planning of seasonal storage SoC with plan interval (6 months vs. 3months) for PSHBC-30-

3000 

We increased the seasonal buffer capacity to 4 MWh and tried to achieve near autarky. The simulation profile 

result shows that the maximum seasonal buffer SoC is still the same as that of PSHBC-30-3000-3m-ES (see 

Figure 4-6) as well as the DoA (see Table 4-4). The reason is that the prediction is assumed to be perfect and 

PS would only make a plan that just satisfies the plan. In other words, in the plan, the buffer would not import 

extra energy as for demand, despite the buffer is still not full, likewise for export. We name it the feature of 

‘just’. Besides, the SoC curve also conforms with the feature of S-shape we described in section 4.2.1. 

Therefore 3 MWh is reckoned to be ample for seasonal buffer helping DoA to reach its limit in this case.  
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One method to mitigate the problem is to adopt a higher capacity of short-term battery. However, the 

escalation of short-term battery capacity is not very efficient after 60 kWh (see Table 4-4). The DoA only 

increases by 0.6 percent point when the capacity raised from 60 kWh to 90 kWh. That indicates the energy-

saving scenario can not be near-autarkic with a decent size of the hybrid system under the current 

configuration. 

 

Table 4-4 Statistic results of the simulations for three tiny houses with energy-saving user behavior 

Control 
algorithm 

Seasonal 
plan 

interval 

Short 
battery 
SoC 

Seasonal 
buffer 
SoC  

Import Export DoA Share in electricity supply [%]  
Buffer exchange 
with grid [MWh] 

 [Months] [kWh] [kWh] [MWh] [MWh] [%] Grid RE Buffer Import Export 

NB-ES    6.33 22.34 52.3 47.7 52.3    

NC-ES    2.78 17.6 80.9 17.6 35.8 46.6 0.22 1.37 

PSHBC-ES 

6 

30 

3000 1.07 17.04 91.9 4.8 41.4 53.8 0.44 8.76 

3 

3000 0.95 16.95 92.8 4.2 41.4 54.3 0.39 8.73 

4000 0.94 16.92 92.9 4.3 41.4 54.3 0.37 8.7 

60 3000 0.77 16.76 94.2 3.5 41.4 55.1 0.3 8.58 

90 3000 0.69 16.66 94.8 3.2 41.4 55.5 0.27 8.5 

 

While still a small amount of energy needs to be imported from the grid, it is probably because of the way 

that the buffer control algorithm is configured (see section 3.3.4.4.2), which causes the SoC can not match 

with its (seasonal) plan exactly but follow the trend instead. This deviation would either constrain the export 

of the buffer or impel the buffers to import electricity from the grid in order to satisfy the plan. Therefore,  

The grid would supply a small amount of energy to the loads as well as to the buffer. Besides, the deviation 

is deemed to be mainly contributed by the intentionally induced prediction error through differing the plan 

interval and horizon (see section 3.3.4.4.2). 

 

 
Figure 4-6 The simulation profiles of PSHBC-30-4000-3m 

Raising the initial SoC of the seasonal buffer is not viable for improving DoA as well. Figure 4-7 shows the 

simulation profiles of PSHBC-30-3000 but with initial SoC set to 2.4 MWh, in contrast to the default one of 

1.26 MWh (see Figure 4-4). It can be seen that the seasonal buffer SoC does not change at the end of the 

year. Instead, the minimum and maximum SoC is enhanced, which attributes to the long-term planning 

feature of ‘just’ as mentioned above. Therefore, we stick to adjusting the initial SoC equal to end SoC in the 

simulations as stated in section 4.1. 
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Figure 4-7 The simulation profiles of PSHBC-30-3000 with initial SoC set to 2.4 MWh 

Finally, we compare the simulation results of normal and energy-saving user behavior scenarios (see Figure 

4-8 and Table 4-4). The DoA of NB-ES is 16.5% higher than that of NB (35.5%). With a relatively small 

seasonal buffer, 30 MWh, the energy-saving scenario can already have a comparatively high DoA. For 

example, the DoA of PSHBC-60-3000 is only 90.2%, while the DoA of PSHBC-60-3000-3m-ES is 94.2%. 

The data also imply that the energy-saving behavior, together with smart appliances, can lead up to 4 percent 

points enhancement of DoA, compared to that of normal behavior one. Notwithstanding, the DoA ceiling of 

the energy-saving scenario is around 95% as well, limited by the current configuration of the hybrid storage 

system. 

 

 

                          (a)  Full load duration curve                                                  (b) Zoomed load duration curve 

Figure 4-8 Load duration curves of the power demand of the entire microgrid: normal behavior scenario vs. energy-

saving scenario 

4.3 Six tiny houses (extreme scenario) 

In this section, we seek the possibility of near autarky in extreme cases, which means the loads approach to 

production or even equal. The envisioned second phase of the LIFE contains six tiny houses, which results 

in the total loads is 27.26 MWh against the yearly production of 29.3 MWh. We deem this to be the ideal 

case to see how well the system can cope. The simulation starts with PSHBC-90-9000-ST, the same buffer 

system setting as the maximum buffer capacities of three tiny houses. The DoA of PSHBC-90-9000-ST is 

90.4%, which implies the potential feasibility of near autarky.  
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Table 4-5 Statistic results of the simulations for six tiny houses scenario 

Control  
algorithm 

Short-term 
battery SoC 

Seasonal 
buffer SoC 

Import Export DoA Share in electricity supply [%] 
Buffer exchange  
with grid [MWh] 

 [kWh] [kWh] [MWh] [MWh] [%] Grid RE Buffer Import Export 

PSHBC-ST 

90 9000 2.64 4.78 90.4 6.2 33.3 60.5 0.95 2.49 

210 12000 1.45 2.21 94.7 3.6 33.4 63 0.46 1.19 

270 18000 1.48 1.92 94.6 3.6 33.6 62.8 0.5 1.18 

PSHBC-ST 
-SBNC 

20 
12000 

0.26 2.03 99.1 0.8 32.8 66.4 0.03 1.16 

30 0.22 1.99 99.2 0.7 32.8 66.5 0.03 1.12 

 

We continue with PSHBC-210-12000-ST and PSHBC-270-18000-ST to investigate the upper limit of DoA 

for this scenario. Figure 4-9 shows the simulation profiles of the two cases. The electricity exchange with the 

grid for both cases fluctuates around zero as expected. The curve of seasonal buffer SoC for PSHBC-270-

18000-ST is still in good S shape, but elevated into the ‘air’, owing to almost equality of the total load and 

production. That suggests no matter how higher the seasonal buffer capacity (than 12000 kWh), the DoA 

would not vary. 

 

 
Figure 4-9 The comparison between the profile results of PSHBC-210-12000-ST (upper) and PSHBC-270-18000-ST 

(lower) 

The outcome shows that the DoAs of these two cases are more or less the same, close to 95% (see Table 4-5). 

In other words, the DoA ceiling for the extreme scenario is around 95%, which is equivalent to that of the 
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energy-saving scenario of three tiny houses. Consequently, we hold that the explanation of the DoA ceiling 

for the extreme case is the same as that of the energy-saving scenario of three tiny houses (see section 4.2.2). 

 

In order to confirm the conjecture, we force the short-term battery uncontrolled but still regulate the seasonal 

buffer. The simulate results of these PSHBC-ST-SBNC cases are given in Table 4-5. It suggests that 12000 

kWh seasonal storage with a comparatively small short-term buffer, 20 kWh can facilitate the extreme 

scenario to become near-autarkic with the DoA of 99.1% (see Figure 4-10). The remaining import in the 

winter is attributed to the seasonal buffer configuration. 

 

 
Figure 4-10 The simulation profiles of PSHBC-20-12000- ST-SBNC 

We also exert the same trick on the normal-behavior and energy-saving scenarios of three tiny houses, and it 

indeed improves the DoA (see Table 4-6). Nonetheless, this kind of configuration requires the prediction to 

be very accurate. Otherwise, it would have an adverse effect on DoA. 

 

Table 4-6 Statistic results of the simulations for the normal-behavior scenario of three tiny houses with the short-term 

battery not controlled 

Control 
algorithm 

Short-term 
battery SoC 

Seasonal 
buffer SoC 

Import Export DoA Share in electricity supply [%] 
Buffer exchange 
with grid [MWh] 

 [kWh] [kWh] [MWh] [MWh] [%] Grid RE Buffer Import Export 

PSHBC 
-SBNC 

10 

9000 

0.1 13.1 99.3 0.7 38.3 61 0 7.1 

20 0.01 13.01 100 0 38.3 61.7 0 7.01 

30 0 13 100 0 38.3 61.7 0 7.01 

60 6000 0.12 14.45 99.1 0.6 38.4 61 0.04 7.56 

PSHBC 
-SBNC-ES 

90 3000 0.4 16.39 97 2.1 40.9 56.9 0.12 8.42 

4.4 Discrete power mode with seasonal buffer loss 

The precedent simulations do not account for the conversion losses with the seasonal buffer, which cannot 

be neglected for practical cases. In this section, the conversion efficiencies of the seasonal buffer are taken 

into account by the discrete power mode of DEMKit. The efficiency for discharging and charging is 45% 

and 65%, respectively, as mentioned in section 3.3.4.2. To be noticed, the discrete mode is only valid for the 

control algorithms so far. That means the no PSHBD-NB case for comparison. The subsequent simulations 

are based on the normal-behavior scenario of three tiny houses. For the reason that the losses are hard to 
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estimate in advance, especially when using the discrete mode, and would vary along with the change of buffer 

system, we will hence only give one simulation as a reference.  

 

 
Figure 4-11 The sorted seasonal buffer power for all the cases of PSHBC in the three tiny houses normal behavior 

scenario vs. compile discrete power 

We plotted the seasonal buffer power (with values being sorted) for all the cases of PSHBC in the three tiny 

houses normal behavior scenarios and attempted to compose a discrete power vector as similar as possible to 

allow the seasonal buffer operate like continuous mode as much as possible (see Figure 4-1). The log-scale 

method, introduced in the modeling chapter, is used to specify the discrete power. We first simulated the 

PSHBD-60-6000-NL to compare the discrete and continuous mode and also to provide the reference for 

losses-considered continuous mode for future work. The simulation results of the profiles resemble that in 

the modeling section (see section 3.3.4.4.3).  The DoA of PSHBD-60-6000-NL, 94.4% drops a bit, in contrast 

with the DoA of PSHBC-60-6000, 98.2%, which is reasonable.  

 

Table 4-7 Statistic results of the simulations for six tiny houses 

Control 
algorithm 

Short 
battery 
SoC 

Seasonal 
buffer 
SoC  

Import Export DoA Share in electricity supply [%]  
Buffer exchange 
with grid [MWh] 

Loss 

 [kWh] [kWh] [MWh] [MWh] [%] Grid RE Buffer Import Export [MWh] 

PSHBD 60 9230 3.13 3.71 78.5 8.7 40.4 50.9 1.87 1.19 14.18 

PSHBD-NL 60 6000 0.82 15.14 94.4 2.2 39.2 58.6 0.5 8.01  

 

We scaled the seasonal buffer SoC from 6000 kWh to 9230 kWh based on charging efficiency 65%, trying 

to accomplish near autarky. The simulation profile of seasonal buffer SoC shows a good S-shape curve (see 

Figure 4-11), which represents the optimal DoA of this scenario, as argued in section 4.2.1. The DoA results 

in 78.5%, dropping a lot compared to that of PSHBD-60-6000-NL (see Table 4-5). The overall loss is 

enormous around 14.18 MWh, around 50% of RE production, which is yet not unexpected with a low round-

trip efficiency of the seasonal buffer.  

 

The significant losses turn this scenario into an extreme case. The sum of the total load and the loss is 28.71 

almost equivalent to the total production of 29.3 MWh. The relatively straight profile of the electricity 

exchange with the grid further identifies the extremity of this case. Aside from the current configuration of 

the hybrid storage system (see section 4.2.2), the discrete power further worsen the degree of autarky. 

However, based on the results of the extreme scenario (see section 4.3), we believe if this scenario is 

simulated by continuous mode with losses involved, the DoA may approach 95% and with the prediction 

error tackled, ‘soft-islanding’ perhaps be possible. 
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Figure 4-12 The simulation profiles of PSHBD-60-9230 

The magnificent losses can be potentially reduced. As shown in Figure 3-22, the realized seasonal buffer 

power is extremely violent. The reason is that the seasonal storage would tackle the fluctuations in advance 

to short-term buffer under the current configuration (see section 3.3.4.4.3). A conceivable solution is to force 

the planning of short-term battery being simulated first, instead of the seasonal storage, but meanwhile still 

keeps the sequence of realization unchanged. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

In this thesis, we successfully built a model of the LIFE project and explored the possibility of near autarky 

in multiple scenarios. We conclude the study by answering the research questions proposed in Chapter 1. 

1) What are other state-of-the-art sustainable technologies that can be included to improve system 

DoA? 

 

Aside from the renewable technologies that are already proposed and the infrared heating system in 

the tiny houses, HEMS and smart appliances would make a decent contribution to increasing the 

DoA of the system. Popular smart appliances include smart plugs, smart lighting systems, smart 

thermostats. These intelligent products can free people from trivial matters and at the same time 

save energy. Besides, the Profile Steering control algorithm, storage system, and their combination 

can largely increase the degree of autarky of the system. In addition to these physical solutions, 

energy conservation strategies are effective at promoting user behavior change towards 

sustainability. 

 

2) How would user behavior change with these technologies being applied, and how would these 

changes influence power balance in the microgrid? 

 

The energy conservation strategies typically target at energy-saving and load-shifting. However, the 

problem is that the behavior change would rebound over time. In terms of smart appliances, despite 

most users would keep them on to save energy, few users would disable them, owing to the problems 

of aesthetics inharmony, inconvenience, complexity, comfort level changing. More importantly, 

users tend to consume more energy after adopting RE technologies, which is known as the rebound 

effect. 

 

The literature study suggests that the energy-saving efficacy of smart appliances are: 39.5% for the 

smart lighting system on average, approximate 14.07% for Heating, ventilation, and air conditioning 

(HVAC), and 16.66% for other products. The application of energy conservation strategies is around 

10% on average. Taking into the rebound effect by about 18%. We conservatively estimate that with 

these technologies being applied, around 10% of the consumption would be saved for a household 

for the LIFE, which results in a 16.5 percent point increase of DoA. With PS and hybrid storage 

system applied, the energy-saving scenario can have up to 4 percent points DoA lead, compared to 

that of normal-behavior scenario. 

 

3) What is needed from the technical part to support people in making these social changes? 

 

As to energy conservation strategies, a customizable and functional display or an online portal is 

vital as the feedback agency. The accessibility and robustness of smart appliances and their services 

are crucial for user adoption and behavior change. Simplicity or the degree of automation of the 

smart products play a role in determining the continuation of developed sustainable behaviors. 

 

4) How can the optimal size of these technologies be determined in the light of system integration? 

 

For this question, we only focus on the sizing of the hybrid storage system, since the size of other 

components is already determined. The optimal seasonal buffer size ought to be determined first, as 

the amount of energy that needs to be imported from the grid largely depends on it. The penetration 
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of different RE technologies that determines the demand and supply profile is one of the main factors 

that influence the seasonal battery sizing. The other factor is the ratio of total loads to production. 

For example, the energy-saving scenarios only need 3 MWh long-term storage to reach its maximum 

DoA, whereas the normal-behavior scenario requires at least 6 MWh seasonal buffer to achieve near 

autarky. 

 

The capacity of the seasonal buffer should be evaluated by the yearly curve of the seasonal buffer 

SoC to see if it is in S-shape or not. The import in winter should also be taken into consideration. 

As long as the raise of the capacity can not lead to the reduction of winter imports, the capacity 

might be the ideal one. Once an optimal seasonal buffer is determined, the sizing of the short-term 

battery should be decided based on prediction error, as described in Chapter 4. 

 

5) What is needed from the technical part to create an autarkic field lab? 

 

The first indispensable component is the Profile Steering algorithm, which can lead to over 10 

percent points raise of DoA alone and around 12 percent points with a hybrid buffer system. Plus 

the hybrid buffer system, the DoA of the microgrid can be uplifted to a new level. While the seasonal 

buffer loss being ignored, a 60 kWh short-term battery and 6000 kWh can turn the normal-behavior 

scenario to near-autarkic. However, when the loss is counted, with the optimal seasonal buffer 

capacity 9230 kWh and a 60 kWh short-term battery, the normal-behavior scenario can only achieve 

78.5% DoA with the present hybrid storage configuration, largely because the losses are massive, 

around 50% of total production, so as to turn the scenario to an extreme case. 

 

In addition, recommendations on improving the current storage model are, integrating loss into the 

continuous power mode of DEMKit and tackling prediction errors (95% ceiling problem). A 

possibility exists that if these issues were solved, the normal-behavior scenario of three tiny houses 

may achieve ‘soft-islanding’ with a larger long-term buffer. 

5.2 Recommendations 

In the literature study, we mainly investigate the potential interactions between consumers and sustainable 

technologies, especially the figures of the induced savings and increase of consumption. Nonetheless, the 

underlying theories are found to be fruitful and are expected to provide more insights for a better design of 

the project. 

In this thesis, the campus EV is assumed to be used once a day. A more realistic EV consumption profile that 

allows multiple outings a day is expected. The outings are to supposed to start and end randomly, but the 

time overlap among events needs to be avoided. Moreover, the UIHS does not have a buffer and consequently 

the PS can not be applied to it. Taking advantage of the house structure and furnishes etc. that has the thermal 

capacity and modeling them as a buffer is a feasible way to further improve DoA. 

As discussed in the Conclusions, the current configuration of the hybrid buffer system has some limits and 

shortcomings. The first one is the way to take into account seasonal buffer loss in DEMKit. The discrete 

mode has poor performance when losses being involved and we speculate the continuous mode is more 

friendly with loss. Hereby, integrate the loss into the continuous power mode algorithm is highly 

recommended.  

On the other hand, the prediction error needs to be tackled; otherwise, the DoA ceiling might appear (see 

section 4.2.2). A potential solution is to force short-term battery planning before seasonal one, and thus, the 

seasonal buffer is more likely to realize its plan as the short-term battery will deal with the fluctuations first. 

This method might also reduce the losses of the seasonal buffer by lowering the charging and discharging 
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energy. A more straightforward way to lower losses is to adopt a more efficient long-term buffer. A possible 

more effective solution is, from the perspective of the ‘just’ feature of PS (see section 4.2.2), introduce more 

flexibility for the buffer. The third option is using two separate short-term batteries with one controlled and 

the other one not. 

 

Furthermore, no control seasonal buffer operation mode is proposed in section 3.3.4.3. In practice, in order 

to minimize the on-off cycling and increase the lifetime of the system, more complex system control is 

regularly used [80, 81]. Little et al. [78] investigated the effect of the hysteresis approach on reducing the 

cycling of the electrolyzer. Figure 5-1 illustrates how hysteresis works: take electrolyzer for example, 

electrolyzer starts once the short-term battery SoC exceeds the upper setpoint; instead of at the same standard, 

electrolyzer shuts down at a lower setpoint, likewise for the fuel cell. The difference between these two 

setpoints refers to hysteresis. Little found that increasing the hysteresis from 5% to 20% can lead to 500 times 

reduction of electrolyzer on-off cycles. 

 

 
Figure 5-1 Schematic diagram of hysteresis for seasonal storage that depend on the short-term battery SoC [78]  
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Appendix A DoA analysis in python code 

# DoA analysis code for no buffer scenarios (Python code) 

 

# Parameters setup 

workSpacePath = 'C:/Users/D/demkitsim/Dcode/Data/Tinyhouse/DoA/' 

 

schemes = [10,11] 

 

# Define source file path 

cnt = 0 

sourceFilePath = {} 

 

for scheme in schemes: 

   sourceFilePath[cnt] = workSpacePath + str(scheme) + '.csv' 

   cnt +=1 

 

# Define function parameters 

sBeginL = 1 

sEndL = -1 

 

smField = 1 

pvField = 2 

wtField = 3 

 

cntLoop = 0 

currentLine = 0 

cnt = 0 

 

DoAtotal = 0 

DoAcnt = 0 

 

while cntLoop <= (len(schemes)-1): 

 

   # Reset parameters each loop 

   currentLine = 0 

   cnt = 0 

   Eretoloadtotal = 0 #renewable energy to load 

   Eloadtotal = 0 

   Epvtotal = 0 

   Ewttotal = 0 

 

   Eimporttotal = 0 

   Eexporttotal = 0 

   Eimport = 0 

   Eexport = 0 

 

   DoAtotal = 0 

   DoAcnt = 0 

 

   # Read data from file 

   sfp = sourceFilePath[cntLoop] 

   with open(sfp, 'r') as sf: 

 

      for line in sf: 

         # stop when reach desired end line 

         if sEndL != -1: 

            if currentLine >= sEndL: 

               exit() 

 

         # put each line values into a list into fields 

         fields = line.split(",") 
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         if currentLine >= sBeginL: 

            # Import data 

            Epv = fields[pvField] 

            Epv = float(Epv) 

            Epvtotal += Epv 

 

            Ewt = fields[wtField] 

            Ewt = float(Ewt) 

            Ewttotal += Ewt 

 

            Esm = fields[smField] 

            Esm = float(Esm) 

 

            # Calculating data 

            # Eimport and Eexport 

            Eimport = 0 

            Eexport = 0 

            if Esm > 0: 

               Eimport = Esm 

               Eimporttotal += Esm 

            else: 

               Eexport = Esm 

               Eexporttotal += Esm 

 

            # Eload 

            Eload = Esm - Epv - Ewt 

            Eloadtotal += Eload 

 

            # Epv and Ewt supply to load, dont know each contribution 

            Eretoload = min(Eload, -(Epv+Ewt)) 

            Eretoloadtotal += Eretoload 

 

            # Update cnt number each for-loop 

            cnt += 1 

            currentLine += 1 

 

         else: 

            currentLine += 1 

 

      print("Scheme:" + str(schemes[cntLoop])) 

 

   #DoA 

   DoA = (Eloadtotal-Eimporttotal) / Eloadtotal 

   print('DoA:' + str(DoA) + '\n') 

 

   # Results for table 

   print(str(round(Eimporttotal / 4 / 1e6,2)))     #unit kWh, one decimel 

   print(str(round(-Eexporttotal/ 4 / 1e6,2))) 

   print(str(round(DoA * 100,1))) 

 

   # Share in electricity supply 

   print(str(round(Eimporttotal /Eloadtotal*100,1))) 

   print(str(round(Eretoloadtotal/Eloadtotal*100,1))) 

 

   cntLoop += 1 

 

exit() 

 

 

 

 



55 

 

# DoA analysis code for buffer-applied scenarios (Python code) 

 

# Parameters setup 

workSpacePath = 'C:/Users/D/demkitsim/Dcode/Data/Tinyhouse/DoA/' 

 

schemes = ['13_30_3000', '13_30_6000'] 

 

# Define file path 

cnt = 0 

sourceFilePath = {} 

discrete = True 

efficiency = [0.45,0.65]        #efficiency for dischargin(negative) and 

charging (postive) 

 

for scheme in schemes: 

   sourceFilePath[cnt] = workSpacePath + str(scheme) + '.csv' 

   cnt +=1 

 

# Define function parameters 

sBeginL = 1 

sEndL = -1 

 

smField = 1 

pvField = 2 

wtField = 3 

shortBfield = 6 

seasonalBfield = 8   #None 

 

cntLoop = 0 

currentLine = 0 

cnt = 0 

 

DoAtotal = 0 

DoAcnt = 0 

 

while cntLoop <= (len(schemes)-1): 

 

   # Reset parameters each loop 

   currentLine = 0 

   cnt = 0 

 

   loss = 0 

 

   Eloadtotal = 0 

   Epvtotal = 0 

   Ewttotal = 0 

   Eretoloadtotal = 0 #renewable energy to load 

 

   # buffer 

   Eretobuffertotal = 0 

   EshortBtoloadtotal = 0 

   Egridtobuffer = 0 

   Egridtobuffertotal = 0 

   Ebuffertogrid = 0 

   Ebuffertogridtotal = 0 

 

   Egridtoload = 0 

   Egridtoloadtotal = 0 

 

   Eimporttotal = 0 

   Eexporttotal = 0 

   Eimport = 0 

   Eexport = 0 
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   DoAtotal = 0 

   DoAcnt = 0 

 

   # Read data from source file 

   sfp = sourceFilePath[cntLoop] 

   with open(sfp, 'r') as sf: 

 

      for line in sf: 

         # stop when reach desired end line 

         if sEndL != -1: 

            if currentLine >= sEndL: 

               exit() 

 

         # put each line values into a list into fields 

         fields = line.split(",") 

 

         if currentLine >= sBeginL: 

            # Import data 

            Epv = fields[pvField] 

            Epv = float(Epv) 

            Epvtotal += Epv 

 

            Ewt = fields[wtField] 

            Ewt = float(Ewt) 

            Ewttotal += Ewt 

 

            Ere = Epv + Ewt 

 

            Esm = fields[smField] 

            Esm = float(Esm) 

 

            EshortB = fields[shortBfield] 

            EshortB = float(EshortB) 

            if seasonalBfield == None: 

               EseasonalB = 0.0 

            else: 

               EseasonalB = fields[seasonalBfield] 

               EseasonalB = float(EseasonalB) 

 

               # The loss of seasonalB 

               if discrete == True: 

                  if EseasonalB > 0: 

                     # charging 

                     loss += EseasonalB * (1-efficiency[-1]) 

                  else: 

                     loss += -1 * EseasonalB / efficiency[47]*(1-

efficiency[47]) 

 

            Ebuffer = EshortB + EseasonalB 

 

            # Calculating data 

            # Eimport and Eexport 

            Eimport = 0 

            Eexport = 0 

            if Esm > 0: 

               Eimport = Esm 

               Eimporttotal += Esm 

            else: 

               Eexport = Esm 

               Eexporttotal += Esm 

 

            # Eload 
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            Eload = Esm - Epv - Ewt - Ebuffer 

            Eloadtotal += Eload 

 

            # The relationship among load, buffer and re 

            Eretobuffer = 0 

            EshortBtoload = 0 

 

            Eretoload = min(Eload, -Ere) 

            Eretoloadtotal += Eretoload 

 

            # EshortB: positive-charging, negative-discharing 

            if Ebuffer > 0: 

               Eretobuffer = min(Ebuffer,(-Ere - Eretoload)) 

               Egridtobuffer = max(0,Ebuffer - Eretobuffer) 

               Ebuffertogrid = 0 

               EshortBtoload = 0 

               Egridtoload = Eimport - Egridtobuffer 

            else: 

               EshortBtoload = min(-Ebuffer,(Eload-Eretoload)) 

               Ebuffertogrid = max(0, (-Ebuffer - EshortBtoload)) 

               Egridtobuffer = 0 

               Eretobuffer = 0 

               Egridtoload = Eimport 

 

            check = Eload - (Eretoload+EshortBtoload+Egridtoload) 

            Egridtoloadtotal += Egridtoload 

            Eretobuffertotal += Eretobuffer 

            EshortBtoloadtotal += EshortBtoload 

            Egridtobuffertotal += Egridtobuffer 

            Ebuffertogridtotal += Ebuffertogrid 

 

            # Update cnt number each for-loop 

            cnt += 1 

            currentLine += 1 

 

         else: 

            currentLine += 1 

 

      print("Scheme:" + str(schemes[cntLoop])) 

 

   #DoA 

   DoA2 = (Eloadtotal-Eimporttotal) / Eloadtotal 

   print('DoA2:' + str(DoA2) + '\n') 

 

   # Results for table 

   print(str(round(Eimporttotal / 4 / 1e6,2)))     #unit kWh, one decimel 

   print(str(round(-Eexporttotal/ 4 / 1e6,2))) 

   print(str(round(DoA2 * 100,1))) 

 

   print(str(round((Eimporttotal-Egridtobuffertotal)/Eloadtotal*100,1))) 

   print(str(round(Eretoloadtotal/Eloadtotal*100,1))) 

   print(str(round(EshortBtoloadtotal/Eloadtotal*100,1))) 

 

   print(str(round(Egridtobuffertotal / 4 / 1e6,2))) 

   print(str(round(Ebuffertogridtotal / 4 / 1e6,2))) 

 

   if discrete == True: 

      print(str(round(loss / 4 / 1e6, 2))) 

 

   cntLoop += 1 

 

exit() 
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Appendix B The Modification records of ALPG and DEMKit 
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