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MANAGEMENT SUMMARY

This project investigates predictive maintenance using data driven methods in the context of indus-
tries that are in transition to Industry 4.0. The study is conducted in TATA Steel UK (Shotton) as a
case study.

The problem lies in one of the production line called Hot Dip Galvanising Line in TATA Steel Shot-
ton. The function of the line is to coat zinc on steel strips to protect the strip surface. The critical
part of the Galvanising line is the pot gear which is filled with melted zinc. Three rolls(sink roll,
stabilizing roll and correcting roll) are sunk in the zinc pot to carry the strip. The three rolls together
are replaced approximately 4 weeks because the bush that is connected to the sink roll is likely to
wear out at around 4 weeks. This decision for the maintenance interval is purely based on experience
and sometimes the part is overly maintained that when pulling the rolls out the bush hasn’t been
worn out. Thus the engineers are keen on getting insights on the wearing pattern of the bush such
that the bush can be replaced just in time. Moreover, plenty of data has been logged through sensors
in distributed systems but has never been used for decision support, thus the project is aiming at
predicting the bush wear with currently available data.

Although the ultimate goal is to improve the maintenance of the pot gear, in this thesis, our goal is
only to predict the bush wear and thus the wearing data is the target variable. The wearing data
started to be measured during the preparation time of this project at the end of every maintenance
cycle when the component is replaced. The wearing data is measured manually by operators. This
leads to the first challenge: small sample size due to small size of target variable. By the end of this
project 9 samples are available in total.

There are 4 data sources exists for data logging namely: Set up sheet, IBA, EMASS and Data Ware-
house. While the target variable is being recorded, all data sources within the company have been
investigated to understand the meanings of those data and check the qualities. Intensive literature
review has been conducted, aiming to find the vital variables to be used as predictor where massive
amount of literature suggests using vibrations as predictor, however, component itself is in a zinc pot,
and there were no sensors connected directly to the bush so the vibration data is not available. This
is the second challenge faced during the project.

Investigation on metal contact wear was then conducted aiming to find alternative predictors. The
Archard’s law is found to be the most common mathematical formula for metal contact wear where
sliding distance and force are suggested the two most critical parameters. After investigating into the
indicator of sliding distance and force, related variables are extracted from different sources. Time
indicator(Number of Days) and environmental indicator(bath temperature) are also extracted for
further selection. In the end 14 features are selected as shown in Table 6.7 including the bush wear
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measure. The feature set is selected based on model performance.

Features Data Source

Total Length Data warehouse

Scrape Length Data warehouse

Total Surface Data Warehouse

Mean Tension IBA

Minimum Tension IBA

Maximum Tension IBA

Median Tension IBA

Skewness Tension IBA

Kurtosis Tension IBA

Standard Deviation Tension IBA

RMS Tension IBA

Remaining Bush Width Set up sheet

Days Set up sheet

Roll Diameter Setup sheet

Table 1: Features selected based on PLSR performance

Three modeling techniques that have been used and compared are Partial Least Squared Regression
(PLSR), Artificial Neural Network (ANN) and Random Forest (RF). PLSR is chosen because accord-
ing to literature it is suitable when the number of independent variables is larger than the sample size
and when the dependent variables and independent variables are forming a linear relationship. The
linear relation is suggested by literature and by fitting a linear regression to the existing samples we
found that the independent variables and the dependent variables did form a linear relation. ANN is
selected because it is the most used technique in literature and always produces good results. Some
literature suggests that the minimum sample size for ANN is 10. This requirement has not been met
yet but will be accomplished in the near future thus ANN is worth investigating. RF is selected be-
cause it has also been used in the literature to predict component wear and produces good prediction
accuracy. However, both ANN and RF are used when vibrations data are available as predictors in
literature.

The models are evaluated using cross validation due to small sample size. In order to maximize the
training set variance, every time we train the model we use only one sample as test set and the rest
as the training set. RMSE is used to evaluate the prediction power of the models and and R squared
value are used to see how much variance of the data can the model present. Learning curves are
plotted to see how the modeling performance will change when adding more samples to the training
set. The result can be found in Table 6.9 and Table 6.10. Learning curve can be found in Figure 6.21
and Figure 6.22. We can see from the result that PLSR is the most suitable model for the current
available data. Further more, a monitoring web page has been developed for the engineers to see the
bush wearing behaviour online. The web page is based on PLSR model. The user only need to insert
the date to see the predicted wearing pattern from the starting date of the corresponding maintenance
cycle.

In conclusion, predictive maintenance using current available data in TATA Steel Shotton is feasible.
The modeling performance can be improved by improving the data quality of the corresponding vari-
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Training samples PLSR ANN RF

5 2.23 0.39 7.16

6 3.53 4.39 5.65

7 5.74 6.58 6.43

8 4.14 5.26 6.09

Average 3.91 4.15 6.33

Table 2: Modeling RMSE comparison

Training samples PLSR ANN RF

5 0.85 1.00 -0.53

6 0.61 0.40 0.01

7 0.18 -0.07 -0.02

8 0.53 0.25 -0.01

Average 0.55 0.39 -0.14

Table 3: Modeling R2 comparison

Figure 1: Modeling comparison RMSE Figure 2: Modeling comparison R2

ables. As a industry in transition period, we discovered challenges when doing predictive maintenance
using data driven method. Challenges mainly come from unbalanced and limited samples and the
quality issue of data in real life setting.

The limitations are that the current model is built upon a very small sample size thus the model
maintenance is critical. The whole modeling process(from feature selection to technique selection)
should be conducted repetitively in certain time interval as the performance is subject to change when
more data is coming in. The current model is predicting the current wear instead of future wear. Thus
the developed web page can be viewed as a monitoring tool instead of a prediction tool. Furthermore,
this study has only been looking at the technical perspective of predictive maintenance however there
are many other aspects such as economic, regulation and employment etc. All these aspects might
bring challenges for implementing predictive maintenance in industries that are in transition period.

Industrial Engineering and Management 5 Master Thesis
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Follow-up projects to this study can be conducted in many different directions. The current model
can be tested to see whether it can predict future bush wear by selecting a time window in the past
as predictor. The current model can be expanded onto similar problems on different lines and even
if the problem is different, the methodology used in this study can still be referred to. In addition,
unsupervised learning techniques are also worth investigated to be implemented on large sensor based
data.

Industrial Engineering and Management 6 Master Thesis
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CHAPTER

ONE

INTRODUCTION

The latest industrial revolution proposes varieties of smart products such as smart cities and smart
grid. While smart industry concept is referred to as ”Industry 4.0”. The concept includes smart manu-
facturing, smart factory, lights out manufacturing and internet of things (IOT). (Sniderman 2019) The
essential idea of industry 4.0 are automation, connectivity and big data exchange in manufacturing
process. Automation leads to not only automotive production but also automotive decision making
system. One of the application is predictive maintenance.

Rotating metal to metal contact wear prediction is one of the critical area in predictive maintenance
as rotating mechanical components such as bearing and bush are widely implemented in machines
and failure of those causes down time of machinery and production line. Existing prognostic methods
can be classified into three categories namely are ”Model-based prognostics”, ”Data driven prognos-
tic” and ”Reliability-based prognostics” (Tobon-Mejia 2012). Model-based prognostics requires deep
knowledge in system functions. Mathematical models are built to represent the system behaviour
including component degradation process. However, systems are often complex in reality thus math-
ematical modeling is often computationally expensive and assumptions are required when building
models. Reliability based prognostics can also be referred to as ”experience-based prognostics” which
uses historical data during a significant period of time and discover the statistical distribution for
each parameter. Poisson, exponential, weibull and log-normal distribution have been proposed in the
literature for failure time distribution. This approach is easy to implement when historical data from
significant period of time is available, however, the prediction result is less precise than those with
model-based and data driven method. Data driven prognostics aiming at getting information from the
raw data mainly from sensors. It uses mainly artificial intelligence tools or statistical models to learn
the wearing behaviour and to predict the condition in the future. The model operates automatically
without considering the explanatory power to the real system or parameters. Although data driven
method is not computational expensive it still provide good prediction results for systems where it is
easy to monitor data representing wearing behaviour or system failure. However, critical data such as
failure related data are often missing in industry as failure has been prevented in every way possible
due to the huge cost of down time (Zschech 2019).

This project conducts a data-driven bush wear prediction based on steel production line in Tata steel
Shotton (UK). A critical part of the production line is maintained by replacing the component every
four weeks which leads to the fact that there were barely any failures occurred. As the bush operates in
melted zinc pot and there is currently no sensors connect to it, the bush remaining width is measured
every four weeks thus the wearing data is only available at the end of each maintenance cycle from
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15/05/2019.

The main contributions of this study will be two folds as follows:
To academic environment:
-This study provides some characteristics for industries that is in transition to industry 4.0 in terms
of predictive maintenance.
-This study finds a possible existing model to use in industry context that was barely used in predictive
maintenance before.
-This study discusses the difference between theory and practice and presents challenges could face
when doing predictive maintenance and the guidelines to deal with the challenges in industry in tran-
sition to industry 4.0.

To practice:
-This study investigates different data source in TATA Steel Shotton reflect on data quality and
improvement regarding data logging.
-This study discovers gaps within currently logged data and essential parameters needed for wearing
prediction.
-This study gives conclusions on the feasibility of predicting bush wear and prediction results on
proposed methods that help TATA steel Shotton gain insight on the big data and the ways to better
fit in industry 4.0 concept.
-This study developed a tool to monitor the wear using selected model(s) such that the research result
is able to be implemented in operations.
-This study presents business opportunities and following up projects for TATA steel to further improve
the current maintenance process as well as expanding the improvement to other sites and other problem
area.
Current situation and problem description are presented in the rest of this chapter. Section 1.1
will introduce the current case situation, section 1.2 describing the problem, section 1.3 outlines the
strategy and method to solve the problem. A report structure is proposed at the end of this chapter.
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1.1 Current Situation

1.1.1 Tata Steel Shotton

Tata steel shotton is located in Deeside, North Wales, with its annual production of approximately
500,000 tonnes of steel for building envelope, domestic and consumer applications. The plant in
Shotton has existed for over 120 years, the colour coated steel products have been produced for over
50 years and are backed by guarantees of up to 40 years. Differentiation has been its strategy with
innovative products occupies 75% of the order.(Tata Steel at Shotton fact sheet).There are in total 22
lines in Shotton, the project is based on the No.6 Galvanising line.

1.1.2 No.6 Hot Dip Galvanising Line

Galvanising is the process of coating the steel substrate with zinc to protect the steel from atmospheric
contaminants such as water, oxygen and salts such that the steel corrodes slower. The No.6 Galv Line
consists of the following sections: Entry, Furnace, Cooling, Bath, After Pot Cooling, Water Quench,
Temper Mill, Tension Leveller, Chemical Coater Section, Oiler and Exit Section. These sections are
presented in Figure D.2.

Figure 1.1: No.6 Galvanizing line diagram(TATA)

All coils arrive on site by rail and transported on shuttle car from rail head to entry. The raw coils
are cropped to remove any off-gauge or damaged steel before being put on entry section. The Furnace
section is to clean the strip and prepare it to be suitable for galvanizing. The aim of the cooling section
is to reduce strip temperature to about 520°C and stop any further micro-structural changes. There
are two bath on No.6 Galv namely Galv Bath and Galfan Bath that galvanize different products.
After the strip has passed through the bath, the zinc coating need to be solidified before touching any
roll surface. That’s why after pot cooling exist to lower strip temperature to below 280°C. The strip
is cooled further in the Water Quench to achieve a strip temperature of 50°C. The Temper mill and
tension leveler applies a to the galvanized strip and stretches the strip respectively to improve strip
shape, surface finish, mechanical properties and remove yield point elongation.

The Chemical Coater Section applies precisely metered amount of coating to both sides of a moving
strip before the Oiler applys a film of oil on one or both sides of the strip. The inspectors can inspect
the coil throughout process at the Exit Section. An exit inspection sheet is filled out by exit operators
with quality details of the strip. Once the coil has finished it is transported to the packing or storage
area for customer or further processing.

Industrial Engineering and Management 19 Master Thesis



Data driven solution to predictive maintenance

1.1.3 Bath gear equipment characteristics

Figure 1.2: Layout of Bath Gear Equipment Submerged in No.6 Pot(TATA)

The pot gear is a key part of the NO.6 Galvanising Line which consists of three major parts: the sink
roll, stabilizing roll and the correcting roll. The layout graph can be found in Figure 1.2. All three
rolls are inspected and replaced after 3-4 campaigns(maximum 100 days in bath).

The Sink Roll is always coated with tungsten carbide, the diameter of the sink roll is in between
560mm and 600mm. The roll is connected to standard sleeves that are replaced every Bath cam-
paign(4 weeks). Two sets of legs are are connected to sink roll frame that are fitted with concentric
bushes. Bushes are replaced after every bath campaign.

Same as the sink roll, the stabilizing roll is tungsten carbide coated as well, with maximum diameter
230mm and minimum diameter 210mm. Roll can be fitted with either standard or coated sleeves
based on what is identified on the set up sheets. When the rolls are new from stores they are to
be fitted with coated sleeves. The fitted standard sleeves are changed after every bath campaigns.
Bearing blocks are fitted with standard length bushes. Blocks are replaced after every campaign and
bush can be reused for another campaign.

The correcting rolls has similar characteristics to the stabilizing roll. Only the bearing blocks to be
fitted with reduced length bushes except when no reduced length bushes available.

The distance between the correcting roll and stabilizing roll as well as the size of all the rolls in the
bath can play an important part in the bow of the strip. Generally it is very hard to produce a flat
strip and normally the strip is slightly bowed which causes unbalanced coating on strip.

In addition to the rolls, the Air Knives plays an important part to control the strip shape. The knives
should be operated low to the bath surface when running higher coating weights or at low line speeds
which provides better strip stability, less cross bow and less dross on the edges. If the knives are too
high, the distance between strip and knife is tend to be high. As a result, pressure are high, cross bow
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in strip and un-stability of the strip increases. Owing to this, the strip is likely to be faulty coated
such as non uniformly distributed coating and more dross. The knife shouldn’t be too low to the bath
either as it causes splash from the liquid spelter.

1.2 Problem Description

The maintenance cost of the pot gear is increasing drastically during the past years. In 2009, the
maintenance cost of pot gear is under £50000 while in 2019 this number has already been increased
to £400000. The correcting roll and the sink roll occupies the most of the maintenance cost (TATA).

One of the equipment that is connected to the sink roll is the bush. The bush are replaced after every
bath campaign which is expected to be 4 weeks. This is due to the bush wear, by experience, the
bush will wear into the legs after 4 weeks. As shown in Figure 1.3, the bush the upper part of the
bush is wider than the lower part. According to domain expert, the wearing process is happening
to the upper part from the inner circle to the outer circle. When unexpected events happened such
as the strip breaks then the bushes also are replaced even if the campaign is not completed. This
is an expensive process because every time the bushes are replaced, the whole line has to be shut
down, the pot gear is taken out of the bath and replaced with a new set. The old one is inspected,
bushes are replaced. Despite the fact that it cost 1507£/hr for the line shut down and it takes 7
hours to replace the pot gear, it is also dangerous assignment for the operators. Thus it is valuable to
investigate the cause of the bush wear and potential ways to predict the wearing condition of the bush.

Although plenty of sensors and data loggers are installed in the process and different data storage
servers are available, the decisions are still made based on experience. From process point of view,
the engineers and the management teams have a brief picture (different prospective) of what may
be the reason of the bush wear, however none of those reasons are confirmed or validated. Thus
this project has been set up to discover the correlation among different parameters and the relation
between a combination of parameters and the bush wear with limited amount of wearing samples. An
ideal project out come could be given a set of parameter value in a specific time window, the wearing
condition of the bush can be predicted. Such that the operator will only replace the pot gear when it
is just necessary and maintenance cost is reduced.

Figure 1.3: Bush(TATA)
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1.3 Research Design

1.3.1 Research Problem

Based on the current situation described in the previous chapter, the goal of this project is to in-
vestigate the feasibility of predicting bush wear with current available data and to propose potential
methods to predict bush wear using data driven method while wearing data are in small sample size.
By gaining insight on the bush condition, the ultimate goal is to prolong maintenance cycle such
that maintenance frequency is reduced and so as the maintenance cost. In other words the following
question will be answered by the end of this project:

”How can data driven methods be applied to predictive maintenance in industries that are in transition
to industry 4.0?”

1.3.2 Scope

This study is mainly looking at data-driven methods to predictive maintenance in terms of predicting
the bush wear. Mathematical models may be used to assist on modeling performance but it is not
essential. In terms of modeling, artificial intelligence models are used and evaluated. We use bush
wear prediction in Tata Steel Shotton as a case representative of predictive maintenance in industries
that are in transition to industry 4.0. By solving the specific problem we are likely to be able to reflect
on industries in transition period in general.

1.3.3 Research questions

In order to be able to answer the main research question, sub-questions are defined and the corre-
sponding approaches of answering each sub questions can be found in Figure 1.4. Steps within the
approach are explained in the next section.

Research question 1: What is the current situation in Tata Steel Shotton as an industry that is in
transition to industry 4.0?
1a. What is the current maintenance process in Tata Steel Shotton?
1b. What are the existing data that are ready for collection?
1c. What are the meaning of the existing data?
1d. How can the data from different sources be integrated?

Research question 2: How is predictive maintenance fit in industry 4.0 concept and what is the
current state of art regarding predictive maintenance using data driven methods?
2a. Which data driven models have been used to predict metal contact wear in industries?
2b. What are the steps that has been used in literature in terms of data prepossessing and model
building?
2c. What are the measures to evaluate predictive power of the models?
2d. Based on prediction power and current context which models are the most suitable for predictive
maintenance?
2e. What are the gaps and limitations of current literature on predictive maintenance in industry?

Research question 3: How is the quality of industrial data and what are the challenges?
3a. What are the characteristics of industrial data?
3b. What are the challenges while pre-processing the data and how to deal with them?
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Research question 4: What are the most suitable and feasible machine learning models for wearing
prediction in Tata Steel Shotton ?
4a. What features can be extracted from the data set?
4b. What models are suitable to use based on the current available data?
4c. How can the model be trained and how can the modeling performance be evaluated?
4d. How can the predictive model(s) be implemented to the production operation?

Research question 5: What are the business insights that can be extracted from the modeling
performance?
5a. Is it feasible to predict the bush condition ?
5b. How can the model performance and current situation regarding data logging and maintenance
process be improved based on the findings?

1.3.4 Method

CRISP-DM(Shearer C,2000) has become the most applied and referred approach for data mining
expert.(Forbes,2015) However it is a generalized methodology for big data analytic not specifically
for predictive analytic. A guideline for predictive analytic has been proposed in (Shmueli & Koppius
2011). During execution of this project, the two methods mentioned above has been combined and
modified to fit in real industry context. The detailed steps taken is shown in Figure 1.4

Business understanding and data collection
Step1 to 3 were conducted to answer research question 1a-1d. Meeting were organized to meet line
expert and help understand the problem area. It was noticed that different people have their own
understanding of the problem and what may causes the problem and most of the them don’t have sci-
entific knowledge support. Instead, most of the opinions were based on experience. Moreover, nearly
everyone suggested the cause of the problem from process point of view and have very limited knowl-
edge on the existing data. Experts exist for the data source but not for the existing data. However,
by communicating and measure suggested missing variables, we were able to generate knowledge on
data availability and current maintenance process.

Literature review
Batch knowledge was generated by literature review in step 4. The goal is to learn as much as possible
on predictive maintenance in industry and existing modeling techniques. Techniques were investigated
in a general level of industrial context and also to solve the case problem. By the end of this step,
research questions 2a - 2f should be answered.

Data preparation and exploration
Data are cleaned and explored at this stage. By understanding the data and comparing data to its
norms data quality is reflected. Some descriptive techniques for example unsupervised learning were
used to explore the data. A data cleaning guide and the challenges were presented specifically to the
industrial context. Research questions 3a - 3b are answered by the end of step 6.

Modeling and result analysis
The modeling phase corresponds to steps 7 - 9 to answer research questions 4a - 4d. Features suggested
by literature were used in this stage. The modeling techniques were selected based on case specific
situation. Features were further selected based on predictive power of selected models. That is differ-
ent feature sets were put into the same model to compare prediction results. Modeling performance
were validated after the best models were selected. The selected model is integrated into operations
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by tool development.
Conclusion and recommendation
Meetings with different function teams were organized during the process to discuss the contribution
of this project in terms of project/business development economic and the academic world to answer
research questions 5a - 5d. The case context is considered as industry environment that is in transition
to industry 4.0.

Generalization
By answering the main research question based on the case study we are able to provide a guideline
on how to do predictive maintenance in industries in transition period to industry 4.0 with certain
characteristics. Challenges occurs not only when using industrial data but also some theoretical models
that may not work in practice. The difference between theory and practice may bring more value for
future research in real industry context. The method in general is working in an agile way that steps
are interconnected as a feedback loop. Outcome of the next steps are reflecting and validating the
previous steps and when errors are detected it is always required to go back to the previous steps and
fix the error. Project result in most cases will generate new follow up projects and problems to solve
and gradually improve the current business situation.

Figure 1.4: Method

1.3.5 Report structure

Each chapter of this report will be correspond to multiple sub questions. Chapter 1 and 2 answer
research questions 1a - 1d. They presenting the background information, methodology and current
business understanding. Chapter 3 answers research question 2, regarding current theoretical status
of the problem. Chapter 4 will answer research question 3 data will be cleaned and explored based
literature and industrial context for the first impression some insight and opportunities can already
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be discovered by the end of this chapter. Research question 4 corresponds to chapter 5, models are
built and compared. Modeling results are analyzed and validated. In chapter 6, conclusion are drawn
to answer research question 5 together with the main research question. Summarized report structure
can be found in Table 1.1.

Table 1.1: Report structure

Chapter Research Questions

1.Introduction 1a

3.Data Collection 1b-1d

4.State of art 2a-2d

5.Data Exploration 3a-3b

6.Modeling and evaluation 4a-4c

7&8.Conclusion and recommendation 5a-5d and main question
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CHAPTER

TWO

BACKGROUND KNOWLEDGE

Techniques that are used in this project regarding data pre-processing and modeling are explained on
a high level in this chapter. Each section corresponds to one technique.

2.1 Principle component analysis

Principle component analysis is a dimensional reduction technique that project high dimensional data
to different directions into vectors. The total number of data dimensions is the total number of
principle components where the first principle component representing the most variance of the data
set and the second principle component representing the second largest variance etc. A simple figure
example can be found in Figure 2.1. This technique is used in this project to select the variables that
represent the most variance of the whole variables. This is done by calculating the correlation between
the variables and the first principle components. The higher the correlations are, the more important
the variable is.

Figure 2.1: Principle component analysis
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2.2 Artificial Neural Network

Artificial Neural Network is an interconnected system that can learn from samples. It is inspired by
biological neural network. An example graph is shown in Figure 2.2. Each neural network consists
of an input layer, output layer, hidden layer and biased nodes. Each node has its activation function
and on each neuron there is an assigned weight. In our case, the initial weights are chosen at random.
The weights are updated each time it get through a node with activation function. The activation
function we use here is the following logistic function:

Sigmoid(z) =
1

1 + e−z
(2.1)

Sigmoid function is widely used because it always return a value that is between 0 and 1 thus it is a
good representative of probability used for binary step function. A binary step function means that if
the value is above a certain value known as the threshold, the output is activated, otherwise it is not
activated. The final prediction value is the sum of the weights multiplied by the corresponding input

Figure 2.2: Artificial Neural Network

plus bias value formulated as follows:

Prediction =
∑

(weight ∗ input) + bias (2.2)
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2.3 Random Forest

Random forest is an extension of decision tree. The model aggregates the prediction made by multiple
decision trees of varying depth. Each tree is trained on a subset of the data set. The portion of
samples that were left out all named Out-Of-Bag data set which is used for the model to evaluate
itself. Random forest in R deciding on the criteria to split a tree by measuring the impurity produced
by each feature. The impurity is indicated by Gini index or entropy. The prediction result is produced
by taking the average of the predictions made by each decision tree in the forest.

Figure 2.3: Random Forest

2.4 Partial Least Squared Regression

Partial Least Squared Regression (PLSR) is a statistical method that finds a linear regression model
by projecting the independent variables and dependent variables to a new space. It belongs to the
Partial Least Squared (PLS) models family. According to (Heberger, 2008), PLS model is a bi-linear
method where information in the original data set X is projected into a small number of latent vari-
ables to ensure that the first components are those that are most relevant for predicting Y variables.
This make it close to the idea of principle component analysis and principle component regression.
The mathematics formulation of PLS model is the following:

X = T ∗ P T + E (2.3)

Y = U ∗QT + F (2.4)

Where X is independent variable matrix, Y is dependent variable matrix. T and U are projections
of X and Y. P and Q are orthogonal loading matrices. E and F are the error terms. For detailed
algorithm of PLSR in R, one can refer to (Helge Mevik and Wehrens, 2007) for further reading.
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CHAPTER

THREE

DATA COLLECTION

In this chapter we will introduce the data source and parameters that is currently exist and potentially
usable for this project. Data are primarily cleaned and integrated for first glance. Investigation on
the meaning of the data has been conducted. In addition, part of the relation among parameters has
been checked to verify the quality of the data source. A full data dictionary can be found in appendix
A. Four separated data logger systems are currently logging data for the Galv line namely are Set
up sheet(section 2.1), Data warehouse(section 2.2), IBA(section 2.3) and EMASS(section 2.4). Data
integration tool is introduced in section 2.5.

3.1 Set up sheet

Setup sheet is the only data source where data are manually measured and logged. It is used for
engineers to track parameters of maintenance cycles. The data are component related data such as
roll diameter, whether the bush is new when installed and whether the sleeves are coated. The bush
wear has been recorded after each campaign (approximately every 4 weeks). By the end of the data
collection phase 6 samples of bush wear measurement is available from 15/05/2019 to 12/09/2019. By
the end of the project 3 additional samples becomes available that are used for validation purpose.
15 variables are logged including date and time. The data logged on set up sheet are not continuous
and need to be further processed into continuous data points before implementing. Furthermore, as
the data are logged manually, human errors are not avoidable especially the bush wear measurement
that is being used as target variable.

3.2 Data warehouse

Data warehouse is logging procurement and product property related data. Two interface within
data warehouse called ”SIMPPS” and ”NEMO” has been investigated as these two interface has
been suggested the most relevant by domain expert. Data from 15-05-2019 to 12-09-2019 has been
extracted corresponding to the maintenance cycles. Respectively 95 variables and 110 variables are ex-
tracted and they are with different number of observations, 4232 observations in ”SIMPPS” and 20232
observations in ”NEMO”. As there are some parameters with no data logged at all, or only few ob-
servations are logged, we have excluded them and only leave the parameters with continuously logged
value. In total 93 variables are left for further investigation. After investigated the meanings of these
variables, we select the variables that eventually used for modeling based on literature survey findings.
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Time spots from different interface are logged differently only very few data are logged at the same
time. Some parameters share the same meaning but with different names such as coil width. There
are in total 4 parameters that indicate coil width. They are however can’t be interpreted logically as
the most of the finished coil width are logged larger than the ordered and received coil width from
supplier. This according to firm expert is not logical as the coil are stretched during the process thus
the width should be narrower. Conclusion can be drawn that if it is not the coil width that is logged
wrong, it is then the coil ID was messed up. As this flaw is happening in a large margin and the fact
that the widths data are all sharing the same trend the possibility that the coil IDs are logged wrong is
low. This further reflects the data quality of data warehouse has a large space for improvement. In the
end coil length, scrape length and surface area related variables are collected and used for prediction
purpose. The reasoning for this is explained in Chapter 6

3.3 IBA

Data from IBA are system related corresponds to the the air-knives and the bath. The data are
coming from sensors that has been installed within the system. We have extracted all the parameters
available from the IBA starting from January 2019 to September 2019. The data file is over 10 GB in
text file format.

As a first glance, we discovered that from 01-01-2019 to 17-03-2019, the data weren’t logged correctly,
as the data are either logged as ”1” or ”nan”(not a number). From 17-03-2019, the data are all logged
in numerical format. 12 data points are logged per minute and that is the main reason why the
data file is huge. Moreover, 694 variables are logged representing various blocks in the control loop.
According to the domain expert, only variables that marked as input are relevant for the air-knife
behaviors. Base on that, 81 variables are left for further investigations. 3,119,156 observations are
logged from March to September 2019. As a preliminary judgement, there are few missing data points
each parameter and few parameters with the same data but different labels. These quality issues will
not effect the analysis as they can be easily cleaned.

3.4 EMASS

EMASS system is a brand new system that has just been implemented from January 2019 to stabilise
the strip. The system logged features from the strip such as strip width, length and vibrations. The
system current are also logged which indicates how hard the system works. 16 sensors exist on EMass
with 8 sensors on each side of the strip logging distances of the strip to the sensor. Currents in the
sensors are also logged. Data files per day are logged into 7Z file format. Thus these data files has
to be compressed into a folder before opening. After open the folder, there are approximately 200
text files were logged per day. There are in total 5 million to 6 billion observations per day and the
total data size in EMASS is 43GB. Thousands of data points are logged per minute with inconsistent
logging intervals. More over, the operators shut down the system every 12 hours to clean the machine.
Depending on the shut down time span, it make sense that the total number of observations per day
differs.

3.5 Data cleaning and integration

Several data cleaning tools has been tried out to clean the data especially for data from EMASS
system, because the data size is the largest of all data source. Open refine is one of the cleaning tools
that was tried out. It is a tool designed especially for messy data. It does work well with small data
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sets, however, the memory space is not large enough to handle data from EMASS, not even half day
data. For the same reason other data cleaning tool wasn’t good enough for our case either.

In the end data are integrated from different data source using statistical software R. Specific variables
from Set up sheet, Data Warehouse and IBA are selected for predictive model building. Detailed data
reading, selection and integration process can be found in Chapter 5 and Chapter 6.

3.6 Conclusion

To conclude the report so far, the first research questions (question 1a-1d) is answered as follows:

1a.What is the current maintenance process in Tata Steel Shotton?
In general maintenance decisions have been made based on experience in Tata Steel Shotton. Specifi-
cally, the current maintenance cycle of the pot gear, current maintenance cycle is approximately four
weeks when there are no other faults such as strip break occurs. At the end of every four weeks,
the line will be shut down and the pot gear will be replaced even if there hasn’t been any failure.
Engineers has been trying out larger bush diameters to prolong the maintenance cycle.

1b-c.What are the existing data that ready for collection and what what are the meaning of the existing
data?
In total four separate systems are in use to collect data from different perspective. The four data
sources are: Set up sheet, Data warehouse, IBA and EMASS. Set up sheet records data regarding
component properties such as roll diameter, roll condition before in line and bush condition. Bush
wear data are logged after each maintenance cycle from 15-05-2019. The data in set up sheet are
logged manually thus human measurement errors are hard to avoid and should be considered when
further analyzing

Data warehouse records mainly procurement related data, such as the product the customer ordered,
the product delivered, the team ID and batch ID etc. The data from different interface in data ware-
house are not logged at the same time point. Some parameters such as ”coil width” appear repetitively
but can’t be interpreted logically, for example, the finished coil width is supposed to be narrower than
ordered and received coil width but they are logged larger. Such phenomenon to certain extent reflects
the poor data quality in data warehouse.

1d.How can the data from different sources be integrated?
Statistical software ”R” has been used for data reading, cleaning and integration. Because R is capable
of handling the data size from EMASS system while the rest of the tools such as OpenRefine has been
tried out but failed to do so.
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CHAPTER

FOUR

STATE OF ART

Over fifty papers has been reviewed in this chapter to present a view on the current research status
in predictive maintenance in terms of component wear. Section 3.1 explores the general position of
predictive maintenance in industry 4.0 concept. Section 3.2 explores physics behaviour of metal to
metal contact wear to extract insight on the cause of wearing. Section 3.3 presents a broad review
of data driven methods that have been used to predict component wear. Section 3.4 is focused on
techniques for independent variables selections and feature extraction. The required data structure
for modeling has also been reviewed. Current research gaps in predictive maintenance in component
wear has been presented in section 3.5.

4.1 Predictive maintenance in industry 4.0

To understand the positioning of predictive maintenance in industry 4.0 concept and the requirement
of achieving industry 4.0, literature survey has been conducted to provide an overview of what to
achieve in industry 4.0 and how can predictive maintenance assist in getting there. A categorical
framework of manufacturing has been provided in (Qin, 2016). Smart Factory, Self-organized business
sections, Smart product new customer ordering process, smart vehicle etc are all parts of the concept.
Some researchers proposed a ’5C’ structure to guide the development of industry 4.0. The ’5C’
namely are ’Connection Level’ focusing on hardware development for wireless and sensor network
connection. ’Conversion Level’ indicates the level of information discovery by data analytic. The
’Cyber Level’ emphasizing the level of automation. The ’Cognition Level’ is to be aware of problems
early and thus this is where predictive maintenance fit in. As a result of all the levels mentioned,
’Configuration Level’ aims at achieving intelligent production as the accomplishment of industry 4.0.
It is evaluated in(P.O’Donovan, 2015) that industrial equipment maintenance activity account for over
30% of a facility annual operating cost and between 60% and 75% of machine lifetime cost. Benefits
and advantages of developing comprehensive predictive maintenance through the concept 4.0 focus on
remote monitoring and self-diagnosis function. The major challenges is addressed as machine sensoring
and monitoring, predictive modeling, cloud solutions and intractability. (Zhang, 2019) conducted a
survey for data-driven methods for predictive maintenance of industrial equipment. It addressed
major steps of predictive maintenance using data driven methods namely: operational assessment,
data acquisition, feature engineering and modeling. Logistic Regression(LR), Neural Network(NN),
Support Vector Machine(SVM), Random Forest/Decision Tree(RF/DT), and Auto-Encoder(AE) have
been investigated and compared based on the application and prediction power. The result shows that
LR has the lowest complexity level and still can achieve 100% accuracy in some applications. SVM
is good at classification task and also performs well in fault diagnosis. DT and RF are strong in
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explanatory power and suitable when data set has high dimensions,however, it is prone to overfit.
ANN, DNN and AE have achieved more than 97% accuracy in 80% literature. It also concludes that
when using deep learning(DL) algorithms, deeper network architecture and higher dimensional feature
vectors are more significant in improving the performance.

4.2 Mechanical contact wearing behaviour

As the goal of this project is mainly investigating the predictive maintenance on wearing condition,
literature surveys have been done to explore the cause of mechanical degradation, especially metal to
metal contact wear. In (Cubillo, 2016), metal-metal contact wearing behaviour is classified into two
stages: adhesive wear and fatigue wear. Adhesive wear is due to surface contact that leads to material
transfer or loss from surface(Bayer, 2004). Fatigue wear however, generates surfaces cracks that after
a critical number of cycles resulting in a severe damage. Adhesive wear can be modeled with the
Archard’s law :

V olume[wear] = K ∗ Load ∗ Slidingdistance
3 ∗Materialhardness

(4.1)

Where K is wear coefficient that can be adjusted to fit more complex wear models. Fatigue wear
however can be modeled in different ways based on friction coefficient and lubrication factor. The
main cause of fatigue wear is the force taken per unit area. Modeling formula for bearing wear with
lubricating factor can be found in (Ocak, 2007). Bearing degradation behaviour has been investigated
in (Wang, 2017) where the behaviour has also been classified into two stages, the first stage has been
simulated with a normal random variable α with mean µ and variance α2 the second stage of degra-
dation has been simulated with Geometric Brownian motion. Analysis of variance(ANOVA) was used
to determine the effects of the machine parameters of surface roughness and flank wear. Linear and
quadratic regression were applied to predict the outcome of the experiment. (Kivak, 2014). Similarly,
(Hwang, 2015) did experiments and numerical study of wear in cross roller thrust bearings. In which
the first stage of wear was concluded as linear wear with the Archard’s law. Failure such as spalling
was concluded as non-linear wear. (Wang, 2014) applied enhanced particle filter to predict tool wear
and the relationship between tool wear rate and the changes of applied load has been investigated
which is only a modified differentiation equation of the the Archard’s law. In addition, tooling force
was found to be increased as the tool gets worn. Normal load is proportional to the wear width, thus
normal load can be approximated as linear relationship of wear width.

Summarising the findings, mechanical contact wear, material hardness, load, sliding distance and
lubrication factor cause wearing and determine wear volumes(B K N Rao et al, 2012). The wearing
behaviour mostly are classified into two stages, the first stage is linear wear whereas the second stage
is nonlinear. It is found that load changes are proportional to the wear, indicating that the wear width
forms a linear relation with the force at the stage. The second stage is more complex and usually
leads to failure.

4.3 Data driven methods for wearing prediction

Methods for predictive maintenance in terms of wearing condition can be generally classified into
three categories (Tobon-Mejia, 2012), namely mathematical model based method, experience based
method and data-driven method. Mathematical modeling based method produces good results, but
requires deep knowledge on system functions, which is a viewed as a disadvantage as it is often
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hard to obtain. Experienced based method makes decisions based on empirical events and often pro-
duces poor prediction results. Data driven based methods investigate the problem mainly from data
perspective. Machine learning is often used to learn data patterns. Predictive maintenance using
data driven method requires failure data as target variables and featured variables to describe input
data(Gouriveau et al, 2013), however, failure data is often not available in industries as down times
are prevented with the best efforts due to high down time cost.

Artificial neural network, support vector machine and random forest are the most implemented data
driven methods. Besides, hidden Markov model(HMM) with strict data structures and reliable com-
puting performance has also attracted lots of attentions. In recent years, many researchers have
applied HMM in tool condition monitoring and achieved good results.(Liao, 2016) however, the data
used for wearing prediction are mostly experimental data, which means machines are set up and run
to failure for a number of times and data are collected by the sensors that installed on the machine.
Thus critical parameters are fully obtained. Such ideal data sets are hard to get from real life.

Limited amount of study has concentrated on predictive maintenance with missing labels. (Zschech,
2019) investigated in prognostic model development with missing labels. It first uses unsupervised
learning such as clustering techniques to create labels then use supervised learning namely Recur-
rent neural network(RNN) to predict future labels. In (Amruthnath, 2018) unsupervised learning has
been investigated to detect early fault in predictive maintenance on experimental data. T statistics,
k-means clustering, c-means clustering and hierarchical clustering are implemented and compared.
The result confirms that unsupervised learning can detect faulty behaviour and clustering results are
similar. (R.Langone, 2015) proposed a least square support vector machine(Ls-SVM) framework for
maintenance strategy optimization based on real-time condition monitoring. It used both clustering
(unsupervised learning) and a supervised leaning method namely nonlinear auto-regression(NAR),
however, with different data set, and conclude that supervised learning can achieve better result and
meanwhile it is more computational expensive. Two methods combined may result in the optimised
maintenance cost configuration.

Deep learning is also starting to be implemented for wearing prediction. In (Martinez-Arellano, 2019),
convolutional neural network(CNN) in combination of time series imaging are implemented to predict
wearing that can effectively detect the wearing condition and location.

Other studies such as (Zhao, 2017) and (Zhong, 2016) proposed using correlation analysis among dif-
ferent sensor signals to detect early anomaly as they discovered that the distribution of sensors signals
is likely to change when there is a faulty behaviour. Thus the correlation between sensors will change
before anomaly truly happens. This way faulty behaviours can be detected in time for maintenance
activities.

Evaluations of modeling performance are mostly based on prediction power. Classification models are
evaluated with True positive(TF), False positive(FP) rate and accuracy(Li, 2004)&(Li, 2003)&(Susto,
2014). Regression models are often evaluated with mean squared error(MSE), residual and R squared
value,(Wu, 2017). Some of the studies also put training time as one of the evaluation criteria.(Wu,
2017 and 2016). R square is calculated with the following formula:

R2 = 1− SumOfSquaresOfResiduals

TotalSumofSquares
(4.2)

Detailed calculations for Sum of Squares of Residuals and Total Sum of Squares can be found in
Chapter 6.
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4.4 Data pre-possessing

A critical overview of wearing prediction using artificial neural network has been presented in (B K
N Rao et al, 2012) where articles from 1997 to 2011 has been reviewed. Different data prepossessing
techniques that described in the article are dimensional reduction techniques, data fusion methods, sta-
tistical analysis and optimization algorithm for feature selection. Principle component analysis(PCA),
multivariate methods etc are in the category of statistical analysis. PCA is the most implemented
dimensional reduction technique.

Feature extraction and selection has been an active research area for deployment of artificial intel-
ligence. In terms of prognostics, a dataset is expected to have a minimum sample size around 10
in order to perform data-driven modeling effectively.(Eker, 2012) Preferably, dataset for predictive
maintenance should be able to describe several instances of the same fault in various different but
similar components (Klein, University of Trier). In (Veltan, 2000) 72 wear volumes are generated in
the datasets with experimental settings. PCA was used to reduce its dimension. In (Bolon-Canedo,
2011) two main approaches for feature extraction are presented as individual evaluation and subset
evaluation. However it was claimed in the article that there is no best method. Efforts are focused on
finding a good method for a specific problem area.

In (Javed, 2012) 315 wear measurements were produced with 16 features extracted from each mea-
surement. In (Wang, 2015) 300 files were produced with each file corresponding to one cut. Force
and vibrations in three directions are stored in the files. Pearson correlation coefficient is selected
as a feature since, according to the author, a good feature should present consistent trend with wear
propagation. Fisher’s discriminant ratio is also a feature selection technique that was implemented in
(Xie, 2019) to extract features from cutting force. Statistical feature was used and wearing conditions
were given labels: ’initial wear’, ’median wear’ and ’severe wear’. Some studies even skipped feature
extraction step such as (Zhao, 2017), raw sensory signals are directly put into a CNN for wearing
prediction. However, normalization is commonly used for data reprocessing (Kolodziejczyk, 2010) to
first put data into a same scale. Genetic programming is used as an optimization algorithm to choose
the best features and/or describe wear volume (Kolodziejczyk, 2010). Statistical features are widely
used in wear prediction.(Zschech, 2019) extract time domain features: peak value, root mean square,
standard deviation, kurtosis value, cxest factor, clearance factor, impulse factor and shape factor.

A table summarizing essential variales used for wearing predictions can be found in Table 4.1. Major-
ity of wearing predictions are based on vibration analysis that is distinguished between time domain
and frequency domain. Time domain vibration analysis extract time series features such as peak, rms,
kurtosis and clearance value whereas frequency domain deploys spectrum analysis, envelope analysis
and high frequency resonance technique(Eker, 2012).

Vibration signals are used as indicator of the condition. Vibration of 0.012 is considered as a refer-
ence value to decide the change of tool.(Krishnakumar, 2015) Real time vibration based on structural
damage was detected using one dimensional CNN in (Abdeljaber, 2017). The damage was detected
and the location of the damaged joint was able to be detected. In (Y Shan, 2000) different prediction
methods were applied to different bearing running stages to predict remaining life. Variables char-
acterizing the state of deterioration are extracted for neural computation. Time domain vibration
signals of rotating machinery with normal and defective bearings are used for wearing prediction in
(Samania, 2001). Acoustic signals are used in(Xu 2002) and optimal statistical features are selected
using a genetic algorithm. Current signature analysis are used in (O..Nel, 2006).
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Table 4.1: Survey of essential variables

Literature Analyzed variables

Ocak 2007 Vibration

Nectoux 2012 Rotating Speed, Force, Temperature, Vibration

Krishnakumar 2015 Vibration

Abdljaber 2017 Vibration

Si et.al 2011 Pressure, Temperature, Vibration, Moisture, Humidity, Loading, Speed, Oil

Liu and Mengel 1992 Vibration peak amplitude, frequency domain and peak RMS

Alguindique 1993 Vibration

Baillie and Mathew 1994 Vibration

Aiordachioaie 1995 Vibration

Wang 1996 Data created by mathematical model of vibration signal, frequency spectrum

Samanta 2001 Vibration

Peng Xu 2002 Acoustic signals, DWT coefficient

Samanta 2003 Vibration

O Nel 2006 Current

Ghafari 2007 Vibration

Li Yun 2008 Frequency domain characteristics of vibration

Vijay 2011 Vibration

4.5 Gaps

Data cleaning and huge data set handling, according to (Bulletin 2000), should include: data anal-
ysis, definition of transformation workflow and mapping rules, schema-related data transformation,
verification, transformation and back-flow of cleaned data. These steps are provided as data cleaning
guide to detect errors and inconsistency, transforming data into standard format with least possible
manual inspections and verify the correctness of data transformation. Ideally, the cleaned data should
replace the data in the original source. The approaches for data cleaning have never been presented in
literature regarding predictive maintenance. Some results in articles are based on huge sensor-based
data sets, for example, data sets with size 4TB(Li 2013). But how these data sets are read and cleaned
are not presented. However, there are some techniques to clean sensor data such as weighted moving
average(Zhuang, 2007) but it is implemented especially on small samples. In real life, sensor-based
data sets are often huge and difficult to read. Thus it should require a long time to implement these
techniques. In this report we present some techniques used to read large data sets in a reasonable
amount of time and discuss how to reduce the file size and integrate data in chapter 5

Comparison of prediction result using different variables and reasoning of using vibration data in
comparison with others are missing in literature. Almost all the papers were using vibration data
to predict wearing condition without reasoning. Although using vibration data did produce good
prediction results it is worth investigating that when vibration data is not available, are there other
alternative parameters that could potentially replace vibrations and be used to predict wearing con-
dition? Few papers analyzed on force and some combined several parameters(Kolodziejczyk, 2010)
but no comparison study in terms of the prediction power with different parameters were conducted.
Thus in this report we will also do some comparison in terms of predictive maintenance using different
parameters and explore differences among results.

There are limited amount of studies on real industry cases where there is a lack of failure and wear-
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ing measurement. As mentioned before, most of the studies were conducted in labs, used data are
experimental data. Most of the studies used multiple milling machines and let them run to failure
and meanwhile the sensors installed on the milling machines are able to measure the wearing on the
milling point, log vibrations and log forces from different dimensions. However, this ideal situation
almost never happens in real industry setting. Take the cased used in this study as an example, there
are no sensors can be installed around the bush as it is in a zinc pot. Thus vibrations and force both
are not available, not to mention that the wearing measures are only able to be measured after every
campaign. Some literature combines unsupervised and supervised technique to simulate target, but
the result is hard to validate as there are only simulated labels exist. This study investigates the
following: to what extent can predictive maintenance on wearing conditions be done with only partly
available wearing measures and what other feasible predictive maintenance activities can be done with
current available data.

4.6 Conclusion

By this end research question 2 is able to be answered to conclude predictive maintenance using data
driven methods.

2a. Which data driven models have been used to predict metal contact wear in industries?
Data driven methods are mostly machine learning models. The most implemented machine learning
models are random forest, support vector machine and artificial neural network. They all produce
good prediction results on predicting failure(classification) or remaining use of life(regression). Arti-
ficial neural network are the most implemented and is often modified into different structures. Other
statistical based models can be considered as the overlap of empirical and data driven methods such
as detecting correlation changes and distributions from historical data.

2b. What are the steps that has been used in literature in terms of data prepossessing and model
building?
Classical method for predictive analytics is data collection, data cleaning, feature extraction and model
building. Data sample required for model building in predictive analytics are samples covering variety
of cases, with many predictive variables corresponding to one target variable.

Limited amount of studies concentrate on missing target issue as limited amount of studies are based
on real life industrial data. Some studies compare different clustering techniques that are unsuper-
vised machine learning models such that no target variables are required. However it is also falls out
of predictive analytic category as unsupervised machine learning has descriptive nature. Some stud-
ies combine unsupervised learning and supervised learning, specifically using clustering techniques to
detect abnormal behaviour and making different labels for training set and then training predictive
models using training set with simulated labels. The limitation of this method is that it is hard to
evaluate the predictive power as it can only be evaluated with simulated labels.

Feature extraction is an active research area as features extracted are likely to influence prediction
result. Statistical features are the most widely used. Many algorithms are suitable to select optimal
features such as principle component analysis and genetic algorithm. It has been concluded that no
best technique exist for feature extraction it all depends on specific situations.

2c. What are the measures to evaluate predictive power of the models?
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Predictive maintenance using data driven methods can be categorized into two categories as follows:
-Classification: Predict system/component failure, the labels then can be set as: fail or not fail.
Prediction power evaluation for classification models are True Positive rate, False Positive Rate and
Accuracy measure.
-Regression: Predict system/component remaining use of life, wearing millimeters etc. Prediction is
a continuous variable. Prediction power is evaluated using MSE(mean squared error) and R squared
value.
Some studies also take training time as one model selection criteria.

2d. Based on prediction power and current context which models are the most suitable for predictive
maintenance?
When data availability is not a problem, random forest, support vector machine and neural network
all show good prediction power. Random forest and support vector machine have their advantages
that they are computational less expensive. Whereas neural network is more complex but then it is
more flexible to suit different systems and conditions. It can even be used as an automatic feature
extraction model and also powerful in deep learning for more detailed prediction such as recognizing
the specific wearing location.

2e. What are the gaps and limitations of current literature on predictive maintenance in industry?
Current studies on predictive maintenance barely describe the size of data set and how to read huge
data set. Most of the data cleaning techniques are tested on small data samples which is far from
real life situation. As in real life, sensor data are logging at a high frequency and the data file are
huge and not even be able to read by software. Not to mention implementing techniques to clean them.

Most of the predictive maintenance on wearing conditions only use one parameter namely vibration
signals as it is always produce good prediction result. Few studies uses other parameters based on
physical property of the component. However, sometimes none of these parameters are available, thus
alternative parameters to predict bush wear are worth investigating.

Speaking of real life situation, almost all the literature that have been investigated in this study are
conducted in laboratory settings. The data are experimental and ideal as sensors are installed and
able to capture all relevant features while the machines are run to failure. That is one of the reasons
that prediction accuracy is high. Studies based on real industry data will face more challenges as
essential parameters may not be available.
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CHAPTER

FIVE

DATA EXPLORATION

In this chapter, data cleaning and prepossessing techniques are presented in section 4.1 and 4.2. Then
we combine principle component analysis and unsupervised learning techniques to explore the existing
data further without considering target labels (wear measurements) in section 4.4, 4.5 and 4.6. As a
result, using existing sensor data, other predictive maintenance activities can already been done even
without predicting bush wear condition.

5.1 Reading Large data sets

It has been addressed that we have 4 separated data sources namely: IBA, EMASS, Setup sheet and
data warehouse. Among which, IBA and EMASS are logging sensor-based data whereas set up sheet
and data warehouse are logging component and product related data thus the data are logged manu-
ally. As sensor based data source in this case is logging much more frequently than human, IBA and
EMASS data sizes are much larger than the other two and the data format is also more inconsistent,
thus requiring more time when cleaning the data.

Data cleaning process is more like data engineering, as the cleaning algorithm should be built based
on the specific raw data structure and problem will keep incurring until the data are fully structured.
As a general guideline for data cleaning: it may take a long time only to read the data due to memory
limit of PC/Software. Software used here is R as mentioned before and it can read 2GB to 4GB data
at a time with reasonable speed. Maximum 2 billion indices can be store in memory. It is important
to split the file into small pieces and clean them separately. When the sub-files are still not able to be
read because it is over-sized, it is important to do operations before reading the file such as skipping
lines while reading to keep the data size fit for the software.

IBA data from 17/03/2019 to 13/09/2019 stores 3,119,156 observations and 687 variables in one single
text file. It wasn’t feasible to read it as a whole so the text file was split into 10 sub-files using R
and read again. After deducting the variables into 27, as explained before, it becomes feasible to read
them as a whole. Time to read the data set is around 15 minutes and after reading the data set,
simple cleaning technique is hard to implement on the data due to the limitation in the memory of
vector.

EMASS data which is the largest of all stores over 5 million observations per day. At some days over
6 billion observations. The EMASS is logging over 200 text files per day and zip them automatically.
R is able to read a 6-billion observation text file in one and a half hour but no additional operations
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are able to be executed. As the data size is already large for one-day data and there are thousands of
observations within one minute, the data were read by reading one row every 80-500 rows depending
on the data size that day.

Setup sheets and data warehouse are logged manually by human, thus logging frequency aren’t as high
as that of the sensor-based data. 20232 observations were read from data warehouse using R and the
parameters logged in setup sheet were manually transferred into Excel files.

5.2 Data cleaning

Table 5.1: Variable norms

Variable Norm Data Source

Al content 0.18 - 0.23 IBA

Tension 1577( Reference value) IBA

Roll Diameters 560mm-600mm EMASS and Set up sheet

Efforts are mainly made to make the data format from different data source consistent. Since each data
source contains a different data format, there was no general algorithm for cleaning all data sources.
Code for cleaning can be found in Appendix C. Rows contain missing data are deleted. Duplicative
variables were detected by taking average value per day for variables with the same labels and then
deduct each other. By plotting the deducted values, a horizontal zero line is shown when duplicative
variables were detected. Logical check was conducted to specific variables to make sure the logged
values are within its norm as shown in Table 5.1. It is surprising to see that Al content data are never
logged within its norm which means that the data are logged wrongly. By summarizing the variable,
data quality can be intuitively reflected. As an example, a summary of ’Tension’ variable can be found
in Figure 5.1. We can see that neither mean or median value falls below the reference which means in
general, the tension is higher than the given norm. Same analysis was conducted on Roll Diameters
with given norm from a domain expert and we found that roll diameter is roughly around the norm.

Figure 5.1: Summary Tension

5.3 Data prepossessing

For sake of simplicity, principle component analysis(PCA) was conducted on each data source in order
to reduce data dimension. All variables were normalized before doing PCA. Only continuous variables
were included in this study because PCA can only be implemented on continuous variables. Some
variables from data warehouse are selected due to their explanatory power.

5.4 Variable selections using PCA

32 variables from Emass has been reduced to 9 variables as shown in Table 5.2, namely Distance.A2-
A5, Distance B2-B5 and Current B4. The first 13 principle components were taken into account as
they represent 82.5% of the variance of all 32 principle components. We select variables based on
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the correlations between variables and principle components and select the variables only when the
absolute values of correlations to any of the principle component PC1 - PC13 are larger than 0.8.
Similar operations has been done on IBA variables. We select the first 6 principle components as they

Table 5.2: Variables selected from EMASS

Variable Correlations to principle components

Distance.A2 0.96

Distance.B2 0.96

Distance.A3 0.94

Distance.B3 0.86

Distance.A5 0.96

Distance.B4 0.96

Distance.A5 0.96

Distance.B5 0.96

Current.B4 0.80

represents 81% of the total variance. We select variables with absolute correlation to any of the first
six principle components larger than 0.8 as shown in Table 5.3. Statistical features are extracted from

Table 5.3: Variables selected from IBA

Variable Correlations to principle components

input.controlPress.TOP. 0.85

input.controlPress.BOT. 0.85

input.headerPressRaw.TOP. 0.85

input.headerPressRaw.BOT. 0.85

input.headerPress.TOP. 0.85

input.headerPress.BOT. 0.85

input.coatMass.TOP. -0.84

input.coatMass.BOT. -0.83

input.potTemp 0.99

input.corrRollPos.RIGHT. -0.92

input.potAlContent -0.92

these selected variables, namely: Mean, Median Minimum, Maximum, Root mean square(RMS), kur-
tosis, skewness and standard deviation. These statistical features are chosen because they are widely
used in literature. Kurtosis describes whether the distribution contains extreme values. Skewness
describes the extent to which a distribution differs from a normal distribution in terms of asymmetry.

5.5 Variables with explanatory power

Since the ultimate goal of this project is exploring the possible ways to predict bush wear condition and
we have summarized that the wearing is caused by ”sliding distance”, ”force”, ”Lubrication factor” and
”material hardness”, some existing variables are selected for their physics-based explanatory power.
New variables were created using existing variables from data warehouse and setup sheet as shown in
Table 5.4.
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Table 5.4: Created Variables

Total Run Length Data source

Total Scrape Length Data Warehouse

Total Surface Data Warehouse

Total Number of turn Data Warehouse and Set up sheet

”Total Run Length”, ”Total Scrape Length” and ”Total Surface” were created by summing up the
finished coil length, scrape length and finished coil surface values for each day. Total number of turn
is calculated with the following formula:

NumTurn =
TotalRunlength

SinkRollDiameter ∗ π
(5.1)

5.6 Unsupervised learning

To explore hidden patterns and descriptive information within chosen variables, unsupervised learning
techniques are used. Unsupervised learning techniques are descriptive models that are able to detect
faulty behaviour by clustering data based on certain criteria(Amruthnath 2018). K-means clustering
and hierarchical clustering are two of the basic clustering techniques that are used for online monitoring
and fault detection purpose. Especially, K-means clustering is widely used as it is less computational
expensive compared to other clustering techniques. As mentioned before, eight statistical features
are extracted from each variable thus PCA is implemented again to reduce the increased dimension.
Principle components are chosen only when it is representing over 90% of the variance.

5.6.1 Hierarchical clustering

Figure 5.2: Hierarchical clustering Distance.A2

The most representative hierarchical clustering results are shown in Figure 5.2, Figure 5.3 and Fig-
ure 5.4. The reason why only these three clustering results are showing here is because clustering
results of other variables are similar and lead to the same conclusion. Hierarchical clustering result
shows that Distance.A2, Distance.B2, Distance.B3, and Distance.A5 all separate indices 8, 17, 52,
67, 71 from the rest of the data which indicates that abnormal events happened on the correspond-
ing dates: 14/06/19, 24/06/19, 01/08/19, 16/08/19, 20/08/19. Hierarchical clustering on current B4
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Figure 5.3: Hierarchical clustering Distance.A2

Figure 5.4: Hierarchical clustering Distance.A2

clustered out index 23, 58, 68, corresponding to dates: 30/06/19, 07/08/19, 17/08/19 respectively.
Distance B5 clusters out index 24 corresponding to 01/07/19. Hierarchical clustering on other vari-
ables aren’t explicitly clustering out certain dates, meaning abnormal event has been detected more in
detail which will not contribute much to cost saving in preventive maintenance due to high frequency
of maintenance activity.

The faulty behaviours detected on IBA variables with the same procedures differ among the vari-
ables. On some variables, both clustering results shows massive abnormal events, indicating that a
significant amount of maintenance needs to be conducted. Extreme events have been detected from
CoatMass.BOT on index 6, 109, 112, 162, 167, 168 corresponding to dates: 2019-03-22, 2019-07-03,
2019-07-06, 2019-08-25, 2019-08-26, 2019-08-30, 2019-08-31. Hcluster indictates from correcting roll
position: index 21, 22, 26, 33, 34, 51 are abnormal, corresponding to dates: 2019-04-06, 2019-04-
07,2019-04-11, 2019-04-18, 2019-04-19, 2019-05-06. etc. Clustering results can be found in Table 5.6.

Industrial Engineering and Management 43 Master Thesis



Data driven solution to predictive maintenance

Figure 5.5: K-means clustering on Distance.A2 Figure 5.6: K-means clustering on Distance.B3

5.6.2 K-means clustering

Again, only the most representative clustering results are shown here. Distance.A2, Distance.B2,
Distance.A5 and Distance.B4 were clustered out the same index as hierarchical clustering did cor-
responding to dates: 14/06/19, 24/06/19, 01/08/19, 16/08/19, 20/08/19. K-means clustering on
Distance.B3 shows more abnormal events that happened on dates: 14/06/19, 24/06/19, 01/07/19,
02/07/19, 05/07/19, 01/08/19, 13/08/19, 14/08/19, 16/08/19, 20/08/19 and 06/09/19. For Dis-
tance.B5, K-means clustering shows the same result as hierarchical clustering that abnormal event
has happened on 01/07/19. Both clustering techniques gives the same results on Current B4 where
faulty behaviour has been detected on 30/06/19, 07/08/19 and 17/08/19. Two representative K-means
result graph can be found in Figure B.11 and Figure B.60.

Both hierarchical clustering and K-means clustering have their pro and cons. We will reflect them
here. The advantage of both techniques is that they are easy to compute and require short running
time. However, hierarchical clustering can only make two clusters, which is not sufficient for clustering
out extreme events. K-means clustering requires the number of clusters to be defined by human. The
main disadvantage of K-means cluster is that, the clustering results are strongly dependent on the
initial criteria, which means running the algorithm multiple times the result might change.

5.6.3 Validation

Unsupervised learning results are validated by looking into events recorded in shift report. After
checking each abnormal date from clustering and the corresponding comments in the shift report we
can see from Figure 5.7 that all dates that have been clustered out did have either planned delay or
unplanned issues except for 12/04/2019 where nothing abnormal was happening. This further confirms
that clustering technique is able to detect abnormal events. However, we also discovered that there
are lots of delays that weren’t recognized by unsupervised learning. Some of the delays happened at
the entry and exit of the line which weren’t detected probably because the data we have is only around
the pot gear section. Some other delays were caused by operating error, in other words, human error
or decision based delay; they were not detected because those were not system related delays. Apart
from those mentioned before there were still some delays that should have been detected but weren’t
clustered out.
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Figure 5.7: Validation for clustering results

5.7 Correlation and regression

Figure 5.8: linear regression total number of turn, tension std and remaining bush width

To discover some correlation between parameters with explanatory power and the bush wear we cre-
ated a correlation table(Table 5.5) that shows the correlation between variable and the minimum bush
wear from both sides. We only explore the correlation between run length and tension related variables
and the remaining bush width because of the Archard’s law we’ve discovered in the previous chapter.
It is shown in the Archard’s law that the wear volume is correlated with load, sliding distance and
material hardness.

It is worth mention that the correlation test is only based on 5 samples as we only have 5 bush
measurements thus the result lacks credibility. However, based on the 5 samples we have, we can see
from the table that total run length, total surface, total length and total number of turn all have
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Variables Correlation Label(Bush remaining width)

Total NumTurn -0.90

Scrape Length -0.93

Total Surface -0.91

Total Length -0.91

Maximum Tension -0.23

Mean Tension 0.61

Minimum Tension 0.39

Median Tension 0.47

Standard deviation Tension 0.76

RMS Tension 0.66

Table 5.5: Explanatory variables correlations with bush wear

high correlation factors between bush wear. Among tension features, mean tension, tension standard
deviation and tension root mean square value effect the bush wear the most where tension standard
deviation seems to be the main cause apart from the run length.

As the Archard’s law shows linear relationship in between sliding distance, force and wear, we fitted a
linear regression model between total number of turn, tension standard deviation and remaining bush
width as shown in Figure 5.8. Both p-Values are well below the 0.05 threshold, so we can conclude our
model is indeed statistically significant which means the linear relation can be accepted. A qq plot
is shown in Figure 5.9 which shows more intuitively how well it is fitting the linear regression model.
Again it is only based on five samples, so we can’t draw conclusions based on such limited amount of
samples.
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5.8 Conclusion

To conclude this chapter, the following research question is answered:
How is the quality of industrial data and what are the challenges?

3a.What are the characteristics of industrial data?
Specifically to TATA Steel case, data are highly unbalanced. Data size from different data sources
differ a lot from each other. Sensor based data source such as IBA and EMASS produced huge amount
of data with high dimensions(hundreds of variables) whereas manually logged data source(setup sheet)
produced extremely small sample size (6 samples in 4 months). Quality of data from different sources
also differs. For example, data from set up sheet is clean in format, however, since they are manu-
ally logged the values are rounded thus are not very accurate. On the contrast, sensor based data
source produce data with high diversity. Text format is the most common in TATA case but the
ways the data were recorded in the text files also differ per data source. In this particular instance
of TATA, data are commonly logged off the norm and produces massive amount of missing data
points. It may be an issue of the data quality but also can be the domain knowledge from expert
wasn’t comprehensive enough to cover diverse cases. From the case of TATA STEEL, we can have
a general idea of the data situation in industry that data are often unbalanced and not well structured.

3b.What are the challenges while pre-processing the data and how to deal with them?
One of the biggest challenges we faced is the size of the data is so large that the data cannot be
even read at the first place. Thus data are splitted into small data files and read by skipping lines.
Check has been made to make sure that after skipping data points the observations are still spread
out through the day rather than only data corresponds to certain time period were left.

The data are in very high dimension that makes it hard for us to extract information from it. Thus
how to filter the variable and extract the most essential information is one of challenges. We have
also found that some parameters are logged completely off their norms provided by expert. Thus
assumptions had to be made that there are no batch errors within data sets. PCA is used to reduce
data dimensions. Variables are filtered by only leaving the variables with the largest correlations with
the principle components that represents the most variance. After filtering the data, only the data
represents the most variance were left. We then extract 8 statistical features from each variables and
did PCA on each variable again.

Unsupervised learning techniques namely hierarchical clustering and K-means clustering techniques
are investigated to discover some hidden patterns filtered variables and features. The result shows that
clustering techniques can recognize abnormal event from the data set that summarized in Table 5.6.
However, depending on the data sets and techniques, the recognized dates will differ. Although hier-
archical and K-means clustering are widely implemented in industry as they are less computational
expensive, they still have some limitations, for example, K-means clustering is very dependent on
initial criteria so that it produces inconsistent clustering result every time and hierarchical clustering
can not cluster data set into more detail thus it is hard to capture every pattern within data.

Validation for unsupervised learning has been done by looking back at the events recorded in the
shift report. Nearly all dates that have been clustered out can be confirmed with either planned
or unplanned issues happened. However there are also quite some days with abnormal events that
haven’t been clustered out. The main reason is that the data set only contains data from one section
of the line and the fact that some variables are logged wrongly decreases data quality. If data from
the whole line can be collected(with good data quality), the clustering performance should improve
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and this provides a new predictive maintenance project direction for the future. Moreover advanced
unsupervised learning techniques may worth investigating to increase the clustering performance.

Correlation test and linear regression have been implemented on the variables that are strong in
explanatory power to wearing condition according to literature. Correlation test and linear regression
model can to certain extent validate the finding from literature that the wearing is correlated to
total number of turn and tension. However, it is only based on five samples which hugely reduce the
credibility of this finding.

Variables Type Dates

CoatMass.BOT Hcluster 03/07, 06/07, 25/08, 26/08, 30/08, 31/08

corrRollPos Hcluster 06/04, 07/04, 11/04, 18/04, 19/04, 06/05

HeaderPressRawBot Hcluster 18/07

ControlPressTOP Hcluster 06/04, 06/05,18/07, 04/08

PotTemp K-means 13/09, 12/04, 17/04, 26/04, 10/05, 24/06

AL Content Hcluster and K-means 12/04, 26/04, 26/05

Distance.A2-A5,B2,B4 Hcluster and K-means 14/06, 24/06, 01/08, 16/08, 20/08

Distance.B3 K-means
14/06,24/06,01/07,02/07,05/07,01/08,13/08,

14/08, 16/08,20/08,06/09

Distance.B5 Hcluster 01/07

Current.B4 Hcluster and K-means 30/06, 07/08, 17/08

Table 5.6: Clustering results

Figure 5.9: linear regression QQ plot
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CHAPTER

SIX

MODELING AND EVALUATION

From literature review we found that support vector machine, neural network and random forest
are the most implemented machine learning models for wear prediction. However, they are mostly
based on experimental settings. In our case, the data are unbalanced with a sample size for target
variables of six. Thus support vector machine is not applicable due to sample size limit. Thus we
excluded SVM for further evaluation. We will motivate our modeling technique choice in Section 5.1.
Section 5.2 introduces what features are extracted from the available variables and why they have
been extracted. Section 5.3 introduced the data set we used and how to prepossess it before putting
it into models. Model building and comparison can be found in section 5.4 - section 5.5. Data used
are the maintenance cycle form 15/05/2019 on-wards.

6.1 Selection of modeling techniques

The current sample size has built a barrier for the building of machine learning models. Because
the bush wear has been measured since 15/05/2019 and it is measured every 4 weeks while no other
faulty behaviour happens. Till 12/09/2019, we only have 6 samples available. The samples size for
support vector machine starts to be evaluated in (Figueroa, 2012) is 80. Neural network and random
forest can handle smaller sample size but the minimum sample size requirements is recommended as
10. (Eker, 2012) In order to be able to deal with limited amount of samples, partial least square
regression(PLSR) was investigated. PLSR is widely implemented in Chemometrics and Genomics for
prediction purposes. It is used when the number of variables are more than the number of samples in
the data sets and when the variables are correlated.(Swathik Claronicia) This is exactly our case when
it comes to predicting bush wear measures as we have explored in the last chapter that run length, roll
diameter, scrape length and tension features are all having strong correlation with bush wear based
on existing samples. Moreover, PLSR has been investigated in maintenance context. For example,
in (Li, 2009) a generalized PLS Regression forecast model is developed to predict maintenance cost
of Warship. Data set with sample size 5 has been used, with the first 4 samples as training set and
the last sample as test set. The model has been compared with normal PLSR models and see how
good the prediction result for the test set is. As PLSR is well suited for our case(large number of
variables and small sample size), we will focus on using PLSR modeling and interpret the results.
We also try out artificial neural network and random forest because a sample size 10 should work for
them. Although we don’t currently have 10 samples we will have them in the near future. In the next
sections we will explore on these three models with different settings and compare their prediction
performance.

49



Data driven solution to predictive maintenance

6.2 Feature selection

The ultimate goal of this project is to predict the bush wear to support decision making in main-
tenance policy. Thus explanatory power (the interpretability) from the predictors is preferred such
that the operators are able to adjust parameters settings to possibly prolong the life time of the bush.
Considering this, decision have been made to only investigate the parameters that has explanatory
power which according to the Ardcher’s law, are the variables related to sliding distance, force, and
material hardness. However, material hardness is a set value thus we excluded it from our analysis.
The variables selected are shown in Table 6.2. Sliding distance representative variables are Total
Length, which is aggregated by parameter ”Coil Length”, Scrape Length and Total Surface are both
aggregation of the corresponding variables from data warehouse. Force representative variables is
”Strip Tension” from IBA. Eight features are extracted from this variable, namely Mean value, Mini-
mum value, Maximum value, Median value, Skewness value, Kurtosis, Standard Deviation, and Root
Mean Square value(RMS). The RMS value is calculated with the following formula:

RMS(x) =

√
x21 + x22 + ...+ x2n

n
(6.1)

Standard deviation is calculated with the following formula:

s =

√
(x1 − x̄)2 + (x2 − x̄)2 + ...+ (xn − x̄)2

n− 1
(6.2)

Where n is the sample size, x is the sample variable value. We also selected 3 additional variables
that are Bath Temperature, Days and Roll Diameter as shown in Table 6.1. As the bush is always
working in the bath, the chemical content and the bath can effect the bush life thus it is worth exploring
parameters related to the bath. The temperature differs per product namely Galv and GalvFan. Thus
these two variables will be both added when exploring this parameter. Variable ”Days” is selected
to explore the bush wear in relation to time. Roll Diameter represents the diameter of the sink roll.
As the bush is installed and supports the turning of the sink roll, the roll diameter is effecting the
number of turns of the bush which might effect the predictive power of the model.

Features Data Source

Total Length Data warehouse

Scrape Length Data warehouse

Total Surface Data Warehouse

Mean Tension IBA

Minimum Tension IBA

Maximum Tension IBA

Median Tension IBA

Skewness Tension IBA

Kurtosis Tension IBA

Standard Deviation Tension IBA

RMS Tension IBA

Remaining Bush Width Set up sheet

Table 6.1: Features selected with explanatory power based on the Ardcher’s law
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Features Data Source

Bath Temperature Data warehouse

Days Setup sheet

Roll Diameter Setup sheet

Table 6.2: Additional features selected for further experiments

6.3 Data Processing

5 samples from the data set are used as training set and the remaining one sample is test set. This is
to maximize the number of training samples for the model to learn. As the sample size is extremely
small, we use Leave One Out(LOO) cross validation for model training. In LOO, the parameters of the
chosen model is performed automatically on, in this case, 4 out of 5 samples in training set and test
the prediction on the 5th sample. In this step the 5th sample is the test set while training the model.
Repeating the process 5 times, each time leaving one sample out as test set and tune parameters of
the model during this process.

Before putting data into models, data are scaled so that variables with different units are put into the
same range such that variables are comparable. Formula for data scaling is as follow, where std(x) is
the standard deviation of variable x.

Scale(xi) =
xi − x̄
std(x)

(6.3)

A scaled data set is shown in Figure 6.1. Labels are not scaled as they are variables to be predicted
and validated. The label is calculated from manual measurement of the remaining bush width. We
extract the minimum remaining bush of both sides from the original diameter of the bush such that
we have the maximum wearing of both sides, because the decision of whether to change the bush or
not should be based on the largest wear from both sides. Detailed formula is as follows:

Label = BushDiameter–Min(RemainingbushLeft,RemainingbushRight) (6.4)

Figure 6.1: Scaled Modeling data sets
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6.4 Partial Least Squared Regression

In order to select the set of features that produce the best overall prediction and meanwhile the results
are preferred to be interpretable. We will select the final feature set based on PLSR performance.
We select the feature not only based on the predictive power on the initial samples but also the
generalization ability of the model, that is, how the model performance changes when more samples
coming in. To evaluate the generosity of the model, we plot a learning curve. A learning curve is how
the prediction accuracy changes when adding more samples in training set. The final feature set is
chosen after comprehensive evaluation of modeling performance and other modeling techniques will
use the same feature set selected at the end of this chapter for sake of consistency.

6.4.1 Experiments on extended variables

By using the features selected according to the theory(sliding distance and force related variables)
we use ”Leave One Out” cross validation to evaluate the performance of PLSR model. Every time
we run the model we will use a different cycle as test sample and the rest of the cycles as training
samples. This is to make sure the model has the most variance of samples to learn from(as much as
training samples as possible). As PLSR is an extension of principle component regression, the data
are projected into lower dimensions as ”latent variables”. The number of latent variables are called
”The Number of Components” during the experiments from now on. The number of components has
to be chosen before predicting new results. Many techniques can be used to choose the most effective
number of components, here we plot the number of components against Root Mean Square Error of
Prediction(RMSEP) and choose the most effective number of component when the RMSEP is the
lowest. Plots corresponds to each test set can be found in Figure 6.2 to Figure 6.7. These plots are
different when using different feature set, here we only have presented plots corresponding to feature
3 as an example. When coding the model, the component selection part has been automated in the
code so there is no need to select manually.

Figure 6.2: Selection cycle1 as test set Figure 6.3: Selection cycle2 as test set

The corresponding prediction results on each feature set can be found in Table 6.3 - Table 6.6. We can
see clearly from the table that when using Feature set 1, 2, 3 the prediction result is almost the same.
Cycle1, Cycle7 and Cycle3 are have a error at around 3mm. Whereas other cycles the prediction
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Figure 6.4: Selection cycle3 as test set Figure 6.5: Selection cycle4 as test set

Figure 6.6: Selection cycle5 as test set Figure 6.7: Selection cycle6 as test set

errors are within 2mm. When we do the experiment on Feature set 4 (Adding bath temperature) the
result becomes a bit off. This is mainly because prediction on Cycle4 becomes worse with an error of
4mm.

A more intuitive comparison is shown in Figure 6.8. Root mean square error value has been used
for modeling performance evaluation. We don’t use MSE here as most literature did because it is a
measure of difference between prediction value and true value and thus more intuitively shows the
prediction deviation from the real value. It is calculated as follow:

RMSE =

√∑N
n=1 (xp − xr)2

N
(6.5)
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Test sample Prediction Real value

Cycle1 14.46 12

Cycle2 20.48 19

Cycle3 9.10 12

Cycle4 2.57 1

Cycle5 14.34 15

Cycle6 14.56 17

Table 6.3: PLSR validation result with standard features(Feature set 1)

Test sample Prediction Real value

Cycle1 14.51 12

Cycle2 20.06 19

Cycle3 8.98 12

Cycle4 2.66 1

Cycle5 14.64 15

Cycle6 14.78 17

Table 6.4: PLSR validation result adding ”days”(Feature set2)

Test sample Prediction Real value

Cycle1 14.60 12

Cycle2 20.24 19

Cycle3 9.47 12

Cycle4 2.69 1

Cycle5 14.71 15

Cycle6 13.51 17

Table 6.5: Adding ”days” and ”RollD”(Feature set 3)

Test sample Prediction Real value

Cycle1 14.30 12

Cycle2 19.75 19

Cycle3 9.90 12

Cycle4 5.17 1

Cycle5 14.85 15

Cycle6 13.72 17

Table 6.6: Adding ”days”,”RollD” and ”Bath Temperature”(Feature set 4)

Where xp is a measure of predicted value and xr is a measure of real value. N is sample size. As
shown in Figure 6.8, all the prediction errors on different feature sets are very similar. Thus it is not
wise to choose the feature set based on the prediction power on the six initial samples only. Thus a
generalization test is done by plotting a learning curve of the PLSR model. The learning curve is a
common technique when evaluating modeling techniques and comparing different models. It shows

Industrial Engineering and Management 54 Master Thesis



Data driven solution to predictive maintenance

whether the modeling performance will benefit from more training samples. (scikit-learn developers,
2019) The plot can be found in Figure 6.9. We can see from the plot that using feature set2 produces
the best prediction result with the initial sample set. However, by adding one sample into training set
at a time, the error continuously increases until the 9th sample(the last sample we have). However, by
using the rest of the feature set the error increases at first and then drop when the last sample coming
in. Due to the limited amount of sample size, we cannot know just now how will the performance
change further, but it is likely to converge when we get enough samples. Thus choosing the feature set
that produces the best prediction when all the samples are in should be the best choice at this stage.
Therefore, the final feature set will exclude bath temperature but include the rest of the features.

Figure 6.8: PLSR performance on different feature set

Figure 6.9: PLSR learning curve on different feature set
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6.4.2 Result interpretation

One of the advantage of using PLSR is that the results can be interpreted by plotting the ‘correlation
loading’ plots(Figure 6.10 to Figure 6.15). The plots show the correlation between each variable and
the selected components. Each point corresponds to a feature. The squared distance between the point
and the origin represents the fraction of the variance of the variable explained by the components in
the panel.(PLS package, 2019). The correlation value represented for each variable shows how much
this variable is contributing to the prediction result.

We can see from the plot that Maximum Tension and Minimum Tension contribute to most of the
prediction result when we use cycle1, cycle2, cycle3 and cycle4 as test set. The rest of the features
share similar correlations to the results. While predicting wear width of cycle 4, the sink roll diameter
and median value of Tension also have a big effect on prediction. When predicting wear on cycle 5
and cycle 6, each feature has similar amount of correlation to the prediction.

Figure 6.10: Correlation plot cycle1
as test

Figure 6.11: Correlation plot cycle2
as test

Figure 6.12: Correlation plot cycle3
as test

Figure 6.13: Correlation plot cycle4
as test
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Figure 6.14: Correlation plot cycle5
as test

Figure 6.15: Correlation plot cycle6
as test
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6.5 Neural Network

6.5.1 Inner layer and weights tuning

In order to maintain consistency in model comparison, models are trained on the features selected
from the last section.(Table 6.7). Neural Network has lots of parameters to tune, namely number of
layers, number of nodes on each layer, and initial weights on each neuron. Default training mechanism
in R is that the model will stop training when sum of squared error is less than 0.01. Initial training
weights are assigned at random. This causes problem as the prediction result may be different every
time we run the model. In order to produce consistent result, whenever a good prediction result is
produced, we will record the weight matrix and set it as initial weight then train the model using
different training samples and validate it on test sample. A neural network contains a input layer

Features Data Source

Total Length Data warehouse

Scrape Length Data warehouse

Total Surface Data Warehouse

Mean Tension IBA

Minimum Tension IBA

Maximum Tension IBA

Median Tension IBA

Skewness Tension IBA

Kurtosis Tension IBA

Standard Deviation Tension IBA

RMS Tension IBA

Remaining Bush Width Set up sheet

Days Set up sheet

Roll Diameter Setup sheet

Table 6.7: Features selected based on PLSR performance

on which the number of nodes is equal to the dimension of the data set. In our case the number of
input layer is 13. The output layer is set with one output node of 1. Decision has to be made for the
number of node on the hidden layer. It is suggested by (Jeff Heaton, n.d) that the optimal size of the
hidden layer is usually between the size of the input and size of the output layers. It is also suggested
that the situations in which performance improves by adding a second (or third, etc.) hidden layer
are very few. One hidden layer is sufficient for the large majority of problems. Thus, some neural
networks with 2 or 3 hidden layers and confirming that the prediction results did not vary much,
decision has been made to use only one hidden layer. The number of nodes is decided by using one
cycle as test set and adding up neurons from 1 to 13, and choosing the number when the prediction
result is fluctuating around the label of the test sample instead of other random values.

The structure of the ANN is tuned using Cycle 6 as test sample where the real label is 17 and the
prediction result is 16.999712. We do not change the number of layer and number of nodes on each
layer anymore for further experiments. The Neural network structure we use is 12 meaning disregard-
ing input layer, output layer and bias nodes(Blue nodes in Figure 6.16) there is 1 hidden layer with 12
nodes. After setting the NN structure, we use LOO cross validation again to select the initial weights
by using one cycle as test set and training the model on the rest of the samples. The reason why
we only use one sample as test set is that we want to maximize the the number of training samples.
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Figure 6.16: Neural Network Structure

Similar approach has also been used in literature. The model is evaluated based on RMSE value. A
graph with a comparison of RMSE value when using different cycle as test sample can be found in
Figure 6.18. We can see from the graph that ANN produce stable result on initial 6 samples no matter
which sample was used as the test sample. All RMSE value is within 1mm. The prediction result is
always close to the real value. However using cycle4 as test set does produce the best result.

In order to show more intuitively how close is the neural network prediction result to the real value,
we plot Figure 6.17 showing the prediction result of ANN using different cycle as test set. However,
although the prediction result is good on the initial data set, it still subject to change when more data
is coming in. Thus we recorded all the initial weights(6 weights sets) that was used in the experiments,
and test them one by one to predict new samples. In order to capture how the prediction changes
when new samples are added into training samples, we add one sample into training samples each
time and predict all the samples all over again. For example, when training sample size is 7 the cycle
1,2,3,4,5,6,7,8 are taken into account and each cycle is predicted as test sample with remaining samples
in the training sets. The average prediction error changing with the number of training samples can
be found in Figure 6.19. We can see that the learning curve shares similar trend as PLSR learning
curve. Error first goes up and then drops when adding 3 samples to the training set(8 samples in the
training sample). Overall when using initial weights1, the error is smaller than the others, thus we
will compare the modeling result of ANN using initial weights1.
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Figure 6.17: RMSE comparison using different test samples to find initial weights

Figure 6.18: Model performance and selection

Figure 6.19: ANN learning curve
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6.6 Random Forest

Based on(Gerard, n.d.),Random Forest should also be able to handle small sample size. Thus we also
have tried out the random forest algorithm. The default number of trees in R is 500. Different from
ANN, we don’t have to tune the parameter in Random Forest as it is a random process. Samples
chosen for each tree are different and the features chosen at each split are chosen randomly. Thus we
expect the model to produce different result even with the same samples. This is considered one of
the disadvantages of using Random Forest. The prediction on initial 6 samples using Random Forest
can be found in Table 6.8. The model is not able to predict special cases(Cycle 4 and Cycle 2) and
the RMSE is 7.16 mm which is rather large for wear monitoring as the total diameter of the bush is
only 30mm. We also plot the learning curve to see whether the prediction gets more accurate when
more samples are taken into consideration. We can see that the error slightly dropped.

Cycles Prediction Real label

Cycle1 13.97 12

Cycle2 12.14 19

Cycle3 14.77 12

Cycle4 16.24 1

Cycle5 14.60 15

Cycle6 12.95 17

Table 6.8: Random Forest result validation using LOO

Figure 6.20: Learning curve random forest
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6.7 Comparison and evaluation

The three models: PLS regression, artificial neural network and random forest are evaluated based on
RMSE measure and R squared value. R squared value is also called coefficient of determination, which
indicates the proportion of variation in the dependent variable that is predictable by the independent
variables. It is calculated with the following formula:

R2 = 1−
∑

i (xp − xr)2∑
i (xr − x̄r)2

(6.6)

where xp means predicted value and xr means real value. A higher R squared value indicated that
more variability is explained by the regression model and generally it is better.(Wu 2017). As the
modeling performance changes when the number of training samples changes, it’s hard to conclude
only by comparing one single prediction result. Thus we put all the RMSE and R2 value into ta-
bles with different number of training samples to have an impression of how they change and then
average them to have a overall measure. The results are shown in Table 6.9 and Table 6.10. We
can see from the table that PLSR produce comparatively stable result and get less effect from the
number of samples in the training set. However, ANN shows extreme fluctuation in terms of the pre-
diction power. Specifically, ANN predict very well when 5 samples in the training set but when new
samples coming in it gets worse drastically which means that the model is not general enough. RF
performance is stable with comparatively large error independent from the number of training samples.

When it comes to R2 value, we can see that both performances of PLSR and ANN fluctuates when
the number of training samples increases. Overall variances that can be represented by the model
drops when more samples coming in especially ANN. However, we can not know so far whether the
performance will continue dropping or it will rise again. However in theory the performance should
converge when the training samples have represented enough variance. It is worth mentioning that
the RF model can not capture any variance of the samples. This can be also intuitively seen from
Table 6.13, all the prediction result is around 13.

Figure 6.21 and Figure 6.22 visualizes the change in both RMSE and R squeared value. We can

Training samples PLSR ANN RF

5 2.23 0.39 7.16

6 3.53 4.39 5.65

7 5.74 6.58 6.43

8 4.14 5.26 6.09

Average 3.91 4.15 6.33

Table 6.9: Modeling RMSE comparison

conclude from the graphs that based on the current available samples, the PLSR out performs the
other two models by having the overall lowest prediction error and overall better capability of capturing
sample variance.

In order to give a intuitive view on the real prediction result, a record of result that included 8 samples
in training set is presented in Table 6.11 to Table 6.13. The corresponding visualization of the tables
is Figure 6.23. We can see from the result that ANN predict reasonably well on cycle 1 to 7. The error
increase drastically when predicting cycle 8 and 9. PLSR prediction is very stable when predicting
cycle 1 to 9 but also produce bad result when it comes to cycle 8. Thus cycle 8 is very likely to be a
special case that is hard to be captured when it is not in the training sample.
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Training samples PLSR ANN RF

5 0.85 1.00 -0.53

6 0.61 0.40 0.01

7 0.18 -0.07 -0.02

8 0.53 0.25 -0.01

Average 0.55 0.39 -0.14

Table 6.10: R2 comparison of models

Figure 6.21: Modeling comparison RMSE Figure 6.22: Modeling comparison R2

Cycles Prediction Real label

Cycle1 15.39 12

Cycle2 19.59 19

Cycle3 12.49 12

Cycle4 -0.42 1

Cycle5 14.20 15

Cycle6 17.00 17

Cycle7 16.28 18

Cycle8 11.60 24

Cycle9 20.82 12

Table 6.11: ANN prediction result
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Cycles Prediction Real label

Cycle1 16.23 12

Cycle2 20.40 19

Cycle3 11.12 12

Cycle4 -1.44 1

Cycle5 17.92 15

Cycle6 14.55 17

Cycle7 13.66 18

Cycle8 15.12 24

Cycle9 15.95 12

Table 6.12: PLSR prediction result

Cycles Prediction Real label

Cycle1 13.88 12

Cycle2 12.95 19

Cycle3 13.88 12

Cycle4 12.96 1

Cycle5 13.88 15

Cycle6 12.95 17

Cycle7 13.63 18

Cycle8 13.62 24

Cycle9 13.64 12

Table 6.13: RF prediction result

Figure 6.23: Prediction of 9 samples
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6.8 Discussion

6.8.1 Sensitivity to data processing

The whole modeling process has been done 3 times due to data availability changing over time. It
has been discovered that the way data is processed strongly effects the feature selection part of the
modeling. Specifically, issue rises when the definition of a maintenance cycle is not consistent. For
example when a cycle start at 15-05-2019 and ends at 06-06-2019, the next cycle can be defined
starts at either 06-06-2019 or 07-06-2019. This should be defined consistently through every cycle.
Depending on the definition, the prediction result is changing. Furthermore, the number of days in a
cycle should be calculated in a consistent manner. The orginal date from the set up sheet was recorded
manually thus the number of days was calculated differently. That is, sometimes, the number of days
is EndDate - StartDate and sometimes it is EndDate - StartDate +1. The two different calculation
effect the data quality from the set up sheet thus directly effect the feature selection result. Here in
this paper, the starting and ending date of the cycle has been defined non repetitive. When a cycle
ends at certain date, the next cycle has been defined to start on the next day. The number of days of a
cycle has been calculated consistently by EndDate - StartDate +1. Whenever this definition changes,
the whole modeling process should start all over again.

6.8.2 Overfitting

The ANN model suspect to have overfitting problems because of near perfect prediction on initial
samples and the drastic dropping in prediction power when new samples are taken into account. This
problem may be solved by continuously adding new samples and then retraining the model, when
the model has learned enough variance from samples the result should be reasonable and stable. The
ANN structure should also be modified when more samples coming in.

6.8.3 Model Evaluation

All three techniques chosen have their own advantages and disadvantages. Specifically to this case and
current available data, PLSR is the most suitable model to implement for now. The stable prediction
result produced by PLSR model in turn verified the Archard’s Law that the predictor variables and
the target variable are form linear relation based on the current available data samples.

The strength of PLSR model is the explanatory power and its ability to allow model builders see the
contribution of each variables to the prediction result. This is significant when it comes to decision
support. PLSR also produces consistent and stable results which is easier to implement and maintain
when new data coming in. As the data size grow bigger, the modeling performance is subjective to
change but it will likely to converge at some point.

Artificial neural network has the potential to produce prediction result with very high accuracy like
with initial 6 samples but the prediction performance is unstable with current available samples.
Meanwhile, with small sample size the ANN has to be tuned many times in order to fit the current
sample. This need manual tuning and huge amount of iterations for updating the weights on each
neuron. However this problem should gradually disappears when more data is coming in as the weight
won’t differ drastically every time when updating them. Another disadvantage of ANN is that it is a
”black box” model thus it is hard to interpret the results as it is not able to provide insight on which
variables effect the wearing condition the most.
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Random forest model is so far not able to either fit or predict with current samples and more over the
result is not interpretable. The model combined too many random process thus should requires huge
data sets before it can produce decent results. However Random Forest is the least computational
expensive among all three modeling techniques as it doesn’t need parameters tuning or component
selection. This is a technique that worth trying when the sample size grows bigger and it can potentially
be the most user friendly model for online monitoring.

6.8.4 Challenges and Model maintenance

Small sample size brings challenge and critics from the very beginning of data exploration when we
did correlation test between variables and bush wear. Because the sample size is too small, we can’t
really draw any conclusion on if tension and wear are truly correlated although it seems to have strong
correlation based on the samples we have. The same with linear regression model. We can not be sure
that the variables and bush wear follow linear relation based on only six samples. The linearity might
be gone when more data become available. However, the good prediction results from PLSR model
is to some extent validating the correlation and linear relationships between tension, run length and
wear measures because the underlying theory behind PLSR is linear regression.

The modeling process from feature selection to model selection should be repeated in a set time
interval. At the beginning when model performance is not stable the process should be repeated more
frequently, say once per month. When the modeling performance converge, the maintenance interval
can be longer, say every 3 months or half year depend on the specific situation. In the worst case
scenario where the modeling performance dropping, more investigation into other techniques should
be done in order to maintain the prediction accuracy.
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6.9 Implementation

To implement predictive modeling into operation, a web page has been developed for monitoring
purpose. By implementing the web page engineers will have insight on the current wear and predicted
wearing pattern of the bush. The web page contains two main part, the first part is the input, including
date, sink roll diameter and bush diameter(Figure 6.24). As each maintenance cycle sink roll diameter
and bush diameter are subject to change, it is not possible to have them automated in the modeling
process. Date is the essential input. When users select a date, the algorithm will automatically
search for the start day of the maintenance cycle that contains the user selected date and predict
the remaining bush width of each day within that cycle. The prediction result of the selected date
is presented at the bottom of the graph, both the wear width and the remaining width(bush width
- predicted wear width). Combining the information of predicted wearing pattern and the predicted
wear(Figure 6.25), decision maker should be able to decide whether to replace the part or not and
when should the maintenance activity be planned.

Figure 6.24: Web monitoring page input

Figure 6.25: Web monitoring page output
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6.10 Conclusion

To end this chapter, research question 4 is answered.

4a. What features can be extracted from the data set?
The features related to sliding distance, tension and time are extracted as independent variables. The
sliding distance and tension related variables are extracted because of the Archard’s law that repeti-
tively appears in literature as a formula to describe the metal-metal contact wearing behaviour. In that
formula, force and sliding distance are critical to wear volume. Modeling performance is compared by
adding variables related to time, temperature and connected component characteristics, specifically
the sink roll diameter. The final feature set is decided when PLSR model performs the best because
modeling result is able to be explained by PLSR correlation plot so that insights on the importance
of each variable can be obtained. In the end we use 14 variables in Table 6.7 as feature set to try
on other models. The selected feature set containing sliding distance, tension, time and component
characteristic. Temperature related features have been excluded.

4b. What models are suitable to use based on the current available data?
PLSR, ANN and RF are tried out for modeling because PLSR is suitable for data samples where the
number of independent variables are larger than the number of dependent variables and when the
variables are co-linear. ANN and RF theoretically can handle sample size of 10. As the characteristic
of current data samples are: extremely small sample size and strong correlation between independent
and dependent variables. PLSR is theoretically best suited for this case. ANN and RF should also
work in near future as according to literature, they are suitable when sample size is at least 10.

4c. How can the model be trained and how can the modeling performance be evaluated?
We train and test the model using ’Leave One Out’ cross validation and evaluate the model using
RMSE and R squared measures. The reason why we use ”LOO” is to maximize the number of train-
ing samples. RMSE represents the measure of prediction power and R squared value represents the
measure of modeling variance. Learning curves are plotted to show how the prediction changes when
more samples are taken into consideration. As a result, PLSR outperforms the other models with
an average prediction error of 3.19mm and R squared value of 0.55. PLSR also has its advantage of
explanatory power so is suitable to be used for decision support. ANN fits the initial samples very
well but produce large errors when predicting new samples with an average error of 4.15. Random
Forest produces large error of 6.33mm, because it is not able to recognize special samples thus is not
suitable to predict with current available data.

4d. How can the predictive model(s) be implemented to the production operation?
As model comparison result, PLSR is so far the most suitable model in this case. Thus a monitoring
web page is developed based on PLSR model. The web page is user-interactive where the user chooses a
date and the corresponding sink roll diameter of that date. The web page will automatically predicted
the bush wear of every day in the corresponding cycle and plot a graph with predicted wear on each
day. The goal is to give decision maker the insights of the predicted wearing pattern such that he/she
can decide when to replace the component.

Industrial Engineering and Management 68 Master Thesis



CHAPTER

SEVEN

CONCLUSION AND RECOMMENDATION (TO PRACTICE)

This chapter focuses on the contribution to practice, namely the deployment plan of the project results,
the following up projects and business development in the TATA STEEL Shotton. Research question
5 is answered in this chapter.

7.1 Feasibility

5a. Is it feasible to predict the bush condition?
By this end, the average error of the best model so far is 3.91mm. The bush that is used most of the
time is 30mm. Thus the error rate is approximately 13% and therefore we can say it is feasible to
predict the bush condition.

It is feasible to predict the bush condition using existing data that is around the component, namely
the sliding distance, force, mechanical property(diameter) and environmental property(temperature)
related data. Most importantly the wearing data were measured as the target variable. The availability
of these data variables leads to the success of the prediction. Partial least squared regression(PLSR)
predict the bush with a good accuracy and produces stable results. Thus PLSR is the recommended
for the current available data. The value of the project mainly lies in the ability to monitor current
wear and thus provide insight on the wearing behaviour of the bush for decision support.

7.2 Improvement

5b. How to improve model performance and current situation regarding data logging and maintenance
process based on findings?
In terms of data logging, some quality issues occur in critical variables that should be improved. Data
logged in IBA appears to have batch missing values continuously within a time span. ‘Tension’ is one
of the critical variables and the data logging flaws effect the data quality of ‘Tension’ and thus very
likely to influence prediction accuracy.

The procedure of a data driven predictive maintenance project can be simplified. The data in use
varies from what literature suggests, as most of the literature use vibration data only to predict
wearing behaviour. Unfortunately, vibration of the bush in this specific context was not able to be
logged. Based on literature findings, vibration is the direct indicator of machine status and thus can
be deployed on other problems in the production line. Some literature reports on the use of deep
learning techniques and by feeding only the raw vibration data, it can successfully predict the wearing
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width as well as the wearing location. Deep learning can simplify the modeling process to large extent
because feature selection and extraction steps are no longer needed. The only step required before
model building is to extract and clean the vibration data.

The robustness of the predictive model should be tested and improved by feeding in more training
samples as the current model is trained to fit the existing samples and not generalized enough for
different cases. Learning curve should be continuously plotted to see the change of the prediction
accuracy changes while increasing the learning sample size. The convergence of the curve indicates
that the prediction accuracy is fluctuating at the same level. If the the prediction ends up with bigger
errors then new models should be investigated and selected. If the curve converges to a small error
then the current model can be kept using.

The current prediction result is already adequate for the decision support with the developed tool
because the current prediction reached a good accuracy. The value of the tool is the capability of
monitoring the bush wear. This helps for ’lean operation’ so that every time the pot gear can be
replaced just in time when no other interruptions occur by online monitoring the wearing condition.
The modeling process should be able to be repeated on similar sections of the line as long as the
variable used in this project are logged. The wearing(target variable) width should be measured
otherwise building predictive maintenance model will not be feasible in the first place. Predictive
maintenance project can also be developed on other sections of the line however, the variables required
should differ, depend on the goal of the project.

7.3 Limitation to practice

The biggest limitation of this project is the sample size. By the end of this project the sample size has
been increased from the initial 6 samples to 9 samples. According to the plotted learning curve, the
prediction error first rises and then drops in the end based on 9 samples. We can not know whether
the error will continue dropping or it may increase again when more samples are taken into account.
Thus it is necessary for the model to be retrained with new data. The correlation and linear relation
among the variables and wear measure are also subject to change. Although in theory, they should
follow linear relation and so far PLSR model performance can also in turn validate the linear relation.

In addition, the current tool is a monitoring tool which means it predict the current status but not
the future. In other words, we are not predicting the bush wear of next week when we are still in this
week. In stead, we are predicting the bush status at the user inserted date which is the current date.

7.4 Implementation

(Bousdekis, 2019) discussed the software structure and platform in steel industry. The author believes
that the key issue of any design and system development in the context of Industry 4.0 is the proper
implementation of Reference Architectural Model Industrie(RAMI)4.0. The predictive maintenance
architecture in the frame of RAMI 4.0 is divided into 6 layers, namely assets, integration, commu-
nication, information, functional and business. Tata steel is currently having the first three layers
meaning the machines are sensor monitored, data are logged and stored in servers. The other three
layers requires data processing, data analytic, data monitoring(visualization) and allowing user inter-
action. Thus here we propose a hardware flow diagram for the information, functional and business
layer based on current infrastructure in TATA. (Figure 7.1). AI and other data analytic tool can be
used for data processing, modeling and visualisation whereas IBA is used for data logging, SQL for
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data storage. Thus the developed web page should be connected to SQL and directly read modeling
with data from SQL. Raw Data should be feed from IBA and data warehouse into SQL and the data
should be cleaned and processed into desired format in SQL to be ready to use for the web page. To
make decision process more automated,in Industry 4.0 concept, information extracted from the data
should be fed back to assets and have the decision making system decide on the maintenance time.

Figure 7.1: Flow diagram

7.5 Follow up project development

-Predict the future bush wear
As mentioned before one of the limitation is that the model is only predicting the current status but
not the future. Thus a following up project can be investigation in whether predicting the future is
feasible. To do this, a time window should be selected as predictor time span, where the data is used
to build predictors and predict the label at the end of a maintenance cycle. For example, we use data
of two weeks to predict the remaining bush width. It should be noted that the number of days the
bush in the pot will also be an changing variable. Experiments should be done to select the most
suitable time window.

-Make use of unsupervised learning and correlation tests to detect the abnormal event happens in line
Unsupervised learning technique can be used to build monitoring interface at each section of the line.
By clustering, abnormal events that happens in this section can be detected and then depend on
source of the error, it gives insights on what is possibly causing the defect/line delay etc. According to
literature(described in Chapter 4), the correlation among sensors signals will change before an abnor-
mal event actually happens and that is because the distribution of the sensors signal is changing once
the faulty behaviour is about to happen. Thus it is feasible in theory to detect the faulty behaviour
before it actually happens. Once this is tested on one section of the line, subsystems can be build at
each sections of the line and a centralized monitoring system can be build eventually to monitor the
whole production line.

-Expand the model to other sites/lines
Providing that critical parameters have been discovered for wearing condition prediction. For the pur-
pose of predicting the wear of the component, under the similar context, component based variables
can be extracted for modeling. Thus project can be expanded to other lines for the same component or
different component but the component wear is essentially due to metal contact. It is worth mentioned
that the whole modeling process should be conducted as a whole from feature selection to technique
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selection as things may deffer based on the data.

-Follow similar methodology build models for other problem areas
For different problems of predictive maintenance for instance, the goal is to predict failure or Remaining
Use of Life(RUL) instead of wearing condition, or it is not based on mechanical contact etc. The same
methodology can be used to discover critical variables and select suitable models based on theory and
the validation in practice.
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CHAPTER

EIGHT

CONCLUSION AND RECOMMENDATION (TO THEORY)

In this chapter, contribution to the theory is discussed. We will focus on real industrial context in
transition period that differs from theoretical settings, the challenge faced and a guideline of how to
deal with the challenges. The main research question is answered:
How can data driven methods be applied to predictive maintenance in industries that are in transition
to industry 4.0?

8.1 Characteristics of industry in transition period

As a industry in transition to industry 4.0, maintenance decisions are based on experience. Wireless
Internet connection starting to be implemented in factories and not yet expanded to all offices and
moreover installing new software such as R on PCs is a very expensive process and takes long time.
Technologies are being investigated and vision maps are created but are far from being integrated
into operations. Sensors and cameras are being installed gradually. Different data logging servers
are working separately to log and store data. Thus in general, the industry is learning and gradually
changing towards automation and smart manufacturing.

8.2 Theory VS Practice

In most of the literature, data used for predictive maintenance studies are public available data. These
data set are well structured, balanced and cleaned with complete failure samples that covers different
failure situations. Some of the data sets are obtained by running machines to failure in different set-
tings and the data set often only contains maximum hundreds of samples. However, in real industry
settings, machines and components are not allowed to be failed due to high down time cost. Visual-
ization of the raw data are often used to get a first glance impression of the data pattern in theory.
But in industries, sensors produces large volumes of data that are impossible to be visualized directly
because the visualization is too computationally expensive and that the raw data is too messy to be
analyzed.

In our case the data are also very unbalanced while some data sources contain large volumes of sensor
data and others are manually logged. Manually logged data are rounded as human can’t measure a
variable very accurately. Also as the sample size of our target variable is too small, most of the ma-
chine learning techniques are theoretically inapplicable. Theoretically, vibration is the direct indicator
of component failure and thus most of the predictive maintenance study use vibration signals only
and extract different features from the vibration signals for modeling. In industry settings, vibration
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data are not always available and not even can be measured online. In our case for instance, nothing
on the component can be measured as the component is in a zinc pot.

However, high dimensional variables from the system that is around the component is available. That
is why discovering physical behaviour of the component is essential. There is limited amount of predic-
tive maintenance studies are based on a mixed methodology of mathematics modeling and data driven
method. But in this study because failure indicator is missing, all the predictive parameters selected
are based on theoretical physical metal-metal contact wearing behaviour. Two data characteristics,
namely small sample size and high dimensional variables leads to the decision of investigating in PLSR
model which is barely used in maintenance context in theory but it does produce good and stable
prediction result. The reason why the PLSR model is suitable to be used here is that the core model
behind PLSR is linear regression and the variables we selected also have a linear relation with the
target variable. Thus we can conclude that data driven predictive modeling methods should really be
selected based on existing data characteristics and relations.

Moreover, unlike theoretical studies, implementing predictive analytics into practice always requires
model maintenance. Feature selection and technique selection process have to be repeated together
with model training to be a dynamic process to maintain predictive performance. Human logged
data source has to be consistent with calculation and rules. Small inconsistency will lead to different
modeling result.

8.3 Challenges

Figure 8.1: challenges

The challenges and the cause of those challenges are presented in Figure 8.1. No down time allowed in
production directly leads to the first challenge: target variables missing. As solution, failure indicator
can be investigated and measured as a target variable. In terms of wearing prediction of critical com-
ponents, wearing measures were measured online. As the target variable is measured online, the time
span of usable data is already reduced because historical data without corresponding target variable
can’t be used for predictive analytics. In addition, since the data sources are separated as well as the
sensor logging difference, the data logging time interval from each data source is very different. Then
it leads to the second challenge: Highly unbalanced data. In our specific case we have data source
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that loggs billions of data per day and data source that log one observation per month. In transition
period, industries don’t have a big picture of the availability and quality of the data and employees
tend to lack knowledge of the functions of newly implemented data logging devices, which leads to
the third challenge: Data size and quality issues. Without a integrated data source, data has to be
extracted from different sources separately and thus some additional softwares need to be installed for
data extraction purpose. After that the IT department has to learn a new software before the data
can be actually extracted. Moreover, data format from different data source differs. These leads to
slow data extraction and cleaning process.

Over all, when applying data-driven method in industries that in transition period, data availability,
data quality and data cleaning are the main part in which challenges may occur. Finding meaningful
predictive variables is critical to the success of predictive analytics. Oversized sensor data makes
cleaning process occupy most of the time of the whole project. Data cleaning process has to be
carefully done in terms of data format and should look back to the raw data to make sure it is
flawless. Because numerical raw data sometimes is not recognized by cleaning tools as ”numerical”
they can be read as ”factors” or ”character”. When it is recognized as ”factors” it can’t be converted
to numerical directly.

8.4 Limitation to theory and future research

The context of ‘industry in transition period to industry 4.0’ is merely based on case study of TATA
Shotton which is hard to be generalized as different industries are in different stages. A broad survey
of industry in transition is required before we can have a thorough view on the characteristic of the
industries in transition. Furthermore, the research only looks at predictive maintenance in a technical
perspective. There are more aspects to consider. In (Briefing, 2015) from EU Parliament, the following
challenges are presented:
-Investment and change
-Data ownership and security
-Legal issues
-Standards
-Employment and skills development
It has been addressed by domain experts that the biggest challenge is to find the people with the
right skills. These challenges must all be overcome before industry 4.0 is accomplished. Thus research
should be conducted in different perspectives in terms of data-driven predictive maintenance to provide
a clearer view of the current general status and how far before we can complete the transition.
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APPENDIX

A

DATA DICTIONARY

Lists of variables that can be collected from the data sources are shown in this section. The variables
are collected from data warehouse, IBA and Setup sheet. Data warehouse variable can be found in
Table A.1. Variables from IBA can be found in Table A.2. Variables from set up sheet can be found
in Table A.3.
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Table A.1: Variables from Data Warehouse

Data(Data Warehouse) Type Explanation

DATE Date Date

TIME Time Time

BATCH KEY Numerical Coil

MATERIAL Numerical Material ID

WTH Numerical Coil Width

PROCESS TIME ACTUAL Numerical Actual Prcessing time

PROCESS TIME STANDARD Numerical Standard Processing time

SOW Numerical Speed of work ratio speed actual/std speed

STD SPEED Numerical Standar speed

FIN COIL WGT CUST MAX Numerical Weight range the weight

SUBSTRATE COIL WGT Numerical Incoming weight

FIN COIL WGT CALC Numerical Finished weight esitmated

EXIT SCRAP WGT Numerical Estimated scrap weight

DEGRADE WEIGHT Numerical None prime material

FIN COIL WGT DELIVERED Numerical Actual weight zero means it hasn’t been delivered

DECISION Categorical Category the material.

IL USAGE Numerical Category the material goes into corresponds to ”Decision”

FIN COIL LENGTH Numerical Finished coil length

FIN COIL LENGTH PRIME Numerical Finished coil prime length

EXIT SCRAP LENGTH Numerical The amount of the coil that has been cut

FIN COIL CROSS SECTION Numerical Width of the coil multiply thickness

FIN COIL SURFACE AREA Numerical Finished coil surface area

FIN COIL WIDTH ACTUAL Numerical Finished coil actual width

FIN COIL GAUGE ACTUAL Numerical Finish coil thickness

SUBSTRATE GRADE RECEIVED Numerical Actual material arrived

SUBSTRATE WIDTH ORDERED Numerical Width of the coil that ordered

SUBSTRATE WIDTH RECEIVED Numerical Width of the coil received

SUBSTRATE GAUGE ORDERED Numerical Thickness of the coil ordered

SUBSTRATE GAUGE RECEIVED Numerical Thickness of the coil received

FIN GAUGE ORDERED Numerical Thickness of the coil customer asked for

FIN WIDTH ORDERED Numerical Width of the coil customer asked for

FIN WIDTH TOL ORDERED Numerical The amount of deviation that is allowed

FIN COATING WGT ORDERED Numerical The amount of zinc coated asked by the customer

FIN SURFACE ORDERED Numerical MC smoothest, MA the least smooth

GGE-ORD Numerical Ordered gage(intended to make)

GGE-IN Numerical In coming coil gage

CW Numerical Coating weight(grams)

GRD Numerical Grade(property of coil, strength of the coil)

GRD-IN Numerical Grade in

SF Catergorial Surface finish

C Catergorial Crown:the curve of the coil,L:low curve N:normal
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Data(Data Warehouse) Type Explanation

SP Numerical Line speed

AS Numerical Historical average speed

SS Numerical Standard line speed

SV categorical Line speed varies

LS categorical Line stop

ST-Z3X Numerical Strip temperature 23 Exit

ST-RTX Numerical Strip temperature RT Exit

ST-JCX Numerical Strip temperature Jet cool Exit

ST-SCX Numerical Strip temperature slow cool Exit

ST-TM Numerical Strip temperature temper mill

SBT-DIF Numerical Strip and bath temperature difference

BT-GV Numerical Bath temperature Galv

BT-GF Numerical Bath temperature GalvFan

BMH Numerical Bath metal Height

DPS Numerical Dew Point Snout

DRT Numerical Deflection Roll Temperature

GST categorical Cwgt Online Gauge Status

CWG Numerical Cwgt Online Gauge the sum of median top and median bottom

WSW Numerical Cwgt WsW result

CTA categorical Cwgt Alarm

X-MM Numerical Extension Matt Mill

X-TL Numerical Extention Tension Leveller

TN-B21 Numerical Tension Bridle 2/1

TN-B22 Numerical Tension Bridle 2/2

TN-B4 Numerical Tension Bridle 4

TN-EX Numerical Tension Exit

GT-Z3 Numerical Gas Temperature Zone 3

GT-Z4 Numerical Gas Temperature Zone 4

GT-Z5 Numerical Gas Temperature Zone 5

ZT-3A Numerical Zone Temperature 3A

ZT-6 Numerical Zone Temperature 06

ZT-7 Numerical Zone Temperature 07

ZT-8 Numerical Zone Temperature 08

Industrial Engineering and Management 82 Master Thesis



Data driven solution to predictive maintenance

Table A.2: Variables from IBA

Data (IBA) Data Type Explanation

Date Date Date

Time Time Date

input.lineSpeedRaw Numerical Line Speed

input.lineSpeedRef Numerical Reference line speed

input.knifeHorzPos[TOP] Numerical Knife horizontal top position

input.knifeHorzPos[BOT] Numerical Knife horizontal position bottom

input.knifeSkewPos[LEFT] Numerical Knife Skew left position

input.knifeSkewPos[RIGHT] Numerical Knife Skew right position

input.knifeHeight Numerical Knife height

input.StripTensionRef Numerical Strip tension reference

input.stripTension Numerical Strip tension

:mean.knifeHeight Numerical Average Knife height

input2.bafflesClosed[LEFT} Binary If left baffles are closed

input2.bafflesClosed[RIGHT} Binary If right baffles are closed

input.knifeClean[TOP] Binary If top knife is cleaned

input.knifeClean[BOT] Binary If bottom knife is cleaned

input.knifeHeightNomAvg Numerical Knife height normalized average

input.corrRollPos[LEFT] Numerical Correcting roll position (left)

input.corrRollPos[RIGHT] Numerical Correcting roll position (right)

input.potTemp Numerical Pot temperature

input.stripTemp Numerical Strip temperature

input.potAlContent Numerical Pot aluminum content

input.controlPress[TOP] Numerical Control press from top

input.controlPress[BOT] Numerical Control press from bottom
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Data (IBA) Data Type Explanation

input.corrRollIn[LEFT] Binary Not clear about the meaning

input.corrRollIn[RIGHT] Binary Not clear about the meaning

input.corrRollOut[LEFT] Binary Not clear about the meaning

input.corrRollOut[RIGHT] Binary Not clear about the meaning

input.rigDismantled Binary Not clear about the meaning

input.acEnabledAngle Binary Not clear about the meaning

input.acEnabledCorrRoll Binary Not clear about the meaning

input.acEnabledHeight Binary Not clear

input.acEnabledKnifePos Binary Not Clear

input.acEnabledPress Binary Not clear

input.coatMass[TOP] Numerical Amount of coating on top

input.coatMass[BOT] Numerical Amount of coating bottom

input.gaugePos[TOP] Numerical Gauge position top

input.gaugePos[BOT] Numerical Gauge position bottom

input.headerPressRaw[TOP] Numerical Header press from top

input.headerPressRaw[BOT] Numerical Header press from bottom

input.headerPress[TOP] Numerical Potentially repeating variables

input.headerPress[BOT] Numerical Potentially repeating variables

input.knifeAngle[TOP] Binary If knife top has an angle

input.knifeAngle[BOT] Binary If knife bottom has an angle

input.pressUp[TOP] Binary Press up from top

input.pressUp[BOT] Binary Press up from bottom

input.pressDown[TOP] Binary Press down from top

input.pressDown[BOT] Binary Press down from bottom

ZT-9 Numerical Zone Temperature 09

ZT-10 Numerical Zone Temperature 10

ZT-11 Numerical Zone Temperature 11

ZT-12 Numerical Zone Temperature 12

ZT-13 Numerical Zone Temperature 13

ZT-14 Numerical Zone Temperature 14

FP Numerical Furnace Pressure

TMR Numerical Temper Mill Load Reference

TMT Numerical Temper Mill Total

TMD Numerical Temper Mill Load Difference

TMB Numerical Temper Mill Load Bending

BTH-AL Numerical Bath Aluminium

RK Numerical Rockwell

WSW-TO Numerical Difference WSW Top up

WSW-BO Numerical Difference WSW Bottom up

WSW-TC Numerical Difference WSW Top center

WSW-BC Numerical Difference WSW Bottom center

WSW-TD Numerical Difference WSW Top down

WSW-BD Numerical Difference WSW Bottom up
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Table A.3: Variables from Setup sheet

Data (Setup sheet) Data Type Explanation

Date Date Date

Time Time Time

Sink ID categorical Sink roll ID (A,C,G,F)

Stab ID categorical Stabilizing roll ID(A,D,G,H,E)

Leg ID categorical Leg ID(R252, R352, R152, S 1R3)

Sink Diameter Numerical Sink roll diameter

Sink End Float Numerical Sink roll end float

Stab Roll ID Categorical Stabilizing roll ID(A,D,G,H)

Stab Roll Diameter Numerical Stabilizing roll diameter

Stab End Float Numerical Stabilizing roll end float

Sleeves Coated Binary If Sleeves are coated (0,1)

Bushes New Binary If bushes are new (0,1)

Back stop Numerical Back stop distance

Sink Run out Numerical Wearing on sink roll

Stab Run out Numerical Wearing on Stabilizing roll

Bush Remaining left Numerical Left bush remaining

Bush Remaining right Numerical Right bush remaining
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B

DATA EXPLORATION PLOT

Data exploration related plots are shown in this section. Each variable that are considered represen-
tative by PCA analysis is further analyzed by extracting 8 statistical features from them and do PCA
again.

Figure B.1: Mean A2 plot Figure B.2: Minimum A2 plot
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Figure B.3: Max A2 plot Figure B.4: Kurtosis A2 plot

Figure B.5: Skewness A2 plot Figure B.6: Std A2 plot
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Figure B.7: Median A2 plot Figure B.8: RMS A2 plot

Figure B.9: Hcluster A2 plot Figure B.10: K means A2 plot
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Figure B.11: Principle component A2 plot Figure B.12: PCA A2 plot

Figure B.13: Mean A3 plot Figure B.14: Minimum A3 plot
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Figure B.15: Max A3 plot Figure B.16: Kurtosis A3 plot

Figure B.17: Skewness A3 plot Figure B.18: Std A3 plot

Industrial Engineering and Management 90 Master Thesis



Data driven solution to predictive maintenance

Figure B.19: Median A3 plot Figure B.20: RMS A3 plot

Figure B.21: Hcluster A3 plot Figure B.22: K means A3 plot
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Figure B.23: Principle component A3 plot Figure B.24: PCA A3 plot

Figure B.25: Mean A4 plot Figure B.26: Minimum A4 plot
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Figure B.27: Max A4 plot Figure B.28: Kurtosis A4 plot

Figure B.29: Skewness A4 plot Figure B.30: Standard deviation A4 plot
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Figure B.31: Median A4 plot Figure B.32: RMS A4 plot

Figure B.33: Hcluster A4 plot Figure B.34: K means A4 plot
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Figure B.35: Principle component A4 plot Figure B.36: PCA A4 plot

Figure B.37: Mean A5 plot Figure B.38: Minimum A5 plot
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Figure B.39: Max A5 plot Figure B.40: Kurtosis A5 plot

Figure B.41: Skewness A5 plot Figure B.42: Std A5 plot
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Figure B.43: Median A5 plot Figure B.44: RMS A5 plot

Figure B.45: Hcluster A5 plot Figure B.46: K means A5 plot
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Figure B.47: Principle component A5 plot Figure B.48: PCA A5 plot

Figure B.49: Mean B3 plot Figure B.50: Minimum B3 plot
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Figure B.51: Max B3 plot Figure B.52: Kurtosis B3 plot

Figure B.53: Skewness B3 plot Figure B.54: Std B3 plot
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Figure B.55: Median B3 plot Figure B.56: RMS B3 plot

Figure B.57: Hcluster B3 plot Figure B.58: K means B3 plot
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Figure B.59: Principle component B3 plot Figure B.60: PCA B3 plot

Figure B.61: Mean B4 plot Figure B.62: Minimum B4 plot

Figure B.63: Max B4 plot Figure B.64: Kurtosis B4 plot
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Figure B.65: Skewness B4 plot Figure B.66: Std B4 plot

Figure B.67: Median B4 plot Figure B.68: RMS B4 plot

Figure B.69: Hcluster B4 plot Figure B.70: K means B4 plot
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Figure B.71: Principle component B4 plot Figure B.72: PCA B4 plot

Figure B.73: Mean B5 plot Figure B.74: Minimum B5 plot

Figure B.75: Max B5 plot Figure B.76: Kurtosis B5 plot
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Figure B.77: Skewness B5 plot Figure B.78: Standard deviation B5 plot

Figure B.79: Median B5 plot Figure B.80: RMS B5 plot

Figure B.81: Hcluster B5 plot Figure B.82: K means B5 plot
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Figure B.83: Principle component B5 plot Figure B.84: PCA B5 plot
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APPENDIX

C

CODE

C.1 IBA Cleaning Code

library(reader)

setwd("~/Google Drive/Thesis/Data Collection/Data Collection/iba")

#count.fields("iba.txt", sep = "\t")#count the amount of observations in iba.txt

file.split("iba.txt", size = 317455, same.dir = TRUE, suf = "part", win = TRUE)

#split the whole files into seperate files

iba_1<-data.frame((read.delim("iba_partaa.txt", header = FALSE,sep = "\t")))

#read the first split

iba_1.1 = tail(iba_1, -1) #delete the first row of iba_1

names(iba_1.1) <- lapply(iba_1.1[1, ], as.character)

#set the name of the columes as the first row

iba_1.1<- iba_1.1[-1, ]

#delete the first row

iba_1_sub<-iba_1.1[,c(1,66,67,98,99,100,101,

162,164,165,652,2,3,30,31,66,67,82,83,84,85,

128,129,136,146,147,148,149,150,151,152,153,

154,155,156,157,158,162,163,164,165,168,169,

172,173,175,182,183,184,185,186,187,188,189,

194,195,196,197,198,199,200,201,202,203,204,

205,206,207,2,3,227,228,238,239,30,31,242,243,

244,245,246,247,248)]

which(iba_1_sub$time == "17.03.2019 00:21:41.000000")

#check which row contains the data from 17-03-2019 since data before that were logged wrong

iba_1_sub= tail(iba_1_sub, -(which(iba_1_sub$time == "17.03.2019 00:21:41.000000")+1))

#delete all the row before 17-03-2019

out <- strsplit(as.character(iba_1_sub$time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_1<-data.frame(do.call(rbind, out),iba_1_sub)

iba_1<- subset( iba_1, select = -3)

#delete the third column of the data frame the original time column

names(iba_1)[names(iba_1)== "X1"] <- "Date"

names(iba_1)[names(iba_1) == "X2"] <- "Time"

#change the first two columns names into date and time
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iba_1$Time<- substr(iba_1$Time, 0,5)

#omit the the time such that only mim is visable

iba_1$Date <- chartr(".", "/", iba_1$Date)

#change the date into differnt format

#iba_1 has been cleaned

#Cleaning iba_2

iba_2<-data.frame(read.table("iba_partab.txt", header=T, sep="\t"))

iba_2<-iba_2[ , c(1,66,67,98,99,100,101,162,164,165,652,2,3

,30,31,66,67,82,83,84,85,128,129,

136,146,147,148,149,150,151,152,153,

154,155,156,157,158,162,163,164,165,168,169,

172,173,175,182,183,184,185,186,187,188,189,

194,195,196,197,198,199,200,201,

202,203,204,205,206,207,2,3,227,228,238,239,

30,31,242,243,244,245,246,247,248)]

names(iba_2)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_2$Time),’’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_2<-data.frame(do.call(rbind, out),iba_2)

iba_2<- subset( iba_2, select = -3)

#delete the third column of the data frame the original time column

names(iba_2)[names(iba_2)== "X1"] <- "Date"

names(iba_2)[names(iba_2) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_2$Time<- substr(iba_2$Time, 0,5)

#omit the the time such that only mim is visable

iba_2$Date <- chartr(".", "/", iba_2$Date)

#change the date into differnt format

#Cleaning iba_3

iba_3<-data.frame(read.table("iba_partac.txt", header=T, sep="\t"))

iba_3<-iba_3[ , c(1,66,67,98,99,100,101,162,164,165,652,2,3,30,

31,66,67,82,83,84,85,128,129,136,146,147,148,149,150,151,152,

153,154,155,156,157,158,162,163,164,165,168,169,172,173,175,

182,183,184,185,186,187,188,189,194,195,196,197,198,199,200,

201,202,203,204,205,206,207,2,3,227,228,238,239,30,31,242,243,

244,245,246,247,248)]

names(iba_3)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_3$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_3<-data.frame(do.call(rbind, out),iba_3)

iba_3<- subset( iba_3, select = -3)

#delete the third column of the data frame the original time column

names(iba_3)[names(iba_3)== "X1"] <- "Date"

names(iba_3)[names(iba_3) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_3$Time<- substr(iba_3$Time, 0,5)
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#omit the the time such that only mim is visable

iba_3$Date <- chartr(".", "/", iba_3$Date)

#change the date into differnt format

#Cleaning iba_4

iba_4<-data.frame(read.table("iba_partad.txt", header=T, sep="\t"))

iba_4<-iba_4[ , c(1,66,67,98,99,100,101,162,164,165,652,2,3,30,31,66,

67,82,83,84,85,128,129,136,146,147,148,149,150,151,152,153,154,

155,156,157,158,162,163,164,165,168,169,172,173,175,182,183,184,

185,186,187,188,189,194,195,196,197,198,199,200,201,

202,203,204,205,206,207,2,3,227,228,238,239,30,31,242,

243,244,245,246,247,248)]

names(iba_4)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_4$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_4<-data.frame(do.call(rbind, out),iba_4)

iba_4<- subset( iba_4, select = -3)

#delete the third column of the data frame the original time column

names(iba_4)[names(iba_4)== "X1"] <- "Date"

names(iba_4)[names(iba_4) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_4$Time<- substr(iba_4$Time, 0,5)

#omit the the time such that only mim is visable

iba_4$Date <- chartr(".", "/", iba_4$Date)

#change the date into differnt format

#Cleaning iba_5

iba_5<-data.frame(read.table("iba_partae.txt", header=T, sep="\t"))

iba_5<-iba_5[ ,c(1,66,67,98,99,100,101,162,164,165,652,

2,3,30,31,66,67,82,83,84,85,128,129,136,146,147,148,

149,150,151,152,153,154,155,156,157,158,162,163,164,

165,168,169,172,173,175,182,183,184,185,186,187,188,

189,194,195,196,197,198,199,200,201,202,203,204,205,

206,207,2,3,227,228,238,239,30,31,242,243,244,245,246,247,248)]

names(iba_5)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_5$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_5<-data.frame(do.call(rbind, out),iba_5)

iba_5<- subset( iba_5, select = -3)

#delete the third column of the data frame the original time column

names(iba_5)[names(iba_5)== "X1"] <- "Date"

names(iba_5)[names(iba_5) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_5$Time<- substr(iba_5$Time, 0,5)

#omit the the time such that only mim is visable

iba_5$Date <- chartr(".", "/", iba_5$Date)

#change the date into differnt format
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#Cleaning iba_6

iba_6<-data.frame(read.table("iba_partaf.txt", header=T, sep="\t"))

iba_6<-iba_6[ , c(1,66,67,98,99,100,101,162,164,165,652,

2,3,30,31,66,67,82,83,84,85,128,129,136,146,147,148,149,150,

151,152,153,154,155,156,157,158,162,163,164,165,168,169,

172,173,175,182,183,184,185,186,187,188,189,194,195,196,

197,198,199,200,201,202,203,204,205,206,207,2,3,227,228,

238,239,30,31,242,243,244,245,246,247,248)]

names(iba_6)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_6$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_6<-data.frame(do.call(rbind, out),iba_6)

iba_6<- subset( iba_6, select = -3)

#delete the third column of the data frame the original time column

names(iba_6)[names(iba_6)== "X1"] <- "Date"

names(iba_6)[names(iba_6) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_6$Time<- substr(iba_6$Time, 0,5)

#omit the the time such that only mim is visable

iba_6$Date <- chartr(".", "/", iba_6$Date)

#change the date into differnt format

#iba_7

iba_7<-data.frame(read.table("iba_partag.txt", header=T, sep="\t"))

iba_7<-iba_7[ , c(1,66,67,98,99,100,101,162,164,165,652,2,

3,30,31,66,67,82,83,84,85,128,129,136,146,147,148,149,150,

151,152,153,154,155,156,157,158,162,163,164,165,168,169,

172,173,175,182,183,184,185,186,187,188,189,194,195,196,

197,198,199,200,201,202,203,204,205,206,207,2,3,227,228,

238,239,30,31,242,243,244,245,246,247,248)]

names(iba_7)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_7$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_7<-data.frame(do.call(rbind, out),iba_7)

iba_7<- subset( iba_7, select = -3)

#delete the third column of the data frame the original time column

names(iba_7)[names(iba_7)== "X1"] <- "Date"

names(iba_7)[names(iba_7) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_7$Time<- substr(iba_7$Time, 0,5)

#omit the the time such that only mim is visable

iba_7$Date <- chartr(".", "/", iba_7$Date)

#change the date into differnt format

#iba_8

iba_8<-data.frame(read.table("iba_partah.txt", header=T, sep="\t"))
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iba_8<-iba_8[ ,c(1,66,67,98,99,100,101,162,164,165,652,2,3,30,31,

66,67,82,83,84,85,128,129,136,146,147,148,149,150,151,152,153,

154,155,156,157,158,162,163,164,165,168,169,172,173,175,182,

183,184,185,186,187,188,189,194,195,196,197,198,199,200,201,

202,203,204,205,206,207,2,3,227,228,238,239,30,31,242,243,

244,245,246,247,248)]

names(iba_8)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_8$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_8<-data.frame(do.call(rbind, out),iba_8)

iba_8<- subset( iba_8, select = -3)

#delete the third column of the data frame the original time column

names(iba_8)[names(iba_8)== "X1"] <- "Date"

names(iba_8)[names(iba_8) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_8$Time<- substr(iba_8$Time, 0,5)

#omit the the time such that only mim is visable

iba_8$Date <- chartr(".", "/", iba_8$Date)

#change the date into differnt format

#iba_9

iba_9<-data.frame(read.table("iba_partai.txt", header=T, sep="\t"))

iba_9<-iba_9[ ,c(1,66,67,98,99,100,101,162,164,165,

652,2,3,30,31,66,67,82,83,84,85,128,129,136,146,147,

148,149,150,151,152,153,154,155,156,157,158,162,163,

164,165,168,169,172,173,175,182,183,184,185,186,187,

188,189,194,195,196,197,198,199,200,201,

202,203,204,205,206,207,2,3,227,228,238,239,

30,31,242,243,244,245,246,247,248)]

names(iba_9)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_9$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_9<-data.frame(do.call(rbind, out),iba_9)

iba_9<- subset( iba_9, select = -3)

#delete the third column of the data frame the original time column

names(iba_9)[names(iba_9)== "X1"] <- "Date"

names(iba_9)[names(iba_9) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_9$Time<- substr(iba_9$Time, 0,5)

#omit the the time such that only mim is visable

iba_9$Date <- chartr(".", "/", iba_9$Date)

#change the date into differnt format

#iba_10

iba_10<-data.frame(read.table("iba_partaj.txt", header=T, sep="\t"))

iba_10<-iba_10[ ,c(1,66,67,98,99,100,101,162,164,165,652,2,3,30,

31,66,67,82,83,84,85,128,129,136,146,147,148,149,150,151,152,153,

154,155,156,157,158,162,163,164,165,168,169,172,173,175,182,183,

184,185,186,187,188,189,194,195,196,197,198,199,200,201,202,203,
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204,205,206,207,2,3,227,228,238,239,30,31,242,243,244,245,246,247,248)]

names(iba_10)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_10$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_10<-data.frame(do.call(rbind, out),iba_10)

iba_10<- subset( iba_10, select = -3)

#delete the third column of the data frame the original time column

names(iba_10)[names(iba_10)== "X1"] <- "Date"

names(iba_10)[names(iba_10) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_10$Time<- substr(iba_10$Time, 0,5)

#omit the the time such that only mim is visable

iba_10$Date <- chartr(".", "/", iba_10$Date)

#change the date into differnt format

#iba_11

iba_11<-data.frame(read.table("iba_partak.txt", header=T, sep="\t"))

iba_11<-iba_11[ , c(1,66,67,98,99,100,101,162,164,165,652,

2,3,30,31,66,67,82,83,84,85,128,129,136,146,147,148,149,150,

151,152,153,154,155,156,157,158,162,163,164,165,168,169,

172,173,175,182,183,184,185,186,187,188,189,194,195,196,

197,198,199,200,201,202,203,204,205,206,207,2,3,227,228,

238,239,30,31,242,243,244,245,246,247,248)]

names(iba_11)<-names(iba_1)[2:84]

out <- strsplit(as.character(iba_11$Time),’ ’)

#seperate date and time into two columns and place them in the front

do.call(rbind, out)

iba_11<-data.frame(do.call(rbind, out),iba_11)

iba_11<- subset( iba_11, select = -3)

#delete the third column of the data frame the original time column

names(iba_11)[names(iba_11)== "X1"] <- "Date"

names(iba_11)[names(iba_11) == "X2"] <- "Time"

#change the first two columns names into date and time

iba_11$Time<- substr(iba_11$Time, 0,5)

#omit the the time such that only min is visable

iba_11$Date <- chartr(".", "/", iba_11\$Date)

#change the date into different format

################################################

#Combine all sub dataframe

IBA<-rbind(iba_1,iba_2,iba_3,iba_4,iba_5,iba_6,iba_7,iba_8,iba_9,iba_10,iba_11)

IBA<-subset( IBA, select = c(-17,-18,-38))

C.2 EMASS Cleaning Code

#read in required packages

library("readxl")

library("readr")
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library("dplyr")

library("plyr")

library(reader)

library("BBmisc")

library(reshape)

library(tidyr)

#create a list of the files from your target directory

setwd("/Volumes/Transcend/EMASS/Cycle 1/2019.06.15")

file_list<- list.files(pattern=’*.txt’)

EMASS<-lapply(file_list,read.table,skip = 51, fill= TRUE,sep = ";", nrows = 6000)

#read all txt files in a folder disregarding the first 51 rows, read the first 6000 rows

EMASS2<-bind_rows(EMASS)

EMASS_FILTERED<-data.frame(EMASS2[seq(1,nrow(EMASS2),by = 100),])

#read 1 obervation per 100 observations

names(EMASS_FILTERED)<-c("Timestamp","Distance A1","Distance B1","Current A1","Current B1","Distance A2","Distance B2","Current A2","Current B2","Distance A3","Distance B3","Current A3","Current B3","Distance A4","Distance B4","Current A4","Current B4","Distance A5","Distance B5","Current A5","Current B5","Distance A6","Distance B6","Current A6","Current B6","Distance A7","Distance B7","Current A7","Current B7","Distance A8","Distance B8","Current A8","Current B8","Sample_Block_Index")

write.csv(EMASS_FILTERED,"/Volumes/Transcend/EMASS/2019.06.15.csv")

####These piece of code is repeated for

every folder from EMASS and a combined

csv file was exported with daily data.

C.3 Data Visualization and Exploration Code

####IBA EXPLORATION######

# iba_1<-read.csv("iba_1.csv")

# iba_2<-read.csv("iba_2.csv")

# iba_3<-read.csv("iba_3.csv")

# iba_4<-read.csv("iba_4.csv")

# iba_5<-read.csv("iba_5.csv")

# iba_6<-read.csv("iba_6.csv")

# iba_7<-read.csv("iba_7.csv")

# iba_8<-read.csv("iba_8.csv")

# iba_9<-read.csv("iba_9.csv")

# iba_10<-read.csv("iba_10.csv")

# iba_11<-read.csv("iba_11.csv")

# IBA<-rbind(iba_1,iba_2,iba_3,iba_4,iba_5,iba_6,iba_7,iba_8,iba_9,iba_10,iba_11)

# IBA<- subset( IBA, select = c(-17,-18,-38))

# head(IBA)

# Reduced<-data.frame(IBA$Date,

IBA$Time,

IBA$input.lineSpeedRaw,

IBA$input.lineSpeedRef,

IBA$input.lineSpeedRef.1,

IBA$input.lineSpeed,

IBA$input.stripTension,

IBA$input.stripTension.1,

IBA$input.coatMass.TOP.,

IBA$input.coatMass.BOT.,

IBA$input.coatMass.TOP..1,
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IBA$input.coatMass.BOT..1,

IBA$input.gaugePos.TOP..1,

IBA$input.gaugePos.BOT..1,

IBA$input.controlPress.TOP.,

IBA$input.controlPress.BOT.,

IBA$input.headerPressRaw.BOT,

IBA$input.headerPressRaw.TOP,

IBA$input.headerPress.TOP.,

IBA$input.headerPress.BOT,

IBA$input.gaugePos.TOP.,

IBA$input.knifeHeight,

IBA$input.potTemp,

IBA$input.stripTemp,

IBA$X.mean.knifeHeight,

IBA$input.knifeHeight.1,

IBA$input.knifeHeightNomAvg,

IBA$input.corrRollPos.RIGHT.,

IBA$input.potAlContent)

# head(Reduced)

# Reduced[,3]<-as.double(Reduced[,3])

# Reduced[,4]<-as.double(Reduced[,4])

# Reduced[,5]<-as.double(Reduced[,5])

# Reduced[,6]<-as.double(Reduced[,6])

# Reduced[,7]<-as.double(Reduced[,7])

# Reduced[,8]<-as.double(Reduced[,8])

# Reduced[,9]<-as.double(Reduced[,9])

# Reduced[,10]<-as.double(Reduced[,10])

# Reduced[,11]<-as.double(Reduced[,11])

# Reduced[,12]<-as.double(Reduced[,12])

# Reduced[,13]<-as.double(Reduced[,13])

# Reduced[,14]<-as.double(Reduced[,14])

# Reduced[,15]<-as.double(Reduced[,15])

# Reduced[,16]<-as.double(Reduced[,16])

# Reduced[,17]<-as.double(Reduced[,17])

# Reduced[,18]<-as.double(Reduced[,18])

# Reduced[,19]<-as.double(Reduced[,19])

# Reduced[,20]<-as.double(Reduced[,20])

# Reduced[,21]<-as.double(Reduced[,21])

# Reduced[,22]<-as.double(Reduced[,22])

# Reduced[,23]<-as.double(Reduced[,23])

# Reduced[,24]<-as.double(Reduced[,24])

# Reduced[,25]<-as.double(Reduced[,25])

# Reduced[,26]<-as.double(Reduced[,26])

# Reduced[,27]<-as.double(Reduced[,27])

# Reduced[,28]<-as.double(Reduced[,28])

# Reduced[,29]<-as.double(Reduced[,29])

# #Reduced$IBA.Date<-substring(Reduced$IBA.Date,3,7)

# #Reduced$IBA.Date

# #Reduced$IBA.Date
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# Reduced<-Reduced[,-c(5,8,24)]

# class(Reduced$IBA.Date)

# unique(Reduced$IBA.Date)

# write.csv(Reduced,"IBA_REDUCED.csv")

#write selected variables into a new csv file called ’Reduced’

library(e1071)

library("readxl")

library("readr")

library("dplyr")

library("plyr")

library(reader)

library("BBmisc")

library(reshape)

library(tidyr)

library(plotly)

library("scatterplot3d")

library("rgl")

library("RColorBrewer")

setwd("~/Google Drive/Thesis/Data Collection/iba")

Reduced<-read.csv("IBA_REDUCED.csv")

head(Reduced)

Reduced$IBA.Date<-as.Date(Reduced$IBA.Date)

Reduced[,3]<-as.double(Reduced[,3])

Reduced[,4]<-as.double(Reduced[,4])

Reduced[,5]<-as.double(Reduced[,5])

Reduced[,6]<-as.double(Reduced[,6])

Reduced[,7]<-as.double(Reduced[,7])

Reduced[,8]<-as.double(Reduced[,8])

Reduced[,9]<-as.double(Reduced[,9])

Reduced[,10]<-as.double(Reduced[,10])

Reduced[,11]<-as.double(Reduced[,11])

Reduced[,12]<-as.double(Reduced[,12])

Reduced[,13]<-as.double(Reduced[,13])

Reduced[,14]<-as.double(Reduced[,14])

Reduced[,15]<-as.double(Reduced[,15])

Reduced[,16]<-as.double(Reduced[,16])

Reduced[,17]<-as.double(Reduced[,17])

Reduced[,18]<-as.double(Reduced[,18])

Reduced[,19]<-as.double(Reduced[,19])

Reduced[,20]<-as.double(Reduced[,20])

Reduced[,21]<-as.double(Reduced[,21])

Reduced[,22]<-as.double(Reduced[,22])

Reduced[,23]<-as.double(Reduced[,23])

Reduced[,24]<-as.double(Reduced[,24])

Reduced[,25]<-as.double(Reduced[,25])

Reduced[,26]<-as.double(Reduced[,26])

Reduced[,27]<-as.double(Reduced[,27])

################Feature extraction##############

RMS<-function(X){
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  rms<-sqrt(mean(X^2))

  return(rms)

}

mean_TOTAL<-aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=mean, na.rm=TRUE)

mean_TOTAL<- mean_TOTAL[order(mean_TOTAL$Group.1),]

mean_TOTAL$Group.1

###

max_TOTAL<-aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=max, na.rm=TRUE)

max_TOTAL<- max_TOTAL[order(max_TOTAL$Group.1),]

max_TOTAL$Group.1

###

min_TOTAL<- aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=min, na.rm=TRUE)

min_TOTAL<- min_TOTAL[order(min_TOTAL$Group.1),]

###

Std_TOTAL<- aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=sd, na.rm=TRUE)

Std_TOTAL<- Std_TOTAL[order(Std_TOTAL$Group.1),]

###

median_TOTAL<- aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=median, na.rm=TRUE)

median_TOTAL<-median_TOTAL[order(median_TOTAL$Group.1),]

###

kurtosis_TOTAL<-aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=kurtosis, na.rm=TRUE)

kurtosis_TOTAL<-kurtosis_TOTAL[order(kurtosis_TOTAL$Group.1),]

###

skewness_TOTAL<-aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=skewness, na.rm=TRUE)

skewness_TOTAL<-skewness_TOTAL[order(skewness_TOTAL$Group.1),]

###

RMS_TOTAL<-aggregate(Reduced[,3:27], by=list(Reduced$IBA.Date),

FUN=RMS)

RMS_TOTAL<-RMS_TOTAL[order(RMS_TOTAL$Group.1),]

##

#########################potTemp##############

plot(mean_TOTAL$Group.1,mean_TOTAL$IBA.input.potTemp,type =’l’,

main = "mean potTemp")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(median_TOTAL$Group.1,median_TOTAL$IBA.input.potTemp,type = ’l’,

main = "median potTemp")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(min_TOTAL$Group.1,min_TOTAL$IBA.input.potTemp,type = ’l’,

main = "min potTemp")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(max_TOTAL$Group.1,max_TOTAL$IBA.input.potTemp,type = ’l’,

main = "max potTemp")
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abline(v =c(18031,18080,18097),col = ’blue’ )

plot(kurtosis_TOTAL$Group.1,kurtosis_TOTAL$IBA.input.potTemp,type = ’l’,

main = "kurtosis potTemp")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(skewness_TOTAL$Group.1,skewness_TOTAL$IBA.input.potTemp,type = ’l’,

main = "skewness potTemp")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(Std_TOTAL$Group.1,Std_TOTAL$IBA.input.potTemp,type = ’l’,

main = "Std potTemp")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(RMS_TOTAL$Group.1,RMS_TOTAL$IBA.input.potTemp,type = ’l’,

main = "RMS potTemp")

abline(v =c(18031,18080,18097),col = ’blue’ )

potTemp.<-data.frame(cbind(mean_TOTAL$IBA.input.potTemp,

min_TOTAL$IBA.input.potTemp,RMS_TOTAL$IBA.input.potTemp,

Std_TOTAL$IBA.input.potTemp))

names(potTemp.)<-c("mean","min","RMS","Std")

potTemp.<-na.omit(potTemp.)

########pca

PCA_potTemp.<- prcomp(potTemp.,scale=TRUE )

summary(PCA_potTemp.,main = "potTemp")

plot(PCA_potTemp.)

cor(potTemp.,PCA_potTemp.$x[,c(1,2,3,4)])

pc1<-PCA_potTemp.$x[,1]

pc2<-PCA_potTemp.$x[,2]

pc3<-PCA_potTemp.$x[,3]

pc4<-PCA_potTemp.$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2)])

cluster<-hclust(distance)

plot(cluster, main = "potTemp")

rect.hclust(cluster,k=2,border = ’red’)

check<-cutree(cluster,2)

which(check==2)

plot(PC[,1:2],col = check, main = "potTemp")

plot(pc1,type = ’l’, main = "potTemp")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:2],3)

which(kc$cluster==3)

plot(kc$cluster,col = kc$cluster,type =’l’, main = "potTemp")

#########################Al_Content############

plot(mean_TOTAL$Group.1,mean_TOTAL$IBA.input.potAlContent,type =’l’,

main = "mean Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )
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plot(median_TOTAL$Group.1,median_TOTAL$IBA.input.potAlContent,type = ’l’,

main = "median Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(min_TOTAL$Group.1,min_TOTAL$IBA.input.potAlContent,type = ’l’,

main = "min Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(max_TOTAL$Group.1,max_TOTAL$IBA.input.potAlContent,type = ’l’,

main = "max Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(kurtosis_TOTAL$Group.1,kurtosis_TOTAL$IBA.input.potAlContent,type = ’l’,

main = "kurtosis Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(skewness_TOTAL$Group.1,skewness_TOTAL$IBA.input.potAlContent,type = ’l’,

main = "skewness Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(Std_TOTAL$Group.1,Std_TOTAL$IBA.input.potAlContent,type = ’l’,

main = "Std Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(RMS_TOTAL$Group.1,RMS_TOTAL$IBA.input.potAlContent,type = ’l’,

main = "RMS Al_Content")

abline(v =c(18031,18080,18097),col = ’blue’ )

potAlContent.<-data.frame(cbind(mean_TOTAL$IBA.input.potAlContent,

median_TOTAL$IBA.input.potAlContent,min_TOTAL$IBA.input.potAlContent,

max_TOTAL$IBA.input.potAlContent,RMS_TOTAL$IBA.input.potAlContent,

Std_TOTAL$IBA.input.potAlContent))

names(potAlContent.)<-c("mean","median","min","max","RMS","Std")

potAlContent.<-na.omit(potAlContent.)

########pca

PCA_potAlContent.<- prcomp(potAlContent.,scale = TRUE)

summary(PCA_potAlContent.)

plot(PCA_potAlContent., main = "Al_Content")

cor(potAlContent.,PCA_potAlContent.$x[,c(1,2,3,4)])

pc1<-PCA_potAlContent.$x[,1]

pc2<-PCA_potAlContent.$x[,2]

pc3<-PCA_potAlContent.$x[,3]

pc4<-PCA_potAlContent.$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2)])

cluster<-hclust(distance)

plot(cluster, main = "Al_Content")

rect.hclust(cluster,k=2,border = ’red’)

check<-cutree(cluster,2)

check

which(check == 2)

plot(PC[,1:2],col = check, main = "Al_Content")

plot(pc1,type = ’l’, main = "Al_Content")

lines(pc2,col = ’blue’)
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##K means cluster

kc<-kmeans(PC[,1:2],2)

which(kc$cluster==2)

plot(kc$cluster,col = kc$cluster,type = ’l’,main = "Al_Content")

########################corrRollPOS############

RMS<-function(X){

  rms<-sqrt(mean(X^2))

  return(rms)

}

plot(mean_TOTAL$Group.1,mean_TOTAL$IBA.input.corrRollPos.RIGHT.,

type =’l’,main = "mean corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(median_TOTAL$Group.1,median_TOTAL$IBA.input.corrRollPos,

type = ’l’,main = "median corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(min_TOTAL$Group.1,min_TOTAL$IBA.input.corrRollPos,

type = ’l’,main = "min corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(max_TOTAL$Group.1,max_TOTAL$IBA.input.corrRollPos,

type = ’l’,main = "max corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(kurtosis_TOTAL$Group.1,kurtosis_TOTAL$IBA.input.corrRollPos,

type = ’l’,main = "kurtosis corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(skewness_TOTAL$Group.1,skewness_TOTAL$IBA.input.corrRollPos,

type = ’l’,main = "skewness corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(Std_TOTAL$Group.1,Std_TOTAL$IBA.input.corrRollPos,

type = ’l’,main = "Std corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(RMS_TOTAL$Group.1,RMS_TOTAL$IBA.input.corrRollPos,

type = ’l’,main = "RMS corrRollPOS")

abline(v =c(18031,18080,18097),col = ’blue’ )

corrRollPos.<-data.frame(cbind(mean_TOTAL$IBA.input.corrRollPos,

median_TOTAL$IBA.input.corrRollPos,min_TOTAL$IBA.input.corrRollPos,

max_TOTAL$IBA.input.corrRollPos,RMS_TOTAL$IBA.input.corrRollPos,

Std_TOTAL$IBA.input.corrRollPos))

names(corrRollPos.)<-c("mean","median","min","max","RMS","Std")

corrRollPos.<-na.omit(corrRollPos.)

########pca

PCA_corrRollPos.<- prcomp(corrRollPos.,scale = TRUE)

summary(PCA_corrRollPos.)

plot(PCA_corrRollPos., main = "corrRollPOS")

cor(corrRollPos.,PCA_corrRollPos.$x[,c(1,2,3,4)])

pc1<-PCA_corrRollPos.$x[,1]

pc2<-PCA_corrRollPos.$x[,2]
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pc3<-PCA_corrRollPos.$x[,3]

pc4<-PCA_corrRollPos.$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2)])

cluster<-hclust(distance)

plot(cluster, main = "corrRollPOS")

rect.hclust(cluster,k=2,border = ’red’)

check<-cutree(cluster,2)

check

which(check == 2)

plot(PC[,1:2],col = check, main = "corrRollPOS")

plot(pc1,type = ’l’,main = "corrRollPOS")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:2],3)

which(kc$cluster==3)

plot(kc$cluster,col = kc$cluster,type = ’l’, main = "corrRollPOS")

#"IBA.input.headerPress.TOP."#####################

plot(mean_TOTAL$Group.1,mean_TOTAL$IBA.input.headerPress.TOP.,

type =’l’,main = "mean headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(median_TOTAL$Group.1,median_TOTAL$IBA.input.headerPress.TOP.,

type = ’l’,main = "median headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(min_TOTAL$Group.1,min_TOTAL$IBA.input.headerPress.TOP.,

type = ’l’,main = "min headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(max_TOTAL$Group.1,max_TOTAL$IBA.input.headerPress.TOP.,

type = ’l’,main = "max headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(kurtosis_TOTAL$Group.1,kurtosis_TOTAL$IBA.input.headerPress.TOP.,

type = ’l’,main = "kurtosis headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(skewness_TOTAL$Group.1,skewness_TOTAL$IBA.input.headerPress.TOP.,

type = ’l’,main = "skewness headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(Std_TOTAL$Group.1,Std_TOTAL$IBA.input.headerPress.TOP.,

type = ’l’,main = "Std headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(RMS_TOTAL$Group.1,RMS_TOTAL$IBA.input.headerPress.TOP.,

type = ’l’,main = "RMS headerPress.TOP.")

abline(v =c(18031,18080,18097),col = ’blue’ )

headerPress.TOP..<-data.frame(cbind(mean_TOTAL$IBA.input.headerPress.TOP.,

median_TOTAL$IBA.input.headerPress.TOP.,min_TOTAL$IBA.input.headerPress.TOP.,
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max_TOTAL$IBA.input.headerPress.TOP.,RMS_TOTAL$IBA.input.headerPress.TOP.,

Std_TOTAL$IBA.input.headerPress.TOP.))

names(headerPress.TOP..)<-c("mean","median","min","max","RMS","Std")

headerPress.TOP..<-na.omit(headerPress.TOP..)

########pca

PCA_headerPress.TOP..<- prcomp(headerPress.TOP..,scale = TRUE)

summary(PCA_headerPress.TOP..)

plot(PCA_headerPress.TOP..,main = "headerPress.TOP.")

cor(headerPress.TOP..,PCA_headerPress.TOP..$x[,c(1,2,3,4)])

pc1<-PCA_headerPress.TOP..$x[,1]

pc2<-PCA_headerPress.TOP..$x[,2]

pc3<-PCA_headerPress.TOP..$x[,3]

pc4<-PCA_headerPress.TOP..$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2,3)])

cluster<-hclust(distance)

plot(cluster, main = "headerPress.TOP.")

rect.hclust(cluster,k=3,border = ’red’)

check<-cutree(cluster,2)

check

which(check == 2)

plot(PC[,1:3],col = check, main = "headerPress.TOP.")

plot(pc1,type = ’l’, main = "headerPress.TOP.")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:3],3)

kc

which(kc$cluster==3)

plot(kc$cluster,col = kc$cluster)

#"IBA.input.headerPress.BOT"##############

plot(mean_TOTAL$Group.1,mean_TOTAL$IBA.input.headerPress.BOT,

type =’l’,main = "mean headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(median_TOTAL$Group.1,median_TOTAL$IBA.input.headerPress.BOT,

type = ’l’,main = "median headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(min_TOTAL$Group.1,min_TOTAL$IBA.input.headerPress.BOT,

type = ’l’,main = "min headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(max_TOTAL$Group.1,max_TOTAL$IBA.input.headerPress.BOT,

type = ’l’,main = "max headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(kurtosis_TOTAL$Group.1,kurtosis_TOTAL$IBA.input.headerPress.BOT,

type = ’l’,main = "kurtosis headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )
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plot(skewness_TOTAL$Group.1,skewness_TOTAL$IBA.input.headerPress.BOT,

type = ’l’,main = "skewness headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(Std_TOTAL$Group.1,Std_TOTAL$IBA.input.headerPress.BOT,

type = ’l’,main = "Std headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )

plot(RMS_TOTAL$Group.1,RMS_TOTAL$IBA.input.headerPress.BOT,

type = ’l’,main = "RMS headerPress.BOT")

abline(v =c(18031,18080,18097),col = ’blue’ )

headerPress.BOT.<-data.frame(cbind(mean_TOTAL$IBA.input.headerPress.BOT,

median_TOTAL$IBA.input.headerPress.BOT,min_TOTAL$IBA.input.headerPress.BOT,

max_TOTAL$IBA.input.headerPress.BOT,RMS_TOTAL$IBA.input.headerPress.BOT,

Std_TOTAL$IBA.input.headerPress.BOT))

names(headerPress.BOT.)<-c("mean","median","min","max","RMS","Std")

headerPress.BOT.<-na.omit(headerPress.BOT.)

########pca

PCA_headerPress.BOT.<- prcomp(headerPress.BOT.,scale = TRUE)

summary(PCA_headerPress.BOT.)

plot(PCA_headerPress.BOT.,main = "headerPress.BOT")

cor(headerPress.BOT.,PCA_headerPress.BOT.$x[,c(1,2,3,4)])

pc1<-PCA_headerPress.BOT.$x[,1]

pc2<-PCA_headerPress.BOT.$x[,2]

pc3<-PCA_headerPress.BOT.$x[,3]

pc4<-PCA_headerPress.BOT.$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2,3)])

cluster<-hclust(distance)

plot(cluster, main = "headerPress.BOT")

rect.hclust(cluster,k=3,border = ’red’)

check<-cutree(cluster,2)

check

which(check == 2)

plot(PC[,1:3],col = check, main = "headerPress.BOT")

plot(pc1,type = ’l’, main = "headerPress.BOT")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:3],3)

kc

which(kc$cluster==3)

plot(kc$cluster,col = kc$cluster, main = "headerPress.BOT")

##EXPLORE ON EMASS############

setwd("/Volumes/Transcend/EMASS/Preprocess and visulization ")

Cycle1<-read.csv("Cycle1.csv")
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Cycle2<-read.csv("Cycle2.csv")

Cycle3<-read.csv("Cycle3.csv")

Cycle4<-read.csv("Cycle4.csv")

TwoDays<-read.csv("TwoDays.csv")

Cycle1<-Cycle1[,-1]

Cycle2<-Cycle2[,-1]

Cycle3<-Cycle3[,-1]

Cycle4<-Cycle4[,-1]

TwoDays<-TwoDays[,-1]

head(TwoDays)

head(Cycle1)

Train<-bind_rows(Cycle1,Cycle2,TwoDays,Cycle3,Cycle4)

Train$X<-as.Date(Train$X)

head(Train)

unique(Train$X)

###### Feature extraction#################

mean<-aggregate(Train[,3:35], by=list(Train$X),

FUN=mean, na.rm=TRUE)

mean$Group.1<-as.Date(mean$Group.1,origin = "1970-01-01")

min<- aggregate(Train[,3:35], by=list(Train$X),

FUN=min, na.rm=TRUE)

min$Group.1<-as.Date(min$Group.1,origin = "1970-01-01")

max<- aggregate(Train[,3:35], by=list(Train$X),

FUN=max, na.rm=TRUE)

max$Group.1<-as.Date(max$Group.1,origin = "1970-01-01")

Std<- aggregate(Train[,3:35], by=list(Train$X),

FUN=sd, na.rm=TRUE)

Std$Group.1<-as.Date(Std$Group.1,origin = "1970-01-01")

median<- aggregate(Train[,3:35], by=list(Train$X),

FUN=median, na.rm=TRUE)

median$Group.1<-as.Date(median$Group.1,origin = "1970-01-01")

kurtosis<-aggregate(Train[,3:35], by=list(as.double(unlist(Train$X))),

FUN=kurtosis, na.rm=TRUE)

kurtosis$Group.1<-as.Date(kurtosis$Group.1,origin = "1970-01-01")

skewness<-aggregate(Train[,3:35], by=list(as.double(unlist(Train$X))),

FUN=skewness, na.rm=TRUE)

skewness$Group.1<-as.Date(skewness$Group.1,origin = "1970-01-01")

RMS<-aggregate(Train[,3:35], by=list(as.double(unlist(Train$X))),

FUN=RMS)

RMS$Group.1<-as.Date(RMS$Group.1,origin = "1970-01-01")

#########  PAC ON EMASS   ##########

Train<-Train[,-35]

Train <- na.omit(Train)

myPr<- prcomp(Train[,3:34],scale = TRUE)

summary(myPr)

plot(myPr, main = "PCA on Emass variables")

cor(Train[,3:34],myPr$x[,1:13])

######

myPr.var<-myPr$sdev^2
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myPr.var

myPr.var.per<-round(myPr.var/sum(myPr.var)*100,1)

myPr.var.per

barplot(myPr.var.per,main = "PCA",xlab = "Principal Component",ylab = "Percent Variation")

########PCA ON ONLY avg DISTANCE

head(Day_avg1)

pca<-prcomp(Day_avg1[,c(40:47)],scale = TRUE)

pca

summary(pca)

plot(pca, type = ’l’)

######Distance A5-A5, DistanceB2-B5,Current B4, Samole_Block_Index############

#Distance A2

plot(mean$Group.1,mean$Distance.A2,type =’l’,main = "mean Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’)

plot(median$Group.1,median$Distance.A2,type = ’l’,main = "median Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(min$Group.1,min$Distance.A2,type = ’l’,main = "min Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(max$Group.1,max$Distance.A2,type = ’l’,main = "max Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(kurtosis$Group.1,kurtosis$Distance.A2,type = ’l’,main = "kurtosis Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(skewness$Group.1,skewness$Distance.A2,type = ’l’,main = "skewness Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(Std$Group.1,Std$Distance.A2,type = ’l’,main = "Std Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(RMS$Group.1,RMS$Distance.A2,type = ’l’,main = "RMS Distance.A2")

abline(v =c(18080,18097,18124),col = ’blue’ )

Vibration_A2<-data.frame(cbind(mean$Distance.A2,

median$Distance.A2,min$Distance.A2,

max$Distance.A2,RMS$Distance.A2,

skewness$Distance.A2,kurtosis$Distance.A2,

Std$Distance.A2))

names(Vibration_A2)<-c("mean","median",

"min","max","RMS","skewness","kurtosis","Std")

Vibration_A2<-na.omit(Vibration_A2)

########pca

PCA_Vibration_A2<- prcomp(Vibration_A2,scale = TRUE)

summary(PCA_Vibration_A2)

plot(PCA_Vibration_A2,main="PCA_Vibration_A2")

pc1<-PCA_Vibration_A2$x[,1]

pc2<-PCA_Vibration_A2$x[,2]

pc3<-PCA_Vibration_A2$x[,3]

pc4<-PCA_Vibration_A2$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2,3)])

cluster<-hclust(distance)

plot(cluster,main = "Hcluster Vibration_A2 ")
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rect.hclust(cluster,k=2,border = ’red’)

check<-cutree(cluster,2)

which(check == 2)

plot(PC[,1:4],col = check,main ="principle component Vibration_A2")

plot(pc1,type = ’l’,main="PC_Vibration_A2")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:4],3)

kc

plot(kc$cluster,col = kc$cluster,main="Vibration_A2")

##############################

#Distance A5

plot(mean$Group.1,mean$Distance.A5,type =’l’,main = "mean Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’)

plot(median$Group.1,median$Distance.A5,type = ’l’,main = "median Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(min$Group.1,min$Distance.A5,type = ’l’,main = "min Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(max$Group.1,max$Distance.A5,type = ’l’,main = "max Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(kurtosis$Group.1,kurtosis$Distance.A5,type = ’l’,main = "kurtosis Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(skewness$Group.1,skewness$Distance.A5,type = ’l’,main = "skewness Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(Std$Group.1,Std$Distance.A5,type = ’l’,main = "Std Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(RMS$Group.1,RMS$Distance.A5,type = ’l’,main = "RMS Distance.A5")

abline(v =c(18080,18097,18124),col = ’blue’ )

Vibration_A5<-data.frame(cbind(mean$Distance.A5,

median$Distance.A5,min$Distance.A5,

max$Distance.A5,RMS$Distance.A5,

skewness$Distance.A5,kurtosis$Distance.A5,

Std$Distance.A5))

names(Vibration_A5)<-c("mean","median",

"min","max","RMS","skewness","kurtosis","Std")

Vibration_A5<-na.omit(Vibration_A5)

########pca

PCA_Vibration_A5<- prcomp(Vibration_A5,scale = TRUE)

summary(PCA_Vibration_A5)

plot(PCA_Vibration_A5,main = "PCA_Vibration_A5")

pc1<-PCA_Vibration_A5$x[,1]

pc2<-PCA_Vibration_A5$x[,2]

pc3<-PCA_Vibration_A5$x[,3]

pc4<-PCA_Vibration_A5$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2,3)])
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cluster<-hclust(distance)

plot(cluster, main = "Hcluster Vibration_A5")

rect.hclust(cluster,k=2,border=’red’)

check<-cutree(cluster,2)

which(check == 1)

plot(PC[,1:4],col = check,main="principle component Vibration_A5")

plot(pc1,type = ’l’,main="PC_Vibration_A5")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:4],3)

kc

plot(kc$cluster,col=kc$cluster,main="Vibration_A5")

which(kc$cluster==2)

###################################

#Distance B5

plot(mean$Group.1,mean$Distance.B5,type =’l’,

main = "mean Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’)

plot(median$Group.1,median$Distance.B5,type = ’l’,

main = "median Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(min$Group.1,min$Distance.B5,type = ’l’,

main = "min Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(max$Group.1,max$Distance.B5,type = ’l’,

main = "max Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(kurtosis$Group.1,kurtosis$Distance.B5,type = ’l’,

main = "kurtosis Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(skewness$Group.1,skewness$Distance.B5,type = ’l’,

main = "skewness Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(Std$Group.1,Std$Distance.B5,type = ’l’,

main = "Std Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(RMS$Group.1,RMS$Distance.B5,type = ’l’,

main = "RMS Distance.B5")

abline(v =c(18080,18097,18124),col = ’blue’ )

Vibration_B5<-data.frame(cbind(mean$Distance.B5,

median$Distance.B5,min$Distance.B5,max$Distance.B5,

RMS$Distance.B5,skewness$Distance.B5,

kurtosis$Distance.B5,Std$Distance.B5))

names(Vibration_B5)<-c("mean","median",

"min","max","RMS","skewness","kurtosis","Std")

Vibration_B5<-na.omit(Vibration_B5)

########pca

Industrial Engineering and Management 125 Master Thesis



Data driven solution to predictive maintenance

PCA_Vibration_B5<- prcomp(Vibration_B5,scale = TRUE)

summary(PCA_Vibration_B5)

plot(PCA_Vibration_B5,main = "PCA_Vibration_B5")

pc1<-PCA_Vibration_B5$x[,1]

pc2<-PCA_Vibration_B5$x[,2]

pc3<-PCA_Vibration_B5$x[,3]

pc4<-PCA_Vibration_B5$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2,3)])

cluster<-hclust(distance)

plot(cluster,main = "Hcluster Vibration_B5")

check<-cutree(cluster,2)

which(check == 2)

plot(PC[,1:4],col=check,main="principle component Vibration_B5")

plot(pc1,type = ’l’,main = "PC_Vibration_B5")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:4],3)

kc

plot(kc$cluster,col = kc$cluster,main = "Vibration_B5")

which(kc$cluster==2)

plots.dir.path <- list.files(tempdir(), pattern="rs-graphics", full.names = TRUE)

plots.png.paths <- list.files(plots.dir.path, pattern=".png", full.names = TRUE)

file.copy(from=plots.png.paths, to="~/Google Drive/VIB_B5")

#Current B4

plot(mean$Group.1,mean$Current.B4,type =’l’,

main = "mean Current.B4")

abline(v =c(18080,18097,18124),col = ’blue’)

plot(median$Group.1,median$Current.B4,type = ’l’,

main = "median Current.B4")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(min$Group.1,min$Current.B4,type = ’l’,

main = "min Current.B4")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(max$Group.1,max$Current.B4,type = ’l’,

main = "max Current.B4")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(kurtosis$Group.1,kurtosis$Current.B4,type = ’l’,

main = "kurtosis Current.B4")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(skewness$Group.1,skewness$Current.B4,type = ’l’,

main = "skewness Current.B4")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(Std$Group.1,Std$Current.B4,type = ’l’,

main = "Std Current.B4")
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abline(v =c(18080,18097,18124),col = ’blue’ )

plot(RMS$Group.1,RMS$Current.B4,type = ’l’,

main = "RMS Current.B4")

abline(v =c(18080,18097,18124),col = ’blue’ )

Current.B4<-data.frame(cbind(mean$Current.B4,

median$Current.B4,min$Current.B4,max$Current.B4,

RMS$Current.B4,skewness$Current.B4,kurtosis$Current.B4,

Std$Current.B4))

names(Current.B4)<-c("mean","median",

"min","max","RMS","skewness","kurtosis","Std")

Current.B4<-na.omit(Current.B4)

########pca

PCA_Current.B4<- prcomp(Current.B4,scale = TRUE)

summary(PCA_Current.B4)

plot(PCA_Current.B4,main = "PCA_Current.B4")

pc1<-PCA_Current.B4$x[,1]

pc2<-PCA_Current.B4$x[,2]

pc3<-PCA_Current.B4$x[,3]

pc4<-PCA_Current.B4$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2,3)])

cluster<-hclust(distance)

plot(cluster,main = "Hcluster Current_B4")

check<-cutree(cluster,2)

which(check == 2)

plot(PC[,1:4],col = check,main = "principle component Current.B4")

plot(pc1,type = ’l’,main = "PC_Current.B4")

lines(pc2,col = ’blue’)

lines(pc3,col = "red")

lines(pc4,col = "green")

##K means cluster

kc<-kmeans(PC[,1:4],3)

kc

plot(kc$cluster,col = kc$cluster,main = "Current.B4")

which(kc$cluster==2)

plots.dir.path <- list.files(tempdir(), pattern="rs-graphics", full.names = TRUE)

plots.png.paths <- list.files(plots.dir.path, pattern=".png", full.names = TRUE)

file.copy(from=plots.png.paths, to="~/Google Drive/CUR_B4")

##################Sample_Block_Index########

plot(mean$Group.1,mean$Sample_Block_Index,type =’l’,

main = "mean Sample_Block_Index")

abline(v =c(18080,18097,18124),col = ’blue’)

plot(median$Group.1,median$Sample_Block_Index,

type = ’l’,main = "median Sample_Block_Index")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(min$Group.1,min$Sample_Block_Index,type = ’l’,

main = "min Sample_Block_Index")
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abline(v =c(18080,18097,18124),col = ’blue’ )

plot(max$Group.1,max$Sample_Block_Index,type = ’l’,

main = "max Sample_Block_Index")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(kurtosis$Group.1,kurtosis$Sample_Block_Index,

type = ’l’,main = "kurtosis Sample_Block_Index")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(skewness$Group.1,skewness$Sample_Block_Index,

type = ’l’,main = "skewness Sample_Block_Index")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(Std$Group.1,Std$Sample_Block_Index,type = ’l’,

main = "Std Sample_Block_Index")

abline(v =c(18080,18097,18124),col = ’blue’ )

plot(RMS$Group.1,RMS$Sample_Block_Index,type = ’l’,

main = "RMS Sample_Block_Index")

abline(v =c(18080,18097,18124),col=’blue’ )

Sample_Block_Index<-data.frame(cbind(mean$Sample_Block_Index,median$Sample_Block_Index,

min$Sample_Block_Index,max$Sample_Block_Index,

RMS$Sample_Block_Index,skewness$Sample_Block_Index,

kurtosis$Sample_Block_Index,Std$Sample_Block_Index))

names(Sample_Block_Index)<-c("mean","median",

"min","max","RMS","skewness","kurtosis","Std")

Sample_Block_Index<-na.omit(Sample_Block_Index)

########pca

PCA_Sample_Block_Index<- prcomp(Sample_Block_Index[,-3],

scale = TRUE)

summary(PCA_Sample_Block_Index)

plot(PCA_Sample_Block_Index,

main = "PCA_Sample_Block_Index")

pc1<-PCA_Sample_Block_Index$x[,1]

pc2<-PCA_Sample_Block_Index$x[,2]

pc3<-PCA_Sample_Block_Index$x[,3]

pc4<-PCA_Sample_Block_Index$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

#####Hcluster###########

distance<-dist(PC[,c(1,2)])

cluster<-hclust(distance)

plot(cluster)

rect.hclust(cluster,k=2,border=’red’)

check<-cutree(cluster,2)

which(check == 2)

plot(PC[,1:4],col = check,main="principle component Sample_Block_Index")

plot(pc1,type = ’l’,main="PC_Sample_Block_Index")

lines(pc2,col =’blue’)

lines(pc3,col ="red")

lines(pc4,col ="green")

##K means cluster

kc<-kmeans(PC[,1:2],3)

kc
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plot(kc$cluster,col = kc$cluster,main ="Sample_Block_Index")

which(kc$cluster==2)

########pca

PCA_distance_A1<- prcomp(Vibration_A1,scale = TRUE)

summary(PCA_distance_A1)

plot(PCA_distance_A1,type = ’l’)

cor(Vibration_A1,PCA_distance_A1$x[,c(1,2,3)])

###########statistic

pc1<-PCA_distance_A1$x[,1]

pc2<-PCA_distance_A1$x[,2]

pc3<-PCA_distance_A1$x[,3]

pc4<-PCA_distance_A1$x[,4]

PC<-data.frame(pc1,pc2,pc3,pc4)

PC<-scale(PC)

#################hcluster

distance<-dist(PC[,c(1,2,3,4)])

cluster<-hclust(distance)

plot(cluster)

##K means cluster

kc<-kmeans(PC[,1:4],3)

kc

plot(kc$cluster,col=kc$cluster,type = ’l’)

abline(v =c(18080,18097),col = ’blue’ )

plot3d(pc1,

pc2,

pc3,

xlab = "pc1",

ylab = "pc2",

zlab = "pc3",

col =kc$cluster,

size = 8)

#export all plots into a directory#

plots.dir.path <- list.files(tempdir(), pattern="rs-graphics", full.names = TRUE)

plots.png.paths <- list.files(plots.dir.path, pattern=".png", full.names = TRUE)

file.copy(from=plots.png.paths, to="~/Google Drive/VIB_A5")

C.4 Modeling code

library(e1071)

library("readxl")

library("readr")

library("dplyr")

library("plyr")

library(reader)

library("BBmisc")

library(reshape)

library(tidyr)
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library(plotly)

library("scatterplot3d")

library("rgl")

library("RColorBrewer")

library("neuralnet")

library(pls)

library(hydroGOF)

library(randomForest)

library(caTools)

#############################################set working directory###################

setwd("~/Google Drive/Thesis/Data Collection/iba")

iba_1<-read.csv("iba_1.csv")

iba_2<-read.csv("iba_2.csv")

iba_3<-read.csv("iba_3.csv")

iba_4<-read.csv("iba_4.csv")

iba_5<-read.csv("iba_5.csv")

iba_6<-read.csv("iba_6.csv")

iba_7<-read.csv("iba_7.csv")

iba_8<-read.csv("iba_8.csv")

iba_9<-read.csv("iba_9.csv")

iba_10<-read.csv("iba_10.csv")

iba_11<-read.csv("iba_11.csv")

IBA<-rbind(iba_1,iba_2,iba_3,iba_4,iba_5,iba_6,iba_7,iba_8,iba_9,iba_10,iba_11)

##### Read splitted iba data files######################################################

Tension <-data.frame(IBA$Date,IBA$input.stripTension,IBA$input.StripTensionRef)

##Read strip tension and trip tension reference from iba data files###

Tension<-na.omit(Tension)

##Delete all lines that contains missing value

Reduced<-read.csv("IBA_REDUCED.csv")

##Read pre-cleaned data from IBA ####

Tension$IBA.Date<-as.Date(Reduced$IBA.Date)

##Extract date from the reduced file ####pay special attention to the data format!!####

Tension$IBA.input.stripTension<-as.numeric(as.character(Tension$IBA.input.stripTension))

Tension$IBA.input.StripTensionRef<-as.numeric(as.character(Tension$IBA.input.StripTensionRef))

#######################setting directory for another data directory#####################

setwd("~/Google Drive/Thesis/Data Collection/Data Warehouse")

#Read the other files that contains length and surface data##############################

DWH2<-read_excel("NUM_TURN.xlsx")

DWH2$DATE<-as.Date(DWH2$DATE)

head(DWH2)

###aggregate the length by date###################################################

sum<-aggregate(DWH2[,3:5], by=list(DWH2$DATE), FUN=sum, na.rm=TRUE)

temp_mean<-aggregate(DWH2[,8:9], by=list(DWH2$DATE), FUN=mean, na.rm=TRUE)

colnames(sum)<-c(\Date","FIN_COIL_LENGTH_PRIME","EXIT_SCRAP_LENGTH","FIN_COIL_SURFACE_AREA")
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colnames(temp_mean)<-c("Date","BATH_GV","BATH_GF")

class(sum$Date)

class(temp_mean$Date)

sum<-cbind(sum,temp_mean$BATH_GV,temp_mean$BATH_GF)

####Expolre each cycle #########################################################

DWH_cycle1<-subset(sum,sum$Date>="2019-05-15" & sum$Date<="2019-06-06")

DWH_cycle2<-subset(sum,sum$Date>="2019-06-07" & sum$Date<="2019-07-04")

DWH_cycle3<-subset(sum,sum$Date>="2019-07-05" & sum$Date<="2019-07-18")

DWH_cycle4<-subset(sum,sum$Date>="2019-07-18" & sum$Date<="2019-07-20")

DWH_cycle5<-subset(sum,sum$Date>="2019-07-20" & sum$Date<="2019-08-16")

DWH_cycle6<-subset(sum,sum$Date>="2019-08-16" & sum$Date<="2019-09-12")

#DWH_cycle7<-subset(sum,sum$Date>="2019-09-12" & sum$Date<="2019-10-04")

####Separate data per cycle and put them into different data frame#######################

cycle1<-c(sum(DWH_cycle1$FIN_COIL_LENGTH_PRIME),sum(DWH_cycle1$EXIT_SCRAP_LENGTH)

,sum(DWH_cycle1$FIN_COIL_SURFACE_AREA),mean(DWH_cycle1$‘temp_mean$BATH_GV‘),

mean(DWH_cycle1$‘temp_mean$BATH_GF‘))

cycle2<-c(sum(DWH_cycle2$FIN_COIL_LENGTH_PRIME),

sum(DWH_cycle2$EXIT_SCRAP_LENGTH),sum(DWH_cycle2$FIN_COIL_SURFACE_AREA),

mean(DWH_cycle2$‘temp_mean$BATH_GV‘),

mean(DWH_cycle2$‘temp_mean$BATH_GF‘))

cycle3<-c(sum(DWH_cycle3$FIN_COIL_LENGTH_PRIME),sum(DWH_cycle3$EXIT_SCRAP_LENGTH),

sum(DWH_cycle3$FIN_COIL_SURFACE_AREA),mean(DWH_cycle3$‘temp_mean$BATH_GV‘),

mean(DWH_cycle3$‘temp_mean$BATH_GF‘))

cycle4<-c(sum(DWH_cycle4$FIN_COIL_LENGTH_PRIME),sum(DWH_cycle4$EXIT_SCRAP_LENGTH),

sum(DWH_cycle4$FIN_COIL_SURFACE_AREA),mean(DWH_cycle4$‘temp_mean$BATH_GV‘),

mean(DWH_cycle4$‘temp_mean$BATH_GF‘))

cycle5<-c(sum(DWH_cycle5$FIN_COIL_LENGTH_PRIME),sum(DWH_cycle5$EXIT_SCRAP_LENGTH),

sum(DWH_cycle5$FIN_COIL_SURFACE_AREA),mean(DWH_cycle5$‘temp_mean$BATH_GV‘),

mean(DWH_cycle5$‘temp_mean$BATH_GF‘))

cycle6<-c(sum(DWH_cycle6$FIN_COIL_LENGTH_PRIME),sum(DWH_cycle6$EXIT_SCRAP_LENGTH),

sum(DWH_cycle6$FIN_COIL_SURFACE_AREA),mean(DWH_cycle6$‘temp_mean$BATH_GV‘),

mean(DWH_cycle6$‘temp_mean$BATH_GF‘))

#cycle7<-c(sum(DWH_cycle7$FIN_COIL_LENGTH_PRIME),sum(DWH_cycle7$EXIT_SCRAP_LENGTH),

sum(DWH_cycle7$FIN_COIL_SURFACE_AREA))

Cycle<-data.frame(rbind(cycle1,cycle2,cycle3,cycle4,cycle5,cycle6))

names(Cycle)<-c("Total Length","Scrape Length","Total Surface","Temp GV","Temp GF")

###############saperate Tension into saperate cycles###############################

Tension<-na.omit(Tension)

summary(Tension$IBA.input.stripTension)

Ten_cycle1<-subset(Tension,Tension$IBA.Date>="2019-05-15" & Tension$IBA.Date<="2019-06-06")

Ten_cycle2<-subset(Tension,Tension$IBA.Date>="2019-06-07" & Tension$IBA.Date<="2019-07-04")

Ten_cycle3<-subset(Tension,Tension$IBA.Date>="2019-07-05" & Tension$IBA.Date<="2019-07-18")

Ten_cycle4<-subset(Tension,Tension$IBA.Date>="2019-07-18" & Tension$IBA.Date<="2019-07-20")

Ten_cycle5<-subset(Tension,Tension$IBA.Date>="2019-07-20" & Tension$IBA.Date<="2019-08-16")

Ten_cycle6<-subset(Tension,Tension$IBA.Date>="2019-08-16" & Tension$IBA.Date<="2019-09-12")
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#######################Extract statistical features from tension############################

mean_T<-c(mean(Ten_cycle1$IBA.input.stripTension),mean(Ten_cycle2$IBA.input.stripTension),

mean(Ten_cycle3$IBA.input.stripTension),mean(Ten_cycle4$IBA.input.stripTension),

mean(Ten_cycle5$IBA.input.stripTension),mean(Ten_cycle6$IBA.input.stripTension))

min_T<-c(min(Ten_cycle1$IBA.input.stripTension),min(Ten_cycle2$IBA.input.stripTension),

min(Ten_cycle3$IBA.input.stripTension),min(Ten_cycle4$IBA.input.stripTension),

min(Ten_cycle5$IBA.input.stripTension),min(Ten_cycle6$IBA.input.stripTension))

max_T<-c(max(Ten_cycle1$IBA.input.stripTension),max(Ten_cycle2$IBA.input.stripTension),

max(Ten_cycle3$IBA.input.stripTension),max(Ten_cycle4$IBA.input.stripTension),

max(Ten_cycle5$IBA.input.stripTension),max(Ten_cycle6$IBA.input.stripTension))

median_T<-c(median(Ten_cycle1$IBA.input.stripTension),

median(Ten_cycle2$IBA.input.stripTension),

median(Ten_cycle3$IBA.input.stripTension), median(Ten_cycle4$IBA.input.stripTension),

median(Ten_cycle5$IBA.input.stripTension),median(Ten_cycle6$IBA.input.stripTension))

skewness_T<-c(skewness(Ten_cycle1$IBA.input.stripTension),

skewness(Ten_cycle2$IBA.input.stripTension),

skewness(Ten_cycle3$IBA.input.stripTension),skewness(Ten_cycle4$IBA.input.stripTension),

skewness(Ten_cycle5$IBA.input.stripTension),skewness(Ten_cycle6$IBA.input.stripTension))

kurtosis_T<-c(kurtosis(Ten_cycle1$IBA.input.stripTension),

kurtosis(Ten_cycle2$IBA.input.stripTension),kurtosis(Ten_cycle3$IBA.input.stripTension),

kurtosis(Ten_cycle4$IBA.input.stripTension),kurtosis(Ten_cycle5$IBA.input.stripTension),

kurtosis(Ten_cycle6$IBA.input.stripTension))

sd_T<-c(sd(Ten_cycle1$IBA.input.stripTension),

sd(Ten_cycle2$IBA.input.stripTension),

sd(Ten_cycle3$IBA.input.stripTension),sd(Ten_cycle4$IBA.input.stripTension),

sd(Ten_cycle5$IBA.input.stripTension),sd(Ten_cycle6$IBA.input.stripTension))

RMS<-function(X){

  rms<-sqrt(mean(X^2))

  return(rms)

}

rms_T<-c(RMS(Ten_cycle1$IBA.input.stripTension),

RMS(Ten_cycle2$IBA.input.stripTension),

RMS(Ten_cycle3$IBA.input.stripTension),RMS(Ten_cycle4$IBA.input.stripTension),

RMS(Ten_cycle5$IBA.input.stripTension),RMS(Ten_cycle6$IBA.input.stripTension))

summary(Ten_cycle6$IBA.input.stripTension)

Cycle<-cbind(Cycle,mean_T,min_T,max_T,median_T,skewness_T,kurtosis_T,sd_T,rms_T)

#################Add label, days and roll diameter################

RollD<-c(593,600.32,596.00,578,593,578)

Days<-c(23,29,15,2,28,28)

Cycle<-cbind(Cycle,RollD,Days,label)

head(Cycle)
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#############################PLSR Model####################

wearTrain <- I(Predictor[c(1,2,5,3,4),])

wearTest <- I(Predictor[6,])

colnames(wearTrain)

###This fits a model with 10 components, and includes

leave-one-out (LOO) cross-validated predictions######

wearMOD <- plsr(label~., data =wearTrain,scale = TRUE, validation = "LOO")

summary(wearMOD)

plot(RMSEP(wearMOD), legendpos = "topright")

predict(wearMOD, ncomp = 1, newdata = wearTest)

####plot correlation plot###################################

plot(wearMOD, plottype = "correlation", ncomp=1,

legendpos = "bottomleft",labels = "names", xlab = "nm",cex = 1,main = "Correlation

############plot modeling performance using different cycle as test set

Valid0_p<-c(14.42037,18.97449,8.192258,7.361097,15.66091,15.33483)

Valid1_p<-c(14.41463,18.75007,8.059945,7.444879,15.84379,15.48952)

Valid2_p<-c(14.50607,18.94005,8.075307,-2.608508,15.8689,14.14748)

Valid3_p<-c(14.2385,18.546,8.25564,0.8069429,15.90029,14.27897)

Real<-c(12,19,12,1,15,17)

RMSE<-c(rmse(Valid0_p,Real),rmse(Valid1_p,Real),rmse(Valid2_p,Real),rmse(Valid3_p,Real))

par(las=2)

p<-barplot(RMSE,names.arg=c("Features","Add Days","Add RollD and Days",

"Add BathTemp and Days"),cex.names = 0.7,main = "PLSR RMSE on different variables",

col = "cadetblue")

label<-round(RMSE,digits = 2)

text(p, label, labels=label, xpd=TRUE,pos = 3,cex = 0.8)

############Artificial neural network###########################

Predictor<-Cycle

Predictor[,1:15]<-scale(Predictor[,1:15])

wearTrain <- Predictor[c(5,3,2,4,1),]

colnames(wearTrain)<-c("Total_Length", "Scrape_Length", "Total_Surface",

"Temp_GV","Temp_GF","mean_T", "min_T", "max_T",

"median_T", "skewness_T", "kurtosis_T", "sd_T",

"rms_T","RollD", "Days", "label")

wearTest <- Predictor[6,]

colnames(wearTest)<-c("Total_Length", "Scrape_Length", "Total_Surface",

"Temp_GV","Temp_GF","mean_T", "min_T", "max_T",

"median_T", "skewness_T", "kurtosis_T", "sd_T",

"rms_T","RollD", "Days", "label")

colnames(wearTrain)

nn=neuralnet(label~Total_Length+Scrape_Length+Total_Surface+Temp_GV+Temp_GF+mean_T

+min_T+max_T+median_T+skewness_T+kurtosis_T+sd_T+rms_T+RollD+Days,

data = wearTrain,hidden=c(10),linear.output = T,startweights = initialweight2)

plot(nn,cex = 0.5)
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############Prediction using neural network####################

Predict=compute(nn,wearTest)

Predict$net.result

############record weights whenever there is a good result and set it as initial weights##################################

weights<-data.frame(nn$result.matrix)

initialweight2<-weights[4:nrow(weights),1]

###################plotting and comparison ANN##############

Real<-c(12,19,12,1,15,17)

Pred_1<-c(12.03502,18.90393,11.68794,1.035856,14.81206,17.13211)

Pred_2<-c(11.9911,18.38535,11.97321, 0.7945518,15.29512,17.33582)

Pred_3<-c(12.98757, 18.8983,7.818993,1.264413,13.57408,14.31401)

Pred_4<-c(11.9183,18.85573,10.39384,1.133062,15.38007,17.03653)

Pred_5<-c(12.10058,19.1987,11.88019,1.050418,14.77899,16.68621)

Pred_6<-c(12.19018,19.29073,11.83118,0.901541,14.11694,16.97701)

plot(Real,lty=1, lwd=2,main = "Model selection ANN",xlab = "Cycles",ylab = "Prediction")

lines(Pred_1,col = "red",type = ’l’,lty=1, lwd=2)

lines(Pred_2,col = "cadetblue4",lty=2, lwd=2)

lines(Pred_3,col = "blue",lty=1, lwd=2)

lines(Pred_4,col = "coral3",lty=1, lwd=2)

lines(Pred_5,col = "cyan4",lty=1, lwd=2)

lines(Pred_6,col = "darkseagreen4",lty=1, lwd=2)

legend("bottomleft", legend=c("Real", "Cycle1 test ", "Cycle2 test"

, "Cycle3 test", "Cycle4 test", "Cycle5 test", "Cycle6 test"),

col=c("black","red","cadetblue4", "blue","coral3","cyan4",

"darkseagreen4"), lty=1, cex=0.7)

####################plot RMSE###############################

RMSE<-c(rmse(Pred_1,Real),rmse(Pred_2,Real),rmse(Pred_3,Real),

rmse(Pred_4,Real),rmse(Pred_5,Real),rmse(Pred_6,Real))

par(las=2)

p<-barplot(RMSE,names.arg=c("Cycle1 test ", "Cycle2 test", "Cycle3 test",

"Cycle4 test", "Cycle5 test", "Cycle6 test"),cex.names = 0.7,

main = "RMSE different test sample used to tune initial weight",col = rainbow(6))

label<-round(RMSE,digits = 2)

text(p, label, labels=label, xpd=TRUE,pos = 3,cex = 0.8)

##################################

plot(sqrt((Pred_1-Real)^2),col = "red",type="l", ylim=c(-1,1),lty=1,

lwd=2,main = "Model selection ANN",xlab = "Cycles",

ylab = "Root Mean squre error")

abline(h = 0,lty=2, lwd=2)

lines(sqrt((Pred_2-Real)^2),col = "cadetblue4",lty=2, lwd=1)

lines(sqrt((Pred_3-Real)^2),col = "blue",lty=1, lwd=2)
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lines(sqrt((Pred_4-Real)^2),col = "coral3",lty=2, lwd=1)

lines(sqrt((Pred_5-Real)^2),col = "cyan4",lty=2, lwd=1)

lines(sqrt((Pred_6-Real)^2),col = "darkseagreen4",lty=2, lwd=1)

legend("topleft", legend=c("Cycle1 test ",

"Cycle2 test", "Cycle3 test",

"Cycle4 test", "Cycle5 test",

"Cycle6 test"),col=c("red","cadetblue4",

"blue","coral3","cyan4","darkseagreen4"), lty=1, cex=0.7)

#################Random Forest##########################

wearTrain <- Predictor[c(6,3,4,2,5),]

colnames(wearTrain)<-c("Total_Length",

"Scrape_Length","Total_Surface",

"Temp_GV","Temp_GF","mean_T",

"min_T","max_T","median_T",

"skewness_T","kurtosis_T","sd_T",

"rms_T","RollD","Days","label")

wearTest <- Predictor[1,]

colnames(wearTest)<-c("Total_Length",

"Scrape_Length","Total_Surface",

"Temp_GV","Temp_GF","mean_T",

"min_T","max_T","median_T","skewness_T",

"kurtosis_T","sd_T","rms_T",

"RollD", "Days", "label")

#######build random forest on ’training set’#########################

#By default, the number of decision trees in the forest is 500

#and the number of features used as potential candidates for each split is 3.

rf <- randomForest(label~.,data=wearTrain,importance = TRUE)

#########predict on test set##################################

pred = predict(rf, newdata=wearTest)

pred

#######get RMSE value######################################

pred<-c(14.38167,14.21133 ,13.45033,13.5035,14.86917,13.51733 )

real<-c(12,19,12,1,15,17)

rmse(pred,real)

###########################comparison of three models

Real<-c(12,19,12,1,15,17)

ANN<-c(12.03502,18.90393,11.68794,1.035856,14.81206,17.13211)

PLSR<-c(14.2385,18.546,8.25564,0.8069429,15.90029,14.27897)

RF<-c(14.38167,14.21133 ,13.45033,13.5035,14.86917,13.51733)

plot(sqrt((ANN-Real)^2),col = "red",type="l", lty=1, lwd=2,

ylim=c(-10,20),main = "Model prediction power comparison",xlab = "Cycles",

ylab = "Root Mean squre error of prediction")

abline(h = 0,lty=2, lwd=2)

lines(sqrt((PLSR-Real)^2),col = "blue",lty=1, lwd=2)
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lines(sqrt((RF-Real)^2),col = "cyan4",lty=1, lwd=2)

legend("topleft", legend=c("ANN ", "PLSR", "RF"),

       col=c("red","blue", "cyan4"), lty=1,lwd = 2, cex=0.7)

#####

plot(Real,lty=1, lwd=2,xlab = "Cycles",ylab = "Prediction",main = "Model comparison")

lines(ANN,col = "red",lty=2, lwd=2)

lines(PLSR,col = "cadetblue4",lty=2, lwd=2)

lines(RF, col = "coral3",lty=2, lwd=2)

legend("bottomleft", legend=c("ANN ", "PLSR", "RF"),

       col=c("red","cadetblue4", "coral3"), lty=1,lwd = 2, cex=0.7)

######

plot(x=Real, y=ANN,lty=1, lwd=2,

xlim=c(0,20),ylim=c(0,20),

xlab = "Real label",

ylab = "Predicted label by ANN")

abline(a=0, b=1)

plot(x = Real,xlim=c(0,20),ylim=c(0,20)

,y = PLSR,lty=1, lwd=2,col = ’red’,

xlab = "Real label",

ylab = "Predicted label by PLSR")

abline(a=0, b=1)
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C.5 Tool Development Code

library(shiny)

library("readxl")

library("readr")

library("dplyr")

library("plyr")

library(pls)

library(hydroGOF)

library(DT)

library(moments)

ui <- fluidPage(

  titlePanel("Bush Wear prediction"),

  dateInput(inputId = "date", label = "date",

  value = "2019-11-30", format = "yyyy-mm-dd"),

  numericInput(inputId = "num", label = "Sink Roll Diameter",

  value = 600,min = 500, max = 700, step = 1),

  #numericInput(inputId = "comp", label = "Num Component",

  value = 2,min = 1, max = 3, step = 1),

  numericInput(inputId = "bush", label = "Bush diameter",value = 30,

  min = 30, max = 40, step = 1),

  mainPanel(

    DT::dataTableOutput("mytable"),

    plotOutput("plot"),

    htmlOutput("width")

  )

)

server <- function(input, output) {

  #######################################outputTABLE##########

  output\$mytable<-DT::renderDataTable({

    CycleDate<-c("2019-05-14","2019-06-06","2019-07-04",

    "2019-07-18","2019-07-20","2019-08-16","2019-09-12",

    "2019-10-04","2019-10-16", "2019-11-18","2019-11-30")

    inputDate<-c(input\$date)

    count <- 0

    for (val in CycleDate) {

      if(val >= inputDate) break

      else count = count + 1

    }

    startDate = as.Date(CycleDate[count])+1

    print(startDate)

    sum_sub<-subset(Len_temp,Len_temp\$Date>=startDate&Len_temp\$Date<=inputDate)

    TDate<-Tension\$Date

    Tension_sub<-subset(Tension,TDate>=startDate&TDate<=inputDate)

    Len<-c(sum(sum_sub\$FIN_COIL_LENGTH_PRIME),sum(sum_sub\$EXIT_SCRAP_LENGTH),

    sum(sum_sub\$FIN_COIL_SURFACE_AREA))
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    temp_mean<-c(mean(sum_sub\$BTH_T_GV),mean(sum_sub\$BTH_T_GF))

    T_fea<-c(mean(Tension_sub\$Tension),min(Tension_sub\$Tension),

    max(Tension_sub\$Tension),median(Tension_sub\$Tension),

    skewness(Tension_sub\$Tension),kurtosis(Tension_sub\$Tension),

    sd(Tension_sub\$Tension),RMS(Tension_sub\$Tension))

    Days<-c(as.numeric(difftime(inputDate ,startDate , units = c("days")))+1)

    inputRollD<-c(input\$num)

    RollD<-inputRollD

    Validation<-c(Len,temp_mean,T_fea,RollD,Days,1)

    validation<-data.frame(name=Validation[1])

    for (i in 2:15) {

      #name = names(Predictor)[i]

      a<-data.frame(name=Validation[i])

      validation<-cbind(validation,a)

    }

    names(validation)<-names(Predictor[1:15])

    validation

  })

  ######################################output Plot ###############################3

  output\$plot <- renderPlot({

    CycleDate<-c("2019-05-14","2019-06-06","2019-07-04",

    "2019-07-18","2019-07-20","2019-08-16","2019-09-12",

    "2019-10-04","2019-10-16", "2019-11-18","2019-11-30")

    inputDate<-c(input\$date)

    count <- 0

    for (val in CycleDate) {

      if(val >= inputDate) break

      else count = count + 1

    }

    startDate = as.Date(CycleDate[count])+1

    print(startDate)

    sum_sub<-subset(Len_temp,Len_temp\$Date>=startDate&Len_temp\$Date<=inputDate)

    TDate<-Tension\$Date

    Tension_sub<-subset(Tension,TDate>=startDate&TDate<=inputDate)

    Len<-c(sum(sum_sub\$FIN_COIL_LENGTH_PRIME),

    sum(sum_sub\$EXIT_SCRAP_LENGTH),sum(sum_sub\$FIN_COIL_SURFACE_AREA))

    temp_mean<-c(mean(sum_sub\$BTH_T_GV),mean(sum_sub\$BTH_T_GF))

    T_fea<-c(mean(Tension_sub\$Tension),min(Tension_sub$Tension),max(Tension_sub$Tension),

             median(Tension_sub\$Tension),skewness(Tension_sub$Tension),

             kurtosis(Tension_sub\$Tension),sd(Tension_sub$Tension),

             RMS(Tension_sub$Tension))

    Days<-c(as.numeric(difftime(inputDate, startDate , units = c("days")))+1)

    inputRollD<-c(input$num)

    RollD<-inputRollD

    Validation<-c(Len,temp_mean,T_fea,RollD,Days,1)
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    validation<-data.frame(name=Validation[1])

    for (i in 2:15) {

      #name = names(Predictor)[i]

      a<-data.frame(name=Validation[i])

      validation<-cbind(validation,a)

    }

    names(validation)<-names(Predictor[1:15])

    validation

    wearTrain <- I(Predictor)

    validation1<-I(validation)

    wearMOD <- plsr(label~., data =wearTrain,scale = TRUE, validation = "LOO")

    summary(wearMOD)

    #plot(RMSEP(wearMOD), legendpos = "topright")

    class(RMSEP(wearMOD))

    cverr <- RMSEP(wearMOD)$val[1,,]

    imin <- which.min(cverr)-1

    result<-predict(wearMOD, ncomp = imin, newdata =validation1 )

    ###################################################################################

    #count = 2

    my_vector <- vector("numeric")

    for(count in 1:round(Days)){

      inputDate<-startDate+count

      sum_sub<-subset(Len_temp,Len_temp\$Date>=startDate\&Len_temp$Date<=inputDate)

      TDate<-Tension$Date

      Tension_sub<-subset(Tension,TDate>=startDate&TDate<=inputDate)

      Len<-c(sum(sum_sub\$FIN_COIL_LENGTH_PRIME),

      sum(sum_sub$EXIT_SCRAP_LENGTH),sum(sum_sub\$FIN_COIL_SURFACE_AREA))

      temp_mean<-c(mean(sum_sub\$BTH_T_GV),mean(sum_sub\$BTH_T_GF))

      T_fea<-c(mean(Tension_sub\$Tension),min(Tension_sub\$Tension),

      max(Tension_sub$Tension),median(Tension_sub$Tension),

      skewness(Tension_sub$Tension),kurtosis(Tension_sub$Tension),

      sd(Tension_sub$Tension),RMS(Tension_sub$Tension))

      Days<-c(as.numeric(difftime(inputDate, startDate, units = c("days")))+1)

      inputRollD<-c(input$num)

      RollD<-inputRollD

      Validation<-c(Len,temp_mean,T_fea,RollD,Days,1)

      validation<-data.frame(name=Validation[1])

      for (i in 2:15) {

        #name = names(Predictor)[i]

        a<-data.frame(name=Validation[i])

        validation<-cbind(validation,a)

      }

      names(validation)<-names(Predictor[1:15])

      validation

      wearTrain <- I(Predictor)
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      validation1<-I(validation)

      wearMOD <- plsr(label~., data =wearTrain,scale = TRUE, validation = "LOO")

      summary(wearMOD)

      class(RMSEP(wearMOD))

      cverr <- RMSEP(wearMOD)$val[1,,]

      imin <- which.min(cverr)-1

      result<-predict(wearMOD, ncomp = imin, newdata =validation1 )

      my_vector[count] <- result

      #ncomp[count]<- imin

    }

    plot(input$bush-my_vector,main = "Predicted wearing pattern",

    xlab = "Days",ylab = "Remaining width",col = "red",lty=2, lwd=2)

  })

  ##############################OutPutText##########################################

  output\$width<-renderText({

    CycleDate<-c("2019-05-14","2019-06-06","2019-07-04",

    "2019-07-18","2019-07-20","2019-08-16",

    "2019-09-12","2019-10-04","2019-10-16",

    "2019-11-17","2019-11-30")

    inputDate<-c(input\$date)

    count <- 0

    for (val in CycleDate) {

      if(val >= inputDate) break

      else count = count + 1

    }

    startDate = as.Date(CycleDate[count])+1

    print(startDate)

    sum_sub<-subset(Len_temp,Len_temp\$Date>=startDate&Len_temp\$Date<=inputDate)

    TDate<-Tension\$Date

    Tension_sub<-subset(Tension,TDate>=startDate&TDate<=inputDate)

    Len<-c(sum(sum_sub\$FIN_COIL_LENGTH_PRIME),

    sum(sum_sub\$EXIT_SCRAP_LENGTH),sum(sum_sub\$FIN_COIL_SURFACE_AREA))

    temp_mean<-c(mean(sum_sub$BTH_T_GV),mean(sum_sub\$BTH_T_GF))

    T_fea<-c(mean(Tension_sub$Tension),min(Tension_sub\$Tension),

    max(Tension_sub\$Tension),median(Tension_sub\$Tension),

    skewness(Tension_sub\$Tension),kurtosis(Tension_sub\$Tension),

    sd(Tension_sub\$Tension),RMS(Tension_sub\$Tension))

    Days<-c(as.numeric(difftime(inputDate ,startDate , units = c("days")))+1)

    inputRollD<-c(input\$num)

    RollD<-inputRollD

    Validation<-c(Len,temp_mean,T_fea,RollD,Days,1)

    validation<-data.frame(name=Validation[1])

    for (i in 2:15) {

      a<-data.frame(name=Validation[i])

      validation<-cbind(validation,a)

    }

Industrial Engineering and Management 140 Master Thesis



Data driven solution to predictive maintenance

    names(validation)<-names(Predictor[1:15])

    validation

    wearTrain <- I(Predictor)

    validation1<-I(validation)

    wearMOD <- plsr(label~., data =wearTrain,scale = TRUE, validation = "LOO")

    summary(wearMOD)

    class(RMSEP(wearMOD))

    cverr <- RMSEP(wearMOD)\$val[1,,]

    imin <- which.min(cverr)-1

    result<-predict(wearMOD, ncomp = imin, newdata =validation1 )

    str1<-paste("Bush wear width:", result)

    str2<-paste("Remaining bush width:", input\$bush-result)

    HTML(paste(str1, str2, sep = ’<br/>’))

  })

}

shinyApp(server = server, ui = ui)

Industrial Engineering and Management 141 Master Thesis



APPENDIX

D

TENSION EXPLORATION

As an additional request from the company, the difference between Tension and Reference Tension are
plotted. As the Maximum Tension and Minimum Tension are contributing the most to the prediction,
we only plotted these two features and the difference they are to the reference.

Figure D.1: Maximum Tension VS Reference maximum tension
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Data driven solution to predictive maintenance

Figure D.2: Minimum Tension VS Reference minimum tension
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