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Abstract

For the classification of moving objects based on their trajectories, one wants to be able to
build tracking models which are as accurate as possible. For this purpose, double hidden
Markov models are used. The goal of this research is to find a method or a combination
of methods to determine the optimal number of hidden Markov states for a double hidden
Markov model. The method most looked into in this thesis, called the autocovariance method
in this report, relates the number of Markov states of the considered model to the orders of
a vector autoregressive moving average model with the same autocovariance structure as the
considered model. This method provides a theoretical lower bound on the number of hidden
Markov states, although this bound is not guaranteed in practice due to the method of de-
termining the autoregressive and moving average orders in this research.

In this report, the existing lower bounds are generalised for a wider class of models and
for differenced time series, useful in the case of cointegrated time series. The bounds of the
existing literature and introduced in this report become weak if no assumptions are made
on the correlation of the time series with the Markov Process. More promising bounds are
available if there is no correlation.

From synthetic experiments, it appeared that these bounds perform best for processes where
the hidden Markov chain stays, on average, in the same hidden Markov state for longer
periods of time, for higher dimensional problems, for lower orders of the number of hidden
Markov states, for a higher number of observations, for problems where the Markov states
are sufficiently distinctive and when the process does not contain Markov states in which the
process is (highly) nonstationary. For differenced time series, the number of different Markov
states effectively is the original number of Markov states squared, which can often not all be
distinguished. Therefore, this method is in these cases often not useful in practice, perhaps
except in the case when one wants to find out if one needs multiple hidden Markov states at
all. It is preferable to use the non-differenced method if possible.

The autocovariance method is computationally inexpensive and therefore suitable to be in-
corporated in the model building proces, although it is advisible to use the estimate of the
method in combination with other information, such as estimates from information criteria
which can be used as upper bounds.
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Chapter 1

Introduction

1.1 Problem description

Monitoring moving objects is one of the major tasks of the armed forces. For many military
and defence applications, one wants to classify these different objects, based on the type or
behaviour of the object. For example, the navy may want to know if a certain ship is a
potential smuggler, airport security if an observed object is a bird or a drone and the air
forces whether an incoming airplane is going to attack or will not be a threat. The estimated
motion trajectories of objects, based on observations of (amongst others) radar systems, can
be used as input for these classifications. The motion patterns of one class may exhibit
certain characteristics that are uncommon for other classes, while the state variables at any
single point in time may not be enough to classify reliably. For example, birds may fly at
similar altitudes and speeds as man-made objects, however, when making local flights they
may exhibit more erratic flight behaviour than man-made objects (Moon, 2002).

Figure 1: Structure of the Bayesian Network used for tracking.

To be able to model the trajectories of the observed objects, a certain type of Bayesian
Networks are used, which can be seen as an extension of Hidden Markov Models (HMMs).
The structure of the model is shown in Figure 1. The circles denote variables or vectors
of variables and the arrows dependence relations. The processes in blue {St} and {Xt} are

4



unobserved, while {Yt} is observed. In the context of this thesis, Yt are the radar observations
and possibly other types of observations at time period t. These observations are a noisy
representation of the real kinematic state of the object, Xt. Xt is a vector including the 2-
or 3-dimensional location coordinates and the velocity in the x, y and possibly z-direction.
Xt changes each time step in a stochastic manner according to a specific model k, where the
value k is the outcome of the hidden discrete univariate variable St, which is called the mode
of the system. Each mode k thys implies a specific model k. The process {St} is a Markov
process with domain S. We will refer to the model of Figure 1 as a Double Hidden Markov
Model (DHMM).

To summarize, the DHMM {St, Xt, Yt} can be expressed as follows:

P (St = i|St−1 = j) = Pji, (1)

Xt = fSt(Xt−1, Vt), (2)

Yt = g(Xt,Wt). (3)

In the above equations, P = (Pji) is the probability transition matrix of St, fSt are the
transition functions, which can together with g have any form in the most general case, and
{Vt} and {Wt} are random influences, or more accurately white noise processes, for which a
definition will be provided later in this report (Definition 1 in Section 2.2).

Current practice is that the number of modes |S|, is determined manually. The functional
form of the transition function f is also determined manually to some extent, as some param-
eters are estimated. A small artificial example will be introduced to illustrate the difficulties
with this approach.

Suppose we have different types of 2-dimensional trajectories we would like to distinguish
and we decide to use three different transition functions fi and thus three different Markov
states. One model corresponding to a movement forward, another function corresponding to
a rightward turn and a last one corresponding to a turn to the left. Although the hidden
Markov states St remain unknown, one can in this way fairly accurately guess in which hidden
Markov state one has been, based on the observations Yt, if the noise level is not too great.
A large change in the heading angle, which is the angle of the direction of the object with
the north direction, now assumed to be the y-axis, is likely to correspond to a turn model.
Likewise, no change or a very tiny change in the heading angle is likely to correspond to the
transition function for the movement forward. Some change in the heading angle, say θ, must
be the threshold where the most likely model is not the movement forward anymore, but the
turn model to the right or left, depending on the sign of θ.

Now suppose one of the trajectories we would like to classify is an 8-pattern as shown in
Figure 2. This trajectory alternates between a sequence of left turns until a full circle has
been made and a sequence of an equal number of right turns the same number of right turns.
However, if the change in heading angle per time step is halved, while keeping the sequence
of right and left turns constant, one gets a zigzag pattern as in Figure 3. If we desire to
distinguish the 8-patterns and the zigzag-patterns, we are not be able to do so if the value
of θ is too small and thus the expected sequence of the hidden Markov states as well as the
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estimated probability transition matrix P would be identical. This is visualised in Figure 4
and 5, where the change in heading angle as well as the threshold values θ are plotted over
time. For both patterns the change in heading angle are at the same time above, below or
between the two thresholds θ and −θ.

Figure 2: 8-shaped trajectory
Figure 3: Zigzag-shaped trajectory

Figure 4: Change in heading angles of
an 8-shaped trajectory over time and low
threshold values −θ, θ.

Figure 5: Change in heading angles of
a zigzag-shaped trajectory over time and
low threshold values −θ, θ.

If on the other hand the value of θ is too large, one cannot distinguish between the straight
and turn models in the zigzag pattern, as shown in Figure 6 and 7. In Figure 6 we see
that the change in heading angles exceeds the thresholds at certain points in time for the
8-shaped trajectory, while the change in heading angles for the zigzag-shaped trajectory
never exceeds the thresholds, shown in Figure 7. We would the wrongly conclude the zig-zag
pattern always stays in the same mode. Moreover, if we have trajectories of mixed zigzag
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and 8-shaped patterns, three submodels cannot adequately describe the trajectory well and
we would not be able to distinguish that trajectory either from the pure 8-shaped trajectory
or the zigzag trajectory, depending on the value of θ.

Figure 6: Change in heading angles of
an 8-shaped trajectory over time and two
high threshold values θ

Figure 7: Change in heading angles of
a zigzag-shaped trajectory over time and
two high threshold values θ

The above example is of course artificial and its solution is straightforward: add two extra
modes corresponding to sharp turns right and left. However, for real situations it is not
straightforward how many modes and which transition functions should be chosen, since the
transitions may not only include change in direction, but also change in velocity, acceleration
and elevation, which may make manual setting of parameters prohibitively difficult.

Ideally, the number of modes, the transition functions and all parameters should be deter-
mined simultaneously in an optimized manner without any manual influence and this thesis
aims to come closer to this ideal procedure compared to the current practice. This thesis
builds further on the work of Richa (2018), who formulated a tracking and classification
procedure. It is outside the scope of this thesis to explain the existing modelling procedure
in detail, since many of its steps remain unaltered, but a bird’s eye view of the procedure is
given next.

Figure 8 gives a schematic overview of the steps that are taken sequentially to be able to
classify an object. These steps can be decomposed in three phases, the first being the model
building part. Here, the number of submodels, or hidden Markov states, is determined.
Moreover, the specific form of the transition functions f and g of Equations (2) and (3) are
determined, although parameters may still be undetermined. Others, most notably the pa-
rameters defining the cutoff between the different hidden Markov states, the aforementioned
change in heading angle threshold θ, are set in advance. The model building part of the pro-
cedure is currently done in a non-systematic manner, using expert knowledge and inspection
of the data. It is this phase of the procedure which will be addressed in this thesis.
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Figure 8: Existing model building procedure.

In the second phase, the non-fixed parameters of the model are estimated using the maximum
likelihood framework. For this the probability density functions of the observed variables Yt
are needed. Since these are too complex to calculate exactly, they are estimated using par-
ticle filtering and smoothing. The maximization is also too difficult to do analytically and
therefore the Expectation-Maximization (EM) algorithm is used instead.

In the last phase, the freshly built model is applied for tracking. In short, the Bayesian
statistics framework is used to obtain an estimate for the hidden continuous states Xt given
the observations Yt. In case one also needs to classify, all previous phases and steps are done
for the different classes and one thus has built and estimated a different model (1) - (3) for

each class i. One applies each model i separately to obtain the state estimates X̂
(i)
t . The

Bayesian classifier is used to choose the most probable class, by for each class i calculating
the posterior probability of the observation sequence given that the class of the process is i.
The final estimate of the hidden continuous state Xt is the average of the estimates for the

different models, weighted with the posterior probability of the classes, X̂t =
∑
i
wiX̂

(i)
t .
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Figure 9: Proposed new model building procedure.

In the procedure proposed in this thesis, shown in crude form in Figure 9, the non-systematic
part of the procedure is reduced. All the parameters are estimated in the new procedure;
either by EM, or for the number of hidden Markov states beforehand using a time series
procedure. Maximum likelihood estimation is not suitable to estimate the number of hidden
Markov states, since the likelihood is increasing in the number of hidden Markov states.
The class of models is still picked manually. Phase 2 and 3 of the existing procedure remain
virtually unchanged, although it is proposed that the a wider family of the transition functions
f is chosen, so that more parameters can be estimated with the EM algorithm.
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1.2 Research questions

As sketched in the introduction, the ultimate purpose of this research is to enhance the pro-
cedure for tracking and classification in a mathematically sound manner. This thesis will
focus on the model building aspect, especially the number of modes needed and we can thus
summarize the main research objective as:

Construct a procedure to determine the optimal number of hidden Markov States |S| for
the model of the form

P (St = i|St−1 = j) = Pji, (4)

Xt = fSt(Xt−1, Vt), (5)

Yt = g(Xt,Wt). (6)

This problem will be tackled by answering the following subquestions:

1. How can the optimal number of hidden Markov States be determined based on the
data?

2. How can the above methods be included in the existing overall procedure for tracking
and classification?

Since the model formulation in the main research question is very general, attention is re-
stricted to a specific class of models, where fSt is linear, which allows for more analysis.
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1.3 Thesis structure

Several procedures to determine the optimal number of hidden Markov states already exist.
In Chapter 2 these procedures are introduced. An overview of the various existing approaches
is given in Section 2.1 and necessary background information for the two procedures used in
the rest of the thesis is discussed in Section 2.2.

To answer the first research question, two approaches will be taken. In the first method,
the autocovariance structure of the model (4) - (6) is related to that of a simpler model.
Using this relation a lower bound of the number of hidden Markov states K can be obtained
in terms of parameters of the simpler model. This method, which will be called the autoco-
variance method, will be discussed in Chapter 3. In Section 3.1, the bounds of K in terms of
the parameters of the simpler model are obtained. In Section 3.2, methods to obtain the pa-
rameters of the simpler model are discussed. In Section 3.3, some experiments are performed
to establish the performance of the autocovariance method under various circumstances.

The second approach uses penalty functions to find the number of hidden Markov states.
More Markov states will lead to more flexibility and better fits of the data, but also to a
greater risk of overfitting the data. Penalty functions are criterions to be maximized, such as
the likelihood, while giving a penalty for the complexity of the model, such as the number
of parameters. The disadvantage of these methods is that it is often difficult to find the
right penalty so that it is severe enough, but not too severe. The penalty function approach
will be discussed in Chapter 4. In Section 4.1, penalty functions are introduced. In Sec-
tion 4.2, likelihood optimization is discussed, which is for the penalty functions considered
in this thesis the optimization needed to use the penalty function approach. In Section 4.3,
the EM algorithm is discussed, which is the likelihood optimization method used in this thesis.

In Chapter 5, both approaches will be applied to the tracking context. In Section 5.1,
the kinematic model is introduced. In Section 5.2, the assumptions of the two method ap-
proaches are recapped. In Sections 5.3 to 5.5, some of these assumptions are discussed in
detail for the specific kinematic model used. In Section 5.6, some experiments using the
kinematic model are discussed. Lastly, in Chapter 6 the research questions will be answered
and some recommendations are made for those wishing to put the results of this thesis to use.

This thesis contains several scientific contributions. A number of general theoretical re-
sults have been established, mostly derived in Section 3.1. If in this thesis a proof is provided
for a theoretical result, this result is new. For existing results, references are made to the
literature where a proof of the theorems can be found. Moreover, in this thesis the auto-
covariance method is to the best knowledge for the first time applied for multivariate time
series in this thesis. Lastly, the autocovariance method has hitherto mostly been applied in
economic contexts and in this thesis it will be applied to the tracking context for the first time.

To establish the necessary theory for especially the autocovariance method, this thesis con-
tains some parts which are mathematically demanding, while for practical users it may not
be necessary to know all theoretical details. Practice-oriented Readers may decide to skip
Lemma 2 in Section 2.2.2, Theorem 3, Lemma 4 and 5, and Theorem 6 in 3.1 and all proofs.
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Chapter 2

Background

In this chapter, the problem of choosing the number of hidden Markov states is put in a
wider context. Moreover, the existing solution directions of the problem are discussed, both
in Section 2.1. From this discussion, it becomes apparent that it is beneficial to restrict
attention of the general model formulation (4) - (6) to so-called Markov Switching VARMA
models. These models are discussed in Section 2.2.

2.1 Literature Review

Hidden Markov Models are a solution to the problem of time series segmentation. Various
scientific disciplines work with time series models which are not able to describe the entire
time series, but can describe part of the time series. Therefore, it is desirable to segment the
time series into blocks which are homogeneous within the blocks and heterogeneous between
blocks, although it is not obvious how to approach this.

One intuitive approach is iteratively checking where a time series can be split. This ap-
proach is often pursued in the field of data mining, where time series are usually segmented
to be able to represent the data in a simplified form, for instance as a point of a line, to
save on computer storage (Liu et al., 2008). Metaheuristics that are often used in this field
are the sliding window approach, where the current segment is allowed to grow in size until
it reaches a certain error criterion, the top-down approach which partitions the series in a
recursive manner until a certain error criterion is reached, and the bottom-up approach which
merges different partitions until some error criterion is reached (Keogh et al., 2001). The list
of approaches in other fields is extensive and varied and includes amongst others dynamic
programming (Kehagias et al., 2006), Bayesian procedure (Lee and Heghinian, 1977), sta-
tistical tests (Chow, 1960), (Buishand, 1982) and branch-and-bounding (Hubert, 2000). See
Basseville et al. (1993) for an extensive discussion on segmentation.

An alternative approach which is often taken in the tracking literature is the Multiple Models
method, first introduced in Magill (1965). In this method a set of models is used, which rep-
resents the various possible model patterns (modes). In the article of Magill, the model was
assumed to be chosen out of a set of models, but fixed over the time window. The outcomes
of the models are in this situation combined by taking a weighted average based on the con-
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ditional probability of the models given the data. In more recent versions of Multiple Model
Estimation, the active model may switch during each time period. In these cases finding the
optimal sequence of models needs to be considered, although this is for long time-lengths
intractable, since the number of possible sequences grows exponentially. Several heuristics
have been proposed, the first one in Ackerson and Fu (1970), often focusing on pruning or
merging the various sequences. Later, the Multiple Models method was extended to the
Variable Structure Multiple Models method, in which the set of models depends on the time
period. See for instance Li et al. (2000).

The other approach often taken in the tracking literature are hidden Markov models, first
introduced by Baum and Petrie (1966). Hidden Markov Models are used in various scientific
disciplines, including biology, speech recognition, econometrics and finance. The disadvan-
tage of this method compared to many of the other methods is that one needs to make
an additional choice determining the number of hidden Markov states, which is often not
straightforward to do, since the likelihood function is increasing in the number of hidden
Markov states.

Beal et al. (2002) circumvent this problem by introducing an infinite HMM, based on a
hierarchical Dirichlet process (Ghosal and Van der Vaart, 2017). A Dirichlet Process is a
stochastic process which generates probability distributions as an outcome. In the hierar-
chical model a Dirichlet Process determines in which lower-level Dirichlet Process one is.
This lower-level Dirichlet Process generates the transition probabilities of the hidden Markov
states. Each hidden Markov state has so-called emission probabilities for the observed vari-
ables drawn from some distribution. The model is infinite because a transition happens to
an already visited state with probability proportional to the number of visits to that state
and to one of the infinitely many unvisited states with probability based on some parameter.
Although there is an infinite number of hidden Markov states available, only a finite num-
ber will be visited. By using a suitable learning procedure, the infinite HMM can be used
to estimate the suitable number of hidden Markov states in a normal HMM, by examining
the number of visited hidden Markov states. Fox et al. (2010) extended this idea to linear
dynamic models with continuous variables, including state-space models.

Several statistical tests for hypothesis testing on the number of hidden Markov states in
Hidden Markov Models have been proposed. General tests as the likelihood ratio test and
the Lagrange Multiplier test do not have their usual convergence behaviour, since the regular-
ity conditions are unfulfilled, for example because of unidentified parameters in the transition
matrix of the hidden Markov states under the null hypothesis (Lange and Rahbek, 2009).
A solution proposed by Hansen (1992) is to look at the supremum of the likelihood ratio
statistic over the possible parameters, which gives an upper bound of the statistic value. The
same principle is also applied to the Langrange Multiplier test and the Wald Test (Altissimo
and Corradi, 2002). The disadvantage of these procedures is that they only deliver upper
bounds for the test statistics. An alternative approach would be to generate artificial time
series by means of simulation and use those to determine critical values. The disadvantage
of this approach is that it requires the estimation of many Hidden Markov Models, which
has great computational cost (Franses et al., 2014). Another disadvantage depending on the
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application may be the asymmetric handling of the null and alternative hypothesis due to
the nature of hypothesis testing.

In contrast to these frequentist methods, Robert et al. (2000) take a Bayesian approach,
where they do the intractable inferences by means of the reversible jump Markov Chain
Monte Carlo method. A disadvantage of this method are the low acceptance probabilities in
their Monte Carlo method they reported, slowing down the convergence behaviour.

Another solution direction, taken by MacKay (2002) is minimizing the distance between
the empirical distribution function of the data and the distribution function of the Hidden
Markov model, penalized by the log values of the stationary probabilities. Also other pe-
nalized objective functions have been considered, such as penalized likelihood functions by
Rydén (1995), who proves that a certain class of these penalized functions asymptotically
provide an upper bound on the number of hidden Markov states. This approach is often
chosen in practice due to its conceptual simplicity, with selection based on the Akaike Infor-
mation Criterion (AIC) or the Bayesian Information Criterion (BIC) being the most used.
The AIC, an approximation of the Kullback-Leibler (KL) divergence, often overestimates the
correct number of hidden Markov states to be chosen and Smith et al. (2006) have proposed
an alternative KL divergence-based criterion designed for hidden Markov regression models,
the Markov Switching Criterion.

In the financial literature, HMMs have been first introduced by Hamilton (1989) as regime
switching models, which are a generalization of Hidden Markov Models where the observable
states depend not only on the hidden Markov state, but also on the observable states at
previous timestamps in a linear manner. These models have been related to autoregressive
moving average (ARMA) models by Zhang and Stine (2001). In their paper they derive an
upper bound for the order of the autoregressive and moving average lags in the ARMA model
as a function of the number of regimes. These can be used to obtain a lower bound on the
number of regimes when the autoregressive and moving average orders are known. Since
ARMA models are widely used in finance and econometrics, methods to obtain these orders
are well investigated. Cavicchioli (2014) has obtained bounds for a related class of Markov
switching time series models.

State-space models with Markov Switching can be seen as yet another generalization of
HMMs and regime switching models, where the dependence between the current observable
state and the previous observable states is not necessarily linear. Literature on the deter-
mination of the number of hidden discrete states in Markov Switching State Space Models
(MS SSMs) is limited: apart from the aforementioned paper by Fox et al. (2010), who only
considers linear MS SSMs, no literature has been found which addresses this issue for general
MS SSMs.
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2.2 Theory on time series

From the previous literature review, we can conclude that if we want to be able to use
techniques of the existing literature, in most cases we need to restrict our attention to linear
models. Since with certain penalty functions we can obtain an upper bound on the number
of the number of hidden Markov states and with the method of Zhang and Stine (2001) we
can obtain a lower bound, these methods are investigated in more detail. In the following
section, the relevant background theory on time series will be discussed. First, in Section
2.2.1, a general introduction to Autoregressive Moving Average (ARMA) models will be
given. Afterwards, in Section 2.2.2, time series with an underlying Markov process will
be introduced. See for more elaborate background on multivariate time series for instance
Lütkepohl (2005), which is the major source of the following subsection.

2.2.1 Background on time series

A time series is a chronological collection of M -dimensional vectors {yt} over some time pe-
riod, where t may be continuous or discrete and the time period may be infinite. In this
thesis it will be assumed that t ∈ Z and that the time series has been going on indefinitely.
Moreover, it is assumed the time periods between two observations yt and yt−1 are equidis-
tant. This latter assumption may be relaxed, as long as later explicit assumptions on for
example stationarity or distribution do hold. However, these are often violated if the time
periods are not of equal length.

Often, it is the case there is a strong intertemporal dependence between the variables of
interest yt, which gives rise to modelling those variables yt as being a function of past obser-
vations Yt, the history of the time series at time t. A widely used class of time series models
is the vector ARMA (VARMA) model in which the variables can be expressed as:

yt = A1yt−1 +A2yt−2 + ...+Apyt−p +B1εt−1 + ...+Bqεt−q + εt. (7)

The first p terms on the right hand side of the equation are the autoregressive (AR) terms
of the equation and Ai are the M × M parameter matrices of these AR terms. The M -
dimensional sequence {εt} is a time series of so called white noise, which means it has zero
mean, constant variance and exhibits no correlation within the time series:

Definition 1 (White noise). A process {εt} is a white noise process if the following hold:

• E[εt] = 0 ∀t,

• E[εtε
T
t ] = Σ ∀t where Σ is a constant matrix,

• E[εtε
T
s ] = 0 ∀t 6= s.

The variable εt can be interpreted as a random shock at time t. In VARMA models the ran-
dom shocks of past time periods, the moving average (MA) terms, have direct influence on
the variable yt and are incorporated in the model as B1εt−1, ..., Bqεt−q, where the parameter
matrices Bi are of size M ×M . In AR models, that is VARMA models without MA terms,
random shocks of past time periods also have effect on future values of the time series {yt},
but then indirectly through the autoregressive terms.
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The VARMA(p, q) model can be written compactly as

Ap(L)yt = Bq(L)εt, (8)

where L is the lag operator, that is Lyt ≡ yt−1 and Ljyt ≡ yt−j , and Ap(L) and Bq(L) are
respectively the AR polynomial and the MA polynomial:

Ap(L) = I −A1L− ...−ApLp,
Bq(L) = I +B1L+ ...+BqL

q.

An important characteristic of time series is stationarity, of which there are multiple, related
definitions (Karlin, 2014). A stochastic process is stationary in the strict sense if the joint
unconditional probability density function does not depend on the time period:

Definition 2 (Strict stationarity). A stochastic process {yt} is strictly stationary if the joint
distribution of {yt1 , ..., ytn} is the same as the joint distribution of {yt1+τ , ..., ytn+τ} for all
values τ, t1, ..., tn ∈ Z and for all positive integers n.

A related, slightly weaker form of stationarity is k-th order stationarity:

Definition 3 (k-th order stationarity). A stochastic process {yt} is k-th order stationary if
the joint distribution of {yt1 , ..., ytn} is the same as the joint distribution of {yt1+τ , ..., ytn+τ}
for all values τ, t1, ..., tn ∈ Z and for all positive integers n ≤ k.

A last form of stationarity is stationarity in the wide sense:

Definition 4 (Wide sense stationarity). A stochastic process is stationary in the wide sense
if:

• E[yt] = µy, ∀t, where µy is a constant.

• E[(yt − E[yt])(yt − E[yt])
T ] = Σy, ∀t, where Σy is constant and finite

• E[(yt − E[yt])(yt+h − E[yt+h])T ] = γy(h), ∀h > 0 and ∀t. That is, the autocovariance
matrix of the process only depends on the time difference h and not on the time period
t.

Stationarity in the strict sense implies k-th order stationarity for all k and k-th order station-
arity implies wide sense stationarity for k ≥ 2 if the first two moments are finite. However,
wide sense stationarity does not necessarily imply second order stationarity.

A last thing to note is that certain time series may only be stationary in the limit for
t→∞, since the values of yt depend on y0, where the strength of the dependence decreases
for t → ∞. In that case the mean and variance of yt may be unequal to the mean and
variance of yt−1 for finite t. Such a process is called asymptotically stationary. It is assumed
all time series started in the infinite past and we thus do not differentiate between asymptotic
stationarity and non-asymptotic stationarity.

The roots of the AR-polynomial can be used to formulate a sufficient condition for (asymp-
totic) wide sense stationarity:
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Definition 5 (Stability). A VARMA process is stable if the AR-polynomial satisfies:

det(Ap(z)) 6= 0, ∀ z ∈ C s.t. |z| ≤ 1,

where Ap(z) is the AR-polynomial in z: Ap(z) = I −A1z − . . .−Apzp.

Lemma 1 (Stationarity Condition: Lütkepohl (2005), Proposition 2.1). A stable VARMA
process is wide sense stationary.

A characteristic of stable VARMA time series is that the effects of random shocks fade over
time. In case there is a unit root solution to the AR-polynomial, that is |z| = 1, random
shocks persist over time and the process is said to exhibit a stochastic trend. A notable
example of a stochastic process with a unit root is the random walk, which is the univariate
AR(1) process yt = yt−1 + εt. If there is a solution in the interior of the unit circle of the AR-
polynomial, the influence of random shocks is growing over time. This possibility is often not
considered in the literature (Franses et al., 2014). The situation where the AR-polynomial
has unit roots occurs frequently and such processes are said to be integrated:

Definition 6 (Integrated process). A stochastic VARMA process which has an AR-polynomial
that has d unit roots is called a d-th order integrated (I(d)) random process, d = 0, 1, 2, . . ..

A VARMA(p, q) process which is d-th order integrated is called a VARIMA(p, d, q) process.
For some multivariate stochastic processes some of the variables might share a stochastic
trend, in which case we call the multivariate process cointegrated:

Definition 7 (Cointegrated process). A stochastic process {yt} is cointegrated of order (d,b)
if all components of the process are I(d) and there exists a linear combination zt = βyt such
that zt is I(d− b). β is called the cointegration vector.

Often when a stochastic process {yt} is not stationary, the stochastic process {yt − yt−1} =
{∆yt} is stationary. Note that we can always try to factorize (1−L) from the AR-polynomial
Ap(L) such that we obtain a new polynomial A∗p(L) for which holds Ap(L)yt = A∗p(L)(1 −
L)yt = Bq(L)εt. In case z = 1 is a solution to the AR-polynomial Ap(z) = 0, the factorized
polynomial A∗p(z) contains one fewer unit root. In many of the univariate non-stationary time
series encountered in practice, there is a sole unit root equalling z = 1 and differencing causes
the time series {∆yt} to be stable by Definition 5 and thus stationary following Lemma 1.

This idea is used in Vector Error Correction Models (VECM), introduced by Granger (1981).
If we have a cointegrated VAR(p)-model in which all variables are I(1) or I(0), the corre-
sponding VECM is:

∆yt = Πyt−1 + Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + ut. (9)

In the above equation, {ut} is a white noise process, Π = −(IM − A1 − . . . − Ap) and
Γi = −(Ai+1 + . . . + Ap), where IM is the identity matrix of dimension M . Assuming the
process {∆yt} is stable, the right hand side of Equation (9) must be too. Since the regressors
∆yt−1, . . . ,∆yt−p+1 are stable, Πyt−1 must be too and thus the variables yt are cointegrated
with the rows of Π as cointegration vectors (Kilian and Lütkepohl, 2017, p76). The term
Πyt−1 is the error correction term, which indicates how short term deviations from the long
run equilibrium relations, or cointegration relations, are corrected, hence the name Vector
Error Correction Model.
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2.2.2 Markov switching time series

A Markov Switching (MS) time series model is a time series model where the parameters
vary between the time periods and are determined by an unobservable, or hidden, Markov
process. A Markov Process {St} is a stochastic process with the property that the future is
independent of the past given the present. More precisely P (St+1 = st+1|S0 = s0, . . . , St =
st) = P (St+1 = st+1|St = st), for all states s0, . . . , st+1 and all time periods t. It is assumed
in this thesis that the reader has basic knowledge on Markov Processes. In this thesis, we
assume that the Markov Process {St} is irreducible, stationary and ergodic, that is aperiodic
and positive recurrent. Moreover, we assume that {St} has a finite number of states.

If we assume that the time series {yt} given the state St is linear in the past observations
and past shocks, the stochastic process {St, yt} can be expressed as:

yt = A1,styt−1 + . . .+Ap,styt−p +B1,stεt−1 + . . .+Bq,stεt−q + εt, (10)

where the covariance matrix of εt may also depend on the state st. The outcomes of the
Markov process st are called the modes of the joint stochastic process {St, Yt}. Note that the
matrices Ap,st may be 0 for some states st, so that the order (p, q) may effectively be different
for different states st. We will call model (10) with the process {St} having a cardinality of
K an MS(K) VARMA(p, q) model.

Since an MS VARMA process can be seen as a mixture of K different VARMA processes, one
may expect that the switching process is stationary if each of the K submodels is a stationary
process. However, this is neither a necessary, nor a sufficient condition for stationary. Francq
and Zaköıan (2001) have investigated stationarity conditions for the process {xt}, where

xt = µst +

p∑
i=1

Ai,stxt−i + εt +

q∑
j=1

Bj,stεt−j

is of a slightly more general model family than yt of Equation 10, since it is an M -dimensional
MS VARMA process with a mode-dependent mean µst . It is assumed the white noise process
εt can be written as εt = Σstηt, where Σst functions as the mode-dependent covariance matrix
and ηt is i.i.d. The process is rewritten as an MS(K) VAR(1) process {zt} as follows:

zt = ωt + Φtzt−1. (11)

In the above equation ωt = µt + εt,

µt =



µst
0
...
0
0
0
...
0


, zt =



Xt

Xt−1
...

Xt−p+1

εt
εt−1

...
εt−q+1,


,Σt =



Σst

0
...
0

Σs,t

0
...
0


Φt =



A1,st A2,st . . . Ap,st B1,st . . . Bq,st
Ik 0 . . . 0 0 . . . 0
... Ik

. . .
. . .

...
...

. . .
...

0 0 . . . Ik 0 0 . . . 0
0 0 . . . 0 0 . . . 0
0 0 . . . 0 Ik 0 . . . 0
...

. . .
. . .

...
... Ik

. . .
...

0 0 . . . 0 0 . . . Ik 0


,
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where µt and zt are M(p+q)-dimensional vectors, Σt is an M(p+q)×M -dimensional matrix
and Φt is an M(p + q) ×M(p + q)-dimensional matrix. The matrix Φt can be decomposed
as a block matrix as follows:

Φt =

[
At Bt
0 J

]
,

with At =


A1,st A2,st . . . Ap,st
Ik 0 . . . 0
... Ik

. . .
. . .

...
0 0 . . . Ik 0

 , Bt =


B1,st . . . Bq,st

0 . . . 0
...

. . .
...

0 . . . 0

 and Jt =


0 . . . 0
Ik 0 . . . 0
... Ik

. . .
...

0 . . . Ik 0

.

The sufficient stationary condition formulated by Francq and Zaköıan (2001) requires the
top Lyapunov exponent, which for the time series (11) is defined as:

γ = inf
t∈N

E
1

t
log ||ΦtΦt−1 . . .Φ1||. (12)

The stationarity condition is as follows:

Lemma 2 (Francq and Zaköıan (2001), Theorem 1). If the top Lyapunov exponent γ defined
in Equation (12) is strictly negative, the time series (11) converges a.s. and Xt is strictly
stationary.

It was shown that instead of the top Lyapunov exponent in the above lemma, using the
quantity γ′ can be used, which is easier to calculate. Where

γ′ = inf
t∈N

E
1

t
log ||AtAt−1 . . . A1||. (13)
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Chapter 3

Autocovariance method

In this chapter, the autocovariance method will be discussed, which allows for the estimation
of a lower bound on the number of hidden Markov states for MS VARMA models. The main
component of this method is are theorems tying the autocovariance of an MS VARMA(p, q)
model to that of a non-MS VARMA(p∗, q∗) model with formulas tying the number of hidden
Markov states K to the values of p, q, p∗ and q∗. The steps of the autocovariance method are
shown in Figure 10. We assume that there is a data set coming from an MS VARMA model
and that we do not know the number of modes K or any other parameters of the model,
except the AR and MA orders p and q. If needed and possible, we transform the data to MS
VECM(0,q) data by differencing the observations in step 2. In step 3, we obtain the orders
p∗ and q∗ using a so-called order selection method. Lastly, in step 4 we apply the formula,
tying K to p, q, p∗ and q∗.

Figure 10: The practical procedure of the autocovariance method to obtain a lower bound
on the number of hidden Markov states.
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In this chapter, the necessary theoretical steps are taken to be able to use and fully grasp this
practical procedure. For clarity, these theoretical steps are visualised in a diagram in Figure
11. To obtain the formulas of step 4 in Figure 10, we need to relate the autocovariance
function of a non-MS VARMA model to that of an MS VARMA model. Step 1 of the
theoretical steps, the autocovariance function of a non-MS VARMA model, is discussed in
Section 3.1.1. The rest of Section 3.1 is used to obtain multiple lower bounds, step 3, by
means of the autocovariance functions of the MS VARMA and MS VECM models, step
2. In Section 3.2, order selection methods to obtain the unknown parameters p∗ and q∗

are discussed, corresponding to step 4. In Section 3.3, some experiments are performed to
establish the performance of the autocovariance method under various circumstances.

Figure 11: Theoretical steps taken to establish the autocovariance method.
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3.1 Relation ARMA and MS time series

The idea to use the relation between Markov Switching time series models and ARMA time
series to determine the number of hidden Markov states is not new. Several authors have
proven that certain specific MS models have the same autocovariance structures as ARMA
models. Karlsen (1990) relates the MS AR(1) model with K modes to an ARMA(p,q)
model with p ≤ K and q ≤ K − 1 for scalar time series. Zhang and Stine (2001) provide
conditions for which the autocovariance of general stochastic processes can be related to
that of VARMA models. Moreover, they provide explicit bounds on the number of modes
K for VAR(p) models. Francq and Zaköıan (2001) provide stricter bounds under the same
conditions. Cavicchioli (2014) provide even stricter bounds in case the regime variable is
uncorrelated with the observable variable. In the next subsection the main results of the
latter three papers are introduced, after which these results are extended to be able to give
bounds for cointegrated time series in Section 3.1.2.

3.1.1 Stationary Markov Switching Time Series

Beguin et al. (1980) identified a necessary and sufficient condition for stochastic processes
to possess a scalar ARMA representation. Zhang and Stine (2001) extended this result to
multidimensional stochastic processes:

Theorem 3 (Zhang and Stine (2001), Theorem 1). A M -dimensional second-order stationary
process {Yt} with mean zero has a minimal VARMA(p,q) representation if and only if the
autocovariance function γY (h) = E[YtY

T
t−h], h ∈ Z is such that (p, q) is the smallest pair for

which there exist M ×M matrices A1, . . . , Ap, Ap 6= 0 such that:

γY (h)−A1γY (h− 1)− . . .−ApγY (h− p)

{
= 0 , if h ≥ q + 1,

6= 0 , if h = q.
(14)

With having a minimal (V)ARMA representation, we mean in this thesis that the au-
tocovariance function of the process γY (h) is equal to the autocovariance γ∗(h) of some
(V)ARMA(p∗, q∗) process and where p∗ is the lowest autoregressive order for which this
holds and q∗ is the lowest moving average order for which this holds, given that the autore-
gressive order is p∗.

The following two lemmas, generalizations of a result of Zhang and Stine (2001, Lemma
1) by Cavicchioli (2014) provides a tool to see whether Theorem 3 holds, as will become clear
in later proofs.

Lemma 4 (Cavicchioli (2014), Theorem 4). If the autocovariance function γY (h) of an M -
dimensional second-order stationary process {Yt} satisfies:

B(L)γY (h) = aTQhb (15)

for h ≥ q ≥ 0, where a, b ∈ Rn×M\{0}, Q ∈ Rn×n and B(L) =
p∑
i=0
BiL

i is a p-th degree lag

polynomial with Bi ∈ RM×M , B0 = Im, Bp 6= 0, then {Yt} has a VARMA(p∗, q∗) representa-
tion where p∗ ≤ n+ p and q∗ ≤ n+ q − 1.
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In the following lemma, a different generalization of Lemma 1 of Zhang and Stine is introduced
and proved. The proof is along the lines of that of Zhang and Stine.

Lemma 5. If the autocovariance function γY (h) of an M -dimensional second-order station-
ary process {Yt} satisfies:

γY (h) = aTQh−cb (16)

for h ≥ c ≥ 0, where a, b ∈ Rn×M\{0} and Q ∈ Rn×n then {Yt} has a VARMA(p∗, q∗)
representation where p∗ ≤ n and q∗ ≤ n+ c− 1.

Proof. By the Cayley-Hamilton theorem (see for instance Straubing (1983)), there exist pa-
rameters φ1, . . . , φn such that

Qn − φ1Q
n−1 − . . .− φnIn = f(Q) = 0,

where f(λ) is the characteristic polynomial of Q. It follows that

aTQd(Qn − φ1Q
n−1 − . . .− φnIn)b = 0,

for d = 0, 1, . . .. The above equation can be expressed as

γY (n+ d+ c)− φ1γY (n+ d+ c− 1)− . . .− φnγY (c+ d) = 0, for d = 0, 1, 2, . . .

It follows that Equation (14) in Theorem 3 is satisfied with p = n and h ≥ n+ c, which gives
us an upper bound on the smallest pair (p∗, q∗) which satisfies that equation: p∗ ≤ n and
q∗ ≤ n+ c− 1.

The above three results are useful, since they provide a tool to know whether a stochastic
process can be represented as a VARMA model. If we can find an expression for the auto-
covariance function of the MS process and manage to write it in the form of Equation (15)
or (16), it is possible to bound the orders of the corresponding non-MS VARMA models
p∗, q∗ from above. For the Markov Switching time series models considered this bound turns
out to depend on the number of hidden Markov states of the Markov process K. If we can
estimate the order of the corresponding VARMA model, we can thus gain a lower bound on
the number of hidden Markov states K.

All the following lemmas and theorems provide such bounds for the order of the correspond-
ing VARMA models, where the proofs rely on finding expressions for the autocorrelation
function and using Lemmas 4 and 5. Another result of the literature we need is that of
Karlsen (1990), who has provided a formula for the autocovariance function of functions of
the form Yt = AstYt−1 + ΣstVt. The exact form is not of interest in this thesis, although it is
important to know that the autocovariance function can be written in the form of Equation
(15).

Theorem 6 (Karlsen (1990), Theorem 4.1). Let Yt be an MS time series of the form
Yt = Ust +Ast(Yt−1 −Ust−1) + ΣstVt, where Ust functions as a mode-dependent mean. If the
absolute values of all eigenvalues of the matrix

diag{((Πi,Π
−1
j + Πi)⊗ (Πi,Π

−1
j + Πi)), i = 1, . . . ,K, j = 1, . . . ,K}(P T ⊗ IM2), (17)

23



are smaller than 1, the covariance of Yt can be expressed in the form aTQhb.

Zhang and Stine used Lemma 4 to obtain a bound on VAR(p) processes. This bound is
extended to VARMA(p,q) processes in Corollary 8.

Theorem 7 (Zhang and Stine (2001), Theorem 4). A stationary M -dimensional MS VAR(p)
process {Yt}, with K modes has a VARMA(p∗, q∗) representation, with p∗ ≤ K(Mp)2 and
q∗ ≤ K(Mp)2 − 1.

Corollary 8. A stationary M -dimensional MS VARMA(p,q) process {Yt}, with K modes
has a VARMA(p∗, q∗) representation, with p∗ ≤ K(M(p+ q))2 and q∗ ≤ K(M(p+ q))2 − 1

Proof. A MS VARMA(p,q) process can be written as an MS VAR(1) process with M(p+ q)
variables. Substituting M ′ = M(p+ q) and p′ = 1 in Theorem 7 gives the desired result.

The above bounds are in general not tight and can be improved on without any additional
assumptions:

Theorem 9 (Francq and Zaköıan (2001), Section 4.3). A stationary M -dimensional MS
VARMA(p,q) process {Yt}, with K modes has a VARMA(p∗, q∗) representation, with p∗ ≤
KM(p+ q) and q∗ ≤ KM(p+ q).

With an additional assumption Cavicchioli (2014) has shown that for MS VAR(p) processes
of the form

Ap,st(L)Yt = vst + Σstεt, (18)

stricter bounds are possible. vst is an intercept vector which given the state st is constant.
The matrix [v1 − vK , ..., vk−1 − vK ] must be different from the zero matrix. This is satisfied
if not all vst are equal. In case these are all equal, a translation of the variables Ỹt ≡ Yt + c,
where c is some constant may be enough to obtain the correct form.

Theorem 10 (Cavicchioli (2014), Theorem 7). Let {Yt, St} be an M -dimensional MS VAR(p)
process of the form of Equation (18) with K Markov states, where {Yt} are the observed
variables and {St} is the hidden Markov process. If the indicator ISt+h=k is uncorrelated
with Yt for all h ≥ 0 and all k, then Yt has a stable VARMA(p∗, q∗) representation with
p∗ ≤ K + p− 1, q∗ ≤ K − 1.

The assumption that the Markov process St is uncorrelated with the observed time series is
counterintiative, since there is a direct causal relation between these two processes. However,
correlation is neither a sufficient nor a necessary condition for causation and in certain cases
the condition may hold, which in Section 5.4 will be discussed further.

Above theorem can be extended to MS VARMA(p, q) processes. The proof is along the
lines of the proof of Theorem 10 of Cavicchioli.

Theorem 11. Let {Yt, St} be an M -dimensional stationary MS(K) VARMA(p,q) process of
the form

Ap,st(L)Yt = vst +Bq,st(L)εt, (19)

with Ap,st 6= 0, Bq,st 6= 0, where {Yt} are the observed variables and {St} is the irreducible,
stationary and ergodic hidden Markov process. If the indicator 1St+h=k is uncorrelated with Yt
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for all h ≥ 0 and all k, then Yt has a stable VARMA(p∗, q∗) representation with p∗ ≤ K+p−1,
q∗ ≤ K + q − 1.

Proof. We will first rewrite Equation (19) in such a way that the subscripts st are replaced
by a variable ξt, which is a vector with its i-th entry equal to 1 if st = i and the other entries
equal to zero. Afterwards we will find an expression of the covariance of both the left hand
side and the right hand side of the rewritten Equation (19) with Yt. As a last step we apply
Lemma 4.

Let the Markov Chain St have transition matrix P = (pji) and stationary probabilities
π. We can express the process {ξt} as a VAR(1) model

ξt = P T ξt−1 + ut,

where ut = ξt − E [ξt|ξt−1]. Let E[ξt] = π, then E[ξtξ
T
t+h] = DP h, with D = diag(π1, . . . , πk).

Let Ap(L) = [Ap,1(L), . . . , Ap,K(L)] be the vector of the K different AR-polynomials of the
different Markov states and set Bq(L) = [Bq,1(L), . . . , Bq,K(L)] to be the vector of the MA-
polynomials. Moreover, let V = [v1, . . . , vK ] be the vector with the K different intercepts.
Then we can rewrite Equation (19) as

Ap(L)(ξt ⊗ IM )Yt = V ξt +Bq(L)(ξt ⊗ IM )εt. (20)

Now define Xt as the left hand side of this equation. We can express cov(Xt+h, Yt) in terms
of the autocorrelation function of Yt, γY (h)

cov(Xt+h, Yt) = cov(Ap(L)(ξt+h ⊗ IM )Yt+h, Yt)

= E[(Ap(L)(ξt+h ⊗ IM )Yt+h − E[Ap(L)(ξt+h ⊗ IM )Yt+h])(Yt − E[Yt])
T ]

= Ap(L)E[((ξt+h ⊗ IM )Yt+h − E[(ξt+h ⊗ IM )Yt+h])(Yt − E[Yt])
T ]

= Ap(L)E[((π ⊗ IM )Yt+h − E[(π ⊗ IM )Yt+h])(Yt − E[Yt])
T ]

= Ap(L)(π ⊗ IM )cov(Yt+h, Yt)

= Ap(L)(π ⊗ IM )γY (h),

where the fourth step can be taken since St+h and Yt are uncorrelated.

We now examine the right hand side of Equation (20). We will rewrite this a second time,
now by replacing ξt with δt, which is defined to be δt = (ξ1,t − π1, . . . , ξK−1,t − πK−1). The
(K − 1)-dimensional, zero mean process {δt} can also be expressed as an AR(1) model

δt = Fδt−1 + wt, (21)

with wt = [IK−1,−1K−1]ut, where 1K−1 is a K − 1-dimensional vector of ones and

F =

 p11 − pK1 . . . pK−1,1 − pK1
...

. . .
...

p1,K−1 − pK,K−1 . . . pK−1,K−1 − pK,K−1

 .
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It follows from the AR(1) representation of Equation (21) that δt+h = F hδt +
h−1∑
j=0

F jwt+h−j .

The right hand side of Equation (20) then becomes

V ξt +Bq(L)(ξt ⊗ IM )εt = V π + Ṽ δt + B̃q(L)(δt ⊗ IM )εt +Bq(L)(π ⊗ IM )εt. (22)

Here Ṽ = [v1−vK , . . . , vK−1−vK ] and B̃q(L) = [Bq,1(L)−Bq,K(L), . . . , Bq,K−1(L)−Bq,K(L)].
Now set the right hand side of Equation (22) equal to Xt, which is naturally equal to the
previously defined Xt. We again examine the covariance of Xt+h with Yt. For h > q

cov(Xt+h, Yt) = cov(V π + Ṽ δt+h + B̃q(L)(δt+h ⊗ IM )εt+h +Bq(L)(π ⊗ IM )εt+h, Yt)

= cov(Ṽ δt+h, Yt)

= E[Ṽ F hδtY
T
t ]

= Ṽ F hE[δtY
T
t ].

The expression for h ≤ q is different and not of interest. Equating the two expressions for
cov(Xt+h, Yt), we get that Ap(L)(π ⊗ IM )γY (h) = Ṽ F hE[δtY

T
t ]. This is in the right form to

use Lemma 4 with q replaced by q + 1. We then obtain that the MS VARMA(p,q) process
has a VARMA(p∗, q∗) representation with p∗ ≤ K + p− 1 and q∗ ≤ K + q − 1.

3.1.2 Cointegrated time series

In this section, the results of the previous section are extended to differenced time series. This
will enable the autocovariance method to be used for cointegrated time series that become
stationary when they are differenced. We first proof a result for cointegrated time series
without the assumption that St+h is uncorrelated with Yt for all h ≥ 0. Afterwards we will
improve on the following result, while making this additional assumption.

Theorem 12. Let {∆Yt} be a stationary MS VECM(0,q) process, ∆Yt = ΠstYt−1 +Bq(L)Vt
where the process {St} has K modes. If the process has invertible matrices Πst∀st and if the
absolute values of all eigenvalues of the matrix

diag{((Πi,Π
−1
j + Πi)⊗ (Πi,Π

−1
j + Πi)), i = 1, . . . ,K, j = 1, . . . ,K}(P T ⊗ IM2), (23)

are smaller than 1, then {∆Yt} has a VARMA(p∗, q∗) representation, for which it holds that
p∗ ≤ K2M(1 + q) +KM and q∗ ≤ min

(
K2M +KM + q, (KM)2 +KM + q − 1

)
.

Proof. The process {∆Yt} can be expressed as:

∆Yt = ΠstYt−1 +Bq(L)Vt

Yt = (I + Πst)Yt−1 +Bq(L)Vt

Πst+1Yt = Πst+1(I + Πst)Yt−1 + Πst+1Bq(L)Vt

Define Xt = Πst+1Yt. Then we can write the above equation as:

Xt = Ds′t
Xt−1 +B′q(L)Vt, (24)
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with s′t = (st+1, st), Ds′t
= Πst+1Π−1

st + Πst+1 and B′q(L) = B′q(L, s
′
t) = Πst+1Bq(L). Since

{St} is a Markov process, the process {S′t} is as well with at most K2 modes, where all states
(Si, Sj) with transition probabilities PSi,Sj = 0 are omitted from the Markov Chain. As a
first step, it is proven that {S′t} is ergodic. For {S′t} to be aperiodic, every state (Si, Sj)
must be able to occur at each time period t. Since {St} is aperiodic, Si can happen every
time period and since {St} is a Markov Chain, the transition from Si to Sj must happen
with the same probability in each time step. If this probability is positive, the state (Si, Sj)
can happen every time period, if the probability is 0, the state never occurs and was omit-
ted from the combined Markov Chain {S′t}. This applies to any state (Si, Sj) of {S′t} and
therefore the combined Markov Chain is aperiodic. Moreover, the combined Markov Chain is
positive recurrent. To see this, note that the probability to ever return from any non-omitted
state (Si, Sj) to (Sk, Sl) is by the Markovian property equal to PSi,Sjr(Sj , Sk)PSk,Sl

, where
r(Sj , Sk) is the recurrence probability from state Sj to Sk. Since this probability is strictly
positive, as the original Markov Chain is positive recurrent and the transition probabilities are
strictly positive as well, since the two combined states are not omitted, PSi,Sjr(Sj , Sk)PSk,Sl

is strictly positive. We can thus conclude that the Markov Chain {S′t} is ergodic.

Since ∆Yt is stationary, Xt is as well and therefore Xt is a stationary M-dimensional MS
VARMA(1,q) process. It follows from Theorem 7 and 9 that Xt has a VARMA(p’,q’) repre-
sentation with p∗ ≤ K2M(1 + q), q∗ ≤ K2M(1 + q) and q∗ ≤ K2(M(1 + q))2 − 1. Moreover,
since the eigenvalues of the matrix of Equation (23) are inside the unit circle, the autocovari-
ance function can be written as aTxQxbx, following Theorem 6.

Since ∆YT = Xt−1 + Bq(L)Vt, we can express the covariance function of ∆Yt for h > q
as

E[∆Yt∆Y
T
t−h] =E[(Xt−1 +Bq(L)Vt)(Xt−h−1 +Bq(L)Vt−h)T ],

=E[Xt−1X
T
t−h−1] + E[Bq(L)VtX

T
t−h−1] + E[Xt−1(Bq(L)Vt−h)T ]

+ E[Bq(L)Vt(Bq(L)Vt−h)T ],

=E[XtX
T
t ] + E[Xt−1(Bq(L)Vt−h)T ],

where the last step follows from the white noise property of Vt. For general q, the last term
can be expressed as

E[Xt−1(Bq(L)Vt−h)T ] =E[Ds′t−1
(Ds′t−2

(. . . (Ds′t−h−q
Xt−h−q−1 +B′q(L, s

′
t−h−q)Vt−h−q)

+B′q(L, s
′
t−h−q+1)Vt−h−q+1) . . .)

+B′q(L, s
′
2)Vt−2) +Bq(L, s1)Vt−1)(Bq(L, st−h)Vt−h)T ],

which after working out the brackets and the lag polynomials can due to lack of autocorre-
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lation of the white noise Vt be simplified to

E[Xt−1(Bq(L)Vt−h)T ] = E[(Ds′t−1
. . . Ds′t−h−q+1

Πst−h−q+1
B0,st−h−q

Vt−h−q

+Ds′t−1
. . . Ds′t−h−q+2

Πst−h−q+2
B1,st−h−q+1

Vt−h−q + . . .

+Ds′t−1
. . . Ds′t−h+1

Πst−h+1
Bq,st−h

Vt−h−q)V
T
t−h−qB

T
q,st−h

]+

E[(Ds′t−1
. . . Ds′t−h−q+2

Πst−h−q+2
B0,st−h−q+1

Vt−h−q+1

+Ds′t−1
. . . Ds′t−h−q+3

Πst−h−q+3
B1,st−h−q+2

Vt−h−q+1 + . . .

+Ds′t−1
. . . Ds′t−h+2

Πst−h+2
Bq,st−h+1

Vt−h−q+1)V T
t−h−q+1B

T
q−1,st−h

] + . . .+

E[(Ds′t−1
. . . Ds′t−h+1

Πst−h+1
B0,st−h

Vt−h

+Ds′t−1
. . . Ds′t−h+2

Πst−h+2
B1,st−h+1

Vt−h + . . .

+Ds′t−1
. . . Ds′t−h+q+1

Πst−h+q+1
Bq,st−h+q

Vt−h)V T
t−hB

T
0,st−h

]

Expressing the above expectation in terms of Πst−i and rearranging terms leads to

E[Xt−1(Bq(L)Vt−h)T ] = E[Πst(I + Πst−1) . . . (I + Πst−h−q+1
)B0,st−h−q

Vt−h−q

+ Πst(I + Πst−1) . . . (I + Πst−h−q+2
)B1,st−h−q+1

Vt−h−q + . . .

+ Πst(I + Πst−1) . . . (I + Πst−h+1
)Bq,st−h

Vt−h−q)V
T
t−h−qB

T
q,st−h

] + . . .

+ E[Πst(I + Πst−1) . . . (I + Πst−h+1
)B0,st−h

Vt−h

+ Πst(I + Πst−1) . . . (I + Πst−h+2
)B1,st−h+1

Vt−h + . . .

+ Πst(I + Πst−1) . . . (I + Πst−h+q+1
)Bq,st−h+q

Vt−h)V T
t−hB

T
0,st−h

]

Let the variance of Vt be Σ, E[VtV
T
t ] = Σ, P the probability transition matrix of the stochas-

tic process {St}, Pj,i = P (St = i|St−1 = j), D the diagonal matrix of the steady state
probabilities of {St}, Di,i = π(i), Ml = diag{Bl,i, i = 1, ..,K}, MΠ = diag{Πi, i = 1, ..,K}

and MI+Π = diag{I + Πi, i = 1, ..,K}. Let by convention
h∏
k=2

ak = 1 if h < k. Then we can

formulate the expectation as

E[Xt−1(Bq(L)Vt−h)T ] =

q∑
l=0

q∑
m=0

 K∑
i1=1

P (st−h+l−m = i1)

K∑
i2=1

Pi1,i2 . . .

K∑
ih+m−l=1

Pih+m−l−1,ih+m−l
×

Πih+m−l

h+m−l∏
k=2

(I + Πik)Bl,i1ΣBT
m,im−l−1

)
.

This expression can be rewritten in matrix form. For q = 0 this results in

E[Xt−1(Bq(L)Vt−h)T ] =(1K ⊗ IM )TMΠ(P T ⊗ 1M×M )
(
MI+Π(P T ⊗ 1M×M )

)h−1×
M0(D ⊗ IM )(Σ⊗ Ik)MT

0 (1K ⊗ IM ),

which is in the form aTQh−1b. Letting MPBΠ = diag{i,
K∑
k=1

PkiB0,k(πk ⊗ IM )}, we obtain for
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q = 1:

E[Xt−1(Bq(L)Vt−h)T ] =

(1K ⊗ IM )TMΠ

(
MI+Π(P T ⊗ 1M×M )

)h
MI+ΠMPBΠ(Σ⊗ Ik)MT

1 (1K ⊗ IM )

+ (1K ⊗ IM )TMΠ(P T ⊗ 1M×M )
(
MI+Π(P T ⊗ 1M×M )

)h−1
M1(Σ⊗ Ik)MT

1 (1K ⊗ IM )

+ (1K ⊗ IM )TMΠ(P T ⊗ 1M×M )
(
MI+Π(P T ⊗ 1M×M )

)h−1
M0(Σ⊗ Ik)MT

0 (1K ⊗ IM )

+ (1K ⊗ IM )TMΠ(P T ⊗ 1M×M )
(
MI+Π(P T ⊗ 1M×M )

)h−2×
M1(P T ⊗ 1M×M )(Σ⊗ Ik)MT

0 (1K ⊗ IM ). (25)

It follows that the autocovariance can be expressed as aTQh−2b for h ≥ 2. For gen-
eral integer q the expression gets more lengthy but similar in the form aTQh−q−1b, with
Q = MI+Π(P T ⊗ 1M×M ) a KM ×KM matrix.

Now let

a∆Y =
[
axQ

q+1
x , a

]
,

Q∆Y =

[
Qx 0
0 MI+Π(P T ⊗ 1M×M )

]
, and

b∆Y =
[
bx, b

]
.

Then E[∆Yt∆Y
T
t−h] = aT∆YQ

h−q−1
∆Y b∆Y for h ≥ q + 1. It follows from Lemma 5 that

p∗ ≤ K2M(1 + q) +KM and q∗ ≤ min
(
K2M +KM + q, (KM)2 +KM + q − 1

)
.

The bound of Theorem 10 can also be used to obtain a bound for MS VECM(0,q) models,
where the first steps of the derivation are the same as the above proof. However, the result
only holds if Xt = ΠSt+1Yt is uncorrelated with {St+h, St+h+1} for h > 0. Since Vt is white
noise and thus uncorrelated with Yt−1, Xt is uncorrelated with {St, St+1} if and only if ∆Yt
is uncorrelated with {St+h, St+h+1} for h > 0, or equivalently with {St+h}.

Theorem 13. Let {∆Yt} be a stationary MS VECM(0,q) process , ∆Yt = ΠstYt−1 +Bq(L)Vt
where the process {St} has K modes. If the process has invertible parameter matrices Πst ,∀st
and if the indicator ISt+h=k is uncorrelated with {∆Yt} for all h ≥ 0 and all k = 1, . . . ,K,
then {∆Yt} has a VARMA(p∗, q∗) representation, with p∗ ≤ K2 and q∗ ≤ K2 + q.

Proof. As in the previous proof, define Xt = Πst+1Yt, such that

Xt = Ds′t
Xt−1 +B′q(L)Vt.

Since ∆Yt = Xt−1 +Bq(L)Vt, we have that

∆Yt −Bq(L)Vt = Ds′t−1
(∆Yt−1 −Bq(L)Vt−1) +B′q(L)Vt−1,

∆Yt = Ds′t−1
∆Yt−1 − (Ds′t−1

Bq(L)−B′q(L))Vt−1 +Bq(L)Vt.

And thus {∆Yt} is an MS VARMA(1,q+1) process with K2 modes. Let ∆̃Yt = ∆Yt− c. It is
straightforward to see this is an MS VARMA(1,1) process in the form of Equation (19) with

K2 modes as well. Applying Theorem 11 with the process {∆̃Yt}, we obtain that p∗ ≤ K2

and q∗ ≤ K2 + q.
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The condition that {∆Yt} is uncorrelated with {St} is for instance fulfilled if {Yt} is uncor-
related with {St+h}, for each h > 0 and the mean of Yt is stationary.

Note that the technique of the proof of Theorem 13 can also be used to obtain a bound
when no assumption is made on the correlation between ∆Yt and St, but that this bound is
slightly weaker than that of Theorem 12. However, one does not need the condition that the
eigenvalues of the matrix in Equation (23) are inside the unit circle.

Theorem 14. Let {∆Yt} be a stationary MS VECM(0,q) process, ∆Yt = ΠstYt−1 +Bq(L)Vt
where the process {St} has K modes. If the process has invertible matrices Πst∀st, then {∆Yt}
has a VARMA(p∗, q∗) representation, with p∗ ≤ K2M(2 + q) and q∗ ≤ K2M(2 + q).

Proof. As shown in the proof of Theorem 13, the process ∆Yt can be expressed as an MS
VARMA(1,q+1) process. The result follows from Corollary 8.

The above theorems provide a way to estimate a lower bound on the number of modes K,
if the order p∗, q∗ of the VARMA(p∗, q∗) model having the same autocovariance structure
as the MS VARMA(p, q) can be estimated. In the following section various order selection
methods are discussed.
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3.2 Order selection

3.2.1 Order selection

Often, it is not theoretically clear which orders of p and q are most suitable for a VARMA(p, q)
model. An important tool in determining these orders is the autocorrelation function (ACF),
since different orders of p and q give rise to different characteristic ACFs. The ACF is defined
as follows:

R(k) = Rk = D−1/2ΓkD
−1/2,

where D is a diagonal matrix with the variances of the j-th univariate variables yjt of the
multivariate time series Yt on its diagonal, Djj = Var(yjt) and Γk is the k-th order autoco-
variance, Γk = E[(yt − E[yt])(yt−k − E[yt−k])

T ]. A function related to the ACF is the partial
autocorrelation function (PACF) Ψ where Ψ(k) is defined as the matrix Ψk in the regression:

yt = A1yt−1 + ...+Ak−1yt−k+1 + Ψkyt−k + ut.

In above regression equation, {yt−i}ki=1 are the regressors and {Ai}ki=1 and Ψk are the pa-
rameter matrices estimated in the regression.

For pure AR models, the order p can easily be obtained from the PACF, since Ψk = 0
for k > p. Similarly, the order of pure MA models can easily be obtained from the ACF,
since Rk = 0 for k > q. Comparing the empirical PACF and ACF with the theoretical coun-
terparts for various ARIMA models was suggested first by Box and Jenkins (1970), as part
of the Box-Jenkins method, which is a wider approach for ARIMA model building. Tiao and
Box (1981) have extended this approach to multivariate time series.

However, for ARMA models where both p, q > 0, the relation between the (P)ACF and
the ARMA order is less clear by inspection and it is often too difficult to obtain p and q
exactly from the empirical ACF and PACF, although it can provide a good first idea. Velicer
and Harrop (1983) showed in an experimental setting that students having followed a course
in time series analysis were more often than not unable to correctly identify generated uni-
variate ARIMA(p, d, q) models with low orders p, d and q, even if p or q equalled 0. The
Box-Jenkins and Tiao-Box methods are, therefore, in practice a rather unreliable manner of
order selection.

Although the research into systematic approaches for ARMA order identification is extensive,
there is, unfortunately, no recent literature or experimental review on this topic. Therefore,
there are no straightforward best approaches. Choi (1992) claimed that the existing methods
at that time could be categorized in penalty function methods, innovation regression meth-
ods and pattern identification methods. Penalty function methods include selection based on
criteria like AIC and BIC or other penalty functions, although this requires knowledge about
the distribution of the error terms, which is a rather strong assumption. Moreover, one needs
to estimate parameters for each model under consideration, which may be computationally
expensive. Innovation regression methods are methods based on a regression equation of the
form of Equation (7) of Section 2.2.1, where the lagged error terms are for instance replaced
by estimates of a previous iteration, or where the whole equation is estimated by means of
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maximum likelihood estimation.

Pattern identification methods choose the order based on the autovariance structure. Note
that a VARMA(p,q) process can be expressed as

p∑
i=0

Aiyt−1 =

q∑
i=0

Biεt−i,

where A0 = B0 = I. After some algebraic manipulations, this leads to the multivariate
Yule-Walker equations (Pollock, 2011):

p∑
i=0

AiΓτ−i =

q∑
i=τ

BiΣΨT
i−τ . (26)

Using estimates of the covariances, several procedures to obtain the orders of the VARMA
model have been suggested, such as the three pattern method (Choi, 1993), the R and S
array method (Gray et al., 1978), the Corner method (Beguin et al., 1980) and the extended
sample autocorrelation function (ESACF) method (Tsay and Tiao, 1984). An advantage of
these pattern identification methods is that no assumptions need to be made about the distri-
bution of the errors εt, apart from being white noise. However, not all of the aforementioned
methods have been constructed for multivariate ARMA processes.

More recently, several metaheuristics have been applied to the ARMA order selection prob-
lem succesfully, such as genetic algorithms (Abo-Hammour et al., 2012), threshold acceptance
(Winker, 2000), or search algorithms (Höglund and Östermark, 1991).

Another approach makes use of the eigenpairs of the data covariance matrix. Liang et al.
(1993) developed such a technique and showed that the eigenvalues of the data covariance
matrix tend to zero when the order of ARMA models is greater than or equal to the real order
in idealized situations. Lardies and Larbi (2001) used this property to propose an approach
for estimating the order of multivariate AR models and Cassar et al. (2010) extended this
approach to multivariate ARMA models. The disadvantage of this approach is that it heavily
relies on normality of the errors εt.

In this thesis, a method is necessary which makes use of the autocovariance structure only
and which is able to extract the order from multivariate time series. Although several au-
thors have developed theory on the autocovariance method of multivariate time series, to
our best knowledge experimental work in the literature hitherto only exists for 1-dimensional
time series. In particular, the order selection method they used, the three pattern method,
is only formulated for univariate models. No multivariate pattern recognition methods have
been found which are solely based on the autocovariance structure. Nevertheless, two order
selection methods have been selected to be implemented and used in experiments, although
this leaves question marks about the validity of using such methods.

We will make use of the multivariate ESACF method by Tiao and Tsay (1983), which will
be discussed in the next section. This choice is motivated by the fact that the distribution
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of the errors can be unspecified, the low computational complexity and that that method
scored best in an empirical comparison between different pattern identification methods by
Chan (1999).

The second method that is implemented is the approach making use of the eigenvalues of
the data covariance matrix by Cassar et al. (2010). This method is chosen, since it relies on
the covariance structure, is easy to implement and has a relatively short running time. The
methods will be discussed below.

3.2.2 ESACF

In this section, the basic intuition of the ESACF method will be given and the algorithm
itself will be described. For a more thorough discussion of the method, see the original paper
of Tiao and Tsay (1983).

Suppose we have data Yt coming from an ARMA(p,q) process and assume for the moment
that p is known while q is unknown. We try to fit an AR(p) model on this process by means
of the regression:

Yt =

p∑
i=1

θ
(0)
i,(p)Yt−i + e

(0)
p,t ,

where θ
(0)
l,(p) are the parameters of the AR(p) model. If q > 0, this AR(p) model is not

adequate and the error estimates ê
(0)
p,t are not white noise, but still contain some information

about Yt. We could then do the following second regression:

Yt =

p∑
i=1

θ
(1)
i,(p)Yt−i + β

(1)
1,(p)ê

(0)
p,t−1 + e

(1)
p,t .

If q ≥ 2, the regression is still not fully adequate and the errors e
(1)
p,t contain further information

about Yt. However, if q ≤ 1, the model is consistent. In particular, when q = 0, the estimates

β̂
(1)
1,(p) would converge in probability to 0 for increasing sample size. Similarly, for general q,

in the regression

Yt =

p∑
i=1

θ
(q+1)
i,(p) Yt−i +

q+1∑
j=1

β
(q+1)
j,(p) ê

(j−1)
p,t−j + e

(q+1)
p,t , (27)

the parameters β̂
(q+1)
q+1,(p) converge in probability to 0 and the errors e

(q)
p,t−j are thus uncorrelated

with Yt. The ESACF method uses this property by performing these regressions for every p
and checking whether the correlation between Yt and the errors is significantly different from
0.

Algorithm 1 shows the pseudocode of the ESACF method. Apart from the time serie data
Yt, we need to predefine the maximum orders pmax and qmax for p and q that are being con-
sidered for the model. As a first step we do the AR(p) regressions for all values of p. Instead
of doing the auxiliary regressions of Equation (27), we can calculate the same parameters
recursively using the formula shown in line 10, saving computation time. In this equation,
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θ̂
(q−1)
0,(p) is defined to be −I for all p and q. To do the recursive calculations, we need higher

order AR(p) regressions, which is why initially we need to do pmax + qmax + 1 regressions.
Once the parameters are obtained, we check by means of statistical testing whether there

is no significant autocorrelation left in the errors of the regression, denoted W
(q)
p,t in the al-

gorithm. We fill a matrix A with the results of these statistical tests. If there is indeed no
autocorrelation, a 0 is filled in. If there is autocorrelation an 1 is filled in. Koreisha and
Yoshimoto (1991) advise to use three standard deviations from 0 as a threshold.

Algorithm 1 ESACF Method

Require: a (multivariate) time series Yt, some maximum orders pmax, qmax

1: for p = 0 to pmax + qmax do

2: Perform regression on the equation Yt =
p∑
i=1
θ

(0)
i,(p)Yt−i + e

(0)
p,t to obtain {θ̂(0)

i,(p)}
p
i−1.

3: end for
4: for q = 1 to qmax do
5: for p = 0 to pmax + qmax − q do
6: if p = 0 then
7: ρ̂p(q)← the correlation matrix Corr [Yt, Yt−q]
8: else
9: for i = 1 to p do

10: θ̂
(q)
i,(p) ← θ̂

(q−1)
i,(p+1) − θ̂

(q−1)
p+1,(p+1)

[
θ̂

(q−1)
p,(p)

]−1
θ̂

(q−1)
i−1,(p).

11: end for
12: end if
13: if p ≤ pmax then

14: W
(q)
p,t ← Yt −

p∑
i=1
θ̂

(q)
i,(p)Yt−i

15: ρ̂p(q)← the correlation matrix Corr
[
W

(q)
p,t ,W

(q)
p,t−q

]
16: if every entry of |ρ̂p(q)| ≤ 3/

√
n− p− q then

17: A(p, q)← 0
18: else
19: A(p, q)← 1
20: end if
21: end if
22: end for
23: end for
24: (p∗, q∗ + 1) ← the indices of the vertex of the maximum upper right triangle in A with

only 0-entries
25: return p∗, q∗

Theoretically, the matrix A should contain a triangular pattern of zeros such that the entries
(i, j) = 0 for i = p∗, j ≥ q∗ and for the pairs (i, j) with i = p∗ + k, j ≥ q∗ + k for all
positive integers k, where p∗ and q∗ are the real orders of the ARMA process. In words:
the vertex of the triangle of zeros is (p∗, q∗) and extends along the diagonal and the row to
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higher orders. Due to randomness, the triangular pattern may not hold exactly. Tiao and
Tsay do not provide a method to distill the order from a noise matrix A, other than human
judgement. However, the Statistical Analysis System (SAS) recommends to choose the vertex
of the maximum triangle with only 0 entries as the chosen order (SAS institute, 1999), which
is the approach being followed in this research .

3.2.3 Eigenvalue method

The method of Cassar et al. (2010) is based on the observation that for a given VARMA(p, q)
time series, the minimum value of the Bayesian Information Criterion (BIC) can be expressed
in terms of the eigenvalues of the data covariance matrix. The whole derivation of the original
paper will not be repeated here, but the main idea is presented in this section.

For an M -dimensional VARMA(p, q) time series yt with N observations, define the data
matrix Dp,q as the N ×M(p+ q + 1) matrix with the i-th row

D(i)
p,q = [yTi , y

T
i−1, . . . , y

T
i−p, e

T
i−1, . . . , e

T
i−q]

for each i. Assume yi and ei are zero vectors when i ≤ 0. Moreover, define the M(p+q+1)×M
parameter matrix θp,q as

θp,q = [IM , A
T
1 , . . . , A

T
p ,−BT

1 , . . . ,−BT
q ]T ,

where Aj is the parameter matrix of the j-th AR-term and Bk the parameter matrix of the
k-th MA term. Then, the N ×M -sized vector of errors e = [e1, . . . , eN ]T can be expressed
as e = Dp,qθp,q. The errors ei are usually unknown, but are suggested to be estimated by
fitting a high order AR model to the data. Lastly, define the data covariance matrix as
Rp,q = DT

p,qDp,q.

Suppose that for a given order p and q, we wish to minimize the BIC defined as

BIC = −2 ln fy(y1, . . . , yN ) + C lnN,

where C is the number of parameters and fy the probability density function of the obser-
vations. Assume the errors are normally distributed, then fy(y1, . . . , yN ) = fe(e1, . . . , eN ),
which can be expressed as

fe(e1, . . . , eN ) =
1

(2π)MN/2
det(Qe)

−N/2e−
1
2
θTDT

p,qQ
−1
e Dp,qθp,q ,

with Qe defined as the covariance matrix of the errors. The covariance matrix Qe which
minimizes this density function and thus the BIC can be shown to be θTp,qRp,qθp,q. The vector
θ which minimizes the criterion is equal to the eigenvectors corresponding to the 2M smallest
eigenvectors of Rp,q. Substituting this in leads, after some algebraic manipulations, to the
following expression1:

4

N
BIC = ln

(
2M∏
i=1

λi

)
NC/N . (28)

1The formula given in Cassar et al. (2010) contains a mistake, as it states the product over the eigenvalues
runs from 1 to M, which is not in line with their derivation.

35



In the above equation λi is the i-th smallest eigenvalue of the data covariance matrix Rp,q.

Algorithm 2 Eigenvalue Method

Require: a (multivariate) time series Yt, some maximum orders pmax, qmax, an initial thresh-
old value T , threshold value γ (both recommended to be 5)

1: Estimate the error terms et from a higher order AR model
2: for p = 0 to pmax do
3: for q = 0 to qmax do
4: Calculate the eigenvalues of the data covariance matrix Rp,q
5: Calculate BIC∗(p, q) using Equation (29)
6: end for
7: end for
8: for p = 1 to pmax do
9: CR(p, 0)← BIC∗(p− 1, 0)/BIC∗(p, 0)

10: for q = 1 to qmax do
11: RR(0, q)← BIC∗(0, q − 1)/BIC∗(0, q)
12: RR(p, q)← BIC∗(p, q − 1)/BIC∗(p, q)
13: CR(p, q)← BIC∗(p− 1, q)/BIC∗(p, q)
14: PM(p, q)←RR(p, q)×CR(p, q)
15: end for
16: end for
17: repeat
18: if All (p, q)-pairs are explored then
19: T ← T − 1
20: All (p, q)-pairs become unexplored
21: end if
22: p∗, q∗ ← (p, q)-pair with highest PM-value which is still unexplored
23: until PM(p∗, q∗) ≥ TPM(p∗ + 1, q∗) and PM(p∗, q∗) ≥ TPM(p∗, q∗ + 1)
24: if p∗ = 1 and CR(1,0) ≤ γ then
25: p∗ ← 0
26: end if
27: if q∗ = 1 and RR(0,1) ≤ γ then
28: q∗ ← 0
29: end if
30: return p∗, q∗

Above derivation provides an approach based on the BIC to come to an optimal order p and
q without estimating the parameters and covariance matrix explicitely for each value p and
q, but by calculating the eigenvalues of the matrix R for each p and q until some predefined
upper bounds pmax and qmax. Instead of using Equation 28 to calculate the BIC, its exponent
is calculated, dropping some multiplicative constants:

BIC∗ =

(
2M∏
i=1

λi

)
NM2(p+q)/N . (29)

Moreover, Cassar et al. (2010) noticed that rather than choosing the order p and q by min-

36



imizing the BIC criterion, in practice better results are obtained by choosing the order in
such a way that there is a big drop in the BIC value, compared to lower orders of p and
q. For this purpose, a column ratio (CR) matrix is constructed, where its (p, q) element is
the ratio BIC∗(p − 1, q)/BIC∗(p, q). Similarly, the row ratio (RR) matrix is constructed
with element (p, q) equal to BIC∗(p, q − 1)/BIC∗(p, q). The elementwise product of these
matrices, resulting in the product matrix PM, are used to find the largest drop in the BIC
value. See Algorithm 2 for the exact procedure.

This procedure is only able to identify VARMA orders p, q ≥ 1. To check whether either
order would need to equal 0, Camilleri (2012, p56) notes that if p = 0, the first row of the
CR matrix is expected to have values close to 1 and if q = 0, the first column of the RR
matrix is expected to have values close to 1. In contrast, if p = 1, the first entry of the first
row of the CR matrix will have a high value. Likewise, the first entry of the first column
of the RR matrix is high for q = 1. Therefore, if the above procedure finds that p = 1 or
q = 1, the first entry of the CR respectively RR matrix is checked. If this value is lower than
some parameter γ, the order is chosen to be 0, otherwise the order is chosen to be 1. From
experiments conducted during this final project, it was concluded that γ = 5 leads to the
most correct classifications.

From the derivation of the eigenvalue method, it gets clear the method is not guaranteed
to work for MS VARMA models or MS VECMs. The autocovariance of these models are
equal to the autocovariance of some VARMA model, however this is generally not the case
for the density function of the observations. It is therefore not certain that the order (p∗, q∗)
of the VARMA model with equal autocovariance structure to the MS VARMA model, is also
the order which would minimize the BIC criterion.

Another theoretical problem is that the data covariance matrix does not only consist of
terms yty

T
t−h, but also of the terms yte

T
t−h and ete

T
t−h. The errors from a Markov Switching

process are estimated by means of a non-Markov Switching process, which may cause large
errors in the estimates of the errors and thus in the data covariance matrix. Moreover, the
error covariance structure may not represent that of a VARMA process with autocovariance
structure E[yty

T
t−h]. However, also for non-Markov Switching VARMA models the error terms

are estimated in a ruther crude manner and one would therefore expect the method to be
rather robust to misestimations of the errors.
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3.3 Synthetic experiments

In this section, several synthetic time series are generated and analyzed to determine the
tightness of the methods introduced in the previous sections. First, in Section 3.3.1, to
examine the strength of the methods, several stationary time series are randomly generated
under different conditions and Theorem 11 is used to obtain a lower bound on the number of
hidden Markov states. Afterwards, in Section 3.3.2, an experiment is performed where time
series are differenced to compare the lower bounds of Theorem 11 and 13.

3.3.1 Non-differenced time series

Theorem 11 has only been used very sparsely in the existing literature and, therefore, not
much is known about the tightness of the lower bound in practice. In the paper of Cavicchioli
(2014) which introduced the method, a synthetic experiment was performed. However, these
time series seemed to violate the assumption that the Markov state St should be uncorrelated
with the observations Yt. In order to have a first idea of the performance of the autocovari-
ance method, several synthetic time series are randomly generated. Of these time series, the
number of hidden Markov states is estimated using the autocovariance method, assuming the
time series is uncorrelated with the hidden variable, so that the formula of Theorem 11 can
be applied, which is stricter than the formulas of Corollary 8, Theorem 9 and Theorem 14.
The goal of the synthetic experiments is to investigate if the method indeed results in a lower
bound and which conditions lead to tighter lower bounds. For this purpose, stationary time
series are generated. All time series are MS VARMA(1,0) time series, where all elements of
the parameter matrix A1 are outcomes of a uniformly distributed random variable distributed
on the interval (−1, 1). If the resulting time series was non-stationary, another time series
was generated with random parameters.

Various scenarios were investigated, where the time series were of different dimension M ∈
{1, . . . , 4}, different number of hidden Markov states K ∈ {2, . . . , 5}, varying amount of vari-
ance, varying amount of data available and two varying types of transition matrices. The
variances of the random noise were set to be equal to σIM for all hidden Markov states,
where σ ∈ {0.1, 1, 5} and IM is the identity matrix of dimension M . The noise is gener-
ated as i.i.d. (multivariate) Gaussian random variables with mean 0. The time series length
N ∈ {1000; 10, 000}. The probability transition matrix P is either a uniform matrix, that is
Pij = 1

K for all i, j, resulting in almost constant switching, or P is a random matrix generated
in such a manner that there is relatively few switching. For each i = 1, . . . ,K, the i-th row of
the matrix P is generated by generating a row vector of i.i.d. variables generated uniformly
from the interval (0, 1). This vector is standardized so that the sum of the elements of the
vector equals 0.2. Lastly 0.8 is added to the i-th element of the i-th row vector. For all com-
binations, 100 time series were generated of length N + 50, where the first 50 observations
were discarded to decrease the influence of the starting up of the time series generation. With
these time series, the lower bounds on the number of hidden Markov states were estimated.
The autoregressive and moving average orders p = 1 and q = 0 of the MS VARMA(p,q) model
were assumed known, while the other parameters were assumed unknown. The orders p∗, q∗

of the VARMA(p∗, q∗) model were estimated using the eigenvalue method with maximum
orders considered 9, ignoring that the time series were Markov Switching time series. The
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resulting values p∗, q∗ were used to obtain a lower bound on the number of hidden Markov
states K̂ by the formula K̂ = max{q∗ + 1, p∗}.

To examine the effects of these varying parameters in isolation, the results are aggregated for
all experiments with certain values for K and for the parameters under consideration. These
are shown in Tables 1 to 4. For instance in Table 1, the point estimate of the probability
that a randomly generated MS VARMA(1,0) with K hidden Markov states coincides with
the obtained lower bound when a sample has sample size N is available, where the other
parameters vary. In parentheses, the Clopper-Pearson confidence interval is given (Clopper
and Pearson, 1934). Table 2 to 4 have similar structure.

N = 1000 N = 10000

K = 2 0.736 (0.718,0.753) 0.800 (0.783,0.815)
K = 3 0.191 (0.176,0.207) 0.268 (0.250,0.286)
K = 4 0.031 (0.025,0.039) 0.077 (0.067,0.088)
K = 5 0.010 (0.007,0.015) 0.025 (0.019,0.032)

Table 1: Correctly classified orders with varying sample size N

σ = 0.1 σ = 1 σ = 5

K = 2 0.771 (0.751,0.792) 0.748 (0.727,0.769) 0.784 (0.763,0.804)
K = 3 0.237 (0.217,0.258) 0.218 (0.199,0.239) 0.233 (0.213,0.254)
K = 4 0.056 (0.046,0.069) 0.053 (0.043,0.065) 0.053 (0.043,0.065)
K = 5 0.020 (0.014,0.028) 0.018 (0.013,0.026) 0.015 (0.010.0.022)

Table 2: Correctly classified orders with varying standard deviation σ

The aspect which is most striking is that there is a strong relation between the number
of hidden Markov states K and the chance the lower bound coincides with K. For K = 2,
this amount is decent, while for K = 4 and K = 5 the number of hidden Markov states
seldomly coincides with the lower bound in these experiments. For ease, if K coincides with
the lower bound, this will be called a correct classification, although strictly speaking, the
lower bound is also correct if any value less or equal than K is obtained. An explanation
for the relatively high rate of correct classifications for K = 2 is that the eigenvalue method
was originally not designed to classify orders p∗, q∗ < 1. As mentioned in Section 3.2.3, the
author of this method proposed an extension of the method to be able to distinguish between
the situation where p∗ or q∗ equals 0 and where either or both equals 1, but this method did
not seem to perform well in these experiments. Part of the experiment was repeated, where
if either p∗ or q∗ was found to be equal to 1, the ESCAF was applied to determine whether
p∗ or q∗ equals 0 or 1 according to that method. These led to a very minor change in the
results, but to a sizeable increase in runtime.

Since if q∗ = 1, K̂ is at least 2, the number of hidden Markov states was rarely estimated to
be 1, even for non-MS time series models. Since one does not expect a lot of overestimations
of the order, based on the theoretical results, the order is often correctly classified for K = 2.
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A first conclusion of this experiment is that the lower bound generally becomes less tight
when the number of hidden Markov states grows larger.

Examining the effect of changing the sample size in Table 1, it becomes apparent that there is
a significant positive effect on the percentage of correct classifications for larger sample sizes.
Curiously enough, this effect does not seem to be present for the magnitude of the noise
σ. An explanation would be that the randomness induced by the Markov state transitions
is more important than the randomness of the white noise. Another explanation is that a
sample size of N = 1000 is already large enough for the effect of the random noise to cancel
out, while this is not the case for the sequences of the hidden Markov states. Either way,
one expects the hidden Markov state transitions to be important. This is in line with the
results of Table 3, which shows that if the probability transition matrix P is uniform, one
is almost never able to correctly classify the number of hidden Markov states K if K ≥ 3.
In 98% of the generated time series with uniform matrix P , one obtains an estimate K̂ ≤ 2,
while if the time series stays in the same state for a longer time period, this percentage is
only 50%. If the MS VARMA time series switches less often from hidden Markov state,
there are longer stretches of the time series which evolve in distinct ways, which are easier to
distinguish than many short stretches. This provides a plausible explanation for the strong
effect of the structure of probability transition matrix P on the ability to classify. Interest-
ingly enough, the algorithm also overestimates the number of hidden Markov states more
often if P is nonuniform, for K = 2 in 21% of the cases. This may be explained by the fact
that if the time series stays in a specific state for a relatively long period of time, that time
series may evolve in a nonstationary manner for that period. Time series in a specific mode
may be nonstationary, which other modes can compensate. However, for short periods of
time, the observations may grow exponentially. Since the eigenvalue method cannot handle
nonstationary time series well, the results obtained may then be less reliable.

Table 3: Correctly classified orders with varying probability transition matrix P
Uniform P Nonuniform P

K = 2 0.871 (0.858,0.884) 0.664 (0.645,0.683)
K = 3 0.014 (0.010,0.020) 0.444 (0.425,0.464)
K = 4 0.000 (0.000,0.002) 0.108 (0.096,0.121)
K = 5 0.000 (0.000,0.002) 0.035 (0.028,0.043)

Table 4: Correctly classified orders with varying observation dimension M
M = 1 M = 2 M = 3 M = 4

K = 2 0.566 (0.538,0.594) 0.790 (0.767,0.813) 0.862 (0.842,0.881) 0.853 (0.833,0.873)
K = 3 0.210 (0.183,0.229) 0.187 (0.166,0.210) 0.248 (0.225,0.274) 0.277 (0.252,0.303)
K = 4 0.016 (0.010,0.025) 0.048 (0.038,0.062) 0.065 (0.052,0.080) 0.087 (0.072,0.104)
K = 5 0.000 (0.000,0.003) 0.013 (0.008,0.021) 0.028 (0.020,0.038) 0.031 (0.023,0.042)

A last observation is that the performance of the order classification improves significantly
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with increasing dimension of the observations, when comparing for instance the confidence
intervals for M = 2 and M = 4. This may be explained by the fact that the difference (in
matrix norm) between the parameter matrices Ak can be bigger for higher dimensions, which
increases the distinctness between the hidden Markov states.

Above analysis gives a first idea which hyperparameters lead to favourable order classifica-
tions. However, even for a given set of these hyperparameters N,M,K, σ and P , the variabil-
ity in the lower bound obtained may be large. As a small experiment, 400 time series were ran-
domly generated in the same way as described above, with M = 4,K = 5, σ = 0.1, N = 50000
and a nonuniform probability transition matrix P , as above analysis showed that these pa-
rameters would lead to favourable order classifications. In Table 5, the classifications of these
time series are listed.

Table 5: Classifications of 400 randomly
generated time series with 5 Markov
States

K̂ Amount classified

1 13
2 11
3 169
4 130
5 60
6 8
7-9 9

We can see that of these 400 instances,
the lower bound is now tight in more cases
than for the above tabulated cases with
K = 5, although this still remains rela-
tively rare. Note that if the formula of
Theorem 9 was used, only lower bounds
of 1, 2 and in very rare cases 3 would
be obtained, showing the weakness of the
bound.

We would expect that the markedness of the
different transition matrices Ak matters for the
tightness of the bound. However, when analysing
the correlation between the distance of the tran-

sition matrices
∑

i,j:i 6=j ||Ai−Aj ||2 and the estimated number of Markov states K̂, we see that
the correlation is almost zero, with a point estimate of 0.018. An explanation for this phe-
nomenon is that randomly generated matrices which are further apart from each other in norm
have a higher chance of leading to non-stationary modes, which the algorithm cannot handle
well. Consider for example the time series with again M = 4,K = 5, σ = 0.1, N = 50000, P
nonuniform and where Ai is a matrix with each entry i+ 5c equals 0.9 and the other entries
equal 0, where c = 0, 1, 2, . . . and matrix entries are counted from left to right and top to
bottom, such that the first row contains entries 1 to M and the second M + 1 until 2M .
The norm difference between these parameter matrices is quite small, 1.45-1.69, compared to
randomly generated matrices where it is more than 2 for most random matrices. However,
when 100 time series were generated from these matrices Ai, 73 were classified correctly as
having 5 hidden Markov states. If all positive entries of these matrices Ai are set equal to 1.8
instead of 0.9, the time series is still stationary, but once in a while there are short periods
where the magnitude of the series explodes. The result is that the estimated number of hid-
den Markov states is a highly fluctuating variable, which provides almost no information on
the true number of hidden Markov states. If instead all positive entries of the matrices Ai are
set to 0.3 instead of 0.9, the estimated order is virtually always K̂ = 2, since the difference
between the transition matrices becomes too small to detect.
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Table 6: Classifications of 100 randomly generated time series with 3 Markov States
K̂ Amount classified using Yt Amount classified using ∆Yt
1 0 5
2 22 95
3 59 0
4 15 0
5 4 0

3.3.2 Differenced time series

The conclusions of the above experiments are not a positive sign for the strength of the lower
bound of Theorem 13, the lower bound for the differenced time series. One important con-
clusion was that it becomes increasingly harder to find the correct number of hidden Markov
states when the true number of hidden Markov states increases. Since for the differenced
time series, both the Markov state at time t, as well as at time t− 1 affects the time series,
the Markov Chain which corresponds to this differenced time series has K2 hidden Markov
states instead of K which need to be recognized. Therefore, ideally one needs to estimate
large lags p∗ and q∗ in the VARMA order estimation method. However, it is not necessary
to be able to recognize all K2 hidden Markov states. If at least (K − 1)2 + 1 Markov states
are recognized, it can be concluded that at least K hidden Markov states are present in the
non-differenced time series.

Another potential hazard is that the differenced time series will often stay slightly shorter in
the same Markov state (St, St−1), since a switch at time t in the Markov process {St}, will
imply switches at t and t + 1 in the Markov process {St, St−1}. If the average time until a
transition is large enough for the non-differenced time series, there are still relatively long
time periods in which the Markov Chain (St, St−1) remains in the same state (k, k), but this
Markov Chain will generally be only one time period in the state (i, j) for i 6= j, which may
be difficult to detect for the order estimation algorithm.

To examine the use of Theorem 13, again synthetic time series are generated, in the same
way as the previous experiments, with σ = 0.1, nonuniform probability transition matrix
P , N = 50000 and K = 3 and M = 4. Since that theorem does not require that the non-
differenced time series is non-stationary, even though that is where the theorem may be most
useful, stationary time series are generated, since the bounds can then be compared with the
bounds obtained by using Theorem 11. The results of this experiment are shown in Table
6. While the Markov states are estimated correctly in the majority of the cases using the
non-differenced time series, the number of Markov states is underestimated always by the
order selection method, when using the differenced time series. The orders p∗, q∗ found for
the differenced time series are often even slightly lower than the orders found when using
the non-differenced time series, even though higher orders are necessary to obtain the same
bound. This experiment therefore is a confirmation that it is very difficult to detect the K2

different Markov states of which most only stay in their Markov state for one time period.
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Chapter 4

Penalty Function Methods

In this chapter, the penalty function approach for estimating the number of hidden Markov
states will be discussed. This method complements the lower bounds obtained by the auto-
covariance method of the previous chapter, since for some penalty functions it provides an
asymptotic upper bound on the number of hidden Markov states. In Section 4.1, penalty
functions are introduced and the conditions for which they provide an asymptotic upper
bound are discussed. In Section 4.2, likelihood optimization and consistency results are
briefly discussed. For the penalty functions considered in this thesis, likelihood optimization
is the type of optimization needed for the penalty function approach. In Section 4.3, the EM
algorithm is discussed, which is the likelihood optimization method used in this thesis.

4.1 Penalty functions

Penalty functions are a widely used method for model selection. The idea behind the method
is that a good model must optimize some objective function with a relatively low amount
of parameters, to reduce the risk of overfitting. The most used objective function is the
likelihood function of the available observations, although the underlying idea may be based
on other objective functions (Stoica and Selen, 2004). Notable examples include the KL
divergence between the real probability distribution function (PDF) p(x) and the fitted PDF
p̂(x),

DKL =

∞∫
−∞

p(x) ln

(
p(x)

p̂(x)

)
dx,

and the maximum a posteriori (MAP) objective function given some prior distribution g(x),

max
p̂

p̂(x)g(x).

There exist ample criteria which do not use the likelihood function, but are for example based
on the predictive least squared principles (Wei et al., 1992). However, in this chapter, only
criteria using the likelihood function are discussed. This set consists of functions that for
this context are of the form −2LK + αK , where LK is the log-likelihood function for the
model with optimized parameters and K hidden Markov states and αK is the penalty for K
hidden Markov states, where it holds that αK+1 ≥ αK . Penalty functions of these forms are
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minimized by maximizing the log likelihood function over different values of K. This can be
done by calculating the penalty function for all K from 1 to some predefined relatively low
value or until the penalty function starts increasing.

The choices for αK in the literature are varied. The most well known example is the Akaike
Information Criterion, which is originally based on the KL divergence, where αK equals
to two times the number of parameters in the model, dK , with K hidden Markov states,
αK = 2dK . For small sample sizes N , the AICc (AIC with correction) is proposed, where

αK = 2dK

(
N

N−dK−1

)
. The Generalized Information Criterion is a generalization of the

AIC, with αK = vdK , where v is a parameter which has been shown to lead to the best
results for v ∈ [2, 6]. If v = 2, one obtains the AIC. Another widely used criterion is the
Bayesian Information Criterion, also called Schwarz Information Criterion, which is based
on the MAP objective function, with αK = ln(N)dK . Other information criteria include
Takeuchi’s Information Criterion, the Information Complexity criterion, Hannah-Quinn In-
formation Criterion and many others (Seghouane and Amari, 2007), (Bozdogan, 2000).

A last information criterion which will be discussed here shortly is the Markov Switching
Criterion (MSC), since it was designed by Smith et al. (2006) for Markov Switching mod-
els. This criterion is, just as the AIC, derived from the KL divergence. For any number of
hidden Markov states considered, the estimated parameters θ̂ need to be calculated from the
available data. The MSC then leads to an optimal choice K∗ and parameter set θ∗, which
includes the probability transition matrix P ∗ and the estimated stationary probability distri-
bution of the hidden Markov states π∗i , which is the eigenvector of P ∗ such that P ∗π∗ = π∗.

The formula for the penalty also requires for k = 1, . . . ,K, the quantity T̂k =
N∑
t=1
P̂ (St = k),

which is the sum of the estimated probabilities that the hidden Markov state is state k over
all observations. The penalty is

αK =
K∑
k=1

T̂k(T̂k + λkM)

δkT̂k − λkM − 2
,

with δk = E
[
π∗k
π̂k

]
and λk = E

[(
π∗k
π̂k

)2
]
. However, these latter two quantities are difficult

to calculate. In practice, a lower bound of 1 can be used for δk. An approximation for λk
that performed well in Monte Carlo simulations is K, according to the founders of the method.

Under a set of technical regularity conditions on the data generating process, Rydén (1995)
has shown that information criteria of the form −2LK + αK in the limit when the sample
size N →∞ do not underestimate the true number of hidden Markov States if the following
two conditions hold for the penalty αK :

1. αK+1 ≥ αK for every sample size N ,

2. lim sup
N→∞

αK
N = 0 with probability 1.

It is straightforward to check that these conditions holds for the AIC, the small sample
corrected AIC, the GIC and the BIC. However, for the MSC the second condition does not
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hold. A small informal example will illustrate this: assume that P̂ (St = k) = 1
K is for every

t and k. Then

αK =

K∑
k=1

N
K (NK + c1,k)

c2,k
N
K + c3,k

=

K∑
k=1

N
K + c1,k

c2,k + c3,k
K
N

,

where c1,k, c2,k, c3,k are constants. In this case, the denominator of lim
N→∞

αK
N will converge

to 0, while the numerator will converge to 1, so that the fraction will grow unbounded in
the limit. We can, therefore, conclude that the upper bound property of Rydén (1995) does
not hold for the MSC and that the MSC-optimizing choice for K may only be used as an
estimate.
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4.2 Likelihood optimization

Using above information criteria requires the use of the maximum likelihood estimator (MLE).
However, the MLE is not always consistent. Under a set of regularity conditions, which is
a subset of the regularity conditions which causes the information criteria to be an upper
bound on the number of hidden Markov states, Leroux (1992) has shown that the MLE is
consistent for hidden Markov models. It is outside the scope of this thesis report to discuss
all those criteria rigorously, but one criterion is highlighted, since it results in an important
case where maximum likelihood estimation fails.

Let {St, Yt} be an M -dimensional HMM, where each Markov state k corresponds to a dis-
tribution f(Yt, θk) for Yt and where θk is an element of some parameter set Θ. Then there
must exist a continuous function h such that f(Yt, θ) ≤ h(Yt) for all θ and it must hold that∫
p(Yt, θ

∗
K∗)| log h(Yt)|µM (dYt) < ∞. In this equation, θ∗K∗ are the K∗ real parameter sets

and p(.) is the corresponding real probability density function. This condition is violated if
one tries to maximize a mixture of normally distributed variables, since one can obtain an
arbitrarily high likelihood by setting the mean of one component equal to one of the data
points and letting the variance decrease to 0. Therefore, the maximum likelihood estimator
does not exist if the variables are normally distributed and no conditions are set on the vari-
ance and it can thus naturally also not be consistent. However, if the variance is fixed, all
conditions are fulfilled and the MLE is consistent.

The maximization of the log likelihood function is not straightforward due to the presence
of the hidden Markov states. The MLE can in most of these cases not be maximized al-
gebraically. Moreover, due to the existence of many local maxima and slow convergence,
also many algorithms have difficulty finding the global maximum. One popular method to
maximize the likelihood function is the Expectation Maximization (EM) algorithm, which
procedure will be explained in the next section and which is used in this thesis. Other meth-
ods include general purpose optimization techniques, such as the conjugate gradient method
or hill climbing algorithms. The EM algorithm is relatively fast in practice, does not require
the computation of the Hessian matrix and depending on the distribution the updates during
its iterations can be computed analytically. However, it is only guaranteed to converge to
a local maximum and there is no guaranteed convergence rate. In practice one tries several
start conditions to increase the probability of finding a good solution (Rydén, 1995).
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4.3 Expectation Maximization algorithm

Let the M -dimensional process {Yt} be of the form

Yt = µst +

p∑
i=1

a(i)
st Yt−i +

q∑
j=1

b(j)st et−j + et et ∼ N(0,Σst) (30)

and assume we have observations 1−p, 2−p, . . . , N , such that we have N observations where
the p lags are available. We wish to find the parameters that maximize the log-likelihood
function of Yt of which we have a series of N observations. However, this is difficult since we
do not know the values of the hidden variables St. To simplify matters, we instead try to max-
imize the expectation of the log-likelihood function. This can be done by conditioning on the
values of the hidden variables St and weighing the log-likelihoods lnP (Y1, . . . , YN |S1, . . . , SN )
with the probabilities of the values of the hidden Markov variables P (S1, . . . , SN ). However,
in order to do this we need the parameters, which is what we want to estimate. The idea
behind the Expectation-Maximization algorithm is that we iteratively find estimates for the
parameters and do the aforementioned weighting with the probability of the hidden variables
given the parameters found in the previous iteration. New parameters are then chosen such
that the expected loglikelihood function is optimized. Note that the errors et are also un-
known.

Although the use of the EM algorithm for this purpose is not new, the details of the algorithm
for this specific purpose were not found in the literature. For the sake of completeness, these
will be provided below. For a general discussion on the EM algorithm, see for instance the
text book of Bishop (2006).

4.3.1 Expectation

The expectation of the log-likelihood function Q(θold, θ), which is a function of the previous
parameters θold and the new parameters θ, can be expressed as:

Q(θold, θ) = Eold
θ [lnP (Y1, . . . , YN , S1, . . . , SN |θ)]

=
K∑

S1=1

. . .

K∑
SN=1

P (S1, . . . , SN |Y1, . . . , YN , θ
old)

N∑
t=1

lnP (Yt, St|Y1, . . . , Yt−1, S1, . . . , St−1, θ)

=
N∑
t=1

K∑
St−1=1

K∑
St=1

P (St−1, St|Y1, . . . , YN , θ
old) lnP (Yt, St|Y1, . . . , Yt−1, St−1, θ),

where we define P (S0, S1|Y1, . . . , YN , θ
old) as 1

KP (S1|Y1, . . . , YN , θ
old). For more compact

notation the pre-sample observations Y1−p, . . . , Y0 are considered part of both θ and θold. The
last equation follows since Yt is independent of S1, . . . , St−1 given St and St only depends
on St−1 since {St} is a Markov Process. Therefore, we can weigh the log-probability with
the joint conditional probability of St−1 and St, P (St−1, St|Y1, . . . , YN , θ

old). The probability
P (Yt, St|Y1, . . . , Yt−1, St−1, θ) can be decomposed as

P (Yt, St|Y1, . . . , Yt−1, St−1, θ) = P (St|St−1, θ)P (Yt|Y1, . . . , Yt−1, St, θ),
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which is the product of two probabilities that can easily be calculated, since we know that

Yt|Y1, . . . , Yt−1, St, θ
old ∼ N

µold
st +

p∑
i=1

a(i),old
st Yt−1 +

q∑
j=1

b(j),old
st et−j ,Σ

old
st


and the transition probability P (St|St−1, θ

old) is one of the parameters in the parameter set
θold.

The probabilities P (St−1, St|Y1, . . . , YN , θ
old) can be calculated using the forward-backward

algorithm. In this algorithm the probability P (St−1 = k, St = l, Y1, . . . , YN |θold) is calculated
by the decomposition

P (St−1 = k, St = l, Y1, . . . , YN |θold) =P (Yt+1, . . . , YN |St−1 = k, St = l, Y1, . . . , Yt, θ
old)×

P (St−1 = k, St = l, Y1, . . . , Yt|θold).

The desired probabilities P (St−1, St|Y1, . . . , YN , θ
old) can then be calculated by normalizing

the joint probabilities such that
∑K

k=1

∑K
l=1 P (St−1 = k, St = l|Y1, . . . , YN , θ

old) = 1, since
P (St−1 = k, St = l|Y1, . . . , YN , θ

old) ∝ P (St−1 = k, St = l, Y1, . . . , YN |θold).

The probability P (St−1 = k, St = l, Y1, . . . , Yt|θold), which we will denote by αt(k, l), is
calculated in a recursive manner from t = 1 to N (the forward pass) by conditioning on St−2

and decomposing the probability:

αt(k, l) =

K∑
St−2=1

P (St−2, St−1 = k, St = l, Y1, . . . , Yt|θold)

=

K∑
St−2=1

P (Yt|St = l, St−1 = k, St−2, Y1, . . . , Yt−1, θ
old)P (St = l|St−1 = k, St−2, Y1, . . . , Yt−1, θ

old)

× P (St−2, St−1 = k, Y1, . . . , Yt−1|θold)

=
K∑

St−2=1

P (Yt|St = l, Y1, . . . , Yt−1, θ
old)P (St = l|St−1 = k, θold)αt−1(St−2, k).

The first two terms are probabilities that can be calculated easily and αt−1(St−2, k) was cal-
culated in a previous iteration. The probability α1(k, l) is defined as 1

Kπ(k|θold)P (Y1|S1 =
l, θold), where π(k) is the stationary probability to be in state k.

In the backward pass we calculate P (Yt+1, . . . , YN |St = l, Y1, . . . , Yt, θ
old), denoted by βt+1(l)
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recursively from t = N to 1. This time we condition on St+1:

βt+1(l) =
K∑

St+1=1

P (Yt+1, . . . , YN , St+1|St = l, Y1, . . . , Yt, θ
old)

=
K∑

St+1=1

P (Yt+2, . . . , YN , |St+1, St = l, Y1, . . . , Yt+1, θ
old)P (Yt+1|St+1, St = l, Y1, . . . , Yt, θ

old)

× P (St+1|St = l, Y1, . . . , Yt, θ
old)

=
K∑

St+1=1

βt+2(St+1)P (Yt+1|St+1, Y1, . . . , Yt, θ
old)P (St+1|St = l, θold),

where the last two terms are again probabilities that can be calculated straightforwardly.
The probability βN+1(l) is defined as 1 for every value l.

With above calculations we can calculate the value of the function Q for given values of
θold and θ.

4.3.2 Maximization

In the maximization step of the EM-algorithm we need to find the parameters

θ = {µk, a
(i)
k , b

(j)
k , pkl,Σk}i=1,...,p j=1,...,q k,l=1,...,K , where pkl = P (St = l|St−1 = k) which max-

imize the expectation of the log-likelihood function Q by taking the derivatives of Q(θold, θ)
with respect to the different parameters and setting these to 0.

The first derivative that we are taking, is that with respect to pkl. Since an extra condi-

tion on pkl is that
K∑
j=1

pkj = 1, the Langrangian multiplier method is used:

δQ(θold, θ)

δpkl
=

δ

δpkl

N∑
t=1

K∑
S1=1

. . .
K∑

SN=1

P (St−1, St|Y1, . . . , YN , θ
old)(ln pst−1,st + lnP (Yt|Y1, . . . , Yt−1, St, θ))− λ(

K∑
j=1

pkj − 1)

=
N∑
t=1

P (St−1 = k, St = l|Y1, . . . , YN , θ
old)

1

pkl
− λ = 0,

λpkl =

N∑
t=1

P (St−1 = k, St = l|Y1, . . . , YN , θ
old).
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Summing both sides over l, we obtain that λ =
K∑
m=1

N∑
t=1
P (St−1 = k, St = m|Y1, . . . , YN , θ

old).

Therefore, we obtain

pkl =

N∑
t=1
P (St−1 = k, St = l|Y1, . . . , YN , θ

old)

K∑
m=1

N∑
t=1
P (St−1 = k, St = m|Y1, . . . , YN , θold)

,

which is a function of known quantities. We now proceed with the other derivatives, such as
with respect to µk. Denote the probability

K∑
St−1=1

P (St−1, St|Y1, . . . , YN , θ
old) = P (St|Y1, . . . , YN , θ

old)

by γt(St) for brevity. We then obtain

δQ(θold, θ)

δµk
=

δ

δµk

N∑
t=1

K∑
St−1=1

. . .
K∑

St=1

P (St−1, St|Y1, . . . , YN , θ
old)(ln pst−1,st + lnP (Yt|Y1, . . . , Yt−1, St, θ))

=
δ

δµk

N∑
t=1

γt(k) lnP (Yt|Y1, . . . , Yt−1, St = k, θ). (31)

The above formula applies also to the other partial derivatives, except the transition prob-
abilities, where δ

δµk
is replaced by the parameter under investigation. It is useful to rewrite

Equation (30) in matrix notation to be able to obtain the derivatives in one go. Define the
vector Xt of size M(p+ q) + 1 as

Xt =
[
1, Y T

t−1, Y
T
t−2, . . . , Y

T
t−p, e

T
t−1, . . . , e

T
t−q
]T
.

Then we can rewrite Equation (30) as

Yt =
K∑
k=1

1St=kβkXt + et et ∼ N(0,Σst),

where 1a is the indicator function that equals 1 if a is true and 0 otherwise and βk =[
µk, a

(1)
k , . . . , a

(p)
k , b

(1)
k , . . . , b

(q)
k

]
.

We can now substitute the probability distribution function of P (Yt|Y1, . . . , Yt−1, St = k, θold)

in Equation (31) and take the derivative of µk and all a
(i)
k and b

(j)
k in one go, using the results

on matrix derivatives in Petersen et al. (2008):

δQ(θ, θold)

δβk
=

N∑
t=1

γt(k)

(
d

2
ln(2π)− 1

2
ln |Σk| −

1

2
(Yt − βkXt)

TΣ−1
k (Yt − βkXt)

)

=

N∑
t=1

− γt(k)Σ−1
k (Yt − βkXt)X

T
t = 0,
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Working out the brackets, premultiplying by Σk and isolating βk results in the formula

βk =

(
N∑
t=1

γt(k)YtX
T
t

)(
N∑
t=1

γt(k)XtX
T
t

)−1

. (32)

The only remaining parameter that needs to be found is Σk.

δQ(θ, θold)

δΣk
=

δ

δΣk

N∑
t=1

γt(k)

(
M

2
ln(2π)− 1

2
ln |Σk| −

1

2
(Yt − βkXt)

TΣ−1
k (Yt − βkXt)

)

=
δ

δΣk

N∑
t=1

γt(k)

(
M

2
ln(2π)− 1

2
ln |Σk| −

1

2
tr
(
(Yt − βkXt)

TΣ−1
k (Yt − βkXt)

))

=
δ

δΣk

N∑
t=1

γt(k)

(
M

2
ln(2π)− 1

2
ln |Σk| −

1

2
tr
(
(Yt − βkXt)(Yt − βkXt)

TΣ−1
k

))

=

N∑
t=1

− 1

2
γt(k)

(
Σ−1
k + Σ−1

k (Yt − βkXt)(Yt − βkXt)
TΣ−1

k

)
= 0.

Pre- and postmultiplying by Σk and isolating Σk leads to the equation

Σk =

N∑
t=1
γt(k)(Yt − βkXt)(Yt − βkXt)

T

N∑
t=1
γt(k)

, (33)

which is the final of the parameter updates in the maximization phase. The expectation and
maximization steps are repeated until expectation of the log-likelihood improves less than a
certain predefined tolerance.

4.3.3 Simulated EM

Above calculations become intractable if the MA-order q is bigger than zero, since the proba-
bility P (Yt|Y1, . . . , Yt−1, St, θ) is in that case dependent on the previous hidden Markov states
through the previous errors et−j , j > 0. A solution to be still able to use EM is by simula-
tion (Nielsen, 2000). For this algorithm, one would in every iteration simulate D sequences

{S(d)
t }Nt=1 and calculate:

Êold
θ [lnP (Y1, . . . , YN , S1, . . . , SN |θ)] =

D∑
d=1

lnP (Y1, . . . , YN , S
(d)
1 , . . . , S

(d)
N |θ).

The parameters update Equations (32) and (33) continue to hold, where γt(k) = 1
S
(d)
t =k

is

equal to an indicator function and where the D data sets Y and X are combined in one.
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Chapter 5

Application on tracking models

In this chapter, a kinematic model used in tracking contexts is introduced which will be
the basis of some synthetic experiments. The characteristics of this model are examined, in
particular whether the conditions of the theory established in previous chapters of this report
hold. Afterwards, experiments will be done using synthetic data generated according to the
kinematic model.

5.1 Model description

We wish to apply the theory of the previous chapters on tracking models. For this purpose,
a kinematic model is introduced, which is an MS VARMA model where each mode k corre-
sponds to a turn made with a certain turn rate ωk (of which one equals ωk = 0). As described
before, the model is used to describe the motion of an object such as an airplane or a drone.
We assume that the target is a point object moving through a Cartesian plane. The specific
two-dimensional kinematic model used, is described in more detail by Li and Jilkov (2003).

The Double Hidden Markov model being analyzed is the stochastic process {St, Xt, Yt}. The
discrete Markov Process process at time t, St, selects the hidden mode at time t and describes
which model we are in. This process can take values in [K], where st = 1 corresponds to
the so-called Constant Velocity (CV) model and st = 2, . . . ,K to models called Coordinated
Turn (CT) models with turn rate ωst 6= 0 and ωj 6= ωi if j 6= i. The process {Xt} refers to
the kinematic state of the system: the location coordinates xt and yt and the velocity in the
x and y−direction, ẋt and ẏt. Xt is, therefore, the 4-dimensional vector

Xt =


xt
ẋt
yt
ẏt

 .
However, we do not observe Xt directly, but rather some noisy measurements Yt, which is a
function of Xt. We assume that location and velocity are measured directly, but inaccurately.
In reality, these variables are calculated from other measurements, such as the Doppler effect.
Our simplifying assumption causes Yt to be simply equal to the sum of Xt and white noise.
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The stochastic process {St, Xt, Yt} can be modelled as follows:

P (St = i|St−1 = j) = Pji, (34)

Xt = FstXt−1 + Σx,stVx,t, (35)

Yt = Xt + ΣyVy,t. (36)

The processes {Vx,t} and {Vy,t} are white noise processes with mean zero and standard
deviation 1. Σx,st and Σy are constant matrices fulfilling the role of covariance matrices. The
mode-dependent matrices Fst describe the transition of Xt to Xt+1. For the CV model

Fcv =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 . (37)

In above equation T is the sampling time and assumed to be a fixed and known parameter.
As the name suggests, the velocity variables do not change (random influences excluded).
The location variables change proportional to the velocity. For the CT models

Fct =



1
sin(ωT )

ω
0 −1− cos(ωT )

ω

0 cos(ωT ) 0 − sin(ωT )

0
1− cos(ωT )

ω
1

sin(ωT )

ω

0 sin(ωT ) 0 cos(ωT )


(38)

and is a function of the turn rate ω. The turn rate is the constant change in heading angle
per time unit and is different for each mode. The turn rate can be assumed known or can be
estimated from the data. Note that the time between two observations is T time units and
the turn made between two observations is an angle of ωT . In this model, the total speed
v =

√
ẋ2
t + ẏ2

t is constant, excluding the influence of the random terms Vx,t.

The covariance matrix Σx,st for the constant velocity models are given by the following
equations:

Σx,CV = diag
[
σ2
xQ, σ2

yQ
]
,

where Q =


T 3

3

T 2

2

T 2

2
T

 .
In the first of the two above equations σ2

x and σ2
y are the power spectral densities for the x-

and y-direction, which are (potentially unknown) parameters. The covariance matrix for the
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coordinated turn model is given by:

Σx,CT = σ2
ω ×



2(ωT − sin(ωT ))

ω3

1− cos(ωT )

ω2
0

ωT − sin(ωT )

ω2

1− cos(ωT )

ω2
T −ωT − sin(ωT )

ω2
0

0 −ωT − sin(ωT )

ω2

2(ωT − sin(ωT ))

ω3

1− cos(ωT )

ω2

ωT − sin(ωT )

ω2
0

1− cos(ωT )

ω2
T


.

In the above equation σω is a parameter.

We wish to relate the autocovariance of above model to that of a (non MS-)VARMA model.
To be able to do this, we first rewrite Equations (35) and (36) in matrix form:[

1 0
−1 1

] [
Xt

Yt

]
=

[
Fst 0
0 0

] [
Xt−1

Yt−1

]
+

[
Σx,st 0

0 Σy

] [
Vx,t
Vy,t

]
,

which can be rewritten in standard MS VARMA form as[
Xt

Yt

]
=

[
Fst 0
Fst 0

] [
Xt−1

Yt−1

]
+

[
Σx,st 0
Σx,st Σy

] [
Vx,t
Vy,t

]
.

However, since only Yt is observed, above equation needs to be rewritten such that Xt is
substituted out of the equation. This results in:

Yt = FstYt−1 − FstΣyVy,t−1 + Σx,stVx,t + ΣyVy,t, (39)

which can be written in standard MS VARMA form as:[
Yt
0

]
=

[
Fst 0
0 0

] [
Yt−1

0

]
+

[
Σy Σx,st

0 0

] [
Vy,t
Vx,t

]
+

[
−FstΣy 0

0 0

] [
Vy,t−1

Vx,t−1

]
.
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5.2 Assumptions

In developing the methodology of Chapter 3 and 4, several assumptions had to be made.
First these assumptions, except for the assumptions on the functional form of the model and
the technical assumptions on the consistency of the maximum likelihood estimation, will be
summarized, after which they will be discussed shortly. In particular, some of these assump-
tions follow directly from the model description, which we will provide proofs for.

The eight assumptions that need to hold are:

1. The intervals between two sequential observations ts, ts+1 is constant.

2. The random disturbances Vx,t and Vy,t are draws from white noise processes.

3. The Markov Process St is ergodic, irreducible and stationary.

4. The transition matrices of the continuous variables are distinct for every hidden mode.

5. The random disturbances Vx,t and Vy,t are normally distributed.

6. The differenced time series ∆Yt is a second order stationary random process.

7. The Markov process St+h is uncorrelated with the observations Yt for every h ≥ 0.

8. The transition matrices of the continuous variables are invertible.

The first assumption is a standard assumption for time series model. The second assumption
is vital for many of the proofs, although in practice white noise assumptions often do not hold
exactly. The third assumption holds for instance if every entry in the probability transition
matrix is positive. The fourth assumption implies that it is not possible for models to differ
only in the covariance matrix of the errors. The fifth assumption is only necessary for the
order selection method based on the eigenvalues of the data covariance matrix and can be
relaxed if another method is used. The last three assumptions follow from the model and
will be discussed in the following sections.
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5.3 Stationarity

To be able to apply the results of Section 3.1.1, time series generated by the kinematic model
need to be stationary. This is not the case, since nowhere in the process the effects of random
shocks fades. The process thus is integrated in each Markov state and therefore exhibits
random walk-like behaviour, as shown in the following lemma:

Lemma 15. The process {Yt} described in Equations (34) - (36) is not stationary.

Proof. Since {Vy,t} is a white noise process and thus stationary and independent of {Xt}, the
process {Yt} = {Xt + Vy,t} is stationary if and only if {Xt} is stationary. The approach that
will be taken, is looking at the second moments to examine if wide sense stationarity can be
fulfilled. We will now investigate whether there exist stationary expressions for the second
moments of the variables, starting with the velocity variables. Denote the second respectively
the fourth dimension of the vector Σx,iVx,t by Vẋ,t,i respectively Vẏ,t,i. From Equation (35),
(37) and (38) it follows that

E[ẋ2
t+1] = π(1)E[(ẋt + Vẋ,t+1,1)2] +

K∑
k=2

π(k)E[(ẋt cos(ωkT )− ẏt sin(ωkT ) + Vẋ,t+1,k)
2], (40)

E[ẏ2
t+1] = π(1)E[(ẏt + Vẏ,t+1,1)2] +

K∑
k=2

π(k)E[(ẏt cos(ωkT ) + ẋt sin(ωkT ) + Vẏ,t+1,k)
2]. (41)

Both equations can be rearranged as follows:

E[ẋ2
t+1] =E[(ẋ2

t ]

(
π(1) +

K∑
k=2

π(k) cos2(ωkT )

)
+ E[(ẏ2

t ]

(
K∑
k=2

π(k) sin2(ωkT )

)
− (42)

E[ẋtẏt]

(
K∑
k=2

π(k) sin(2ωkT )

)
+

K∑
k=1

π(k)σ2
2,k,

E[ẏ2
t+1] =E[(ẏ2

t ]

(
π(1) +

K∑
k=2

π(k) cos2(ωkT )

)
+ E[(ẋ2

t ]

(
K∑
k=2

π(k) sin2(ωkT )

)
+ (43)

E[ẋtẏt]

(
K∑
k=2

π(k) sin(2ωkT )

)
+

K∑
k=1

π(k)σ2
4,k,

since many terms cancel because of the white noise properties of the variables V . In above
equations, σ2

i,k is the known variance of the errors Vi,t+1,k. Since we are trying to find

stationary solutions, we can assume E[ẋt+1ẏt+1] = E[ẋtẏt],E[ẋ2
t+1] = E[ẋ2

t ] and E[ẏ2
t+1] =

E[ẏ2
t ]. Moreover, let us write c1 =

(
π(1) +

K∑
k=2

π(k) cos2(ωkT )

)
, c2 =

(
K∑
k=2

π(k) sin2(ωkT )

)
.

Adding Equation (42) and (43) and rearranging terms we get:

E[ẋ2
t ](1− c1 − c2) + E[ẏ2

t ](1− c1 − c2) =

K∑
k=1

π(k)(σ2
2,k + σ2

4,k)
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However, since
K∑
k=1

π(k) = 1 and cos2(ω) + sin2(ω) = 1, ∀ω, we get c1 + c2 = 1 and therefore

K∑
k=1

π(k)(σ2
2,k + σ2

4,k) = 0, which is only true if {ẋt} and {ẏt} are nonstochastic. Therefore,

{ẋt} and {ẏt} are not stationary.

The first differenced time series ∆Yt does appear to be stationary. In this case, we have from
Equation (39)

∆Yt = (IM − Fst)Yt−1 − FstΣyVy,t−1 + Σx,stVx,t + ΣyVy,t, (44)

where IM is the M -dimensional identity matrix, which in our context is I4. Replacing Yt−1

by ∆Yt−1 in Equation (44) leaves a remaining term of Yt−2. Replacing this again with ∆Yt−2

and repeating this process and doing the same for the errors variables Vx and Vy, above
equation can be rewritten in standard MS ARMA form as follows:[

∆Yt
0

]
=
∞∑
i=1

[
Fst − IM 0

0 0

] [
∆Yt−i

0

]
+

[
Σy Σx,st

0 0

] [
∆Vy,t
∆Vx,t

]
+

∞∑
i=1

[
FstΣy − Σy Σx,st

0 0

] [
∆Vy,t−i
∆Vx,t−i

]
.

Recall that in Lemma 2, a sufficient and necessary condition for the stationarity of Markov
Switching VARMA models was stated. In order to apply their results, the model needs to be
rewritten in again another form, as an MS VAR(1) model:

zt = Φtzt−1 + Σtηt,

where

zt =



∆Yt
0

∆Yt−1

0
...

∆Yt−l
0

Σy∆Vy,t
Σx,st∆Vx,t

(FstΣy − Σy)∆Vy,t−1

Σx,st∆Vx,t−1
...

(FstΣy − Σy)∆Vy,t−l
Σx,st∆Vx,t−l



, Σt =



Σy Σx,st

0 0
...

...
0 0

Σy Σx,st

0 0
...

...
0 0


, ηt =

[
∆Vy,t
∆Vx,t

]
and
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Φt =



Fst − IM 0 · · · Fst − IM 0 FstΣy − Σy Σx,st · · · FstΣy − Σy Σx,st

0 0 · · · 0 0 0 0 · · · 0 0
IM 0 · · · 0 0 0 0 · · · 0 0
0 IM · · · 0 0 0 0 · · · 0 0
...

. . .
. . .

...
...

...
...

. . .
...

...
0 0 · · · IM 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 IM 0 · · · 0 0
0 0 · · · 0 0 0 IM · · · 0 0
...

...
. . .

...
...

...
. . .

. . .
...

...
0 0 · · · 0 0 0 0 · · · IM 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0



.

Recall from Section 2.2.2 that Φt can be partitioned as

Φt =

[
At Bt
0 J

]
.

If the top Lyapunov exponent γ, or equivalently γ′,

γ′ = inf
t∈N

E
1

t
log ||AtAt−1 . . . A1||

is strictly negative the differenced time series is stationary.

Lemma 16. The model described in Equation (44) is stationary.

Proof. It is easy to see that if the state st = 1, which corresponds to the constant velocity
model, the matrix (F1−IM )(Fst−1−IM ) = (Fst+1−IM )(F1−IM ) = 0M×M . Moreover, simple
matrix multiplications show that the only nonzero entries in the block matrix An, n ≥ 3 are

sums of the terms
p−1∏
i=0

(Fst−i − IM ), p ≥ 2. And therefore, AnAn−1 . . . A1 = 0 if sn = 1 for

any n = 1, . . . , t and t ≥ 3. The norm of a zero matrix is 0 by definition and therefore the
log value of the norm is minus infinity. Now assume the stationary long term probability to
be in the CV model π(1) is strictly greater than 0. Then for time length t = 3 it holds that:

γ ≤ E
1

3
log ||A3A2A1|| = −∞,

since the matrix norm ||A3A2A1|| is finite in case ω > 0 and sn 6= 1 for n = 1, 2, 3. Above
derivations are independent of the MS VARMA order of l and thus also holds for lim

l→∞
.

Note that the above proof strongly relies on the behaviour of the process in the CV model and
that it is not required that a mixture of only CT models results in stationary differenced time
series. Since the infinite Markov Switching VARMA model is stationary, the corresponding
Markov Switching VECM model of Equation (44) is as well and we can thus conclude the
variables {Yt} are cointegrated.
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5.4 Correlation Markov process and observation process

We need to show that the correlation, or equivalently the covariance of Yt with the hidden
Markov process is 0. If this holds, then this also holds for the differenced process Yt − Yt−1.
No formal proof will be provided in this section. Instead, an intuition why this assumption
can be assumed to be true is provided.

Instead of focusing on the correlation of Yt with the hidden Markov Process, we can ex-
amine the covariance of Xt with the indicator function 1St+h=k, since Yt equals Xt plus some
white noise process, where the latter is by definition uncorrelated with the hidden Markov
process for each h ≥ 0. Define µZ as the mean of the variable Z. We obtain:

Cov(Xt, 1St+h=k) = E[(Xt − µX)(1St+h=k − µ1St+h=k
]

= E[Xt1St+h=k]− µXE[1St+h=k]− E[Xt]µ1St+h=k
+ µXµ1St+h=k

= E[Xt1St+h=k]− µXπ(k)− µXπ(k) + µXπ(k)

=
K∑
j=1

(
E
[
Xt1St+h=k|St+h = j

]
π(j)

)
− µXπ(k)

= E [Xt|St+h = k]π(k)− µXπ(k),

which equals 0 if E [Xt|St+h = k] = µX . That is, we need to argue that the expected value of
the variables Xt is independent of the hidden Markov state. Moreover, since the time series
Xt is non-stationary, we also need to check whether the mean E[Xt] is constant for all t.

When we just examine the velocity variables in the horizontal and vertical direction, ẋ and
ẏ, the transition of the CT models between successive time periods can be expressed by the
transition matrix [

cos(ωStT ) − sin(ωStT )
sin(ωStT ) cos(ωStT )

]
,

which is a rotation matrix. This means that if we disregard the random error terms for the
moment, the velocity variables ẋ and ẏ change in a circular manner like the x and y coordi-
nates of a point moving over the perimeter of a circle with radius the constant total speed√
ẋ2 + ẏ2. Then the average rotation made is

K∑
k=2

π(k)ωk = R, where we assumed k = 1

corresponds to the sole CV model. Moreover, we can define a related rotation process Ωt

as the sum of the rotations up to time t. In the long run, we expect the probability mass
of each state k occurring at some rotation ω to distribute evenly over the domain of Ωt. If
R 6= 0 this is easy to see, since the rotation process is expected to move around the circle.
However, if R = 0, we can expect the same, since the rotation process can be interpreted
as a random walk-like process, whose variance in the limit goes to infinity, such that the
influence of the starting position becomes negligible. If the domain of Ωt is symmetric over
the x and y axis, this all implies that the expected value of the velocity variables given
the hidden Markov state equals zero for all hidden Markov states k = 1, . . . ,K. The same
reasoning can be applied to the location variables. Moreover, if the expected velocity in the
x and y direction equals 0, the expected value of the location variables will also be stationary.
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There are some exceptions imaginable where above reasoning does not hold. For exam-
ple, if the turn rate of all CT models equal ck × 2π, for some integers ck, since then the
domain of Ωt is not symmetric over the x and y axis. Another slightly less trivial case is
when the transitions of the hidden Markov states are not random but all fixed, since the
rotation process can not be seen as a random walk anymore. An example is when the process
is in each even time period t in the Markov state with ω = 0.2π and in the odd time periods
in the Markov state with ω = −0.2π with probability 1.
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5.5 Invertible transition matrices

The last and most problematic assumption is the invertibility of the transition matrices of
the differenced process. It is straightforward to check that the transition matrices Fcv − I4

and Fct − I4 are not invertible. As a result, the conditions of Theorem 12 and 13 are not

fulfilled. However, when restricting the focus to the velocity process Y ′t =

[
ẋt
ẏt

]
, with only

CT models, the transition matrices are invertible, when ωk 6= c× 2π for all Markov states k
and all integers c. As a proxy for the CV models, we can thus use a CT model with small
angle ω. We can therefore use the autocovariance method to obtain a lower bound estimate
of the number of hidden Markov states needed for the kinematic model, by looking at the
differenced time series of the velocity variables only.

From a theoretical viewpoint, using only CT models causes the differenced process to not be
stationary anymore. However, in practice this effect will be mild since the acceleration of ob-
jects usually falls in a limited range. The variance of the process therefore does not increase
unboundly, which could be the case when location data was taken into account. When data
is simulated from the theoretical data, the results may therefore be more erratic than for real
instances.
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5.6 Estimation of the number of modes

The kinematic model with CT submodels of which one with small turn angle, approximating
the CV model, is used as the basis of an experiment. The goal of the experiment is deter-
mining whether the autocovariance method, MLE and penalty methods can be used in the
model building procedure, introduced in Figure 8 of the introduction. It will be examined
whether the correct number of hidden Markov states can be distilled from a kinematic model
with 1 approximate CV submodel and either 2 or 4 CT submodels using the autocovariance
method as lower bound, the AIC and BIC as upper bounds and additionally the MSC.

For this experiment, a tracking model was generated with probability transition matrix
P = 0.1

K 1M1TM + 0.9IM , turn rates ωk equal to −π,−0.5π, 0.5π and π if K = 5 and there are
thus four CT models and equal to −0.5π, 0.5π if K = 3. Instead of generating from a CV
model as the last submodel, a CT model with turn rate 0.1π was used. The sampling time
T is set to 0.1, the covariance matrix of the errors is in contrast to the default covariance
matrices equal to the identity matrix for each Markov state, since this decreases the variabil-
ity of the whole time series without decreasing the variability per time step. The number of
observations N equals 100,000.

A potential problem of this setting is that the transition matrices Ak are rather similar
for different hidden Markov states k. As mentioned in the previous section, this matrix
equals for the true CV model

Fcv =


1 0.1 0 0
0 1 0 0
0 0 1 0.1
0 0 0 1

 ,
while for ωk = 0.5π

Fct =


1 0.0996 0 −0.0078
0 0.9877 0 −0.1564
0 0.0078 1 0.0996
0 0.1564 0 0.9877

 ,
which can be expected to be too similar matrices to be distinguishable, taking the experi-
ments of Section 3.3 as a reference. Since one often stays in the same state for a long amount
of time, one may solve this problem by an approach called thinning. For this methodology,
one uses only each i-th observation, since the difference between the different Markov states
gets more pronounced after more observations. The number of Markov states of the time
series are therefore estimated several times using no thinning, thinning with i = 5 and with
i = 10.

The autocovariance method is not very computationally expensive and for a fairly great
number of configurations (24), the number of hidden Markov states was estimated. Maxi-
mum Likelihood Estimation takes more time and only for a subset of the configurations the
penalty functions were applied. MLE was used only for the non-differenced 2-dimensional
observations, since this is less computationally expensive and the thinned data with i = 10 is
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not considered. This leaves four different configurations. However, for the settings that were
examined, MLE was used twice, once where apart from the other parameters, the variance
was estimated, violating the assumptions leading to the consistency of the upper bounds of
the penalty functions, and once where the variance was assumed known.

The maximum order K considered for MLE was 8. For each order K, three different randomly
generated starting positions were used, to decrease the effect of local maxima. The entries of
the matrices F̂k were initialized to random numbers between 0 and 1. The probability matrix
P was initialized to a uniform matrix with each entry 1/K and the variance for each Markov
state was set to the unconditional sample variance of the observations when the variances
were not assumed known.

Table 7: Estimations K̂ of randomly generated kinematic non-differenced time series with 3
Markov States using the autocovariance method

No thinning Thinning i = 5 Thinning i = 10

Non-differenced
M = 2 3 4 3
M = 4 1 2 2

Differenced
M = 2 2 2 2
M = 4 1 1 1

Table 8: Estimations K̂ of randomly generated kinematic non-differenced time series with 5
Markov States using the autocovariance method

No thinning Thinning i = 5 Thinning i = 10

Non-differenced
M = 2 3 5 2
M = 4 1 2 2

Differenced
M = 2 2 2 2
M = 4 1 1 2

The results of the autocovariance method in Table 7 and 8 give rise to some clear observations.
Differencing leads to fairly poor results, as in the synthetic experiments before. However, for
the non-differenced data, using only the velocity variables the results are better. This is
interesting, since the experiments of Section 3.3 suggested that more dimensions usually led
to better performance, but also well explainable since the 4-dimensional process cannot be
expressed as a VARMA process due to noninvertibility of the transition matrices. Lastly,
the experiments seem to suggest that thinning may increase the ability to differentiate the
various Markov states as expected, although the evidence is not decisive and one should
see the conclusions drawn about thinning as preliminary. A too high thinning factor can
decrease performance, which was the case for i = 10. In the case where there are 3 Markov
states, thinning with i = 5 led to the detection of an extra Markov state. It could be that
the algorithm was confused by a mixture of Markov states, since the time periods in one
thinning interval will sometimes not all be of the same Markov state. It can be concluded
that thinning is a promising technique, but that the thinning factor should be chosen with
care.
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Table 9: Estimations K̂ of randomly generated non-differenced velocity time series using
penalty functions with unknown variance

AIC BIC MSC

K = 3
No thinning 8 8 8

Thinning i = 5 8 8 8

K = 5
No thinning 8 8 8

Thinning i = 5 8 8 8

Table 10: Estimations K̂ of randomly generated non-differenced velocity time series using
penalty functions with known variance

AIC BIC MSC

K = 3
No thinning 5 5 5

Thinning i = 5 4 4 4

K = 5
No thinning 6 6 6

Thinning i = 5 5 5 5

The results of the penalty functions where the variance is not fixed are tabulized in Table
9, but actually do not need to be summarized in a table: for each investigated setting, more
hidden Markov states lead to a better objective function for the AIC, the BIC as well as
the MSC, since multiple hidden Markov states close to one another with decreasing variance
can lead to significant increases in the likelihood value, which the penalties do not counter
enough. These results do therefore not convey any information on the actual number of
hidden Markov states.

The results of the experiment where the variance was fixed, as shown in Table 10 are more
informative. The number of hidden Markov states estimated, is most of the times an over-
estimation, although the extend of the overestimation is especially for K = 5 quite modest.
Thinning seems to improve the estimates, although the number of experiments is too small
to draw strong conclusions. What is striking, is that the estimation of the three penalty
functions are in all cases equal, even though the MSC does not exhibit the upper bound
property of the AIC and BIC. A thing to note is that although MLE does seem to provide
decent estimates, it is computationally expensive and can for large sample sizes and with
slow convergence take minutes, where the autocovariance method takes seconds. Moreover,
MLE requires more information, since the variance should be fixed and known.

All in all, it seems that the penalty functions and the autocovariance complement each
other quite well and they can be used to gain a rather accurate idea of the number of hidden
Markov states. Based on the thinned 2-dimensional data, one would conclude one would
need 4 hidden Markov states for the model with 3 modes and 5 hidden Markov states for the
model with 5 modes. Using no thinning, the intervals are wider, but correct for both 3 modes
and 5 modes. It is thus possible to use the autocovariance method and the penalty functions
method to obtain an estimate of the number of hidden Markov states, but one must take the
uncertainties of the methods into account.
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Chapter 6

Conclusion and recommendations

6.1 Conclusion

The intention of this research was to answer the following main research question:
Construct a procedure to determine the optimal number of hidden Markov States |S| for the
model of the form

P (St = i|St−1 = j) = Pji,

Xt = fSt(Xt−1, Vt),

Yt = g(Xt,Wt),

with the intention to incorporate this in the overall procedure for tracking and classification.
Most attention was paid to the autocovariance method. A big advantage of this method is
that it is easy to implement and does not require a lot of computational power. Therefore,
there is little reason to not use the results in the process of determining the number of hidden
Markov states. However, the amount of knowledge gained depends strongly on the charac-
teristics of the hidden Markov Process. Factors which contribute to better performance of
the autocovariance method are sufficient distinctiveness of the different modes, low amount
of hidden Markov states, long time periods spent in the same Markov state, high number of
observations, high number of dimensions and a lack of modes which would be nonstationary
on their own. Since the strength of the autocovariance method depends strongly on these
factors, one can, therefore, only know how to interpret the results of the estimation of the
autocovariance method, if one knows these characteristics. Although in practice one does
not know, for instance, the probability transition matrix, one may have already a prior idea
whether the diagonal values are close to one or not. If one does not have such a prior idea,
estimates of MLE may provide an idea whether the estimated number of hidden Markov
states is reliable, although it may stay difficult to determine whether the number of hidden
Markov states is underestimated, or estimated accurately.

The first subquestion,

How can the optimal number of hidden Markov States be determined based on the data,

can thus partially be answered based on this research. The autocovariance method can in
some cases lead to an accurate estimate of the optimal number of hidden Markov states and
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may, together with penalty functions, lead to a narrow interval the number of hidden Markov
states should fall into. However, in other situations where the data generating process has
unfavourable characteristics, the autocovariance method provides little guidance.

as the answer returned by the autocovariance method cannot always be simply taken for
granted, the answer of the second subquestion

How can the above methods be included in the existing overall procedure for tracking

and classification,

is, therefore, not as straightforward as one may have initially hoped. Therefore, one should
carefully consider if the obtained estimate is reliable by looking at the characteristics of the
time series, possibly with the help of MLEs and prior, expert knowledge. However, for multi-
variate problems one needs to estimate too many parameters to reliably estimate the model
from scratch and one should, therefore, be careful in interpreting these parameter estimates.
It may for high dimensional problems also be necessary to limit the number of parameters in
some way, for example by restricting attention to CT models with unknown angle.

The implication of these conclusions is that it still involves human judgement to determine the
number of hidden Markov states and build the model, while one ideally works as structured
as possible, using as little human judgement as possible. However, it is still an improvement
over previous practice, as one has tools and estimates to base the model building on and one
does not solemnly have to rely on domain knowledge.
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6.2 Recommendations for further research

Although the autocovariance method was already first introduced almost 20 years ago, re-
search into its applicability for especially multivariate problems has remained underexposed.
In this thesis a number of characteristics of time series have been identified that affect the
suitability of the method, however a few points remain open for further research. The experi-
ments in Section 5.6 suggest that for random walk like time series the bounds for undifferenced
time series perform relatively well, but so far, this does not have a solid theoretical basis. It
is worthwhile to find out whether this a general property for random walk like time series
and whether there this can theoretically be explained.

Another important suggestion for further research is whether it is possible to find a VARMA
order selection method which preserves the lower bound guarantee of the autocovariance
method. For univariate time series this method already exists as the three pattern method
and a multivariate extension would thus be valuable.
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6.3 Recommendations for application

This thesis work has lead to all sorts of insights and theoretical results, some of which can be
of practical importance for the tracking model building process of Thales. In the introduction,
a very crude overview of the new model formulation process was given, shown again in Figure
12. Using the conclusions of the various results in this report, we can provide some further
details on this process.

Figure 12: New model building procedure

Firstly, one needs to decide if a VAR(1) model would be a good characterisation of the time
series at hand, or if we need a more general VARMA model. Moreover, if we are dealing with
noisy observations of underlying kinematic states, a VARMA(1,1) model specification may
be more appropriate for the time series, but if the observation noise is negligible, it may be
wiser to approach the data as from a VAR(1) process, although not strictly correct.

When using the autocovariance method, it is advisable to only use the velocity variables,
since nonstationarity issues are more modest than for the location variables. Moreover, de-
pending on the sampling time of the observations one may need to use thinning for more
reliable results. Differencing is not recommended, as this performed poorly in all experi-
ments of this thesis.

The reliability of the lower bounds depends strongly on the characteristics of the model
and it is therefore important to take those into account. One needs to ask oneself questions
such as does the hidden Markov chain stay, on average, in the same hidden Markov state
for longer periods of time? In how many dimensions does the object under consideration
move? How many observations do we have? What is the number of hidden Markov states
we approximately expect? Does the process contain periods of erratic, nonstationary be-
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haviour? Are the Markov states sufficiently different from each other? And perhaps the most
important question, to what extent do the assumptions of the methodologies hold, as were
summarized in Section 5.2. Some of these questions may be difficult to answer, since one
does not have enough prior information, but parameter estimates of MLE might give an idea
on the direction of the answers, even though these estimates should also be handled with
care due to the high dimensionality of the estimation problem and the presence of many local
minima. Maximum likelihood estimation for models with hidden Markov states is rather
computationally expensive, but since its results can complement the autocovariance method
in two ways, by providing context for its interpretation and by obtaining an upper bound
using penalty functions it is recommended to use both methods in the model building pro-
cess. The maximum likelihood estimates may also provide an idea which class of models is
suitable for further use. Both methods together can thus be used in a more informed model
formulation process.
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Appendix A

List of abbreviations

• ACF: Autocorrelation Function

• AIC: Akaike Information Criterion

• AR: Autoregressive

• ARIMA: Autoregressive Integrated Moving Average

• ARMA: Autoregressive Moving Average

• BIC: Bayesian Information Criterion

• CR: Column Ratio

• CT: Coordinated Turn

• CV: Constant Velocity

• DHMM: Double Hidden Markov Model

• EM: Expectation Maximization

• ESCAF: Extended sample autocorrelation function

• HMM: Hidden Markov Model

• KL: Kullback-Leibler

• MA: Moving Average

• MAP: Maximum A Posteriori

• MLE: Maximum Likelihood Estimation/estimator

• MS: Markov Switching

• MSC: Markov Switching Criterion

• PACF: Partial Autocorrelation Function
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• PM: Product Matrix

• RR: Row Ratio

• SSM: State Space Model

• VAR: Vector Autoregressive

• VARIMA: Vector Autoregressive Integrated Moving Average

• VARMA: Vector Autoregressive Moving Average

• VECM: Vector Error Correction Model
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